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"What would be the utility of such machines?
Who knows? ... I can't see exactly what would
happen, but I can hardly doubt that when we
have some control of the arrangement of
things on a small scale we will get an
enormously greater range of possible
properties that substances can have, and of
different things that we can do."

       Richard P. Feynman [1]
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1. Abstract
Molecular machines are at the ultimate limit of miniaturization. Living organisms provide a

variety of examples for such molecular machines, but in order to utilize and to control them,

they need to be interfaced with the macroscopic world. On the other hand, there are synthetic

molecular machines. Some have been interfaced already [2] [3] [4] [5] but usually in high

vacuum at very low temperatures, which is clearly not desirable for technical applications. In

this thesis, AFM-based single molecule force spectroscopy (SMFS)  was utilized to

investigate the mechanical change in single synthetic molecules upon environmental changes

(external stimuli) in liquid environment at room temperature. The molecules are either from

theory or from bulk experiments supposed to be able to convert such an external stimulus into

mechanical work, which is a prerequisite for molecular motors. Three different types of

molecules and various external energy inputs were investigated which led to the realization of

a light driven synthetic molecular machine:

• Polyelectrolytes should, by OSF-theory, change their persistence length (and therefore the

overall length at a constant force) with the Debye screening length of the solvent (which is

manipulated by the salt concentration). Therefore, the elasticity of the polyelectrolyte

polyvinylamine, which could be covalently attached to the substrate and the AFM tip, was

investigated in dependence on the salt concentration. It was found that the dependence of

persistence length on salt concentration is much smaller than expected from OSF-theory,
[6] which made this system less attractive for a molecular machine, but led to new

theoretical insights. [7] [8]

•  The adhesive properties of polyelectrolytes onto charged solid supports in aqueous

solution are a subject of current research in industry and academia. A manipulation of

polymer – substrate adhesion, e. g. at an AFM tip, could lead to a molecular 'grab and

release' device. Therefore, the desorption force of single polyvinylamine-molecules from

solid supports was investigated. Polyvinylamine was physisorbed to a glass substrate and

covalently attached to the cantilever. Then, the charge-charge interaction was manipulated

by variation in salt concentration and polymer charge. While this has not led to a single

molecule device yet, it gave new insights into the desorption of polyelectrolytes from

charged substrates. [6] [9] The measurements performed here revealed that van der Waals

forces and other non-covalent chemical interactions such as hydrogen and coordinative

bonds can by far outweigh the electrostatic coulomb force (namely at short distances), and

are therefore a more promising candidate for the tuning of adhesion forces. [10]
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•  Elastin-based polypeptides have proven various kinds of energy conversion in cross-

linked bulk samples. [11] The mechanism is based on a hydrophobic folding transition,

which can be manipulated by temperature, salt, pH, electrochemistry, and/or by the

composition (hydrophobicity) of the polymers. The difference between the folded and

random state could be detected and investigated here at the level of individual polymer

chains and characterized by the force-extension traces of the two polypeptides

(GVGVP)nx251 and (GVGIP)nx260. Because of their different hydophobicity their folding

temperatures lie above and below room temperature, respectively. With the polypeptide

(GVGIP)nx260 the folded state was investigated extensively. All observations support the

conjecture, that intermolecular aggregation dominates intramolecular aggregation. This is

further supported by the finding that neither a change in temperature nor the treatment

with sodium dodecyl sulfate or guanidinium hydrochloride could force any of the two

polypeptides from the folded to the random state or vice versa within an experiment,

which in turn would be a prerequisite for a polypeptide based molecular motor.

• The most successful approach to building an AFM-interfaced molecular machine was in

taking advantage of reversible configurational changes in azobenzene polymer molecules

upon irradiation with light. Azobenzene can be driven from a shorter 'cis' to a longer

'trans' configuration by illumination with λ = 420 nm light and vice versa by λ = 365 nm.
[12] In order to utilize azobenzene, a setup had to be developed and built, which allows for

the coupling of light into the AFM experiment. Total internal reflection geometry was

necessary to avoid any artifacts due to direct effects of the light on the cantilever. A

polypeptide chain with multiple functional azobenzene units was covalently fixed to both,

a gold coated cantilever and a flint glass substrate. In the force-extension traces

lengthening as well as shortening of the polyazopeptide was observed even under an

applied external force. [13] This is not only a proof of principle for the first single molecule

motor interfaced to the macroscopic world, but also generates discussion concerning

potential energy landscapes under external force.
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2. Introduction
Our organism is very rich in molecular devices, machines and motors.1 The processive motors

myosin and kinesin move muscles or transport loads by the hydrolysis of ATP, while the

enzyme RNA polymerase  transcribes a DNA template into mRNA by drawing energy from

the nucleotide condensation reaction. Other examples are the rotary motor F1-ATPase, which

again by the hydrolysis of ATP acts as a proton pump, or the retinal component of rhodopsin,

which by the absorption of light undergoes photoisomerization accompanied by a change in

the conformation of opsin. [15] [16] [17] [18] It is a particularly fascinating goal to mimic such

functions for the realization of artificial 'smart' materials, i.e. new functional polymers

performing specific tasks. This often involves a specific response to an external stimulus, i. e.

an energy conversion from one form to another. [19]

That synthetic materials are capable of many energy conversions has been demonstrated with

cross-linked polypeptides in bulk. [19] [11] On the single molecule level, rotaxans and catenans

have shown considerable energy conversion potential, [18] but the most extensively

investigated system, that can be reversibly switched by light, is azobenzene. [12] Despite the

extensive work on these systems it had not yet been possible to read out the mechanical

change directly on a single addressed molecule.

An established method to measure minute mechanical changes is the atomic force microscope

(AFM). [20] [21] [22] Fundamental intramolecular and intermolecular interactions have been

studied  directly at the molecular level with an AFM. [23] [24] [25] [9] This is usually achieved

by the investigation of force-extension traces, i. e. the measurement of the force that a

molecule applies to the cantilever when being extended. The measurements can be performed

in many kinds of solvents, which allows the testing of environmental effects (e. g. changes in

salt, temperature, pH) on the force extension traces. If the molecule is only physisorbed to the

AFM cantilever or the substrate, it is likely to detach by the perturbations imposed while

changing the solvent. Even with DNA, which is known to stick very well to gold substrates,

there are only few experiments known, where the solvent was exchanged with a molecule

staying attached. [26] But with a covalent attachment of the molecule to both the AFM

cantilever and the substrate, the direct impact of an external stimulus (change in environment)

should be detectable on a single molecule, which is the prerequisite for a molecular machine.

In addition, a covalent attachment allows to probe a molecule for hours.

                                                  
1 There are numerous definitions for a machine. [14] Here, the expression 'machine' shall refer to a device that
converts energy from one form into another in a cyclic way. The specific machine, which converts a 'fuel' into
mechanical work in repeated cycles, shall be termed 'motor'.
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Therefore, each of the investigated molecules has functional groups to allow for covalent
chemical coupling. A concept of a single molecule motor, the investigated molecules and the
corresponding external stimuli are depicted in Figure 2.1.

Figure 2.1:
For three different
molecules (poly-
electrolytes, poly-
pentapeptides, poly-
azopeptides) the switching
from a long (blue) to a
short (green) conformation
was investigated with
many different external
stimuli: the concentration
of ions (κ−1), the line
charge density (τ), the
surface potential (φ), the
temperature (T), the
hydro-phobicity (Nhh), the
concentration of organic
solutes (cos), and light
(hν).

Polyvinylamines are promising candidates for a variety of molecular machines - they are

supposed to considerably change their stiffness and adsorption properties with the

concentration of salt (described by the Debye screening length, κ−1), the line charge density, τ,

and the surface potential, φ, [27] [28] [29] while their amino side groups allow for a covalent

attachment to functional cantilevers and substrates. This is similar for polypeptides, which

undergo an inverse temperature folding transition that can be manipulated by means of many

external parameters, among those are the temperature, T, the hydrophobicity, Nhh, and the

concentration of organic solutes, cos. Polypeptides can be end-functionalized by various amino

acids (e.g. cysteine, lysin) for covalent attachment. [11]

Polyazopeptides change their configuration upon irradiation with light, hν. Light had not yet

been used as an external stimulus in SMFS experiments, but is utilized in this thesis (in total

internal reflection geometry). With this setup polymers containing the functional azobenzene

unit became the most promising candidates for single molecule machines. Such a

polyazopeptide could be covalently linked between the AFM cantilever and a flint glass

substrate by heterobifunctional chemistry. Irradiating this polymer with light of wavelength of

420 nm or 365 nm (in total internal reflection geometry) resulted in an extension or

shortening of the polymer, respectively. This could be detected in the force-extension traces

with the AFM, even against an applied force. Finally, optomechanical switching could be

done in a cyclic way, which proofs the feasibility of a synthetic light driven single-molecule

machine. [13] [30]

switch by

external stimulus

Polyelectrolytes Polypeptides Polyazopeptides

h.ννννT, Nhh, cosκκκκ−−−−1111,,,,    ττττ,,,,    φφφφ

cantilever

molecule 
(short)

piezo

cantilever

molecule 
(long)

piezo
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3. Materials and Methods
The development of new experimental tools in the past 15 years enabled the measurement of

forces in the pN (and even fN) range, which allows for mechanical experiments with single

molecules. Today a number of techniques differing in force- and dynamical ranges are

available. The most common of these are magnetic beads, [31] optical tweezers, [32] glass

microneedles, [33] the biomembrane force probe (BFP), [34] and atomic force microscopy

(AFM). [20] [21] [24] [25] [9] This technical advancement has made single molecule force

spectroscopy a widely used tool for the structural and functional investigation of bio-

molecules in their native environment. Within the accessible force window, the whole force

spectrum from entropic forces at several femtonewton (fN) [31] to the rupture of covalent

bonds at a few nanonewton (nN) [35] has now been investigated at the molecular level.

As the use of the atomic force microscope (AFM) in force spectroscopy has emerged from the

study of biopolymers, many of the basic aspects of the development and application of this

technique are related to the application of force measurements in the study of biopolymers

and other biologically relevant systems. [24] [25] [36] In contrast, the focus of this work is the

application and extension of single molecule atomic force microscopy to synthetic materials

and their manipulation by external 'non mechanical' stimuli, especially with light. In the

following the investigated molecules, the principle of the covalent chemical attachment of the

molecules and the coupling of light into the AFM experiment is depicted.

3.1. Polyvinylamine (PVA)
The polyvinylamines were synthesized by partial hydrolysis of poly-N-vinylformamide, such

that the fraction of amino groups in the polymer chains could be controlled by synthesis. The

samples were provided by Dr. Andreas Pfau from the Polymer Research Division, BASF-AG,

Ludwigshafen, Germany. In Figure 3.1, the molecular structure of the PVA polymers, their

degree of hydrolysis, x, as determined by stoechiometric control (and checked by NMR), as

well as the line charge density, τ, are shown. The average molecular weight of the polymers

as estimated from the K-value2 and light scattering was Mw ≈ 500,000 g·mol-1, this

corresponds to an average degree of polymerization, Nw ≈ 12,000, which gives an average

contour length of the polymers, Lavg ≈ 3 µm. The provided high viscous solutions contained

about 10 % PVA and 10% negatively charged low molecular weight organic acids and salts

from the hydrolysis of the charged amino groups. In the following the specimen will be

named by the rounded value for the degree of hydrolysis (Figure 3.1):

                                                  
2 The K-value is an empiric value which defines the molar mass by the viscosity of a solution and is 88 for the
used PVA.
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Figure 3.1: Molecular structure of polyvinylamines used in SMFS experiments. x - degree
of hydrolysis; a - distance between neighboring positive charges; τ - line
charge density.

3.2. Polypentapetides
The investigated elastomers are polymers comprised of repeating peptide sequences. They can

be prepared by chemical synthesis (both solution and solid phase) and by recombinant DNA

technology (e. g. microbial biosynthesis). [37] The disadvantages of both methods were

overcome by first synthesising the polypeptides chemically (which is very expensive and

gives low yield) and then using these as a standard for the purification of microbially prepared

polymers. Their composition is then exactly defined, which allows for the variation of single

amino acids. In the following the standard one letter code for the amino acids is used, i. e.:  G

- Glycine, V - Valine, P - Proline, I - Isoleucine, C – Cysteine. Figure 3.2 gives the structural

formula of the two investigated pentapeptide sequences.

Figure 3.2:
Structural formulae of
the pentapeptides
GVGVP and GVGIP.

(GVGVP) is the most prominent repeating sequence in the natural bioelastomer elastin,

occuring more than eleven times in a single sequence while (GVGIP) has only one additional

CH2-group, which makes it more hydrophobic. The high molecular weight polymers

(GVGVP)nx251 and (GVGIP)nx260 were prepared by means of recombinant DNA technology in

a microbial biosynthesis followed by a polymerization. The degree of polymerization, n, was
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not controlled, but kept small (n = 1-8). A part of the sample was then terminated by a

cysteine residue to allow for covalent attachment to a gold substrate. If not otherwise

mentioned, these cysteine terminated samples were used. The samples were produced at

Bioelastics Research Limited, Birmingham, USA and provided by Prof. Urry.

(GVGVP)251 is soluble in water below the temperature Tt = 25 °C. On raising the temperature

above 25°C it aggregates and undergoes a phase transition to a viscoelastic state which is

about 50% peptide and 50% water.

(GVGIP)260 has just one additional CH2 group per pentamer and undergoes the same kind of

phase transition, but with a considerably decreased  Tt of about 12 °C.

The transition temperatures, Tt, were measured in pure water and PBS by turbidity

experiments, which are sensitive to an aggregation of molecules. [38] Their dependence on

organic solvents and salts is also given in [38]. Turbidity experiments showed that the

influence of the concentration is negligible. But in highly diluted solutions (which cannot be

accessed by turbidity experiments), Tt is supposed to increase significantly. [39]

Further knowledge of the structure of these polypeptides comes from light and electron

microscopy. Light microscopy reveals that chemically cross-linked polypeptides have self-

assembled into several micron diameter fibers, which are made up of parallel aligned fibrils

(as was seen by SEM). These fibrils arise from the association of 5 nm diameter filaments

with a supercoiled or twisted substructure, which was seen by TEM and negative staining. It

is further assumed that the filaments consist of beta-spirals, where 3 pentamers give a length

of about 1 nm, while in the unfolded state an amino acid has a length of about 0.36 nm, which

gives a total length of 5.4 nm. This finally leads to the schematic representation given in

Figure 3.3. [19]

The solid state of untreated poly(GVGVP) is characterized by an amorphous phase, in which

a dense net of hydrogen bonds is established. Thermal treatment (above Tt) transforms this

metastable phase to a more stable state (with a certain loss of hydrogen bonds) which is still

 non-crystalline. [40]
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Figure 3.3: (A) Schematic representation of the polypeptide chain with the P-G sequence
inserting a repeating β−turn. (B) The repeating β−turn, as obtained from the
crystal structure of cyclo(GVGVP)3. (C and D) Helical representations of the
repeating pentamer structure without and with showing the β−turns positioned
as spacers between the turns of the helix. (E) Detailed plots in stereo (cross-
eye viewing) of the helical structure of poly(GVGVP), called a β−spiral. (F)
Association of β−spirals in space filling united residue representation giving
rise to the twisted filament, or supercoiled, structures. (Adapted from [11]).

3.3. Polyazopetides
The synthesis of the investigated azopeptides was done by Dr. Anna Cattani in the group of

Prof. Moroder (Max-Planck-Institut für Biochemie, Martinsried, Germany). It was directed by

the desire to maximize the potential length change upon irradiation, the need for a sufficiently

long chain to be investigated by SMFS and the need to chemically attach the polymer both to

the AFM tip and the glass substrate.

Figure 3.4:
Structural formula
of the investigated
poly(azopeptide),
n ~ 20.
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The polymer is shown in Figure 3.4, it is a polypeptide with multiple azobenzene moieties

incorporated in the backbone. For the incorporation of multiple azobenzene moieties into a

linear polymer a sequential polypeptide approach based on polycondensation of tripeptide

monomers containing (4-aminomethyl)phenylazobenzoic acid (AMPB) [41] was selected.

Upon thermal relaxation into the all-trans-azo configuration, the average contour length of the

polymer was estimated at 54 nm. For a more detailed description of the synthesis see [30]. The

C-terminus is suited to form a peptide bond to an amino-modified surface while the N-

terminus was extended with a trityl protected cysteine. This allowed for a heterobifunctional

attachment of the polyazopeptide to the AFM tip and the substrate

3.4. Covalent Attachment Scheme

Figure 3.1:
Schematics of the
utilized covalent
attachments:
Polyazopeptides are
coupled via gold-thiol
and carboxy-amino
chemistry (left).
Polyvinylamines are
coupled via Epoxy-
Amino chemistry
(right).

Three covalent attachment mechanism were used for the investigated polymers. They are
depicted in Figure 3.5 and described in detail in Section 10.1.

3.5. Coupling of Light into the AFM Experiment
The light to excite the azobenzenes units in the polyazopeptide molecule is coupled into a flint

glass microscope slide in total internal reflection (TIR) geometry (Figure 3.6). A single

molecule is covalently attached between cantilever and substrate and excited in the

evanescent field of the flint glass (Figure 3.7). For further details see Section 10.2.
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Figure 3.6: Schematics of the modified AFM with optical excitation. The light of a Xenon-
flashlamp is coupled into a flint glass object slide in total internal reflection
(TIR) geometry. The polymer is excited in the evanescent field.

Total internal reflection was of crucial importance to eliminate the deleterious effects of

absorption by and thermal heating of the cantilevers. The penetration depth of the evanescent

field is about λ/2π ~ 50 nm. This is short enough to prevent interaction with the cantilever

itself and long enough to excite most of the azobenzene units in the polyazopeptide.

Figure 3.7:
Schematics of the polyazopeptide in
the evanescent field produced by total
internal reflection (TIR) in a flint glass
slide

Excitation in TIR

Polyazo-
peptide

Cantilever

Flint glass
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4. Theory

4.1. Statistical Mechanics for Single Molecule Force

Spectroscopy
In the following the statistical mechanics of a polymer will be layed out with special emphasis

to single molecule force experiments. As the system cantilever-polymer is not a

thermodynamically large system the thermodynamic boundary conditions of the single

molecule experiment have to be considered first. Based on this, the well-accepted concept of

entropic elasticity is summarized, which results in an effective restoring force upon stretching

a flexible polymer chain by an external force field as a result of a loss in conformational

freedom. However, as the full range from thermal fluctuations to the strength of individual

chemical bonds is explored by single molecule force spectroscopy, other elastic contributions

have also to be considered, especially in the high force range at several hundred pN.

4.1.1. Thermodynamic Boundary Conditions

In a single molecule stretching experiment fluctuations become non-negligible and the

different statistical ensembles are therefore not equivalent. Strictly, neither the Gibbs

ensemble (no force fluctuations) nor the Helmholtz ensemble (no distance fluctuations) is

correct, and one has to find a proper statistical analysis of a system with constant spring

constant. This is given in recent publications by Kreuzer et al., [42] [43] there it is also shown,

that for single molecule force experiments in the soft cantilever regime (which applies to the

usual experimental conditions) the Gibbs ensemble is a good approximation. Therefore, in the

following the Gibbs ensemble is applied.

4.1.2. Statistical Mechanics of Polymer Chains

Polymers have been synthesized since about 150 years, but their structure was long unknown.

For many years it was supposed that small molecules form large aggregates. In 1920 Hermann

Staudinger recognized, that substances like caoutchouc are built from high molecular weight

polymers which are covalently bound and named them "Makromoleküle" (ger.:

macromolecules) in 1922. [44]

The theoretical analysis of the properties of single macromolecules is well developed for

flexible polymers and will be given in the following. If the length scale is chosen large

enough all linear macromolecules can be considered to be flexible. In this limit they adopt a

random coil conformation in solution, and Brownian motion causes a permanent fluctuation

of the molecule around a mean equilibrium conformation. This problem is closely related to
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problems such as random walks or diffusion, and the mean values describing the

conformation of such a polymer chain in solution can then be derived by a statistical

approach. [45-48] The classical partition function of the system is set up, based on which the

probability of configurations with, e.g. the same specified end-end distance, R, can be

deduced.

The discussion is started with the 'classical' entropic contribution at low stretching forces.

Assuming a Gaussian distribution for the random polymer coil, [47] [48] this restoring force is

strictly proportional to the relative extension of the polymer chain, F ~ R/L (L - contour length

of the polymer). However, the linear response regime of a stretched Gaussian chain is limited

to small extensions (or small forces, respectively). Apparently, the real end-end distance of a

polymer chain cannot be larger than its contour length (a restriction not considered in the

Gaussian distribution), such that the restoring force must be a non-linear function of R/L,

approaching infinity upon full extension of the polymer chain. The two most prominent and

most simple theoretical models which satisfy this boundary condition are the 'freely-jointed

chain' (FJC) model [46]  and the 'worm-like chain' (WLC) model,[49] which are usually used to

describe the measured force-extension profiles of individual polymer chains.

Strictly, a polymer confined between the walls of a surface and an AFM tip is not accurately

described by any theoretical model, in which the polymer ends are 'fixed' to an arbitrary point

in space. The real confinement to a half space has the effect that the z-component of the

polymer's end-end distance, <Rz>, is non-zero under zero force, while in the FJC and the

WLC model the force acting on the unconfined polymer chain is exactly zero for <Rz> = 0.

Both models therefore fail in the short distance regime of the AFM experiment, in which a

compression force would be needed to reach <Rz> = 0 (i.e. to bring all polymer end groups to

the substrate). This force has not been quantified experimentally for single molecules yet, as

other limiting factors such as adsorption and desorption of polymer segments to the surfaces

and tip-surface interactions usually dominate the stretching profile at short tip-surface

distances.

4.1.3. The Freely-Jointed Chain (FJC) Model

In the freely-jointed chain model, a polymer is described as a chain of N segments of equal

length, l. The segments are freely jointed, i.e. there are no restrictions to their spatial

distribution such that each segment can point in every direction with equal probability. This

condition is not fulfilled for real polymers, but this restriction does not change the general

form of the force-distance relation. Effectively, the freely-jointed chain model can be used

with adjusted contour and segment lengths. This effective segment length is also termed Kuhn

length, lK. The contour length of the polymer chain is then simply given by L = N l. Generally,

the restoring force, F, as a function of the chain's end-end distance, R, can be obtained from
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the first derivative of the partition function at given end-end distance, ZR , i.e.

F R k T
Z

RB
R( )

ln
= ⋅

∂
∂

. However, in most cases as even for the simple FJC model, it is not

possible to derive an analytical expression for ZR. Therefore, the stretching energy, F·R, is

introduced as an additional term into the chain's partition function at constant force, ZF

(Equation 1). For a freely-jointed chain, the partition function at constant force is given by

Z ... e dl ...dlF
FJC (E(l ,...,l ) F R)/k T

ll

1 N
1 N B

N1

= − − ⋅∫∫ , (1)

in which l1,...,lN are the bond vectors representing the N segments of length l. E(l1,...,lN) is the

energy of a given set of bond vectors (i.e. conformation), which is a constant for the case of a

freely-jointed chain, as there is no interaction between the individual segments. From this, the

mean end-end distance, R, can be calculated as a function of the external stretching force, F,

R k T
Z

FB
F= ⋅

∂
∂
ln

. (2)

The force-distance profile, F(R), is given by the inverse function. Introducing Equation 1 into

Equation 2, and for the stretching force acting along the z-axis, the mean extension along the

z-axis, Rz, is obtained as a function of the applied force by

  
R N l

F l

k T

k T

F l
N l

F l

k Tz
B

B

B

= ⋅ ⋅
⋅







 − ⋅









 = ⋅ ⋅

⋅







coth L . (3)

L (x) = coth(x)-x-1 is the Langevin function, and the average force acting in z-direction is

given by the inverse of Equation 3.

The Langevin function approximates x/3 for small x and (1-1/x) for large x, which yields the

following approximations for Rz:

R

Nl
kBT

Fl

Fl

kBT

Nl F

kBT

Fl

kBT
Z ≅

− >>

<<













( )1 1

2

3
1

. (4)

The behavior for small F is therefore equivalent to an ideal spring with spring constant

k
k T

R
B

e

= 3 2 . (5)

Here, Re is the average end-end distance without an applied force (Re
2 = N l2).
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The two adjustable fit parameters in this model are the segment length, l, and the number of

segments, N. As the stretching force is still a function of the chain's relative extension, i.e. F ~

f(Rz/L), all force traces originating from different polymer chains of identical structure will

superimpose when scaled to the same contour length. The only relevant fit parameter in the

freely-jointed chain model is therefore the segment length, l, which is a measure of the

flexibility of the random coil. It may coincidentally agree with the length of a structural

monomer unit or the length of a C-C-bond, typically the values for flexible polymers in good

solvents are 0.3 - 0.6 nm. [50] [51] [52]

To this point, this model just accounts for the entropic elasticity of the chain’s backbone,

which implies a fixed contour length, L. This assumption does not hold in the higher force

regime probed in the AFM experiment, which reaches up to nanonewton forces where even

covalent bond rupture can be observed. Before chemical bonds break, the deformation of

bond angles and the stretching of covalent bonds will result in an effective increase of the

segment length. Therefore, enthalpic contributions to the restoring force of the polymer chain

have to be considered. In the simplest approach, it is assumed that the restoring force can be

separated into an enthalpic and entropic (conformational) contribution such that the

extensibility of the segments can be considered as an additional Hookean term, FH, which

scales linearly with the relative extension. With FH = Ko (Rz /L), the distance-force relation

becomes 3

R N l
F l

k T

N l

K
Fz

B o

= ⋅ ⋅
⋅







 +

⋅
⋅L . (6)

This introduces an additional parameter Ko, the (normalized) segment elasticity, which is the

inverse of the normalized compliance of the polymer chain, thus a measure for its

extensibility.

4.1.4. The Worm-Like Chain (WLC) Model

All approaches to describe a semiflexible chain have in common the concept of a persistence

length. The persistence length should be a measure of stiffness, but exactly how this is

measured is a matter of definition, and there are plenty of definitions (for an overview see
[53]). To give an instructive definition of a persistence length, LP, and its relation to the

bending modulus, κ, of a rod the approach given by Netz in his lecture on polymer physics

2002 at the LMU München (based on [54]) is layed out in the following. A further advantage

of this approach is, that it leads to the definition of the persistence length, which is the starting

point for the OSF-theory for charged chains treated in Section 4.2.2.

                                                  
3 To be exact, the Hookean term would have to be included into the partition function and RZ again calculated,
but this is a  more involved calculation which was e.g. done by R. R. Netz (private note) and gives no marked
change in the fit trace.
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The chain is described by a continuous trace with a bending modulus, κ ( Figure 4.1).

Figure 4.1: 

Sketch of a polymer

worm-like chain

and the relevant

parameters.

The variables are defined as ( <(a,b) is the angle between the two vectors a and b):
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the expectation value for the vector product t1t3 is given by

< t1t3> = <sinτ12  sinτ23 cosθ23> + < cosτ12 cosτ23>. (7)

As t1 and t3 are just coupled by an intermediate point (Markov chain) the angles θ23 and τ12 are

decoupled:

< t1t3> = <sinτ12> <sinτ23 > <cosθ23> + < cosτ12 > <cosτ23>, (8)

and as the rotation around θ23 is free: <cosθ23> = 0.

Further the expectation value of two distant tangent vectors equals their product

< t1t3> = < t1t2> < t2t3>, (9)

and therefore in general

<cos[τ(s1+s2)]> = <cos[τ(s1)]> <cos[τ(s2)]>, (10)
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with s1: contourlength between t1 and t2,

and s2: contourlength between t2 and t3.

The only function which guarantees this is the exponential, therefore

< t(0) t(s)> = e-s/Lp, (11)

with the persistence length, LP.

To give the persistence length a physical meaning, it is in the following related to the bending

modulus, κ. The bending energy  of a thin rod with length L is given by Landau and Lifschitz

[55]

χ
κ

= 



∫2

0

2

ds
d s

ds

L t( )
. (12)

An arbitrary trace can be approximated in a point by a circle of radius R. The absolute value

of the bending vector is from differential geometry equal to 1/R: |dt/ds|=1/R=τ/L. Therefore,

χ
κ τ κτ

= =
2 2

2
2

L
L L

( ) . (13)

From the equipartition theorem every quadratic degree of freedom contributes 1/2 kBT of

internal energy, which yields one kBT for the bending energy of the stiff rod (two free angles):

< > = = < > ⇒ < > =χ
κτ

τ
κ

k T
L

L
k TB B

2
2

2
2

. (14)

On the other hand is Equation 11 for s << LP to first order 4

 
< − > ≈ −

⇒ < > ≈

1
2

1

2

2

2

τ

τ

s
L

s s
L

P

P
( )

. (15)

Combined with Equation 14 this yields the following relation between the persistence length,

LP, and the bending modulus of a rod, κ:

LP = κ / kBT. (16)

The problem of a semiflexible chain under tension is analytically not exact solvable. First

numerical approaches by Fixman and Kovac, [56] as well as analytical approaches by Kovac

and Crabb [57] started from a freely rotating chain. They introduced harmonic bending

potentials for the orientation of two neighboring chains and the extension of a single segment.

Then they took the limit N -> ∞, LP -> 0, cos(θ) -> 1. Several years later Marko and Siggia
                                                  
4 The restriction s << LP is not necessary, if the problem is approached by field theory. [56]
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[58] [59] introduced an interpolating formula for the WLC-model. It is usually used to describe

semiflexible polymers and was extended by Wang et al. [60] to include a (normalized) segment

elasticity, K0:

F
k T

L

R

L

F

K R L F K
B

P

z

o z o

= ⋅ − +
− +

−










1
4 1

1
42( / )/

(17)

It reproduces the exact behavior of their numerically calculated solution [59] for large (F >

20pN) and small (F < 1pN) forces while the deviations in the intermediate range are up to

10%. An improvement to this formula is given by Bouchiat et al.[61] They substracted the

Maro-Siggia interpolation formula from the exact numerical solution of the WLC model and

expressed the residuals as a seventh-order polynomial. This  results in less than 0.01 %

deviation from the exact WLC model. But as the WLC-model itself has some shortcomings

for AFM experiments, not the deviation from the model, but the model itself probably

imposes the biggest error.

Stimulated by the finding that especially in the high force range the WLC-model does not fit

the data well, Livadaru et al.[8] performed extensive transfer-matrix calculations for the force-

response of a freely-rotating chain model5 as a function of varying bond angle (and thus

varying persistence length, LP) and chain length, L. The results are not published yet, but

submitted to Macromolecules and discussed in Section 8.1. They showed a crossover from the

WLC to the discrete-chain (DC) behavior, which occurs at a force F ~ LP /b2 kBT ( ~ 57 pN

for a carbon backbone with bond length b ~ 0.15 nm) and is thus probed in the performed

AFM-experiments. This crossover is due to the fact that at increasing forces the dominant

chain fluctuations probe progressively smaller length scales and above the crossover force

become sensitive to the discrete nature of the semiflexible chain.

The persistence length in the limit of stiff bonds follows from the discretization of the WLC

model. In this DC regime the stretching response shows a different force dependence than in

the WLC regime,

WLC:
R

L

F L

k T
Z P

B

= −










−

1
4

0 5.

, (18)

DC:
R

L

F L

c k T
Z P

B

= −










−

1
1

. (19)

The DC behavior is similar to the behavior of a FJC, but not equal, as the architectural details

of the chain are contained in the constant c. A simple heuristic function for the force-distance

relation to fit experimental data is given by (FWLC[x] = 3/4 – 1/x + x2/4)

                                                  
5 And also elastically jointed chain model, which should be applicable to stiff biopolymers and is not further
discussed here.
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R

L
F F L

k T
c F b

k T
FZ

WLC
P

B B
= − 
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+−

−

1 1

1
β β β

γ . (20)

In the following it shall be called WLC_DC-fit. To present, only the parameters for a carbon

backbone are calculated: b ~ 0.15 nm; LP ~  0,76 b; β ~ 2; c ~ 2; γ ~ 28000 pN. [8]

4.2. Polyelectrolytes
Polyelectrolytes are macromolecules carrying covalently bound anionic or cationic groups,

and low-molecular weight 'counterions' securing for electroneutrality. They are of central

importance in nature and in industrial applications. For instance the conformation as well as

the adhesive behavior of proteins are governed to a significant extent by electrostatic

interactions. [62] [63] Due to their unique adsorption properties at interfaces, synthetic

polyelectrolytes are used in many industrial areas, for example in paper, textile, petrol,

cosmetics and chemical industry. These and other applications are treated in the book by

Dautzenberg. [64]

In addition to the acid or base strength of the ionic sites, the average distance between

adjacent charges, a, (or the line charge density τ=1/a) is an important parameter. It can be

controlled by polymerizing the heteropolymer from charged and neutral groups as units. This

fixes the charge distribution along the chain during the polymerization. It is usually quantified

by the degree of hydrolysis, i. e. the fraction of charged groups.

The theoretical treatment of polyelectrolyte chains is much more involved, because the

electrostatic interactions are long-ranged. There are different models and therefore different

definitions for the electrostatic persistence length, Lp,e. In the following the OSF-theory and a

recent theory including stretching and bending fluctuations are summarized. The OSF-theory

is often applied, but based on the WLC model it neglects some fluctuations in the system.

Several experiments show, that this is an oversimplified model, which does not describe a

charged  polymer chain under stress satisfactorily. [59] [6] The below discussed recent theory
[7] includes fluctuations, which results in the experimentally observed force dependent

persistence length.

4.2.1. Basic Parameters

The Bjerrum Length is the distance, at which the electrostatic interaction of two unit

charges, e, in a solvent without counter ions equals the thermal energy, kBT,

l
e

k TB
B

=
2

04πεε
. (21)
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lB is about 0.71 nm in water at room temperature. The presence of ions screens the

electrostatic potential of a polymer chain considerably. An estimate for the range of the

coulomb potential in the presence of counter ions in the solvent is given by the Debye
Length, κ-1. For monovalent ions it is given by

κ λ
π
ε

−

−

= =










1
2

1

28
DH

S

B

c e

k T
, (22)

with the concentration of the monovalent ions, cS, and the dielectric constant, ε, of the solvent

(for water: ε ≈ 80). Additional factors for multivalent ions are given in [65]. For r > λDH the

typical electrostatic potential (proportional to r-1) is screened and given by r-1exp(-r/λDH). This

approximation is valid at distances larger than the Gouy-Chapman Length,

λ
ε

σ πσ
= =
2 1

22

k T

e l
B

B

. (23)

The Gouy-Chapman length corresponds to the distance of a single ion from a charged wall at

which its bare interaction with the wall is on the order of kBT.

4.2.2. OSF-Theory

According to the OSF-theory, which was established independently by Odijk, [27] Skolnick

and Fixman, [28] the bending rigidity of a polyelectrolyte chain is increased as its like-charged

segments electrostatically repel each other. This favors a stretched chain conformation, which

can be described in the rod-limit by an electrostatic contribution, Lel, which adds to the bare

elastic persistence length, Lo, of the polyelectrolyte so that overall,

 LOSF  = Lo + Lel . (24)

For the electrostatic persistence length, Lel, they found a simple power law for the dependency

on concentration of monovalent ions, cS (represented by the Debye screening length, κ-1 ~

cS
–1/2), and the polymer charge density: [27]

       Lel = lB κ-2 τ2 / 4. (25)

However, at high charge densities, there is a limit for the line charge density as counterion

condensation reduces the average distance between two charges along the chain to the

Bjerrum length, lB. [66] In this 'Manning-limit', the effective line charge density becomes one

charge per Bjerrum length, τ = lB
-1, and Equation 25 reduces to

        Lel = κ-2/4lB. (26) 
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Small angle static light-scattering experiments [67] and magnetic birefringence measurements
[68] confirmed this behavior for rather stiff chains and polyelectrolytes with high charge

density. For flexible chains there is a discrepancy among existing theories, simulations and

experiments. Netz and Orland [69] as well as Dobrynin et al. [70] give many examples for

publications that show quadratic, linear, or even sublinear dependence of the electrostatic

persistence length from the Debye screening length. Netz and Orland themselves show in

their variational theory that previous variational calculations were too restrictive and in

releasing this constraint find agreement with the predictions by Odijk (for rigid polymers) and

Khokhlov [71] ( who predicted a quadratic dependence on the screening length for flexible

polymers).

4.2.3. Force Dependent Persistence Length

The concept of a static persistence length, as given in the OSF-theory, breaks down in single

molecule force experiments on semiflexible polymers where bending and stretching

fluctuations become non negligible. Barrat and Joanny [72] showed that LOSF depends on the

scale of the bending fluctuations, leading to a softening of the charged chain for bending

wavelengths smaller than the screening length. This results in an effective decrease of LOSF

for large applied forces (as in AFM experiments), which has qualitatively been predicted

theoretically and verified by experiments several years ago by Marko and Siggia. [59] Recently

Netz [7] calculated the stretching response of a single charged semiflexible polymer in the

limit of large tensile forces considering the effects of (i) the coupling of bending and

elongational fluctuations, (ii) the electrostatic contribution to the bending and elongational

energies, and (iii) nonlinear bare elastic elongational energies. For a linear elasticity, i. e. an

ideal spring model with spring constant γ  for the stretching energy, the stretching response is

given by 6

R

L

g F g F

l F g F
Z

eff

= +
+

−
+ +

+ +
1

1 2
2 1γ

γ
γ

( ) /
( ( ) / )

. (27)

Here, F is the external force acting on the chain, L the contour length and RZ the end-to-end

distance of the chain.

The linear stretching constant g, which can be interpreted as an intrinsic force which pushes

the monomers apart, is given by (in units of kBT)

g
l q

a
a

e

e
eB

a

a
a=

−
− −









−

−
−

2

2 1
1κ

κ

κ
κln( ) . (28)

Where a denotes the distance between charges of valency q.

                                                  
6 For a general formula see [7].
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As the persistence length in stretching experiments on single molecules is defined by the force

acting on the molecule, the effective persistence length, leff, becomes force dependent and is

defined by

< >=⊥
−

t f leff
2 1

2( )* , (29)

here, < >⊥t
2  is the expectation value of the perpendicular tangent vector component and

f F
g F* = +

+







1

γ
 the normalized force (for linear elasticity).

This results in a scale dependent electrostatic persistence length, and shows a softening as the

pulling force increases. A heuristic expression for the rescaled effective persistence length is

given as [7]

l L

L f
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−
=

+ 
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1

1
* .

κ

, (30)

where Lo is the bare persistence length, and LOSF the electrostatic persistence length (given by

the OSF-theory). This shows, that in the 'high force' regime, the effective persistence length,

leff, of the polymer is reduced to its bare elastic contribution, Lo.

The force at which this crossover occurs is f* = L0 κ
2. For synthetic polyelectrolytes (L0 ~ 1

nm) f* kBT  ~ 4 pN for cS = 100 mM and f* kBT  ~ 40 fN for cS = 1mM. For DNA, with L0 ~ 30

nm,  this results in a crossover force of more than 120 pN at physiological salt concentration.

These findings are qualitatively consistent with the above mentioned theoretical and

experimental considerations and are supported by recent experimental evidence obtained in

single molecule force measurements on synthetic polyelectrolytes. [52] [73] [6] They are further

discussed in Section 8.1.

4.3. Force Induced Bond Rupture
The first experiments reporting rupture forces of single bonds were performed at fixed pulling

velocities and spring constants.[74] [50] It is now generally accepted, that the rupture force of

an isolated bond is not only dependent on the shape of the unbinding potential and the

temperature, but also on the force loading rate: any non-covalent bond will fail under any

level of pulling force if held for sufficient time. [75] [76] Therefore, with the bond dissociation

process being a non-equilibrium dynamical process, the bond strengths (as well as strengths

of adhesion) can be expected to be time- and loading rate dependent properties. This has been

shown in several experiments, most striking employing the biomembrane force probe

technique by which the applied force-loading rate was varied over six orders of magnitude.
[77] Dynamic force spectroscopy thus not only allows the determination of the unbinding
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forces at the molecular level, but also explores wide regions of the energy landscapes of

ligand-receptor bonds, and thus can reveal a detailed picture of the binding potential. [78] [79]

[80]

In the following a short summary of the models used to describe force induced single bond

rupture is given. Systems with many bonds in parallel show various behavior, especially for

the dependence of the net rupture force on the number of bonds in parallel.

4.3.1. Single Bond Exposed to an External Force

The first theoretical Equation to describe chemical reactions was the Van't Hoff - Arrhenius

Law [81], which describes the exponential dependence of the reaction rate from temperature. It

was then realized that escape from a state of local stability can happen only via noise-assisted

hopping events. The theory of Brownian motion was therefore the starting point for the

following two theories. They give the rate of escape from the states of local stability along a

preferential path over the confining barrier via a saddle point in the energy surface under the

assumption that the diffusion current is constant in space :

• Eyring and others derived a  rate formula dependent on quantities that are available from

the underlying potential surface. This theory is commonly known as the Transition State

theory, when the concept of  a point of no return (i. e. no trajectory that passes the

transition state returns) is introduced (an extensive review is given by Hänggi [82]).

• Kramers theory [83] is based on Brownian motion dynamics driven by thermal forces, F,

which in turn are connected with the temperature, T, and the damping, ζ, via the

fluctuation-dissipation theorem [82]

<F2> ∆t  ~ kBT  ζ . (31)

Equation 31 is derived under the assumption of overdamped motions, where v = F / ζ. [84]

Both theories give the lifetime of a bond with an energy barrier ∆Vu
‡ in the absence  of an

external force as

τ
νo

o

V k T

k
e u B= = ⋅ +1 1

0

∆ ‡ / . (32)

In the transition state theory the pre-factor νo is the natural vibration frequency of the bond,

which is of the order of νo ≈ 5.1013 s-1 for C-C bonds. Neglecting any damping effects, the

corresponding activation barriers / relaxation times would be 35 kBT / 30 seconds, 40 kBT /

1.3 hours or 50 kBT / >3 years.

In Kramers theory the attempt frequency (or inverse diffusion time), νo = D/lclts, is governed

by viscous damping (D = kBT / ζ) and two length scales. The length lc is the thermal spread
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defined by the rise in energy local to the bound state and lts is the energy-weighted width of

the barrier defined by the drop in energy local to the transition state. In harmonic

approximation they are derived from local curvatures of the energy landscape. [85] [86]

The additional potential energy due to an applied constant stretching force along the

conformational coordinate effectively reduces the intermolecular potential by -F·(z-zo) as

shown in Figure 4.2.  The lifetime of the bond under the influence of a stretching force is

given by the 'Bell equation' [75]

τ
ν

τF
o

V F z k T
o

F z k Te eu u B u B= ⋅ = ⋅+ − −1 ( ) / /‡∆ ∆ ∆ , (33)

where ∆zu denotes the length of the unbinding path.

Figure 4.2: Potential energy profile of a single molecular bond. a) The equilibrium force,
F(z), is given by the first derivative (dotted curve) of the interaction potential,
V(z). zo is the equilibrium distance of the two binding partners, Fmax is the
maximum unbinding force, and ∆Vu

‡ is the activation barrier for unbinding b)
As an effect of an applied mechanical force, F, the activation barrier in the
dotted curve is lowered by the mechanical stretching energy, F·(z-zo). (Adapted
from [9]).

This simple model correctly predicts that the rate of bond rupture increases with the applied

force, and that bond rupture forces are dependent on the intrinsic lifetime of the bond, the

temperature, and on the measurement time. It is only valid if the potential energy landscape

under the applied force is the sum of the original potential and the (linear) potential by the

applied force with fixed unbinding length and unbinding path. Equation 33 also does not

account for the stochastic nature of single bond rupture, and the model can not predict the

actual distributions of measured bond strengths around the average value as they are

experimentally observed. These statistical fluctuations arise from random fluctuations of the

system in its equilibrium state and have to be distinguished from the previously discussed

time-dependence of the average value.
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In Bell's theory, all features of the energy landscape are put into one parameter - the

unbinding length, ∆zu. To overcome this limitation, Evans (reviewed in [76]) introduced a

different model for the description of bond rupture under an external force, which is based on

Kramer's theory. The general solution is

τ τF o
F z k Tg F e u B= ⋅ −( ) /∆ . (34)

The dimensionless function g(F) describes the shift of the potential minimum and the energy

maximum along the path. It is still assumed that all possible reaction paths are focused onto

one by the application of an external force. Therefore, the energy landscape can be sketched

one-dimensionally along the reaction coordinate.

From the transition rate k = 1 / τF, the distribution of rupture forces in a stretching experiment,

in which the force is increased, can be derived:

Neglecting the on-rates, the probability Pb(t) that a bond existing at time 0 is still there at time

t is given by

dP t

dt
k F t P tb

b

( )
( ) ( )= − [ ] . (35)

Assuming that the force increases linearly in time, F t F t t( ) ˙( )= ⋅ ,  the time can be replaced by

the force

dP F

dF

k F

F
P Fb

b

( ) ( )
˙ ( )= − . (36)

A solution of this equation is

P F
F

dF k Fb
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. (37)

The probability distribution for rupture forces dPb/dF is given by

dP F

dF

k F

AF F
dF k Fb

F( ) ( )
˙ exp ˙= − − ′ ′[ ]









∫

1

0

, (38)

'A' is a constant to normalize the distribution.

The probability for bond dissociation at a given force, F, is therefore the product of a

dissociation rate, which increases with force and a function, which decreases exponentially

with force. This gives a maximum in the force distribution curve, which increases with the

force loading rate, Ḟ . The simplest model including spontaneous bond dissociation was

proposed by Bell. [75] It assumes that koff increases exponentially with force
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k F k eoff

F
F( ) = 0
0 . (39)

k0 is the spontaneous dissociation rate, while F0 describes the properties of the specific bond.

With this approach  the distribution of rupture forces can be derived, it exhibits a peak at

F F F
k Fmax ln ˙= 



0

0 0
. (40)

This shows that at loading rates below the characteristic rate, k0F0, spontaneous bond

dissociation occurs faster than force application. Therefore, the maximum of the distributions

of rupture forces is located at zero force if the rate of force application does not exceed k0F0.
[87] F0 is often expressed by the width of the unbinding potential, ∆zu:
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Therefore, the most probable rupture force can also be written as
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i.e. the most probable rupture force, Fmax, depends logarithmically on the force loading rate

Ḟ . The position of the activation barrier, z‡ = zo + ∆ zu, can be determined according to

Equation 43 from the slope of the F vs. ln( Ḟ ) plot. The relationship between the detachment

force and the activation barrier further suggests that dynamic force spectroscopy can be used

to reveal even more details of complex potential energy surfaces of intermolecular bonds.

Kinetic processes that involve complex molecules such as proteins, nucleic acids or ligand-

receptor pairs may exhibit multiple local maxima and minima along the reaction coordinate.

In such cases, the plot would exhibit a sequence of lines with different slopes, each one

mapping the position of a particular energy barrier in the unbinding path. [76] [77] [80] The

extrapolation of the different linear segments to F = 0 will then differ by an amount related to

the relative differences in the magnitudes of the individual energy barriers; the absolute values

of multiple activation barriers can no longer be calculated directly.

4.3.2. Multiple Bonds in Parallel

In a recent theoretical study [88] it was shown that multiple bond rupture may cause a very

complicated behavior under dynamic loading. Even as all bonds were assumed to experience

the same force the dependence of the net rupture force on the number of bonds did not show

an uniform behavior. It was found to be either linear, square root, or logarithmic, depending

on the rigidity of the surface anchoring of the investigated polymer, the stiffness of the force

probe, the reversibility of the bond and the retraction speed.
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4.3.3. Multiple Bonds in Series

For multiple bonds in series, each bond contributes an increment in length along the direction

of force on unbinding and thus the thermal force scale is lowered, i. e. it takes much less force

for cooperative failure of bonds in series than for bonds in parallel. The bonds can be loaded

in series or peeled apart like a zipper. If rebinding is neglected, multiple bonds have in both

configurations strengths comparable to that of a single-constituent bond. [86]

The shape of the recorded force curve in unbinding experiments of multiple bonds in series

strongly depends on the dynamics of the system, ranging from sawtooth patterns to long

extended plateaus. This is supported by theoretical considerations,[89] which suggest that the

shape of the force-extension profile for the continuous desorption of adsorbed (or bound)

polymer chains from a solid substrate (Figure 4.3a) depends on the force loading rate. An

important parameter determining the peak height is the natural off-rate of the monomer-

surface contacts. At pulling rates much faster than the internal dynamics of the probed bonds,

each monomer-surface detachment provides a peak of a saw-tooth pattern (Figure 4.3b). As

discussed before, the peak heights are reduced for lower pulling rates. For pulling rates much

slower than the natural unbinding and rebinding rates this results in a flat plateau of constant

force (Figure 4.3c). Typically, unbinding peaks are therefore observed for covalent bonds, [35]

but also for most specific ligand-receptor bonds [74] [90] [91] [92] coordination complexes, [93]

[94] and for the rupture of protein domains. [23] [95] Accordingly, continuous desorption

plateaus of constant force are observed in experiments where the polymer is only very weakly

adsorbed or bound via ionic bonds, such as for polyelectrolytes adsorbed to charged substrates
[51] [6] [96] and for the unzipping of DNA.[97] In such cases, the on-off-dynamics of individual

bonds is typically much faster than the applicable stretching rates (5 - 3000 nm/s). Thus, the

continuous unbinding process of several bonds in series is investigated under true equilibrium

conditions.
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Figure 4.3: Schematics for the desorption of polymer chains from solid substrates (a).
Depending on the relative magnitudes of the force loading rate, Ḟ , and the
internal (un-)binding dynamics of the surface attachment sites (bonds),
quantified by the intrinsic on- and off-rate constants kon and koff, the force-
distance profile recorded upon polymer desorption forms a saw-tooth pattern
with individual peaks of distance, s, related to individual bond rupture (b), or
plateaus of constant force with lengths related to the lengths, Li, of the
desorbing polymer chains (c). (Adapted from [9]).

4.4. Polyelectrolyte Adsorption and Desorption
Typical example systems with multiple weak bonds (in parallel) are charged polymers

adsorbed onto silica surfaces. The interaction between charged polymers and surfaces has

implications for numerous industrial processes, among them the soating of fibers in paper

industries, waste-water treatment, mineral processing, and chromatographic separations.

Obviously, this is also connected to understanding the physics of charged biomolecules,

charged proteins, and nucleic acids.

The theoretical treatment of polyelectrolytes in solution is not very well established because

of the delicate interplay between the chain connectivity and the long range nature of

electrostatic interactions. [98] This is even more complicated when charged chains in solution

are adsorbed to charged surfaces, which is reviewed in [29].

The important parameters are the fraction of charged monomers, the surface charge density,

the amount of salt, and in some cases the solution pH. The repulsive electrostatic interaction

between monomers leads to an effective stiffening of the chain, which favors the adsorption
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of the chain as less entropy is lost, but opposes the formation of a dense adsorption layer close

to the surface. Three parts of the adsorbed polymer are distinguished: 'trains' are defined as

regions of the polymer chains which are bound to the surface, while 'loops' are unbound

regions of the chain in between two such bound trains. Finally, 'tails' are non-adsorbed or free

chain ends.

The role of salt is given by the Poisson-Boltzmann equation. It is based on a mean-field

calculation, taking the local ion concentration from a Boltzmann distribution

ρ β φ β φ
m

qe r qe rr c eqe c eqe( ) ( ) ( )= −− +
0 0 , (44)

with the valency, q, of the ions, the elemental charge, e, the bulk salt concentration, c0, the

inverse of the thermal energy, β=(kBT)-1, and the electrostatic surface potential, φ(r).

Combining this Boltzmann equation with the Poisson equation yields

∆φ
ρ
ε ε

β φ β φ( )
( )

( )( ) ( )r
r c eq

e eqe r qe r= − = − −0 . (45)

This equation is exactly solvable only for a planar charged wall: [99]
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The constant γ is determined by the electric surface field, which is proportional to the surface

charge density, σ, and the inverse of the Gouy-Chapman length, λ: [99]
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The value for γ is:
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The asymptotic behavior of the potential is then: [99]
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The first limit corresponds to the Debye-Hückel regime, where the screening length is

sufficiently short so that nonlinear effects can be neglected. This result is also obtained by

linearizing Equation 45, which results in the Debye-Hückel equation:

∆φ κ φ( ) ( )r r= 2 (50)
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It is valid if the electrostatic potential acting on an elementary charge is smaller than kBT, i.e.
for β φeq r( ) << 1. This applies for a wide range of salt concentrations and surface potentials

of roughly less than 25 mV. The second limit is the Gouy-Chapman regime, where the

Debye-Hückel approximation breaks down close to the charged surface.

With divalent or trivalent ions and surface charge densities of more than 1 nm-2 the limit of

strong coupling  is reached. This limit was approached by field-theory [100] and, like the

Debye-Hückel approximation, leads to an exponential density profile but with a different

density contact value.

At very short distances from the surface van der Waals interactions become relevant. They

are universal, exist in all systems and their interaction energy is proportional to r-6 at small

and intermediate distances of separation (from an Angström to several nm). [101] The

following three contributions can be distinguished: [65]

• Keesom interaction (dipole orientation force): This is the Boltzmann-averaged interaction

between two permanent dipoles.

• Debye induction force: This is the interaction between one permanent and one induced

dipole.

• Dispersion force, also known as London force, charge-fluctuation force, electrodynamic

force, and induced-dipole-induced-dipole force: It acts between all atoms and molecules,

even totally neutral ones, as it describes the interactrion between two induced dipoles. The

force is quantum mechanical (in determining the instantaneous, but fluctuating dipole

moments of neutral atoms), but still essentially electrostatic - a sort of quantum

mechanical polarization force. [65] E.g. for the interaction of two Bohr atoms: w(r) = –C/r6

= –3/4 α0
2hν/(4πε0)

2r6.

Dispersion forces probably are the most important contribution to the total van der Waals

force between atoms and molecules, which is unified in the London equation. [65]

Hamaker [102] showed that the attractive van der Waals force is directly proportional to a

constant AH, since called the Hamaker constant, which depends only on the nature of the

material: AH = π 2 C  ρ1 ρ2 (ρ1 amd ρ 2 are the number densities of the two interacting

bodies). For example, for a sphere interacting with a surface, the interaction energy is given

by Eint=-AH
.R/6D, [65] (for D << R) where R is the radius of the sphere and D the distance

between sphere and surface.

There is a huge amount of theoretical and experimental work on the thickness and (charge)

density of the adsorbed layer, usually based on the Debye-Hückel approximation (see

Borukov, [98] Netz, [103] and references therein). The conformation of an adsorbed polymer
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chain is determined by the interplay of enthalpic and entropic terms. Depending on the

experimental conditions during the adsorption process, a polyelectrolyte chain may be found

to lie perfectly flat and homogenous on the oppositely charged surface so that all charges are

located in the energy minimum at the surface. In other cases in which the interaction between

the polymer and the substrate is weaker (or screened), the surface-adsorbed polymer may

form 'loop' and 'train' configurations at the interface. [65] Most of the polyelectrolyte's charges

are then located at a certain distance from the substrate at a higher energy, which is

compensated for by a gain in entropy.

The separation of single polyelectrolyte chains by force from a charged substrate in aqueous

environment provides useful insight into the molecular mechanism behind the adsorption

process. [104] [51] [6] [96] From the desorption experiments performed in this work a simple new

model to describe the desorption of single molecules from solid substrates arose and is

discussed in Section 8.2.

4.5. Transitions and Energy Conversion within Single

Molecules
A general definition of a phase transition is, that in the thermodynamic limit the free energy

per volume7 as a function of its order parameters (temperature, magnetic field, etc.) becomes
non-analytical. The thermodynamic limit is reached for V N→∞ →∞,  and constant

intensive parameters. Typical thermodynamic observables like temperature, pressure or free

energy, are only well-defined in this limit. Also phase transitions with their singularities in

thermodynamic observables strictly only exist with infinitely many degrees of freedom –

otherwise long-ranged correlations are not possible. [105] Therefore, most transitions are

extensively studied and described in bulk, which is a good approximation for large systems

with many degrees of  freedom.

The single molecule techniques developed in the past 15 years and recent theoretical advances

made it possible to investigate transitions in single molecule systems. Especially interesting

are reversible transitions, which can be triggered externally and are accompanied by a

considerable change in the mechanical properties; this makes them potential candidates for

single molecule machines. In this thesis two such systems are extensively studied on the

single molecule level and described in detail: The inverse temperature transition in

polypeptides and the optomechanical transition in polyazopeptides. To understand the inverse

temperature transition the idea of hydration water is important.

                                                  
7 Or any other thermodynamic potential, as in the thermodynamic limit all potentials are equivalent.
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4.5.1. Hydration Water

An overview of the historical knowledge about hydration water is given in [11] starting with

the observations by Edsall and Butler in 1935 and 1937 via the explanations of Frank and

Evans (1945, "icebergs"), Kauzmann (1959, "hydrophobic bond"), and Teeter (1984,

"pentagonal arrangements of water"). The picture of hydration water is still far from being

complete. There is agreement about the higher density and greater order of this water, but

especially the thickness of the hydration layer is still controversially discussed. Therefore, in

the following some recent findings are summarized:

a) Thickness

The reported values of the thickness of the hydration layer vary from a few Angström to

several nanometers:

• Molecular dynamics simulations [106] explain recent x-ray and neutron solution scattering

data on the lysozyme hydration water [107] by a 3 Angström thick first hydration layer.

• Pal et al. [108] state that at a distance of about 0.7 nm essentially all trajectories are bulk-

type. They measured the solvation time for the dynamics of hydration at the surface of an

enzyme and found that it is more than an order of magnitude slower (38 ps) than in bulk

water (1 ps). This is attributed to a dynamic process with two general types of trajectories,

those that result from weak interactions with the surface site, giving rise to bulk-type

solvation and those that have a stronger interaction, enough to define a rigid water

structure with a much slower solvation time.

•  Urry et al. [11] measured the microwave dielectric relaxation data. It shows an intense

relaxation at about 5 GHz which is attributed to hydrophobic hydration water. The amount

of this water (100 and more molecules per pentamer) speaks in favor of a several

nanometer thick layer of ordered molecules undergoing a small entropy and heat change

in becoming bulk water.

•  Interfacial water dielectric-permittivity-profile measurements using atomic force

microscopy reveal a thickness of several nm for the hydration layer on mica. [109]

b) Density

Svergun et al. [107] combined small-angle x-ray scattering in water with that of neutrons in

water and D2O. The density of the hydration water was measured to be about 15% higher than

in bulk water, mainly because of a geometrical effect caused by the definition of the surface.

Two thirds of this effect would therefore even arise if  the water density was not at all

perturbed by the presence of the protein lysozyme. However, on top of this effect is about a

5% density increase caused by perturbation of the average water structure from bulk water.

About half of this density increase arises from shortening of the average water-water distances

and the other half arises from an increase in the coordination number.
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c) Effect of Charges

Molecular dynamics simulations [110] show that the presence of a charged solute can disrupt

the 'hydrophobic contact bond' between two neighboring apolar solutes by forcing them

towards a different configuration. This effect is larger for negatively charged solutes, because

the hydrogen atoms of the water molecule can reach closer to the solute than the negative

oxygen of water in the case of the positive solute. The hydration shells of the negatively

charged solute are expected to be hardly compatible with optimal configurations of water

molecules around hydrophobic solutes, and to have a disturbing effect on them. This is

consistent with MD simulations by Chandra et al.[111], which show that the average number of

hydrogen bonds per water molecule decreases with increase of  ion concentration.

Bakk et al. [112] describe apolar and polar protein hydration data with high accuracy over a

broad temperature range (5-125°C). They use an ice-like shell analogy for the hydration of

apolar surfaces, which is modeled as an increase number of hydrogen bonds compared with

bulk water. The hydration of polar surfaces is modeled as a lack of hydrogen bond compared

with bulk water. In addition the dipolar water molecules are supposed to be strongly bound to

ionic and polar parts along the protein surface.

Finally, Urry gives a model of the hydrophobic hydration water and its destruction by heat or

electric charges (Figure 4.4).

Figure 4.4:
In the vicinity of hydrophobic
parts the water molecules
are ordered via hydrogen
bonds to a pentagonal
structure (left). On heating
this low energy state is
destructed (top). Charged
hydrophilic groups can also
destroy the water structure
(bottom). (Adapted from
[113]).

4.5.2. Inverse Temperature Transition

Most knowledge about the inverse temperature transition was obtained by Urry and

coworkers from bulk measurements in aqueous solution with the polypeptide elastin. It was

reviewed in [11] and is summarized in the following.
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The inverse temperature transition is a hydrophobic folding and assembly transition, it occurs

when the temperature is raised above a critical onset temperature, Tt.

This is also observed in polymers with a lower critical solution temperature (LCST) behavior,

like e. g. PNIPAM (Poly(N-isopropylacrylamide)). [114] The difference is that the state above

Tt in elastin is an ordered state that still holds a considerably large amount of water, while

LCST-polymers undergo a hydrophobic collapse to a random state holding little water (such a

state is also finally reached in elastin after denaturation at elevated temperature).

All polymers with the correct balance of apolar and polar moieties including water soluble

proteins and protein-based polymers, increase their order in such a hydrophobic folding and

assembly transition as the temperature is raised above Tt. Usually, in warm-blooded animals

temperature is not raised to achieve the folding transition, but instead the temperature at

which the folding occurs is lowered from above to below physiological temperature in order

to drive folding and function. This allows for energy interconversion in between many

different forms.

The inverse temperature transition is best described, analyzed, and classified by the

temperature Tt at which the hydrophobic folding and assembly transitions occurs. The Gibbs

free energy difference, ∆G, of a system is ∆G=∆H-T∆S with the enthalpy, H, the temperature,

T, and the entropy, S. At the transition temperature Tt the change in enthalpy, ∆H, equals the

change in entropy, ∆S, times temperature and the change in Gibbs free energy is zero, which

results in

Tt = ∆H/∆S. (51)

Therefore, Tt is a relative measure for the amount of water of hydrophobic hydration that

changes to bulk water during the transition. For convenience, Tt is taken as the readily

measured temperature for the onset of turbidity, i.e., for the onset of the aggregational

phenomenon of the transition on raising the temperature. [11] Tt of a system can be

manipulated mechanically, by pressure, electromagnetic radiation, electrically, chemically or

thermally. [11] This mechanism of driving hydrophobic folding and assembly in order to

achieve diverse energy outputs, is descriptively called the ∆Tt-mechanism. [19]

On raising the temperature of these protein-based polymers in water, the more ordered water

surrounding the hydrophobic moieties becomes less ordered bulk water. This positive entropy

change is larger in magnitude than the negative entropy change due to the polypeptide part of

the system becoming more ordered. Therefore, the Tt-transition can also be described by the

change in the amount of hydrophobic hydration water, Nhh. An example is given in Figure

4.5, where Nhh of poly(GVGVP) is shown in comparison to the slightly more hydrophobic

poly(GVGIP).
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Figure 4.5:

Amount of water of hydrophobic

hydration Nhh for poly(GVGVP)

and poly(GVGIP). (Adapted

from [11]).

This transition can be used to define a Tt-based hydrophobicity scale. [19]

4.5.3. Optically Induced Transitions

Photons have been proposed as an ideal primary energy source for the design of synthetic

molecular machines, because their application is fast, well controlled, and clean, i.e. it does

not result in byproducts if used moderately. [115]  Especially reversible transformations in

chemical species induced by photoexcitation, have attracted much attention owing to their

high potential for application into various optoelectronic devices, such as optical memory,

photooptical switching, and display. [12] [116-119] In this section the basic parameters and

coefficients for the interaction of electromagnetic waves with matter are given:

Absorption Coefficient αααα

The intensity I(v,z) of a electromagnetic wave with frequency ϖ crossing a medium in z-

direction is given by the Lambert absorption law [120]

I(v,z) = I(v,0) . e-α(ν)z. (52)

The frequency dependent absorption coefficient, α(ν), gives the reciprocal distance, at which

the intensity, I(ν,z), is reduced to I(ν,0)/e. As the absorption is basically determined by the

number of absorbing atoms or molecules in the beam, Beer found that α(ν) is linearly

dependent on the concentration. [120]

Extinction Coefficient εεεε

The intensity of radiation in a medium can decrease because of two reasons. The radiation can

be absorbed, i.e. converted into another form of energy, or it can be scattered. Both absorption

and scattering together are called extinction. The extinction coefficient in principle is defined

like the absorption coefficient, but care has to be taken with the units, as ε is defined as

log(I0/I) = ε c z. [121] Therefore the linear dependence on the concentration c is not included in
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the extinction coefficient, decadic instead of the natural logarithm is used and ε is defined per

mole of a material and not per molecule. It is the interaction crossection which a mole of a

material has for absorption and scattering. The units are: [M-1cm-1] = [mol-1 cm-1 liter]. [122]

For the (4-amino)phenylazobenzoic acid (AMPB) peptide in DMSO averaged values for the

extinction coefficient are: [122]

trans (~369 nm, ππ*): 3.104 M-1 cm-1,

cis    (~ 449 nm, nπ*): 3.103 M-1 cm-1.

Where ππ* describes excitation from a binding to an unbinding π orbital, while  nπ* is the

excitation from a σ to an unbinding π orbital.

Quantum Yield ηηηη

The original definition of the quantum yield comes from the photoeffect, where it is defined

as η = ne/np with the number of photons interacting with the medium, np and the number of

photoelectrons, ne . [120]  Here, in the case of an optically induced transition,

it is defined as η = 
number of switching events

number of absorbed photons
,

where a switching event is either a transition from the cis to the trans state of the azobenzene

or from the trans to the cis state. Values for the photoisomerization of azobenzene in various

solvents (n-hexan, ethanol, acetonitrile) are: [12] [123]

for trans -> cis in ππ*: ηt-c =  0.1 – 0.2,

and cis -> trans in nπ*: ηc-t = 0.45 - 0.68.

Interaction Cross-section σσσσ

The original definition of the interaction cross-section comes from scattering theory, where it

is defined as the surface area around an atom, through which a particle has to pass in order to

be scattered by a detectable angle. [124] In the case of optical excitations, it is the surface area

around a molecule, where a transmitted photon excites this molecule. It is given in terms of

the extinction coefficient, ε, and Avogadro's number, NA, by

σ = 2.3 ε/NA. (53)
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4.5.4.  Optomechanical Transition in Azobenzene

An extensively studied photoinduced molecular process is the trans-cis (or E-Z-)

configurational transition of double bonds, such as found in the stilbene or the azobenzene

moiety. The isomerization between the more extended (trans) and the shorter (cis)

configurations of azobenzene is reversibly triggered at two different wavelengths of light, and

thus allows various applications as a light triggered switch. [125] [12] It has been the basis for

the first artificial examples of light-driven ion transport through membranes, [126] and has

since been frequently used for synthetic photoresponsive systems regulating the geometry and

function of biomolecules [127] [128] [129] and organic materials, [118] [16, 119, 130] as well as

supramolecular complexes. [131-133]

In addition, the reversible geometrical change (lengthening and shortening) of the azobenzene

chromophore upon photoisomerization may result in significant photomechanical effects,

which has been demonstrated for azobenzene polymers in bulk. [134-139] The ability to convert

optical excitation energy into molecular motion thus makes photochromic molecules such as

azobenzene highly promising for the development of synthetic molecular level machines.

Such light triggered morphological changes are already utilized by our body, e.g. when

rhodopsin absorbs light, its retinal component undergoes photoisomerization accompanied by

a change in conformation of opsin. This light-induced conformational change is a trigger

which excites the nerve cells of the rods of the retina. [15] [16]

Optomechanical transitions are still  under investigation and there is no complete conclusive

picture yet. Therefore, the following might be restricted to the azobenzene system, which is

the best investigated optomechanical single molecule system.

Azobenzene exists in a cis or a trans configuration which can be selectively excited as the

absorption spectrum in the visible and near UV is determined by low lying (nπ*) bands

between λ = 380 nm and λ = 520 nm and the (ππ*) bands at 330 nm (trans) and λ = 275 nm

(cis) (Figure 4.6). The first excited states equilibrate with about equal probability to the cis

and trans state. From studies performed on azobenzene [12] as well as on peptides containing

the AMPB moiety [122] [140] it is known that cis / trans photoisomerization of the azobenzene

unit is reversible upon irradiation at λ = 365 nm and λ = 450 nm, respectively. However,

because of the spectral overlap of the excitations of cis- and trans-azobenzene isomers,

complete photoisomerization upon optical pumping is not possible. The maximum

populations that are typically obtained in azobenzene-containing peptides are 70% to 80 % of

the trans- and cis-azobenzene isomer. [141]
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Figure 4.6:
UV-Vis spectrum of the
azobenzene  tripeptide
monomers containing
(4-aminomethyl)
phenylazobenzoic acid
(AMPB) in the saturated
trans and cis state.

The length difference in the end-end distance of a single azobenzene unit between the cis and

the trans states, ∆l, was calculated in ab initio quantum mechanical calculations using the

INSIGHT II software package: ltrans ≈ 1.9 nm, lcis ≈ 1.65 nm, and therefore ∆l ≈ 0.25 nm.

Thus, assuming a symmetric potential the unbinding length, ∆z* ≈ 0.13 nm. As described

above, the spectral overlap of the excitations of cis and trans configurations limits the

photochemical switching of polyazopeptides to shifting the average configurational

populations between the two limits ~80% trans and ~75% cis state. [122] From this, we may
give an average monomer length in the polymer's saturated trans state as <ltrans> ≈ 1.85 nm

and in the saturated cis state, <lcis> ≈ 1.71 nm, which corresponds to an average contraction

of <∆l> ≈ 0.14 nm per monomer.

A simplified one dimensional energy scheme along the inversion pathway is given in Figure

4.7. The relevant configurational coordinate is the bond angle, φNNC, which changes from

about –60° to about +60°. S0 is the singulett electronic ground state and Sx an excited state. At

365 nm (ππ*) the molecule is excited into the second excited state S2, from where it relaxes to

the ground state via the first excited state S1. At 420 nm (nπ*) the molecule is directly excited

to the first excited state.

For AMPB peptides in DMSO an activation energy barrier for thermal re-isomerization from

the cis- to the trans-isomer of ∆G* = 44±2 kBT has been determined. [122] The experimentally

determined lifetime of the cis-azo configuration at 301 K is 120 h. [122]
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Figure 4.7:
Schematics of the
potential energy
landscape of
azobenzene along the
inversion pathway
(see text for further
details).

Further knowledge about the azobenzene system comes from femtosecond spectroscopy

measurements, which are performed in the groups of Zinth and Wachtveitl. In these

experiments absorbance changes in dependence on the delay time between the 'pump' and

'probe' pulse are measured. In addition, the dependence on the wavelength is probed. The

decay of the absorbance change with time is then described by (multiple) exponentials. The

decay times of these exponentials are called components. For the photoproduct formation of

azobenzene  depending on the solvent and the direction of the isomerization a dominant

component of several hundred femtoseconds, and weak components of a few picoseconds and

about 10 picoseconds are found (the last component is assigned to the cooling of the 'hot'

ground state). [142] [123] Experiments with cyclic azopeptides (one azobenzene unit and eight

amino  acids) revealed that substantial conformational transitions in this compound proceed

on the time scale of 50 ps. [143] These results demonstrate that the photoisomerization in

azobenzene and probably also conformational transitions in the utilized polyazopeptide occur

on time scales which cannot be resolved in a single molecule force experiment.8

The pathway of the photoisomerization  is still under discussion. Dependent on the excitation

wavelength two different pathways are proposed: [123] For an excitation in nπ* an inversion

mechanism and for an excitation in ππ* a rotation around the N-N axis are assumed. Potential

energy curves of the ground state and the first two excited states of azobenzene along the

inversion pathway were calculated 1982 by Monti et al. [144] and along the rotation pathway

1984 by Rau. [145] A schematic representation of these calculated potential energy surfaces is

                                                  
8 The resonance frequencies of the used cantilevers were below three kHz in DMSO.
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given in [12] [142] [123]. Newer calculations including an applied mechanical force are just

being performed and discussed by R. Netz and H. Grubmüller in response to the

measurements performed in this thesis.
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5. Polyelectrolytes

5.1. Elasticity of Polyvinylamine
The experiments on the elasticity of polyelectrolytes were driven by two aims:

• As mentioned in Section 4.1 and 4.2, the theoretical description of force-extension traces

on single (charged) polymers was and is still under discussion. The single molecule data

on polyvinylamine with varying line charge density should prove or falsify theories and

inspire new theoretical approaches.

• Switching the persistence length and segment elasticity of a polyelectrolyte by changing

the electrolyte concentration could be the basis for a single molecule machine as depicted

in Figure 5.1. From OSF-theory the polyelectrolyte stiffness should change considerably

upon changing the electrolyte concentration (Debye-length κ-1).

Figure 5.1:
Schematics of a force-extension trace of a
single polyelectrolyte in an extended  'stiff'
and a coiled  'soft' state. The polymer is in
an extended state (e. g. low salt) and
stretched from I to II. Then on lowering the
salt concentration, the system should be
driven from state II to III (if F1 is not too
high). The succeeding relaxation of the
polymer brings it to state IV, from where an
increase in salt concentration could bring
the polymer back to state I.

Many force-extension traces at various salt concentrations were obtained on the

polyvinylamine specimen. In Figure 5.2 some examples are given.

Figure 5.2:
Elastic behavior of PVA(50%)
covalently fixed between glass
substrate and AFM tip. Three typical
traces of individual strands of
different contour length are shown.
At short distances, the profiles are
dominated by a strong adhesive
forces which is only illustrated in the
black trace. (Adapted from [6] ).
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To identify single strand rupture, the extension for all traces measured at equal conditions was

set to zrel = 1 at a force of 200 pN. A clear straight rupture was an additional criteria for a

single polymer strand. Some single-molecule traces were then fit with the FJC and the WLC-

model. They both did not fit the PVA-traces satisfying over the whole force range.  The

parameters varied sometimes by more than 50% when the fit-range was varied. In Figure 5.3

four WLC-fits to a single trace are shown.9 The only difference is the maximum force to

which the WLC-formula was fit. It can be seen, that no parameter stays constant, that the

elasticity varies by almost 100% and also the persistence length varies by more than 20%. A

shift in the baseline (zero force) by one or two pN (which is the uncertainty there) gives an

additional error of about 20%. For short molecules the uncertainty in the zero extension also

affects the parameters considerably.

Figure 5.3: WLC-fits to PVA(50%) at 40 mM NaCl. The four WLC-fits were performed to
different maximum forces (Fmax). The obtained parameters contour length (L),
persistence length (lP) and elasticity (E) are given in the figure.

In order to obtain at least roughly consistent values, all fits were performed to a force of 200

pN at as many traces as possible. In Figure 5.4 the measured persistence length, lP, for

different polyvinylamines in dependence on the Debye screening length, κ-1, is given. For

PVA(50%), the measurement could be performed with a single cantilever on one day.

Therefore, for this polymer the dependence of the persistence length on the Debye screening

length calculated from OSF-theory with (bold line) and without (dotted line) Manning

condensation is given for comparison. For less charged polymers the theoretical curve is less

steep (but still quadratic).

                                                  
9 The FJC usually fitted the data less well, therefore consistently the WLC-fit was utilized.
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Figure 5.4:
Dependence of the
persistence length, lP, of
polyvinylamine (as obtained
from WLC fits) on the Debye
screening length,κ-1.
Theoretical predictions
according to OSF theory are
shown for PVA(50%) as
dotted and solid curves. The
solid curve corresponds to
the 'Manning limit'
considering counterion
condensation (a ≈ lB).

The measurements show no strong dependence of the persistence length on the Debye

screening length and the line charge density. For the measurement on PVA(50%) the

persistence length first increases with decreasing salt concentration (i.e. increasing κ-1 ) and

approaches then a constant value – or even decreases. The other PVAs have a higher

systematic error, as different cantilever and substrates had to be used for each data point.

Their behavior is not as pronounced, but in principle PVA(10%) and PVA(30%) show a

similar behavior. For the highly charged PVA(70%) there is too few data to give a firm

statement, but it clearly also does not show the behavior predicted by OSF-theory.

5.2. Desorption of Polyvinylamine from Solid Substrates
The potential of the AFM technique to measure the desorption forces of individual polymer

chains from supporting substrates has been demonstrated recently for polyelectrolytes and

polysiloxanes on quartz. [104] [51] [6] [96] However, the exact interpretation of the molecular

interactions governing polymer desorption is often not straightforward, and several

contributions add to the overall interaction forces probed in AFM experiments. [6] [9] In

addition a better understanding of the manipulation of adhesion / desorption properties are  a

prerequisite for the development of many future molecular devices.

With the investigated polyvinylamines, three relevant parameters concerning the coulomb

interaction of a single polymer chain with a solid substrate could be varied:

• Varying the salt concentration allows adjusting the Debye screening length, κ-1.

• The different polyvinylamines allow for variations in the line charge density, τ.
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• Different substrates allow for the variation of surface properties like the surface charge

density, σ, and the van der Waals interaction.

The force-extension traces of molecules physisorbed to the substrate and covalently linked to

the cantilever show unspecific adhesion ( Section 10.3), little rupture peaks and plateaus of

constant force. The plateaus of constant force had about the same height within one

experiment and varied with the conditions  of the experiment (salt, line charge density,

surface), therefore they were investigated in detail.

Figure 5.5 shows an example of a force-extension trace with two plateaus of PVA(30%) in 20

mM NaCl. On the right the histogram of the plateau heights under theses conditions is shown.

Figure 5.5: Force-distance profile measured upon desorbing PVA(30%) chains in aqueous
solution (20 mM NaCl) from a glass substrate (left). Hystogram of the plateau
heights, the three bright blue counts are interpreted as double plateaus and
therefore not considered for data analysis (right).

In Figure 5.6a the dependence of  the plateau heights on the Debye length is shown for

PVA(30%) and PVA(70%). It can be fit with a linear behavior and a slope of 11.1 pN/nm and

6.0 pN/nm for PVA(70%) and PVA(30%), respectively. In addition by the extrapolation to

very high salt (κ-1 = 0) a 'zero charge' contribution Fo ≈ 33 pN is obtained.  To check this 'zero

charge' value, measurements with the least charged PVA(10%) on hydrophobized

(uncharged) silica in PBS were performed and an average plateau height of Fdes ~ 35 pN was

obtained. In Figure 5.6b the experimental data for the dependence of the plateau height on the

line charge density, τ, of polyvinylamine in 5 mM and 100 mM NaCl solution is given. The

data can again be fit by a linear increase in the average plateau height with the line charge

density and a 'zero charge' contribution.
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Figure 5.6: Dependence of the desorption force Fdes from the Debye screening length, κ-1,
(a) and from the line charge density, τ (b).

Preliminary experiments with molecules covalently coupled to the cantilever prior to the

experiment showed less unspecific adhesion and rupture peaks, i.e. more plateaus. In addition,

longer plateaus were observed on average. But the cantilever could only be used for some

minutes, because after this time no plateaus were observed any more. This problem was

solved in the Diploma thesis by Jöstl. [10]
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6. Polypeptides: Inverse Temperature
Transition
As described in Section 4.5 polypeptides can promote many kinds of energy conversion,

which were extensively investigated in aqueous environment. Despite all these findings, there

are many open questions, which were addressed by single molecule force spectroscopy in a

cooperation with Prof. Urry:

• What is the form of the folded or aggregated state?

• What is the origin of elasticity in these systems?

• Can these molecules be utilized as single molecule machines, like depicted in Figure 6.1?

Figure 6.1:
Schematic representation of a
polypentapeptide utilized as a single
molecule machine. If it were
possible to switch a single peptide
by an external stimulus from the
folded to the unfolded state at low
force (IV -> I) and back to the
folded state at high force (II -> III)
a molecular machine would be
realized.

In order to check the (covalent) coupling of the polypeptides to the gold substrate and

cantilever, the distribution of rupture length for the polypeptides with terminal cysteines was

evaluated for several hundred ruptures. There was no evidence for ruptures at multiples of the

length of a (GVGVP)251 unit (about 460 nm,), which would be expected if the molecules were

attached at the two cysteine ends. From the many traces taken on polypeptides with and

without terminal cysteines the following summary of observations can be given: The

(GVGVP)251 with the cysteines seems to stick a little better onto gold than the molecules

without. Nevertheless, even high rupture forces do not show considerably more events at

lengths around multiples of 460 nm. In addition, very few events reflected the strength of a

covalent gold-thiol bond,10 but some stuck well enough to investigate the elasticity of single

polypeptides in the way described in Section 10.3.
                                                  
10 Some experiments were performed with trityl protected cysteines in DMSO. The cysteine was deprotected in
proximity to the gold coated cantilever, which was successfully utilized for the azobenzene system (Chapter 7).
Some very high rupture forces (>1nN) were observed, but the distribution of the corresponding rupture length
also does not show clear evidence for an attachment at the two ends.
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In Figure 6.2, force-extension traces of single (GVGVP)nx251 molecules with different lengths

(left) are scaled to one unit length at a force of 200 pN (right). Within the noise, the traces lie

on top of each other and can be fit with the WLC-model. As mentioned above the model does

not describe the whole force range in a single molecule force experiment well, therefore two

fits were performed, one in the low force regime up to 150 pN and one in the higher force

regime. The values for the persistence length are 0.4 nm and 0.6 nm, respectively (with an

elasticity of 15000 pN). [113]

Figure 6.2: a) Single-chain force-extension curves for (GVGVP)nx251 with different length
from different experiments. b) When the length at 200 pN is scaled to one, the
traces scale well within the noise level.

Figure 6.3 shows force-extension traces taken with Olympus Bio-Levers at different pulling

velocities. Up to pulling velocities of 7 µm/s (green trace) no considerable viscous drag was

observed, i.e. for small and intermediate pulling velocities the force-traces of (GVGVP)nx251

are perfectly reversible: the forward and backward traces superimpose and they are smooth

(no kinks or bumps).

Figure 6.3:
Single-chain force-extension curves for
(GVGVP)nx251 at room temperature.
Successive traces from bottom to top are
offset by 500 pN. Different pulling
velocities were applied: red 177 nm/s;
green 7000 nm/s; blue 1770 nm/s; black
177 nm/s.

For (GVGIP)nx260 room temperature is above Tt and the behavior is much different. As can be

seen in Figure 6.4a there is quite a considerable amount of hysteresis in an extension-

relaxation cycle and the extension trace shows features reminiscent of unfolding events. In
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contrast, experiments at low polypeptide concentration (Figure 6.4b) and at temperatures

below Tt (Figure 6.7) show some perfectly reversible traces. From these reversible

experiments persistence lengths of Lp ~ 0.5 nm and Lp ~ 0.7 nm were found in the low and

high force regime, respectively (with an elasticity of 15000 pN like above).

Figure 6.4: Force-extension traces for (GVGIP)nx260 taken at room temperature. Successive
traces are offset from bottom to top. Extension traces are blue, retraction
traces are red. a) Concentration of the adsorbed solution 0.5 mg/ml. b)
Concentration 0.05 mg/ml, which results in roughly one attached molecules in
100 scans and sometimes reversible force-extension trace as shown here.

A detailed investigation revealed additional features in the force-extension traces of

(GVGIP)nx260 at room temperature, which were neither observed in (GVGVP)nx251 at room

temperature nor in (GVGIP)nx260 at a temperature below Tt:

•  In continuous force-extension traces (where all parameters are kept fixed) the peptide

becomes longer and longer, i.e. the force-extension traces seem to creep or slip. This is

depicted in Figure 6.5 for different pulling velocities and stretching forces. The traces are

corrected for piezo- and deflection drift.

Figure 6.5: a) Consecutive scans (continuous pulls – every second scan is shown): red,
yellow, bright green, dark green, blue. All parameters were held constant,
pulling velocity about 1.4 µm/s. b) Same as (a) for higher forces and slower
scans (~ 700 nm/s).
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•  In the relaxation trace for (GVGIP)nx260 a change in shape dependent on the pulling

velocity (and therefore relaxation rate) is observed (Figure 6.6b). At slow pulling

velocities the traces do not relax completely. The pulling velocity was changed in every

second trace (one out of the two traces taken at equal speed is shown) in different steps

forward and backward, so that any time effect can be excluded.

Figure 6.6: a) Consecutive relaxation–extension traces (black, red, orange, yellow, bright
green, dark green, blue) varying the force in the relaxed state. b) Relaxation
traces at different relaxation velocities. Traces are taken in the following order
with the pulling velocity in brackets: black (1.4 µm/s), red (0.9 µm/s), orange
(14.0 µm/s), bright green (0.1 µm/s), dark green (1.5 µm/s), blue (0.1 µm/s).

• In addition, the experiment depicted in Fig 6.6a shows force traces of a molecule, that is

held at considerably high force (600-800 pN) and from there relaxed to a certain force and

stretched again. It can be seen that the hysteresis builds within less than a second even at

forces of several hundred pN.

All these complex features observed in (GVGIP)nx260 at room temperature (hysteresis, creep,

transition) disappeared when the polymer was measured at 11°C (below its Tt). For the

measurements on (GVGIP)nx260 below its Tt the whole room was cooled and equilibrated to

11°C overnight. The system then was very stable and good force-extension traces without

hysteresis were obtained (Figure 6.7). Heating the room back to 21 °C did not change the

shape of the force-extension traces.

Figure 6.7:
Force-extension traces of
(GVGIP)nx260 taken at 11°C,
which is below Tt for this
composite. Reversible traces are
obtained.
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Organic solutes were found to change Tt in aqueous environment, a concentration dependence

is given in [19]. Sodium dodecyl sulfate (SDS) for example raises Tt for some ten degrees at

concentrations of less than 0.1 M. Guanidinium chloride (GC) at 1 M concentration rise Tt for

a few degree. These two organic solutes were employed to raise Tt of (GVGIP)nx260 above

room temperature and with this to prevent hydrophobic folding and hysteresis. SDS, even at

concentrations as low as 0.01 M, prevented the molecules from sticking properly to the

cantilever, which does not allow for a firm statement in favor of or against hysteresis in the

force traces. GC, even at concentrations as high as 1 M, did not make the hysteresis in the

force-extension traces disappear.
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7. Polyazopeptides: Optomechanical Transition
This chapter summarizes the experiments which led to the single-molecule optomechanical

cycle, i. e. the demonstration of reversible shortening and lengthening of an azopeptide under

high and low force (Figure 7.1). The functional azobenzene unit was chosen, because it is the

currently best investigated system that can be switched reversibly by light. Light will

probably be the fuel for future single molecule machines [18] as  it has a very fast response

time, is suitable for most ambients, can easily be addressed and has no waste problem. Most

experiments were done together with Dr. Nolan Holland.11

Figure 7.1:
Schematics of  a force-extension
traces of a polyazopeptide in its cis
and trans state. A single-molecule
optomechanical cycle could be
realized by extending the azopeptide
in its trans state (I->II), then
shortening it with λ=365 nm light
(II->III), relaxing it (III->IV) and
finally lengthen it again with λ=420
nm light (IV->I):

7.1. Covalent Attachment and Optical Coupling
The formation of a covalent bond beteen the C-terminus of the polyazopeptide and the

aminofunctionalized flintglass within the experiment (sometimes after seconds, sometimes

after hours) was reflected by forces in the nanonewton range that could be applied without

bond rupture. [35] This allowed to stretch and release a single molecule hundreds of times or to

hold it with a force of several hundred piconewtons for minutes. Short strands of (non-

specifically) bound polymer were ruptured until a single, more than 30 nm long, covalently-

bound strand remained. Such a polymer could be irradiated and stretched many times before

rupture. Only when the force applied in the experiment rose above 500 pN, the stability of the

polymer attachment was observed to decrease substantially. If one considers the occurrence of

mechanical noise and the addition of mechanical energy to the system from the light pulse,

this is not surprising. Nonetheless, with care an individual chain could be kept attached for

more than one hour of continuous measurements (including stretching to several hundred

piconewton).

                                                  
11 Present address: Department of Physiology and Biophysics, Case Western Reserve University, Cleveland,
USA.
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In order to correct for tiny drifts in the deflection as well as the piezopath signal, the data was

streamed continuously at rates as high as 5 kHz on an additional computer as described in

Section 10.3. The drift in the piezo- and deflection-signal was usually corrected by subtracting

a straight line. An example for typical experimental raw data is given in Figure 7.2. The data

is streamed for ten minutes, and the flashes can be observed as vertical lines in the data. At

least three indentation traces per data stream (usually 10 minutes) were taken to correct for

drift in the piezopath. Prior to and after the flashes five to ten stretching - relaxation cycles

were taken, these were averaged after correcting the drift in the deflection signal. Data was

then transformed by the usual procedure into force-extension data.

Figure 7.2: Experimental data continuously streamed for 250 s. The upper trace is the
deflection data, while the lower shows the output of the strain gauge. The big
vertical lines in the deflection data are the λ=420 nm pulses and the small (at
~180 s) are the λ=365 nm pulses.

Various controls were performed to exclude artifacts which might arise from several sources,

including solvent effects and cantilever response to excitation light. First, the effect of a light

pulse on the deflection signal in the absence of any polymer molecule was analyzed. Direct

illumination of the sample resulted in such a strong interaction with the cantilever, that the

resulting cantilever deflection (corresponding to several nanonewtons of force) results in a

rupture of the attached polymer. Total internal reflection geometry (Section 3.5) reduced the

interactions below the noise level, because with the given length of the cantilever tip of

several microns, the penetration depth of the evanescent field is short enough to prevent

interaction with the cantilever itself. Therefore, we did not observe crosstalk if the cantilever
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was not in contact with the surface, except a spike of 1 ms duration which was visible at all

distances from the surface. It turned out, that this is stray light during the pulse which directly

reaches the photodiode detecting the cantilever position and does not correspond to any

cantilever motion.

However, we observed further crosstalk in the deflection signal from the flashes when a

molecule was attached between the cantilever and the substrate (Figure 7.3):

Sometimes a  small deflection which decays back to equilibrium on a time scale of seconds

was observed (Figure 7.3a). This is the case, when the light is not well coupled into the

sample slide. It is believed to be caused by light energy being absorbed by the cantilever

resulting in a thermal bimorph effect. It could be reduced below the thermal noise level by

shielding all light that is not coupled into the flint glass and adjusting the optics prior to each

experiment (Figure 7.3c and 7.3e). Acoustic and vibrational noise from the flash lamp was

observed as a damped oscillation in the deflection-time signal starting a few milliseconds after

the light pulse (speed of sound) and lasting several hundred milliseconds (Figure 7.3b). By

acoustically and vibrationally decoupling the lamp from the AFM and using new electrodes in

the lamp, this artifact could be reduced below the thermal noise level (Figure 7.3d and 7.3f).

Figure  7.3: Analysis of artifacts from the interaction of the flashes with the cantilever at
different time scales. a) thermal interaction, b) stray light and sound
interaction before the optimization of the setup. c),d) Interaction with the λ =
365 nm pulses and e),f) interaction with the λ = 420 nm pulses at different time
scales after optimizing the setup.
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With the optimized experimental setup the flash in the deflection signal should and did only

appear as a 1 ms duration spike like shown in Figure 7.3c and 7.3d for the λ=365 nm flashes

and in Figure 7.3e and 7.3f for the λ=420 nm flashes.

To fully exclude artifacts resulting from the irradiation, more control measurements were

performed on polysaccharides, which do not contain photochromic molecular units. No

measurable effects were observed in the force-extension curves of these polymers (Figure

7.4).

Figure 7.4: Force-extension traces on a single polysaccharide molecule that contains no
azobenzene units (in DMSO). Between the red and green trace six λ=365 nm
pulses were applied, between the green and blue trace six λ=420 nm pulses
were applied. The black trace shows the final pull revealing the rupture of the
molecule.

7.2. Mechanical Characterization of the Polyazopeptide
The characteristic shape of a single azobenzene containing polypeptide was established by

taking many force spectra of several individual chains. Figure 7.5a shows a force-extension

plot of a polyazopeptide in the cis-state (after irradiation with at least five λ=365 nm pulses)

and Figure 7.5b in the trans-state (after irradiation with at least five λ=420 nm pulses). Even

at forces up to 1000 pN the force-extension traces of both configurations show ideal polymer

elasticity, there are no hints of any force induced transition visible. Therefore, the cis-trans

isomerization of polyazopeptides is only identified by its relative length change upon optical

irradiation.
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Figure 7.5: Force-extension trace for different single polyazopeptides in the cis (a) and
trans (b) state with the corresponding WLC fits. Parameters are Lp = 0.5 nm
and Ko = 20000 pN,  Lcis = 75 nm and Ltrans = 60 nm.

The shape of the force-extension traces deviates slightly from the WLC fits as can be seen in

Figure 7.5. Nevertheless, if the persistence length, LP, and the elasticity, K0, are held constant,

and the fit is performed in the same force range, it gives a good measure for relative length
changes. From the two force traces in Figure 7.5 it can be seen, that Lp = 0.5 nm and Ko =

20000 pN give reasonable fits to the polyazopeptide traces in both configurational states.

These values were kept constant through all experiments and only the lengths were fitted. For

the particular polymer molecules shown in Figure 7.5, contour lengths of Lcis = 75 nm and

Ltrans = 60 nm were obtained, respectively. Note, that the deviation from the average length

(54 nm) is due to the molecular weight distribution of the material and further enhanced by

the overestimation of the contour length from the WLC fit (Section 8.1).

7.3. Reversible Optical Switching at Low Force
Figure 7.6 shows typical data obtained in a single molecule force experiment during which

optical excitation was coupled into the sample.  The traces shown are extracted from data

streams of cantilever deflection versus time (three traces are averaged).

Figure 7.6:
Switching azopeptides
at low force. The traces
show the molecule in
the undefined
configurational mixed
state (back), in the
extended state after five
λ=420 nm pulses (red)
and in the shortened
state after five further
pulses with λ=365 nm
(blue).
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The effect of the light pulses on a single azobenzene polymer can be observed by comparing

the force-extension traces extracted prior to and after irradiation of the sample. At the

beginning of the experiment, the polymer sample assumed an undefined configurationally

mixed state owing to the absorbed ambient radiation.  The black trace in Figure 7.6 shows a

force-extension trace of the polymer in this initial mixed state. After five pulses of λ=420 nm

light, the polymer chain was lengthened (red trace), and then shortened by irradiation with

five pulses of λ=365 nm light (blue trace). Such lengthening and shortening could be repeated

several times before the polymer or its attachment to tip or substrate ruptured. To obtain a

maximal length change several flashes were applied, which drove the system into an

equilibrium state. We observed that three maximal energy flashes usually were enough to

reach such a photochemical equilibrium.

Repeated measurements of a particular state of the same polyazopeptide molecule (i.e. no

optical excitation between successive measurements) resulted in identical force-extension

curves (within the thermal noise level), even when the time span between successive

measurements was several minutes.  The drift stability of the experimental set-up is therefore

sufficient to ensure the accurate determination of contour lengths of different polymer

configurations based on the WLC fit as described above. A contour length, Lcis = 83.7, was

obtained by fitting the shortest trace in Figure 7.6. The difference in contour length (∆L)

between the short and long state was measured to be 2.8 nm, which corresponds to a relative

length change (∆L/Ltrans) of ~3%.

7.4. Reversible Optical Switching at High Force
Further experiments were carried out to test whether the length of the azobenzene units could

be optically switched while holding the polymer under tension. Under this condition, optical

switching is of particular interest, as the contraction of a polymer chain against an external

force may be employed to perform optomechanical energy conversion with a single-molecule.

Figure 7.7 shows the results of one such experiment.

Figure 7.7:
Shortening of an azopeptide
against an applied
mechanical force.
Successive force-extension
traces, which demonstrate
the switching against an
external force. The insert
gives the deflection vs. time
data with the colored arrows
indicating where the traces
were taken. The red vertical
lines are the λ=365 nm
pulses.

500

400

300

200

100

0

45403530
Extension / nm

F
o

rc
e 

/ p
N 20

15
10

5
0

-5
1801601401201008060

Time / s

D
ef

le
ct

io
n

 / 
n

m



7. Polyazopeptides: Optomechanical Transition 56

Prior to the experiment, the system was driven into the longest state with five consecutive

flashes at λ = 420 nm. The red trace reveals that in this state the polymer's contour length is

47.7 nm. The molecule was stretched to a force of about 350 pN and a single λ = 365 nm

pulse at constant tip-sample separation resulted in a shortening by about 1.0 nm, as measured

from the black trace. A further pulse resulted in an additional shortening by 0.4 nm (grey

trace). The last pulse at high force resulted in an additional shortening of 0.6 nm (bright blue

trace). Since five additional λ = 365 nm pulses at low force did not result in measurable

further shortening (dark blue trace), the polymer was assumed to be in the saturated cis-state.

The relative length change observed here against an applied force corresponds well with the
value found for switching at low force (∆L/Ltrans ~ 3%).

Only at very high forces (about 800 pN) hints for a suppression of the optical switching were

found. However, due to the limited stability of polymer-surface attachment at high forces, few

data at these high forces could be taken up to now. The highest force at which contraction of

polymer was definitely observed was 400 pN.

7.5. Optomechanical Cycle
Finally, an optomechanical cycle was performed on a single molecule as depicted in Figure

7.1. The smoothed experimental data for an counter-clockwise cycle on a single

polyazopeptide molecule is shown in Figure 7.8a. An individual polyazopeptide is first

lengthened by five  λ = 420 nm pulses at a force of 80 pN (I) and then expanded mechanically

to a restoring force of 200 pN (II). Then five pulses at λ = 365 nm were applied resulting in a

contraction of the polymer against the external force (III). Then the force on the polymer was

reduced to 85 pN (IV). Finally, the cycle was completed by applying five pulses at λ = 420

nm resulting in an optical expansion of the molecule to its original length. The insert shows

the corresponding deflection vs. time data, the three flashes can be seen in the green part. The

mechanical work performed during the cycle in Figure 7.8a,  which is given by the area

enclosed by the cycle, is  W ≈  5 . 10-20 J. In Figure 7.8b a clockwise cycle was performed,

with a different molecule.
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Figure 7.8: Single-molecule optomechanical cycles. a) The azopeptide is lengthened at low
force and shortened at high force (counter-clockwise), the included WLC-fits
(black traces) yield contour length of 24.8 nm and 24.5 nm, respectively. The
inserts show the deflection vs. time data for the cycle.  b) The cycle on this
molecule is performed clockwise, the length increases from 47.9 nm to 48.8
nm.



8. Discussion 58

8. Discussion

8.1. Polyelectrolytes

8.1.1. Elasticity of Polyvinylamine

The investigated dependence of the persistence length on the Debye screening length and the

line charge density shows a clear deviation from the usually used OSF-theory. By OSF-

theory the electrostatic persistence length should add to the purely elastic contribution and

below the Manning limit depend quadratic on the line charge density and the Debye screening

length (Equation 25). This is clearly not observed here (Figure 5.4) and can by no means only

be explained by the uncertainties in the fitting process (see below). In addition the data is in

qualitative agreement with earlier measurements on the salt-dependence of DNA elasticity by

Smith et al. using magnetic beads, [31] as well as with recent observations on the synthetic

polyelectrolyte poly(methacrylic acid) employing the AFM technique. [52]

The obtained data is still not good enough to instead propose a different relationship between

κ,τ and LP. This is mainly due to the above mentioned uncertainties in the fitting process.

Qualitatively the observations speak in favor of the recent theory given in Section 4.2.3, with

a force dependent persistence length. As can be seen in Figure 8.1a, a fit with Equation 27

(PE-fit) still deviates from the measured force-extension trace, but represents the shape

(especially in the high force range) better than the WLC fit.

Figure 8.1: Comparison of WLC-fits (black) and PE-fits (green) for PVA(50%) in
10 mM NaCl (a) and 40 mM NaCl (b). An elasticity E=28000 pN was used, the
obtained fit-parameters are:
(a) WLC: L=1244 nm, LP=0.5 nm,   (b) WLC: L=2797 nm, LP=0.5 nm,

 PE:    L=1275 nm, L0=1.5 nm,       PE:    L=2841 nm, L0=2.0 nm,

A further step towards a better theoretical description of AFM force-extension traces was just

recently done by Livadaru et al.[8] They performed extensive transfer-matrix calculations for

the force-response of a freely-rotating chain model, which led to Equation 20. To present,
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only the parameters for a (uncharged) carbon backbone are calculated, therefore the weakly

charged PVA(30%) in 100 mM salt is used to compare this WLC_DC-fit to the WLC-fit.

When the rupture force is high enough and a harmonic potential is assumed for bond

deformation, the length of the polymer can be determined from an extrapolation of the linear

stretching regime at high force (green trace in Figure 8.2). Then no fit-parameter is needed for

the WLC_DC-fit at all, while the WLC-fit still has the persistence length as fit-parameter.

Nevertheless, Figure 8.2 shows that the WLC_DC-fit represents the data better and that the

WLC-fit considerably overestimates the contour length.

Figure 8.2: Comparison of WLC and WLC_DC fits for PVA(30%) in 100 mM NaCl. The
green trace extrapolates the high force regime to a contour length of 90 nm.
With the calculated parameters given in the text, the black trace is obtained
from a WLC_DC fit (without any fit-parameter). The blue trace gives the WLC-
fit with a persistence length of 0.4 nm.

These preliminary results demonstrate, that the discrete nature and architecture of the chain,

stretching and bending fluctuations, and the segment elasticity cannot be neglected if the

elasticity of a stretched polymer is to be described. Especially the architecture of the chain

will become much more important, when more complex chains are investigated. For example,

from bulk measurements in polypeptides it is conjectured, that the internal dynamics of a

polymer chain ('rocking') may contribute significantly to the entropic elasticity. [146] [147] [11]

Nevertheless, to describe experimental data perfectly, one or two fit parameter are necessary,

and if the above discussed limitations are kept in mind the WLC-models is still useful to

quantify the elastic behavior of individual polymer chains.

Finally, it is important to note that a quantitative comparison of the obtained persistence

lengths with other experimental methods is not straightforward  as they are based on different

models and obtained in different regimes. The most striking difference is, that these methods
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(e. g. light scattering, x-ray scattering or neutron scattering) measure at basically zero force,

while in the stretching experiments, the polymers are almost completely stretched in the range

where the fits are performed. In addition, X-ray or neutron scattering experiments are usually

performed above the overlap concentration and then fitted / simulated by scattering functions,
[148] which makes it even more difficult to relate the obtained values to the persistence length

from single molecule force experiments.

8.1.2. Desorption of Polyvinylamine from Solid Substrates

The plateaus of constant force observed in the desorption experiments are interpreted like

shown in Figure 8.3. In the range from 0 nm to 100 nm, there are many chains and the

cantilever itself interacting with the substrate. Then at the first plateau, two polymer chains

are simultaneously desorbed from the substrate. When the plateau force drops to half of its

height, one chain detaches completely from the substrate. Finally at the last step, the

remaining polymer detaches.

Figure 8.3:
Force-distance profile
measured upon desorbing
PVA(30%) chains in aqueous
solution (20 mM NaCl) from
a glass substrate and
interpretation of the
observed plateaus.

The measured linear dependence of the plateau force on the Debye screening length led to the

following theoretical model, which could be confirmed by the linear dependence of the

desorption force on the line charge density (Figure 5.6):

As indicated above, the dissociation rate of ionic bonds between the positively charged amino

groups of the polymer and the negatively charged surface sites is much faster than the pulling

rate applied in our experiments. Thus, on the time scale of the experiment, the polyelectrolyte

chain can be considered as a string of constant charge12 continuously desorbing from the

charged substrate against the attractive potential of the surface. The coulomb contribution to

the force that needs to be applied in order to induce this continuous desorption can be

                                                  
12 A polyelectrolyte can be considered as a chain of individual charges separated by a certain distance, a, or as a
string of constant charge density τ = 1/a  (a now represents the length of a segment of unit charge). Both
approaches are equivalent so that for our qualitative discussion we will treat all charges individually, whereas in
the mathematical description a constant charge density will be used for convenience.
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described as follows: The electrostatic potential, Vel(z), of the substrate in electrolyte buffer is

taken in the Debye-Hückel approximation (Equation 49) [149]

Vel(z) / kBT = 4π lB σ κ-1 e- κ z. (54)

Upon desorption of one polymer segment of length a, the entire polymer chain is moved

against the electrostatic surface potential, i.e. the separation of each charged segment from the

substrate is increased by the distance a. No transition barriers need to be overcome along the

'electrostatic unbinding pathway' during which the charged species has to overcome the

restoring force

F(z) = dVel / dz = -(4π lB kB T) σ e- κ z. (55)

If no covalent bonds need to be broken at the substrate surface (e.g. deprotonation of acidic

groups) and other stronger binding interactions 'pinning' the polymer segments to the surface

can be neglected, the removal of the ions from the substrate is a continuous equilibrium

process which gives rise to the typical plateau curves shown in Figure 8.3.13

Figure 8.4:
Representation of the
desorption process of a single
polyelectrolyte chain with
discrete positive charges of
intermediate distance, a, from
a negatively charged substrate
with screened electrostatic
potential Ψ(z) in aqueous
solution. The black circles
highlight the position of
individual charges at z=0 and
z=∞ and their corresponding
position in the electrostatic
potential. (Adapted from [9]).

                                                  
13 The small restoring force experienced by the single charges upon taking their infinitesimal steps along the
broad exponential 'unbinding' pathway would hardly be detectable by AFM. However, as will be seen below the
integration over all charges along a polymer chain will give rise to a detectable desorption force in the range of
several ten piconewton.
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The desorption of a polyelectrolyte chain against the attractive electrostatic potential of the

substrate can therefore be described by a series of charges subsequently moving up the

exponential curve in Figure 8.4. One charge after the other is removed from the pool of

charges at z = 0 until eventually the chain-end fully detaches from the substrate, upon which

the desorption force of the chain vanishes. The coulomb force acting on a desorbing polymer

chain can be calculated by integrating F(z) over the entire chain, i.e. from z = 014 to z = ∞.

The desorption force is then found to linearly dependent on the surface charge density, on the

Debye screening length, and on the polymer charge density: [9]

F 4 l k T e dz (4 l k T)des
el

B B B B= = ⋅ ⋅ ⋅−

=

∞
−∫π στ π σ τ κκz

z 0

1 . (56)

Note that this result is equivalent to the transfer of one infinitesimal chain segment carrying

the charge density τ from z = 0 to z = ∞ with the rest of the chain staying in place. Somewhat

more detailed derivations yield a similar linear relationship between the desorption force and

the line charge density and the Debye length for strong fields. For weaker fields more

complicated expressions have been derived. [104] The result is also consistent with the

adsorption energy of a cylinder on a charged plane. [103]

Thus, the linear dependence of the desorption force on the Debye length, κ-1, (for constant

polymer charge) as well as on the line charge density, τ, (for constant electrolyte
concentration) is explained. To a first approximation, the electrostatic force, Fdes

el , is then the

only additive term dependent on σ, τ and κ, such that

        Fdes = Fo + (4π lB kB T σ) κ-1 τ. (57)

The surface charge density, σSiOx, of the silica substrates used in the experiments can be

extracted from the slope of the Fel
des vs. (τ κ−1) plot given in Figure 8.5 and is measured as

σSiOx ≈ 0.1 nm-2.

                                                  
14 The chain is not in contact with the surface but at a distance D, therefore the result is only valid for κD < 1,
which is given at our experimental conditions.
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Figure 8.5: 

Dependence of the desorption force,

Fdes, on the product of  Debye screening

length, κ -1, and polymer line charge

density, τ. From this the surface charge

density and the 'zero force' contribution

can directly be obtained.

The electrostatic surface potentials can be obtained, under the asumption that the surface

charge is independent of the salt concentration, by (Fdes-Fo) = V(0)·τ = ψo·τ, i.e.

ψo = Fel/τ = (4π lB kB T σ) κ-1. (58)

According to this simple model, the surface potential of the silica substrate is thus given by

the slope of the linear fit to the experimental data in Figure 5.6, such that e.g. for 5 mM NaCl:

ψo(silica) = -14.2 pN·nm·(unit charge)-1 ≈ -88 mV.

The determined surface potential is in good agreement with values reported in the literature.
[65] [150] And agrees  especially well with zeta potential measurements by Radmacher [151]

(Figure 8.6).

Figure 8.6: Comparison of the surface potential for silica determined by desorption
experiments with zeta potential measurements.
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The net charge of glass surfaces  with an area per charge of 27 nm2 in 1 mM NaCl reported by

Poptoshev et al.[152] is in qualitative agreement with the above obtained values. They also

report a small dependence on the salt concentration, i. e. a reduced area  per charge with

increasing salt concentration, which brings this value even closer to the here obtained result

(for 5 – 100 mM NaCl).

Probably Equation 57 still is an approximation, because glass surfaces have some special

properties which are not explicitly included. One problem might be, that the charge at the

glass-water interface originates from dissociation of the surface silanol groups which leads to

a diffuse charge distribution. This might also be the reason why glass surfaces as well as

adsorbed polyelectrolytes are capable of charge regulation, i.e. both can regulate their charge

in such a way that the net charge of the surface and the adsorbed layer becomes small. [152]

Nevertheless, also single molecule desorption measurements by Jöstl [10] on mica and calcite

support the above interpretation. Jöstl managed to link polyelectrolyte chains covalently to the

cantilever tip [153] [96] and to stabilize this tip such that measurements with one tip (and

therefore the same few molecules) were possible for days.15 With this setup he obtained

plateaus which were on average cleaner and longer than in the measurements reported here.

This is probably due to the very clean substrates (mica was freshly cleaved prior to each

experiment and calcite is a self-cleaning substrate). On mica he found an electrostatic

contribution with a linear dependence on τκ-1 similar to the measurements reported here on

glass. The 'zero charge' contribution was little higher (F0=46 pN). The plateau heights on

calcite did almost show no τκ-1 dependence, this is consistent with the almost uncharged

surface of calcite at the investigated pH and the strong shielding due to the dissolved Ca2+

ions. In contrast, the 'zero charge' contribution was considerably higher (F0=70 pN).

Still under discussion is the origin of this additive 'zero charge' contribution, F0, to the overall

desorption force. Most likely it is caused by van der Waals interactions, which in many

geometrical configurations are quantified by the Hamaker constant AH. 16  It is difficult to

directly derive the Hamaker constant from the desorption measurements, because too many

parameter are not exactly known for the probed polymers. For example, if it is approximated

by a sphere on a surface, the radius of this sphere, R, and the distance between sphere and

surface, D, are not known. But it is straightforward to relate the Hamaker constant of any

surface to the one of mica,17 if it is assumed, that the van der Waals contributions are additive

and that the polymers have on average the same distance from the substrate. The ratio of the

                                                  
15 The cantilever was silanized with epoxy-silan, and polyvinylamine was covalently bound to the cantilever.
Then the epoxy groups that did not react with the polyvinylamine were saturated with ammonium to prevent
multiple bonding of the chains to the tip and leave long enough dangling ends.
16 It is interesting to note, that this force (~35pN) corresponds to an energy of ~1 kBT acting over the distance of
0.12 nm, which are typical energies and lengths for van der Waals bonds. [36]

17 The Hamaker constant for mica was measured with different methods and in different surroundings, e.g. in
water by the SFA: 2·10-20J [65] and calculated by full Lifshitz: 1.34·10-20J [101]
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two 'zero charge' contributions, F0, corresponds then to the ratio of the Hamaker constants,  if

the surfaces are probed with the same cantilever and molecule. This is also supported by the

above mentioned measurements by Jöstl, [10] he found that the ratio of the Hamaker constants

for mica and calcite is about the same as the ratio of the constant force contributions, F0.

8.2. Polypentapeptides: Inverse Temperature Transition
The force-extension traces for (GVGVP)nx251 at room temperature show perfect reversibility,

i.e. any molecular process related to the elongation and relaxation of the polypeptide chain

must be fast on the time-scale of the experiment. Room temperature is below the temperature

of hydrophobic folding, Tt, for (GVGVP)nx251, the behavior below Tt can therefore be termed

ideal elasticity, with entropic elasticity as one contribution. From measurements in bulk and

solution, the following additional contributions were conjectured:

• Weis-Fogh and Andersen [154] suggested that hydration of hydrophobic side chains of the

protein, which become exposed to solvent on extension, would be responsible for the

stretch-induced decrease in entropy.

•  Hoeve and Flory [155] supposed that the alignment of chains in a network of random

chains is the major contribution to the observed elasticity.

• Chang and Urry [146] supposed that damping of internal chain dynamics on extension is a

major reason for the elasticity in these elastomers.

Luan et al. [156] compared elastomers in water and in 30% ethylene glycol and found no

experimental basis for believing that solvent entropy change contributed to elastomeric force,

which opposes the first conjecture. The single molecule experiments make the second

conjecture quite unlikely, as a comparison of single molecule and bulk elastic moduli show no

considerable differences: [113]  From the slope in the purely entropic (gaussean) part of the

single molecule force-extension traces (below 50 pN) a single chain elastic modulus, E, was

derived under the assumption of a random coil state (E = 5.7 . 104 N m-2) and a β-spiral

structure (E = 1.2 . 106 N m-2). They are a factor of three lower and a factor of seven and a

half higher than the macroscopic value (E = 1.6 . 105 N m-2). The values are even closer

together, if it is considered that in a macroscopic crosslinked sample the β-spirals would be

randomly orientated with respect to the direction of extension. Finally, low-frequency

motions provide an abundant and ready source of entropy decrease on extension. [113] This

would not differ much in bulk and single molecule samples, which makes the damping of

internal chain dynamics on extension a likely additional contribution.

The origin of the deviations from this ideal elastic behavior observed in the force-extension

traces above Tt (e.g. for (GVGIP)nx260 at room temperature) somehow resemble the force-
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extension curves obtained on freshly cleaved abalone shell, where the nature of the involved

forces could not be clearly revealed. [157] The data obtained here also does not allow for a

completely convincing explanation, but the model for the inverse temperature transition given

in Section 4.5.2, combined with the triple-helix formation (Figure 3.3) and the following two

assumptions is a likely explanation for the three features in the force-extension traces of

(GVGIP)nx260:

•  The molecules have to be able to form triple-helices in order to undergo an inverse

temperature transition, i. e. a single strand cannot fold onto itself.

• A triple-strand has to be able to dissolve into single strands to undergo an inverse

temperature transition, i. e. a triple-strand will never show ideal elasticity.

The hysteresis (above Tt) in the force-extension traces can even be explained without the

above assumptions by hydrophobic interactions, which are in general supposed to guide the

folding of most polypeptides. The irregular shape, which differs from trace to trace, suggests

that no unique stable native state is reached at the time scale of the experiment. Probably

because of a rough folding energy landscape with many 'trapped states'. In addition the very

fast 'refolding' reveals some fast processes. These observations might be caused by unspecific

hydrophobic interactions in between strands but could also be caused by a hydrophobic

collapse into a molten globule (which can have either no well developed secondary structure,

or may be a helical liquid crystaline molten globule), [158] a misfolded state or any other

collapsed structure. [159] The suggestion that hydrophobic hydration is a major component in

the folding of the investigated peptides is further supported by the observation that the

hysteresis disappears below Tt, which is consistent with the theory of the inverse temperature

transition (Section 4.5.2).

With the above assumption the creep or slip observed in consecutive force-extension traces

(Figure 6.5) might be caused by the following scenario: Just one or two molecules of the

triple-helix are attached to the cantilever, these molecules slip some nanometer along the

other one or two strands in every extension-relaxation cycle. Otherwise the creep would have

to be explained by a slip of the extended molecule along the surface or the AFM tip, but this

was not observed in such a continuous way in experiments with the (GVGVP)nx251.

From the available data it is impossible to relate the rate dependent deviation in the backward

traces of (GVGIP)nx260 (Figure 6.6b) to a specific folding process, there are just too many

possibilities: It could be an effect of a single folded chain (folding of  β-turns), an interaction

in between triple-strands (similar to the overstretch transition in DNA [160]) or a solvent effect

(like observed for PEG [161]). But in any case it does not disagree with the above assumptions.
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Finally, the construction of a molecular machine like sketched in Figure 6.1 from the

investigated polypeptides shall be discussed. A prerequisite for such a machine is to be able to

drive the inverse temperature transition in a controlled way. In bulk, many means of

manipulating Tt of polypeptides, and with this driving reversible hydrophobic contraction and

expansion, were demonstrated. [11] The first single molecule stretching experiments on

(GVGVP)nx251 and (GVGIP)nx260 at room temperature looked as if this could be repeated on

the single molecule level: An additional CH2 group in each pentamer of (GVGIP)nx260 resulted

in a completely different force-extension behavior, which seemed to resemble a

hydrophobicly  folded structure. But finally, neither (GVGVP)nx251 nor (GVGIP)nx260 could be

driven from force-extension traces with hysteresis to traces showing ideal elasticity or vice

versa in any experiment - every prepared system either showed hysteresis or reversibility.

This again can be explained by the above stated assumptions. Then the peptide from the

beginning is either adsorbed in a triple-helix formation or it is adsorbed as an individual

single strand.  As the mobility on the surface is considerably reduced it stabilizes both states.

Therefore, even under conditions favoring triple-helix formation the separated single strands

would stay separate, while triple-helices keep aggregated even below Tt. This is supported by

the behavior of (GVGIP)nx260 at low concentration at room temperature, and also by the

conjecture of Manno et al.[162] for the dynamics of the folding transition in (GVGVP)251:

"Smooth and progressive conformational changes promote concentration fluctuations, the

related locally high concentration prompts a further, substantial conformational change ending

into triple-helix formation and coacervation." (These concentration fluctuations are probably

considerably reduced at a surface).

8.3. Polyazopeptides: Optomechanical Transition

8.3.1. Length Change

Thermal effects cannot be excluded a priori as a cause for the observed length change. While

any thermal energy deposited on the molecule directly would be dissipated into the bulk

medium at times much faster than the time scale of our experiments, thermal effects resulting

from heating of the solvent or the glass substrate have to be considered. Although the

absorbtion of DMSO is negligible above λ = 330 nm, a minor fraction of the pulse energy

might be absorbed by the solvent which would heat up the environment of the measured

polymer, thus changing the stress-strain-relation for the polymer. But independent of the

excitation wavelength, this effect would lead to an increase in force at given length, or to a

decrease in length at given force. In contrast, we observe a shortening at λ = 365 nm, and a

lengthening at λ = 420 nm, which can therefore not be attributed to heating effects. The same

reasoning holds for potential thermal effects due to the absorption in the glass. Therefore, the

only reasonable explanation for the length change is the cis-trans isomerization of the

azobenzene units in the polyazopeptide.
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There is not enough data yet to relate the length change in a polyazopeptide to the number and

energy of flashes applied. Nevertheless, it is possible to discuss the saturated trans and cis

states and compare them to bulk experiments. The discussion refers to the traces shown in

Figure 7.6 (but yields similar results with the traces from Figure 7.7). With the data given in

Section 4.5.4, the fitted contour length of the polymer, L ≈ 86.5 nm, equals n ≈ 46.

Considering that effectively only 55% of the azobenzene units change their configuration

upon cis-trans switching, a maximum length change of ∆Lmax ≈ 6.4 nm could possibly be

obtained by optical pumping at λ=365 nm. The measured length change in DMSO of 2.8 nm

stays well below this upper limit. The difference may reflect the fact that parts of the polymer

chain are not excited by the evanescent field. More likely, it is caused by some remaining

conformational freedom of the polyazopeptide backbone, so that the sum of the total length

changes of the azobenzene units is not reflected in the contour length change of the

polyazopeptide. Intrinsic viscosity measurements on azobenzene polymers even show very

tiny effects of optical excitation on the end-end distance of the polymer coils in solution when

the photoactive units were connected by flexible chain segments, [134] [135] but rigid linkers

between the azobenzene moieties resulted in particularly large reversible changes of up to

60% in the viscosity. [135] In the AFM experiments, the polymer chains are fixed between tip

and substrate, and stretched beyond the coil regime. This geometry is thus more comparable

with photoactive bulk polymer networks, which were reported to show considerable length

changes upon optical switching. [139] Altogether a considerable shortening is expected, but the

remaining conformational freedom of the polypeptide backbone can well account for the

reduced polyazopeptide shortening by rotations around single backbone bonds. [140]

It also has to be mentioned, that the end-end-distance of the azobenzene monomer in both

configurations, as well as the energy conversion efficiency, may be affected by the solvent

determining the equilibrium conformational structures (as for example in PEG the equilibrium

structure at intermediate force is different in water and hexane). The data given here might

thus be specific to DMSO, and may differ in other solvents.

8.3.2. Mechanical Stability

The cis and trans configuration were both found to be mechanically stable at all experimental

pulling forces on the time scale of the experiment. This is expected for the lower energy trans

configuration, as it represents the equilibrium configurational state. But according to the Bell

equation (Equation 33) the lifetime of the cis configuration should be considerably reduced by

a stretching force. From the data on azobenzene given in Section 4.5.4 the thermal lifetime of

the cis-isomer is reduced to τF < 100 ms, once the projection of the stretching force on the

coordinate describing the trajectory of the cis-trans transition exceeds 400 pN. This was never

observed. A likely explanation for this somewhat surprisingly high stability of the cis-

configuration is that the force-induced transition proceeds along a pathway nearly orthogonal
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to the thermal cis-trans isomerization, which is suggested to proceed along an isomerization
pathway in which the dihedral angle ΦNNC is the relevant configuration coordinate. Hence the

activation barrier and thus the thermal lifetime of the cis configuration would remain almost

unaltered.

A more generalized view of this effect would be that the forced transition occurs on a

pathway ensemble whose width in conformation space is drastically restricted by the external

force acting along the polymer backbone. Therefore, some saddles and low energy barriers,

which are sampled by the thermal transition, might not be accessible for the forced transition.

This would to a certain degree correspond to the conformationally locked interaction found in

certain biopolymers e.g. actin filaments, which are known to withstand forces of up to 100 pN

for seconds although their equilibrium constant is in the mM range.

Supposing there is such a separate mechanical pathway, these measurements allow us to set a

lower bound for the lifetime, τo,z, of the cis-state when restricted to this path along the

stretching coordinate, z. With Equation 33 and the observation that a molecule can be held in

the all-cis state at forces of about 500 pN for many seconds, it is estimated as τo,z ≈ 3·1013

s. The lifetime of a state, τo, is correlated with the energy barrier of the escape path, ∆G*, by

τo = (1/νo) exp(∆G*/kBT) (Equation 32). If νo is assumed to be independent of the pathway,

the energy barrier ∆GΦ* along the configurational coordinate, ΦNNC, and the energy barrier

∆Gz* along the stretching coordinate, z, are related by

∆Gz* = ∆GΦ* + kBT·ln(τo,z / τo,Φ) . (59)

Thus, ∆Gz* ≈ 62 kBT, i.e. the energy barrier is increased by approximately 18 kBT when the

molecule's escape path is restricted to the stretching coordinate. However, the assumption that

νo is independent of the pathway is quite crude: In Kramers theory for example ν0=D/ lclts

(Section 4.3.1), where not only the viscous damping (described by D) but also the shape of

the ground and transition state (described by the lengths lc and lts) are likely changed by an

applied force. [76] Our finding of the high stability of the cis-state against an external force

may also reflect these effects.    

8.3.3. Optomechanical Cycles, Molecular Machines and Motors

In the introduction the following definitions for molecular machines and motors have been

given: "A machine is a device that converts energy from one form into another in a cyclic

way. The specific machine, which converts a 'fuel' into mechanical work in repeated cycles,

shall be termed 'motor'." Molecular machines commonly are polymers that do so. In the

cycles shown in Figure 7.8 clearly optical excitation was transformed into mechanical work

and this change was detected. If this can be termed a motor is best discussed by comparing it
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to the Otto-Cycle, which will illuminate the advantages and shortcomings of the investigated

single molecule system.

In Figure 8.7a  and 8.7b the pressure-volume diagram of an Otto-Cycle and the

optomechanical single-molecule cycle of a polyazopeptide are sketched. Taking the force for

pressure and the extension for negative volume, these two cycles are comparable:

At point one the valve is closed (the polymer attached) and the piston compresses the air (the

cantilever extends the molecule) to point two, which also slightly raised the temperature. Then

the combustion of the gasoline increases the temperature and pressure drastically to point

three. (A λ = 365 nm pulse is applied which contracts the polymer. The energy thereof is

partly delivered to the cantilever and the other part stored in the molecule - with a stiffer

cantilever, this amount increases and the Otto-Cycle is approached.) In the next step, the

piston is expanded adiabatically, performing work. (The molecule is relaxed and the

remaining work is performed). Finally, the exhaust is released, which corresponds to the

lengthening of the molecule with a  λ = 420 nm pulses.

Figure 8.7: a) Pressure-Volume diagram for an Otto-cycle. b) Single-molecule operating
cycle, based on a polymer consisting of repeating segments exhibiting a
reversible transition from a short (cis) to an extended (trans) configuration,
and vice versa. Blue area: mechanical work delivered during the optical
contraction. Hatched area: total mechanical work per cycle.

The major achievement in this experiment is that the nanoscopic mechanical change can be

interfaced, stored and quantified macroscopically, which allows to estimate the efficiency of

the optomechanical energy conversion:

With the given quantum efficiencies for the cis-trans transition of about 0.5 and the trans-cis

transition of about 0.1, roughly 120 photons (or an optical energy of 6.6 · 10-17 J ) would be

required to switch all 10 azobenzene units in the azobenzene of Figure 7.8a. The overall

energy conversion efficiency for this extremely simple optomechanical motor is thus η ≈ 7.5 ·

10-4. [30] The efficiency of the optomechanical contraction, the key step in the cycle, can be
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estimated by assuming that the energy of a single photon Eexc = 5.5 · 10-19 J (λ = 365 nm) is

used to perform the mechanical work Wmech ≈ 0.22 nm·205 pN ≈ 4.5 · 10-20 J by contracting a

single azobenzene unit against the external force. In our configuration, which is far from

being optimized, we measured an upper limit of ηmax ≈ 0.1.
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9. Outlook
In the following some possible future theoretical and technical developments related to this

work are given. Some of them are likely to be achieved in the near future, while others might

forever stay a dream:

• The investigation of theoretical models for the fitting of single molecule force-extension

data showed that especially in the high force regime discretization effects [8]  play a major

role, but also stretching and bending fluctuations. [7]  This will lead to fit-functions which

will reproduce experimental data better, especially in the high force regime accessible

with the AFM, and with fewer fit parameters (preliminary results for a carbon backbone

are discussed in Section 8.1). [8]

•  The OSF-theory describes the stiffening of polyelectrolytes with increasing charge or

decreasing counter ion concentration with a constant additive term to the 'zero charge'

persistence length, l0. The single molecule measurements performed here, show that a

force dependent persistence length [7] describes the experimental data better, but still not

perfectly. A combination with the discretization effects [8]  might further improve the fits.

• The theory for the desorption of charged polymers from solid charged substrates is still far

from being complete. Especially the  'zero charge' contribution is still under discussion.

The results presented here and further experiments will stimulate new theoretical

approaches.

• The combination of single molecule force spectroscopy and optical excitation gives access

to data which cannot be obtained by other means. It will and already has stimulated

theoretical approaches and simulations on optomechanical coupling and excited states.

Especially  force and (excitation) energy dependent length changes will allow to test

theoretical approaches and calculations. Further, it should be possible to probe the force

dependent energy landscape of the excited state by wavelength dependent spectroscopy.

•  Reversible molecular switches will be of great importance for all kind of future nano-

devices and computers. Single light addressable molecules might become an alternative to

the extensively investigated DNA approach. The technical application of single molecule

motors is still in the far future, but if they are constructed, optomochanical systems are

likely to be utilized besides electronic systems. Light is fast, easily addressable, can be

used in most ambients and has no waste problem.
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•  The assembly of functional units on the nanometer scale will become more and more

important. The systems investigated in this thesis could be a basis for a 'grab and release'

technology: Both, the reversible switching of azobenzene and the reversible manipulation

of surface adhesion could be utilized to grab and release single functional polymers.

Together with the nanometer position sensitivity of an AFM this would allow for a

molecular assembly. The same principle could enable the production of a molecular

toolbox. Tools with an 'azobenzene handle' or variable surface adhesion properties could

be grabbed, positioned and released with nanometer accuracy.

•  It should be most fascinating to study hydrophobic vicinity effects on the strength and

lifetime of ionic charges in aqueous systems, a fundamental problem closely related to the

still unsolved protein folding mystery. Among the materials scientists, it is expected that

the investigation of this apparently simple question at the level of individual polymer

molecules might help to design further improved surface coatings, lubricants or other high

performance colloids.

•  The coupling of light into an AFM experiment could also be utilized to increase the

temperature or release chemicals. Light flashes could for example release ions from caged

compounds or activate ion receptors to bind ions. With compounds containing the

functional azobenzene unit (e.g. an EDTA-like azobenzene) this should even be possible

in a reversible way. [163] [126]

Specially designed functional synthetic polymers could be the basis for many of the above

discussed light directed jobs. Of course, synthetic polymers are still far away from the almost

perfect, self-healing, high-efficiency, adaptable biological machines – but they can be

designed, controlled and now also interfaced to the macroscopic world.
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10. Apendices

10.1. Details of the Coupling Chemistry

10.1.1. Surface Preparations

Glass microscope slides (25x75x1 mm, Sigma, Deisenhofen, Germany) and flint glass

microscope slides (F-2, 25x71x1 mm, Schott Glas Mainz, Hellma Optik GmbH Jena,

Germany) were cleaned prior to each experiment by sonicating for 10 minutes in Hellmanex

solution (Hellma, Mühlheim, Germany), and twice for 10 minutes in MilliQ water (Deionized

water which is further purified using a MilliQ plus system with σ = 18.2 MΩcm).

In order to obtain aminoreactive surfaces the cleaned microscope slides were put in a 5 vol%

solution of (3-glycidyloxypropyl)trimethoxysilane (Aldrich, Deisenhofen, Germany) in

isopropanol for one hour. The substrates were then kept in an oven at 90°C for half an hour,

followed by successive rinsing with isopropanol. Increased hydrophobicity of the substrates

was observed in contact angle measurements after silanization. Park Thermomicroscope

Cantilevers (Sunnyvale CA, USA) were used as obtained. They were made aminoreactive by

putting them for 10 s in (3-glycidyloxypropyl)trimethoxysilane and rinsing in toluene and

water followed by baking at 90°C for 30 minutes. The silanes should covalently bind to the

silica surface and crosslinks upon baking, which gives a dense aminoreactive film on the

surface (Figure 10.1).

Figure 10.1: 
Surface hydroxy functions
(naturally present on silica
substrates as well as on silicon
nitride AFM tips) are converted to
amino-reactive epoxy functions via
silanization. Chemical reaction
with amino functions of PVA yields
β-hydroxyalkylamine function.

Amino groups were introduced on microscope slides by putting few drops of N'-[3-

(trimethoxysilyl)propyl]-diethylene-triamine (Aldrich)  onto the slides, which were then
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placed in a 90 °C oven for 15 minutes. Afterwards they were rinsed with ethanol followed by

water and then placed in 90° C hot water for 30 minutes and rinsed again with cold water.

When gold coated surfaces were needed, cleaned glass microscope slides and Park

Thermomicroscope Lever were coated with 5 nm CrNi (80:20) and 30-40 nm gold in a

homebuilt evaporation-chamber. In some cases  Olympus Bio-Levers (Olympus, Tokyo,

Japan) were used as obtained. These cantilevers are completely gold coated, very small and

soft. The spring constant for the two different beam sizes on the Olympus Bio-Lever chips are

given by the manufacturer as 0.006 N/m and 0.027 N/m, respectively.

Hydrophobized glass was obtained by etching a cleaned glass slide for 10 minutes in KaOH

(1 M) and rinsing it with MilliQ water. Then it was exposed to dimethyldichlorsilane vapor

for 10 minutes.

10.1.2. Coupling of the Molecules

Polyvinylamine (PVA) was attached to the substrates by incubating a small region of the

surface with a few drops of an aqueous polymer solution (0.2 mg·ml-1) for 30 minutes,

followed by successive rinsing with MilliQ water. This procedure was used for both,

physisorption of the polymers onto the negatively charged glass substrate, as well as for

covalent binding of the amino groups to aminoreactive supports. The PVA was then

covalently bound to the aminoreactive cantilever within the experiment (as shown by the high

rupture forces in the elasticity experiments). In some preliminary experiments the molecules

were covalently attached to the cantilever prior to the experiment and then brought into

contact with a clean surface. This approach was continued and optimized by Jöstl in his

Diploma thesis. [10] All experiments were conducted in solutions of 1:1 electrolytes (NaCl) at

room temperature (~21°C), unless otherwise specified.

Polypeptides were measured with gold coated cantilevers on gold substrates. Self-assembled

mixed 'mono'-layers were usually used to suppress nonspecific adhesion. For the preparation

of these layers, quantities of 1 mg of the polypentapeptides and 0.5 mg methoxy-PEG-thiol

(Sharewater Corporation, Huntsville, US, MW ~ 5000) were dissolved in 1 ml MilliQ water

prior to each experiment.18 20 µl of this solution were incubated on the gold-coated slide for

about 30 minutes at 3°C or for 5 minutes at room temperature and then rinsed with MilliQ

water.

                                                  
18 The peptides are stable infinitely, whether dry or in water, as long as the temperature is below 60°C (due to a
very slow racemization) and as long as there is no organism that finds it and begins to degrade it. As this cannot
be excluded, the recommendation is to keep the material as a dry powder until just before use, and to make up
fresh solutions for each experiment (personal e-mail from D. Urry 27.11.99).
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For the covalent attachment of the azobenzene containing polypeptide a stepwise approach

was utilized. The polymer chains were coupled to the probe tip by first physisorbing them for

90 minutes to gold coated cantilevers in dimethylsulfoxide (DMSO, formula: C2H6OS)

solution, followed by deprotecting the thiol group using 5% trifluoroacetic acid in

dichloromethane (CH2Cl2) for 30 minutes. The proximity of the deprotected thiol groups to

the gold surface resulted in chemisorption of the polypeptides to the gold-coated tip via the

formation of a covalent gold-thiol bond. Having mounted a polymer modified cantilever chip

in the force spectrometer, the C-termini of the polypeptides (carboxy groups) were activated

by the addition of excess amounts of N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) (NHS and EDC in 1:1 molar ratio) in DMSO to

promote the formation of a peptide bond with the amino groups on the aminofunctionalized

glass slide surface.
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10.2. Details of the Instrumental Setup
The principle of single moelcule force spectroscopy is described in several publications, for

reviews see [24] [25] [9]. The experiments in this thesis were performed on three different

AFMs:

•  A homebuilt instrument, which was constructed by Prof. Matthias Rief in 1996 and is

described in detail in [161].

• A molecular force probe (MFP) from AsylumResearch (Santa Barbara, CA, USA), which

is commercial available and described in detail at "www.asylumresearch.com".

•  A homebuilt instrument, which was built by Alexander Schemmel and is described in
[164].

The sample stage of the instrument built by Schemmel was redesigned in order to couple

optical excitation in total internal reflection geometry into the glass microscope slide, to keep

all stray light from the proximity of the cantilever and to de-couple all vibrations of the

flashlamp from the AFM. A Xenon-flashlamp JML-C1 (Rapp OptoElectronic, Hamburg, D,

"www.rapp-opto.com") was used as a light source. The two wavelength ranges necessary to

switch the investigated polyazopeptides were obtained by the following filter sets:

• For the lengthening of the polymer a GG 420 colorglass filter (Itos GmbH, Mainz) was

used, the transmission for wavelength smaller than 400 nm is less then 10-5 while it is

more than 90% for wavelength larger than 450 nm. In addition, a colorglass BG12

(Schott, Mainz) blocked more than 90% at frequencies higher than 525 nm. The maximum

energy of a flash with this filter set was measured by a thermal power meter (Spectra

Physics, model 407A) to Emax = 100 mJ. In the following, pulses with this filter set will be

refered to by 'λ = 420 nm pulses'.

• For the shortening of the polymers a 365 nm bandpass filter with a band half width of 12.2

nm was used (Itos GmbH, Mainz, UVDAD T47,2%), also in combination with the

colorglass BG12 (see above). With this filter set a maximum pulse energy of Emax = 10 mJ

was measured. This filter set will be refered to by 'λ = 365 nm pulses'.

The filtered light was then focused onto the polished edge of a flint glass microscope slide

(transmission at λ = 365 nm and d = 10 mm: 0.967) in total internal reflection geometry. All

measurements were performed in dimethylsulfoxide (refractive index nD=1.48).



10. Apendices 78

10.3. Data Aquisition
It turned out that the following strategy was the best to obtain force profiles of just single

polymer strands: The AFM tip is brought into contact with the substrate for some time to 'pick

up' one or several surface bound polymer molecules. Depending on the nature of the tip-

polymer interaction several milliseconds up to minutes are needed to achieve sufficient

binding. Then, the cantilever is retracted to a distance at which nonspecific adhesion is no

longer observed.19 In successive retraction-approaching cycles the distance range is

continuously increased, while avoiding contact between the tip and additional polymer strands

at the substrate surface. The detachment of polymer chains from the AFM tip is reflected by

sharp peaks consisting of their elastic response followed by a sudden drop in the force when

the chain detaches. After their detachment, the elastic response of these shorter polymer

strands will thus no longer be observed in successive cycles, such that eventually only one

polymer chain will remain between tip and substrate. The force profile of this last remaining

strand may then be taken repeatedly until rupture. After the eventual detachment of the

investigated polymer strand, the full distance range has to be probed in order to exclude the

presence of any longer strands. A reliable test for single molecules can only be done after the

rupture of the molecule. Assuming that in the probed force regime the measured stretching

force is a function of the relative extension of the polymer chain, i.e. F ~ f(Rz/L) – like in the

FJC and WLC-model, all force traces originating from single polymer chains should

superimpose when scaled to the same contour length. In turn, the superposition of the force

traces serves as a criteria for the identification of single polymer strands.

For the optomechanical experiments, a computer with a National Instrument card (PCI-Mio-

16XE-10) and the NIDAQ Tools from WaveMetrics (Lake Oswego, USA) was used to stream

data continuously in addition to the usual data aquisition. This enabled to correct for tiny long

term (up to an hour) drifts in the deflection and the piezo signal.

                                                  
19 At short distances, strong adhesive forces may dominate the interaction profile, and although they may contain
many details of single molecule events, they are usually too complex to be analyzed in detail. It may include
contributions from the stretching of several polymer strands, the desorption of the polymer strands from
substrate and/or cantilever, from covalent bond rupture of short strands, as well as forces resulting from
interchain aggregation and entanglements. While these adhesive interactions may yield important information
about local surface properties averaged over several nm2, [165] [166] in single molecule stretching experiments
the minimization of unspecific adhesion is highly desired in order to extract as many details of single polymer
elasticity as possible.
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10.4. Calibration of Spring Constants
The spring constants for the cantilevers given by the manufacturer are for many applications

not accurate enough, therefore different methods to measure the spring constant of an

individual cantilever were developed. The most common and in our lab utilized method is the

thermal method, which measures the power spectrum of the cantilever's thermal oscillations.

This is then either related to the thermal energy by the equipartition theorem [167] or by fitting

a damped harmonic oscillator model to the thermal power spectrum. [168] A recent study by

Lèvy and Maaloum [169] found as expected more than 10% deviation from the spring constant

values given by the manufacturer, while the spring constants determined by different thermal

methods varied by less than 10 %. A comparison of the added-mass method and the thermal

method yields an about 20% difference between these methods. [170] [171]

To measure the deflection, x, of a cantilever the most commonly used optical lever method

was utilized in all experiments. The sensitivity of the optical lever can be characterized by the

'inverse optical lever sensitivity' (InvOLS), where x = InvOLS . ∆V with the differential

voltage ∆V  measured by a position sensitive detector. The InvOLS is usually quantified by

bringing the cantilever into contact with a rigid surface and then moving it a known distance.

The slope of the resulting cantilever deflection vs. distance yields the InvOLS. The optical

lever sensitivity measured with this method from the constant-compliance region of a

deflection-piezopath curve is not exactly the correct InvOLS to use. This is because the shape

of an oscillating cantilever (power spectrum) and one bending due to a constant force

(InvOLS) are slightly different. [172] The data is corrected to reflect this like described by

Butt. [167]

It is reasonable to give an error of 10% for the determined spring constants, if consistently one

method is used and if the power spectrum is taken at approximately the same distance away

from the surface for all cantilevers.
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10.5. Abbreviations

AFM - atomic force microscopy

AMBP - (4-amino)phenylazobenzoic acid

ATP - adenosine triphosphate

DC - discrete chain

DMSO - dimethylsulfoxide

DNA - desoxyribonucleic acid

EDTA - ethylene-diamine-tetra-acetate

FJC - freely jointed chain

GC - guanidinium chloride

InvOLS - inverse optical lever sensitivity

LCST - lower critical solution temperature

MD - molecular dynamics

OSF - Odijk, Skolnick, Fixman

PBS - phosphate buffered saline

PEG - polyethylenglycol

PNIPAM - poly(N-isopropylacrylamide)

PVA - polyvinylamine

RNA - ribonucleic acid

SDS - sodium dodecyl sulfate

SEM - scanning electron microscopy

SFA - surface force apparatus

SMFS - single molecule force spectroscopy

TEM - transmission electron microscopy

TIR - total internal reflection

WLC - worm-like chain
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