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ADA  N-[2-acetamido]-2-iminodiacetic acid 

ATP  adenosine triphosphate 

BCIP  5-bromo-4-chloro-3-indolyl phosphate 

bp  base pair 

CD  circular dichroism 

cp  centipoise 

DEAE  diethylamino ethyl- 

DMSO dimethylsulfoxide 

DNA  deoxyribonucleic acid 

dNTP  deoxyribonucleotide triphosphate 

dsDNA double-stranded deoxyribonucleic acid 

EDTA  ethylenediaminetetraacetate 

IPTG  isopropyl-β-D-thiogalactoside 

kb  kilobase 

LB  Luria Bertani 

LCR  ligase chain reaction 

MCP  methyl-accepting chemotaxis-like protein 

MES  2-[N-morpholino]ethanesulfonic acid 

MPD  2-methyl-2,4-pentanediol 

NADH nicotinamide adenine dinucleotide, reduced form 

NBT  nitroblue tetrazolium salt 

NMR  nuclear magnetic resonance 

OD  optical density 

PAGE  polyacrylamide gel electrophoresis 

PBS  phosphate buffered saline 

                                            
1 Throughout this work, the International System of Units is used as described in the 
IUPAC Manual of Symbols and Terminology for Physicochemical Quantities and Units 
(1979) without definition. 
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PCR  polymerase chain reaction 

PEG  polyethylene glycol 

pH  potentia Hydrogenii 

pI  ionic strength 

PMSF  phenylmethyl sulphonyl fluoride 

PVDF  polyvinylidene fluoride 

SDS  sodium dodecyl sulfate  

UV  ultra violet 
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3. Introduction 

 

Our world is populated by two different kinds of organisms: one is 

Escherichia coli, and the other is not. Since its first description by THEODOR 

ESCHERICH in 1885, E. coli serves as one of the best understood model 

organisms, and most of our knowledge in biochemistry and genetics 

originates from studies of this bacterium. Since the end of the 19th 

century it was known that E. coli cells migrate towards oxygen and 

organic nutrients, a behavior termed chemotaxis that is shared with many 

other organsims including animals and plants (ENGELMANN, 1882; PFEFFER, 

1883; ENGELMANN, 1884; PFEFFER, 1887; for a review see WEIBULL, 1960). 

Based on the pioneering work of PFEFFER, the so called capillary assay was 

developed (SHERRIS et al., 1957 and BARACCHINI & SHERRIS, 1959), where 

bacteria placed at the bottom of a capillary tube filled with nutrients 

entered the tube and formed clearly visible bands. In 1966, JULIUS ADLER 

was the first who studied E. coli motility in a simple chemically defined 

medium that allowed to determine which substances elicit chemotaxis. 

Today, the E. coli chemotaxis system is the best understood signal 

transduction network. 

 

 

3.1. The E. coli chemotaxis network 
 

E. coli comprises five membrane-bound chemoreceptor proteins1 (MCPs 

from methyl-accepting chemotaxis-like proteins) to sense the presence of 

their respective ligands. With the exception of Aer, the oxygen sensor, 

                                            
1 In the present work, a protein is referred to as a 'receptor' when the protein directly perceives signals such as 
light or small molecular compounds. When a protein binds to a receptor to transmit information to downstream 
compnents, it is referred to as a 'transducer'. Since some receptors comprise transducer-like sequence 
signatures, the nomenclature is sometimes difficult to follow. 
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these receptors bind ligands at the periplasmic side of the cell membrane 

and communicate this information by a yet to be determined mechanism 

through the cell membrane into the cytoplasm, where the 

autophosphorylation activity of the histidine kinase CheA is modulated by 

the receptor occupancy (Fig. 1). 

 

 

 

Fig. 1. The Escherichia coli chemotaxis network that controls cellular motility. Red arrows: 

phosphotransfer reactions, blue arrows: methylation/demethylation and deamidase 

reactions, black arrows: protein/protein interactions. For details see text. From LEVIT et al., 

1998, with modifications. 

 

 

In contrast, Aer has a bound flavine adenine dinucleotide (FAD) cofactor in 

its cytosolic N-terminal PAS domain (ZHULIN et al., 1997), while its overall 

domain organization resembles the structure of the other four 

chemoreceptors (HAZELBAUER, 1992; BIBIKOV et al., 1997). 
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The protein kinase CheA binds to the signaling domains of the receptors 

(red) via the coupling protein CheW. The autophosphorylation activity of 

CheA depends on the signaling state of the receptors with attractant 

binding resulting in deactivation and vice versa). This kinase, together 

with the response regulator CheY, forms the archetypal two-component 

signal transduction system, in which the response regulator is 

phosphorylated by its cognate histidine kinase (HESS et al., 1987; HESS et 

al., 1988). Upon phosphorylation, CheY-phosphate affects the direction of 

rotation of the flagellar motor by binding to the switch complex of the 

motor (WELCH et al., 1993; BREN & EISENBACH, 1998; BREN et al., 1996). In 

E. coli, the CheY-phosphate signal is terminated through the spontaneous 

hydrolysis of CheY-phosphate as well as by CheZ, a response regulator 

phosphatase. 

 

The methyl transferase CheR constitutively adds methyl groups derived 

from S-adenosyl-methionine to conserved glutamyl residues of the 

receptors. This modification shifts the signaling state of the receptors 

towards the unliganded state regardless of the occupancy with ligands 

(CheA activation). The receptor methylesterase/deamidase CheB is 

activated by phosphorylation through CheA. It removes the methyl groups 

that were added by CheR from ligand-bound receptors (CheA 

deactivation). Since its own activity depends on the CheA activity, and 

since CheR activity is independent of the CheA activity, this receptor 

methylation/demethylation creates a feedback loop that allows system 

adaptation (for reviews see FALKE et al., 1997; STOCK et al., 2000; AIZAWA 

et al., 2000). Overall, this chemotaxis system enables the cell to migrate 

towards nutrients or away from repellents by sensing gradients of 

chemicals.  
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E. coli apparently evolved in an environment where sugars, amino acids 

and (di-)peptides served as energy sources, and therefore receptors to 

sense such substances are found in its inner membrane. Some ligands 

interact directly with the receptors, such as serine with Tsr or aspartate 

with Tar, while other chemicals first bind to binding proteins located within 

the periplasmic space. In these cases, ligand binding triggers a structural 

rearrangement of the binding protein that allows the subsequent 

interaction with the receptor. Maltose, for example, is sensed by Tar 

through interaction with the maltose binding protein. Although the 

information on the presence or absence of ligands is primarily 

communicated by the membrane-bound receptors to the Che protein 

network, these proteins are not the only means by which E. coli cells 

sense chemicals. CheA autophosphorylation activity is also controlled by 

the phosphoenolpyruvate-dependent phosphotransferase system that 

actively transports sugars across the cell membrane (reviewed in 

ALEXANDRE & ZHULIN, 2001). Whereas the structure of the isolated 

chemotaxis network components is largely known in atomic detail, their 

spatial arrangement in the signalling complex made of receptors, coupling 

protein CheW and CheA molecules as well as their exact stoichiometry 

remains to be determined. 

 

 

3.2. Novel chemotaxis proteins outside the Enterobacteriaceae 
 

Within the last few years, the entire genomes of many organisms have 

been sequenced, creating databases with thousands of predicted gene and 

protein sequence entries. Homology searches with E. coli chemotaxis 

proteins as search queries yields hundreds of predominantly bacterial 

proteins with homologous domains. The enteric system that once was 

considered to be the paradigm of an eubacterial chemotaxis network 
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appears nowadays as a rather exotic and simple signal transduction 

system. In other bacteria, systems with different sets of chemotaxis 

proteins are at work. However, many of these novel proteins consist of 

components homologous to E. coli Che proteins, but in different 

topological arrangements. Therefore, it appears that a process reminiscent 

of 'molecular lego' with protein domains created a plethora of novel 

proteins whose complex function can not be predicted from their simpler 

orthologs (Fig. 2) 

 

 A

 
B  

 

 C

 
D

 

 
E

 

 
F

 

 G
 

Fig. 2. Selection of 'novel' chemotaxis proteins from various organisms. Proteins are 

NCBI Protein Id A82180 (A), B82206 (B), BAA17198 (C), BAA10022 (D), AAC23932 

(E), AAC67023 (F) and BAB78082 (G). CheW: two component signaling adaptor 

domain (turquoise diamonds), HATPase_c: histidine kinase-like ATPase domain (green 

triangles), HPT: histidine phosphotransfer domain (blue pentagons), HisKA: histidine 

kinase A (phospho-acceptor) domain (green rectangles), MeTrc: methyltransferase 

domain (large green pentagons), PAS: PAS domain (from period circadian protein, Ah-

receptor nuclear translocator protein and single-minded protein where this domain was 

first identified; pink rectangles), REC: CheY-homologous receiver domain (blue 

pentagons, upside down). For further details see http://smart.embl-

heidelberg.de/smart/. 
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In many organisms like Vibrio cholerae or Helicobacter pylori, genes 

coding for proteins where a CheW domain is fused to a response regulator 

domain from the CheY superfamily were identified. The resulting fusion 

proteins were coined as CheV proteins (FREDRIK & HELMANN, 1994; ROSARIO 

et al., 1994). Fig. 2A shows VC1602 from Vibrio cholerae as one example 

from a total of four CheV proteins in this organism. Another gene product 

in Vibrio cholerae, VC1402, is made up of three CheW domains (Fig. 2B). 

Whereas the archetypical histidine kinase CheA from Escherichia coli 

comprises a histidine phosphotransfer domain followed by a histidine 

kinase-like ATPase domain and a CheW-like domain, in Synechocystis sp. 

PCC 6803, an additional response regulator domain is fused to CheA, 

giving rise to a hybrid histidine kinase (Fig. 2C). Within the same 

organism, another hybrid kinase can be found where two CheY-like 

receiver domains follow the CheA domain (Fig. 2D). In Pseudomonas 

aeruginosa, a CheA ortholog is also fused to a response regulator domain 

as in Synechocystis sp. PCC 6803. This protein, however, contains five 

instead of one histidine phosphotransfer domains at its N-terminus (Fig. 

2E). Whereas in E. coli CheR is a single protein, in Treponema pallidum 

and Borrelia burgdorferi proteins were identified where CheW-like domains 

were fused to a CheR methyltransferase domain (Fig. 2F), and in 

Anabaena sp. PCC 7120, a CheR domain is fused to a CheA histidine 

kinase and a CheY response regulator domain via two PAS domains (Fig. 

2G). 

 

The function of CheA, CheR, CheW and CheY in E. coli is well known, but 

the function of all of the proteins depicted in Fig. 2 remains currently 

enigmatic. It is well conceivable that the rearrangement of conserved 

domains allows the respective proteins to fulfill novel duties. 
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3.3. Halobacterium salinarum and Helicobacter pylori chemotaxis 
 

H. salinarum and H. pylori share a certain fondness for unusual 

environments. Whereas the archaeon H. salinarum (WOESE et al., 1990) 

inhabits environments with intense illumination and high salt 

concentrations as the Dead Sea or solar evaporation ponds (for an 

overview see OREN, 1994), H. pylori thrives in the mucous darkness of the 

highly acidic human stomach (for an overview see MONTECUCCO & RAPPUOLI, 

2001). Both organisms contain orthologous proteins of the E. coli receptor 

and chemotaxis proteins, but the networking of their signaling pathways 

appear to be very different from the E. coli prototype according to their 

generic contents (TOMB et al., 1997; NG et al., 2000). 

 

 

3.3.1. Chemotaxis network in Halobacterium salinarum 
 

Halobacterium salinarum responds to external stimuli by altering the 

switching probability of its flagella in analogy to flagellated eubacteria. 

Whereas E. coli only responds to chemical ligands as for example amino 

acids or oxygen, H. salinarum also has the capability to respond to 

physical stimuli such as orange/UV light or blue light via the retinal 

proteins sensory rhodopsin I and II (SPUDICH, 1994; SPUDICH et al., 2000). 

These two light perceiving proteins transmit the signal via two cognate 

transducer proteins HtrI and HtrII to the CheA/CheY two component 

chemotaxis network (RUDOLPH & OESTERHELT, 1995) thus enabling the cell 

to move towards ideal illumination conditions where the light driven 

proton pump bacteriorhodopsin converts light energy into chemical energy 

(HAUPTS et al., 1999; TITTOR et al., 2002). On the other hand, a phobic 

reaction with respect to an increase in blue light avoids regions of too 

intense illumination. Besides HtrI and HtrII, H. salinarium excels with a 
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set of 16 transducer proteins that can be assigned to several receptor 

families according to their architecture. All transducer proteins have 

different N-terminal domains followed by the highly conserved signaling 

domain important for signal transduction to the histidine kinase CheA (Fig. 

3). 

 

 

 

Fig. 3. Architecture of Tar compared to archaeal transducer proteins from H. 

salinarum. All these proteins are made up from several basic building blocks. A. Tar 

from E. coli, the archetypical enteric chemoreceptor, consists of a periplasmic ligand 

binding domain (LB) that is flanked by two transmembrane helices (TM). It is followed 

by the C-terminal signaling domain (SD). K1 and R1, the two regions where adaptive 

methylation takes place, enframe the signaling domain. B. Architecture of HtrI 

(AAG19913.1). C. Architecture of HtpIV and HtpVI (CAA64841.1 and AAD02052.1, 

respectively). D. Architecture of Htr8 (AAG19812.1). E. Architecture of HtpV and Htr17 

(AAG19985.1 and AAG19968.1, respectively). F. Architecture of HtpIII (CAA64840.1) 

and Car (CAB38318.1). Receptors of this class do not contain transmembrane helices 

and therefore are soluble, cytosolic proteins. Since the nomenclature of the 

halobacterial transducers is ambiguous, the NCBI Protein Id is given in brackets for 

each protein. For a complete list of all halobacterial proteins see the Halolex database 

at http://www.halolex.biochem.mpg.de. From RUDOLPH et al., 1996, adapted. 

 

http://www.halolex.biochem.mpg.de/
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Despite the great diversity of transducer proteins, H. salinarum is 

equipped with the canonical set of Che proteins known from coliform 

bacteria, except that CheZ is absent like in all organisms outside the γ-

proteobacteria (KIRBY et al., 2001). In addition, the halobacterial genome 

codes for three non-enteric Che proteins: CheC1, CheC2 and CheJ (also 

named CheD; RUDOLPH & OESTERHELT, 1996) Table 1 gives an overview of 

the H. salinarum Che proteins. 

 

Table 1. Chemotaxis proteins from Halobacterium sp. NRC-11) 

 
Protein Mr (kDa) NCBI Protein Id. suggested function 

CheA 71.9 AAG19393.1 histidine kinase 

CheB 36.5 AAG19394.1 methyl esterase, adaptation 

CheC12) 21.0 AAG19392.1 Unclear, with no enzymatic 
activity3) 

CheC2 20.4 AAG19871.1 Unclear, with no enzymatic 
activity3) 

CheJ 11.0 AAG19390.1 Unclear, with no enzymatic 
activity3) 

CheR 26.5 AAG19389.1 methyl transferase, 
adaptation 

CheW1 19.2 AAG19396.1 coupling protein 

CheW2 14.1 AAG19371.1 coupling protein 

CheY 13.4 AAG19395.1 response regulator, motor 
switch factor 

 
1): Halobacterium sp. NRC-1 was chosen as reference since it is the only Halobacterium strain 
whose genome was sequenced and published in its entity to date. See DASSARMA et al., 2000. 
 
2): This protein was also named CheD by some authors. 
 
3): for information on Bacillus subtilis orthologs see KIRBY et al., 2001. 
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3.3.2. Helicobacter pylori - Chemotaxis of an important human 
pathogen 
 

H. pylori was already present in the stomachs of humans when they left 

Africa to conquer the world more than 150,000 years ago (COVACCI et al., 

1999), and it is one of the most successful bacterial pathogens which 

colonizes more than half of the human population (PARSONNET, 1995). Most 

infected people are asymptomatic, but 15 to 20% of them develop severe 

gastroduodenal diseases during their lifetime, including gastric ulcers as 

first described by DONATI, 1586, adenocarcinomas, gastric lymphomas and 

tumors of the neuroendocrine system (FORMAN et al., 1991; NOMURA et al., 

1991; PARSONNET et al., 1991; GRAHAM et al., 1992). To avoid discharge 

from the mucus to the lumen of the stomach, the mostly planktonic 

bacteria must swim perpetually back to the epithelial cell surface where 

they predominantly thrive on nutrient-rich exudates from the capillaries. 

Chemotaxis network-controlled motility is therefore an absolute 

prerequisite to establish a successful infection (LEE, 1996). 

 

The H. pylori genome (TOMB et al., 1997; ALM et al., 1999) codes for only 

three membrane-bound chemotaxis transducer proteins, yet this organism 

has a remarkably unusual set of chemotaxis proteins (Fig. 4). 
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Fig. 4. Chemotaxis system in H. pylori (KELLY, 1998). Information from the external 

chemical world is communicated from the transducer proteins to the Che protein 

network where the output signal is computed. Domains in CheF are H: histidine box; 

Y/B: CheY/CheB binding domain; C: dimerization and kinase domain; R: regulatory 

domain (BILWES et al., 1999). Domains in CheV proteins are W: CheW-like domain 

(blue); Y: CheY-like domain (red). Conserved residues important for this work are 

indicated above the respective proteins. 

 

The three membrane-bound transducer homologs (Hp0083, Hp0099, and 

Hp0103) presumably sense the presence of their respective ligands in the 

periplasmic space and communicate this information to the Che protein 

network located in the cytoplasm. From the six Che proteins, only two 

orthologs, CheW and CheY, are found in E. coli. The hybrid histidine 

kinase CheF is a fusion protein of CheA and CheY, and the three CheV 

paralogs are CheW-CheY fusions. Receptor-modifying CheB and CheR 

orthologs are absent, as is the CheZ phosphatase. Whether receptor 

methylation occurs in H. pylori similarly as in E. coli or H. salinarum 

(SUNDBERG et al., 1990; MARWAN et al., 1995; STOCK et al., 2000), and 

whether the chemotaxis network can adapt to changing ligand 

concentrations, is unknown. Likewise enigmatic is the role of the five 

response regulator domains, and which of these domains functions as 
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output signal that binds to the flagellar motor. A potential fourth receptor 

molecule, Hp0599, that was assigned as haemolysin secretion protein 

precursor HylB (TOMB et al., 1997), lacks any detectable transmembrane 

spanning regions yet has the highly conserved signaling domain that is 

shared by all known bacterial transducer proteins. Table 6, p. 46 gives an 

overview on the exceptional set of H. pylori Che proteins. 
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4. Aims of this study 

 

Since the discovery of the halobacterial chemotaxis transducer homologs 

it was known that some of them do not contain any predicted 

transmembrane helices (RUDOLPH et al., 1996; ZHANG et al., 1996). They 

should be soluble and reside within the cytosol of the bacterial cell. These 

proteins allow the unique opportunity to examine a bacterial chemotaxis 

system in vitro without the difficulties associated with transmembrane 

proteins. Furthermore, with the functional preparation of a soluble 

receptor, the in vitro reconstitution of the first archaeal signal transduction 

network (RUDOLPH et al., 1995) could be completed to the extent where 

CheY phosphorylation is regulated by binding of ligand to the 

chemoreceptor, substantiating the assumption that soluble 

chemoreceptors exist and that halobacterial chemotaxis is related to the 

enteric paradigm. The availability of the proteins would also allow 

crystallization trials that might yield the first crystal structure of a 

complete receptor molecule. 

 

During this work it became apparent that soluble proteins with high 

homologies to E. coli chemoreceptors are not limited to halophilic archaea. 

In Helicobacter pylori, as well as in Campylobacter jejuni, genes coding for 

soluble transducer proteins were identified. Their respective gene products 

would allow similar experiments as described above for the halophilic 

transducer homologues. Furthermore, until now, no details about the 

molecular interactions during chemotaxis in H. pylori are available. The 

expression and purification of the entire set of H. pylori Che proteins 

therefore permits an in-depth examination of the phosphotransfer 

reactions in this non-enteric chemotaxis network. Since motility is an 

absolute prerequisite to establish successful infections (LEE, 1996), a 
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deeper understanding of the signaling cascade that controls this motility 

might contribute to the fight against this important human pathogen. 

 

 

The aims of this study were: 

 

• to overexpress and purify the soluble transducer Car from 

Halobacterium salinarum for crystallization trials and to provide purified 

protein for in vitro reconstitution experiments of the signaling cascade 

by coworkers. 
 

• to characterize purified Car and to examine various solvent 

compositions on the overall fold of Car by circular dichroic spectroscopy. 
 

• to clone, overexpress and purify the putative transducer proteins 

Hp0599 and Cj0448 from Helicobacter pylori and Campylobacter jejuni, 

respectively, for crystallization trials. 
 

• to verify the function of the putative transducer protein Hp0599 by 

establishing an in vitro assay where the receptor interacts with other 

components from the Che protein network. 
 

• to clone, overexpress and purify the Che protein network from 

Helicobacter pylori to study its phosphotransfer reactions and its 

modulation by Hp0599. 
 

• to obtain structural information on Helicobacter pylori CheW by X-ray 

crystallography. 
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5. Results 
 

5.1. Identification and expression of soluble MCP homologs from 

H. salinarum 

 

Previous studies have identified five structural genes in H. salinarum 

coding for soluble proteins with high homologies to the signaling domain 

of eubacterial receptor proteins (Table 2). 

 

Table 2. Soluble receptor protein homologs from H. salinarum 

 
Protein      Mr (kDa) GenBank Acc No. Protein Id. Author 

Car      49.1 AJ132321 CAB38318.1 STORCH et al., 19991) 

HtpIII      50.8 X95588 CAA64840.1 RUDOLPH et al., 19962) 

HtB      52.8 U75436 AAB17881.1 ZHANG et al., 1996 

Htr12      44.1 AE005061 AAG19751.1 NG et al., 20003) 

Htr15      67.3 AE005032 AAG19381.1 NG et al., 2000 

 
A complete list of all halobacterial proteins including the receptor proteins and many additional 
informations can be explored under http://www.halolex.biochem.mpg.de. 

 
1): The structural gene for Car from H. salinarum strain S9 is absent in strain NRC-1 whose genome 
was sequenced by NG et al., 2000. This protein is identical to HtH (GenBank Acc. No. U74668.1, 
Protein Id. AAC45264.1), BROOUN et al., 1997. 
 
2): HtpIII was described simultaneously by RUDOLPH et al., 1996 as HtpIII and by ZHANG et al., 1996 
as HtA (GenBank Acc. No. U75435; Protein Id. AAB17880.1). It is identical to Htr9 (GenBank Acc. 
No. AE005058; Protein Id. AAG19717.1; NG et al., 2000) 
 
3): This protein was published previously as HtrXII (direct submission to GenBank by BROON et al., 
1997; GenBank Acc. No. AF036232, Protein Id. AAD02053.1) 
 

All these proteins have the methyl-accepting chemotaxis-like domain at 

their C-terminal end, whereas it is assumed that ligand binding occurs at 

the N-terminal end of the protein (Fig. 5A, next page). Within the methyl-

accepting (MA) domain, three conserved stretches of amino acids can be 

identified which are involved in the presumed function of this region: the 

signaling domain that interacts with other components of the chemotaxis 
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cascade and the K1 and R1 peptides which are important for adaptation 

(RUDOLPH et al., 1996; Fig. 5B).  

 

 

Fig. 5. Domain organization and homology of selected bacterial and archaeal 

transducer proteins. A. Domain organization of two soluble MCP homologs from H. 

salinarum in comparison with the E. coli membrane-bound chemoreceptor Tsr. The 

transmembrane helices of Tsr are indicated by blue rectangles. All three proteins share 

the conserved methyl-accepting chemotaxis-like domain (MA). TarH: ligand binding 

domain of Tar. HAMP: domain conserved in histidine kinases, adenylyl cyclases, 

methyl binding proteins and phosphatases. PAS: domain conserved in the period 

circadian protein, the Ah receptor nuclear translocator protein and the single-minded 

protein. From http://smart.embl-heidelberg.de/smart B. Amino acid sequence 

homology of the signaling domain, the K1 and the R1 peptide of Tsr from E. coli, Car, 

Htp15 and HtrI from H. salinarum, TlpC from Rhodobacter spheroides and FrzCD from 

Myxococcus xanthus as well as Hp0599 from Helicobacter pylori and Cj0448 from 

Campylobacter jejuni, respectively. Color in B is red for acidic, blue for basic, green for 

non-polar and grey for uncharged polar amino acids, and red asterisks below the 

alignments in B indicate sites of receptor methylation in Tsr. Protein sequences were 

aligned using FASTA (PEARSON & LIPMAN, 1988). 

 

Whereas membrane-bound receptors as Tsr from E. coli (included in Fig. 

5. as reference) have two transmembrane helices in their ligand binding 
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domain, no such sequences were identified in the soluble counterparts. 

This prediction is in full agreement with the hydropathy profiles of the two 

proteins calculated following the method of KYTE & DOOLITTLE, 1982, (Fig. 

6). 

 

 

 

 

Fig. 6. Hydropathy profiles of proteins shown in Fig. 5 (Hp0599 and Cj0448 are shown 

in Fig. 15, p. 39, respectively). The algorithm of KYTE & DOOLITTLE, 1982, was used with 

a window size of 15. The two membrane spanning segments of Tsr and HtrI are clearly 

visible and indicated by red arrows. The other proteins lack transmembrane helices. 

 

The genes coding for the MCP-like proteins Car HtpIII, HtB and Htr15 

were amplified by PCR from genomic DNA of H. salinarum strain S9 and 

cloned into pT7-7 expression vectors using the NdeI and HindIII 

restriction endonuclease sites of the vector (the expression vector 

containing the car gene was a kind gift of F. STORCH). Two proteins, Car 

and Htr15, could be overexpressed in E. coli BL21(DE3)Gold, whereas the 

expression levels of HtB and HtpIII were too low to be detectable by SDS-

PAGE of total cell extracts. The same result was obtained when HtB and 
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HtpIII expressed where in E. coli strain JM109(DE3). It was therefore not 

possible to reproduce the results from STORCH, 1999, who used this 

expression system for the heterologous expression of HtpIII. However, to 

further characterize Car and Htr15, purification schemes for the 

recombinant proteins were developed and Car as well as Htr15 could be 

purified from E. coli cytosol by standard FPLC techniques.  

 

 

5.2. Purification of Car and Htr15 
 

Car was first expressed as an N-terminal as well as a C-terminal His6-

tagged fusion protein that would facilitate its subsequent purification from 

E. coli cytosolic proteins by Ni-NTA chromatography. However, both His6-

tagged recombinant proteins failed to bind to Ni-NTA resin in appreciable 

amounts under all conditions tested including buffers with high amounts of 

denaturants such as urea or guanidinium chloride. The origin of this 

behavior is unclear, yet the halophilic proteins with their plethora of 

negatively charged surface residues might unfavorably interact with the 

positively charged histidine residues of the tag. Nevertheless, due to the 

amino acid composition of Car, the protein is highly soluble in saturated 

salt solutions even at high temperatures whereas E. coli proteins mostly 

precipitate under such conditions. As a first crude separation step, E. coli 

cytosol in 3 M potassium chloride was rapidly heated to first 52°C and 

then to 62°C. Most E. coli proteins were denatured and could be easily 

removed by centrifugation whereas Car remained in solution. Potassium 

chloride was then removed from the sample by dialysis, and Car was 

further purified on an anion-exchange resin utilizing again the markedly 

different amino acid composition of Car compared to the bulk of E. coli 

proteins. After a last chromatography step on hydroxyapatite, Car was at 

least 95% pure as judged by SDS-PAGE (Fig. 7). Since Car could be 
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purified without the use of the His6-tag, all studies with Car used the un-

tagged protein. 

 

 

Fig. 7. Purified halobacterial receptor homologs Car and Htr15. Both proteins were 

heterologously expressed in E. coli and purified therefrom. The proteins with a 

molecular weight of 49.1 and 67.3 kDa, respectively, migrate at much higher apparent 

molecular weights than expected from the protein sequence indicating their extremely 

high content of acidic residues. Staining of the Htr15 band with Coomassie Brilliant 

Blue was always incomplete as can be seen by the white area in the middle of the 

band where no dye was bound by the protein. 

 

In contrast to Car, the receptor homologe Htr15 was expressed as 

inclusion bodies in E. coli. The inclusion bodies could be dissolved in urea 

and the denaturant was removed by dialysis against a low salt buffer. 

Heat denaturation of contaminating E. coli proteins was not feasible as an 

additional purification step since Htr15 was not soluble in high salt buffer 

at elevated temperatures. This was surprising as both Car and Htr15 have 

a similar amino acid composition (27 and 23 % of acidic residues, 

calculated pI of 3.9 and 3.8). Besides this, the purification strategy - anion 

exchange chromatography and a purification step on hydroxyapatite - 

were nearly identical for both Car and Htr15. The purity of the Htr15 

preparation was less than 80% as judged by SDS-PAGE analysis (Fig. 7). 
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Other chromatographic steps, for example size exclusion chromatography, 

hydrophobic interaction chromatography or cation exchange 

chromatography, were not possible since both proteins failed either to 

bind to the column or to elute from the columns under the conditions 

tested. This behavior is reflected by the minor impurities still present at 

the final stage of the purification scheme. 

 

 

5.3. Characterization of Car by CD spectroscopy  
 

Car was expressed in the low-salt environment of the E. coli cytosol, and 

the protein was exposed to low ionic strength buffers during its 

purification. Proteins from haloarchaeal bacteria are not only adapted to 

function in near-saturated salt solutions, but tend to unfold when salt is 

absent. In this study, CD spectroscopy with its high sensitivity towards 

protein secondary structural elements and 1H-NMR (see 5.6.) were 

employed to examine whether purified Car adopted a defined three-

dimensional structure or not. CD spectra of proteins almost exclusively 

composed of α-helices as myoglobin, for example, show a strong 

minimum both at 222 nm and at 208-210 nm and a pronounced 

maximum at 193 nm. In contrast, all-β proteins like plastocyanin have 

only one single minimum between 210 and 225 nm and a stronger 

positive maximum between 190 and 200 nm (VENYAMINOV & VASSILENKO, 

1994). The intensity of these signals is therefore characteristic for the 

ratio and amount of α-helices and β-sheets present in a given protein. Fig. 

8 shows the CD spectrum of Car in two different high salt buffers. The 

pronounced signals at 207 and 222 nm and the intensity of the signal at 

207 nm compared to the signal at 222 nm clearly show the exclusive 

presence of α-helical secondary structural elements as expected from  

secondary structure prediction. 
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Fig. 8. Circular dichroic spectra of Car in aqueous high salt buffers. Car in 4 M sodium 

chloride, 20 mM potassium phosphate pH 8.0 at 20°C (blue curve) and Car in 3 M 

potassium chloride, 20 mM potassium phosphate pH 8.0 at 20°C (red curve). The CD 

signal is given in arbitrary units. Protein was diluted in the respective buffer to a 

concentration suited for CD spectroscopy. Data collection was at 20°C. Protein 

concentrations in both samples were different and therefore signal intensities can not 

be compared. For details see text. 

 

H. salinarum maintains an internal level of salt (mainly potassium 

chloride) that is isotonic with the exterior (KUSHNER, 1988). The proteins of 

this organism are therefore adapted to potassium chloride concentrations 

approaching 5 M and usually require these high salt concentrations for 

stability and function. It is thought that under these conditions, the highly 

acidic proteins attract water molecules back to their surface in the form of 

a cooperative network of hydrated salt ions (FRANK & WEN, 1957; FRANK, 

1958; DANSON & HOUGH, 1997) to avoid precipitation by their salting-out 

environment (TIMASHEFF, 1992). If the salt concentration is reduced, the 

negatively charged residues of the proteins are no longer shielded by the 

salt ions, and the proteins loose their tertiary structure due to charge 

repulsion. 
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Due to its ease, CD measurements were used to test the stability of Car 

under various solvent compositions. The change in signal intensities is 

thereby indicative for the rearrangement of structural elements in the 

protein. Car in storage buffer was diluted with assay buffer and CD 

spectra were taken from 190 to 250 nm. The strong α-helical signal at 222 

nm disappeared gradually when Car was exposed to buffers with lower 

salt concentrations. Simultaneously, the signal ratio at 207 nm to 222 nm 

became >1, and the local minimum at 207 nm shifted towards shorter 

wavelengths indicating the loss of secondary structure and partial protein 

unfolding (Fig. 9, p. 29). This clearly shows that Car requires high 

concentrations of either sodium or potassium ions to maintain its fold. 

However, other salts as potassium or sodium chloride might also be able 

to maintain the native structure of the halophilic proteins. Especially 

calcium ions whose charge is twice the charge of sodium or potassium 

ions, but whose ionic radii are very close to the radii of the latter ions, 

stabilize halophilic protein (MADERN & ZACCAI, 1997). Due to their charge, 

their hydration shell is by far larger than compared to potassium, and a 

lower concentration is subsequently sufficient to promote water binding to 

the protein surface. As anticipated, calcium ions maintained the protein 

structure at much lower concentrations than potassium or sodium ions 

(Fig. 9C, p. 29). Whereas monovalent ions stabilized the structure of Car 

with increasing concentrations, calcium chloride had a denaturing effect 

on Car above a concentration of ca. 0.2 M. 
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Fig. 9. Loss of secondary structure in Car when exposed to buffers with low ionic 

strength. A. Car in buffer A supplemented with sodium chloride. When the salt 

concentration was decreased, the CD signal became less pronounced and the spectrum 

changed. Sodium chloride concentrations were 4.0 M (green), 2.0 M (red) and 1.0 M 

(blue), respectively. Similar curves were obtained in buffers containing potassium (B) 

or calcium (C) instead of sodium ions. Potassium chloride concentrations in B were 3.0 

M (green), 2.5 M (red) and 2.0 M (blue), and the calcium chloride concentrations in C 

were 0.5 M (red) and 0.3 M (blue), respectively. All measurements were taken at 

20°C. Car was diluted in the respective buffer to a concentration range suitable for CD 

spectroscopy. Protein concentrations were constant but not measured in all test series 

to allow comparison of signal intensities. 

 

Besides ionic strength, the solvent itself has a strong influence on the 

overall fold of Car: when water was substituted by deuterium oxide, the 

protein was stabilized in dilute salt solutions compared to water due to an 
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increase in the strength of hydrogen bonds (NÉMETHY & SCHERAGA, 1964; 

BONNETÉ et al., 1994). The minimum (blue curve) indicates an optimal 

calcium concentration for Car (around 0.2 M). Going from this optimum 

towards higher salt concentrations, the salting-out effect of deuterium 

oxide does not compensate for the salting-in effect of the high calcium 

chloride concentrations, and Car unfolds due to the efflux of water from 

the hydration network around the protein (TIMASHEFF, 1992). In the 

presence of deuterium oxide, the curve is shifted to lower calcium chloride 

concentrations, indicating a stabilization of the protein structure (Fig. 10). 

 

 

 

 

Fig. 10. Influence of calcium ions on the protein structure of Car in water (red) and 

deuterium oxide (blue) as solvents. CD spectra of Car were taken in the respective 

buffers at 20°C and the signal at 222 nm was plotted versus the calcium chloride 

concentration.  

 

Proteins not only interact with salt or solvent molecules that surround 

them. Other compounds such as sugars (ARAKAWA & TIMASHEFF, 1982), 

polyols (GEKKO & TIMASHEFF, 1981), amino acids or methyl amines present 

in the solution also stabilize proteins (TIMASHEFF, 1991). Indeed, these 

molecules are used by a variety of organisms as stress-inducible 

osmolytes (SOMERO, 1986). It is well established that such compounds are 
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indeed present in Halobacterium (STORCH et al., 1999), and therefore low 

molecular weight compounds such as polyethylene glycols or putrescin –

albeit not physiological - were assayed for their influences on the fold of 

Car. Both compounds had a positive influence on protein stability (see Fig. 

11). 

 

 

 

 

Fig. 11. Influence of small molecules on the secondary structure of Car when exposed 

to decreasing salt concentrations. A. Influence of putrescine on the secondary 

structure  of Car in 2 M (blue) and 1 M (red) sodium chloride B. Influence of PEG 1000 

(2 M sodium chloride, blue) and PEG 4000 (2 M sodium chloride, green; 1 M sodium 

chloride, red) on the secondary structure of Car. The curves were obtained by plotting 

the CD signal at 222 nm versus the additive concentration. 

 

The experiments clearly showed that putrescine and polyethylene glycols 

do stabilize the secondary structural elements of Car. The α-helical 

content of the protein increases with an increasing additive concentration. 

As can be seen in Fig. 11B, the stabilizing effect of PEGs does not 

compensate the denaturing effect of a dramatically lowered salt 

concentration (signal intensities at 1 and 2 M salt concentration differ 

significantly). However, as in the case of calcium ions, PEGs denature the 

protein above an optimal concentration. 
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5.4. Heat denaturation of Car 
 

The results from the CD spectroscopic measurement show that Car has a 

high α-helical content that is diminished by unfavorable solution 

conditions. These results, however, do not allow any conclusions to be 

drawn beyond the secondary structure of the protein. Native proteins not 

only possess α-helices or β-sheets, but their three-dimensional structure is 

almost uniform. Molten globules, in contrast, are also build from 

secondary structural elements yet do not have any distinguished tertiary 

fold. Both states might be distinguished by folding/unfolding experiments. 

It is well established that single-domain proteins fold and unfold with a 

high degree of cooperativity, whereas molten globules usually do not (LUO 

& BALDWIN, 1999; LAKSHMIKANTH et al., 2001). Cooperative thermal 

unfolding of Car would therefore be indicative for the collapse of a 

previously existing defined tertiary protein structure. 

 

When Car in high salt buffer was heated from 20°C to above 80°C, the CD 

signal at 222 nm became gradually weaker at a temperature of 

approximately 45 °C. At this temperature, the curve rose considerably 

steeper, whereas at even higher temperatures, the curve again rose only 

slowly (Fig. 12A). This sigmoidal slope was also apparent yet less 

pronounced when the protein was cooled down back to room temperature 

(data not shown). The CD spectra of Car before and after the heat 

denaturation did not differ significantly (Fig. 12B). 
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Fig. 12A. Heat denaturation of Car. The protein in high salt buffer was heated from 

room temperature to above 80°C at 1°C per min and the CD signal at 222 nm was 

recorded and plotted against the temperature. 

 

 
 

Fig. 12B. Heat denaturation and renaturation of Car. At the beginning (red curve) and 

at the end (blue curve) of the experiment, CD spectra were taken from 195 to 250 nm. 

The red curve is an average of four independent measurements. Data for the blue 

curve were discarded above 245 nm (out of range). 

 

It is the sigmiodal slope of the heat denaturation curve that allows to 

conclude that Car unfolds in a cooperative mannor, indicating the 

presence of a well defined tertiary protein structure before the heat 

denaturation where this fold collapses. The fact that the CD spectra of Car 
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before and after the heat denaturation experiment are very similar (Fig. 

12B) reveals a reversible thermally unfolding of the protein. 

 

 

5.5. Characterization of Car by 1H-NMR 
 

NMR spectroscopic experiments of proteins require large amounts of pure 

proteins in very high concentration. When this is available, the method 

gives information on protein structure far beyond CD spectroscopy. Even 

simple 1H-NMR spectra indicate whether the residues that gave rise to the 

respective signals all experience the same chemical environment or not. 

Broad, non-structured peaks emerge from residues in unstructured 

regions whose chemical environment is alike. However, the situation is 

more complex in cases of proteins with large molecular weights or with 

aggregated proteins. Due to quantum mechanical effects, the signals 

broaden and become indistinguishable from spectra of unfolded proteins. 

 

In this study, purified Car was concentrated to 0.5 mM in high salt buffer 

and the viscous solution was subjected to 1H-NMR measurements in a 

Bruker DRX600 NMR spectrometer. Fig. 13 shows a typical 1H-NMR 

spectrum. The signals are not resolved but in distinct, large peaks, 

strongly suggesting the same chemical environment for all protons of the 

respective residues. Under the important assumption that Car does not 

aggregate, the signals clearly indicate that the protein had no defined 

tertiary structure. Combined with the data derived by CD spectroscopy it 

therefore must be concluded that Car obtained as described in this study 

adopts a molten globule-like structure composed mainly of α-helices. 

However, in the case that Car adopts a dimeric structure in solution and in 

the light that homologous proteins cluster in vivo as well as in vitro (see 

chapter 6), it is well conceivable that Car oligomers are simply too large to 
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yield well-resolved NMR spectra, and therefore the CD spectroscopic data 

might be more valid in reflecting the real folding state of Car. 

 

 
 

 

 

Fig. 13. 1H-NMR spectrum of Car at a concentration of 0.5 mM as determined by the 

BRADFORD method. The signals of amid protons appear at 6 ppm, signals of aromatic 

protons and of protons at amino groups between 7 and 8 ppm, and Hα, Hβ and Hγ 

protons give rise to signals between 4 and 5, 2 and 3 and 1 and 2 ppm, respectively. 

The water signal is suppressed.  

 

 

5.6. Crystallization trials for Car 
 

None of the crystallization trials produced positive results in terms of 

protein crystals. Car was quickly denatured in the MPD/sodium 

chloride/water system (RICHARD et al., 1995) under all conditions tested 

albeit pH values near neutral seemed to slow down protein precipitation. 

Phosphate also caused protein precipitation in the pH range below 6.0 and 
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above 7.0. Besides that, in many buffers from Hampton Research's Crystal 

Screen kit phase separation occurred after adding salt to a final 

concentration of 4 M, especially in solutions containing additives as 

organic solvents or polyethylene glycols. 

 

 

5.7. Expression, purification and crystallization trials with Car 

fragments 

 

Since full length Car did not yield protein crystals, an alternative strategy 

was chosen to further investigate the protein and possibly obtain 

structural data of at least parts of the transducer. Based on the idea that 

some regions of the protein might be unfolded while other parts could be 

more stable under the solvent conditions used to purify and crystallize the 

protein, six Car fragments were constructed. In doing so, information from 

the simple secondary structure prediction algorithm of the program 

DNASIS (Hitachi) was taken into consideration as well as the position of 

the previously identified domains and regions necessary for the proper 

function of the protein (Fig. 14). From all six N- and C- terminal domain 

constructs of Car, four could be overexpressed in E. coli: Dom2, Dom3, 

Dom4 and Dom6. The proteins were purified following the strategy initially 

developed for full length Car. One protein, Dom6, was used in 

crystallization trials with a modified Hampton Research Crystal Screen I kit 

in the presence of 4 M sodium chloride. As in the case with Car, the 

protein did either precipitate or stayed in solution for prolonged periods. 

All precipitates were dark brown and unstructured indicating denatured 

protein. 
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Fig. 14. Construction of the six Car fragments. The PAS domain (lime) and the 

methyl-accepting chemotaxis-like domain (MA, ochre) as well as the signaling domain 

(SD) and the K1 and R1 peptides (all in lemon) are depicted above the full length Car 

protein (gray) as calculated by the SMART algorithm (LETUNIC et al., 2002). Below are 

the three N-terminal (ruby) and C-terminal (blue) fragments of Car (Dom1 through 

Dom6). Numbers indicate the amino acid positions in full length Car where the 

fragments start and end, respectively. 

 

 

5.8. Expression of H. salinarum CheB and CheR in E. coli 
 

The functionality of Car might be tested by various methods. In analogy to 

the E. coli chemotaxis network (NINFA et al., 1991), an in-vitro assay 

where the receptor modulates the activity of the histidine kinase CheA 

would demonstrate its functionality. It was beyond the scope of this work 

to successfully establish such an assay. However, Car prepared during this 

study was examined without success by coworkers (Chie OTSUKA, personal 

communication) whether it influences CheA activity. The presence of 

receptor modifying enzymes CheB and CheR in H. salinarum allows an 

alternative strategy to be chosen: by the use of (S)-adenosyl-L-

methionine, CheR should methylate conserved residues in the K1 and R1 

regions of Car (see Fig. 5, p. 22), whereas CheB should remove the 
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methyl groups. To set up this assay, and to provide purified recombinant 

protein to coworkers, it was attempted to express the two halophilic 

proteins CheB and CheR from H. salinarum in E. coli BL21(DE3)Gold with 

the result that under all conditions tested, no detectable protein 

expression was achieved. To eliminate influences from H. salinarum's non-

E. coli codon usage preference, synthetic genes for the two proteins were 

designed using codons preferred by E. coli. In both cases, the ligase chain 

reaction produced the desired genes but none of it could be successfully 

expressed in E. coli BL21(DE3)Gold. 

 

 

5.9. Soluble receptor homologs in C. jejuni and H. pylori  
 

Database searches with the highly conserved signaling domains of Car and 

other receptors from E. coli identified one protein from H. pylori, Hp0599, 

that was erroneously annotated as a haemolysin secretion protein 

precursor (hylB; TOMB et al., 1997). Within the genome of the evolutionary 

closely related organism C. jejuni, three additional transducer-like 

proteins were identified (Table 3).  

 

Table 3. Soluble receptor homologs from C. jejuni and H. pylori. 

 
Protein    Mr (kDa) GenBank Acc No. Protein Id. Author 

Cj0246c   43.3 6967505 CAB72714.1 PARKHILL et al., 2000 

Cj0448c   40.5 6967817 CAB75086.1 PARKHILL et al., 2000 

Cj1110c   48.3 6968444 CAB73365.1 PARKHILL et al., 2000 

Hp0599   48.3 AE000573 AAD07662.1 TOMB et al., 1997 

 
 

One common feature of these proteins was their apparent lack of 

transmembrane spanning segments as predicted by hydropathy 

calculation algorithms. The KYTE-DOOLITTLE plot, for example, did not 
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indicate any regions of strong hydrophobicity in Hp0599 and Cj0448 (Fig. 

15). Remarkably, the methyl-accepting chemotaxis-like domain is followed 

by a stretch of approximately 100 amino acids in length which is in 

contrast to the receptor proteins from H. salinarum or E. coli, where the 

polypeptide chain ends with the MA domain (see Fig. 5, p. 22). These 

stretches of amino acids are not homologous to any other protein 

sequences in public databases, yet there is a slight homology between 

Cj0448 and Hp0599 in this region (24% identity in 102 amino acids). 

Consequently, both proteins were chosen to investigate their properties. 

 

 

 

 

Fig. 15. Hydropathy profiles of the soluble receptors homologs Hp0599 from H. pylori 

(A) and Cj0448 from C. jejuni (B). The algorithm of KYTE & DOOLITTLE, 1982, was used 

with a window span of 15. Above the plot the domain architecture of the respective 

protein is depicted (for details see http://smart.embl-heidelberg.de/smart). MA: 

methyl-accepting chemotaxis-like domain; green stretch in Hp0599: predicted coiled 

coil region.  

 

For this purpose, the genes for Hp0599 and Cj0448 were cloned into the 

pET28a(+) expression vector and expressed in E. coli BL21(DE3)Gold as 

N-terminal His6-fusion proteins. The recombinant proteins could be 
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purified from the E. coli cytosol by affinity chromatography, ion exchange- 

and size exclusion chromatography, substantiating the assumption that 

they are soluble and not integral membrane proteins. After purification, 

both proteins were essentially pure (Fig. 16). 

 

 

 

 

Fig. 16. Purified receptor homologs from H. pylori and C. jejuni. A. Silver stained 

SDS-PAGE showing Hp0599. B. Coomassie Brilliant blue stained SDS-PAGE showing 

purified Cj0448. The gels were run until the dye front reached the lower end of the gel, 

and recombinant proteins are indicated by arrows. 

 

 

In the Hp0599 preparation, the band running at about 100 kDa is 

apparently dimeric Hp0599, since this band weakens when an excess of 2-

mercaptoethanol was added to the sample, and it is the predominant band 

without 2-mercaptoethanol. This is consistent with the behavior of the 

protein in gel filtration experiments where it elutes as one single peak at 

an apparent molecular weight of 320 kDa (Fig. 17).  

 



5. Results 41

 

 

Fig. 17. Molecular weight determination of Hp0599 by size exclusion chromatography 

on a Superose 6 HR 10/30 column. The protein runs at approx. 320 kDa. The apparent 

molecular weight for ribonuclease A is 13.7 kDa, for ovalbumin 43.0 kDa, for bovine 

serum albumine 67.0 kDa, for aldolase 158 kDa, and for ferritin 440 kDa. The flow 

rate was 0.4 ml/ min of buffer (300 mM sodium chloride, 10 mM Tris-HCl pH 8.0 at 

4°C), and the coefficient of correlation was 0.989 for the calibration line. 

 

 

The calculated molecular weight according to its amino acid composition, 

however, is 48.3 kDa. Apparently, the protein is hexameric, a fact that is 

perfectly in accordance with the concept of clustered chemoreceptors in 

signaling arrays known from other bacterial species (GESTWICKI et al., 

2000). In the crystal structure of the cytoplasmic portion of Tsr from E. 

coli, the tails of three Tsr dimers come together into a trimeric structure 

(KIM et al., 1999), and it is assumed that the same structure is present in 

cellular receptor clusters (SHIMIZU et al., 2000). This hexameric structure 

might be the reason for the oligomerization state of Hp0599. In the 

receptor complexes, the conserved signaling domains of the receptors are 

at the tip of the structure, mediating the contact to CheA and CheW. It is 

worth noting that exactly this domain is highly conserved in all other 

proteins with an MA domain even outside the bacterial kingdom (Fig. 5, p. 

22 and LE MOUAL & KOSHLAND, 1996). 
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5.10. Crystallization of chemotaxis components Hp0599, Cj0448 

and CheW 

 

As in the case of Car, the soluble transducer-like proteins from H. pylori 

and C. jejuni represent valuable targets for crystallization trials, and 

therefore it was attempted to produce protein crystals of high enough 

quality to gain structural information on these MCP-homologs. In 

experiments with Hampton Research's Crystal Screen I and II kits, for 

both proteins several buffer compositions were identified that produced 

protein crystals by vapor diffusion in 2 µl hanging drops. Table 4 

summarizes the results. 

 

 
Table 4. Initial crystallization conditions for H. pylori and C. jejuni receptor homologs 

 
 
Protein1) Precipitant Buffer2) Crystal shape 

Cj0448 1.5 M Li2SO4 HEPES-Na pH 7.5 small, non-uniform spheroids 

 1.4 M Na acetate Na cacodylate pH 6.5 thin, hexagonal platelets 

 0.8 M K- Na- tartrate HEPES-Na pH 7.5 small, non-uniform spheroids 

Hp0599 1.5 M Li2SO4 HEPES-Na pH 7.5 small, non-uniform spheroids 

 8% PEG 8000 Tris-HCl pH 8.5 thin needles 

 
1): For crystallization, the His6-tag of the protein was removed by thrombine as described in 
Materials & Methods, since the His6-tagged protein did not crystallize under the conditions 
examined in this study. 
 
2): All buffers were 0.1 M final concentration. 

 

 

To improve crystal quality, the buffer compositions of the initially 

identified conditions were systematically altered. The behavior of Hp0599 

in a typical PEG screen is shown in Table 5. 
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Table 5. Typical PEG screen with Hp0599. 
 
 
pH % 

2000 
PEG     % 

3350 
PEG     

 4 5 6 7 8 9 4 5 6 7 8 9 
7.0             
8.0    N     N P   
9.0             
pH % 

6000 
PEG     % 

8000 
PEG     

 4 5 6 7 8 9 4 5 6 7 8 9 
7.0             
8.0   P N N N   N  N  
9.0      N     P N 
 
One µl protein (10 mg/ml in 0.1 mM 2-mercaptoethanol, 0.5 mM EDTA, 10 mM Tris-HCl pH 8.0 at 
20°C) was mixed with an equal amount of well solution. The plate was incubated at 18°C and 
protein crystals (N for needles, P for platelets) grew in a narrow zone between a region where the 
protein stayed in solution (white background) and a region where the protein precipitated (gray 
background). 

 

 

The crystallization of Hp0599 is sensitive towards pH as well as PEG 

concentration. The tendency of the protein to precipitate increases with an 

increasing pH or PEG concentration, and only in a narrow range between 

the zone where the protein precipitates (gray areas in Table 5) and the 

region where it stays in solution (white areas) protein crystals were 

obtained. From the  pH sensitivity of the protein it is apparent that 

charged residues are involved in protein/protein interactions that lead to 

crystal growth. Furthermore, the appearance of platelets where crystal 

growth occurred in two dimensions is limited to an even smaller region 

within or adjacent the area where needle-shaped protein crystals grew. 

Even though the pH differences in the experiments depicted in Table 5 

where one pH unit from one row to the next and the differences in PEG 

concentration were one per cent, smaller parameter variations did only 

broaden the zone where crystallization occurred yet no three dimensional 

crystals appeared. Compounds with a known influence on crystal growth 

(Hampton Research Additive Screen I, II and III) were then added to the 
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initially identified buffer condition in the hope that this might lead to 

three-dimensional crystals without success. 

 

The crystal structure of the cytosolic domain of Tsr (KIM et al., 1999) 

shows that the conserved signaling domain that makes up a continuous 

stretch of 207 amino acids in Hp0599 (total length: 433 amino acids) is a 

more than 200 Å long coiled coil. It is therefore well conceivable that 

crystal growth occurs mainly in the plane orthogonal to the longitudinal 

axis of the coiled coils, and that growth in all three dimensions is slowed 

down by the lack of protein/protein contacts parallel to that axis. 

Furthermore, the Tsr fragment crystallized was a mutant fragment where 

all glutamate residues involved in receptor methylation were replaced by 

glutamine to 'mimic' the liganded state of the receptor. Without this 

modification, no crystals were obtained. However, the positions of the 

analogous residues in Hp0599 (see Fig. 5, p. 22) were not yet determined 

and it is questionable whether receptor methylation occurs in this 

organism at all due to the lack of genes homologous to cheR and cheB. 

 

Hp0599 finally gave thin, often twinned quadratic platelets of 

approximately 100 µm in size (Fig. 18, p. 45). Analogous experiments as 

described for Hp0599 were also performed to improve Cj0448 crystal 

quality with comparable results. Cj0448 crystallized as thin hexagonal 

plates or, in the presence of 3% hexanediol, as snowflake-like objects. 

However, none of the protein crystals tested proved to be useful for X-ray 

structure determination due to poor X-ray diffraction. It is interesting to 

note that both receptor homologs failed in building three-dimensional 

crystals, substantiating the idea that crystal lattice formation might be 

hindered by the native coiled-coil structure of the proteins. 
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Fig. 18. Crystallization of soluble proteins Hp0599, Cj0448 and coupling protein CheW 

by vapor diffusion. A. Crystals of Hp0599 derived after several days at 18°C in 

hanging droplets of 1 µl protein (8 mg/ml in 0.1 mM 2-mercaptoethanol, 0.5 mM 

EDTA, 10 mM Tris-HCl pH 8.0 at 20°C) and 1 µl reservoir solution (6% PEG 6000, 100 

mM Tris-HCl pH 8.0 at 20°C). B. Crystals of Cj0448 grown as in A with 1 µl of protein 

(10 mg/ml) and 1 µl reservoir solution (1.4 M sodium acetate, 10 mM Tris-HCl pH 7.5 

at 20°C). The scale bar in A is approximately 250 µm in size. C. Crystals of H. pylori 

CheW grown at 18°C. One µl protein (6.5 mg/ml in 10 mM Tris-HCl pH 8.0 at 20°C, 

300 mM sodium chloride, 10% glycerol) and 1 µl reservoir solution (1.4 M lithium 

sulfate, 10% glycerol, 10 mM Tris-HCl pH 7.5 at 20°C) were mixed as described. 

 

The coupling protein CheW was also crystallized by vapor diffusion in 2 µl 

hanging drops (Fig. 18C) after removal of its His6-tag. The protein has a 

pronounced tendency to precipitate at elevated concentrations (around 3 

mg/ml) and it can not be shock frozen in liquid nitrogen even in dilute 

solutions due to the same reason. This tendency to aggregate is also 

reflected in the behavior of CheW after adding precipitant in crystallization 

experiments where it precipitates within a few hours (Fig. 18C). 

Thereafter, crystals appeared after days and seemed to grow from 

precipitated protein. After optimizing the crystallization conditions, CheW 

crystallized as long hexagonal columns with sharp edges and of 

considerably size. However, the resolution limit was only 4.6 Å as 

determined at beamline IDI43 at the European Synchrotron Radiation 

Facility, Grenoble. The space group was determined to be P6. 
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5.11. The chemotaxis network in H. pylori 

 

The soluble receptor homologs from H. pylori and C. jejuni were 

successfully expressed in E. coli, purified therefrom and crystallized. 

Nevertheless, their function in chemotaxis - if any - remains questionable. 

From the orthologous membrane-bound proteins from enteric bacteria it is 

expected that the proteins directly interact with the Che protein cascade in 

the respective organisms. It was therefore necessary to show the 

functional interplay to assign a transducer-like function to Hp0599 and 

Cj0448. 

 

 

5.11.1. Modulation of CheF autophosphorylation activity 

 

Within the H. pylori genome, six genes were identified as putative 

structural genes coding for proteins involved in chemotaxis (TOMB et al., 

1997; Table 6).  

 

Table 6. Chemotaxis proteins identified in H. pylori strain 26695 and strain J99. 
 

 
Protein    Mr (kDa) Strain 26695 

Id. 
Strain J99 
Id. 

ID. % GenBank 
Acc. No.1) 

Protein Id. 1) 

CheF2)    89.8 Hp0392 Jhp0989 95.0 AE000555 AAD07457.1 

CheV1    36.6 Hp0019 Jhp0017 99.7 AE000524 AAD07087.1 

CheV2    35.6 Hp0393 Jhp0988 97.4 AE000555 AAD07458.1 

CheV3    35.6 Hp0616 Jhp0559 98.7 AE000576 AAD07681.1 

CheW    19.0 Hp0391 Jhp0990 92.1 AE000555 AAD07456.1 

CheY    14.1 Hp1067 Jhp0358 97.6 AE000555 AAD08113.1 

 
1) GenBank accession numbers and protein IDs given refer to H. pylori strain 26695 genes and 
proteins. All proteins used in this work were derived from H. pylori 26695 genes. 
 
2) Named after PITTMAN et al., 1997. 
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To investigate their presumed function deduced from sequence homology 

to already characterized proteins, the respective genes were cloned into 

expression vectors, expressed in E. coli BL21(DE3) cells as His6-tagged 

fusion proteins and purified therefrom as described in Materials & 

Methods. 

 

Central to two-component chemotaxis networks is the histidine kinase 

that regulates the flux of phosphate groups through the whole system. In 

H. pylori, CheF is the respective kinase. Within its amino acid sequence, 

several residues can be identified homologous to conserved amino acids in 

other Che proteins (Fig. 19, next page). In the N-terminal CheA-like 

domain, the residue homologous to H47 becomes phosphorylated in CheA 

from the CheA kinase domain, whereas residues D729 and K781 in the C-

terminal CheY-like domain are important for function in CheY (SILVERSMITH 

et al., 1997). In this response regulator, the homologous aspartyl residue 

is phosphorylated by the cognate kinase, and the conserved lysine residue 

is important for CheY-phosphate autohydrolysis. CheF therefore appears 

to be a hybrid histidine kinase where a response regulator domain is fused 

C-terminally to a kinase domain. Che proteins with such an architecture 

were found previously in Myxococcus xanthus and other bacterial species 

as Synechocystis (MCCLEARY & ZUSMAN, 1990; KIMURA et al., 2001), and 

hybrid histidine kinases from other signal transduction networks are 

ubiquitous in all three kingdoms of life. 
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Fig. 19. Domain analysis and sequence alignments of H. pylori CheF with paralogs 

from H. pylori and orthologs from other species. A. Schematic representation of CheF 

architecture. Domains in CheA-like N-terminal part (blue) are H: histidine box; Y/B: 

CheY/CheB binding domain; C: dimerization and kinase domain; R: regulatory domain 

(BILWES et al., 1999). The CheY-like part is colored red. B. Amino acids 40 to 72 of 

CheF H box. Histidine residue 47 from CheF is highly conserved in all other histidine 

kinases (red arrow) C and D. Protein sequence alignment of CheF response regulator 

domain (amino acids 723 to 749 and 768 to 789, respectively), with other response 

regulators. Again, residues conserved in all proteins are marked by red arrows. 

 

 

Fig. 20 shows a typical protein preparation of CheF after Ni-NTA 

chromatography followed by size exclusion chromatography. 
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Fig. 20. Purification of CheF from E. coli cytosol. A. Eluent fractions from a 2.5x10 cm 

Ni-NTA column. Fraction size: 5 ml, gradient: 2.5 to 250 mM imidazole in 300 mM 

sodium chloride, 10 mM Tris HCl pH 8.0 at 4°C, 10 % glycerol in 300 min at a flow 

rate of 1 ml/min. B. Eluent fractions of a Sephacryl S300 HR column (1x60 cm). Probe 

volume: 1 ml (fractions 25 through 35 from A, pooled and concentrated), flow rate: 

160 µl/min (300 mM sodium chloride, 10 mM Tris HCl pH 8.0 at 4°C, 20 % glycerol), 

fraction size: 7 min. Fraction numbers are indicated by numbers above the respective 

lanes. Probe volume was 15 µl of sample per lane. HRP: Histidine rich protein from E. 

coli as determined by N-terminal sequencing of the protein band. 

 

The contaminating protein present after Ni-NTA chromatography is the 

histidine rich protein from E. coli that runs at a much higher apparent 

molecular weight as expected from its theoretical molecular weight (21 

kDa). CheF could be purified from this protein by size exclusion 

chromatography. It is interesting to note that CheF does not elute from 

Superdex columns and therefore Sephacryl was chosen for gel filtration. 

Furthermore, in contrast to E. coli CheA, CheF does not bind Cibacron Blue 

coupled to Sepharose, an affinity resin that can be used to purify CheA 
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(HESS et al., 1991) and that was successfully employed to do so in this 

study as a positive control (data not shown). 

 

 

From the CheA-like domain in CheF, it can be expected that this protein 

autophosphorylates in analogy to CheA (HESS et al., 1988). Furthermore, 

due to the response regulator domain additionally present in CheF, it can 

well be assumed that the phosphate group is passed to D729 from where 

it is ultimately transferred to water, resulting in the net-hydrolysis of ATP 

(Fig. 21). 

 

 

 

Fig. 21. Possible phosphotransfer reactions in CheF. The CheA domain in CheF is 

colored blue, whereas the CheY-like response regulator domain is red. Conserved 

residues are indicated above the protein. For the sake of simplicity, CheF is depicted as 

monomer and the phosphotransfer reaction is drawn in cis. However, whether such a 

transfer reaction occurs in trans or cis is unknown. 

 

 

As anticipated, purified CheF autophosphorylates in the presence of ATP 

and Mg2+ ions, (Fig. 22). 
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Fig. 22. Autophosphorylation activity of CheF. CheF (2 µM) was incubated in various 

buffers in the presence of 50 µM [γ-32P]ATP (5000 Ci/mmol) for 20 min at room 

temperature. Thereafter, the reactions were stopped by the addition of 2x SDS buffer, 

proteins were separated by SDS-PAGE and transferred to a PVDF membrane. Exposure 

to X-ray film was 18 h. Assay buffer composition in lane 1 and 2: 5 mM MgCl2, 5 mM 

MnCl2, 1 mM DTE, 50 mM HEPES pH 7.5 at 20°C and in lane 3 through 7: 5 mM MgCl2, 

50 mM HEPES pH 7.5 at 20°C. CheF was dialyzed overnight at 4°C against 10 mM 

HEPES pH 7.5 at 20°C supplemented with 10 % glycerol (lanes 2 and 5), 300 mM 

sodium chloride (lane 4), 10 % glycerol and 300 mM sodium chloride (lane 6) and 5 

mM 5 mM MgCl2 in lane 7. 

 

The protein phosphorylation level in the sample where the kinase was 

dialyzed overnight in the presence of sodium chloride and glycerol was 

higher compared to the samples without these additives. To investigate 

the function of the conserved residues in the response regulator domain of 

CheF, mutant proteins were constructed in the hope that this gives insight 

into the role of the CheY-like domain. Under the assumption that wild type 

CheF indeed hydrolyses ATP as depicted in Fig. 21, p. 50, it was expected 

that a slowdown of the phosphate group transfer reaction from the CheY-

like domain to water would increase the CheF-phosphate concentration in 

the presence of ATP. In E. coli CheY, mutations of the conserved residue 

K109 increases the CheY-phosphate life-time by slowing down the 

phosphate bond hydrolyis (SILVERSMITH et al., 1997). The analogous amino 

acid substitution in CheF lead to the CheF:K781R mutant. Under 

comparable conditions, this protein behaved considerably different as the 
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wild type: more label was present in CheF:K781R as in CheF (see Fig. 22). 

Furthermore, CheF:D729K was constructed where the aspartyl residue 

that is phosphorylated in CheY is substituted by a lysyl residue. It is also 

expected that this mutant retains more label as wild type CheF due to the 

lack of phosphate group efflux through the CheY-like domain (Fig. 23). 

 

 

CheW - + +     - + + 

Hp0599 - - +     - - + 

 

Fig. 23. Autophosphorylation behavior of mutant CheF proteins. CheF:H47G does not 

autophosphorylate in the presence of ATP (not shown), whereas both CheF:D729K (A) 

and CheF:K781R (B) autophosphorylate The addition of CheW and Hp0599 does 

increase the autophosphorylation level moderately (see below). 

 

The E. coli CheA activity is modulated by the four chemoreceptors and the 

coupling protein CheW, and the response regulator CheY is 

phosphorylated by CheA. From the existence of homologous proteins in H. 

pylori, it is expected that CheF activity is regulated alike, and that the 

CheY ortholog is phosphorylated by CheF. To test this, CheW as well as 

the response regulator CheY from H. pylori were expressed in E. coli and 

purified therefrom as described in Materials & Methods (Fig. 24). 
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Fig. 24. Purification of heterologously expressed H. pylori CheW and CheY from E. coli 

cytosol. A. Eluent fractions of CheW from a 2.5x10 cm Ni-NTA column. Fraction size: 5 

ml, gradient: 0 to 250 mM imidazole in 300 mM sodium chloride, 10 mM Tris-HCl pH 

8.0 at 4°C, in 300 min at a flow rate of 1 ml/min. B. After removal of His6-tag, CheW 

was again bound to a Ni-NTA column and eluted with a step gradient of 10 mM 

imidazole in 300 mM sodium chloride, 10 mM Tris-HCl pH 8.0 at 4°C. Lane 1: column 

flow through during sample application. Lane 2: Eluted protein. C. Eluent fractions of 

CheY purified on an Ni-NTA column as described in A for CheW. Fraction numbers are 

indicated above the respective lanes. Sample volume was 15 µl sample per lane. 

 

In this context it is important to note that CheW still binds to Ni-NTA resin 

even when its His6-tag is removed, presumably through the interaction of 

histidine residues present within the protein sequence. With the successful 

preparation of all of these proteins it was possible to attempt the 

reconstruction of the helicobacterial chemotaxis network in vitro. Fig. 25 

shows that the autophosphorylation level of CheF is indeed influenced by 

the putative chemoreceptor Hp0599 and CheW. 
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Fig. 25. Modulation of CheF autophosphorylation by CheW and Hp0599. A. Lanes 1 to 

3: control reactions without CheF. Lanes 4 to 6: autophosphorylation of CheF in the 

presence Hp0599 without CheW. Lanes 7 to 9: autophosphorylation of CheF in the 

presence of both CheW and Hp0599. CheF and CheW concentrations were 0.5 µM 

when present as indicated by '+' below the autoradiograph. Hp0599 concentrations are 

given in µM. Phosphorylated CheF is indicated by an arrow. Contaminating proteins are 

marked by an X. The proteins were mixed and left at room temperature for five 

minutes. Thereafter, [γ-32P]ATP (5000 Ci/mmol) was added to a final concentration of 

0.1 mM. After 5 min, the reactions were stopped by the addition of 2x SDS buffer and 

proteins were separated by SDS-PAGE and transferred to a PVDF membrane. The 

membrane after autoradiography stained with Coomassie Brilliant Blue is shown in B. 

The membrane was cut into three pieces after protein transfer to allow preliminary 

detection of radioactivity bound to the membrane with an hand held counter. 

 

Fig. 25 shows that (1) the kinase autophosphorylates and that neither of 

the other proteins present in the assay has an autophosphorylation 

activity in the absence of CheF, that (2) the CheF phosphorylation level is 

increased when the Hp0599 concentration is increased (compare lanes 4 

to 6), that (3) CheW is important to further increase CheF phosphorylation 

level (compare lane 4 with lane 7 or lane 6 with lane 9, respectively), and 
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that (4) the CheF phosphorylation level is particularly dependent on the 

Hp0599 concentration (lanes 7 to 9). Interestingly, the kinase 

phosphorylation level is especially increased when Hp0599 is present in 

large molar excess. In contrast, only an equimolar ratio of CheW in 

respect to CheF appears to be sufficient for CheF phosphorylation to be 

increased dramatically by Hp0599. The weak bands visible in Fig. 25, 

lanes 8 and 9, presumably are fragments of CheF or contaminating 

proteins that become phosphorylated to a detectable level only when the 

CheF phosphorylation level is increased. Hereby, it is worth noting that the 

phosphorylation level of the kinase can not be increased further by an 

excess of CheW (Fig. 26). 

 

 

 

Fig. 26. CheF kinase autophosphorylation is independent of elevated CheW 

concentrations. CheF (0.1 µM), Hp0599 (85 µM) and CheW in various concentrations  

were mixed, [γ-32P]ATP (5000 Ci/mmol) was added and the samples were incubated 

and analyzed as described in Fig. 25. In addition, CheY (0.8 µM) was included in four 

assays (lanes 2,4,6 and 8). CheW concentration was 0.3 µM (lanes 1 and 2), 3.0 µM 

(lanes 3 and 4), 1.5 µM (lanes 5 and 6) and 0.15 µM (lanes 7 and 8), respectively. The 

membrane after autoradiography stained with Coomassie Brilliant Blue is shown in B. 

 

The CheF band intensity does not change significantly when the CheW 

concentration was increased more that 20-fold. On the autoradiograph 

shown in Fig. 26, Hp0599 appears also to be phosphorylated. This, 

however, is due to non-specific binding of label to the proteins that 
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occurred when the membrane was not thoroughly washed after the 

transfer of the proteins. The transfer of label to CheY (lanes 2,4,6 and 8 in 

Fig. 26) will be mentioned below. 

 

As expected, CheW by itself does not activate CheF (Fig. 27). 

 

 

 

Fig. 27. CheW does not activate CheF. CheF (0.5 µM) and CheW in various 

concentrations (lane 1: no CheW; lane 2: 0.2 µM; lane 3: 0.5 µM; lane 4: 0.8 µM; lane 

5: 1.5 µM; lane 6: 3 µM; lanes 7 and 8: 0.5 µM) were incubated as described in Fig. 

25. In lanes 7 and 8, Hp0599 was added to a concentration of 8 and 4 µM, 

respectively. 

 

 

Again, these findings match the data obtained from enteric signaling 

complexes where only a few CheA molecules are thought to bind an array 

of receptor molecules mediated through CheW (SHIMIZU et al., 2000). 

Moreover, this shows for the first time that a soluble MCP homolog does 

increase the autophosphorylation level of a histidine kinase, again 

substantiating the assumption that these proteins are involved in 

chemotaxis.  
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5.11.2. Phosphotransfer reactions from CheF to response 

regulators 

 

In analogy to the enteric system, CheF also transfers phosphate groups to 

H. pylori CheY (Fig. 28). 

 

 
Fig. 28. Phosphotransfer reaction from CheF to CheY. CheF: 0.2 µM, CheW: 0.8 µM, 

Hp0599: 68 µM, CheY: 9 µM. Phosphorylated CheF and CheY are indicated by arrows. 

The proteins were mixed and left at room temperature for five minutes. Thereafter, [γ-
32P]ATP (5000 Ci/mmol) was added to a final concentration of 0.1 mM. After 5 min at 

room temperature, the reactions were stopped by the addition of 2x SDS buffer and 

proteins were separated by SDS-PAGE and transferred to a PVDF membrane. 

 

Other response regulator proteins from H. pylori as for example CheV2 are 

also substrates of CheF and become phosphorylated by the kinase (see 

below, Fig. 33, p. 63). CheV2 was chosen in these experiments since the 

cheV2 gene resides within one operon flanked by cheW and cheF. 

Whereas in this study it was directly shown for the first time that a CheV 

ortholog can be phosphorylated by its cognate histidine kinase, PITTMAN et 

al., 2001 gained only indirect evidence through fluorescence quenching 

studies that upon the addition of acetyl phosphate, CheV3 

autophosphorylates with a KM value of 22 mM for acetyl phosphate. 
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5.11.3. Phosphate group transfer through the Che protein network 
 

In the enteric signal transduction system, chemoreceptors and CheW 

activate the autophosphorylation activity of the histidine kinase, which in 

turn results in an increase in the CheA-phosphate concentration compared 

to the non-activated kinase. In addition, when the response regulator 

CheY is present, the phosphate group flux from the kinase to the response 

regulator depends on the CheA activity and is increased by CheW and a 

receptor (NINFA et al., 1992). In H. pylori, the situation appears to be 

similar (increase in CheF-phosphate concentration upon addition of CheW 

and Hp0599) but is complicated by the fact that CheF is a hybrid histidine 

kinase with its own response regulator domain. Phosphate group flow 

therefore might branch in the presence of an additional response regulator 

after CheF autophosphorylation (Fig. 29). 

 

 

 

 

Fig. 29. Possible phosphotransfer reactions in the CheF/CheY system. A. In the 

absence of response regulators, CheF might still hydrolyze ATP via its own response 

regulator domain. In addition, this flux might change when receptor and CheW are 

present. B. When CheY is present, phosphate groups might be forwarded to either of 

the two domains, and again, the relative flux might be modulated by other 

components that interact with CheF. 
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To examine the flow of phosphate groups through a chemotaxis cascade, 

the so-called coupled assay where the consumption of ATP is linked to the 

oxidation of NADH was successfully employed by NINFA et al., 1992, to 

measure CheA catalyzed ATP hydrolysis rates (Fig. 30). 

 

 

 
 

Fig. 30. Reaction scheme of the coupled assay. The ATP consumption of an enzyme E 

is coupled to the NADH oxidation activity of lactate dehydrogenase (LDH) via the 

pyruvate kinase (PK) reaction. ADP: adenosine triphosphate, PEP: 

phosphoenolpyruvate, NAD: nicotinamide adenine dinucleotide, oxidized form. 

 

Adopted to the H. pylori system, this assay system would yield valuable 

insights into the function of the chemotaxis network. Especially the ratio 

of phosphate group flow from CheF to CheY versus the flow from CheF to 

its own response regulator domain could conveniently be measured. 

Furthermore, the question whether or not this flow is modulated by 

Hp0599 might be answered as well as its dependency upon addition of 

ligand to the receptor. 

 

For the assay to produce reliable data, all components must be essentially 

free of contaminating proteins such as enzymes with NADH oxidation or 

ATP hydrolysing activities. In this study, CheF could not be purified to an 

extent where contaminating ATPases were no longer detectable. 

Furthermore, the ATPase activity varied considerably from day to day and 

from batch to batch. It was therefore impossible to obtain reproducible 

results that allowed the calculation of reliable ATPase activities even in 
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simple setups where CheF was activated by Hp0599, and where none or 

only one response regulator was present. However, the test was suited to 

show qualitatively that a mixture of CheF, CheW and Hp0599 consumed 

more ATP than the sum of the components (Fig. 31). In a control reaction 

with the mutant histidine kinase CheF:H47G that does not 

autophosphorylate in the presence of ATP, no increase in ATP consumption 

was observed upon the addition of CheW and Hp0599. 

 

 

 

 

Fig. 31. Activation of CheF:D729K activity by CheW and Hp0599 in the presence of 

CheY. Hydrolysis of ATP by CheF/CheY was coupled to the pyruvate kinase and lactate 

dehydrogenase as described under 'Materials & Methods'. A mixture of all four proteins 

(blue) consumes more ATP than the sum of CheF:D729K alone (green) and (in a 

separate reaction) a mixture of CheW, Hp0599 and CheY (red). Chemotaxis proteins 

were present at the following concentrations: CheF, 0.6 µM; CheY, 5 µM; CheW, 2 µM; 

Hp0599, 84 µM. 

 

5.11.4. Autophosphorylation of CheF:D279K mutant 
 

In contrast to continuously monitor the ATP consumption of the Che 

protein network with the coupled assay, another strategy is to follow 

single phosphotransfer reactions with radiolabeled proteins. For example, 

the phosphorylation of CheY by CheF can be followed in analogy to the 

experiments of HESS et al., 1988. To exclude any other phosphotransfer 
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reactions, and to be able to prepare stably phosphorylated CheF, the 

CheF:D729K mutant was used where an intra- or inter-CheF 

phosphotransfer can no longer occur. This protein was expressed and 

purified as wild type CheF. CheF:D729K autophosphorylates with an 

apparent first order rate constant of 0.2/min (Fig. 32). This rate constant 

is in the same order of magnitude as the respective rate constants of E. 

coli and H. salinarum CheA (HESS et al., 1987; RUDOLPH et al., 1995). 

 

 

 

Fig. 32. Autophosphorylation kinetic of CheF:D729K. The protein was incubated at 

25°C in the presence of 5 mM Mg2+ and [γ-32P]ATP (0.2 mM, 5000 Ci/mmol). At the 

time intervals indicated, 20 µl samples were taken, immediately mixed with an equal 

volume of 2x SDS-buffer and frozen in liquid nitrogen. After thawing, the proteins were 

separated by SDS-PAGE and the protein bands were excised from the gel. 

Radioactivity bound to the protein was quantified by liquid scintillation counting. Each 

data point is the mean of two independent measurements, and the error bars were 

calculated using Microsoft Excel's STABWN function. 

 

The phosphorylated protein can be purified from not incorporated label for 

further experiments by simply binding the His6-tagged protein to a Ni-NTA 

column after the labeling reaction, followed by washing away not 

incorporated [γ-32P]ATP and elution from the column. When preparing 

CheF:D729K-phosphate for subsequent phosphotransfer reactions, [γ-
32P]ATP with a specific activity of 30 Ci/mmol was used, and the specific 
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activity of the protein preparation was typically around 200 mCi/mmol as 

determined by liquid scintillation counting and protein concentration 

measurement by the BRADFORD method. The total level of phosphate 

incorporation was typically 0.7%, significantly lower than the level of 

phosphorylation observed with CheA from E. coli (100 %; HESS et al., 

1987), but in the same range as observed with CheA from H. salinarum 

(0.1 %; RUDOLPH et al., 1995). A reason for this discrepancy might be the 

heterologous expression of the kinase in E. coli. Even so the kinase was 

expressed in the cytosol, the heterologous host might fail in folding the 

large, multi-domain CheF molecule. According to the literature, E. coli 

CheA is dimeric where dimerization is necessary for activity (SURETTE et 

al., 1996). CheF might likewise require a correct oligomerizaton state to 

be functional. Whether this is a dimer as in the case of E. coli CheA or not 

remains to be investigated. However, the protein might not as readily 

oligomerize in E. coli as it would in its natural host. It is also conceivable 

that the response regulator domain in CheF exerts influence on the CheF 

autophosphorylation activity, or that the D729K mutant that was 

introduced into CheF might itself influence CheF function. Due to the 

excess of ATP and the fact that the labeling reaction exhibits a time-

dependent saturation which can be fitted to a first order exponential, the 

low level of phosphorylation is more likely to be due to misfolded, inactive 

protein (RUDOLPH et al., 1995). 

 

 

5.11.5. Phosphotransfer reactions from CheF:D729K-Pi to response 

regulators 

 

With the stably phosphorylated CheF mutant, the phosphotransfer 

reaction from the kinase to the response regulators can be explored (Fig. 

33). 



5. Results 63

 

 

Fig. 33. Transfer of phosphate groups from CheF:D729K-phosphate to CheY and 

CheV2. A. CheF:D729K-Pi (2.9 µM) was incubated with an equal amount of either CheY 

or CheV2 in 5 mM MgCl2, 50 mM potassium phosphate pH 7.5 at room temperature. 

Samples (20 µl) were taken from the reaction mixture, immediately mixed at the time 

points indicated (above autoradiograph) with an equal volume of 2x SDS-buffer and 

frozen in liquid nitrogen. After thawing, the proteins were separated by SDS-PAGE and 

transferred to a PVDF membrane. Exposure to X-ray film was overnight. B. The same 

experiment as described in A with the difference that the response regulator 

concentration was one tenth of the CheF:D729K-Pi concentration (0.3 and 2.9 µM, 

respectively). Phosphorylated proteins are indicated by arrows.  

 

Phosphorylated CheF:D729K transfers its phosphate group very rapidly to 

the response regulator CheY (within the first ten sec of the experiment). 

Thereafter, the intensity of the CheF:D729K band does not change 

significantly, and residual label bound to the kinase is no longer 

transferred to the response regulator. This is in accordance with the time 

frame expected from data derived from the E. coli CheA to CheY 

phosphotransfer reaction (50 ms as measured in a stopped flow 

apparatus; STEWART, 1997), indicating a role for H. pylori CheY similar to 

the one of E. coli. In analogy to E. coli CheY, the life-time of H. pylori 

CheY-phosphate is short: the band intensity of CheY-phosphate is 
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decreased to approximately 50 % in lane 3 compared to lane 2 in Fig. 33, 

indicating an approximate life-time of CheY-phosphate of around 10 sec. 

Since CheF:D729K-Pi is stable without CheY (see 35, p. 66), the loss of 

phosphate groups must be due to CheY autodephosphorylation, and so it 

appears that CheY catalyzes its own dephosphorylation efficiently, since 

acyl phosphates have an expected half-life of several hours at neutral pH  

without catalysis (HESS et al., 1988; STOCK et al., 1995).  

 

In contrast to CheY, CheV2 behaves very different. It also accepts 

phosphate groups from CheF:D729K-Pi, yet this reaction is slow. From the 

CheV2 band intensities it follows that the CheV2-phosphate concentration 

is always lower as the CheY-phosphate concentration in the analogous 

reaction. Furthermore, the reaction proceeds considerably longer as with 

CheY. Even 60 s after mixing the kinase with the response regulator, most 

of the label is still bound to the kinase, and the CheF:D729K-Pi band is not 

yet reduced to 50 % as compared to the band at 0 s. The transfer reaction 

that is completed within 50 ms in the case of E. coli CheA/CheY takes 

more than one minute with H. pylori CheV2. This might be due to a slow 

transfer of label from the kinase to the response regulator. Alternatively, 

CheV2 might not be phosphorylated to the same extent like CheY. In an 

extreme case, only a small fraction of the CheV2 proteins might accept 

phosphate groups from CheF (high portion of inactive CheV2 in the 

preparation, for example). The transfer reaction could than be still rapid, 

but the hydrolysis of CheV2-phosphate would become rate-limiting. 

 

The CheV2-phosphate concentration appears to be constant during the 

first 60 s of the experiment (Fig. 33A), and therefore the half-life of 

CheV2-phosphate equals the half-life of CheF:D729K-Pi hydrolysis 

(hydrolysis of CheV2 becomes time dependent for the reaction). It might 

be estimated from Fig. 33 to be > 1 min. When the phosphorylated kinase 
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was used in a tenfold molar excess to the response regulators as in Fig. 

33B, the differences in CheY and CheV2 behavior became again apparent: 

CheY rapidly accepts and hydrolyses all phosphate groups from 

CheF:D729K, whereas the reaction with CheV2 is considerably reduced. To 

quantify the amount of phosphate that is transferred from CheF:D729K-Pi 

to the respective response regulators, identical experiments as the one 

described in Fig. 33 where performed with the modification that the CheF 

bands were excised from the gel and the radioactivity bound to the 

protein was determined by liquid scintillation counting (Fig. 34). 

 

 

 

 

Fig. 34. Loss of label from CheF:D729K-Pi to CheY. Phosphorylated CheF:D729K (4 

µM) was incubated at 25°C with various concentrations of the response regulators. At 

the time intervals indicated, 20 µl samples were taken, immediately mixed with an 

equal volume of 2x SDS-buffer and frozen in liquid nitrogen. After thawing, the 

proteins were separated by SDS-PAGE and the protein bands were excised from the 

gel. Radioactivity bound to CheF:D729K was quantified by liquid scintillation counting. 

The CheF:D729K-Pi to CheY ration was 1:1 ( ), 5:1 ( ), 10:1 ( ) and 20:1 ( ). Each 

data point is the mean of two independent measurements. 

 

Similar curves were obtained when CheV2 was present in the reaction 

mixture instead of CheY (Fig. 35). 
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Fig. 35. Loss of label from CheF:D729K-Pi (2.8 µM) to CheV2. Reaction conditions as 

in Fig. 34. The CheF:D729K-Pi  to CheV2 ration was 1:1 ( ), 5:1 ( ) and 10:1 ( ). 

Red curve: radiolabel bound to kinase in absence of response regulator (under assay 

conditions). Each data point is the mean of two independent measurements. Data 

were normalized to data from Fig. 34 as basis. 

 

Again, label was transferred to the response regulators, whereas in their 

absence, the label remained bound to the kinase (red curve in Fig. 35). 

Under the assumption that the dephosphorylation of the response 

regulator phosphates become rate-limiting for the dephosphorylation 

reaction of CheF:D729K-Pi, the CheY and CheV2 concentrations were 

successively lowered to ensure pseudo-first order conditions for the efflux 

of label from CheF:D729K-Pi. In the case of the reaction catalyzed by 

CheY, the life-time of CheY-phosphate can be determined from the linear 

parts of the curves (Fig. 34; 10 and 20 fold excess of CheF; 30 to 120 sec 

of experiment). This life-time is 14 ± 1 sec. As expected, the reaction 

proceeds considerably slower with CheV2 than with CheY. Even at 

equimolar concentrations of both proteins, the transfer of phosphate 

groups from the kinase to CheV2 takes more than 180 sec, and therefore 

the life-time of CheV2 phosphate can not be calculated from these data. 

Residual radioactivity remains bound to the kinase in both cases that is 

not transferred to the response regulators. Interestingly, between t≈20 

and 30 sec, the curves apparently indicate a reverse flow of phosphate 

groups from the response regulator phosphates to the kinase.  
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5.11.6. Decay of CheY-phosphate 
 

The life-time of CheY-phosphate might also determined by directly 

measuring the label bound to the protein. When CheY was mixed with an 

equimolar amount of from CheF:D729K-Pi, the transfer of phosphate 

groups is completed within the first few seconds of the experiment. 

Thereafter, the phosphoryl group flux from CheF to CheY is negligible, and 

the life-time of CheY-phosphate is reflected by the disappearance of label 

bound to CheY. It is difficult to excise the CheY band from gels after SDS-

PAGE (faint band not visible without staining in contrast to prominent 

CheF), but the radioactivity may be measured by 'phosphoimaging' of the 

proteins after electroblotting to a membrane. Fig. 36 shows the hydrolysis 

of CheY-phosphate as measured by this method. 

 

 

 

Fig. 36. Hydrolysis of CheY-phosphate. CheF:D729K-Pi was incubated with CheY in a 

ratio 1:1 and the reactions were stopped at the time intervals indicated. Proteins were 

separated by SDS-PAGE, transferred onto a PVDF membrane and the radioactivity was 

quantified by phospho-imaging. Each data point is the mean of two independent 

measurements. 

 

From the curve in Fig. 36 the CheY-phosphate life-time can be calculated 

to be 19 sec, a number that resembles the determination of the life-time 

as described above. In the case of CheV2, this method is not suited for 
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the determination of the CheV2-phosphate half-live since the 

phosphotransfer reaction from the kinase to the response regulator is the 

rate-limiting step of the overall reaction in contrast to the phophotransfer 

reaction to CheY, where the hydrolysis of the response regulator 

phosphate becomes rate-limiting under these conditions (Fig. 37). 

 

 

 

Fig. 37. Transfer of label from CheF:D729K-Pi to CheY (red curve) and CheV2 (blue 

curve) as measured by 'phosphoimaging'. Proteins were incubated and samples were 

taken as described in Fig. 34. CheF:D729K-Pi: 0.53 µM; CheY: 0.53 µM ; CheV2: 2.7 

µM.  

 

It is therefore not possible to simply determine the life-time of CheV2-

phopshate from the decrease of the CheV2-phosphate concentration (see 

Fig. 36) due to the fact that the two phosphotransfer recations (from 

kinase to CheV2 and from CheV2 to water) proceed with similar rates. 

 

 

5.11.7. Reverse phosphotransfer from CheY to the kinase 

 

The so-called phosphate sink theory (SOUIRJIK & SCHMITT, 1996, 1998; 

ARMITAGE & SCHMITT, 1997) predicts a flow of phosphate groups from one 

response regulator back to the histidine kinase from where they are 
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supposed to be transferred to the phosphate sink for signal quenching. To 

examine this reverse phosphoryl-group transfer it was attempted to 

prepare and isolate phosphorylated CheY. Phosphorylated CheY free of 

ATP can be obtained by adding CheY to CheF:D729K-phosphate as 

described under 7.4.5. Due to its inherent instability, however, the protein 

hydrolyzes within seconds even in the absence of magnesium ions. When 

CheY is passed through a CheF:D729K-32Pi column (the phosphorylated 

protein bound to Ni-NTA resin by its His6-tag), most radioactivity is eluted 

from the column, but no CheY-32Pi can be detected in the effluent. To 

circumvent this problem, the CheY:K106R mutant was constructed that 

still accepts phosphate groups from CheF but is more stable towards 

hydrolysis (SILVERSMITH et al., 1997). Fig. 38 shows an SDS-PAGE of the 

radioactive eluent fractions that where obtained by passing CheY:K106R 

through a CheF:D729K-32Pi column. 

 

 

 

 

Fig. 38. Preparation of CheY:K106R-Pi. Radioactive fractions obtained by passing 

CheY:K106R through a 1 ml CheF:D729K-Pi Ni-NTA column as described under 7.4.5. 

were analyzed by SDS-PAGE followed by transfer of proteins to a PVDF membrane and 

exposure to an X-ray film for 2 d. Fraction numbers are indicated above the 

autoradiogramm. Fraction size was two drops (approximately 400 µl) at a flow rate of 

1 ml/min. Phosphorylated CheY:K106R is indicated by an arrow. 
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The autoradiogramm in Fig. 38 clearly shows the presence of radiolabeled 

CheY:K106R as inorganic phosphate is not retained on a PVDF membrane 

when transferred by electroblotting. The protein hydrolyzes and eluent 

fraction stored on ice for more than 100 sec do no longer indicate the 

presence of CheY:K106R-Pi when analyzed as described above. 

Phosphorylated, ATP-free response regulator preparations allow the 

reverse transfer of labeled phosphate from the response regulator to the 

kinase (Fig. 39). 

 

 

 

 

Fig. 39. Reverse phosphorylation of CheF:D729K by CheY:K106R-Pi. Aliquots of three 

different eluate fractions from the CheF:D729K-32Pi Ni-NTA column were separately 

mixed with three kinase aliquots (lanes 1 to 3). After incubation, the samples were 

separated by SDS-PAGE and radioactive proteins were detected as described. The 

bands correspond to CheF:D729K reverse phophorylated by CheY:K106R-Pi. 

 

 

After analyzing the samples, the autoradiogramm shows the presence of 

phosphorylated CheF:D729K, and CheY:K106R-Pi can no longer be 

detected. The reactions that occur are more complex as the cartoon 

illustrates (see Fig. 39), and nascent CheF:D729K-Pi immediately 

disappears by CheY:K106R-catalyzed hydrolysis. This result shows that 
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CheY might reversely transfer its phosphate group to the kinase in vivo, 

an ability postulated by the phosphate think theory where the CheY signal 

is thought to be quenched by reverse phosphorelay to, for example, 

CheV2 or more likely, to the CheY domain of CheF. 

 

5.11.8. Phosphorylation of response regulators by acetyl 

phosphate 

 

Acetyl phosphate, a small molecule with a high energy phosphate group, 

is well-known as a substrate for response regulator autophosphorylation in 

E. coli (LUKAT et al., 1992; MAYOVER et al., 1999). This autophosphorylation 

ability was used by BREN & EISENBACH in an in vitro assay to produce CheY-

phosphate in situ. CheY-phosphate bound to the motor switch factor FliM, 

whereas in control reactions, non-phosphorylated CheY did not bind FliM. 

It can be expected that one of the five H. pylori proteins with a CheY-like 

response regulator domain also binds to FliM in its phosphorylated state. 

It was therefore of interest whether acetyl phosphate can also be used to 

phosphorylate H. pylori Che proteins. To test whether acetyl phosphate 

serves as a substrate for response regulator phosphorylation in H. pylori, 

[32P]-acetyl phosphate was synthesized from [32P]-orthophosphoric acid 

and incubated with the respective proteins. CheY and the response 

regulator domain of CheF became clearly phosphorylated in the presence 

of acetyl phosphate (Fig. 40), indicating that both proteins catalyze their 

own phosphorylation (in CheF in addition to the autophosphorylation 

activity of the CheA-like domain) in analogy to other response regulators 

(ZAPH et al., 1990; MCCLEARLY & STOCK, 1994; SILVERSMITH et al., 1997). In 

contrast, phosphorylation of CheV2 and CheV3 by acetyl phosphate 

appears to be inefficient, because there are only comparably faint bands 

visible on the autoradiograph (lanes 1 and 2 in A) in the presence of 50 

mM acetyl phosphate. 
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Fig. 40. Phosphorylation of response regulator domains by [32P]-acetyl phosphate. To 

the respective proteins, acetyl phosphate was added to a final concentration of 5 mM 

(lanes 1 to 4 in A: 50 mM), and the mixture was incubated for 5 min at 30°C. 

Thereafter, the reactions were stopped by the addition of SDS sample buffer, the 

proteins were resolved by SDS-PAGE and transferred to a PVDF membrane. Exposure 

to X-ray film was 18 d in A and 5 d in B. A. Lane 1: CheV3, lane 2: CheV2, lane 3: 

CheY, lane 4: CheY:K106R, lanes 5 to 8 as lanes 1 to 4. B. Lane 1: CheF:H47G, lane 

2: CheF:K783R, lane 3: CheF:D729K, lane 4: CheY, lane 5: CheV3, lane 6: CheV2, 

lane 7: CheF. Protein concentrations were 0.5 µM for the kinase and 2.5 µM for the 

response regulators. Buffer composition was 100 mM potassium phosphate pH 7.5 at 

20°C supplemented with 5 mM MgCl2. 

 

 

The mutant protein CheF:H47G whose kinase domain no longer 

autophosphorylates in the presence of ATP but whose response regulator 

domain remained unaltered also autophosphorylates in the presence 

acetyl phosphate. Specific phosphorylation of D729 by acetyl phosphate is 

supported by the observation that the mutant D729K fails to accept 

phosphate from acetyl phosphate. The crosslinking assay to determine the 

FliM-binding capability of phosphorylated H. pylori response regulator 

proteins appears to be hence not suited for the CheV paralogs, but acetyl 

phosphate might be used to prepare the required CheF and CheY-

phosphates in vitro. 
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5.12. Expression and purification of the motor switch protein FliM 

 

In the chemotaxis networks of coliform bacteria, CheY is the response 

regulator that binds in its phosphorylated form to the motor switch factor 

FliM. Upon this event, the rotational bias of the flagellar motor is changed 

towards a higher counterclockwise to clockwise switching probability. The 

ability of CheY-phosphate to induce clockwise flagellar rotation is about 

100 times the corresponding activity of unphosphorylated CheY (BARAK & 

EISENBACH, 1992). In other bacterial species with more than one CheY-like 

response regulator it is questionable which of these proteins is the actual 

switch factor. In this study, it was therefore attempted to examine the 

differences in CheY and CheV protein behavior beyond the findings that 

the two proteins are differentially phosphorylated by the histidine kinase. 

Binding to FliM of either of the proteins would further the understanding of 

the role of these proteins in chemotaxis.  

 

It was first attempted to reproduce the results from BREN & EISENBACH, 

1998, as a control reaction for possible interaction studies with H. pylori 

derived proteins. The genes coding for E. coli FliM and CheY were cloned 

into pET28a(+) expression vectors and expressed in E. coli 

BL21(DE3)Gold cells as N-terminal His6-tagged fusion proteins. CheY was 

expressed in the cytosol, whereas FliM was refolded and purified following 

the protocol given by BREN  & EISENBACH, 1998. Fig. 41 shows a typical 

preparation of the two proteins. 
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Fig. 41. Purification of E.coli FliM and CheY as described in Materials & Methods. A. 

Purification of FliM refolded from inclusion bodies. Eluent fractions from a 2.5x10 cm 

Ni-NTA column. Fraction size: 5 ml, gradient: 0 to 250 mM imidazole in 300 mM 

sodium chloride, 10 mM Tris HCl pH 8.0 at 4°C, 10 % glycerol in 300 min at a flow 

rate of 1 ml/min. Lane indicated by an asterisk: flow-through of column during sample 

application. B. Purification of CheY from E. coli cytosol performed as described under A 

except that no glycerol was included in the buffer. Fraction numbers are above the 

respective lanes, and the probe volume was 15 µl of sample per each lane. 

 

The pronounced tendency to precipitate made it difficult to handle the 

purified FliM. The protein could not be stored either frozen or on ice, and it 

was necessary to prepare it fresh from inclusion bodies stored at –32°C. 

Furthermore, the concentration of FliM solutions was below 5 mg/ml, 

which made it difficult to use FliM in the CheY interaction assays. In spite 

of the purification of FliM being a difficult task, it was possible to show 

that E. coli CheY-Pi interacts with the motor switch factor (Fig. 42).  
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Acetyl-Pi - + + - - + 
FliM - - + + + + 
CheY + + + + - - 

 

Fig. 42. Interaction of E. coli CheY-Pi with the E. coli motor switch protein FliM. After 

crosslinking, the proteins were separated by SDS-PAGE and silver-stained. All 

reactions contained 5 mM magnesium chloride and 1 mM ortho-phthaldialdehyde as 

crosslinking agent. Protein concentrations were CheY: 25 µM, FliM: 7.9 µM, and acetyl 

phosphate was 22 mM. Lane 1: marker protein. The faint bands in lanes 2 and 3 

running at around 43 kDa and above are CheY trimers and higher crosslinking 

products. Similarly, FliM oligomers can be detected in reactions where FliM was 

present. 

 

Only in the presence of acetyl phosphate (22 mM), CheY and FliM (25 and 

7.9 µM, respectively), a protein band running at an appropriate molecular 

weight corresponding to crosslinked CheY-FliM heterodimers (51.9 kDa) 

appeared clearly visible before a background of CheY and FliM oligomers 

as was first shown by BREN & EISENBACH, 1998. In analogy to the 

experiments described above, it was attempted to heterologously 

overexpress H. pylori FliM in E. coli. Whereas the E. coli protein could 

easily be expressed as inclusion bodies, it was not possible to express H. 

pylori FliM. In the hope that H. pylori CheY might bind to the E. coli FliM 

protein that is homologous to the H. pylori ortholog, the crosslinking assay 

was performed with these two proteins, but no distinct band 

corresponding to a FliM-CheY dimer appeared (Fig. 43.) 
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Fig. 43. Interaction assay with H. pylori CheY-Pi with the E. coli motor switch protein 

FliM. After crosslinking, the proteins were separated by SDS-PAGE and silver-stained. 

All reactions contained 5 mM magnesium chloride and 1 mM ortho-phthaldialdehyde as 

crosslinking agent. Lane 1: CheY, lane 2: FliM, lane 3: CheY and FliM, Lane M: marker 

proteins. Protein concentrations were CheY: 40 µM, FliM: 5 µM; and acetyl phosphate 

was 22 mM. 

 

The amino acid sequence alignment of FliM from E. coli, S. enterica 

serovar Typhimurium and H. pylori reveals that despite the high homology 

of the three proteins, several residues conserved in the enteric proteins 

are different in H. pylori FliM. Fig. 44 gives an overview of the N-terminal 

sequence similarity of the two proteins from two enteric bacteria, E. coli 

and S. enterica serovar Typhimurium, respectively, and H. pylori FliM. 

 

 

 

Fig. 44. Protein sequence alignment of the N-terminal 60 amino acids of FliM from two 

enteric bacteria and H. pylori. In E. coli and S. enterica serovar Typhimurium, CheY-Pi 

binds to amino acids one to 16. The proteins show high sequence homologies but the 

differences might be sufficiently different to prevent E. coli CheY-Pi to bind to H. pylori 

FliM. 
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Some of these residues not present in E. coli FliM might be important for 

H. pylori CheY-phosphate binding to FliM. In the enteric chemotaxis 

system, the activated response regulator only binds to the 16 N-terminal 

amino acids of its target, and CheY-phosphate even binds to this region in 

the absence of the rest of FliM (LEE et al., 2001b). It is conceivable that in 

H. pylori, binding to FliM occurs in a similarly defined region of the protein. 

To examine this, a chimeric FliM protein was constructed where the N-

terminal 42 amino acids of H. pylori FliM were fused to the E. coli FliM C-

terminal part (see Materials & Methods). This protein was expressed in E. 

coli and could successfully be purified from the cells following the method 

for wild type FliM (Fig. 45). 

 

 

 

Fig. 45. Purification of chimeric FliM. A. FliM refolded from purified inclusion bodies. 

Lane 1: 10 µl sample, lane 2: 20 µl sample, lane 3: 30 µl sample. B. Eluent fractions 

from a 2.5x10 cm Ni-NTA column. Fraction size: 5 ml, gradient: 0 to 250 mM 

imidazole in 300 mM sodium chloride, 10 mM Tris HCl pH 8.0 at 4°C, 10 % glycerol in 

300 min at a flow rate of 1 ml/min. Fraction numbers are indicated above the 

respective lanes. Probe volume was 15 µl of sample per lane. 

 

When the crosslinking experiments were performed with the chimeric FliM 

protein, again no band corresponding to response regulator-FliM dimers 

appeared. The same holds true for experiments with the CheV2 protein 
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that were performed despite the knowledge that this protein 

autophosphorylates only weakly in the presence of acetyl phosphate. 

 

 

5.13. Detection of H. pylori chemotaxis proteins by antisera 

 

Gene expression in most organisms varies with the environmental 

conditions. It is therefore of interest which gene is expressed under 

what conditions. Furthermore, different bacterial strains might 

express different genes under the same conditions. The three CheV 

paralogs in Helicobacter, for example, might not be present at the 

same time, and even situations might exist where none of the che 

genes is expressed (SHAH et al., 2000). Alternatively, the expression 

of a predicted open reading frame as Hp0599 is at least questionable. 

To gain information on the expression of the H. pylori che genes as 

well as Hp0599, polyclonal antisera against the respective proteins 

were raised in rabbits (Fig. 46). 

 

 



5. Results 79

 

 

Fig. 46. Detection of purified chemotaxis proteins by antisera raised in rabbits. 

A. Anti-CheF antiserum. Lane 1, CheF; lane 2, E. coli CheY; lane 3, H. pylori 

CheY; lane 4, E. coli CheW; lane 5, CheV2; lane 6, H. pylori CheW;  B. Anti-

CheV2 antiserum. Lane 1, H. pylori CheW; lane 2, CheV2; lane 3, E. coli CheW; 

lane 4, H. pylori CheY; lane 5, E. coli CheY; lane 6, CheF. C. Anti-H. pylori CheW 

antiserum. Lanes 1 to 6 as in A. D. Anti-H. pylori CheY antiserum. Lane 1, H. 

pylori CheY; lane 2, E. coli CheY; lane 3, CheV2; lane 4, CheF. E. Anti-Hp0599 

antiserum. Lane 1, CheF; lane 2, CheV2; lane 3, CheW; lane 4, Hp0599. The 

other bands in lanes 1 through 3 are due to unspecific binding of the antiserum 

to the other proteins present on the membrane and appear considerably weaker 

than the Hp0599 band (Hp0599 not well resolved on gel lead to smear in lane 

4). The antisera were diluted 2500-fold in A through C, and 500-fold in D and E. 

All proteins were in a concentration range where they gave a clearly visible band 

on the PVDF membrane after staining with Ponceau S. 

 

The antisera for CheF, CheV2, CheW and Hp0599 were specific and 

did not cross-react with any of the other Che proteins despite the 

presence of homologous domains. Orthologs from E. coli were also 

not detected, confirming the high specificity of the antisera. In 

contrast, the anti-CheY antiserum did recognize both CheY as well as 
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CheV2, presumably in its CheY-like domain. With these antisera, it 

should be possible to quantify the chemotaxis proteins in various H. 

pylori strains. 
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6. Discussion 

 

6.0. Soluble MCP homologs in two-component cascades 

 

 

The existence of soluble transducer molecules outside the kingdom of 

Archaea and their ubiquity was only realized and appreciated after their 

initial description in Halobacterium salinarum (RUDOLPH et al., 1996; ZHANG 

et al., 1996; STORCH et al., 1999; NG et al., 2000). Through various 

genome sequencing projects it became apparent that many bacterial and 

archaeal genomes code for transducer protein homologs that lack 

transmembrane spanning segments. Soluble MCP-homologs were found in 

diverse species like Helicobacter pylori (TOMB et al., 1997), Campylobacter 

jejuni (PARKHILL et al., 2000), Pseudomonas aeruginosa (STOVER et al., 

2000), Sinorhizobium meliloti (BARNETT et al., 2001; CAPELA et al., 2001; 

GALIBERT et al., 2001), Caulobacter crescendus (NIERMAN et al., 2001), 

Rhodobacter sphaeroides (WADHAMS et al., 2000), Vibrio cholerae 

(HEIDELBERG et al., 2000), Bacillus halodurans (TAKAMI et al., 2000), Borelia 

burgdorferi (FRASER et al., 1997), Pyrococcus abysii 

(http://www.Genoscope. cns.fr/Pab/), and others. In analogy to their 

membrane bound homologs, it is assumed that these proteins sense 

intracellular ligands and communicate this information via an archetypical 

two component system composed of a CheA histidine kinase and a CheY 

response regulator to the according target.  

 

From this plethora of signal transduction circuits, the function from only 

one is known: Car, the cytoplasmic receptor from H. salinarum senses the 

intracellular arginine concentration (STROCH et al., 1999). The ligands of all 

other soluble MCP-homologs are completely unknown. In chemotaxis 

systems with more than one histidine kinase and various response 
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regulator paralogs, the respective histidine kinase as well as the cognate 

response regulators also await their identification. Exceptions are only the 

soluble oxygen sensors like Aer from coliform bacteria (REBBAPRAGADA et 

al., 1997) or HemAT from H. salinarum and B. subtilis (HOU et al., 2000). 

At the beginning of this work it was therefore obvious that a successful in 

vitro reconstitution of a soluble chemical sensing signal transduction 

network would depend on the halobacterial Car/ CheA system.  

 

 

6.1. Recombinant production of halophilic signaling components in 

E. coli 

 

Compared to other expression systems, E. coli cells thrive well with 

appreciable growth rates, and expression levels of recombinant proteins 

using the T7 expression system (STUDIER & MOFFATT, 1986; ROSENBERG et 

al., 1987) can reach up to 300 mg/l for proteins that are non-toxic to this 

organism (KUMAR et al., 1994; GRIBENKO et al., 1998; HAYASHI et al., 1998). 

For the expression of halophilic proteins, however, the E. coli expression 

system apparently bears some disadvantages: for example, the low ionic 

strength of the E. coli cytosol might cause that proteins from halobacteria 

will not fold correctly in vivo and are therefore expressed under quasi-

denaturing conditions. This problem could be avoided by overexpressing 

the halophilic protein of interest in organisms such as H. salinarum or H. 

volcanii. Both organisms can easily be transformed with appropriate 

expression vectors (FERRANDO-MAY et al., 1993; SOHLEMANN et al., 1997). 

However, these organisms grow considerably slower than E. coli 

(SRIVASTAVA et al., 1987), and only a few separation techniques are 

available for protein purification in the presence of saturated salt 

concentrations. Taken together, the purification to homogeneity of a non-

tagged halophilic protein from a complex background of other halophilic 
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proteins is rather tedious with techniques that have to be compatible with 

the high ionic strength requirements of the proteins. It therefore seemed 

more rewarding to overexpress Car in E. coli followed by a purification 

scheme that would allow the use of low salt buffers. Refolded Car could 

then be examined for correct folding by CD spectroscopy, 1H-NMR or in a 

yet to be developed biological assay relying either on the presumed 

activation of CheA by Car or on its interaction with receptor modifying 

enzymes such as CheB and CheR, respectively. Indeed, such a strategy 

was already successfully employed for numerous other halophilic proteins 

(HECHT & JAENICKE, 1989; CONNARIS et al., 1998; RICHARD et al., 2000; 

WORBS & WAHL, 2000).  

 

 

6.2. The arginine receptor Car - a molten globule-like receptor? 

 

The proton one-dimensional solution NMR spectrum of Car lacks all 

chemical shift dispersions typical for native proteins and resembles 

spectra derived from denatured proteins. In the region between seven and 

eight ppm of the spectrum, the chemical shifts of the amide and aromatic 

protons do not deviate from those of a random coil (WÜTHRICH, 1986). In 

addition, the spectrum lacks signals upfield of 1 ppm (ring-shifted methyl 

protons) which are characteristic for native proteins (for an example of a 

NMR spectrum of a halophilic protein see MARG et al., in press). Car 

expressed in E. coli as soluble protein and purified under low ionic 

strength conditions as described in this work therefore appears to lack a 

well-defined tertiary structure. Far-UV circular dichroic spectroscopy, 

however, clearly indicates the almost exclusive presence of α-helical 

secondary structure elements as well as a distinctive cooperative thermal 

unfolding transition in heat denaturing experiments. Other proteins 

previously described like α-lactalbumin display a similar behavior of being 
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intermediates between the folded and unfolded state. These so-called 

molten-globules are observed as short-lived intermediates during protein 

folding and can be stabilized by non-physiological solvent compositions 

(for details see SEELEY et al., 1996, and references therein). It is therefore 

well conceivable that a molten globular-like state of Car is induced by the 

lack of specific protein-solvent interactions. This is also supported by the 

finding that small molecules like polyethylene glycols or polyamines exert 

a stabilizing influence on Car. A thorough investigation of the parameters 

affecting halophilic protein stability and folding at high salt concentrations 

might be helpful in understanding the structure of Car. 

 

Interestingly, the cytoplasmic domains of enteric chemoreceptors that 

have high sequence homologies with the C-terminal domain of Car 

likewise display such a behavior typical for highly flexible, molten globule-

like proteins (SEELEY et al., 1996). Furthermore, the photoactive yellow 

protein that serves as a prototype for the PAS domain family (PELLEQUER et 

al., 1998) shows a stimulus-induced transient unfolding behavior in 

solution where the protein retains most of its secondary structure but 

loses nearly all of its tertiary structure as determined by NMR and CD 

spectroscopic measurements (RUBINSTEIN et al., 1998; LEE et al., 2001). 

The signaling state of PYP is therefore thought to be a molten globule (LEE 

et al., 2001). From this it can be expected that partial protein unfolding is 

also involved in other proteins containing PAS domains as for example in 

the N-terminal domain of Car. However, in the case of Car, it is not known 

whether the protein's global flexibility is due to being partially 

unstructured or characteristic of the functional receptor. The 

conformational plasticity may be important for interacting with other 

proteins of the signaling complex (with other Car molecules, with CheW, 

CheA, CheR and CheB; for details of a recent model of the signaling 

complex see SHIMIZU et al., 2000) or it may accelerate binding of some of 
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these proteins (PONTIUS, 1993). Numerous other proteins, especially DNA- 

or RNA-binding proteins, and proteins involved in the regulation of the cell 

cycle and in membrane fusion events only function due to an intrinsic lack 

of tertiary structure in which changes in dynamics occur during function 

(reviewed in WRIGHT & DYSON, 1999). Similar changes might be involved in 

ligand binding to Car, or more likely, in the signal propagation to the 

CheW/CheA complex where alterations in protein conformation are needed 

to activate CheA phosphorylation (KIM, 1994). 

 

It is also possible that the highly flexible state of Car is non-physiological. 

Other components of the signaling complex might be needed to stabilize a 

non-dynamic tertiary structure, and this structure would be the functional 

state of the receptor. From the literature it is known that bacterial 

chemoreceptors form stable complexes with CheA and CheW (GEGNER et 

al., 1992) while CheB and CheR bind only loosely to these complexes. 

Consequently, the presence of these other proteins might be necessary for 

Car to adopt a defined tertiary structure. 

 

 

6.3. Role of eubacterial soluble receptors 

 

Most of our knowledge on chemotaxis transducers comes from the 

membrane-bound chemoreceptor proteins Tar, Tsr, Trg and Tap of E. coli 

and S. enterica serovar Typhimurium. The structure of Tar except its 

transmembrane helices is known in atomic detail, as the structures of the 

other chemotaxis components2. From biochemical and behavioral analysis 

comes a vast amount of additional data, yet the most fundamental 

questions on the chemotaxis network are still far from being solved 

(STOCK, 1999; BREN & EISENBACH, 2000). It is for example not known how 
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signals are transduced through the cell membrane or how the system 

realizes its sensitivity combined with an exceptional dynamic range (five 

orders of magnitude towards chemoattractant concentration in E. coli and 

seven in R. shaeroides; JASUJA et al., 1999; AIZAWA et al., 2000; PACKER & 

ARMITAGE, 2000; KIM et al., 2001). In addition, minor receptors like Trg 

and Tap elicit a cellular response as strong as the much more abundant 

receptors Tsr and Tar (the latter receptors make up 98% of a cell's 

receptor repertoire). Finally, how the signals from various receptors 

sensing different ligands in a chemically diverse environment are 

integrated to compute the adequate output signal (change in phosphoryl 

group flux through the network to CheY) is yet unknown (SANDERS & 

KOSHLAND, 1988). The most elaborate theories as activity spread in 

receptor arrays (BRAY et al., 1998; LEVIT et al., 1998; DUKE & BRAY, 1999) 

describe the network's input system insufficient, and new experimental 

data showed that activity spread might indeed occur, but to a much lesser 

extend as previously anticipated (BORNHORST & FALKE, 2000). 

 

It is known that the chemoreceptors in all bacteria investigated cluster 

predominantly at one cell pole (GESTWICKI et al., 2000; SOURJIK and BERG, 

2000; LYBARGER and MADDOCK 2000; ALLEY, 2001; LYBARGER and MADDOCK 

2001). The same holds true for the soluble transducer protein TlpC from 

Rhodobacter sphaeroides, but the purpose of this clustering remains 

unclear. It is apparent that this receptor clustering must be important for 

the function of the whole network due to its conservation in various 

organisms. Moreover, the structure(s) that maintain these complexes 

must also be conserved and independent of the presence or absence of 

the cell membrane. Soluble transducers from R. sphaeroides not only 

cluster in R. sphaeroides cells, but also in the cytosol of E. coli. Whether 

the two transducer proteins from C. jejuni and H. pylori also cluster is 

                                                                                                                                        
2 The solution structure of Thermotoga  maritima CheW was determined by F. W. DAHLQUIST et al. 
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unknown. However, similar studies as the ones from WADHAMS et al., 

1999, who could demonstrate the clustering of a soluble MCP orthologe 

from R. sphaeroides seem to be straightforward and readily applicable to 

the proteins from H. pylori and C. jejuni. A clustering in the cytosol would 

further substantiate our findings that the two proteins can play a 

transducer-like role in chemotaxis. 

 

Cytosolic transducers as the ones examined in this study could therefore 

be valuable models in further investigations of the receptor function and 

the role of clustering and signal complex formation in chemotaxis. Their 

crystallization initiated in this work laid the ground for future experiments 

that might result in the first structure determination of an entire 

transducer. Furthermore, with soluble molecules, it might be feasible to 

co-crystallize the transducer proteins with other components of the 

chemotaxis cascade without the problems of handling integral membrane 

proteins. The structure of such a signaling complex would result in a much 

deeper insight into how the entire two-component system works.  

 

It is tempting to speculate on the function of cytosolic signaling 

complexes. They might enable the cell to sense their inner metabolic 

state, whereas membrane bound chemoreceptors always sense signals 

from the periplasmic space. Such a metabolic signaling, however, would 

provide information on more general parameters as, for example, overall 

energy status or the availability of key metabolic intermediates or 

substrates. In one case from H. salinarum, the ligand of the soluble 

receptor Car, arginine, is known. In this organism, arginine is an 

important energy source during fermentation that can be transported 

across the cell membrane and metabolized by the arginine deiminase 

pathway (STORCH et al., 1999). Here, arginine signaling might override 

                                                                                                                                        
and still awaits its publication. For details, see SHIMIZU et al., 2000; BOURRET, et al., 2002. 
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signals perceived by other pathways. This integration of information would 

enable the cell to react to a parameter that is crucial for its survival under 

fermentation conditions. Halobacterial arginine taxis therefore equals 

energy taxis (Taylor & Zhulin, 1998). 

 

What either of Cj0448 or Hp0599 senses is still unknown. The presumed 

ligand could be a molecule equally important for H. pylori metabolism as 

arginine for H. salinarum or a molecule generated in the metabolism of H. 

pylori. Capillary assays with living cells might identify chemoattractants as 

amino acids or sugars to which H. pylori responds, and the soluble 

receptors could be necessary for this behavior. MIZOTE et al., 1997, and 

FOYNES et al., 2000 have shown chemotactic behavior of H. pylori cells 

towards urea, urease inhibitors, sodium bicarbonate, chloride and hog 

gastric mucin, respectively. It is questionable whether the organism has a 

chloride or bicarbonate receptor, but urea might well be sensed by one of 

the four MCP homologs. In analogy to Car, urea or another compound 

might bind directly to the soluble receptors (Fig. 47C) which eventually 

could form signaling complexes similar to the membrane bound complexes 

known from E. coli (Fig. 47A). 
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Fig. 47. Possible roles for soluble transducer or receptor proteins. Membrane-

bound and soluble MCP homologues are depicted as long gray rods with the 

conserved signaling domains colored in red. The coupling protein CheW and 

the kinase CheA that together with the transducers build the so-called 

signaling complexes are depicted as gray spheres that cluster beneath the 

signaling domains of the MCP homologues. For the sake of simplicity, the 

stoichiometry of the signaling complexes was chosen arbitrarily. Ligand 

molecules are depicted as green spheres and putative receptor molecules that 

might interact with the soluble transducers are blue rectangles. For details see 

text. 
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Protein domain prediction algorithms, however, did not predict any known 

domains N-terminal to the signaling domains of Cj0448 and Hp0599. The 

location of such a domain is expected from the structural information of 

other transducers (for a complete list of known proteins containing the 

highly conserved signaling domain of bacterial transducers: 

http://smart.embl-heidelberg.de/smart/). Similarly, the small HAMP 

domain thought to be of importance for signaling in (trans-) membrane 

receptors (GALPERIN et al., 2001) is also absent. In fact, the N-terminal 

part of both Cj0448 and Hp0599 is small, and predicted to be mainly 

unstructured. It is therefore questionable whether these stretches of 

amino acids are of sufficient length to form a ligand binding domain at all. 

This makes the existence of a protein possible that binds the actual ligand 

and, upon this event, in turn binds to the soluble transducers to elicit an 

adequate response (Fig. 47E). Such a scenario is known from other 

receptors like Tar (reviewed in FALKE et al., 1997 or BOOS & SHUMAN, 1998) 

or the halobacterial transducers HtrI and HtrII (for details see SPUDICH, 

1994; HOFF et al., 1997; SASAKI & SPUDICH, 2000). Hp0599 and Cj0448 

might also interact with a transport system whose occupancy in turn could 

be monitored. In these cases, any component that is either generated in 

the metabolism of C. jejuni or H. pylori or that is taken up by the two 

organisms could be the presumed ligand. 

 

However, the soluble receptor homologs from C. jejuni and H. pylori might 

have totally different functions than being actively involved in signal 

transduction. Alternatively, soluble receptors might sequester the soluble 

components of the classical receptor complexes in a clustered state where 

they are not available for the chemotaxis cascade (Fig. 47D). The 

activation of the membrane-bound receptors could relocate CheW, CheF 

and other components to the membrane. In this scenario, soluble 

'receptors' would affect receptor clustering and phosphoryl-flow to CheY 
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indirectly. Since it was shown in this work that Hp0599 and Cj0448 

activate the histidine kinase CheF, cytosolic 'Che protein storage' by either 

of the two proteins would increase the basal phosphoryl group transfer 

through the chemotaxis network and thereby the response regulator 

phosphate concentration within the cell. On the other hand, cytosolic 

complexes of Che proteins on 'receptor scaffolds' could be involved in the 

modulation of flagellar rotation beyond the clockwise/counterclockwise 

level encountered by E. coli. The response regulator domains present in 

the putative soluble signaling complexes might interact with the motors to 

control the rotational bias in a sophisticated manner. Soluble receptor 

homologs could also cluster together with membrane-bound receptors to 

form mixed signaling complexes associated to the plasma membrane (Fig. 

47B). In the case that they do not actively sense any signals (no signalling 

domain present in these proteins), their presence in these 'mixed' 

complexes would nevertheless influence the response regulator phosphate 

concentration: addition of ligand would only affect the 'real' sensor 

molecules, and the activity of the truncated, soluble MCP homologs would 

remain unaltered. In this scenario, the CheF kinase activity after adding 

the respective ligands would be higher in the mixed complexes compared 

to classical complexes. Such a mechanism might eventually realize a novel 

form of adaptation to various ligand concentrations presumed that the 

presence of the 'blind' receptors in the signaling arrays finally depends on 

the response regulator activity. Such roles in sequestering chemotaxis 

components as described here are fully compatible with the observation 

that Hp0599 is a cytosolic highly abundant protein as shown by two 

dimensionally gel electrophoresis of the entire H. pylori strain 26695 

proteome (Max-Planck-Institute for Infection Biology; for details see 

http://www.mpiib-berlin.mpg.de/2D-PAGE/). 
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In general, soluble MCP homologs seem to be ubiquitous, and again as in 

the case of its unusual set of chemotaxis proteins, an organism as E. coli 

appears to be the exception. Even in C. jejuni, two more genes within the 

genome are predicted to code for soluble transducer-like proteins (see 

table 3, p. 38). 

 

 

6.4. Possible role of CheV proteins 

 

CheW-CheY fusion proteins ('CheV proteins'; FREDRICK & HELMANN, 1994; 

DOIG et al., 1999) were found in the genomes of various organisms such 

as Bacillus subtilis, Staphylococcus aureus, Vibrio cholerae, Pseudomonas 

aeruginosa, Campylobacter jejuni, H. pylori and others (for a complete 

list, see http://smart.embl-heidelberg.de/smart/). From E. coli and other 

(coliform) organisms it is known that the response regulator CheY is the 

motor switch factor, and CheW is an adaptor protein that connects the 

transducer proteins with the histidine kinase (the CheW domain of CheA 

has regulatory functions; see BILWES et al., 1999; SHIMIZU et al., 2000). 

The role of the CheV proteins in the chemotaxis system, however, remains 

enigmatic. It was therefore of great interest to assess the function of the 

three CheV paralogs of H. pylori to understand their interplay with the 

other components of the chemotaxis network. 

 

In the present study, it was shown that CheV proteins (CheV2 and CheV3 

from H. pylori), in addition to CheY, are targets for the phosphoryl group 

transfer from CheA. Phosphorylation of the protein presumably occurs in 

the C-terminal response regulator-like domain on a conserved aspartyl 

residue as deduced from sequence homology to E. coli CheY in this region 

of the CheV protein. Whereas the phosphotransfer reaction between CheF-

phosphate and CheY proceeds very rapidly, the transfer to CheV2 is slow. 
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This is in accordance with the recent findings of KARATAN et al., 2001, in 

the homologous Bacillus subtilis chemotaxis system. The authors also find 

that CheV-phosphate is very stable compared to CheY- or CheB-phosphate 

from both E. coli and B. subtilis. Their results with wild type and mutant B. 

subtilis cells in the tethered-cell assay suggest that CheV plays a crucial 

role in adaptation to the attractant asparagine sensed by McpB. The 

prolonged lifetime of CheV-phosphate, as well as the slow phosphorylation 

kinetics of CheV might be necessary to allow enough time for the 

excitatory signal to cause a sufficient period of smooth swimming 

(KARATAN et al., 2001). In H. pylori, a similar mechanism might be at work 

where the CheA activity is modulated by the presence of CheV. 

Unfortunately, no comparable experimental data are available for H. 

pylori. PITTMAN et al., 2001, have shown the importance of CheV1 for 

helicobacterial chemotaxis. A deletion strain of cheV1 was no longer 

chemotactic, whereas strains deleted in cheV2, cheV3, or both showed no 

phenotype under the conditions tested. Furthermore, neither cheV2 nor 

cheV3 could complement isogenic E. coli cheW or cheY mutants, yet the 

expression of both genes in E. coli abolished chemotaxis. These results are 

difficult to interpret, especially in the light that the chemotaxis networks in 

B. subtilis and H. pylori differ significantly.  

 

For the H. pylori chemotaxis network with its apparent lack of receptor 

modifying enzymes, adaptation through the CheV proteins could be the 

only means by which the chemotaxis network might adapt. Their CheY 

domain allows protein phosphorylation (shown for CheV2 and CheV3 in 

this work), thus providing a possible feedback loop from the output of the 

chemotaxis network. If CheV proteins are involved in system adaptation, 

this adaptation mechanism must follow the theoretical constraints of 

asymptotic tracking which can not be relaxed without loosing exact 

adaptation (see chapter 6.6.). One prediction would be that the CheV 
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proteins not only bind to the receptors, but their affinity to the receptors 

must also change with their phosphorylation state. Moreover, there should 

be a difference in the receptor complex activity upon binding of CheV to 

this complex, as well as a different binding affinity of CheV towards 

receptors with and without bound ligands. The underlying theory that 

favors this scenario is that the phosphorylation of the CheY domain could 

trigger structural changes within the adjacent adaptor domain. 

Alternatively, the oligomerization state of CheV could be altered in a way 

that would lead to the exposure of the CheW domain. The CheV proteins 

might therefore play a regulatory function in non-enteric chemotaxis 

systems. Of special interest in this context is the absence of an obvious 

regulatory feedback loop, e.g. by receptor methylation, in Helicobacter 

that enables the enteric chemotaxis system to adapt.  

 

From the presence of the response regulator domain in CheV, on the other 

hand, one might conclude that the proteins shuttle between the receptor 

complex and the flagellar motors as already well known from E. coli CheY. 

Another possibility is that the CheY domain in CheV serves as a phosphate 

sink in a similar fashion as the one that was postulated for CheY orthologs 

in Rhodobacter or Sinorhizobium (SOURJIK and SCHMITT, 1996; ARMITAGE & 

SCHMITT, 1997; SOURJIK and SCHMITT, 1998; PITTMAN et al., 2001). From the 

kinetic data presented in this work regarding the CheF to CheV phospho-

relay it follows that the transfer of phosphate groups to CheV is 

considerably slower than the one to CheY. A similar situation can be found 

in R. sphaeroides where several CheA proteins only phosphorylate their 

cognate CheYs efficiently (SHAH et al., 2000; MARTIN et al., 2001). This 

might rule out a role of the CheV proteins as a phosphate sink, but we do 

not know if this transfer rate changes under conditions where a cognate 

ligand binds to the receptor complex. A better candidate for the phosphate 

sink, therefore, would be CheY, since CheY is rapidly phosphorylated by 
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CheF and CheY-phosphate is highly unstable as was shown both in this 

study. This, nevertheless, immediately raises the question which of the 

response regulators in H. pylori is the motor switch factor (see below). 

 

However, the phosphate-sink theory from Rhodobacter and Sinorhizobium 

has some general problems. It was never shown in an in-vivo or in-vitro 

system that the flow of phosphate groups from CheA to the flagellar motor 

switch factor reverses when ligand is added to a mixture containing all 

components of the respective chemotaxis system (Fig. 48). 

 

 

 

Fig. 48. Expected phosphoryl group transfer in the hypothetical phosphate 

sink theory in a chemotaxis system as in E. coli where addition of ligand 

decreases CheA histidine kinase activity. Under equilibrium conditions where 

no ligand is present (A), the phosphate groups are transferred mainly to the 

response regulator to generate the output signal (blue arrow). When ligand 

(green spheres) is added (B), the histidine kinase autophosphorylation 

activity is reduced and the response regulator phosphate signal is rapidly 

quenched by passing the phosphate groups to the hypothetical phosphate 

acceptor molecule via the histidine kinase (red arrows). The signaling complex 

is depicted as described in Fig. 47, p. 91. 
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Furthermore, the phosphate groups coming in to the kinase must then be 

'forwarded' to the 'phosphate sink' to quench the output signal (the 

phosphorylated kinase is stable towards hydrolysis on the time scale of 

the transphosphorylation events and a response regulator domain must be 

present in the system for signal termination). In E. coli, the response 

regulator phosphatase CheZ decreases the lifetime of CheY phosphate 

tenfold (SEGALL et al., 1985; BREN et al., 1996; SCHARF et al., 1998), and it 

is generally assumed that signal termination occurs almost exclusively by 

this mechanism. Other bacteria might employ other mechanisms to 

quench the chemotaxis signal, since the presence of CheZ seems to be 

restricted to the Enterobacteriaceae and Pseudomonaceae groups. The 

underlying logic for such a rather complex signal termination mechanism 

as a 'phosphate sink', in principle, remains elusive since a shortened 

lifetime of the response regulator would be a sufficient means in all cases 

where the signaling complex can still produce a high enough concentration 

of response regulator phosphate under equilibrium conditions. The quest 

for the phosphate sink that would allow the fast signal decay could 

therefore be misleading. 

 

Finally, in Helicobacter, the situation is even further aggravated by the 

presence of the CheY-like domain in CheF. The repertoire of five response 

regulator domains is unusual in the light of the simple enteric chemotactic 

system. Any of the five CheY domains might bind to the motor's switch 

complex or might be involved in signal quenching. 

 

 

6.5. The H. pylori motor and its switch 

 

H. pylori has five to seven sheathed flagella on one cell pole. The 

bacterium is highly motile and moves with appreciable velocities. In a 
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solution of 10 cp, H. pylori moves at up to 80 µm/s, whereas E. coli 

reaches only 30 µm/s (YOSHIYAMA et al., 1999). H. pylori can still move in a 

viscous environment of up to 200 cp, whereas E. coli is immobilized at 20 

cp. Orthologs of all proteins necessary to build the flagellar motor in E. 

coli are present in H. pylori. However, the helicobacterial motors and 

flagella contain additional building blocks. One is the minor flagellin FlaB 

(SUERBAUM et al., 1993; JOSENHANS et al., 1995; SUERBAUM, 1995), another 

is spirillin3, and other yet uncharacterized proteins might also participate. 

In analogy to the E. coli motors, the H. pylori motor switch presumably is 

composed of three proteins, FliG, FliM and FliN, that together form the 

cytosolic MS ring. Upon binding of the switch factor (CheY-phosphate in E. 

coli; CLUZEL et al., 2000), the proteins in the MS ring undergo structural 

rearrangements that result in an increased CCW to CW switching 

probability. Most of our knowledge on these events comes from coliform 

bacteria (BERG, 2000), and helicobacterial motors are not yet 

characterized. 

 

In E. coli, CheY-phosphate binds to the N-terminal 16 amino acids of FliM 

as shown by molecular crosslinking experiments with purified proteins in 

the presence of acetyl phosphate to generate CheY phosphate (BREN & 

EISENBACH, 1998, and this work, Fig. 42, p. 75). Similar experiments with 

components of the H. pylori chemotaxis system could not be performed 

since H. pylori FliM could not be overexpressed in E. coli. Consequently, a 

chimeric FliM was constructed assuming that the homologous proteins 

might interact. However, H. pylori CheY could not be crosslinked to E. coli 

FliM, presumably because other residues only present in H. pylori FliM 

specifically mediate this interaction. Hereby, the N-terminal amino acid 

residues not present in E. coli FliM might be of importance. Likewise, a 

                                            
3 This protein seems to be restricted to the Campylobacter and Helicobacter groups of the ε-
proteobacteria. A homologous protein from Wolinella succinogenes was first described by BERENDES, 
1998. 
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chimeric FliM protein that was constructed by fusing the H. pylori FliM N-

terminal 42 amino acids to the C-terminal E. coli FliM also failed to show 

any interactions with CheY of Helicobacter. Apart from the difficult 

solubility characteristics of H. pylori FliM, it has a pronounced tendency to 

aggregate at high concentrations, and it might be questionable whether H. 

pylori CheY-phosphate binds to FliM at all due to the presence of overall 

five CheY-like response regulator domains in this chemotaxis system (Fig. 

49). 

 

 

 

 

Fig. 49. H. pylori Che proteins with CheY-like response regulator domains. In 

E. coli, CheY phosphate is the output signal of the chemotaxis network that 

binds to FliM located in the switch complex beneath the membrane bound FliF 

disc. In H. pylori, five proteins eventually could bind to FliM and induce motor 

switching. 

 

 

FOYNES et al., 2000 showed that H. pylori cells deficient in CheF, in both 

CheF and CheY, and in the CheY domain of CheF exhibited a smooth 

swimming phenotype that reminds to the phenotype of E. coli cells lacking 

CheY. The authors concluded that not CheY but CheF with its CheY domain 
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is the flagellar motor switch factor. The authors also mentioned the 

presence of the soluble transducer protein Hp0599 and its apparent 

capability to form soluble signaling complexes. The smooth swimming 

phenotype, however, might only be the result of a 'malfunctioning', 

complex chemotaxis network that was deprived of some of its important 

components. Under the assumption that CheF is indeed the switch factor, 

one is faced with several other problems: does CheF build receptor 

complexes as known from the homologous proteins of all other bacteria 

investigated? And if so, how can such a complex with a molecular weight 

of several megadaltons bind to FliM? Furthermore, in E. coli, it is not the 

binding of one CheY phosphate molecule that induces motor switching, but 

the binding of several such response regulators. If this holds true for 

Helicobacter, the motor would need to bind either several such large 

complexes or many CheF molecules from one complex need to bind to the 

MS ring. The role of membrane-bound transducer molecules in such a 

scene remains enigmatic, since membrane bound signaling complexes 

should not be able to bind to the cytosolic MS ring at all. To clarify these 

questions will be difficult with the techniques used to gain insight into the 

homologus enteric model: as it was shown in this study, H. pylori FliM was 

not expressed in E. coli and is therefore not as easily available as E. coli 

FliM. The use of chimeric FliM might overcome this problem, but it is 

unclear whether the switch factor will bind to this protein. Furthermore, 

the CheV proteins autophosphorylate only to a very limited extend in the 

presence of acetyl phosphate, and response regulator to FliM crosslinking 

experiments that rely on response regulator autophosphorylation are 

hence not suited for the CheV proteins. The preparation of phosphono-

CheV (and CheY, if necessary; see HALIKDES et al., 1998; HALIKDES et al., 

2000) might circumvent this problem and was initiated in the present 

work (construction and expression of the CheV2 double mutant 

CheV2:D241C/C274S for derivatization) yet is behind the scope of this 
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work. In the case that CheF binds to the motor switch factor, the 

feasibility of protein-protein interaction assays (CheF or whole signaling 

complexes with FliM) will be limited by the mere size of the interacting 

components and again by the preparation of CheF phosphorylated in its 

response regulator domain. In vivo experiments with fluorescence labeled 

fusion proteins to localize H. pylori chemotaxis components (SOURJIK & 

BERG, 2000) might be more suited as the in vitro assays conducted in the 

present work. 

 

Arguments in favor of CheF being the motor switch factor come from a 

computational analysis of several prokaryotic genomes that claims that 

the chemotaxis operon in H. pylori is highly expressed (KARLIN & MRÁZEK, 

2000). This might be necessary if CheF would be the switch factor. 

Similarly, Hp0599 forms a prominent spot on a two-dimensional SDS-

PAGE derived from a total H. pylori cell extract indicating a high 

concentration of this protein in the cell (see http://www.mpiib-

berlin.mpg.de/2D-PAGE/ for details). The availability of specific antisera 

directed to CheF, Hp0599 and other chemotaxis network components will 

allow to exactly measure the expression levels of these proteins in further 

experiments. 

 

 

6.6. Adaptation in biological networks and chemotaxis in H. pylori  

 

Complex networks like metabolic pathways, food webs or man-made 

structures must be able to counteract perturbations to ensure proper 

function (BHALLA & IYENGAR, 1999; STROGATZ, 2001; for a historic overview 

see BENNETT, 1993). For example, the availability of glucose, E. coli's 

favorite carbon source, represses the expression of enzymes for the 

catabolism of other sugars even in their presence, and the depletion of 
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glucose in the medium induces a change in the cell's enzyme repertoire. 

The chemotaxis system of coliform bacteria that senses temporal 

gradients of chemicals is one of the best understood biological networks 

and the way how its components interact to build a simple yet robust 

signal transduction system whose steady-state output is independent of 

the input signal becomes more and more apparent (for recent review see 

SHIMIZU et al., 2000 and FOUSSARD et al., 2001). Following the model of 

BARKAI and LAIBLER and using techniques from control and dynamical 

systems theory (ISIDORI & BYRNES, 1990), YI et al., 2000 have shown that 

this asymptotic tracking behavior originates in the specific structure of the 

system that creates this property inherently. It does not lie in a fine-

tuning of system parameters. In this model, the covalent modification of 

the receptor complex by CheB and CheR generates a closed loop system 

in which the system error is fed back into the system (integral feedback 

control; Fig. 50). In fact, integral control is not only sufficient, but 

necessary for robust perfect adaptation. 
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Fig. 50. Block diagram of integral feedback control in the BARKAI-LEIBLER 

model of chemotaxis in E. coli. The ligand concentration u is the input 

variable, and receptor activity is the output of the chemotaxis system with the 

gain k. For the system to adapt, y(t)= (y1) - (y0), the output error of the 

system, must become zero for t ∞. In the case of the chemotaxis network, 

this equals that receptor array activity (y1) reaches its basal activity (y0) after 

a sufficiently long period of time at all ligand concentrations. This is realized 

by the feedback loop in which the time integral of the output error y (receptor 

array deactivated through ligand binding compared to its basal activity when 

ligand is absent, for example) is fed back into the system. The result is y= 

k(u-x)-y0 becomes zero at stady-state for all u. In the chemotaxis network, -x 

equals the receptor methylation level. Adapted from YI et al., 2000. 

 

The evolutionary advantage of such a chemotaxis system for E. coli is 

obvious: its robustness permits a large parameter space in which the 

system can evolve and adjust to environmental changes, and its 

properties are preserved even if the network components are modified or 

produced in varying quantities (BARKAI & LAIBLER, 1997). However, the H. 

pylori chemotaxis system lacks receptor modifying enzymes and therefore 

it remains enigmatic whether the network adapts, and if so, how. One 

possibility is the presence of up to now unknown proteins with functional 

homology to CheB and CheR. In fact, within the H. pylori genome, 42% of 

all ORFs are of unknown function, 55% of which are specific to this 
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organism. However, the system could also achieve asymptotic tracking by 

means other than receptor methylation. The feedback loop that is 

necessary for adaptation could be realized by any other mechanism 

whatsoever, as long as it provides the system with information on the 

time integral of the output error. Therefore it is tempting to speculate on 

the role of the three CheV paralogs in the Helicobacter pylori chemotaxis 

system proteins (see chapter 6.7.). 

 

Another possibility is that H. pylori has a chemotaxis system that lacks a 

feedback loop analogous to the one known from enteric bacteria. Such a 

system would not be able to adapt to changing ligand concentrations, its 

steady-state output value would always depend on the system input and 

on the concentration of the network components. Apparently, such a 

chemotaxis system is of only limited value to the cell. It is difficult to 

imagine such a simple system especially in the light of its importance to 

H. pylori: non-chemotactic bacteria are not virulent, they do not establish 

infections in humans or in the gnotobiotic piglet model (for an overview 

see FALK et al., 1998). Furthermore, the non-adherent Helicobacter 

population that makes up 90% of all Helicobacters in the stomach 

perpetually needs to relocate from the mucus to the cell surface in order 

to avoid their discharge into the digestive tracks. Chemotaxis as the 

means of control over motility is crucial for this ability.  

 

 

6.7. Gene regulation and adaptation in a stable environment 

 

The environment in which H. pylori thrives, the surface mucous cell type 

layer (SLOMIANY et al., 1987; OTA et al., 1992; SHIMIZU et al., 1996), 

appears to be of remarkable stability and uniformity over time. The 

number and complexity of regulatory circuits in any given organism 
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positively correlates with the number and complexity of external 

environmental forces acting on the organism (see STOVER et al., 2000, and 

references therein). Within the genomes of free-living bacteria, more 

proteins involved in regulatory functions can be identified than in genomes 

of endosymbionts, and free-living bacteria with a highly diverse lifestyle 

like Pseudomonas or Sinorhizibium possess more signal transduction 

networks than less flexible species (STOVER et al., 2000; FINAN et al., 

2001; BARNETT et al., 2001; CAPELA et al., 2001;). As far as H. pylori is 

concerned, one striking feature of the organism is the low abundance of 

known regulatory proteins as exemplified by the existence of only three 

sigma factors involved in transcriptional regulation and four two-

component systems of largely unknown function (two of the sigma factors 

are exclusively involved in flagellin gene expression; TOMB et al., 1997; 

BEIER & FRANK, 2000, BJÖRKHOLM et al., 2001). Another factor that might 

have driven the loss of regulatory networks during H. pylori evolution 

besides the environmental stability is the lack of competition by other 

microorganisms. However, the parameter space in which the bacterium 

operates might be narrow enough to permit a reduction in both the 

number of signal processing circuits as well as their dynamic range. This 

could account for the possible lack of genes coding for the receptor-

modifying proteins CheR and CheB in the H. pylori genome. Rather 

sophisticated adaptation mechanisms like receptor methylation might just 

not be a necessity for this organism since the environmental conditions it 

experiences never change to an extend that would render such an 

apparatus useful. Somehow contradictory to that is the fact that the 

chemotaxis system in H. pylori, as well as in other members from the ε-

subgroup of proteobacteria, is at least as complex as the one that can be 

found in coliform bacteria. It is not the diversity in transducer proteins, 

but it is rather the unusual set of chemotaxis proteins that make up this 

complexity. However, further experiments not only with isolated 



6. Discussion 107

chemotaxis components but also with living cells are clearly needed to 

investigate the importance of adaptation in H. pylori chemotaxis. 



7. Materials and Methods 109

7. Materials and Methods 

 

 

Solutions and labware for bacterial cell cultures and molecular biological 

techniques were autoclaved or sterile filtered. All enzymes were purchased 

from New England Biolabs (Beverly, USA) and all chemicals were from 

Sigma-Aldrich (Deisenhofen) unless otherwise indicated (see Appendix A). 

Radiochemicals were purchased from Amersham Pharmacia (Freiburg). 

Chemicals used for crystallization trials were of the highest purity 

available, and solutions were sterile filtered before use. All numbers given 

in per cent refer either to weight per volume or, in cases of liquids, to 

volume per volume. All experiments involving standard techniques were 

performed following the manufacturer's protocols and recommendations 

when available if not otherwise explicitly indicated. 

 

 

7.1. Bacterial strains and plasmids 

 

Unless otherwise indicated, Escherichia coli strain XL1 blue (BULLOCK et al., 

1987) was used for plasmid growth and maintenance, and strain 

BL21(DE3) (STUDIER et al., 1990) was used for high-level expression of 

recombinant proteins directed by either plasmid pT7-7 (GALLAGHER, 1992; 

for halophilic proteins), plasmid pET28a(+) and pET36b(+) (Novagen; see 

Appendix B) derived vectors harboring the gene of interest under the 

control of the T7 promotor (STUDIER & MOFFATT, 1986; ROSENBERG et al., 

1987). All expression plasmids were constructed by ligating appropriately 

digested PCR products into the plasmid DNA. The resulting vectors were 

sequenced to ensure no mutation was introduced into the gene sequence 

during the amplification reactions. 
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7.2. General molecular biological techniques 

 
Kanamycin (pET based vectors) and ampicillin (pT7-7 based vectors) were 

the selection markers, and all media or agar plates to grow transformed 

bacteria were supplemented with either of the two antibiotics (kanamycin 

at a concentration of 30 µg/ml, ampicillin at a concentration of 100 

µg/ml). The media (LB broth, terrific broth and SOC agar plates) for 

bacterial growth were prepared following the instructions given by 

GALLAGHER, 1992; the agar plates contained 1.5% agar-agar. 

 

 

7.2.1. Culture of E. coli XL1 blue cells for plasmid growth 

 

A 100 ml Erlenmayer flask containing 50 ml of LB broth with an 

appropriate antibiotic was inoculated with a single colony of E. coli XL1 

blue harboring the plasmid of interest. The flask was incubated overnight 

on a platform shaker at 37°C and 250 rpm. From this cell culture the 

plasmid DNA was purified as described under 7.2.2. 

 

 

7.2.2. Purification of plasmid DNA from E. coli cells 

 

All plasmids used throughout this work were purified from an overnight E. 

coli XL1 blue cell culture using the QIAprep procedure as recommended by 

the manufacturer. Plasmid DNA was always eluted from the spin columns 

with 50 µl elution buffer. 
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7.2.3. General PCR protocol for DNA amplification 

 

For DNA amplification reactions, an appropriate amount of template DNA 

was added to a mixture of 10 µl of each primer at a concentration of 2 µM, 

20 µl 10 mM dNTPs (2.5 mM each; TaKaRa), 10 µl 25 mM magnesium 

chloride, 10 µl 10x TaKaRa LR Taq reaction buffer, 2 µl DMSO and 5 units 

TaKARa LA Taq in a total volume of 100 µl. After an initial denaturation 

step of 94°C for 3 min, all reactions were cycled (denaturation, annealing 

and extension) for 30 cycles of 94°C for 45 sec, 45°C for 45 sec and 63°C 

for 1 min for each kb of DNA to be synthesized. Thereafter, an aliquot of 

the reaction mixture was run on an agarose gel to visualize the 

amplification products. The remaining DNA was purified from the other 

components of the reaction mixture using the QIAquick procedure as 

described under 7.2.4. 

 

 

7.2.4. Purification of DNA after enzymatic reactions 

 

For the purification of DNA after enzymatic reactions the QIAquick 

procedure was used essentially as recommended by the manufacturer, 

except that the column was washed twice with washing buffer and that 

the purified DNA was eluted from the spin columns with 120 µl of elution 

buffer in the cases where the DNA was further processed in enzymatic 

reactions except ligations. In all other cases the DNA was eluted with 30 

µl elution buffer to ensure a high DNA concentration. 
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7.2.5. Preparation of vector DNA for ligation reactions 

 

Vector DNA was prepared as described under 7.2.2. For restriction of 

vector DNA, 120 µl DNA solution was digested with 100 units each of the 

appropriate restriction endonucleases in a total volume of 150 µl 

supplemented with reaction buffer as recommended by the 

endonuclease's manufacturer. After 30 min at 37°C, the DNA was purified 

from the reaction mixture as described under 7.2.4. Subsequently the 5´-

phosphate groups were removed from the linearized DNA molecule by 

shrimp alkaline phosphatase (USB) treatment as follows: 15 µl reaction 

buffer and 3 units shrimp alkaline phosphatase were added to the DNA 

solution according to the supplier's instructions in a total volume of 140 

µl. Again, after 30 min at 37°C, the vector DNA was purified from the 

reaction mixture as described and stored at -32°C until further use. 

 

 

7.2.6. Preparation of PCR-derived DNA fragments for ligation 

reactions 

 

DNA fragments to be ligated into expression vectors were digested by 

appropriate restriction endonucleases which cut at cleavage sites that 

were introduced by the PCR-primers. To 120 µl DNA preparation, 20 µl of 

the restriction endonuclease reaction buffer and 100 units each of the 

restriction endonucleases were mixed in a total volume of 150 µl. The 

reaction was allowed to proceed for 30 min at 37°C. Thereafter, the DNA 

was purified from the other components of the reaction mixture as 

described under 7.2.4. 
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7.2.7. Ligation of DNA molecules 

 

Linearized vector DNA was prepared as described under 7.2.5., and PCR-

derived DNA fragments to be ligated to the vector backbone were 

prepared as described under 7.2.6. All ligations were prepared by adding 

4 µl 5x ligation buffer (Gibco BRL), 2 µl insert DNA, 1 µl vector DNA, 1 µl 

10 mM ATP and 2 µl T4 DNA ligase (Gibco BRL) to 10 µl water. The 

reaction mixture was carefully mixed, and after an initial step of 24°C for 

15 min, all reactions were cycled for 99 cycles of 24°C for 2 min, 18°C for 

2 min and 12°C for 2 min followed by 1 h at 12°C. 

 

 

7.2.8. Restriction analysis of plasmid DNA 

 

From cell cultures of bacterial colonies obtained after transforming 

bacterial cells with ligation reactions, plasmid DNA was isolated as 

described under 7.2.2. Plasmid DNA was digested with the restriction 

endonuclease(s) used to construct the desired plasmid by mixing 5 µl 

plasmid preparation, 10 units each restriction endonuclease in a total 

volume of 10 µl of 1x reaction buffer supplied with the restriction 

endonuclease. After incubation at 37°C for 30 min the DNA was resolved 

on an agarose gel as described under 7.2.9. 

 

 

7.2.9. Analysis of DNA by agarose gel electrophoresis 

 

Agarose gel electrophoresis of DNA was performed in commercially 

available submarine gel tanks of appropriate size following the method of 

MCDONELL et al., 1977 and SOUTHERN, 1979 as described in GALLAGHER, 

1992. All agarose gels used throughout this study were run in TBE buffer 
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(44.5 mM Tris base, 44.5 mM boric acid, 1 mM EDTA in water) and were 

prepared by dissolving 0.7 % agarose and 0.5 µg/ml ethidium bromide in 

TBE buffer. Samples containing an appropriate amount of DNA were mixed 

with 6x loading buffer (0.1% bromophenol blue, 15% Ficoll type 400 in 

water) prior to sample application, and the gel was run at 4 V/cm until 

optimal separation was achieved. Thereafter, the DNA was visualized by 

illumination with UV light. As size marker, Gibco BRL's 1 kb DNA size 

marker was used.  

 

 

7.2.10. Sequencing of plasmid DNA 

 

All sequencing reactions were carried out following the chain termination 

method originally developed by SANGER et al., 1977, with the modifications 

by TABOR & RICHARDSON, 1987, using Perkin Elmer's ABI Prism BigDye 

Terminator Cycle Sequencing Ready Reaction kit as recommended by the 

manufacturer. In short, 2.5 µl plasmid DNA, 7.5 µl water, 1 µl DMSO, 5 µl 

sequencing primer at a concentration of 10 µM and 4 µl BigDye reagent 

were mixed in a PCR tube, and the reaction was cycled (denaturation, 

annealing and extension) after an initial denaturation step of 94°C for 3 

min for 30 cycles of 94°C for 45 sec, 43°C for 45 sec and 60°C for 5 min. 

Thereafter, 10 µl of water were added to the reaction mixture, and the 

newly synthesized DNA was purified from other components of the 

reaction mixture by size exclusion chromatography on Sephadex G-50 

columns as follows: the DNA solution was applied to either an AutoSeq G-

50 disposable spin column (Amersham Pharmacia Biotech) or, in the case 

of many probes, to a Millipore MultiScreen-HV 96 well plate. 

Subsequently, the DNA was eluted from the columns as recommended by 

the respective manufacturer, dried in a speed vac and resuspended in 3 µl 

denaturation buffer (100 mg dextran blue, 1 ml 25 mM EDTA in 7 ml 
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deionized water). The DNA probes were denatured for 2 min at 96°C and 

the amplification products were resolved on an ABI Prism 377 DNA 

sequencer. 

 

 

7.2.11. Preparation of short synthetic dsDNA linker 

 

Short synthetic dsDNA fragments with protruding ends for ligations were 

prepared from appropriately designed oligonucleotide pairs by mixing 50 

µl of each oligonucleotide at a concentration of 5 µM in a microcentrifuge 

tube. The mixture was incubated at 96°C for 5 min and was thereafter 

allowed to cool down to room temperature. The solvent was removed in a 

speed vac and the DNA was dissolved in 100 µl of 10 mM Tris-HCl pH 8.5 

at room temperature. Subsequently, the DNA was phosphorylated in a 

final volume of 120 µl containing 3 units polynucleotide kinase (USB), 1 

mM ATP and 1x polynucleotide kinase buffer as recommended by the 

manufacturer. The reaction was allowed to proceed for 45 min at 37°C. 

Thereafter, the DNA was purified from the other components of the 

reaction mixture using the QIAquick procedure as described under 7.2.4. 

 

 

7.2.12. Construction of mutant genes by site-directed mutagenesis 

 

To introduce point mutations into cloned genes the QuickChange site-

directed mutagenesis kit (Stratagene) was used essentially as 

recommended by the manufacturer. 
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7.2.13. Construction of mutant genes by PCR 

 

In all cases where the DNA sequence to be altered was near (< 120 bp) 

the 5´- or 3´- end of the gene, the novel gene sequence was introduced 

by PCR with an oligonucleotide bearing the mutation. The oligonucleotide 

was designed to cover the sequence beginning at least 20 bp down- or 

upstream of the desired mutation going all the way to either the 5´- or 

3´-end of the gene including flanking sequences recognized by restriction 

endonucleases for the generation of overlapping ends. Subsequently, the 

resulting PCR fragment was cloned into an expression vector as described 

under 7.2.7. 

 

 

7.2.14. Construction of chimeric FliM 

 

To construct a chimeric FliM protein where the N-terminal 42 amino acids 

of the H. pylori FliM protein were fused to the C-terminal 45 to 334 amino 

acids of the E. coli FliM protein, a PCR primer was designed whose 3´- end 

was directed to the H. pylori fliM gene sequence (bp 111 to 141) and 

whose 5´- end was directed to the E. coli fliM gene (bp 135 to 170; see 

Fig. 51, p. 91). PCR with this primer and a primer directed to the 5´-end 

of the H. pylori fliM gene in a PCR with a plasmid harboring the H. pylori 

fliM gene as template gave a PCR product whose 3´- end was homologous 

to the E. coli fliM. Subsequently, this PCR product was used as a primer in 

a second PCR to amplify the full length chimeric gene from a plasmid 

containing the E. coli fliM gene. This chimeric gene was cloned into an 

expression vector as described under 7.2.7. 
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Fig. 51. Synthesis of the chimeric H. pylori - E. coli fliM gene. In the first PCR, a PCR 

primer was used whose 3'-end is complimentary to the H. pylori fliM gene (red part of 

reverse primer) and whose 5'-end is complementary to the E. coli fliM gene (blue part 

of reverse primer). The resulting first PCR product was used as primer in the second 

PCR. The resulting second PCR product is the desired chimeric gene. 

 

 

7.2.15. Synthesis of H. salinarum cheR and cheB genes 

 

The protein sequence of H. salinarum CheR and H. salinarum CheB was 

reverse-translated to the according DNA sequence using the E. coli codon 

usage table. From this novel gene sequence, oligonucleotides for the LCR 

(LANDEGREN, 1988) were designed as follows: beginning at the 5´-end of 

the coding strand, the gene sequence was divided into one 35 bp long 

oligonucleotide, followed by 75 bp long oligonucleotide all the way to the 
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3´-end of the gene (see Fig. 52, p. 93). The missing bases of the 

template strand (in any case, < 75) were omitted. For the non-coding 

strand, oligonucleotides were designed in the very same way as described 

for the coding strand so that the 5´-end of the first oligonucleotide was 

the complement of the 3´-end of the coding strand. From all 

oligonucleotides, the solvent (20% acetonitrile in water) was removed in a 

speed vac, the oligonucleotides were dissolved in water and the 

concentration was adjusted to 10 µM. Thereafter, all oligonucleotides (18 

in the case of cheR, 26 in the case of cheB) except the ones at the 3´-end 

of each strand to be synthesized were phosphorylated using 

polynucleotide kinase as described in 7.2.11. except that the 

oligonucleotides were not purified after the reaction. The LCR was 

performed in a total volume of 100 µl with 100 nM of each oligonucleotide 

and 4 units of Pyrococcus furiosus DNA ligase (Stratagene) in 1x reaction 

buffer as supplied by the manufacturer. The LCR reaction was cycled 

(denaturation and annealing/ligation) for 30 cycles of 94 °C for 30 sec and 

76 °C for 40 sec after an initial denaturation period of 1 min at 94°C. Ten 

µl of the reaction mixture were loaded on an 0.7% agarose gel in TBE 

(44.5 mM Tris base, 44.5 mM boric acid, 1 mM EDTA in water), and the 

band corresponding to the synthetic gene was excised and washed twice 

in 500 µl sterile water for 5 min. Thereafter, the agarose was minced in a 

microcentrifuge tube with a small Teflon pestle. DNA was extracted from 

this slurry by adding an appropriate amount of 10 mM Tris-HCl pH 8.5 at 

20°C followed by vortex mixing for one min. From this DNA solution, one 

µl was used as a template in a PCR reaction with appropriate primers to 

amplify the full-length synthetic gene (see Fig. 52). The nucleotide 

sequence of both synthetic genes is given in Appendix C. 
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Fig. 52. Construction and synthesis of artificial genes by the Ligase Chain Reaction. 

Based on the DNA sequence to be synthesized (blue double strand in A), short 

oligonucleotides were designed for both strands as described in the text. From these 

primers, the dsDNA was synthesised during the LCR (B). After its separation from 

other products formed during the LCR by agarose gel electrophoresis, the synthetic 

gene was PCR amplified. The forward primer also introduces the necessary restriction 

endonuclease recognition sites for subsequent ligation of the PCR product (black arrow 

in C). The appropriately designed reverse primer not only introduces these sites at the 

gene's 3´-end but also the remaining bp (bp beyond 35+75n; blue and black part of 

the arrow symbolising the reverse primer in C, respectively). The resulting PCR 

product (D) is the desired synthetic gene that can be cloned into an expression vector 

as described in 7.2.3. through 7.2.7. 

 

 

7.2.16. Construction of N- and C-terminal fragments of Car 

 

Starting from the amino acid sequence of Car, the protein's secondary 

structure was computed using the program DNASIS (Hitachi). From these 
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calculations, the N- and C- terminal domains of Car were predicted and six 

different gene fragments coding for three N- and  three C- terminal 

domains were constructed by PCR as described above. 

 

 

7.2.17. Preparation of electrocompetent E. coli cells 

 

From a frozen glycerol culture of the desired E. coli strain stored at -80°C 

a small amount of the frozen cell suspension was removed by a sterile 

platinum loop. The cells were streaked out on a SOC agar plate and the 

plate was incubated overnight at 37°C. At the following day, 50 ml LB 

broth was inoculated with a single bacterial colony and the flask was 

incubated overnight on a platform shaker at 37°C, 250 rpm. This starter 

cell culture was thereafter diluted 100-fold in LB broth, and the cells were 

further incubated on a platform shaker at 250 rpm, 37°C. Typically, one 

liter LB broth in a two liter Erlenmeyer flask was used to grow the 

bacteria, and the following quantities refer to one liter of cell culture. 

When the bacterial culture reached an OD595 of 0.8, the flask was 

removed from the shaker and cooled down to 0°C in an ice water bath. 

After 20 min, the bacteria were harvested by centrifugation in 450 ml 

centrifuge tubes at 4°C for 10 min at 2500xgmax. The cell pellet was 

washed with 450 ml ice cold water and the cells were recovered by 

centrifugation as described above. This washing step was repeated twice 

with first water followed by an ice cold solution of 10% glycerol. 

Thereafter, the cells were resuspended in 2.5 ml of ice cold 10% glycerol, 

divided into 50 µl aliquots, shock frozen in liquid nitrogen and stored for 

further use in microcentrifuge tubes at -80°C. 
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7.2.18. Transformation of E. coli cells 

 

Electrocompetent E. coli cells were thawed on ice, and in all cases where 

DNA from plasmid preparations was to be transferred into the appropriate 

E. coli strain, 25 µl of electrocompetent E. coli cells were mixed with 100 

nl of plasmid DNA solution obtained as described under 7.2.2. If plasmid 

DNA obtained in ligation reactions was to be transformed to E. coli cells, 2 

µl ligation reaction was mixed with 50 µl electrocompetent E. coli cells. 

Then the DNA cell suspension was transferred to ice cold electroporation 

cuvettes (0.2 mm gap width) and the electroporation was performed using 

Biorad's Gene Pulser System (settings were 1.5 kV, 800 Ω, 25 µF). The 

transformed cells were resuspended in 1 ml LB broth, transferred to 10 ml 

plastic cell culture tubes, and incubated for phenotypical gene expression 

in a shaker at 37°C for 45 min. Thereafter, the bacteria were plated out 

(50 µl in all cases where plasmid DNA preparations were to be 

transformed, and 300 µl in all other cases) on SOC agar plates containing 

the appropriate antibiotic and the plates were left upside down in an 

incubator at 37°C overnight. 

 

 

7.2.19. Primer design for PCR and sequencing reactions 

 

Most primers to amplify DNA by PCR were designed as shown in Fig. 53 

(for a complete list see Appendix B). Primers to be used in sequencing 

reactions were designed by OLIGO (Version 4.04, National Biosciences 

Inc.) with a primer length of 20 bp. 
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Fig. 53. PCR primer design. The DNA sequence to be amplified is depicted as red 

double strand. The part of the PCR primer complementary to the DNA strand was 

always 30 bp in length (red part of primer) followed by a restriction endonuclease 

recognition site (green) and 6 bp overhangs to allow restriction endonuclease binding 

(blue). 

 

 

7.3. Protein chemical methods 

 

7.3.1. Test for recombinant protein expression 

 

An overnight E. coli cell culture in 50 ml LB broth was diluted 100-fold in a 

5 liter Erlenmeyer flask with terrific broth containing the appropriate 

antibiotic. This expression culture was then incubated on a platform 

shaker at 24°C and 130 rpm until the cells reached an OD of 0.8 at 595 

nm. Expression of protein was induced by the addition of IPTG (Gerbu) to 

a final concentration of 1 mM. After 2, 4 and 6 hours, a 1 ml aliquot was 

taken from the culture and the bacteria were collected by centrifugation in 

a microcentrifuge tube. The cells were lysed by the addition of 100 µl 2x 

SDS sample buffer. Total cell proteins were analyzed by SDS-PAGE and 

visualized as described under 7.3.5. A prominent protein band of the 

appropriate molecular weight indicated the expression of the desired 

protein. As a reference, a bacterial culture harboring an expression vector 

containing another gene was used. To determine whether the successfully 

expressed protein is soluble or not, the remaining cells of the expression 

culture were harvested by centrifugation, resuspended in buffer 0I (300 
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mM sodium chloride, 10 mM Tris-HCl pH 8.0 at 4°C), and lysed by 

sonication. Thereafter, the cytosol was clarified from insoluble material by 

centrifugation, and both the supernatant and the pellet were analyzed by 

SDS-PAGE for proteins as described above.  

 

 

 7.3.2. Isolation of inclusion bodies from E. coli cells 

 

An appropriate amount of bacterial cells (usually 20 g) were resuspended 

in warm tab water and 30% LDAO in water was added to a final 

concentration of 0.6%. After 5 min at room temperature, lysozyme in 

buffer 0I (300 mM sodium chloride, 10 mM Tris-HCl pH 8.0 at 4°C) was 

added, and the cells were again left at room temperature for an additional 

10 min. The cell suspension turned into a viscous paste that indicated cell 

lysis. Thereafter, chromosomal DNA was digested by adding DNaseI and 

the inclusion bodies were recovered by centrifugation at 10.000xgmax for 

10 min. The pellet containing inclusion bodies and cellular debris was 

transferred to a Potter-Elvehjem homogeniser and resuspended with 

buffer 0I (300 mM sodium chloride, 10 mM Tris-HCl pH 8.0 at 4°C). Again, 

the inclusion bodies were collected by centrifugation at 10.000xgmax for 10 

min and the homogenization/washing step was repeated twice with first 

buffer 0I supplemented with 20% glycerol followed by one washing step 

with water. The so obtained inclusion bodies were stored until further use 

at -32°C.  

 

 

7.3.3. Heterologous expression of proteins in E. coli 

 

Expression cultures in terrific broth were obtained as described under 

7.3.1., and bacterial cells were grown at 24°C for 10 h. Thereafter, 
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protein expression was induced by the addition of IPTG (Gerbu) to a final 

concentration of 1 mM. In all cases where the proteins to be expressed 

were derived as inclusion bodies, expression was allowed to proceed for 6 

to 8 h. In all other cases, bacterial cells were harvested 3 h after induction 

with IPTG by centrifugation and the recombinant protein was immediately 

purified from the cells. 

 

 

7.3.4. Purification of overexpressed proteins from E. coli 

 

All steps were carried out on ice or in a cold room at 4°C except purifica-

tion steps involving buffers containing 8 M urea (room temperature). All 

equipment to purify proteins by fast performance liquid chromatography 

was from Amersham Pharmacia (Freiburg). 

 

Purification of wild type and mutant H. pylori Che proteins CheV1, 

CheV2, CheV3, CheW, CheY and E. coli CheW and CheY. Inclusion 

bodies were purified from E. coli cells as described under 7.3.2. The 

inclusion bodies were solubilized in buffer FU (8 M urea, 10 mM Tris-HCl 

pH 8.0 at 20°C) and the solution was clarified by centrifugation at 

75.000xgmax for 10 min. Thereafter, the supernatant was dialyzed 

overnight against buffer 0I (300 mM sodium chloride, 10 mM Tris-HCl pH 

8.0 at 4°C) at 4°C. At the next day, precipitant was removed by 

centrifugation at 75.000xgmax for 10 min and the supernatant was applied 

to a Ni-NTA column (1.6x10 cm; Qiagen) equilibrated in buffer A. The 

column was washed with 20 column volumes of buffer A at a flow rate of 2 

ml/min supplemented with 25 mM imidazole and developed with an 

imidazole gradient (1 ml/min) from 25 mM to 250 mM imidazole in buffer 

A. Eluent fractions were analyzed by SDS-PAGE for recombinant protein 

and fractions containing the protein of interest were pooled. To remove 
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the N-terminal His6-tag when desired, thrombine protease (1 U/mg 

recombinant protein; Amersham Pharmacia Biotech) and calcium chloride 

(2.5 mM final concentration) were added and the solution was dialyzed 

overnight at 18°C against 5 liters of buffer A containing 2.5 mM calcium 

chloride. The dialyzed sample was again applied to a Ni-NTA column 

(usually 1.6x2 cm; Qiagen) to remove residual His6-tagged proteins. In 

cases when necessary, bound protein was eluted from this column by a 

single step gradient of 5 mM imidazole in buffer A. Eluent fractions 

containing the protein were pooled, concentrated in a Centriprep K-10 

device and applied at a flow rate of 0.43 ml/min to a HiLoad 26/60 

Superdex 75 prep grade column (Amersham Pharmacia Biotech) which 

had been equilibrated in buffer A. The purified proteins were essentially 

pure (>95%) as judged from SDS-PAGE analysis. 

 

 

Purification of CheF, CheF:H47G, CheF:D729K and CheF:K789R. The 

bacterial pellet was resuspended in buffer AG (buffer A supplemented with 

20% (v/v) glycerol, 0.2 mM EDTA, 10 mM 2-mercaptoethanol and 

protease inhibitor cocktail for His6-tagged proteins (Sigma) according to 

the manufacturers instructions) and cells were disrupted in a French 

pressure cell. After the addition of appropriate amounts of DNaseI, the 

solution was clarified by centrifugation and immediately applied to a Ni-

NTA column (1.6x10 cm; Qiagen) equilibrated in buffer AG. The following 

purification steps followed the procedure described above except that 

Centriprep K 50 concentrators and a Sephacryl S300-HR column (2.6x95 

cm) were used for concentration and size exclusion chromatography of 

recombinant CheF. All buffers were supplemented with 20% (v/v) 

glycerol. For the subsequent preparation of phosphorylated CheF the N-

terminal His6-tag was not removed. 
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Purification of full length and fragmented Car. After disruption of 

bacterial cells resuspended in buffer H (10 mM 2-mercaptoethanol, 2 mM 

EDTA, 20 mM Tris-HCl pH 8.0 at 4°C) containing 0.1 mM PMSF in a French 

press the cytosol was clarified as described above. Thereafter, the clear 

solution was incubated in a water bath at 52°C for 10 min, and 

precipitated E. coli proteins were removed by centrifugation. The resulting 

supernatant was again incubated in a water bath at 62°C for 10 min. 

Again, precipitated proteins were removed by centrifugation and the 

supernatant was applied at a flow rate of 1 ml/min to a DEAE cellulose 

column (2.6x10 cm; Whatman) equilibrated in buffer H. The column was 

washed with 20 column volumes of buffer H supplemented with 150 mM 

potassium chloride and developed with a linear potassium chloride 

gradient of 150 to 500 mM potassium chloride in buffer H. Eluent fractions 

were analyzed for protein by SDS-PAGE and fractions containing the 

desired protein were pooled and dialyzed overnight against buffer C (2.8 

M potassium chloride, 10 mM 2-mercaptoethanol, 20 mM potassium 

phosphate pH 6.8 at 4°C). The dialyzed protein solution was then applied 

to a hydroxyapatite column (2.6x20 cm; BioRad) equilibrated in buffer C, 

the column washed with 5 column volumes of buffer C and subsequently 

developed with a linear potassium phosphate gradient to 500 mM in buffer 

C. Eluent fractions were again analyzed for protein by SDS-PAGE and 

fractions containing the desired protein were pooled and dialyzed 

overnight against buffer D (3 M potassium chloride, 2 mM EDTA, 1 mM 2-

mercapto-ethanol, 20 mM potassium phosphate pH 8.0 at 4°C). Purified 

proteins were stored at 4°C. 

Purification of Htr15. Htr15 inclusion bodies were purified from E. coli 

cells as described under 7.3.2. Htr15 inclusion bodies were solubilized in 

buffer FU (8 M urea, 10 mM Tris-HCl pH 8.0 at 20°C) and the solution was 

clarified by a centrifugation step of 75.000xgmax for 10 min. Protein was 
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dialyzed overnight against buffer H at 4°C. Precipitant was removed by 

centrifugation at 75.000xgmax for 10 min and the supernatant was applied 

to a DEAE-cellulose column as described above for Car. Eluent fractions 

were processed as described for Car, and Htr15 was further purified on a 

hydroxyapatite column. Eluent fractions were analyzed for protein by 

SDS-PAGE and fractions containing the desired protein were pooled and 

dialyzed overnight against buffer F (20 mM MES pH 6.0 at 4°C, 10 mM 2-

mercaptoethanol, 2 mM EDTA). Thereafter, the protein was applied to a 

10/10 HR MonoQ column (Amersham Pharmacia Biotech) previously 

equilibrated in buffer F. The column was washed with 5 column volumes of 

buffer F and subsequently developed with a linear potassium phosphate 

gradient to 400 mM in buffer F. Eluent fractions were again analyzed for 

protein by SDS-PAGE and fractions containing the desired protein were 

pooled and dialyzed overnight against buffer D (3 M potassium chloride, 2 

mM EDTA, 1 mM 2-mercaptoethanol, 20 mM potassium phosphate pH 8.0 

at 4°C). Purified protein was stored at 4°C. 

 

 

Purification of wild type and chimeric FliM. Purification of FliM was as 

described by BREN & EISENBACH, 1998, with minor modifications. 

Subsequent steps were carried out at room temperature. FliM inclusion 

bodies were solubilized in buffer FU (8 M urea, 10 mM Tris-HCl pH 8.0 at 

20°C) and the solution was clarified by a centrifugation step of 

75.000xgmax for 10 min. The supernatant was applied to a Ni-NTA column 

(1.6x10 cm; Qiagen) previously equilibrated in buffer FU. The column was 

washed with 20 column volumes of buffer FU supplemented with 25 mM 

imidazole, the flow rate was adjusted to 2 ml/min and FliM bound to the 

resin was refolded by a linear gradient of buffer FU to buffer FG (1 M urea, 

10% glycerol, 10 mM Tris-HCl pH 8.0 at 20°C) over a period of 60 min. 

The flow rate was adjusted to 1 ml/min and the column was developed 
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with a linear gradient of 25 to 400 mM imidazol in buffer FG. Eluent 

fractions were examined for protein by SDS-PAGE and fractions containing 

FliM were pooled and dialyzed overnight at 4°C against buffer FU. 

 

 

Purification of MCP-like proteins Hp0599 and Cj0448. Initial 

purification of protein was as described above for the Che proteins. After 

the protein's His6-tag was removed by digestion with thrombin, the 

protein was desalted on a HiPrep 26/60 desalting column (Amersham 

Pharmacia Biotech) equilibrated in buffer C (10 mM sodium chloride, 10 

mM Tris-HCl pH 8.0 at 4°C) and applied to a MonoQ HR 10/10 column 

(Amersham Pharmacia Biotech) which had been equilibrated with the 

same buffer. The column was developed by a linear sodium chloride 

gradient from 10 to 200 mM in buffer C. The protein eluted between 50 

and 100 mM sodium chloride and fractions containing the receptor were 

pooled, concentrated in a Centriprep K-30 device and applied to a HiLoad 

26/60 Superdex 200 prep grade column (Amersham Pharmacia Biotech) 

which had been equilibrated in buffer A. The purified protein was stored 

on ice or was shock frozen in liquid nitrogen and stored at -80°C. 

 

 

7.3.5. SDS-PAGE analysis of proteins 

 

Complex protein mixtures or protein preparations were analyzed by SDS-

PAGE following the method of LAEMMLI, 1970 as described by GALLAGHER, 

1992. All minigels used throughout this work were composed of a 13% 

separating gel and a 7% stacking gel and were run at 130 V until the dye 

front reached the lower end of the gel. Size marker was Amersham 

Pharmacia's Low Molecular Weight Electrophoresis Calibration Kit and was 

used following the manufacturer's instructions. Proteins were either 
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visualized by Coomassie brilliant blue staining (7.3.6.), silver staining 

(7.3.7.) or were transferred to a PVDF membrane (Millipore) for 

immunodetection (7.3.8.). 

 

 

7.3.6. Detection of proteins after SDS-PAGE by Coomassie brilliant 

blue 

 

The polyacrylamide gel was submerged in staining solution (0.1% 

Coomassie brilliant blue in 10% glacial acetic acid, 20% methanol) and 

incubated after heating in a microwave oven on a platform shaker for 5 

min. Thereafter, the gel was rinsed with destaining solution (10% glacial 

acetic acid, 20% methanol) followed by an incubation in destaining 

solution on a platform shaker for 5 min after heating in a microwave oven. 

The destaining solution was replaced by fresh destaining solution and 

again heated in a microwace oven. This destaining procedure was 

repeated until the gel was destained as desired and the blue protein bands 

were clearly visible against a light blue background. 

 

 

 

7.3.7. Detection of proteins after SDS-PAGE by silver staining 

 

The polyacrylamide gel was first incubated on a platform shaker in fixing 

solution 1 (10% glacial acetic acid, 30% methanol in water) for 15 min 

followed by one incubation in fixing solution 2 (5% glacial acetic acid, 

10% ethanol in water) for 30 min and two subsequent incubations in 

fixing solution 3 (10% ethanol in water) for 15 min each. Thereafter, the 

gel was immersed in staining solution A (25 µl 37% formaldehyde, 21 µl 

43% sodium thiosulfate in 50 ml water) for 60 s and was washed three 
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times with water. After incubation in staining solution B (25 µl 37% 

formaldehyde in 50 ml 0.2% silver nitrate) on the platform shaker for 6 

min, the gel was again rinsed three times with water followed by an 

incubation in staining solution C (25 µl 37% formaldehyde, 5 µl 4.3% 

sodium thiosulfate in 50 ml 6% sodium carbonate) until the proteins 

appeared as visible bands of the desired intensity. The gel was 

immediately rinsed twice with water and then submerged in stop solution 

(3% glacial acetic acid, 5% glycerol in water). 

 

 

7.3.8. Western transfer of proteins separated by SDS-PAGE to 

PVDF membrane 

 

Protein samples were resolved by standard SDS-PAGE as described under 

7.3.5. The gel was incubated in cathode buffer (25 mM Tris base, 40 mM 

glycine, 10% methanol; total buffer volume was 1 ml buffer per cm2 of gel 

surface area) on a platform shaker for 15 min, whereas the membrane 

(Immobilon-P, Millipore) was first submerged in methanol for 15 sec 

followed by incubation in water for 2 min and incubation in anode buffer II 

(25 mM Tris base, 10% methanol) for 10 min. Thereafter, the transfer 

stack was assembled by placing two sheets of filter paper (Whatman 

3MM) soaked in anode buffer I (0.3 M Tris base, 10% methanol) on top of 

the anode plate of the transfer system followed by one sheet of filter 

paper soaked in anode buffer II, the PVDF (Millipore) membrane, the gel 

and three filter papers soaked in cathode buffer. The transfer stack was 

covered by the cathode plate and protein transfer was initiated by 

applying an electrical current of 2.5 mA/cm2 per cm2 of gel surface area. 

After 30 min, the membrane was recovered from the transfer stack and 

rinsed carefully with water. If necessary, proteins transferred to the 

membrane were visualized by Ponceau S staining as follows: the 
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membrane was incubated in Ponceau S staining solution (0.4% Ponceau S 

in 6% trichloroacetic acid, 6% sulfosialic acid) on a platform shaker for 20 

min. The membrane was destained in water until the protein bands 

became clearly visible against a pale rosy background. In all cases where 

proteins on the membrane were to be detected by immunological 

techniques, the membrane was destained completely in water and care 

was taken that the membrane did not get dry at any time. 

 

 

7.3.9. Immunodetection of proteins immobilized on PVDF 

membanes 

 

Subsequently, all quantities given refer to a membrane with no more than 

100 cm2 surface area. All incubation steps can either be performed at 

room temperature for one hour or overnight in a cold room at 4°C. All 

washing steps were performed with 50 ml of the appropriate solution at 

room temperature on a platform shaker for 10 min each. The membrane 

was blocked by incubation in 50 ml of 1x blocking solution (1% Western 

blocking reagent, Roche, in PBS). Thereafter, the membrane was 

incubated in 50 ml 0.5x blocking solution containing the first antibody in 

the desired dilution. The membrane was then washed twice with TPBS 

(0.05% Tween 20 in PBS) followed by two washing steps with 0.5x 

blocking solution. The alkaline phosphatase conjugated secondary 

antibody was diluted in 50 ml 0.5x blocking solution as recommended by 

the supplier's instructions and the membrane was incubated with the 

secondary antibody (alkaline phosphatase conjugated goat anti rabbit IgG, 

Jackson Immuno Research Inc.) solution. After four washing steps with 

TPBS, the secondary antibody was detected by incubating the membrane 

in NBT/BCIP solution (Sigma) at room temperature without agitating the 

membrane. The reaction was allowed to proceed until colored bands of 

  
 



7. Materials and Methods 132

desired intensity were visible and stopped by washing the membrane with 

20 mM EDTA. 

 

 

7.3.10. Production of antisera against H. pylori chemotaxis 

proteins in rabbits 

 

Antisera against CheF, CheV2, CheW, CheY and Hp0599 were raised in 

rabbits at the Institute's animal breeding facility. A solution of 400 µg/ml 

of the appropriate proteins in buffer 0I (300 mM sodium chloride, 10 mM 

Tris-HCl pH 8.0 at 4°C) was mixed with an equal amount of complete 

Freund's adjuvant to a stable emulsion. Two ml of this emulsion was 

injected subcutaneously in 500 µl portions into each animal. After 28 d, 1 

ml of blood was taken from each rabbit. The blood was incubated at 37°C 

for 1 h followed by centrifugation for 10 min at 2000xgmax. Thereafter, the 

serum was carefully removed from the fluffy pellet by pipetting and the 

serum was stored in 100 µl aliquot parts at -80°C. At the same day, to 

each animal the antigen was applied again (400 µg protein per animal) in 

an emulsion of equal volumes of protein in buffer 0I (300 mM sodium 

chloride, 10 mM Tris-HCl pH 8.0 at 4°C) and incomplete Freund's 

adjuvant. Another 10 days later, 1 ml of blood was again taken from each 

animal, and serum was derived as described above. With these sera, it 

was attempted to detect the proteins that were used for animal 

immunizations on PVDF membranes as described under 7.3.9. Animals 

with sera positive to the desired epitopes were bled and serum was again 

obtained and stored as described above. 
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7.3.11. Protein concentration assay 

 

Protein concentrations were determined following the method described 

by BRADFORD, 1976, using BioRad's Bradford reagent and BSA as standard. 

The concentration of solutions containing halophilic proteins was not 

determined since the BRADFORD method is not suited for highly acidic 

proteins. 

 

 

7.4. Autophosphorylation and phosphotransfer reactions 

 

7.4.1. Synthesis of [32P] labeled dilithium acetyl phosphate 

 

Acetyl phosphate was synthesized from acetic anhydride and 

orthophosphate as described by KORNBERG, 1956. Special care was taken 

to avoid exposure to radiation and spilling of radioactive chemicals. In 

short, 950 µl pyridine, 1.5 ml water and 500 µl 1 M K2HPO4 containing 32P-

labeled phosphate (typically 0.1 Ci orthophosphate) were mixed in a 30 ml 

Erlenmeyer flask, and the mixture was kept on ice on a magnetic stirrer. 

Acetic anhydride (110 µl) was added over a 3 min time period in 20 µl 

aliquots, and the mixture was stirred vigorously. Two minutes later, 4 M 

lithium hydroxide was added to adjust the pH to 7.5. Thereafter, chilled 

ethanol (23 ml, approx. -15°C) was added slowly to the reaction mixture. 

After one hour on ice, the precipitate was collected by centrifugation, 

washed twice with ice cold ethanol, and dried in vacuo over calcium 

chloride for 24 hours. The purity of the preparation was assayed by 

dissolving an appropriate amount of dried dilithium acetyl phosphate in 

water. The actual concentration of this solution was then assayed as 

described under 7.4.2. Typically, the concentration was as calculated from 

the weight of the synthesized substance and the preparation was 
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considered to be sufficiently pure and free of inorganic orthophosphate. 

The specific activity of the reaction product was usually 80 mCi/mmol at 

the day of synthesis as determined by liquid scintillation counting in a Tri-

Carb 2100 TR Liquid Scintillation Analyzer (Packard) using rotiszint eco 

plus scintillation cocktail (Roth). 

 

 

7.4.2. Acyl phosphate assay 

 

Acetyl phosphate was assayed as described by LIPMANN & TUTTLE, 1945, for 

acyl phosphates. To determine the concentration of aqueous acetyl 

phosphate solutions, 2 ml test solution and 1 ml freshly prepared 

neutralized hydroxylamine reagent (mix of equal volumes 4 M 

hydroxylamine hydrochloride and 3.5 M sodium hydroxide) were added in 

a test tube and left at room temperature for 10 min. Thereafter, 3 ml 

ferric chloride reagent (prepared freshly by mixing equal volumes of 5% 

FeCl3 in 0.1 M HCl and 12% trichloroacetic acid in 3 M HCl) was added and 

the OD of the solution at 540 nm was measured immediately. To 

determine the acetyl phosphate concentration in the test solution, a 

standard curve was calculated by measuring the OD at 540 nm of 

standard dilithium acetyl phosphate solutions prepared from commercially 

available non-radioactive dilithium acetyl phosphate. The assay is linear in 

an acetyl phosphate concentration range from 0.25 to 2.5 mM. 

 

 

7.4.3. Preparation of phosphorylated CheF:D729K. 

 

Purified CheF:D729K was incubated with 5 mM [γ32P]-ATP (30 Ci/mmol), 5 

mM magnesium chloride and 50 mM potassium phosphate buffer pH 7.5 at 

30°C. After 30 min, the protein was applied to a HiTrap Chelating column 
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(Amersham Pharmacia Biotech) charged with Ni2+ and equilibrated in 

buffer A. The column was then washed with ten column volumes of buffer 

A followed by an equal amount of buffer C (50 mM potassium phosphate 

pH 7.5 at 20°C) and CheF:D729K-Pi was eluted with 150 mM imidazole in 

buffer C. Radioactive fractions were pooled and the specific activity of the 

protein preparation was determined by assaying the protein concentration 

(7.3.11.) and the activity of the sample in a liquid scintillation counter 

described under 7.3.6. 

 

 

7.4.4. Phosphotransfer assay from phosphorylated CheF:D729K to 

response regulators 

 

To assay the transfer of label from CheF:D729K phosphate, equal volumes 

of CheF:D729K phosphate in buffer P1 (50 mM potassium phosphate, 5 

mM magnesium chloride) and response regulator in buffer P1 were 

thoroughly mixed in a microcentrifuge tube. Immediately and at the time 

points indicated, 20 µl samples were removed from the reaction mixture, 

mixed with an equal volume of 2x SDS-PAGE sample buffer (GALLAGHER, 

1992) supplemented with 50 mM EDTA and samples were immediately 

shock frozen in liquid nitrogen. Thereafter, the protein samples were 

thawed and resolved by SDS-PAGE as described under 7.3.5. Transfer of 

label was either assayed by liquid scintillation counting of excised gel 

fragments (7.4.7.), or - after transfer of radiolabled proteins to PVDF 

membranes (7.3.8.) - by autoradiography (XAR-5, Kodak) or 

'phosphoimaging' (7.4.8.). 
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7.4.5. Phosphotransfer assay from phosphorylated response 

regulator CheY:K106R to CheF:D729K 

 

CheF:D729K was phosphorylated and allowed to bind to a 1 ml HiTrap 

Chelating column (Amersham Pharmacia Biotech) following the procedure 

described under 7.4.3. After washing the column with buffer C, 200 µl 

CheY:K106R (without His6-tag) in buffer C were allowed to pass through 

the column at a flow rate of 1 ml/min. Eluent fractions of approximately 2 

drops/microcentrifuge tubes were collected, assayed for radioactivity by a 

hand-held Beta-counter (Berthold LB 1210B) and immediately put on ice. 

From this CheY:K106R-Pi preparation, 20 µl were removed by pipetting, 

mixed with an equal volume of CheF:D729K (in 5 mM magnesium 

chloride, 300 mM sodium chloride, 50 mM potassium phosphate pH 7.5 at 

20°C, 20% glycerol), incubated for 20 sec at room temperature. The 

reactions were quenched by the addition of an equal volume of 2x SDS-

PAGE sample buffer (GALLAGHER, 1992) supplemented with 50 mM EDTA 

and samples were immediately shock frozen in liquid nitrogen. Thereafter, 

the protein samples were thawed and resolved by SDS-PAGE as described 

under 7.3.5. Transfer of label was assayed after the transfer of 

radiolabeled proteins to PVDF membranes (7.3.8.) by autoradiography 

(XAR-5, Kodak).  

 

 

7.4.6. CheF autophosphorylation and transphosphorylation 

activities using [γ32P]-ATP. 

 

Proteins to be assayed were mixed in microcentrifuge tubes and 10x 

reaction buffer (50 mM magnesium chloride, 500 mM potassium 

phosphate pH 7.5 at 20°C) was added. After 5 min at 25°C, the reactions 

were initiated by the addition of [γ32P]-ATP (5000 Ci/mmol) to a final 
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concentration of 200 µM. After 5 min, the reactions were terminated by 

the addition of an equal volume of 2x SDS-PAGE sample buffer 

(GALLAGHER, 1992) supplemented with 50 mM EDTA. Proteins were 

separated by SDS-PAGE (7.3.5), and radioactivity was quantitated as 

described under 7.4.4. 

 

 

7.4.7. Response regulator autophosphorylation by acetyl 

phosphate.  

 

Autophosphorylation of response regulator domain containing proteins 

was assayed following the method given above (7.4.5.) except that [32P]-

acetyl phosphate (80 mCi/mmol) in various concentrations was used as 

phosphodonor.  

 

 

7.4.8. Quantitation of radiolabel on CheF after SDS-PAGE by liquid 

scintillation counting 

 

After the protein mixture was separated by SDS-PAGE, the gel was 

recovered and protein bands corresponding to CheF were excised and 

transferred to microcentrifuge tubes containing 500 µl scintillation 

cocktail. The gel fragments were minced with a Teflon pestle and the 

slurry was transferred to scintillation tubes containing 10 ml scintillation 

cocktail. Radioactivity was quantified by liquid scintillation counting in a 

Tri-Carb 2100 TR Liquid Scintillation Analyzer (Packard) using rotiszint eco 

plus scintillation cocktail (Roth). 
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7.4.9. Quantitation of phosphotransfer reactions by 

'phosphoimaging' 

 

The protein mixture was separated by SDS-PAGE and proteins were 

subsequently transferred to a PVDF membrane as described under 7.3.8. 

The membranes were air dried at room temperature and exposed to a 

phosphoimager plate for 3 h. The plate was analyzed in a FujiFilm FLA-

2000 phosphoimager using the AIDA 2.31 software package. 

 

 

7.5. ATPase assay 

 

The ATPase assays were conducted essentially as described by NINFA et 

al., 1991. In short, proteins in buffer W (100 mM potassium phosphate pH 

7.0 at 20°C) were mixed and 10x reaction buffer (1 mM dithiothreitol, 2 

mM NADH, 50 mM magnesium chloride in 1M potassium phosphate pH 7.0 

at 20°C), pyruvate kinase and lactate dehydrogenase (2 and 6 units, 

respectively; Sigma), NADH and phosphoenolpyruvate (0.2 and 1.0 mM 

final concentration, respectively; Sigma) were added. The volume was 

adjusted to 100 µl and the mixture was transferred to a disposable UVette 

UV-cuvette (1 cm path length; Eppendorf) thermostated to 30°C. 

Thereafter, the reaction was initiated by adding 2 µl ATP (150 mM), and 

NADH oxidation was monitored in a Perkin-Elmer Lambda 5 UV/VIS 

spectrophotometer. The rate of decay over a time period of 15-60 min 

was used to calculate ATP hydrolysis rates, using a value of 6220 M-1cm-1 

for the extinction coefficient of NADH at 340 nm. In control experiments, 

expected decreases were rapidly generated by the addition of micromolar 

concentrations of ADP, indicating that the coupling reactions were not 

rate-limiting. 
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7.6. Circular dichroic measurements 

 

CD spectroscopy was used to investigate the secondary structure content 

of proteins. Measurements were carried out in a Jobin Yvon Auto 

Dichrograph Mark IV CD spectrometer using a quartz cuvette (with 

thermostat; 0.1 mm optical path length, Hellma). Protein (250 µM) in 

buffer N (3 M potassium chloride, 25 mM Tris-HCl pH 8.0 at 4°C) was 

diluted in assay buffer to the desired concentration. For thermal stability 

assays, protein in the respective buffer was heated in the cuvette to the 

desired temperature and circular dichroism was measured every 10 sec at 

a constant wavelength of 222 nm over the time of the experiment. To 

assay different solute compositions in respect to their influence on 

secondary structure, protein in buffer K was diluted in the buffer to be 

assayed as described above, and CD spectra were recorded from 195 to 

250 nm at 20°C.  

 

 

7.7. 1H-NMR spectroscopy with Car 

 

Purified Car in buffer N (3 M potassium chloride, 25 mM Tris-HCl pH 8.0 at 

4°C) was concentrated in a centrifuge at 4°C up to a protein concentration 

of 1 mM using centriprep K-30 devices. For 1H-NMR measurements, 450 µl 

protein solution were mixed with 50 µl deuterium oxide and transferred to 

an NMR glass tube. NMR measurements were conducted by the Institute's 

NMR service group.  
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7.8. Protein crystallization 

 

Crystallization of CheW. CheW was purified as described above (7.3.4.) 

to the step where the N-terminal His6 tag was removed. After the second 

Ni-NTA column, the protein was dialyzed overnight against buffer 0I (300 

mM sodium chloride, 10 mM Tris-HCl pH 8.0 at 4°C) containing 10% 

glycerol. The protein was concentrated in a centrifuge at 4°C using 

centriprep-10 devices to a final concentration of 500 µM. Thereafter, the 

protein solution was subjected to crystallization experiments using the 

hanging drop method as described in MCPHERSON, 1999. Initial screening 

was performed at 18°C using Hampton Research's crystal screen kits I 

and II as well as the PEG/ion screen (JANCARIK & KIM, 1991). After 

approximately 7 to 10 days, long hexagonal crystals grew in setups where 

1.5 M lithium sulfate, 100 mM HEPES pH 7.5 was used as precipitant. 

From this initial condition, lithium sulfate concentration (1.0 to 1.8 M), 

buffer composition (Tris, potassium phosphate, 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid, N-(2-

acetamido)iminodiacetic acid, MES and dimethylarsinic acid) and pH (6.5 

to 10.5) in steps of 0.25 pH unit, temperature (18°C and 4°C), protein 

concentrations and the precipitant to protein volume ratio in the drops 

were varied to improve conditions for crystal growth. To further increase 

crystal quality, Hampton Research's additive screen kits I, II and III were 

used to test the influence of small molecules on crystal growth. 

 

 

Crystallization trial for halophilic proteins using the MPD-NaCl-

water system. Crystallization trials for Car were essentially as described 

in RICHARD, 1995 using the hanging drop method with drops of a total 

volume of 7 µl. MPD was mixed on siliconized glass cover slides with 2, 3, 

4 or 5 µl purified protein in buffer G (4 M sodium chloride, 100 mM Tris pH 
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8.0 at 20°C), and the drops were equilibrated at 18°C against a reservoir 

solution of buffer G containing MPD in the concentration range of 55 to 

65% in steps of 2.5%. To assess pH influences, two different buffers (100 

mM MES pH 5.3 at 20°C and 100 mM ADA pH 6.5 at 20°C) instead of 

buffer G were used in additional crystallization trials. Buffer G without 

protein served as a negative control in equivalent setups for protein 

crystal growth. 

 

 

Crystallization trials for halophilic proteins using phosphate as 

precipitant by the hanging drop technique. Sodium potassium 

phosphate buffer at a concentration of 4 M in a pH range of 5.0 to 9.0 in 

steps of 0.5 pH units was used to assay the ability of phosphate salts to 

precipitate halophilic proteins. The protein (2 µl) in buffer G was mixed on 

siliconized glass cover slides with either an equal volume or with twice the 

volume of sodium potassium phosphate buffer and the cover slides were 

incubated upside down over sodium potassium phosphate buffer solutions 

in Q-plates (Hampton Research) at 18°C. Buffer G without protein served 

as a negative control in equivalent setups for protein crystal growth. 

 

Crystallization trials for halophilic proteins using phosphate as 

precipitant by the microdialysis technique. Protein in buffer G was 

transferred to 10 µl microdialysis buttons, the buttons were sealed with a 

10 kD cut-off dialysis membrane and submerged in 4 M potassium 

phosphate buffer in a pH range from 7.0 to 8.5 in steps of 0.5 pH units.  

 

 

Crystallization of Hp0599 and Cj0448. Both proteins were crystallized 

and crystal quality was improved following the strategy outlined above for 

CheW. 
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Equipment 
 
Beta-counter Berthold LB 1210B Berthold Technologies GmbH & Co. KG, Bad 

Wildbad 
 
Chromatography media Dimethyl ethyl cellulose DE52, Whatman, Faifield, NJ, USA; Ni-NTA, 

Qiagen, Hilden; Hydroxyapatite BioRad, Richmond, CA, USA; all 
other media were purchased from Amersham Pharmacia Biotech, 
Freiburg 

 
CD spectrometer Auto Dichrograph Mark IV, Jobin Yvon GmbH, Grassbrunn 
 
DNA sequencer ABI Prism 377, Applied Biosystems, Foster City, CA, USA 
 
FPLC System and Accessories Amersham Pharmacia Biotech, Freiburg 
 
French Press Aminco 20K French Pressure Cell, Polytec GmbH, Waldbronn 
 
Incubator Multitron AJ120, Infors AG, Bottmingen, Switzerland 
 
PCR machine GeneAmp PCR System 9700, Applied Biosystems, Foster City, CA, 

USA 
 
Phosphoimager FujiFilm FLA-2000, Fuji Photo Film Co., Ltd., Tokyo, Japan 
 
Scintillator Tri-Carb 2100 TR Liquid Scintillation Analyzer, Packard BioScience, 

Dreieich 
 
Sonifier Sonifier Cell Disruptor B-30, Branson Sonic Power Co. Danbury, CT, 

USA 
 
Transfection apparatus Gene Pulser, BioRad, Richmond, CA, USA 
 
 
Consumables 
 
Centriprep Centriprep K, Millipore, Eschbronn 
 
Crystallization consumables Hampton Research, Laguna Niguel, CA, USA  
 
Cuvette for CD spectroscopy Hellma GmbH & Co KG, Müllheim 
 
Dialysis Tubing 10.000 Da exclusion limit, Sigma-Aldrich Chemie, Deisenhofen 
 
Electroporation cuvettes 0.2 mm gap, BioRad, Richmond, CA, USA 
 
 
Filter paper Whatman 3MM, Whatman, Fairfield, NJ, USA 
 
Microfuge Tubes 0.5 and 1.5 ml, Eppendorf AG, Hamburg 
 
PVDF Membrane Immobilon P, Millipore 
 
Spin colums AutoSeq G-50, Amersham Pharmacia Biotech, Freiburg and 

MultiScrenn-HV 96, Millipore, Eschbronn 
 
X-ray film XAR-5, Eastman Kodak GmbH, Stuttgart-Wangen 
 
 
Kits 
 
DNA purification kit QIAquick, Qiagen, Hilden 
 
DNA sequencing kit ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit, 

Perking Elmer, Wellesley, MA, USA 
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Plasmid isolation kit QIAprep, Qiagen, Hilden 
 
Quick change site directed 
mutagenesis kit Stratagene, La Jolla, CA, USA 
 
 
Enzymes 
 
DNA Ligase T4 DNA Ligase, Gibco BRL, Invitrogen GmbH, Karlsruhe 
 
DNaseI Roche Diagnostics GmbH, Mannheim 
 
DNA polymerase TaKaRa LA Taq, Takara shuzo Co., Ltd., Shiga, Japan 
 
Lactate dehydrogenase Boehringer Mannheim, Mannheim 
 
Lysozyme Roche Diagnostics GmbH, Mannheim 
 
Pfu DNA Ligase Stratagene, La Jolla, CA, USA 
 
Polynucleotide kinase USB, Cleveland, OH, USA 
 
Pyruvate kinase Boehringer Mannheim, Mannheim 
 
Restriction endonucleases New England Biolabs GmbH, Schwalbach/ Taunus 
 
Shrimp alkaline phosphatase USB, Cleveland, OH, USA 
 
Thrombine Amersham Pharmacia Biotech, Freiburg 
 
 
Fine Chemicals 
 
Agarose Seakem, Teknova, Half Moon Bay, CA, USA 
 
Coomasie Brilliant Blue Serva, Heidelberg 
 
DNA size standard One kb DNA size marker, Gibco BRL, Invitrogen GmbH, Karlsruhe 
 
dNTPs PCR nucleotide mix, Amersham Pharmacia Biotech, Freiburg 
 
FREUND's Adjuvant 
(complete and incomplete) Sigma-Aldrich Chemie, Deisenhofen 
 
Gel filtration size standard Gel filtration LMW and HMW Calibration kits, Amersham Pharmacia 

Biotech, Freiburg 
 
IPTG Gerbu Biotechnik GmbH, Gaiberg 
 
NADH, grade II, 98% Boehringer Mannheim, Mannheim 
 
NBT/BCIP NBT/BCIP solution, Sigma-Aldrich Chemie, Deisenhofen 
 
Phosphoenolpyruvate Sigma-Aldrich Chemie, Deisenhofen 
 
PMSF Sigma-Aldrich Chemie, Deisenhofen 
 
Protease inhibitor cocktail Protease inhibitor cocktail for His6-tagged proteins, Sigma-Aldrich 

Chemie, Deisenhofen 
 
Protein molecular weight 
marker for SDS-PAGE LMW, Amersham Pharmacia Biotech, Freiburg 
 
Pyruvate Sigma-Aldrich Chemie, Deisenhofen 
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Scintillation cocktail rotiszint eco plus scintillation cocktail, Roth, Karlsruhe 
 
SDS, 99% Roth, Karlsruhe 
 
Western Blocking Reagent Hoffmann-La Roche Ltd., Basel, Switzerland  
 
 
Antibodies 
 
Secondary antibodies Alkaline phosphatase conjugated goat anti rabbit IgG, Jackson 

Immuno Research LaboratoriesInc., West Grove, PA, USA, 
purchased from Dianova, Hamburg 

 
 
Laboratory Animals 
 
Rabbits Charles River, Sulzfeld 
 
 
Radiochemicals 
 
[γ32P]-ATP [γ32P]-ATP triethylammonium salt, >5000 Ci/mmol, Amersham 

Pharmacia Biotech, Freiburg 
 
[γ32P]-orthophosphoric acid 216 mCi/ml, Hartmann Analytic GmbH, Braunschweig 
 
 
Computer Programs 
 
AIDA AIDA 2.31 Software package, Fuji Photo Film Co., Ltd., Tokyo, 

Japan 
 
DNASIS Hitachi Software engineering Europe S&A, Berlin 
 
OLIGO Primer Analysis Software Version 4.04, National Biosciences Inc., 

Plymouth, MN, USA 
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Oligonucleotides to amplify genes by PCR used in this work. 
 
 
I. Genes expressed from pFS4000. 
 
The expression plasmid pFS4000 containing the car gene cloned into pT7-7 (using the NdeI and 
HindIII restriction sites of the vector) was a kind gift of F. STORCH (STORCH, 1999). This vector was 
used to express the genes listed below by ligating the respective PCR products in pFS4000 digested 
with NdeI and HindIII. The expressed proteins do not contain additional amino acids compared to 
the wild type proteins. 
 
 
HtpIII 
 
HtpIII.for.1: 5'-GATCTACCATATGTCTAAAAACAAACATGAAC-3' 
HtpIII.rev.1: 5'-CGTCCCAAGCTTACTGGTCGTGGAGCTC-3' 
 
 
HtB 
 
HtB.for.1: 5'-GATCTACCATATGAGCAACGATAATGACAC-3' 
HtB.rev.1: 5'-GCTCCCAAGCTTAGCTGAGCTTGCCGAC-3' 
 
 
Htr15 
 
HtY.for.1: 5'-GATCTACCATATGCTGCGCATCTTTCG-3' 
HtY.rev.1: 5'-GCTCCCAAGCTTATTGGCTATCCGTGGTCAG-3' 
 
 
 
Car domain 1 
 
HxL1: 5'-AATAAGAAACATATGGATCCAGCATCG-3' 
Htc7.Dom1.rev: 5'-GCTCCCAAGCTTAGGTCTCGTGGAGGT-3' 
 
 
Car domain 2 
 
HxL1: 5'-AATAAGAAACATATGGATCCAGCATCG-3' 
Htc7.Dom2.rev: 5'-GCTCCCAAGCTTACTCGTCGGCGACGCCC-3' 
 
 
Car domain 3 
 
HxL1: 5'-AATAAGAAACATATGGATCCAGCATCG-3' 
Htc7.Dom3.rev: 5'-GCTCCCAAGCTTACCGCTCGGCCGACTCC-3' 
 
 
Car domain 4 
 
Htc7.Dom4.for: 5'-GATCTACCATCTGGAGAAAGTCAAAAACCAGC-3' 
HxR1: 5'-AGCAACGACGAAGCTTTAGCGGCG-3' 
 
 
Car domain 5 
 
Htc7.Dom5.for: 5'-GATCTACCATCTGGGCGAACATCTCTCGGA-3' 
HxR1: 5'-AGCAACGACGAAGCTTTAGCGGCG-3' 
 
 
Car domain 6 
 
Htc7.Dom6.for: 5'-GATCTACCATCTGGCGACCATCGAGGAAATC-3' 
HxR1: 5'-AGCAACGACGAAGCTTTAGCGGCG-3' 
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II. Genes expressed from pFS4004 and pFS4005. 
 
 
The car gene cloned into pT7-7 with an N-terminal and C-terminal His6-tag was a kind gift of F. 
STORCH (STORCH, 1999). The tag is directly fused to the respective recombinant proteins without 
additional amino acids as linker. 
 
 
III. Genes expressed from pET36b(+). 
 
The expressed proteins do not contain additional amino acids as compared to the wild type 
proteins. 
 
 
H. salinarum CheR 
 
CheR.1.II.for: 5'-GATCTACCATATGCGACGCAGGGGAGTCGAGGAATACGCAGGCTACCTGACGCTG 
CTC-3' 
CheR.688.3.II.rev: 5'-GCACTAATCTCGAGCCTACTAGTTGTCAGCGACCCGACT-3' 
 
The resulting PCR product was digested with NdeI and XhoI and cloned into pET36b(+)digested 
with the same restriction endonucleases. 
 
 
H. salinarum CheB 
 
CheB.1.for: 5'-GAACTACTCTAGAAATAATTTTCTTTAACTTTAAGAAGGAGATATACATATGACAGA 
GGCACTGGTGG-3' 
CheB.1.rev: 5'-ACTATGCAAGCTTACGTCGTCCTCCGTATC-3' 
 
The resulting PCR product was digested with XbaI and HindIII and cloned into pET36b(+) digested 
with the same restriction endonucleases. 
 
 
IV. Expression of Hp0599 
 
The expressed protein contains an N-terminal His6-tag followed by a thrombine recognition 
sequence (MGSSHHHHHHSSGLVPRGSH) 
 
 
H. pylori Hp0599 
 
Hpyl.ORF.1.for: 5'-GATCTACCATATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCG 
CGCGGCAGCGGGATGTTTGGGAATAAGCAGTTG-3' 
Hpyl.ORF.637118.rev: 5'-GCACTATGCCCTAGGCTACTATTCGGCCTTTTTGAATTTTTTC-3' 
 
The resulting PCR product was digested with NdeI and AvrII and cloned into pET36b(+) digested 
with the same restriction endonucleases. 
 
 
V. Genes expressed from pET28a(+). 
 
The expressed proteins all contain an N-terminal His6-tag followed by a thrombine recognition 
sequence (MGSSHHHHHHSSGLVPRGSH) 
 
 
E. coli CheY 
 
EcCheY.for: 5'-GGGAATCTCCATATGGCGGATAAAGAACTTAAATTTTTGGTTGTG-3' 
EcCheY.rev: 5'-GATCAGTCCTCGAGCATGCCCAGTTTCTCAAAGATTTTGTTGAG-3' 
 
 
E. coli FliM 
 
Ec.FliM.for: 5'-GGGAATCTCCATATGGGCGATAGTATTCTTTCTCAAGCTGAAATT-3' 
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Ec.FliM.rev: 5'-GATCAGTCCTCGAGTTTGGGCTGTTCCTCGTTCAGAGAATTTAA-3' 
 
 
H. pylori CheV1 
 
Hp0019.for: 5'-GGGAATCTCCATATGGCTGATAGTTTAGCGGGCATTGATCAAGTT-3' 
Hp0019.reV: 5'-GATCAGTCCTCGAGTGCTAATTCCAAAAATTGCTTAACCACTCG-3' 
 
 
H. pylori CheW 
 
Hp0391.for: 5'-GGGAATCTCCATATGAGCAACCAATTAAAAGATTTATTTGAAAGA-3' 
Hp0391.rev: 5'-GATCAGTCCTCGAGGAAGTCTTTTTTTAAGATTTCTTCCACTCT-3' 
 
 
H. pylori CheF 
 
Hp0392.for: 5'-GGGAATCTCCATATGGATGATTTGCAAGAAATAATGGAAGACTTC-3' 
Hp0392.rev: 5'-GATCAGTCCTCGAGCGATTGGTCTCCTTCTAATTTAATGCTGCG-3' 
 
 
H. pylori CheV2 
 
Hp0393.for: 5'-GGGAATCTCCATATGGCAGAAAAAACAGCTAACGATTTAAAACTA-3' 
Hp0393.rev: 5'-GATCAGTCCTCGAGCGCATTCTTGTCTAAAATCTTAGAAATTTC-3' 
 
 
H. pylori CheY 
 
Hp1067.for: 5'-GGGAATCTCCATATGTTGAAACTACTGGTAGTAGATGATAGCTCA-3' 
Hp1067.rev: 5'-GATCAGTCCTCGAGATCGTTTGTCCCTAAAACAACCTCTAATTT-3' 
 
 
H. pylori FliM 
 
Hp1031.for: 5'-GGGAATCTCCATATGGCTGATATTTTAAGCCAAGAAGAAATTGAT-3' 
Hp1031.rev: 5'-GATCAGTCCTCGAGCTCTTCTTCTATTTTCATAATATCGCCCAC-3' 
 
 
H. pylori CheV3 
 
Hp0616.for: 5'-GGGAATCTCCATATGGTGGTAAGAGATATTGACAAAACGACTTCG-3' 
Hp0616.rev: 5'-GATCAGTCCTCGAGTGAAAGCGTTTTTTTAAGCATTTCATGGAT-3' 
 
 
C. jejuni Cj0448 
 
Cj0448.for: 5'-GGGAATCTCCATATGTTTGGAAGTAAAATAAACCATTCTGATCTT-3' 
Cj0448.rev: 5'-GATCAGTCCTCGAGATGATCTGACTCATCAAGCATTTCTTTAAA-3' 
 
The resulting PCR products were all digested with NdeI and XhoI and cloned into pET28a(+) 
digested with the same restriction endonucleases. 
 
For details of the pET vector DNA sequence see http://www.novagen.com. All enzymes were 
purchased from New England Biolabs. 
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Nucleotide sequence of synthetic CheB gene: 
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Nucleotide sequence of synthetic CheR gene: 
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9. Summary 

 

In the present study, the protein network components that enable 

chemotaxis in Halobacterium salinarum and Helicobacter pylori were 

examined to characterize their function in the respective organisms. The 

main results of this work are: 

 

• The soluble transducer proteins Car, Htr15, Hp0599 and Cj0448 are 

highly homologous to membrane-bound chemoreceptors from 

enteric bacteria. 

 

• The soluble transducer proteins Car and Htr15 from H. salinarum 

were overexpressed in E. coli BL21(DE3) cells and purified 

therefrom using standart chromatographic techniques. Car was 

found to be a mainly α-helical protein of molten globule-like 

structure as determined by CD-spectroscopy and 1H-NMR. 

 

• The soluble transducer proteins Hp0599 from H. pylori and its 

ortholog, Cj0448 from Campylobacter jejuni, were overexpressed in 

E. coli, purified to homogeneity and crystallized. Both proteins gave 

thin platelets that were not suited for structure determination by X-

ray crystallography. 

 

• The only very recently structurally characterized coupling protein 

CheW was crystallized and the best protein crystals diffracted to a 

resolution of 4.6 Å. 

 

• Hp0599 is tetrameric in solution, an oligomerization state that is in 

accordance with its presumed aggregation in cytosolic signalling 

arrays. 
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• The CheF protein from H. pylori is an autophosphorylating hybrid 

histidine kinase with a response regulator domain fused to its C-

terminus. The protein autophosphorylates at a conserved histidine 

residue with an apparent first order rate constant of 0.2/min. 

 

• The autophosphorylation activity of CheF is highly modulated by the 

soluble receptor protein Hp0599. This modulation of CheF activity is 

dependent on the presence of the coupling protein CheW. 

 

• The hybrid response regulators CheV can be phosphorylated by the 

CheF protein kinase. The response regulator CheY also serves as a 

substrate for CheF-mediated phosphorylation. 

 

• The phosphotransfer reaction from CheF to CheY is very fast and 

below the detection limit of the assays employed in this study (< 5 

sec), whereas the transfer of phosphate groups to CheV2 proceeds 

considerably slower (> 180 sec). 

 

• The half-life of CheY-phosphate is 14 sec, whereas the half-life of 

CheV2 is much higher (> 1 min). 

 

• CheY and CheF (in its response regulator domain) exhibit an 

autophosphorylation activity with acetyl phosphate as phosphor 

donor, whereas CheV2 and CheV3 autophosphorylate only very 

weak. 

 

• The response regulator CheY was purified in its phosphorylated state 

and shown to reverse-phosphorylate the CheF kinase. 
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