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1 Zusammenfassung

In the beginning the Universe was created.
This has made a lot of people very angry
and been widely regarded as a bad move.

(Adams 1986)

Bereits kurze Zeit nach diesem denkwürdigen Ereignis, bei einer Rotverschiebung von etwa
1100 und einem Weltalter von 300,000 Jahren, entsendet die letzte Streufläche eine Strah-
lung, die wir heute im Mikrowellenbereich als Kosmische Hintergrundstrahlung wahrnehmen.
Ihre sehr kleinen Schwankungen werden über den Sachs–Wolfe–Effekt (Sachs & Wolfe 1967)
als Abbild der Schwankungen der damaligen Materieverteilung interpretiert. Diese winzigen
Dichtefluktuationen sind in der jetzigen Epoche offensichtlich zu ausgeprägten Strukturen an-
gewachsen. Unser Ziel ist es, diese Strukturen quantitativ zu beschreiben, um so Einsichten in
ihre Entstehung zu gewinnen. Da das Universum letztendlich durch die zufälligen primordialen
Quantenfluktuationen1 seine Struktur erhält (Börner 1993), fassen wir es als eine Realisierung
eines Zufallsprozesses auf, und machen es dadurch der Bewertung mittels statistischer Metho-
den zugänglich.

1.1 Integralgeometrie

Jenseits der seit langem (Totsuji & Kihara 1969; Peebles 1974) in der Kosmologie verwen-
deten Zweipunktmaße werden in letzter Zeit Charakteristiken populär, die auch die höheren
Ordnungen einer Verteilung erfassen. Zur mathematischen Beschreibung der Galaxienvertei-
lung bedienen wir uns der Theorie der Punktprozesse (Daley & Vere-Jones 1988), während wir
eine kontinuierliche Verteilung etwa der Dunklen Materie als Zufallsfeld (Adler 1981) auffassen
wollen. Was die Größen angeht, die wir zur Untersuchung berechnen werden, konzentrieren
wir uns auf morphologische Maße, also solche, die Topologie und Geometrie eines Körpers
quantifizieren, und hier speziell auf die Minkowskifunktionale.

Deren mathematische Heimat stellt die Integralgeometrie dar. Für einen profunden Einstieg in
das Gebiet verweisen wir auf die Standardliteratur (Schneider 1993; Stoyan et al. 1995). Wir

1Alternative Szenarien zum Ursprung von Struktur, nämlich die Defekttheorien, die kosmische Strukturen auf
Phasenübergänge im frühen Universum zurückführen, enthalten ebenfalls eine Zufallskomponente.
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1 Zusammenfassung

Tabelle 1.1 Geometrische Interpretationen der Minkowskifunktionale in einer, zwei und drei
Dimensionen. χ bezeichnet die Eulercharakteristik, die als rein topologische Größe den Zusam-
menhang einer Menge mißt.

d 1 2 3
V0 Länge Fläche Volumen
V1 χ Umfang Oberfläche
V2 – χ Integrale mittlere Krümmung
V3 – – χ

wollen festhalten, daß der Satz von Hadwiger (1957) unter sehr allgemeinen Voraussetzungen
die Zahl der unabhängigen morphologischen Maße in d Dimensionen auf d + 1 beschränkt.
Dabei handelt es sich gerade um die Minkowskifunktionale Vµ, µ = 0, . . . , d. Darüber hinaus
sind alle Minkowskifunktionale im zwei– sowie im dreidimensionalen Raum als wohlbekannte
geometrische Größen interpretierbar, die in Tabelle 1.1 kurz zusammengefaßt sind.

Zur Untersuchung von Punktverteilungen im Raum wurde von Mecke et al. (1994) das verallge-
meinerte Boolesche Kornmodell in die Kosmologie eingeführt. Zu einer Menge {xi}, i = 1 . . . N
von Punkten, die einen Punktprozeß realisiert, konstruieren wir einen Körper, indem wir jeden
Punkt mit einer Kugel vom Radius r verzieren und die Vereinigung

Ar =
N⋃
i=1

Bxi (1.1)

betrachten. Der Radius dient dabei als diagnostischer Parameter. Die Berechnung der Min-
kowskifunktionale des Kornmodells erfolgt mittels der partiellen Funktionale und ist bei Mecke
et al. (1994) knapp und bei Schmalzing (1996) detailiert dargestellt.

Für Dichtefelder u(x) im d–dimensionalen Raum erweist es sich als zweckmäßig, die Morpho-
logie der Exkursionsmenge

Qν = {x |u(x) ≥ ν } (1.2)

über eine Schwelle ν zu untersuchen. Hier dient die Schwelle ν als diagnostischer Parameter.
Schmalzing & Buchert (1997) geben zur Berechnung der Minkowskifunktionale einer Exkur-
sionsmenge zwei Alternativen an, die auf der Croftonschen Schnittformel (Crofton 1868), be-
ziehungsweise auf der räumlichen Mittelung von Koenderinkinvarianten (Koenderink 1984; ter
Haar Romeny et al. 1991) beruhen. Letztere Methode läßt sich für beliebige Räume konstan-
ter Krümmung verallgemeinern, was sie besonders für die Anwendung auf Karten der Tem-
peraturschwankungen des Mikrowellenhintergrundes interessant macht (siehe hierzu Kapitel 4
beziehungsweise Abschnitt 1.3).

In unseren Analysen betrachten wir nicht nur die Minkowskifunktionale selbst, wir versuchen au-
ßerdem, aus den Minkowskifunktionalen quantitative Maße für den Gehalt an filamentartige und
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1.2 Die Entwicklung großräumiger Strukturen

planaren Strukturen in einer Punkt– oder Dichteverteilung zu gewinnen. Für zusammenhängen-
de Einzelteile einer Isodichtekontur verwenden wir dabei in Kapitel 5 (siehe auch Abschnitt 1.4)
die von Sahni et al. (1998) vorgeschlagenen isoperimetrischen Verhältnisse. Im Falle des Boole-
schen Kornmodells leiten wir dagegen Filamentarität und Planarität aus den globalen Funktio-
nalen durch Anpassung an ein stark vereinfachtes Spielzeugmodell her (Schmalzing & Diaferio
1999). Letztere Methode wird in Kapitel 6 (siehe auch Abschnitt 1.5) erklärt und angewandt.

1.2 Die Entwicklung großräumiger Strukturen

Auf den extragalaktischen Längenskalen, die uns in dieser Arbeit interessieren werden, ist das
Wachstum von Struktur wesentlich von der gravitativen Wechselwirkung dominiert. Nach dem
Standardmodell der Kosmologie (Goenner 1994) kann die Raumzeit gut durch eine Friedmann–
Robertson–Walker–Metrik

ds2 = dt2 − a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
(1.3)

genähert werden, die ein räumlich homogenes und mit dem Skalenfaktor a(t) expandierendes
Universum beschreibt. Vor diesem Hintergrund vollzieht sich die Entwicklung von Strukturen
aus den anfänglich sehr kleinen Dichteschwankungen im wesentlichen durch die Selbstgravi-
tation der Dunklen Materie, die keiner anderen Wechselwirkung unterliegt und daher gerne
durch ein einkomponentiges, druckfreies Fluidum beschrieben wird. In der Newtonschen Nähe-
rung betrachten wir die Dichte ρ, die Geschwindigkeit v sowie die Beschleunigung g als von
den nichtrotierenden Eulerschen Koordinaten (x, t) abhängige Felder, und erhalten ein System
partieller Differentialgleichungen, das Euler–Newton System

∂tρ+∇ (ρv) = 0

∂tv + (v∇) v = g

∇g = Λ− 4πGρ

∇× g = 0.

(1.4)

Alternativ können wir Lagrangekoordinaten X sowie ihre Abbildung x = f(X, t) auf die Eu-
lerschen Positionen einführen. Es zeigt sich, daß das aus dieser Variablentransformation resul-
tierende Lagrange–Newton–System nur noch die Abbildung f enthält, und daß die Eulerschen
Felder auf einfache Weise daraus berechnet werden können. Trotz dieser Reduktion auf ein ein-
ziges Vektorfeld bleiben die nichtlinearen partiellen Differentialgleichungen das Hauptproblem.

Für die näherungsweise Lösung dieses Systems sind eine Vielzahl von Ansätzen vorgeschlagen
worden (siehe Sahni & Coles 1995 und Referenzen). Wir verwenden eine spezielle Entwick-
lung der Abbildung f in zweiter Ordnung (Buchert 1996), um eine Separation in orts– und
zeitabhängige Anteile zu erreichen. In Verallgemeinerung der Arbeiten von Weiß et al. (1996)
auf beliebige Hintergrundkosmologien zeigen wir eine Methode zur numerischen Abschätzung
der Materieverteilung auf großen Skalen auf. Durch ihre hohe Effizienz ist sie der Simulation
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1 Zusammenfassung

der vollen Newtonschen Dynamik auf großen Skalen überlegen. Dies ist insbesondere bei Un-
tersuchungen zur kosmischen Varianz der Fall, wofür wir in Kapitel 6 (siehe auch Abschnitt 1.5)
ein Beispiel geben.

1.3 Anisotropien der Kosmischen Hintergrundstrahlung

Die Anisotropien der Hintergrundstrahlung entwickeln sich in der Epoche der Rekombination aus
den primordialen Fluktuationen. Dabei sind die Schwankungen in der Temperatur der Strahlung
und die Schwankungen in der Materiedichte gekoppelt, und geben daher Aufschluß über die sehr
kleinen Dichtefluktuationen, aus denen im Laufe der Zeit die ausgeprägten Strukturen entstan-
den, die im heutigen Universum erscheinen. Nach der kurzen Klärung der integralgeometrischen
Grundlagen in Kapitel 2 geben wir in diesem Kapitel an, wie aus Karten, die aus Satellitendaten
gewonnen werden, die Minkowskifunktionale des kosmischen Signals trotz Einschränkungen bei
der Beobachtung berechnet werden können.

Von entscheidender Bedeutung für die Entstehung der primordialen Fluktuationen überhaupt
ist die Frage nach der Art der Verteilung der Temperaturschwankungen. Handelte es sich dabei
um ein Gaußsches Zufallsfeld, würden inflationäre Szenarien gestützt, während nicht–Gaußsche
Signaturen auf Phasenübergänge oder exotische Mechanismen der Inflation hinweisen würden.
Auch die Minkowskifunktionale sind zur Beantwortung dieser Frage prinzipiell geeignet. Es
zeigt sich, daß offensichtlich nicht–Gaußsche Felder auch unter widrigen Umständen als solche
erkannt werden können. Die Daten des COBE–Satelliten sind jedoch mit der Annahme eines
Gaußschen Zufallsfeldes vereinbar, jedenfalls was ihre Minkowskifunktionale betrifft. Daß an
anderer Stelle (Ferreira et al. 1998; Banday et al. 1999) durchaus signifikante Abweichungen
vom Gaußschen Verhalten festgestellt wurden, zeigt die Komplementarität der verwendeten
Methoden.

1.4 Die Verteilung der Dunklen Materie

Da die Dunkle Materie, wie schon der Name andeutet, nicht direkt beobachtbar ist, ist man
beim Studium ihrer Verteilung auf approximative Lösungen oder auf numerische Experimente
anhand von N–Körper–Simulationen angewiesen. Wir verwenden eine Reihe hochaufgelöster
Simulationen (Melott & Shandarin 1993; Jenkins et al. 1997) zur Demonstration der in Kapitel 2
dargestellten Methoden. Zunächst klären wir jedoch die Frage, wie aus den Teilchen einer
Simulation am zweckmäßigsten das zugrundeliegende Dichtefeld rekonstruiert werden kann.
Dazu werden im allgemeinen Schätzer mit Glättungskernen konstanter Breite verwendet. Es
zeigt sich, daß eine deutliche Verbesserung insbesondere für entwickelte Verteilungen dunkler
Materie durch adaptive Glättung (Silverman 1986), also eine Anpassung der Glättungslänge an
die lokale Dichte erreicht werden kann.

Die Anwendungen der Minkowskifunktionale auf Simulationen fördern reichhaltige Informa-
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1.5 Strukturen in Galaxienkatalogen

tionen zutage, wenn sie auf das globale Dichtefeld sowie auf das größte zusammenhängende
Objekt darin angewandt werden. Dagegen erweist sich die Auswertung der Morphologie kleine-
rer Objekte als Fehlschlag, was die Unterscheidung unterschiedlicher Anfangsspektren betrifft.
Allerdings können die geringen Unterschiede auch dadurch bedingt sein, daß das Anfangsdich-
tefeld durchwegs als Gaußsches Zufallsfeld modelliert wird, so daß die geringen Unterschiede
auch als Hinweis auf universelles Verhalten interpretiert werden können. Anfangsbedingungen,
die einer anderen Statistik als der Gaußschen folgen, sollten dann auch andere Verteilungen der
Strukturen erkennen lassen.

1.5 Strukturen in Galaxienkatalogen

In Kapitel 6 gehen wir kurz auf die praktische Anwendung des Booleschen Kornmodells aus
Kapitel 2 (siehe auch Abschnitt 1.1) auf Galaxienkataloge ein.

Deutliche Unterschiede treten beim Vergleich eines Galaxienkataloges, des Updated Zwicky
Catalogue (UZC) von Falco et al. (1999), mit aus Simulationen gewonnenen Modellkatalogen
(Diaferio et al. 1999a) zutage. Daraus könnte auf Unzulänglichkeiten der verwendeten Anfangs-
szenarien, zweier Varianten der Kalten Dunklen Materie, oder der zur Erzeugung von Galaxien
eingesetzten semianalytischen Modellierung geschlossen werden. Ein anderer Ansatz, verweist
auf die mit 70h−1Mpc relativ geringe Ausdehnung des Kataloges und der Simulationen. Ob
dies tatsächlich ein Problem darstellt, muß eine momentan in Vorbereitung befindliche Arbeit
anhand größerer Simulationen und vor allem tieferer Kataloge zeigen.

1.6 Ausblick

Die vorliegende Arbeit soll einen Einblick in aktuelle Entwicklungen der Statistik und Dyna-
mik großräumiger Strukturen im Universum geben. Breiter Raum wird dabei der statistischen
Auswertung mit Hilfe von Minkowskifunktionalen eingeräumt. Dieses übergeordnete Thema
illustrieren wir exemplarisch durch die detailierte Darlegung dreier Anwendungsbereiche, die
ganz unterschiedliche Arten kosmologisch relevanter Daten verwerten. Wir hoffen, mit diesem
Überblick einen Beitrag zu der wachsenden Akzeptanz zu leisten, die die Minkowskifunktionale
in letzter Zeit als Alternative zu den weit verbreiteten Zweipunktstatistiken gewinnen.
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2 Integral geometry

Every chautauqua should have a list somewhere of valuable things to remember that can be
kept in some safe place for times of future need and inspiration. [ . . . ] A standard toolkit

comes with the cycle and is stored under the seat. This is supplemented with the following:
(Pirsig 1974)

Among the sciences, cosmology finds itself in the peculiar situation that it studies a unique
object, namely the entire Universe. Nevertheless, it is possible to do statistics over different
spatial regions of the Universe, and according to the Copernican Principle (Kanitscheider 1991),
we can expect the same results regardless of position and direction – barring cosmic variance.
The very first galaxy catalogues were looked upon with simple density estimation in cells Shane
& Wirtanen (1954), and already revealed traces of clustering beyond galaxy cluster scales.
Nowadays two–point characteristics introduced by Peebles (1974), most notably the traditional
Fourier transform pair of power spectrum and correlation function, have become the prime
methods of analysis. However, these quantities only describe a Gaussian density field in a
unique and complete way, and are blind to the strongly non–Gaussian features seen in the
today’s distribution of light and matter.

One possible approach to capturing higher–order features of a pattern in space involves geo-
metrical descriptors. A number of these statistics have been suggested to date. Among others,
recent morphological analyses of the nearby Universe have been performed through measuring
the void probability function of the CfA2 catalogue (Vogeley et al. 1994a), applying percolation
techniques to the IRAS 1.2Jy catalogue (Yess et al. 1997) and the Las Campanas Redshift
Survey (LCRS) (Shandarin & Yess 1998), or through various types of shape statistics, as the
moment–of–inertia method suggested by Babul & Starkman (1992) and applied by Davé et al.
(1996) to the CfA1 redshift survey and by Sathyaprakash et al. (1998b) to the IRAS 1.2Jy cat-
alogue. The most wide–spread technique is probably the genus statistics introduced by Gott III
et al. (1986), which has been used on various IRAS catalogues (Moore et al. 1992; Protogeros
& Weinberg 1997; Canavezes et al. 1998; Springel et al. 1998), on the CfA2 redshift survey
(Vogeley et al. 1994b) and, in a modified way, on the nearly two–dimensional LCRS (Colley
1997). With galaxy clusters, scales of several hundred h−1Mpc have been probed using differ-
ent morphological statistics (Coles et al. 1998; Plionis et al. 1992), including the Minkowski
functionals (Kerscher et al. 1997).

11



2 Integral geometry

Figure 2.1 Examples for simple structures with positive, vanishing, and negative Euler charac-
teristic.

Among this plethora of methods, Minkowski functionals currently represent the most compre-
hensive description of the topological and geometric properties of a three-dimensional structure.
Minkowski functionals include both the percolation analysis and the genus curve. Minkowski
functionals can be applied both to density fields (Schmalzing & Buchert 1997) and to discrete
point sets (Mecke et al. 1994). Because Minkowski functionals are additive they are robust
measures even for sparse samples. Minkowski functionals also discriminate different cosmolog-
ical models efficiently (Kerscher et al. 1997). Finally, Minkowski functionals can be used to
define quantities which can be interpreted as a planarity P and a filamentarity F and thus
quantify our intuition about the shape of a structure (Sahni et al. 1998; Schmalzing et al.
1999a; Schmalzing & Diaferio 1999).

The present chapter contains a short summary of the mathematical foundations used in our
work. We introduce the relevant results of integral geometry and related fields, and motivate
their application to astrophysical datasets.

Table 2.1 Some of the d + 1 Minkowski functionals in d–dimensional Euclidean space may
be interpreted as familiar geometric quantities (apart from numerical factors). This table
summarizes the geometric interpretations of all Minkowski functionals for one, two and three
dimensions. The symbol χ denotes the Euler characteristic, a purely topological quantity. It
measures the connectivity of a set, being equal to the number of parts minus the number of
tunnels.

d 1 2 3
V0 length area volume
V1 χ circumference surface area
V2 – χ integrated mean curvature
V3 – – χ

12



2.1 Overview

Figure 2.2 This plot shows the surface area and the integrated mean curvature, that is the
Minkowski functionals V1 and V2, for spheroids of varying axis ratio. Prolate spheroids (“cigars”)
are characterised by large surface area and comparatively small mean curvature, while the
situation is reversed for oblate spheroids (“pancakes”).
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2 Integral geometry

2.1 Overview

Stochastic problems that involved geometric objects provided a challenge for mathematicians
since Buffon introduced his famous needle problem in the 18th century. Ambiguities such as
Bertrand’s paradox plagued the field until Poincaré found that it was possible to resolve them
by associating probability measures with transformation groups. The work of Blaschke (1936)
initiated the systematic study of probabilistic ideas in application to geometric problems, and
started the evolution of what is now known as integral geometry. Most notably, Blaschke
introduced the Quermaß integrals or Minkowski functionals. Later studies focussing on these
quantities (Hadwiger 1957; Santaló 1976) provided further insight into the interplay of geometry
and probability. Nowadays, the scope of the field has enlarged towards such diverse fields as
differential geometry and stochastic processes, which is also reflected in the broad range of
recent overviews (Weil 1983; Stoyan et al. 1995; Schneider 1993).

In our work, we are going to draw results from integral geometry and related fields to measure
morphological properties of cosmological datasets. The central role in these studies is played
by the Minkowski functionals. They were first introduced into large–scale structure analysis by
Mecke et al. (1994), and later applied to catalogues of galaxies (Kerscher et al. 1998) and
clusters of galaxies (Kerscher et al. 1997). A basic tutorial can be found in Schmalzing et al.
(1996). Meanwhile, Minkowski functionals are enjoying increasing popularity as an alternative
to the more standard low–order statistics.

One appealing property of the Minkowski functionals is their uniqueness and completeness as
morphological measures, which follows by the theorem of Hadwiger (1957) on very general
requirements. In d dimensions there exist d + 1 Minkowski functionals Vµ, µ = 0, . . . , d on
the convex ring, the set of all finite unions of convex bodies. Hadwiger’s theorem states that
any measure M on the convex ring that satisfies motion invariance, additivity, and continuity
can be expressed as a linear combination of the Minkowski functionals. Furthermore, all the
Minkowski functionals in up to three dimensions can be interpreted as well–known geometric
quantities, as summarised in Table 2.1.

Figure 2.1 shows examples for bodies with different Euler characteristic. The Euler characteristic
is a purely topological quantity and measures the connectivity of a set. It is equal to the number
of parts minus the number of tunnels in the structure. Hence the egg has V3 = 1, while the
single and double loop have V3 = 0 and V3 = −1, respectively. The behaviour of the surface
area V1 and mean curvature V2 is illustrated in Figure 2.2 on a simple family of spheroids,
whose Minkowski functionals are known analytically (Hadwiger 1955). By varying the axis ratio
of the spheroids while keeping the volume constant, we obtain a curve in the V1–V2–plane.
Values are given in units of the corresponding functionals of a ball of the same size, so we are
indeed showing the effects of shape. A ball would lie at the cusp at (1, 1). Prolate spheroids
(“cigars”) are characterised by large surface area and comparatively small mean curvature, while
the situation is reversed for oblate spheroids (“pancakes”).
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2.2 Point processes

2.2 Point processes

Many phenomena, including the distribution of galaxies in the Universe, can be modelled by
point processes. The underlying theory is explained in various standard works of mathematics
(Diggle 1983; Daley & Vere-Jones 1988; Reiss 1993) and astrophysics (Peebles 1980). For our
purpose, a point process distributes points on a d–dimensional support D ⊂ Ed, generating a
random set of points {xi}, a so–called realization of the point process.

The complete statistical properties of a point process can be quantified using the density
functions ρn(x1 . . .xn), where n ∈ N. With probability ρn(x1 . . .xn)ddx 1 . . . d

dx n, a realization
of the point process will contain points at the n positions x1 to xn in infinitesimal volumes
ddx 1 to ddx n. All density functions can be summarised in a generating functional

P[µ(x)] =
∞∑
n=1

1

n!

∫
dτnρn(x1 . . .xn)µ(x1) . . . µ(xn), (2.1)

with the integration measure defined by∫
dτn =

∫
D

ddx 1 . . . d
dx n. (2.2)

An equivalent, but usually more meaningful description uses the hierarchy of correlation func-
tions ξn(x1 . . .xn) (White 1979; Balian & Schaeffer 1989a; Balian & Schaeffer 1989b). The
correlation function of order n gives the deviation of the density function of order n from the
density function expected under the assumption that all partitions of the n points are indepen-
dent. Furthermore, the correlation functions are normalised with the one–point particle density
ρ1(x). While this definition cannot be written down in closed form for the individual functions,
the connection between the generating functionals is very simple. Defining

Ξ[µ(x)] =
∞∑
n=1

1

n!

∫
dτnξn(x1 . . .xn)µ(x1) . . . µ(xn), (2.3)

in analogy to the generating functionals in Equation 2.1, we have

Ξ[µ(x)] = ln P[µ(x)/ρ1(x)]. (2.4)

Usually, we will deal with stationary point processes, where all characteristics are invariant
under translations and rotations. In particular, this means that the one–point density ρ1(x) is
independent of position, so we may write ρ1(x) = ρ.

Obviously, the morphology of a set of points is rather trivial. We have to put “flesh” on the
skeleton before we can think of measuring topology and geometry. One possible approach
(Mecke et al. 1994) uses a Boolean grain model (Wicksell 1925). From the set of points {xi},
we construct the union of balls B of a certain radius r centered around the points, that is

Ar =
N⋃
i=1

Bxi . (2.5)

15



2 Integral geometry

We can then measure the Minkowski functionals Vµ (Ar) of this union set as functions of the
radius. Throughout our applications, we divide these quantities by the sample volume, and thus
obtain volume densities vµ of Minkowski functionals.

We shall now establish a relation between the hierarchy of correlation functions of a point
process and the average Minkowski functionals of a Boolean grain model constructed from the
realizations. In order to cut down notation we always use a linear combination of Minkowski
functionals, the so–called Minkowski polynomial M(t) (Hadwiger 1975; Kellerer 1984). We
define

M(t;K) =
d∑

µ=0

αµt
µ

µ!
Vµ(K) (2.6)

with coefficients1

αµ =
ωd−µ
ωd

. (2.8)

Analogously, we construct a polynomial m(t) from the densities vµ of the Minkowski functionals
per unit volume. From now on, we drop the variable t from the polynomial, and only reintroduce
it when extracting the individual Minkowski functionals via

Vµ(K) =
1

αµ

∂µ

∂tµ
M(t;K). (2.9)

By taking the ensemble average and applying the additivity relation repeatedly, we obtain the
formula given by Mecke et al. (1994),

m = 1−
∞∑
n=0

(−1)n

n!

∫
dτnρn (x1, . . . ,xn)M (Bx1 ∩ . . . ∩Bxn) , (2.10)

If the density functions ρn were independent of position, the integrals could be performed using
the principal kinematic formula by Blaschke (1936) (see also Chern & Yien 1940 for the more
general version employed here). Fixing one body A in space, and intersecting with a moving
body B, we obtain after integration over all possible positions of B a simple factorization.∫

D
ddxM(A ∩Bx) = M(A)M(B), (2.11)

1ωµ denotes the volume of the µ–dimensional unit ball. Some important special values are ω0 = 1, ω1 = 2,
ω2 = π, and ω3 = 4

3π, while in general.

ωj =
2π(j+1)/2

Γ((j + 1)/2)
. (2.7)
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2.2 Point processes

where equality holds to order td. In the case of the homogeneous Poisson process, where all
higher–order correlation functions vanish, straightforward application of the principal kinematic
formula to Equation (2.10) leads to the results given by Mecke (1994). Unfortunately, this
approach is not viable in most situations where the density functions are position dependent.
However, it is possible to using the factorization of the density functions into the correlation
functions.

Equation (2.10) motivates the introduction of a hierarchy of “moments” Pn by weighting the
n–point density function with the Minkowski polynomial of n intersecting balls,

Pn =

∫
dτnρn (x1, . . . ,xn)M (Bx1 ∩ . . . ∩Bxn) . (2.12)

Writing the density functions ρn as sums over all possible partitions into correlation functions ξn,
and using the principal kinematic formula, it can be shown that the “cumulants” corresponding
to the moments Pn are the Ξn given by

Ξn =

∫
dτnξn (x1, . . . ,xn)M (Bx1 ∩ . . . ∩Bxn) . (2.13)

With a generating functional P [j] for the Pn given by

P [j] =
∞∑
n=0

(−j)n

n!
Pn, (2.14)

an analogous generating functional Ξ[j] for the Ξn is obtained through

P [j] = exp (Ξ[ρj]) . (2.15)

Note the analogy with Equation (2.1). Setting j = −1, we directly arrive at the result

m = 1−
∞∑
n=0

(−1)n

n!
Pn = 1− exp

(
∞∑
n=0

(−ρ)n

n!
Ξn

)
. (2.16)

It is interesting to note that the computational method used here can be regarded as a special
case from the family of linked cluster theorems, which are often encountered in statistical physics
(Negele & Orland 1988; Binney et al. 1992).

Recovering the Minkowski functionals from the polynomial via Equation (2.9), we obtain in
d = 3 dimensions

v0 = 1− exp
(
−ρV 0

)
v1 = exp

(
−ρV 0

)
ρV 1

v2 = exp
(
−ρV 0

)(
ρV 2 −

3π

8
ρ2V

2

1

)
v3 = exp

(
−ρV 0

)(
ρV 3 −

9

2
ρ2V 1V 2 +

9π

16
ρ3V

3

1

) (2.17)
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2 Integral geometry

which looks remarkably similar to the result for the Poisson process, except that the bare
Minkowski functionals of balls Vµ(B) are replaced by the quantities

V µ = Vµ(B) +
∞∑
n=1

(−ρ)n

(n+ 1)!

∫
D

ddx 1 . . . d
dx n

ξn+1(0,x1, . . . ,xn)Vµ(B ∩Bx1 ∩ . . . ∩Bxn). (2.18)

Note that Equation (2.18) is a generalization of the result by White (1979) for the void prob-
ability function. This shows that all Minkowski functionals depend on the complete hierarchy
of correlation functions through an asymptotic series, hence each order n can be expected to
contribute significantly to the overall result. Comparisons on a high–resolution simulation of
the dark–matter and halo distribution in the nearby Universe (Schmalzing et al. 1999b) have
shown that Minkowski functionals do indeed reveal information beyond clustering statistics of
low order, and are therefore a useful complement to the more standard correlation function and
power spectrum analysis.

However, the Boolean grain model is not the only way of constructing non–trivial bodies from
point sets. One can also smear the individual particles into a continuous field, and the first
section of Chapter 5 discusses a few techniques for doing this. Moreover, not all data comes
in points; therefore, we will leave point processes for a while and consider random fields.

2.3 Random fields

In principle, one can think of a random field u(x) as a multivariate random variable, with a
spatial domain D as index set. The statistical properties of a random field are fully specified by
the statistics of all finite subsets {x1 . . .xN} from this domain, hence the problem is reduced
to one of ordinary vector–valued random variables. The geometric properties of the index
domain, however, allow for the definition quantities such as derivatives or integrals of random
fields, which are random fields themselves. A full–blown mathematical course on the theory
of random fields can be found in the classical book by Adler (1981). In the following, we will
consider ways of evaluating Minkowski functionals given a realisation of a random field u(x).

Consider a random field u(x) on a d–dimensional support D ⊆ Ed. For a given threshold ν the
excursion set Qν is the set of all points x with u(x) ≥ ν. We wish to calculate its Minkowski

functionals v
(d)
k (ν) per unit volume. Using methods from integral geometry and scale–space

theory, we can develop formulae for the Minkowski functionals that can be easily turned into
numerical prescriptions (Schmalzing & Buchert 1997). One set of estimators uses Crofton’s
formula and grid cell counting, while the other employs Koenderink invariants to reduce the
problem to spatial averaging over invariants formed from derivatives of the random field.

Careful analysis reveals that both families of estimators are biased by the finite lattice constant a
encountered with any practical realisation of a random field. The deviations are of order a2 and
can be evaluated analytically for a Gaussian random field (see Winitzki & Kosowsky 1997 for
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2.3 Random fields

some results in two dimensions). It turns out that the two estimates using Crofton’s formula and
Koenderink invariants, respectively, deviate from the true value in opposite directions. Hence
their difference gives at least a rough idea of the errors associated with binning the continuous
field onto a finite lattice.

Yet another method of calculating Minkowski functionals of isocontours has been suggested by
Novikov et al. (1999). However, their interpolation method has so far only been implemented
on small two–dimensional fields.

2.3.1 Crofton’s intersection formula

Crofton’s formula (Crofton 1868) relates the Minkowski functionals from different dimensions.
For a body K in d dimensions we consider an arbitrary k–dimensional hyperplane E and calculate
the Euler characteristic χ of the intersection K∩E in k dimensions. Integrating this quantity
over the space E (d)

k of all conceivable hyperplanes2 we obtain the kth Minkowski functional of
the body K in d dimensions. Crofton’s formula states that

v
(d)
k (K) =

ωd
ωd−kωk

∫
E(d)
k

dµk(E)χ(k)(K∩E). (2.19)

If the body K is the excursion set of a homogeneous and isotropic random field sampled at L
points of a cubic lattice of spacing a, we can as well average over the set L(d)

k of all dual lattice
hyperplanes only. The integral is then replaced by a summation over these hyperplanes with an
additional normalization factor and we obtain

v
(d)
k (K) =

ωd
ωd−kωk

∑
E∈L(d)

k

1

akL

k!(d− k)!

d!
χ(k)(K∩E). (2.20)

However, the Euler characteristic of a body in k dimensions can be approximated by counting
the numbers Nj(K) of all elementary lattice cells of dimension j within the body (Adler 1981).
In three dimensions, for example, N3(K) gives the number of cubes within the body, N2(K)
and N1(K) are the numbers of faces and edges of the lattice cubes, respectively, while N0(K)
gives the number of lattice points contained in K. In general we have

χ(k)(K∩E) =
k∑
j=0

(−1)jNj(K∩E). (2.21)

When summing equation (2.21) over all lattice hyperplanes, we notice that j–dimensional
lattice cells of the bodies K∩E result from intersections of a (d − k + j)–dimensional lattice

cell belonging to the body K with k–dimensional hyperplanes E, so there are

(
d− k + j

j

)
2The integration measure dµk(E) is normalized to give

∫
E(d)
k

dµk(E) = 1.
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2 Integral geometry

of them. Therefore, we can actually perform the summation∑
E∈L(d)

k

Nj(K∩E) =

(
d− k + j

j

)
Nd−k+j(K) (2.22)

and end up with the compact formula

v
(d)
k (K) =

ωd
ωd−kωk

1

akL

k∑
j=0

(−1)j
k!(d− k + j)!

d!j!
Nd−k+j(K). (2.23)

For a homogeneous and isotropic random field in three dimensions the Minkowski functionals
are thus given by

v0(ν) = n3,

v1(ν) =
2

9a
(n2 − 3n3),

v2(ν) =
2

9a2
(n1 − 2n2 + 3n3),

v3(ν) =
1

a3
(n0 − n1 + n2 − n3),

(2.24)

where the quantity nj = Nj/L is the number density of j–dimensional elementary cells con-
tained in the isodensity contour; to be specific, n3 is the number of grid volumes, n2 counts
the grid faces, and n1 and n0 denote the numbers of grid edges and lattice points, respectively.

Note that the last relation for the Euler characteristic v3 = χ/|D| per unit volume is not
obtained from Crofton’s formula but is already given as a special case of equation (2.21)
which results from the Morse theorem (Morse & Cairns 1969). Being conceptually simple in
comparison to the other approximations, it was already proved rigorously by Adler (1981) and
used by Coles et al. (1996) to calculate the genus of isodensity contours in three dimensions.
Adding Crofton’s formula gives all the Minkowski functionals without further computational
effort, since the calculation requires nothing but the counting of all elementary lattice cells,
which is already necessary for calculating the genus.

2.3.2 Koenderink invariants

Again we consider a realisation of a random field u(x) on a d–dimensional support D ⊆ Ed and
the excursion set Qν over a given threshold ν. We wish to calculate its Minkowski functionals
v

(d)
k (ν) per unit volume. The volume functional v0 is simply given by volume integration over

the excursion set Qν , which can be written with a Heaviside step function Θ as

v0(ν) =
1

|D|

∫
D

ddxΘ(ν − u(x)). (2.25)
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2.3 Random fields

If the excursion set Qν has a smooth boundary ∂Qν , its other Minkowski functionals are given
by surface integrals (Schneider 1978). We have

vj(ν) =
1

|D|
1

ωj−1

(
d
j

) ∫
∂Qν

dsSj (κ1 . . . κd−1) . (2.26)

Here ds denotes the surface element on Qν , κ1 to κd−1 are the boundary’s d− 1 principal cur-
vatures, and Sj is the jth elementary symmetric function defined by the polynomial expansion

d−1∏
i=1

(x+ κi) =
d∑
j=1

xd−jSj (κ1 . . . κd−1) ; (2.27)

hence S1 = 1, S2 = κ1 + . . .+ κd−1, and so on up to Sd = κ1 . . . κd−1.

For practical applications, it is quite cumbersome to follow the isodensity contour and evaluate
the local curvatures directly. We use methods developed by Koenderink (Koenderink 1984; ter
Haar Romeny et al. 1991) in two–dimensional image analysis to express these local curvatures
in terms of geometric invariants formed from first and second derivatives. The calculations in
two and three dimension were already done by Schmalzing (1996), so let us just summarise the
results. In three dimensions, the isodensity contour is a surface and has two principal curvatures
κ1 and κ2, and we obtain3

κ1 + κ2 =
εijmεklmu,iu,jku,l

(u,nu,n)3/2
,

κ1κ2 =
εijkεlmnu,iu,lu,jmu,kn

2(u,pu,p)2
.

(2.28)

In two dimensions, the isodensity contour is a line and hence there is only one principal curvature
at each point,

κ =
2u,1u,2u,12 − u,12u,22 − u,22u,11

(u,12 + u,22)3/2
. (2.29)

Moreover, the surface integration (2.26) of these invariants may be transformed to the spatial
mean over the whole volume. This adds to the integral a delta function for selecting the
isodensity contour, and the field’s gradient as the Jacobian of the transformation of the surface
element. The resulting formula is

vj(ν) =
1

|D|
1

ωj−1

(
d
j

) ∫
D

ddx δ(ν − u(x)) |∇u(x)|Sj (κ1 . . . κd−1) . (2.30)

3The notation is chosen to emphasise the coordinate invariance of the integrand. We use indices following a
comma to indicate differentiation with respect to the corresponding coordinate. εijk denotes the components
of the totally antisymmetric third–rank tensor normalised to ε123 = 1. Summation over pairwise indices is
understood.
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2 Integral geometry

If the density field is sampled at the points of some lattice, we can therefore estimate the
Minkowski functionals by calculating the derivatives at each lattice point and replacing first the
δ-function with a bin of finite width and then the average over all space with a summation over
lattice points only.

Spaces of constant curvature

A promising cosmological application of Minkowski functionals uses random fields on the sphere,
namely all–sky maps of the CMB. The two–dimensional sphere S2 belongs to the wider class
of spaces of constant curvature.

A space of constant curvature is characterised by its dimension d, and by its curvature kK. The
sign k equals either +1, or 0, or −1, for the spherical space Sd, the Euclidean space Ed and the
hyperbolic space Hd, respectively. K is a positive constant of dimension [Length]−2, hence its
inverse square root K−1/2 can be interpreted as the radius of curvature. Santaló (1976) shows
how to obtain an integral geometry on such spaces. Curvature integrals as in Equation (2.26)
can still be defined, if care is taken to use the geodesic curvatures κi. In the following, we will
call these quantities the Minkowski functionals in curved spaces.

It turns out that some of the geometric interpretations are altered with respect to the flat
case. While for a body K in flat space the curvature integral Vd(K) is equal to the Euler
characteristic χ(K), curved spaces require a generalized Gauss–Bonnet Theorem proved for
arbitrary Riemannian manifolds by Allendoerfer & Weil (1943) and Chern (1944). The theorem
states that the Euler characteristic is a linear combination of all Minkowski functionals as defined
by Equation (2.26),

χ(K) =
d∑
j=0

cjVj(K), (2.31)

with the coefficients cj given by

cj =


(
d
j

)
2(kK)(d−j)/2

ωd−j
if d− j even,

0 if d− j odd.
(2.32)

Note that from the point of view of Hadwiger’s theorem, which is also valid on curved spaces, all
linear combinations of Minkowski functionals are equally suitable as morphological descriptors,
so one may both use the integrated curvature Vd and the Euler characteristic χ as the last
Minkowski functional. In the following, we will consider both quantities, because the integrated
geodesic curvature is easier to calculate, and the Euler characteristic is easier to interpret.
Obviously, in the case of Euclidean space Ed, k = 0 and all coefficients apart from cd vanish,
so χ(K) = Vd(K) and the original Gauss–Bonnet theorem is recovered.
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2.3 Random fields

2.3.3 Tomita’s Formulae for Statistics of Random Interfaces

Just like the genus (Doroshkevich 1970), all Minkowski functionals are analytically known for
a Gaussian random field, due to a highly instructive article by Tomita (1990). Meanwhile, it
should be clear that we consider a random field u(x) in d dimensions, construct the excursion

set over a certain threshold ν, and calculate its mean Minkowski functionals v
(d)
k (ν) per unit

volume.

In the previous section, Equation (2.30) has shown that all Minkowski functionals may be
written as spatial averages over Koenderink invariants, which can in turn be expressed in terms
of first and second derivatives of the field under consideration. We may as well average over all
possible realizations at a fixed location, and hence it is sufficient to know the joint probability
distribution of the field value and its first and second derivatives at the same point. The
situation is particularly simple for the Gaussian random field, where we obtain a multivariate
Gaussian distribution (Adler 1981) with zero mean and covariances given in terms of the field’s
correlation function ξ(r) as

〈u2〉 = ξ(0)

〈uu,i〉 = 0

〈uu,ij〉 = −ξ′′(0)δij

〈u,iu,j〉 = ξ′′(0)δij

〈u,iu,jk〉 = 0

〈u,iju,kl〉 = 1
3
ξ(4)(0)(δijδkl + δikδjl + δilδjk).

(2.33)

The task of inserting the corresponding probability density into the average of Equation (2.30) is
a relatively simple one. It turns out that the result depends only on the value of the correlation
function ξ(0) and its second derivative ξ′′(0) at zero through two parameters σ and λ, with

σ = ξ(0), λ =
√
|ξ′′(0)|/(2πξ(0)). (2.34)

Both are easily measured from a given realization of the random field, since ξ(0) = 〈u2〉 is the
variance of the field itself and |ξ′′(0)| = 〈u2

,i〉 is the variance of any of its first derivatives (Adler
1981).

With these two parameters all Minkowski functionals in arbitrary dimension d can be calculated
for a Gaussian random field (Tomita 1990). For the volume functional we obtain4

v
(d)
0 (ν) = 1

2
− 1

2
Φ

(
ν√
2σ

)
, (2.35)

while all other Minkowski functionals are given by

v
(d)
k (ν) = λk

ωd
ωd−kωk

Hk−1

(
ν√
σ

)
. (2.36)

4Φ(x) = 2√
π

∫ x
0

dt exp(−t2) denotes the Gaussian error integral, while Hn(x) =
(
− d

dx

)n 1√
2π

exp
(
− 1

2x
2
)

defines a Hermite function of order n.
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Putting d = 3 we obtain the Minkowski functionals in three dimensions5

v0(ν) = 1
2
− 1

2
Φ
(

1√
2
u
)

v1(ν) = 2
3

λ√
2π

exp
(
−1

2
u2
)

v2(ν) = 2
3

λ2

√
2π
u exp

(
−1

2
u2
)

v3(ν) =
λ3

√
2π

(
u2 − 1

)
exp

(
−1

2
u2
)
.

(2.37)

For other random fields derived from the Gaussian case, such as the χ2 field, the F field, or
the t field, Worsley (1994) gives the joint probability distribution necessary for calculating the
Minkowski functionals through Equation (2.30). Some additional results including figures can
be found in Chapter 4.

2.4 Isoperimetric inequalities

Minkowski functionals are no exception to Berry’s principle – the original article by (Minkowski
1903) does not introduce the Quermaß integrals or Minkowski functionals, but rather related
quantities known as mixed volumes. The mixed volume V (K1, . . . , Kn) of n convex bodies K1

to Kn is a generalization of the ordinary volume V (K) of a single body K. It can be expressed
in terms of ordinary volumes of Minkowski sums of all combinations of the n bodies, and we
have

V (K1, . . . , Kn) :=
1

n!

n∑
k=1

(−1)n+k
∑

i1<...<ik

V (Ki1 ⊕ . . .⊕Kik), (2.38)

where the Minkowski sum is defined as

K ⊕ L := {x+ y|x ∈ K, y ∈ L} ; (2.39)

Obviously, the Minkowski sum of two convex bodies is itself convex. It is clear from this
definition that in the case of a single body, the mixed volume reduces to its ordinary volume.
Furthermore, these quantities inherit many interesting properties from the volume and hence
play a central role in the Brunn–Minkowski theory (see Schneider 1993 for an introduction).

A most useful inequality proved by Alexandrov (1937) and Fenchel (1936) states that

V 2(K1, K2, . . . , Kn) ≥ V (K1, K1, K3 . . . , Kn)V (K2, K2, K3 . . . , Kn). (2.40)

5To relieve the notation of the overall normalization
√
σ, we use the dimensionless argument u, with ν = u

√
σ.
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2.4 Isoperimetric inequalities

The Minkowski functionals of a body K in d dimensions can be related to mixed volumes of
two bodies via

Vj(K) =
1

ωj
V (K, . . . ,K︸ ︷︷ ︸

d−j

, B, . . . , B︸ ︷︷ ︸
j

), (2.41)

where B denotes the d–dimensional unit ball. Consult the book by Burago & Zalgaller (1988)
for a broad discussion of the Alexandrov–Fenchel inequality and related issues.

In three dimensions, the Alexandrov–Fenchel inequality (2.40) leads to two independent non–
trivial inequalities for the Minkowski functionals, namely

V1
2 ≥ π

4
V0V2,

V2
2 ≥ 8

3π
V1V3.

(2.42)

These two inequalities motivate the introduction of the Blaschke diagram (Hadwiger 1955). A
convex body with Minkowski functionals Vj is mapped to a point (x, y) with coordinates

x :=
πV0V2

4V 2
1

, y :=
8V1V3

3πV 2
2

. (2.43)

A ball has x = y = 1. For convex bodies, all Minkowski functionals are non–negative, and
satisfy the inequalities (2.42), so these points are confined to the unit square. Nevertheless,
the convex bodies do not fill the whole unit square – the limiting isoperimetric inequality has
yet to be found (Schneider 1993 and references therein).

Recently, Sahni et al. (1998) proposed a set of shapefinders derived from Minkowski functionals.
One starts from the three independent ratios of Minkowski functionals that have dimension of
length. Requiring that they yield the radius R if applied to a ball, we define

Thickness T :=
V0

2V1

, Width W :=
2V1

πV2

, Length L :=
3V2

4V3

. (2.44)

By the isoperimetric inequalities (2.42), we have L≥W≥T for any convex body. Going one
step further, Sahni et al. (1998) also define dimensionless shapefinders by

Planarity P :=
W − T
W + T

, Filamentarity F :=
L−W
L+W

. (2.45)

These dimensionless shapefinders are related to the isoperimetric ratios via

P =
1− x
1 + x

, F =
1− y
1 + y

. (2.46)

Obviously, a scatter plot of shapefinders is almost equivalent to the ordinary Blaschke diagram
reflected at the point (0.5, 0.5), so either method of presentation should convey the same
morphological information. In our applications, we refer to scatter plots of shapefinders (P ,F)
as Blaschke diagrams.
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3 The evolution of large–scale structure

Dich leder ich doch mit der Horex ab, Macker!
Wir baun einfach zwei Motor’n hinteranaer, denn siehst Du kein Land mehr!

(Brösel 1986)

According to the standard model of cosmology, the Universe evolved into its present state
from a Big Bang, that is a hot, dense, and highly homogeneous state. The remains of this
primeval fireball reach us in the photons of the Cosmic Microwave Background (CMB); having
originated at the epoch of recombination, when matter and radiation decoupled, they reflect
the distribution of matter when the Universe was a mere 300,000 years old. Measurements
by the DMR instrument on board the COBE satellite have revealed very small fluctuations, of
the order of 10−5, in the CMB (Smoot et al. 1992). At the time of its origin, radiation and
matter were still coupled, so fluctuations in the matter density were equally small. Since then,
gravitational interaction alone has dominated the evolution of structures in the Universe.

In the following, we attempt to shed some light on the mechanisms of large–scale structure
formation from an almost homogeneous initial state. It has been suggested (Pogosyan et al.
1996; Bond et al. 1996) that a “cosmic web” of filaments is already visible in the seeds of large–
scale structure, in the initial fluctuations. Systematic investigations, e.g. by Arnol’d et al. (1982)
in two dimensions, were often pursued with special focus on the Zel’dovich approximation. We
will follow a similar approach. The framework for our considerations, Newtonian cosmology, is
laid out in Section 3.1, and formulated in terms of the Lagrange–Newton system. In Section 3.2
we present and investigate a perturbation ansatz for this system of non–linear partial differential
equations. After discussing some practical issues (Section 3.3), we present examples of particle
distributions evolved from Cold Dark Matter initial conditions (Section 3.4), and conclude with
an outlook on the prospects of our approximation scheme.

3.1 Newtonian cosmology

Let us begin by a brief summary of Newtonian cosmology (Peebles 1980; Padmanabhan 1993
and references therein). We assume that spacetime is well approximated by a Friedmann–
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3 The evolution of large–scale structure

Robertson–Walker metric (see e.g. Weinberg 1972)

ds2 = dt2 − a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, (3.1)

and that inhomogeneities act predominantly as a one–component fluid. In the Eulerian picture,
the state of this fluid is fully described by the density field ρ(x, t) and the velocity field v(x, t)
at each point (x, t) in the non–rotating Eulerian frame. Furthermore, the dynamical evolution
of the system is governed by the acceleration field g(x, t) which equals the gravitational field
strength according to Einstein’s equivalence principle.

Usually, this fluid is taken to be the dark matter, and accordingly modelled as pressureless dust.
The dynamics of the Eulerian fields are contained in a system of partial differential equations:
This system consists of the continuity equation, the Euler equation for zero pressure and field
equations for the acceleration field. Together, these equations form the Euler–Newton system

∂tρ+∇ (ρv) = 0

∂tv + (v∇) v = g

∇g = Λ− 4πGρ

∇× g = 0.

(3.2)

A completely different, but equally complete description is obtained through the Lagrangian
picture. We introduce Lagrangian coordinates X, and map them onto the Eulerian positions x
by

x = f(X, t), (3.3)

where the Lagrangian and Eulerian positions are chosen to coincide at some early time ti,

X = f(X, ti). (3.4)

The mapping f is sufficient to describe the complete system: The Eulerian density field is
obtained from the continuity equation via ρ = ρi/J , where J := det ∂fi

∂Xj
is the Jacobian of the

mapping, the Eulerian velocity field equals1 v = ḟ by definition, and the Euler equation leads
to g = f̈ for the acceleration field.

Transforming the field equations for g to the Lagrangian frame and using the integrals of
acceleration and density leads to the Lagrange–Newton system. Introducing the functional
determinant

J (A,B,C) :=
∂ (A,B,C)

∂ (X1, X2, X3)
= det

 A|1 B|1 C|1
A|2 B|2 C|2
A|3 B|3 C|3

 , (3.5)

1The dot ˙ denotes the Lagrangian or convective time derivative given in terms of the Eulerian fields by
˙ := ∂t+v∇. Furthermore, indices following a comma denote derivatives with respect to Eulerian coordinates,
while derivation in the Lagrangian frame is indicated by indices following a vertical slash. Thus u,i := ∂u/∂xi
and u|i := ∂u/∂Xi.
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3.2 Perturbative approach to the Lagrange–Newton system

the field equations from Equation (3.2) become

J (f̈1, f1, f3) + J (f̈2, f2, f3) = 0

J (f̈2, f2, f1) + J (f̈3, f3, f1) = 0

J (f̈3, f3, f2) + J (f̈1, f1, f2) = 0

(3.6)

J (f̈1, f2, f3) + J (f̈2, f3, f1) + J (f̈3, f1, f2) = ΛJ (f1, f2, f3)− 4πGρi (3.7)

While the number of functions involved has been reduced compared to the Euler–Newton sys-
tem, the Lagrange–Newton system still consists of non–linear partial differential equations and
is not exactly solvable. The brute–force approach of integrating the equations numerically usu-
ally follows the Eulerian description, but analytical considerations are generally more fruitful if
the Lagrangian point–of–view is adopted. In the following, we will outline a perturbative expan-
sion of the Lagrange–Newton system around the known solution of a homogeneous, expanding
Universe.

3.2 Perturbative approach to the Lagrange–Newton
system

A variety of approximation schemes for gravitational clustering have been proposed over the
years, and are excellently reviewed and compared by Sahni & Coles (1995). Focusing on the
Lagrange–Newton system, Buchert (1989) developed a systematic perturbation theory for the
system of Equations (3.6) and (3.7). Various in–depth studies (Buchert 1992; Bildhauer et al.
1992; Bouchet et al. 1992) and basic tutorials (Buchert 1996; Bouchet et al. 1995) can be
found in the literature.

It has been demonstrated that higher than second order solutions (Buchert & Ehlers 1993;
Buchert 1994; Catelan 1995; Lachièze-Rey 1993) are not feasible from the practical point of
view, since little accuracy is gained while calculations become increasingly messy. After all,
the first–order solution, a generalized case of the classical Zel’dovich approximation (Zel’dovich
1970a), already reproduces the formation of filaments. The second–order solution also accounts
for tidal forces and features secondary shell crossings (Buchert et al. 1997), which break the
filaments into smaller lumps. Moreover, second–order schemes lead to a substantial correction
of the delayed collapse time at first order (Karakatsanis et al. 1997).

3.2.1 The perturbation ansatz

Here, we use a perturbation ansatz up to second order that reduces to a set of easily tractable
ordinary differential equations. The perturbative expansion reads

f(X, t) = a(t)X + εa(t)q1(t)∇Ψ(1)(X) + ε2a(t)q2(t)∇Ψ(2)(X). (3.8)
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3 The evolution of large–scale structure

From now on, all spatial derivatives are taken with respect to Lagrangian coordinates un-
less explicitly stated otherwise. The zeroth order of Equation (3.8) describes a homogeneous
expanding Universe with scale factor a(t), and the first order is known as the Zel’dovich approx-
imation (Zel’dovich 1970b). Note that this is not the full Lagrangian perturbation approach2.
We already use the result of Ehlers & Buchert (1997) that each order of perturbation theory
separates into a time–dependent factor qi(t) and a Lagrangian position dependent factor, which
is in addition irrotational and hence expressible as the gradient of a scalar potential Ψ(i)(X).
Since the zeroth order is the homogeneous background solution of a uniformly expanding Uni-
verse, we also “expand” the initial density ρi using the background density ρ̄i and the initial
density contrast δi; the expansion stops at first order by definition, and we have

ρi(X) = ρ̄i + ερ̄iδi(X). (3.9)

Evaluating the derivatives and determinants of the Lagrange–Newton system with the ansatz
chosen in Equation (3.8), we find that the curl equations (3.6) are automatically satisfied to
order O(ε2). The divergence equation (3.7) leads to one differential equation for each order in
the perturbation expansion3, namely

3äa2 − Λa3 = −4πGρ̄i(
q̈1a

3 + 2q̇1ȧa
2 + 3q1äa

2 − Λq1a
3
)

Ψ
(1)
,ii = −4πGρ̄iδi(

q̈2a
3 + 2q̇2ȧa

2 + 3q2äa
2 − Λq2a

3
)

Ψ
(2)
,ii

+
(
2q̈1q1a

3 + 4q̇1q1ȧa
2+ 3q2

1 äa
2 − Λq2

1a
3
) 1

2

(
Ψ

(1)
,ii Ψ

(1)
,jj −Ψ

(1)
,ij Ψ

(1)
,ji

)
= 0.

(3.10)

Obviously, these equations separate into time– and position–dependent factors. Hence we
obtain three ordinary differential equations in time for the scale factors a, q1 and q2, and two
Poisson equations for the potentials Ψ(1) and Ψ(2). Let us start with the Poisson equations,
since they can easily be solved by iteration starting from the initial density contrast δi. The two
equations are

∆Ψ(1) = −δi (3.11)

and

∆Ψ(2) =
1

2

(
Ψ

(1)
,ii Ψ

(1)
,jj −Ψ

(1)
,ij Ψ

(1)
,ji

)
. (3.12)

The equations for the scale factors deserve some more attention.

The zeroth order equation is the well–known Friedmann equation

3äa2 − Λa3 = −4πGρ̄i. (3.13)

2General solutions to second order cover pages; see (Buchert & Ehlers 1993) for the general irrotational part.
3Summation over paired indices is understood.
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3.2 Perturbative approach to the Lagrange–Newton system

We now introduce the function y = a(t)/a0 and define three cosmological parameters, namely
the Hubble constant H0, the matter density parameter Ωm, and the vacuum density parameter
ΩΛ in terms of the parameters used so far:

H0 =
ȧ0

a0

, Ωm =
8πGρ̄0

3H2
0

, ΩΛ =
Λ

3H2
0

, (3.14)

where the current epoch is denoted by t0, and initial and final background density are related
via ρ̄i = ρ̄0a

3
0. This casts the Friedmann equation into the form

ÿ

H2
0

= ΩΛy −
Ωm

2y2
. (3.15)

Multiplication by 2ẏ yields a total time derivative; so we obtain the integral form of the Fried-
mann equation

ẏ2

H2
0

= ΩΛy
2 +

Ωm

y
+ (1− Ωm − ΩΛ), (3.16)

where the constant of integration was expressed in terms of the parameters by using the bound-
ary conditions ẏ(t0) = H0, y(t0) = 1. In general relativity, this integration constant can be
interpreted via k = −a2

0H
2
0 (1 − Ωm − ΩΛ) as the curvature parameter, where time is usually

rescaled to restrict the possible values to k ∈ {0,±1}. At this point, a major draw back of
Newtonian cosmology shows up. Although the theory does predict this curvature parameter, it
fails to provide a physical motivation for spacetime curvature (Goenner 1994).

Since we have already split off the expanding background solution in our perturbation ansatz,
we are not interested in solving of the Friedmann equation anyway. Instead, we will express the
time–dependent factors q1 and q2 as functions of y. Then q̇ = q′ẏ and q̈ = q′′ẏ2 + q′ÿ, where
the prime ′ denotes the derivative with respect to y. The time derivatives of y are obtained
from the two versions (3.15) and (3.16) of the Friedmann equation.

In order to solve the second–order differential equations for q1 and q2, some boundary conditions
need to be fixed. By definition in Equation (3.4), a particle’s initial Eulerian position equals
its Lagrangian position. Hence q1(ai) = q2(ai) = 0. Furthermore, we require that initially the
peculiar velocity u = ḟ− ȧ

a
f4 and the peculiar acceleration w = f̈− ä

a
f are aligned (see Bildhauer

& Buchert 1991 or Susperregi & Buchert 1997 for a thorough discussion of the motivation of
this assumption). Also, we will eliminate the decaying mode solution from the first–order scale
factor by extrapolating back in time and requiring q1(a = 0) + 1 = 0; in fact this is the only
choice which removes the singularity of q1(a) at a = 0. Note, however, that the full first order
solution is dominated by the decaying mode when evolved backwards in time and develops a
Kasner–type singularity instead of a Big Bang singularity (Zentsova & Chernin 1980).

The equation for the first time–dependent factor q1 is

q̈1a
3 + 2q̇1ȧa

2 + 3q1äa
2 − Λq1a

3 = 4πGρ̄i, (3.17)

4The difference between relative velocity ḟ − ȧX and peculiar velocity ḟ − ȧ
a f is discussed by Buchert (1992).

Luckily, both are equal at initial time. Analogously, peculiar acceleration is f̈ − ä
a f rather than f̈ − äX.
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3 The evolution of large–scale structure

and with the cosmological parameters introduced in Equation (3.14) and the Friedmann equa-
tion (3.15) for ÿ it becomes formally equal to the well–known evolution equation for the density
contrast in linear theory (Peebles 1993)

q̈1y
3 + 2q̇1ẏy

2 − 3

2
ΩmH

2
0 (q1 + 1) = 0. (3.18)

Changing parameters from t to y as described above and inserting the Friedmann equation
(3.16) for ẏ2 we obtain(

ΩΛy
5 + Ωmy

2 + (1− ΩΛ − Ωm)y3
)
q′′1

+

(
3ΩΛy

4 +
3

2
Ωmy + 2(1− ΩΛ − Ωm)y2

)
q′1 +

(
−3

2
Ωm

)
(q1 + 1) = 0. (3.19)

Let us postpone the discussion of the general solution to Section 3.2.2, and just consider the
special case ΩΛ = 0, Ωm = 1 where we obtain

q1(a) = −1 + C1a+ C2a
−3/2. (3.20)

We need two boundary conditions to fix the constants. With q1|i = 0 from the initial coincidence
of Eulerian and Lagrangian position, and ∂q1

∂a

∣∣
i

= 1 – as described above this corresponds to
dropping the decaying mode solution – we obtain the unique solution

q1(a) = a− 1. (3.21)

The equation for the second scale factor q2 is almost equal to Equation (3.19) for the first scale
factor, apart from a non–constant right hand side. We have

q̈2a
3 + 2q̇2ȧa

2 + 3q2äa
2 − Λq2a

3 = −2q̈1q1a
3 − 4q̇1q1ȧa

2 − 3q2
1 äa

2 + Λq2
1a

3. (3.22)

Applying the same procedure as before leads to the equation(
ΩΛy

5 + Ωmy
2 + (1− ΩΛ − Ωm)y3

)
q′′2

+

(
3ΩΛy

4 +
3

2
Ωmy + 2(1− ΩΛ − Ωm)y2

)
q′2 +

(
−3

2
Ωm

)
(q2 + 1) = −3

2
Ωm(q1 + 1)2.

(3.23)

Together with two boundary conditions, the solution for this scale factor becomes unique. As
described above, we choose

q2|i = 0,
∂q2

∂a

∣∣∣∣
i

= 0 (3.24)

to satisfy the initial condition X = f(X, ti) for the mapping, and to reproduce the relation
u ∝ w between peculiar velocity and peculiar acceleration, respectively.

Because of these boundary conditions, the solution contains a decaying part. For a critical
Universe with Ωm = 1 and ΩΛ = 0 it is explicitly given by

q2(a) = −3
7
a2 + 6

5
a− 1 + 8

35
a−3/2, (3.25)

while for arbitrary parameter combinations, solutions can only be obtained numerically.
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3.2 Perturbative approach to the Lagrange–Newton system

3.2.2 Solutions of the scale factor equation

Let us take a closer look at the solution of Equation (3.19) for the first–order scale factor
q1. Although the general solution was already derived by Heath (1977) and is also given in
Bildhauer et al. (1992), the issue of choosing appropriate boundary conditions suitable for our
purposes has not been addressed. Since the solutions also appear as the general solution of
the homogeneous equation corresponding to Equation (3.23) for the second–order scale factor,
they are well worth some detailed study.

Let us begin with stating that Equation (3.19) divided by y2 is exact and can be integrated to
yield the first–order equation

(
ΩΛy

3 + Ωm + (1− ΩΛ − Ωm)y
)
q′1 +

(
3

2y
Ωm + (1− ΩΛ − Ωm)

)
q1 = C, (3.26)

where C is a constant of integration to be determined. As explained in the main section, we
now extrapolate into the epoch before ti and define the growing mode solution as the one that
has

q1(a = 0) + 1 = 0, (3.27)

whence brute–force integration leads to a solution containing only one integral

q1(a) + 1 = a−3/2

(
ΩΛa

3 + Ωma
3
0 + (1− ΩΛ − Ωm)aa2

0

ΩΛ + Ωma3
0 + (1− ΩΛ − Ωm)a2

0

)1/2

× C ′
a∫

0

dξ

(
ξa3

0

ΩΛξ3 + Ωma3
0 + (1− ΩΛ − Ωm)ξa2

0

)3/2

, (3.28)

with some constants absorbed into the modified constant of integration C ′. Using the boundary
condition q1(ai) = 0 now fixes the constant C ′ at

C ′ =

 1∫
0

dξ

(
ξa3

0

ΩΛξ3 + Ωma3
0 + (1− ΩΛ − Ωm)ξa2

0

)3/2
−1

. (3.29)

Note that for the Einstein–de Sitter case Ωm = 1 and ΩΛ = 0 this solution reduces to the well–
known growing mode solution q1 + 1 = a and completely discards the decaying mode solution
q1 + 1 = a−3/2. The general second–order solution for ΩΛ = 0 was obtained by Catelan (1995)
and independently by Vanselow (1995). At least parts of the solution can also be found in
(Bouchet et al. 1995).

For the general Friedmann–Robertson–Walker background Universe with arbitrary Ωm and ΩΛ,
we can expand the initial slope of the scale factor as a series in the small parameter a−1

0 . This is
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3 The evolution of large–scale structure

of the order of ≈ 10−3, so the series yields accurate initial conditions for the numerical solution
of the differential equation (3.19). To fourth order in a−1

0 we have

∂q1

∂a

∣∣∣∣
i

≈ 1− 4
7

1− ΩΛ − Ωm

Ωm

a−1
0 + 64

147

(
1− ΩΛ − Ωm

Ωm

)2

a−2
0

−

(
1376
3773

(
1− ΩΛ − Ωm

Ωm

)3

+ 6
11

ΩΛ

Ωm

)
a−3

0 +O
(
a−4

0

)
. (3.30)

The result of series expansion of the general solution from Equation (3.28) is

q1(a) + 1 = a− 4
7

1− ΩΛ − Ωm

Ωm

a(a− 1)a−1
0

+ 8
147

(
1− ΩΛ − Ωm

Ωm

)2

a(a− 1)(7a+ 1)a−2
0 +O

((
a

a0

)3
)
. (3.31)

Note that ΩΛ itself only enters the third–order corrections, which we haven’t written down here,
so low–density Universes closed by a cosmological constant with ΩΛ + Ωm = 1 are close to the
Einstein–de Sitter case q1 + 1 = a.

3.3 Practical issues

3.3.1 Initial conditions

The parameters ΩΛ, Ωm, and H0 enter into the time–dependent scale factors q1 and q2. For the
initial density field δi one normally uses a realisation of a Gaussian random field with a power
spectrum determined by the type of dark matter and the background cosmology. The crucial
part is of course the evaluation of the initial power spectrum.

Compared to the primordial power spectrum, usually modelled as the scale–invariant form
suggested by Harrison (1970) and Zel’dovich (1972), the initial power spectrum is processed
by a transfer function which contains the physics of the epoch of recombination. Analytical
approximation formulae for a wide range of cosmological models are summarised in the classical
articles by Bardeen et al. (1987) and Bardeen et al. (1986); more recent tables that include
Cold Dark Matter with a non–vanishing baryon contribution are provided by Holtzman (1989).

Together, the primordial power spectrum and the transfer function determine the shape of
the initial power spectrum. Its normalisation is not fixed by the cosmology, but must be
tied to measurements. At the infrared end of the spectrum, COBE measurements of the
CMB quadrupole Qrms−PS provide the so–called COBE–normalisation described by Bunn et al.
(1995), White & Bunn (1995) (note White & Bunn 1996), and Bunn & White (1997). A
different possibility uses the parameter σ8, which gives the density fluctuations on a scale of
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3.3 Practical issues

Figure 3.1 The initial power spectra for Standard Cold Dark Matter (SCDM), together with
the dynamical range of the boxes shown in our examples below.
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3 The evolution of large–scale structure

8Mpc and is measured through cluster abundances; hence the term “cluster normalisation”.
Borgani et al. (1994) have performed cluster normalised simulations of Abell/ACO clusters
using the truncated Zel’dovich approximation.

From the practical point of view, the programs linger and graphics of the software package
cosmics (Bertschinger 1995; Bode & Bertschinger 1995) are widely used for generating initial
conditions for numerical simulations. The package implements linearised relativistic calculations
reviewed for example by Bardeen (1980) or Mukhanov et al. (1992).

3.3.2 Optimization

When applied näıvely, Lagrangian perturbation schemes fail fairly miserably at reproducing the
coherence of evolved large–scale structure. Coles et al. (1993a) have succeeded in enhancing
the performance of the Zel’dovich approximation considerably by truncating the initial power
spectrum at the scale of non–linearity. A detailed comparison to the related adhesion approx-
imation was performed by Melott et al. (1994). We adopt a related approach by Weiß et al.
(1996), that uses Gaussian smoothing of the initial field instead of a sharp Fourier space cutoff.
Good values for the truncation length are given by multiples of the scale of non–linearity, where
the factors for first and second order were determined with brute–force evaluation by Weiß et
al. (1996) and Melott et al. (1995) in the Einstein–de Sitter case. Hamana (1998) confirms
that the result is also valid in arbitrary background cosmologies. Other optimization schemes,
using analytical calculations of the evolved correlation function, are discussed by Schneider &
Bartelmann (1995).

Note that small scale power in the initial conditions is removed when truncating the power
spectrum, so the mapping f becomes a smooth analytical function of Lagrangian position X.
This means that we can improve resolution by linearly interpolating in Lagrangian space. Tests,
as shown in Figure 3.2, prove that accurate results are still obtainable when an interpolation
factor of as much as ten is used.

3.3.3 Biasing

For the purpose of constructing large mock samples of galaxies there are two arguments why
the erasure of small–scale features present in N–body simulations looses relevance. From a
pragmatic point of view, the k–space cutoff is of the order of the Nyquist frequency of any
presently conceivable N–body simulation. Also, small–scale filamentary structure hosts mainly
low surface brightness galaxies which will be discarded when constructing magnitude–limited
mock samples.

A distribution of galaxies may be obtained through Lagrangian biasing, as suggested by Buchert
(1990) and implemented by Weiß & Buchert (1993) in the simulation of high–resolution pencil
beam surveys, and by Blanchard et al. (1993) for the quasar density evolution. Also, Kates
et al. (1991) implement a slightly different semianalytical scheme together with the truncated
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Zel’dovich approximation. Alternatively, one can think of using ordinary Eulerian schemes
(Dekel 1987; Rees 1987; Dekel & Rees 1987).

Obviously, catalogues of galaxies are observed in redshift space rather than real space. This
issue is addressed by Hivon et al. (1995) with emphasis on Lagrangian perturbation schemes.
Furthermore, on very large scales one should carefully take into account the light–cone effect
in practice and theory (Colberg 1999; Yamamoto & Suto 1999).

3.4 Examples and Outlook

Figure 3.2 shows some slices of a 250Mpc or 125h−1Mpc SCDM box to demonstrate the power
of Lagrangian interpolation. The example is of course artificial in the sense that the resolution
is far too high given the physical limits of the perturbation schemes and of f itself (Buchert
& Bartelmann 1991). However, the main point we would like to make is not the accurate
reproduction of the full gravitational dynamics on small scales, but rather the emergence of
finely resolved structures in the interpolated field, despite the relative coarseness of the original
set of particles.

A more realistic situation is shown in Figure 3.3. This time, we reach a resolution of 1h−1Mpc
by interpolating the original 1283 particles in a 1h−1Gpc box to 10243. This resolution matches
the method’s limits. On the other hand, the box size is already comparable to the size of the
observable Universe. Note that the whole run including interpolation and density reconstruction
took less than half an hour of CPU–time on an ordinary work station, while running N–body
simulations of comparable size (Colberg et al. 1998) consumes days on massive supercomputers.

The classical Zel’dovich approximation and its various refinements are often called the “poor
man’s N–body simulation”. Weiß et al. (1996) showed that the method presented here becomes
reasonably accurate on scales of ≈ 10h−1Mpc, and Hamana (1998) has generalised their results
for arbitrary background cosmologies. Generally speaking, the approximation scheme presented
here can generate large numbers of fairly realistic distributions of dark matter and galaxies
with minimal computational effort, whereas N–body simulations usually end up with a single
realisation of the cosmological model under consideration.

More precisely, we are planning to use the method for systematic studies of cosmic variance
in the near future. Another potentially interesting application is the evaluation of estimators
for statistics of large–scale structure. Last but not least, the numerical implementation should
be complemented with further analytical investigations, especially of post–Newtonian effects
which should become relevant on the scales we reach.
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3 The evolution of large–scale structure

Figure 3.2 Pretty pictures. To be more precise, this is a flat, critical Universe with Standard
Cold Dark Matter spectrum in a 250Mpc or 125h−1Mpc box. Each panel shows a slice of
the same initial conditions propagated to the present epoch for 1283 particles. In the left
column no interpolation is used, while right column interpolates by a factor of eight to 10243

particles. The density reconstruction was done by cloud–in–cell binning with 23 particles per
cell on average. Both rows show the same model starting from the same initial conditions, but
the top row gives the mere Zel’dovich approximation while for the bottom row second–order
terms are also added. Note the richer fine structure of the caustics and multiple shell crossings.
This Figure also shows that structure formation in the first–order model appears time–delayed
compared to second order. This time–delay can be partly compensated by an optimized time
shift investigated by Karakatsanis et al. (1997).
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3.4 Examples and Outlook

Figure 3.3 Another SCDM spectrum, this time in a box of 2Gpc or 1h−1Gpc sidelength. The
top panel was obtained by propagating 1283 particles from the initial conditions to today using
optimized second order Lagrangian perturbation theory. After that, interpolation by a factor of
eight increased resolution to 10243, as shown in the bottom panel.
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4 Anisotropies of the Cosmic Microwave
Background

Don’t stand there gawping like you’ve never seen the face of God before!
(Gilliam & Jones 1983)

The oldest signal accessible to mankind is the Cosmic Microwave Background discovered by
Penzias & Wilson (1965). Consisting of photons that have been freely streaming since the Uni-
verse was only 300,000 years old, the Cosmic Microwave Background (CMB) provides valuable
information on the early history of our Universe. Via the Sachs–Wolfe effect (Sachs & Wolfe
1967), its anisotropies mirror the matter fluctuations at the epoch of recombination (at redshift
z ≈ 1, 100) and with them the seeds of the large–scale structure seen today.

Various methods of statistical analysis have been used on Cosmic Microwave Background maps.
Among them are the two– and three–point correlation function (Hinshaw et al. 1996; Hinshaw
et al. 1995), the power spectrum (Górski et al. 1996), skewness and kurtosis (Luo & Schramm
1993), multifractals (Pompilio et al. 1995), wavelet analysis (Hobson et al. 1998), and the
extrema correlation function (Kogut et al. 1995). Another promising approach is the inves-
tigation of the morphology of hot and cold spots. Being complementary to the traditional
approach via the hierarchy of correlation functions, it provides alternative methods for deter-
mining cosmological parameters (Torres et al. 1995). But above all, morphological statistics
incorporate correlation functions of arbitrary order. Hence they are sensitive to signatures of
non–Gaussianity in the temperature fluctuations, which would indicate the presence of topo-
logical defects such as strings or textures arising from phase transitions in the early Universe
(Kaiser & Stebbins 1984; Stebbins 1988). Experiments to obtain high–resolution maps of large
regions of the sky are still under development (Bersanelli et al. 1996; Bennett et al. 1995),
and are widely expected to put an end to the ongoing debate (Albrecht et al. 1997; Spergel &
Pen 1997).

In order to measure the morphology of CMB anisotropies, the Euler characteristic, or equiva-
lently the genus, was suggested more than a decade ago (Coles & Barrow 1987; Coles 1988).
Even to date, most applications are confined to genus statistics, although an early theoretical
study by Gott III et al. (1990) also considers the boundary length, but failed to come up with
a subsequent analysis of data. The analysis of the first–year COBE DMR data using genus
statistics was done by Smoot et al. (1994); their work also contains a thorough discussion
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4 Anisotropies of the Cosmic Microwave Background

of the performance of the method compared to other measures of non–Gaussianity. Further
applications of topological methods on CMB anisotropies come from Torres (1994) and Torres
et al. (1995), and genus calculations of the four–year COBE DMR data are due to Colley et
al. (1996) and Kogut et al. (1996).

The genus can be placed in the wider framework of the Minkowski functionals (Minkowski
1903). Both the original Boolean grain model applicable to the analysis of point sets (Mecke et
al. 1994), and the approach using excursion sets and isodensity contours of smoothed random
fields by Schmalzing & Buchert (1997) will be explored in the following chapters. Here, we will
apply Minkowski functionals to all–sky CMB maps. The application of all Minkowski functionals
to CMB maps was suggested by Winitzki & Kosowsky (1997) and performed on the COBE
DMR data by Schmalzing & Górski (1998). Subsequent works (Novikov et al. 1999; Naselsky
& Novikov 1998; Hobson et al. 1998) have further explored the capabilities of this new method
for various recent and upcoming CMB measurements.

As explained in Section 2.3.2, on a curved space the underlying concepts of integral geometry
remain the same, and the relevant formulae are easily generalized (Santaló 1976). However,
some formal obstacles will be encountered in the practical application to data. First of all,
the temperature is not sampled continuously, but at discrete pixels (Section 4.1). Care must
be taken to remove the effects of usually incomplete sky coverage, while retaining as much
information as possible at the same time. Finally, the interesting cosmic signal is usually
obscured by instrument noise. The influence of those issues in practice is tested in Section 4.2.
That settled, Section 4.3 presents some examples, most notably an attempt to assess the
presence or absence of non–Gaussian signatures in the COBE DMR maps.

4.1 Estimating Minkowski functionals from pixelised
CMB sky maps

Throughout this section, we will illustrate the application of our method on a particular random
field. In order to stick to a simple, analytically tractable model, we generate a Gaussian random
field. Its angular power spectrum C` is chosen to reproduce the salient features of the DMR
sky maps. Hence, we start from angular components given by the formula

C`,powerlaw = C2

Γ
(
`+ n−1

2

)
Γ
(

9−n
2

)
Γ
(
`+ 5−n

2

)
Γ
(
n+3

2

) , (4.1)

derived from a power–law spectrum P (k) ∝ kn by Bond & Efstathiou (1987), and smooth
them with a Gaussian filter of 7◦ full width at half maximum (FWHM) to model the DMR
beam. White noise with a fixed r.m.s. fluctuation level of 3µK is then added to this “cosmic
signal”; this is in practice done on the pixels in real space, but for comparison we may also
evaluate the contribution to the angular power spectrum, which is

C`,noise = (3µK)2 (4.2)
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4.1 Estimating Minkowski functionals from pixelised CMB sky maps

Figure 4.1 The angular power spectrum shown in this plot is used for all tests of the estimators
presented in this section. It was chosen as a rough model for the DMR maps while remaining
analytically tractable. The complete power spectrum, indicated by a solid line, is the sum of two
contributions, namely a Harrison–Zel’dovich spectrum normalized to C10 = (7µK)2, convolved
with a 7◦ FWHM beam to mimic a cosmic “signal” (dashed line), and random pixel noise
(dotted line).
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4 Anisotropies of the Cosmic Microwave Background

independent of `. Finally, a Gaussian smoothing kernel of variance ω2, given by

g`,Gauss = exp
(
−1

2
ω2`(`+ 1)

)
(4.3)

is applied to reduce the noise level, and to obtain a regular field. Note that the normalization
factor C2 in Equation (4.1) is directly related to the CMB quadrupole. As pointed out by Górski
et al. (1994) its particular value determined from the COBE DMR sky maps is highly dependent
on the spectral index n; therefore it has become common usage to quote the multipole C10 ≈
(7µK)2 as a sufficiently spectrum independent normalization.

So the various contributions to the angular power spectrum C` for our example sum up to

C` = g2
`,Gauss

(
C`,powerlawg

2
`,beam + C`,noise

)
. (4.4)

In Figure 4.1, the contributions of “signal” and noise are shown separately, and combined to the
full spectrum. In order to obtain a regular field and suppress noise the combined spectrum is
smoothed with a Gaussian filter; its width for this particular example is 3◦. Although the noise
contribution has not been completely removed, it is considerably reduced without affecting the
signal too strongly. See Section 4.2.4 for a broader discussion of this issue.

In order to estimate the Minkowski functionals from the discrete pixels of a map we attempt
to follow the prescription outlined by Schmalzing & Buchert (1997) for cubic grids in three–
dimensional Euclidean space (see also Chapter 2). Note that the first approach based on
Crofton’s formula and counting of elementary cells is not viable since a strictly regular pixelisa-
tion of the sphere does not exist. However, their second approach is based on averaging over
invariants, and Equation (2.30) can easily be adapted to the sphere.

4.1.1 Covariant derivatives

Using the well–known parametrisation of the unit sphere through azimuth angle ϑ and polar
angle ϕ we can express the covariant derivatives at a point x = (ϑ, ϕ) in terms of the partial
derivatives1;

u;ϑ = u,ϑ,

u;ϕ =
1

sinϑ
u,ϕ,

u;ϑϑ = u,ϑϑ,

u;ϑϕ =
1

sinϑ
u,ϑϕ −

cosϑ

sin2 ϑ
u,ϕ,

u;ϕϕ =
1

sin2 ϑ
u,ϕϕ +

cosϑ

sinϑ
u,ϑ.

(4.5)

1Note that we use indices following a semicolon, such as u;i to denote covariant differentiation of u with
respect to the coordinate i, as opposed to partial derivatives where we write indices following a comma, e.g.
u,i.
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4.1 Estimating Minkowski functionals from pixelised CMB sky maps

The partial derivatives in turn are best calculated from the spherical harmonics expansion

u(ϑ, ϕ) =
∞∑
`=0

∑̀
m=−`

a`mY`m(ϑ, ϕ). (4.6)

This is simply done by replacing the harmonic function Y`m with its appropriate partial derivative.
Since the functions Y`m depend on ϕ via sine and cosine functions only, the derivatives with
respect to ϕ can be obtained analytically. Partial derivatives with respect to ϑ are calculated
via recursion formulae constructed by differentiating the recursion for the associated Legendre
functions Pm

` , given for example by Abramowitz & Stegun (1970).

4.1.2 Integrals over invariants

On the two–dimensional sphere, the integrals summarized in Equation (2.30) become

vj(ν) =
1

4πR2

∫
S2

da Ij, (4.7)

with integrands Ij depending solely on the threshold ν, the field value u and its first– and
second–order covariant derivatives. Explicitly,

I0 = Θ(u− ν),

I1 =
1

4
δ(u− ν)

√
u2

;θ + u2
;φ,

I2 =
1

2π
δ(u− ν)

2u;θu;φu;θφ − u2
;θu;φφ − u2

;φu;θθ

u2
;θ + u2

;φ

.

(4.8)

We still have to account for the finite number of sample points. If the random field is sampled
at N pixels at locations xi on the sphere, we only need to estimate the values Ij(xi) of the
invariants from Equation (4.8) at each location. Furthermore, we need to replace the delta
function with a bin of finite width ∆,

δ(u− ν) ≈ 1

∆
1[−∆/2,+∆/2](u− ν), (4.9)

where 1A is the indicator function of the set A, with 1A(x) = 1 for x ∈ A, and 1A(x) = 0
otherwise. The Minkowski functionals are then estimated by summation over all pixels2

vj(ν) ≈ 1

N

N∑
i=1

wiIj(xi). (4.10)

For incomplete sky coverage we must restrict the average to the unmasked pixels. This problem
is addressed in detail in Section 4.2.

2We set the pixel weight factors wi equal to 1, but this may be changed, if
∑N
i=1 wi = N is preserved.
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4 Anisotropies of the Cosmic Microwave Background

4.1.3 Analytical expectation values

Putting d = 2 in Equation (2.35) we obtain the analytical expectation values for a Gaussian
random field on the sphere at threshold ν.

v0(ν) =
1

2
− 1

2
Φ

(
ν − µ√

2σ

)
,

v1(ν) =
τ 1/2

8σ1/2
exp

(
−(ν − µ)2

2σ

)
,

v2(ν) =
τ

2π3/2σ

ν − µ√
2σ

exp

(
−(ν − µ)2

2σ

)
.

(4.11)

As stated before, the three parameters can be calculated from moments of the random field
and its first derivatives, where care must be taken to use the covariant ones. We have

µ = 〈u〉
σ =

〈
u2
〉
− µ2

τ =
1

2
〈u;iu;i〉 .

(4.12)

Alternatively, we may estimate the parameters directly from the power spectrum C`. Using the
expansion from Equation (4.6) and the orthogonality properties of the spherical harmonics, we
immediately obtain

σ =
∞∑
`=1

(2`+ 1)C`,

τ =
∞∑
`=1

(2`+ 1)C`
`(`+ 1)

2
.

(4.13)

4.2 Testing the estimators

4.2.1 Complete sky coverage

To begin with, let us look at the example without simulating the restrictions of incomplete sky
coverage. Figure 4.2 shows the average Minkowski functionals of 1,000 realizations.

Looking at the general features of all curves, it can be seen that the area v0 of hot spots decreases
monotonically from the value of one at low threshold, when the whole sphere belongs to the
excursion set, to a value of zero at high thresholds which are not passed by any of the pixels.
The boundary length v1 starts from a value of zero for a completely filled sphere. It reaches a
maximum at intermediate thresholds, where the excursion set forms an interconnected pattern
of patches and holes with a very long boundary. When the excursion set becomes emptier
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4.2 Testing the estimators

Figure 4.2 Minkowski functionals for the example used throughout this Section. The areas
indicate the averages and 1σ–fluctuations of an ensemble of 1,000 realizations computed on
the whole DMR sky cube. The analytical expectation values from Equation (4.11) are almost
exactly reproduced by the mean values (central lines). Fluctuations indicated by the shaded area
are due to uncertainties in the parameter determination from a single map via Equation (4.12).
They account for a large part of the overall fluctuations (empty area).

-0.2 -0.1 0 0.1 0.2

0

0.2

0.4

0.6

0.8

1

threshold [mK]

-0.2 -0.1 0 0.1 0.2

0

0.2

0.4

0.6

0.8

1

threshold [mK]

-0.2 -0.1 0 0.1 0.2

-2

-1

0

1

2

threshold [mK]

-0.2 -0.1 0 0.1 0.2

-20

0

20

threshold [mK]

47



4 Anisotropies of the Cosmic Microwave Background

and emptier, the boundary length declines back to zero. For the random field shown in our
example, the integrated geodesic curvature v2 behaves largely similar to the Euler characteristic;
the minor differences only become appreciable for fields with fewer features. Lastly, the Euler
characteristic χ at low thresholds has a value of two for a closed sphere. With increasing
threshold, the Euler characteristic declines to negative values as holes open in the excursion set
and give a negative contribution. This downward trend gradually stops as individual hot spots
emerge, so a minimum develops, and the Euler characteristic attains positive values. Finally,
more and more hot spots fall below the growing threshold, so their number and hence the Euler
characteristic decreases again, reaching a final value of zero.

A description of the individual curves can be found in the figure caption.

4.2.2 Uncertainties through incomplete sky coverage

In practice, a data set will suffer from incomplete sky coverage. In order to estimate the
uncertainties introduced solely by the galactic cut, we first construct a single realization of the
random field on the whole sky. The Minkowski functionals for this random field are calculated
and roughly fit the analytical expectations, with fluctuations consistent with the areas shown
in Figure 4.2. Then, we apply a series of straight galactic cuts with varying direction, but with
constant width of 30◦; this value reduces the number of pixels to exactly half the original value.
Figure 4.3 shows a comparison of the true values for one field and the fluctuations introduced by
the sample variance of the rotating cuts. Note that the smaller number of pixels does increase
the uncertainties, but the average is not affected – the estimator remains unbiased.

4.2.3 Boundary effects

The previous subsection dealt with a random field that was first realized on the whole sky, then
smoothed with a Gaussian filter, and cut afterwards. In order to determine whether the galactic
cut affects the estimators derived above, we use the COBE DMR pixels and the customized
cut from the four–year data (Bennett et al. 1996). This time, we remove the pixels within the
galactic cut before the smoothing kernel is applied.

It turns out that by using this procedure, which is actually the correct one for mimicking real
data, the galactic cut severely affects the estimators, and leads to a systematic bias of as much
as 1σ. Figure 4.4 shows the unbiased results from all–sky maps already displayed in Figure 4.2,
in comparison the biased result obtained with the näıvely applied estimator.

A straightforward procedure to remove these biases from the estimators is to further restrict
the number of pixels to the ones that lie “far away” from the cut. In order to find them, we
consider the indicator function of the cut itself, smooth it with the Gaussian filter, and consider
the values at pixels outside the cut as their level of “contamination”. Now the sums from
Equation (4.10) can be restricted to the pixels where the smoothed cut lies below a certain
threshold. Figure 4.5 shows the results for an allowed level of 1%; in practice, even as much as
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4.2 Testing the estimators

Figure 4.3 This plot shows the uncertainties due to a galactic cut. In order to separate them
from fluctuations between different realizations in an ensemble (see Figure 4.2), we chose a
single all–sky realization (central line) of the random field, and applied 1,000 straight cuts up
to 30◦ latitude with randomly varying orientation of the equatorial plane. It turns out that
the uncertainties caused by this deterioration of statistics are at least as strong as ensemble
fluctuation. However, the correct mean value is still reproduced, so the estimator remains
unbiased.
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4 Anisotropies of the Cosmic Microwave Background

Figure 4.4 If the galactic cut is applied before smoothing the random field, as it should be
done for real data, pixels in the vicinity of the galactic cut suffer from severe contamination.
This leads to a visible bias in the estimated Minkowski functionals, particularly the integrated
curvature v2 and the Euler characteristic χ, although the area v0 and the circumference v1

are also affected. The shaded area shows average and fluctuations for the all–sky map already
presented in Figure 4.2, while the empty area with thicker contour and central line indicates
the same quantities for the maps biased through the cut.
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4.2 Testing the estimators

Figure 4.5 The biases demonstrated in Figure 4.4 can be removed by also smoothing the cut,
and excluding points where the smoothed cut still reaches a certain level. In the example shown,
this threshold was set to a very restrictive 1%; obviously the mean values agree completely. In
practice, a level as high as 5% might still produce reliable results. Note that fluctuations have
increased in comparison with the results obtained from all–sky maps, as already demonstrated
in Figure 4.3.
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4 Anisotropies of the Cosmic Microwave Background

Figure 4.6 The same quantities as in Figure 4.4 are compared in this plot, but with 200 random
pixels excluded instead of the galactic cut. Contamination affects more pixels than in the case
of a galactic cut – if a residue of 1% is allowed, 2,842 out of the original 6,144 pixels remain,
compared to 3,189 for a galactic cut. However, the estimated Minkowski functionals are more
robust.
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4.2 Testing the estimators

5% produces sufficiently unbiased estimates. Note that while the mean values agree completely
after applying the correction, the variance of the estimators has increased, simply because fewer
data points result in poorer statistics.

Apart from the galactic cut, point source contamination is another important source of incom-
plete sky coverage. Figure 4.6 shows the bias introduced by omitting 200 randomly scattered
pixels. Obviously, the effect is much less pronounced compared to the realizations excluding the
galactic cut; in fact the differences between the all–sky realizations and the restricted realiza-
tions are barely visible. Both the galactic cut and the random point cut affect roughly 3,000 of
the 6,144 DMR pixels with a contribution of 1% or above, so at first sight our findings appear
inconsistent. However, they can be explained with the prominent geometric features – namely,
almost straight edges – in the galactic cut. These are missing in a random point distribution,
so the errors remain smaller and average out.

4.2.4 How smoothing leads to noise reduction

In order to obtain a regular field, and to reduce the level of the additive noise present in the
data, it is necessary to apply a smoothing kernel to the data before calculating the Minkowski
functionals. Usually, the choice of a particular width is largely arbitrary. Here we show the
example introduced in Section 4.3 with different degrees of smoothing applied to illustrate the
behaviour of Minkowski functionals in the presence of noise.

The situation for 2◦ smoothing, where noise still makes an appreciable contribution, is shown
in Figure 4.7. The surface area v0 is much less affected than the other Minkowski functionals;
this is due to the fact that noise is incoherent and forms comparatively small hot and cold
spots. However, these spots are almost as intense as the signal contribution, as can be seen
from the almost equal width of all curves, and far more numerous – the Euler characteristic for
the noise field alone reaches a maximum of the order of 200. Even though the extrema in the
pure noise maps are spread out over the whole range of thresholds when added to the signal,
and hence their number at a specific threshold decreases, their contribution is still sufficiently
high to make the signal appear completely different compared to the combination of signal and
noise.

In Figure 4.8, where the results for 8◦ smoothing are displayed, noise is almost completely
invisible in comparison to the signal. Only about two dozen extrema of either kind (compare
the extrema of the Euler characteristic) remain, but since they have become extremely shallow,
their contribution is not significant any more; the pure signal and the combination of signal and
noise differ only marginally. Unfortunately, at a resolution of 8◦ the remaining signal does not
carry too much cosmological information.

With this example, the behaviour of Minkowski functionals under filtering at different scales
has only been hinted at. The two filter widths of 2◦ and 8◦ are chosen to show two extremal
possibilities, namely total dominance of noise and total reduction of noise. In practice, the
intermediate value of 3◦ turns out to give good enhancement of signal, while preserving small–
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4 Anisotropies of the Cosmic Microwave Background

Figure 4.7 Signal (shallow curves, empty area), noise (sharply peaked curves, empty area)
and combination of both (shaded area) at 2◦ smoothing. At this scale, the noise contribution
contains far more features than the signal. Moreover, they are strong enough to persist when
distributed over the whole range of the signal. Hence the combination of signal and noise
displays a completely different morphology from the pure signal contribution.
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4.2 Testing the estimators

Figure 4.8 Signal (shallow curves, empty area), noise (sharply peaked curves, empty area)
and combination of both (shaded area) of the same random field as in Figure 4.7, but at
8◦ smoothing. Although the pure noise map still features roughly two dozen extrema, their
amplitude has been reduced to such extent that the pure signal is hardly affected when combined
with the noise.
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4 Anisotropies of the Cosmic Microwave Background

scale information as well.

Image analysis has developed the concept of scale space by introducing a continuously changing
filter scale as an additional coordinate (ter Haar Romeny et al. 1991). It turns out that
Minkowski functionals may be connected to this approach (Siegmund & Worsley 1995), being
spatial averages of geometric invariants formed from derivatives. This connection is interesting
as a theoretical problem itself, and with possible applications to astrophysics in mind, it certainly
deserves deeper study.

So far, we have studied a simplified yet realistic model to test the theoretically derived estimators
in their application to simulated CMB sky maps. Among other tests, we checked whether the
estimators remain unbiased when incomplete data is smoothed over the edge of a galactic cut,
and found a prescription to deal with this problem while preserving as much information as
possible. To our knowledge, this is the only instance where both the curvature of the sky and
the incompleteness of observations are addressed. However, a variety of applications have been
performed on maps with full sky coverage (Novikov et al. 1999), and on nearly flat sections of
the sky (Hobson et al. 1998).

4.3 Examples of non–Gaussian random fields

4.3.1 The χ2 random field

The relevance of the χ2 random field to the statistics of CMB temperature anisotropies was
motivated from inflationary scenarios e.g. by Linde & Mukhanov (1997). Even before that,
the impact of a variety of non–Gaussian initial fields on the process of structure formation was
investigated (Moscardini et al. 1991; Coles et al. 1993b). In the standard model with Gaussian
initial conditions, the CMB polarisation amplitude is a realisation of a χ2 field with two degrees
of freedom Naselsky & Novikov (1998).

In the context of pattern recognition, the statistics of the χ2 random field have been investigated
by Worsley (1994). Most notably, Siegmund & Worsley (1995) and Worsley (1998) present
interesting applications to point source detection.

Consider N independent, stationary and sufficiently regular Gaussian random fields Xi with
zero mean and correlation function ξG(r). Let us form a new random field U by

U =
N∑
i=1

X2
i . (4.14)

Th random field U is called a χ2
N–random field, in analogy to a χ2

N random variable, which
is the sum of the squares of N independent Gaussian random variables. By simply inserting
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4.3 Examples of non–Gaussian random fields

Figure 4.9 The Minkowski functionals of a χ2 field with one degree of freedom.
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4 Anisotropies of the Cosmic Microwave Background

Figure 4.10 The Minkowski functionals of a χ2 field with nine degrees of freedom.
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4.3 Examples of non–Gaussian random fields

Equation (4.14) into the definition for the mean and correlation function, it is easily shown that

µ = 〈U〉 = NξG(0),

ξ(x) = 〈U(x)U(0)〉 − 〈U〉2 = 2NξG(x)2.
(4.15)

Note that by Equation (4.15), the correlation function of a χ2 random field is always non–
negative. This leads into difficulties when trying to generate a χ2 field with a given power
spectrum.

The joint probability densities for the value and the first and second derivatives for the χ2

field are calculated by Worsley (1994). Using these densities to calculate the average of the
invariants given in Equation (4.8), we obtain the expected Minkowski functionals per unit area
of the χ2 random field with N degrees of freedom in two dimensions. In summary3:

v0(u) =
Γ
(
N
2
, u

2σG

)
Γ
(
N
2

)
v1(u) =

1

4

√
πτG

σG

(
u

2σG

)N−1
2 exp

(
− u

2σG

)
Γ
(
N
2

)
v2(u) =

τG

2πσG

(
u

2σG

)N−2
2 exp

(
− u

2σG

)
Γ
(
N
2

) (
u

2σG

− (N − 1)

)
(4.16)

Here σG and τG are the variance of the underlying Gaussian fields Xi and their first derivatives
Xi;j, respectively. They can be related to the corresponding quantities σ and τ of the chi2 field
U itself by

σ = ξ(0) = 2NσG (4.17)

and

τ = −ξ′′(0) = − d2

dr2

[
2NξG(r)2

]∣∣∣∣
r=0

= 4NσGτG, (4.18)

using the fact that the correlation function’s first derivative vanishes at r = 0 for a sufficiently
regular field.

Figures 4.9 and 4.10 display the Minkowski functionals of χ2 fields with one and nine degrees
of freedom, respectively. The two central lines in each panel follow the analytical expectation
value from Equation (4.16), and the average over 40 numerical realisations of the field. The
areas indicate the standard deviation over all realisations.

Obviously, the morphology of the χ2 random fields in our examples bears no resemblance to
the Gaussian case. The most striking feature is probably the discontinuity of the circumference

3Γ(ν, x) is the incomplete Gamma function. For our purposes, the recurrence relation Γ(ν+1, x) = νΓ(ν, x)+
xν exp(−x) with starting values Γ( 1

2 , x) =
√
π (1− Φ(

√
x)) and Γ(1, x) = exp(−x) is sufficient.
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4 Anisotropies of the Cosmic Microwave Background

Figure 4.11 A map of Earth’s topography.

v1 for the case of N = 1, i.e. a single degree of freedom. A similar jump takes place in the
Euler characteristic v2 for N = 2. However, even moderate amounts of Gaussian noise destroy
this behaviour.

By the central limit theorem, the probability distribution of the χ2 field approaches the one for
the Gaussian field as the number of degrees of freedom increases. This makes the χ2 field ideal
for testing the sensitivity of morphological statistics towards non–Gaussian features. Kogut et
al. (1996) use this in their analysis of non–Gaussian statistics of the four–year COBE DMR
maps, and White (1999) proposes a similar approach to testing the statistics of the initial
density field.

4.3.2 The Earth

Figure 4.13 shows the Minkowski functionals of the earth’s topography. The map (see Fig-
ure 4.11) was constructed by binning the Etopo5 data4 onto a HEALPix pixelisation (Gorski et
al. 1999) of the sphere.

The curves reveal a number of characteristic features. All functionals experience a fairly sharp
change at a depth between 6,000m and 5,000m, which is roughly the average depth of the
seafloor. A peak of several 1,000m width and almost constant height of the boundary length v1,
and a corresponding minimum in the Euler characteristic χ indicate the rise of the oceanic ridges.

4The Etopo5 database gives elevations on a cylindrical grid of 5 arcminute spacing. The data files may
be obtained from the net via ftp://walrus.wr.usgs.gov/pub/data/; see also Data Announcement 88-
MGG-02, Digital relief of the Surface of the Earth by the NOAA, National Geophysical Data Center, Boulder,
Colorado, 1988.
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4.3 Examples of non–Gaussian random fields

Figure 4.12 A Gaussian random field with identical first– and second–order characteristics.

From 3,000m below sea level to slightly positive elevations, the boundary length remains largely
constant, as the continental shelfs rise from the oceans; meanwhile, the Euler characteristic
fluctuates with the disappearance of the oceanic ridges, and the opening of shallower, marginal
parts of the oceans such as the Mediterranean, the Carribean sea or the Arctic sea. Most of
the land mass does not rise beyond 1,000m, so all Minkowski functionals gradually decline after
this height; a few small peaks in the Euler characteristic may be – cautiously – identified with
Antarctica, the Rocky Mountains, the Andes, and the Himalaya.

Again, the Minkowski functionals in this example look strongly non–Gaussian. However, we
may mix the original map of Earth’s topography with a Gaussian random field of the same
second–order characteristics (see Figure 4.12 for a realisation). In Figure 4.15, we compare
a mixture of one part Earth and four parts Gaussian field to the purely Gaussian case. From
looking at the simple Minkowski functional analysis, the mixed field appears perfectly consistent
with Gaussianity.

However, after calculating the Minkowski functionals of a CMB map, we are left with three
functionals as functions of a number of threshold values. These data will normally be strongly
correlated. More information can be obtained by a principal component analysis. This is a
standard procedure in statistics (Kendall 1980), and has already found its way into the statistical
analysis of cosmological datasets (Springel et al. 1998).

We arrange the three Minkowski functionals at different thresholds as a vector–valued random
variable X, with N components Xi. The mean µ and the covariance matrix σ of X are given
by

µi = 〈Xi〉 , σij = 〈(Xi − µi)(Xj − µj)〉 . (4.19)
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4 Anisotropies of the Cosmic Microwave Background

Figure 4.13 Minkowski functionals of the earth’s topography from the map in Figure 4.11 with
a 12’ Gaussian filter applied. The resulting Minkowski functionals (jagged lines) look decidedly
non–Gaussian; compare the analytical expectation values (smooth lines). Pronounced features
in the Minkowski functional curves can be identified as corresponding to the main features of
the earth’s topography, such as oceanic ridges, continents and mountain ranges. See the main
text for details.
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4.3 Examples of non–Gaussian random fields

Figure 4.14 Minkowski functionals of a Gaussian random field with the same power spectrum
as the Earth, shown in the panels in Figure 4.12.
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4 Anisotropies of the Cosmic Microwave Background

Figure 4.15 Minkowski functionals of a mixture of the Earth map from Figure 4.11 and a
Gaussian contamination with the same power spectrum. The ratio of both was chosen to give
a signal–to–noise ratio of 1:4.
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4.3 Examples of non–Gaussian random fields

Figure 4.16 This panel shows the principal components of the Earth’s topography mixed with
a Gaussian random field in the ratio 1:4 (drude’s feet) compared to a purely Gaussian random
field (circles). On the x–axis the number of the principal component is displayed when the
components are sorted by ascending eigenvalue. The y–axis gives the deviation of the data
from the average of a Gaussian random field in units of the eigenvalue. Only 56 symbols fall
into the dark shaded region, while for a purely Gaussian random field, 72.5± 6.8 hit that area.
Also, the scatter is significantly larger.
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4 Anisotropies of the Cosmic Microwave Background

We estimate µ and σ from a set of n realisations X(j). In our example, we use n = 10, 000
realisations of a Gaussian random field with angular power spectrum computed from the Earth’s
topography. For each realisation, the Minkowski functionals were computed in bins of 100 meter
width ranging from -15,000 meter to 10,000 meter, so altogether, N = 378 functional values
were obtained.

In order to identify the principal components, one writes σ as

σ = U.W.UT, (4.20)

where U is an orthogonal N × N matrix, while W is diagonal, containing the N eigenvalues
of the covariance matrix. Since the strong correlations between data points lead to W having
many eigenvalues close to zero, the matrices U and W are best determined by singular value
decomposition (see Press et al. 1987 for details). The vector U.(X − µ) then consists of N
uncorrelated random variables with zero mean.

The principal components of Earth’s topography contaminated with Gaussian noise at a signal–
to–noise ratio of 1:4 are shown in Figure 4.16. Although the Minkowski functionals themselves
(Figure 4.15) show no significant deviation from the Gaussian expectation values, the principal
component analysis reveals differences at a level of 5σ.

4.3.3 The COBE DMR data

As a last example, let us take a look at data that are both real and cosmologically relevant.
Figure 4.17 shows a map of the microwave sky as seen at 53GHz by the COBE satellite after
four years of observing (Bennett et al. 1996). The data are restricted to 3,189 pixels receiving
less than 1% from a smoothed galactic cut, when a Gaussian filter of 3◦ width is applied.

As stated above, considerable uncertainties are introduced through the estimates of the pa-
rameters µ, σ and τ entering the analytical expectation values for the Minkowski functionals
of a Gaussian random field. In order to make this statement more quantitative, Figure 4.18
summarizes the parameters determined from the 1,000 mock realizations used for the shaded
area in Figure 4.19. Relative errors for the relevant parameters lie in the range of five to ten
per cent, which is not too bad considering that little more than 3,000 data points enter our
analysis.

Figure 4.19 displays the corresponding Minkowski functionals. Obviously, the analysis carried
out on all 6,144 pixels is dominated by galactic emission, while the field with the galactic cut
applied appears consistent with the assumption of a stationary Gaussian random field.

As explained above, we conduct a principal component analysis of the Minkowski functionals of
the COBE DMR data, comparing the results calculated from the real data to 10,000 simulated
realisations of a Gaussian random field. Figure 4.20 shows our results; no deviation from the
Gaussian behaviour can be seen.

This finding does not come unexpected even in view of the recent detection of non–Gaussian
signals from the DMR maps (see e.g. Ferreira et al. 1998; Novikov et al. 1999; Heavens 1999,
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4.3 Examples of non–Gaussian random fields

Figure 4.17 This panel shows the four–year data from the COBE DMR 53GHz channel, with
a customized galactic cut and a smoothing filter of 3◦ width applied. Figure 4.19 displays the
corresponding Minkowski functionals calculated both from this map, and from the all–sky map
with galactic signal dominating.

and especially the references in Bromley & Tegmark 1999). The first evidence for non–Gaussian
contributions in the COBE DMR four–year data was reported by Ferreira et al. (1998) using
collapsed bispectrum statistics. Their result sharply locates the non–Gaussian signal at the
` = 16 multipole, while our analysis mainly probes the 4◦ scale in real space. Excessive tests by
Banday et al. (1999), who eventually put forward a non–cosmological explanation, even show
that the non–Gaussian signal may disappear completely through different data processing, for
example if pixel locations are shifted. Apparently, we should either consider statistics which are
tunable to the type of non–Gaussian field we wish to identify, or further refine the method of
Minkowski functional analysis.
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4 Anisotropies of the Cosmic Microwave Background

Figure 4.18 Uncertainties in the parameter estimates. Parameters were determined from each
of the 1,000 simulated DMR maps, and binned into histograms. In order to give an idea of
the amount of uncertainty, the range is extended to include zero in all plots. Obviously, the
fluctuations are still fairly large in comparison to the mean value; to be precise, the relative
r.m.s. fluctuation is roughly 8% for µ, almost 6% for τ , and more than 9% for

√
σ.
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4.3 Examples of non–Gaussian random fields

Figure 4.19 Minkowski functionals of the four–year COBE DMR map in the 53GHz channel.
As expected, the full map of 6,144 pixels (dashed line) is severely affected by galactic emission.
With a galactic cut, the functionals determined from the map (solid line) become consistent
with a stationary Gaussian random field. The shaded area indicates the mean and variance
of 1,000 realizations of a Gaussian random field with Harrison–Zel’dovich spectrum and pixel
noise; normalisations were chosen to reproduce the parameters µ, σ and τ determined from the
data via Equation (4.12).
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4 Anisotropies of the Cosmic Microwave Background

Figure 4.20 Principal components of the DMR compared to a Gaussian random field.
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5 The distribution of dark matter

Wir weben emsig Tag und Nacht.
(Heine 1844)

The existence of the large–scale clustering of galaxies had already been well established by
the early 1970’s mainly due to the pioneering work of Totsuji & Kihara (1969) and Peebles
(1974) who showed that the two–point correlation function for galaxies in the Lick and Zwicky
catalogues was positive and had the power-law form ξ(r) ∝ r−1.8 on scales . 10h−1Mpc.
Their result was later extended to three–dimensional galaxy catalogues as well. Although the
clustering of galaxies is now a well–known fact, a complete description of clustering which
includes its geometrical features has so far eluded researchers. This is perhaps due to the
fact that the galaxy density field which we observe appears to be strongly non–Gaussian. A
Gaussian random field is uniquely described by its power spectrum P (k), or its two–point
correlation function ξ(r), since ξ(r) and P (k) form a Fourier transform pair. This is no longer
true for a non–Gaussian field for which ξ must be complemented by other statistical descriptors
which are sensitive to the structure of matter on large scales. In the so-called “standard model”
of structure formation, an initially Gaussian density distribution becomes non–Gaussian due to
mode-coupling and the resultant build up of phase correlations during the non–linear regime.
These phase correlations give rise to the amazing diversity of form, which is characteristic of
a highly evolved distribution of matter, and is often referred to as being cellular, filamentary,
sheet–like, network–like, sponge–like, a cosmic web etc. Most of these descriptions are based
either on a visual appearance of large–scale structure or on the presence of features that are
absent in the reference Gaussian distribution which, by definition, is assumed to be featureless.
Gravitational instability, for example, may cause CDM–like Gaussian initial perturbations to
evolve towards a density field that percolates at a higher density threshold, i.e. at a lower
filling factor, than a Gaussian field (Melott et al. 1983). Such distributions display greater
connectivity and are sometimes referred to as being “network–like” (Yess & Shandarin 1996).

In order to come to grips with the rich textural possibilities inherent in large–scale structure, a
number of geometrical indicators of clustering have been proposed in the past including minimal
spanning trees (Barrow et al. 1985), the genus curve (Gott III et al. 1986), percolation
theory (Zel’dovich & Shandarin 1982; Shandarin 1983) and shape analysis (Sathyaprakash
et al. 1998a; Sahni & Coles 1995 and references therein). A major recent advance in our
understanding of gravitational clustering has been associated with the application of Minkowski
functionals (MFs) to cosmology (Mecke et al. 1994). The four MFs V0, . . . , V3 provide an
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5 The distribution of dark matter

excellent description of the geometrical properties of a collection of point objects (galaxies)
or, alternatively, of continuous distributions such as density fields in large–scale structure or
brightness contours in the cosmic microwave background. The scope and descriptive power of
the MFs is enhanced by the fact that both percolation analysis and the genus curve are members
of the family. Additionally, as demonstrated by Sahni et al. (1998), ratios of MFs provide us
with an excellent “shape statistic” with which one may attempt to quantify the morphology
of large–scale structure, including the shapes of individual superclusters and voids. Spurred by
the success of MFs in quantifying the geometrical properties of large–scale structure we apply
the MFs to scale–invariant N–body simulations of gravitational clustering, with an attempt to
probe both the global properties and the individual “bits and pieces” that might make up the
“cosmic web” (Bond et al. 1996).

In this chapter we shall use the excursion set approach which is applicable to continuous fields.
In Section 5.1 we attempt to reconstruct the density field from the discrete particle positions
produced by the simulation run. We employ methods from statistical data analysis (Silverman
1986) to quantify the accuracy of the commonly used smoothing technique that simply con-
volves the particle set with a kernel of fixed width. A considerable refinement of the technique
is possible if the kernel width is allowed to vary with the density. In Section 5.2 we illustrate the
improvements of our methods using large N–body simulations of a Cold Dark Matter spectrum
in various cosmologies. To explore a wider range of initial conditions, another analysis of density
fields is performed in Section 5.3, this time on simulations of initial power–law spectra. Apart
from the Minkowski functionals of the global field, we also identify individual coherent pieces
of the isodensity contour and investigate the statistics of their Minkowski functionals using the
shapefinders suggested by Sahni et al. (1998).

5.1 Reconstructing the density field

Throughout this Section, we consider a set X of n data points xi in d dimensions. The points
are randomly sampled from a d–dimensional probability density, that is a non–negative and
normalised field u(x). In our context, this field is taken to be the normalised dark matter
density,

u(x) =
ρ(x)

ρ̄
= δ(x) + 1. (5.1)

The goal consists in reconstructing the underlying true field u given the set X.

A variety of density estimation procedures are described in the monograph by Silverman (1986),
which is standard to statisticians but not widely known to cosmologists. Some applications have
been introduced into cluster analysis (Pisani 1993, Pisani 1996, Fadda et al. 1998), but the
methods presented there may not be näıvely applied to large–scale structure analysis.

We will consider a subclass of density estimation techniques using smoothing kernels for as-
signing a continuous density to a discrete particle set. In this context, the kernel K(x) is a
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non–negative, symmetric, and normalised function. Usually, the kernel is also chosen to have
unit variance, that is ∫

ddx x2
iK(x) = 1 for i = 1, . . . , d. (5.2)

5.1.1 Fixed width smoothing

The simplest kernel density estimate treats each particle from the data set X in the same
manner, regardless of their environment. After stretching the kernel to a given bandwidth λ, it
is convolved with the particle set, and gives the so–called fixed width kernel density estimate
ûλ.

ûλ(x) =
1

nλd

n∑
i=1

K

(
x− xi
λ

)
. (5.3)

A priori, the kernel width λ is a free parameter of the method. In order to choose an appropriate
value, we attempt to quantify the deviation of the estimate ûλ from the true but unknown field
u. A common measure for the error made when reconstructing a density field by smoothing is
the Mean Integrated Squared Error, or Meise. Using angular brackets to denote the expectation
value over all possible samples X from a fixed underlying field u, we have

Meise =

〈∫
ddx [u(x)− ûλ(x)]2

〉
. (5.4)

Obviously the Meise decreases as one increases the sample length n and reduces the bandwidth
λ. In many applications, it is sufficient to know the asymptotic behaviour of the Meise as a
function of n and λ for a fixed density field u. This important leading term is called the
Asymptotic Mean Integrated Squared Error, or Ameise, and we have

Meise = Ameise + higher order terms in λ or n−1. (5.5)

Generalising the calculations by Silverman (1986), we can evaluate the Ameise in arbitrary
dimensions. To begin with, we observe the Meise may be written as the sum of two integrals:

Meise =

∫
ddx [〈ûλ(x)〉 − u(x)]2 +

∫
ddx

(〈
ûλ(x)2

〉
− 〈ûλ(x)〉2

)
=

∫
ddx bias(x)2 +

∫
ddx var(x).

(5.6)

As indicated by the names in the last line, both integrals can be interpreted in an intuitive way.
The first one contains the deviation of the kernel estimate from the true field and is therefore
called the integrated square bias. The second integral is nothing but the integrated variance of
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the kernel estimate. Using the explicit expression (5.3) for the kernel density estimate, the bias
at a location x becomes

bias(x) = 〈ûλ(x)〉 − u(x)

=
1

nλd

n∑
i=1

〈
K

(
x− xi
λ

)〉
− u(x)

= λ−d
∫

ddy K

(
x− y

λ

)
u(y)− u(x)

=

∫
ddtK(t) [u(x− λt)− u(x)]

≈ 1

2d
λ2

∫
ddt t2K(t)∆u(x),

(5.7)

where we have used a Taylor series of the true field u around x to obtain the leading order of
the integral. We proceed analogously with the variance.

var(x) =
〈
ûλ(x)2

〉
− 〈ûλ(x)〉2

=
1

n2λ2d

n∑
i,j=1

{〈
K

(
x− xi
λ

)
K

(
x− xj
λ

)〉
−
〈
K

(
x− xi
λ

)〉〈
K

(
x− xj
λ

)〉}

=
1

nλ2d

{∫
ddy

[
K

(
x− y

λ

)]2

u(y)−
[∫

ddy K

(
x− y

λ

)
u(y)

]2
}

≈ 1

nλd

∫
ddtK(t)2u(x).

(5.8)

Putting both results together we have

Ameise =
λ4k2

1

4d2

∫
ddx [∆u(x)]2 +

k2

nλd
, (5.9)

where the constants k1 and k2 depend on the kernel K(x) through

k1 =

∫
ddxx2K(x), k2 =

∫
ddxK(x)2. (5.10)

Minimising this expression for the Ameise with respect to λ, one can in principle obtain an
explicit expression for the optimal kernel width λ as given by (Parzen 1962). However, the
– unknown – underlying true density u enters into this expression via the integrated squared
Laplacian. Although this is somewhat disappointing, this problem can be remedied using the
biased cross–validation technique suggested by Scott & Terrell (1987). The idea underlying this
approach is to obtain an estimate for the integrated squared Laplacian of the true field from
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the kernel estimate. We do this by calculating the expectation value of the integrated squared
Laplacian for the kernel estimate. To first non–vanishing order in n−1 and λ the result is〈∫

ddx [∆ûλ(x)]2
〉
≈
∫

ddx [∆u(x)]2 +
1

nλ4+d

∫
ddx [∆K(x)]2 . (5.11)

Thus, we obtain an expression for the Ameise that can be calculated from the kernel estimate
itself. We have

Ameise =
λ4k2

1

4d2

∫
ddx [∆ûλ(x)]2 +

1

nλd

(
k2 −

k2
1k3

4d2

)
, (5.12)

with another constant

k3 =

∫
ddx [∆K(x)]2 . (5.13)

Inserting a Gaussian kernel

K(x) = (2π)−d/2 exp
(
−1

2
x2
)
, (5.14)

where the constants k1, k2, and k3 are given by

k1 = d, k2 =
(
2
√
π
)−d

, k3 =
d(d+ 2)

4
k2. (5.15)

the Ameise for this particular kernel becomes

Ameise =
1

4
λ4

∫
ddx [∆ûλ(x)]2 +

17− (d+ 1)2

2d+4πd/2
1

nλd
. (5.16)

With a good starting value, efficient minimisation techniques (Press et al. 1987), and Fast
Fourier Transform techniques (Frigo & Johnson 1997) for evaluating integrated squared Lapla-
cians, it becomes computationally feasible to push fixed width smoothing to its optimal value.
Figure 5.1 shows an application to two simulations of the dark matter distribution in the Uni-
verse, namely the 240h−1Mpc boxes of the ΛCDM and the OCDM models calculated by the
Virgo project. The 2563 particles of a set were first binned onto a 2563 grid using a cloud–in–cell
kernel, and then smoothed with a kernel of fixed smoothing width. The resulting Ameise is
plotted as a function of the smoothing length. Given that the grid cells are roughly 1h−1Mpc
in size, for both models the minimum Ameise is not reached at a sensible smoothing length.
The obvious reason for this is the high degree of singularity in the evolved density field. The
Ameise is dominated by peaks in high–density regions, and hence favours a small smoothing
length, where areas of intermediate to low density suffer from overwhelming shot noise.

So far, we have shown that fixed width smoothing is a failure as far as the accurate reconstruc-
tion of the dark matter density field from simulations of gravitational clustering is concerned.
This can be explained by the nature of dark matter density fields, and we expect the method to

75



5 The distribution of dark matter

Figure 5.1 The Ameise as a function of the smoothing lengths for a variety of dark matter
models. Note that the minimum at roughly 100h−1kpc corresponds to a smoothing length
of one tenth of the average inter–particle distance. We conclude that fixed width smoothing
provides at most a first guess of a cosmological density field.
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5.1 Reconstructing the density field

perform better with fields of less roughness. Examples are encountered in the reconstruction of
individual clusters, and with sparser point samples, such as catalogues of galaxies and cluster
of galaxies.

Still, fields constructed by fixed width smoothing provide a rough orientation of the density
field. Hence they can serve as a starting point for the following considerable refinement of the
kernel density estimate.

5.1.2 Adaptive smoothing

It appears natural to account for the strong density variations by varying the kernel width in
Equation (5.3). Each particle from the data set is assigned an individual smoothing length, and
the density estimate becomes

û(x) =
1

n

n∑
i=1

λ(xi)
−dK

(
x− xi
λ(xi)

)
. (5.17)

Regions of high density are well sampled and should be more accurately reconstructed with a
smaller kernel, while low density regions need larger kernel widths to compensate the sparser
sampling. Obviously, this approach requires a first estimate of the density, the so–called pilot
field upilot, to guide the actual reconstruction. Since its accuracy is not too critical, fixed width
smoothed field with some width λ is usually sufficient according to Silverman (1986). The local
smoothing width λ(x) can then be chosen as

λ(x) = λ

(
upilot(x)

upilot

)−α
, (5.18)

where upilot denotes the geometric mean of the pilot field, that is

upilot = exp

(∫
ddx lnupilot(x)

)
. (5.19)

The choice of the sensitivity parameter α is crucial for the outcome of the method and is
discussed at length by Breiman et al. (1977) and Abramson (1982). For α = 0, fixed width
smoothing is recovered. In the following we shall use the value α = 1

2
, which results in smoothing

volumes that contain roughly the same number of neighbours regardless of the local density.

At first sight, it appears that adaptive smoothing can only be done in real space. This ap-
proach has been used on cosmological simulations by Colberg (1999), for example, and proved
woefully inefficient, especially for the large smoothing lengths required to obtain an accurate
estimate of the density in voids. We follow an approach that combines high accuracy and high
computational efficiency.

Since the squared widths of Gaussian smoothing kernels are additive, m smoothing steps with

widths ∆λj, j = 1 . . .m are equivalent to a single smoothing with width λm =
√∑m

j=1 ∆λ2
j
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5 The distribution of dark matter

Table 5.1 Parameters of the four Virgo simulations used in our analysis. The Hubble constant
h, the particle mass mp, and the comoving size L of the simulation box are in units of H0 =
100km s−1/Mpc, 1010h−1M�, and h−1Mpc, respectively.

model Ω0 ΩΛ h σ8 mp L
ΛCDM 0.3 0.7 0.7 0.90 6.8 240
OCDM 0.3 0.0 0.7 0.85 6.8 240
SCDM 1.0 0.0 0.5 0.51 22.1 240
τCDM 1.0 0.0 0.5 0.51 22.1 240

altogether. The ∆λj can be chosen freely, and we obtain λm ∝ m by setting ∆λj ∝
√

2j − 1.
To begin with, we distribute the particles xi onto a cubic grid using a cloud–in–cell kernel,
which preserves accurate position information. Calculating a density field smoothed with a
kernel of fixed width and applying Equation (5.18), we obtain the desired smoothing width for
each grid cell. We then perform a series of smoothing steps, starting from an empty grid and
adding particles from regions of higher density as more smoothing steps are performed. In the
end, particles in high–density regions have undergone only few smoothing steps, equivalent to
smoothing with a small kernel, while particles in voids have taken part from the very beginning
and hence are effectively smoothed with a large kernel width. If the number of steps are chosen
large enough, the discreteness error becomes negligible. Real space smoothing should be used
for the last smoothing steps, where the width ∆λj falls below the lattice constant, and Fourier
space smoothing would be adversely affected by aliasing. In practice, the reconstruction of a
density field from 2563 particles using 40 steps on a 2563 cell grid consumes not more than
fifteen minutes CPU time on an average workstation.

Note that the procedure described relies heavily on the additivity property of the Gaussian
smoothing kernel. Although other kernels, most notably the Epanechnikov kernel (Epanech-
nikov 1969) are better in the sense that fewer points are necessary to obtain some desired kernel
bandwidth (Kendall & Stuart 1973), the Gaussian kernel is merely marginally suboptimal. Fur-
thermore, it is the only additive kernel at all (ter Haar Romeny et al. 1991), and is highly
suitable both for Fourier space and real space smoothing.

This is enough theory for now, some applications are in order. We will reconstruct density fields
from N–body simulations and calculate their Minkowski functionals.

5.2 Minkowski functionals of the Virgo simulations

5.2.1 The Virgo simulations

The first run of the so–called Virgo simulations follows the gravitational evolution of 2563

particles in 240h−1Mpc boxes. Four different variants of the Cold Dark Matter model are used
as initial conditions, with parameters summarized in Table 5.1. A detailed technical description
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5.2 Minkowski functionals of the Virgo simulations

Figure 5.2 The two panels display the same 2562 slice through density fields reconstructed
from the Virgo project’s simulation of a ΛCDM model. While the panel on the left is obtained
by fixed width smoothing with a 1.5h−1Mpc kernel (the box itself is 240h−1Mpc long), the
panel on the right was calculated by adaptive smoothing with an average width of 1.5h−1Mpc.

of the simulations, and a correlation and power spectrum analysis can be found in Jenkins et
al. (1998). Further studies of large–scale structure use genus statistics (Springel et al. 1998)
and cluster abundances (Thomas et al. 1998).

Pictures of the density field reconstructed from the ΛCDM model in Figure 5.2. The two
panels were calculated from the same set of particles and with the same smoothing length of
1.5h−1Mpc. However, the left panel simply uses fixed width smoothing, while the right panel
was obtained through the adaptive smoothing technique described in Section 5.1.2. It can be
clearly seen that the adaptive method suppresses shot noise in voids, and enhances high–density
structures at the same time.

5.2.2 Minkowski functionals

The Minkowski functionals of these two density fields are compared in Figure 5.3. The func-
tionals are plotted as functions of the rescaled threshold ν, which is obtained from the density
contrast δ by numerically inverting the implicit connection

v0(δ) =
1

2
− 1

2
Φ

(
ν√
2

)
, (5.20)

where v0(δ) is the measured volume functional at the density threshold δ. Obviously, using
ν forces exact Gaussian behaviour of the volume functional v0. This removes the deviations
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5 The distribution of dark matter

Figure 5.3 Minkowski functionals of the density fields shown in Figure 5.2. The results for
the adaptive and fixed smoothing techniques are drawn in solid and dashed lines, respectively.
A number of drastic differences in the morphology are visible, even though both fields were
constructed from the same point set with the same average filter width.
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5.2 Minkowski functionals of the Virgo simulations

Figure 5.4 Just like Figure 5.3, this plot shows the Minkowski functionals of the density fields
shown in Figure 5.2. This time the functionals are plotted against the filling factor v0 of the
global field. For each field, we display both the Minkowski functionals of the global field and
the Minkowski functionals of the largest object.
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5 The distribution of dark matter

Figure 5.5 Here we compare the four Cold Dark Matter variants used in the calculations by the
Virgo project. Shown are ΛCDM (solid), OCDM (dotted), SCDM (short–dashed) and τCDM
(long–dashed).
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5.2 Minkowski functionals of the Virgo simulations

from Gaussianity that are due to changes in the one–point probability distribution function,
and emphasises deviations due to higher–order correlations. Note that for the density field
constructed with a kernel of fixed width (dashed lines) the difference of the Minkowski functional
curves to the expectation value for a Gaussian random field is hardly visible to the naked eye
– the curves are more or less symmetrical. The adaptively smoothed field, however, appears
strongly non–Gaussian. All curves are slightly shifted towards higher density values. The area
functional v1 is just a little elevated, indicating that the adaptively smoothed field contains more
features despite the fact that it underwent the same smoothing on average. The behaviour of
the mean curvature v2 is interesting: On the one hand, the minimum has hardly shifted, while
on the other hand, the value at the maximum has almost doubled. The two maxima of the Euler
characteristic v3 follow the same trend. The maximum at negative rescaled threshold, measuring
the highest possible number of cavities in the excursion set, is more than five times smaller than
the maximum at positive rescaled threshold, which indicates the number of isolated lumps in the
system. This provides a quantitative confirmation of the visual impression in Figure 5.2. On the
one hand, the adaptive smoothing technique has a tendency to empty voids, thereby increasing
their size and decreasing their number. On the other hand, the isolated high–density clusters of
dark matter become more pronounced through adaptive smoothing. The much lower minimum
of the Euler characteristic translates into the presence of many tunnels in the excursion set
at intermediate thresholds, in accord with the observation that the filaments and sheets that
line the voids and contain the clusters appear in a sharper and more coherent fashion in the
adaptively smoothed field.

Minkowski functionals of the global field and the largest coherent object are shown in Figure 5.4.
Only the range of low filling factor v0, i.e. high threshold is shown; at higher global volume the
largest object practically encompasses the whole excursion set. The most striking difference
is again the much larger abundance of isolated objects at high densities in the adaptively
smoothed field. Apart from that, we can also see that the largest coherent object breaks up at
a lower value of the filling factor than in the field constructed by fixed width smoothing. This
transition from a networked structure that is almost as large as the whole excursion set to a
simply connected small lump also occurs more rapidly; the curves almost display a bend when
the Minkowski functionals of the largest object reach a value close to zero. We can conclude
that adaptive smoothing also enhances the connectivity of the network underlying the dark
matter distribution.

Figure 5.5 compares all four models simulated by the Virgo project at the present epoch. Apart
from the Standard Cold Dark Matter model, all variants produce a rather similar morphology.
Most notably, both low–density models, the OCDM Universe and the ΛCDM Universe practically
coincide. These findings are in agreement with the classical genus analysis of Springel et al.
(1998).
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5 The distribution of dark matter

5.3 Shapefinders

Apart from the largest coherent object, we can also identify the smaller isolated objects making
up the excursion set at a given threshold and individually calculate the Minkowski functionals of
each. Since the total excursion set is the disjoint union of all these parts, the global Minkowski
functionals are given as sums of these Partial Minkowski functionals (PMFs) at the same
threshold. This follows the spirit of Mecke et al. (1994), where partial Minkowski functionals
are introduced to measure local morphology for the generalised Boolean grain model.

One task of morphological statistics consists in quantifying strongly non–Gaussian features such
as filaments and sheets. Given the four Minkowski functionals, we aim at reducing their mor-
phological information content to two measures of planarity and filamentarity, respectively, as
has been done for example with various geometrical quantities (Mo & Buchert 1990), moments
of inertia (Babul & Starkman 1992), and cumulants of counts–in–cells (Luo & Vishniac 1995).

5.3.1 Simple examples

Let us first explore the Blaschke diagram introduced in Section 2.4 by considering some simple
families of convex bodies in three–dimensional space that can take both filamentary and planar
shape. We use bodies with analytically known Minkowski functionals Vj, so Equation (2.45)
yields their shapefinders P and F .

A spheroid with two axes of length r and one axis of length λr has Minkowski functionals

V0 =
4π

3
r3λ, V1 =

π

3
r2 (1 + f(1/λ)) , V2 =

2

3
r (λ+ f(λ)) , V3 = 1, (5.21)

where1

f(x) =
arccosx√

1− x2
. (5.22)

By varying the parameter λ from zero to infinity, we can change the morphology of the spheroid
from a filament to a pancake via a spherical cluster.

A different way of deforming a filament into a pancake goes via generic triaxial ellipsoids; thereby
one of the smaller axes of a strongly prolate spheroid is increased in size until it matches the
larger axis and an oblate spheroid has been reached. An integral expression can be found in
(Sahni et al. 1998).

Yet another transition from prolate to oblate shape is provided by cylinders of radius r and
height λr. Here, the Minkowski functionals are given by

V0 = πr3λ, V1 =
π

3
r2(1 + λ), V2 =

1

3
r(π + λ), V3 = 1. (5.23)

1Note that for arguments x > 1, one can use the relation i arccosx = ln
(
x+
√
x2 − 1

)
to recover an explicitly

real–valued expression.
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A Blaschke diagram, that is a plot of planarity P and filamentarity F , summarising the mor-
phological properties of these simple convex bodies is shown in Figure 5.6.

5.3.2 A set of power–law spectrum simulations

In the following, we shall analyse a family of initial power law spectra P (k) ∝ kn with n ∈
{−2,−1, 0,+1} set before a flat Friedmann background with vanishing cosmological constant
(Ω=1, Λ=0). We conduct numerical experiments using a PM code (consult Melott & Shandarin
1993 for details). Four sets of phases were used for each model, making a total of 16 simulation
runs. Each run consists of 1283 particles sampled at an epoch well in the non–linear regime.
This epoch is chosen such that the scale of non–linearity knl, defined in terms of the evolved
spectrum

σ2
knl

=

∫ knl

0

d3kP (k) = 1, (5.24)

is equal to eight in units of the fundamental mode of the simulation box. By using the stage
knl = 8, we make sure that structure is already sufficiently developed on scales much larger
than the simulation’s resolution, while it is not yet influenced by boundary effects.

Using a cloud–in–cell kernel, these particles were put onto a 2563 grid, which is the maximum
value an ordinary workstation can tackle with acceptable time and memory consumption. Sub-
sequently, the density field was smoothed with a Gaussian kernel ∝ exp (−x2/2λ2), where x is
the distance in mesh units and the width λ is set to 3. Tests have shown that this value both
leads to a reasonably smooth field, and preserves at least some detail on smaller scales. Finally,
we re–scale the density to the density contrast δ, ranging from −1 to infinity with zero mean.

5.3.3 The global field

The global Minkowski functionals calculated from the density fields described in the previous
section are shown in Figure 5.7. The four different line styles correspond to the different spectral
indices. Figure 5.8 shows the Minkowski functionals for the same set of models, but instead
of the density threshold δ, the rescaled threshold ν is used as the x–axis. ν is calculated from
the volume Minkowski functional v0, that is the filling factor f , as described by Gott III et
al. (1987). Thus the deviations from Gaussianity that are due to changes in the one–point
probability distribution function are removed, and deviations due to higher–order correlations
are emphasised.

Obviously, the global Minkowski functionals clearly discriminate between the various models
(Figures 5.7 and 5.8). Only the n = −2 model shows slight drawbacks as far as robustness is
concerned, but that is due to the method’s sensitivity to large–scale features of the smoothed
density field. The total area, mean curvature, and Euler characteristic are sensitive to abun-
dances of the structures and are easy to interpret: the more power on small scales (greater n)
the more abundant structures and therefore the greater the amplitude of the curve.
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5.3.4 The largest objects

At intermediate thresholds, the excursion sets consist of numerous isolated objects. We identify
them by grouping adjacent occupied grid cells into one object, where adjacent means that the
cells have a common face. Since the Minkowski functionals of the global field are calculated by
integrating over quantities that can be assigned to individual grid cells, the partial Minkowski
functionals of each object can be obtained at no extra cost once the cells belonging to each
object have been identified.

Several plots in Figures 5.9, 5.10, 5.11, and 5.12 illustrate the behavior of the Minkowski
functionals of these objects.

Obviously, the contribution of smaller objects to the volume is almost negligible compared to the
largest one. Note that in all figures, the mean and standard deviation over all four realisations
are shown instead of the individual curves. It is worth noting that the variance is largest in the
n = −2 and −1 models, which are dominated by structures on large scales and hence show the
strongest sample variance.

The models with various initial spectral indices n show qualitatively a similar behaviour. At small
filling factors (high density thresholds) the two largest clusters give negligible contribution to
each of the global characteristics. Then, at the percolation transition the largest cluster quickly
becomes the dominant structure in terms of volume, area, and integrated mean curvature. The
second largest cluster also grows at the percolation threshold but just a little and then quickly
diminishes. The percolation transition is clearly marked in all three characteristics of the largest
cluster by their sudden growth. However, this transition does not happen at a well–defined
threshold. Instead, clusters gradually merge into the largest objects as the threshold is decreased
(the filling factor grows). This continuous transition has also been observed using percolation
analysis, i.e. the zeroth Minkowski functional alone (Shandarin & Zel’dovich 1983; Shandarin
& Yess 1998; Klypin & Shandarin 1993; Sahni et al. 1997) and is explained by the finite size
of the sample.

Nevertheless, the percolation transitions happen within fairly narrow ranges of the filling factor
that are clearly distinct for different models in question: The filling factors are approximately
0.03 ± 0.01, 0.07 ± 0.015, 0.11 ± 0.015, 0.14 ± 0.015 in the n = −2,−1, 0,+1 models, re-
spectively. It is remarkable that all percolation transitions occur at smaller filling factors than
in Gaussian fields (about 0.16) indicating that even in the most hierarchical model (n = +1)
the structures tend to be more connected than in the “structureless” Gaussian field. Pauls &
Melott (1995) showed positive correlation with networks based on the same phases all the way
to n = +3. This provides further evidence to the conjecture of Yess & Shandarin (1996): The
universality of the network structures results from the evolution of Gaussian initial conditions
through gravitational instability. The Euler characteristic of the largest cluster also marks the
percolation threshold but in a different manner: before percolation it is zero and after percola-
tion it becomes negative in every model, however, in the n = 0 and n = +1 models it grows
to a small positive peak before becoming negative.

While none of the global functionals have particular features at the percolation threshold, valu-
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able information is obtained from looking at the Minkowski functionals of the largest coherent
object at each threshold (Figures 5.9, 5.10, 5.11, and 5.12). All four Minkowski functionals of
the largest cluster clearly consistently detect the percolation transition. Two points are worth
stressing: Firstly, in all models the percolation transition happens at smaller filling factors than
in the “structureless” Gaussian fields. Secondly, the more power on the large scales (i.e. the
smaller n) the smaller the filling factor at percolation. Both conclusions confirm the results
of Yess & Shandarin (1996) about the universality of the network structures in the power law
models with n ≤ 1. The results of Pauls & Melott (1995) present evidence that this should
be expected all the way up to n = +3; at n = +4 mode coupling effects from smaller scales
should begin to fully disrupt the network structure.

5.3.5 Small objects

As an example, the Blaschke diagram for the model n = −2 is shown in Figure 5.13. The
distributions for the other models look qualitatively very similar and the average quantities for
other models are presented in Figures 5.14 and 5.15. Figure 5.14 shows that most of the small
objects are either spherical or slightly planar. There is also a considerable number of elongated
clusters with filamentarities from 0.1 to 0.5. In some cases filamentarity reaches large values
∼ 1. On the contrary planarity is much weaker, it hardly reaches the value of 0.2 (which is partly
a consequence of the smoothing). There is a hint of a small correlation between filamentarity
and planarity: the objects with the largest filamentarity also tend to have larger planarity.

Figures 5.14 and 5.15 display the shapefinders as functions of the cluster mass. The curves
give averages over the realisations of each model. Apparently, the signal for filamentarity
is much stronger than for planarity, regardless of the model which is in full agreement with
Figure 5.13. The planarity and filamentarity distributions qualitatively look very similar except
for the amplitude. Small objects (5 × 10−6 . m . 5 × 10−4) display stronger planarity and
filamentarity for models with more power on large scales. However, for greater masses (m &
5× 10−4) the situation is reversed: the less large-scale power the greater the filamentarity and
planarity. If the former seems to be natural and was expected, the latter has been unexpected.
Both the planarity and filamentarity monotonically grow and reach their maxima at largest
clusters: Pm ≈ 0.1 and Pm ≈ 0.5 in all models. As expected the largest objects possess the
largest planarities and filamentarities, but the independence of the maxima from the model
again was unexpected.

Despite the successful application of Minkowski functional analysis to the global field and the
largest coherent object, the shapefinder analysis of small objects has led to ambiguous results.
Their abundance discriminates well, but is already determined by the difference in the Euler
characteristic as well as by the total area and mean curvature of the whole contour (Figures 5.7
and 5.8) that are also sensitive to the abundance of structures. The morphology of small objects
as measured by shapefinders shows little differences between models (Figures 5.14, 5.15). Both
the maximum average planarity (P ≈ 0.1) and the maximum average filamentarity (F ≈ 0.5)
are reached in the most massive non-percolating objects. None of the models showed ribbon–

87



5 The distribution of dark matter

like objects characterised by both large planarity and large filamentarity. We may speculate
that the smaller objects are ones which formed earlier, are more nonlinear, and therefore more
decoupled from initial conditions.

Blaschke diagrams are virtually insensitive to the wide variety of initial power spectra used in this
section. Replacing fixed width kernel presented here by adaptive smoothing techniques hardly
alters these results. However, all models use Gaussian initial conditions, and evolve under the
influence of gravity. Hence the similar morphology of the clumps may point towards universal
behaviour. Note that different initial conditions resulting e.g. from string wakes might produce
different results.

The grouping and measurement techniques used in this study are less accurate for small objects
than for large clusters. It is worth trying to study the morphology of small objects by applying
more accurate methods of measuring partial Minkowski functionals such as the interpolation
method of Novikov et al. (1999) generalised to three dimensions.

Since partial Minkowski functionals offer the possibility of probing the morphology of individual
objects, or the object’s environmental morphological properties, we expect that this concept
will be more powerful when applied to continuous fields at high spatial resolution so that the
details of structures are not smoothed out. Their application to point processes also delivers
more direct information. In the next chapter, we will follow an approach that defines partial
Minkowski functionals using the Boolean grain model.
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5.3 Shapefinders

Figure 5.6 The shapefinders of some convex bodies. The solid line shows the transition from
a ball to a filament to a pancake and back to a ball via triaxial ellipsoids of various shapes.
The dashed line corresponds to cylinders that also undergo the transition from a filament to a
pancake by varying their height. The dots on the spheroid and cylinder curves indicate typical
values of the λ parameter from Equations (5.21) and (5.23), respectively.
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5 The distribution of dark matter

Figure 5.7 Minkowski functionals for the evolutionary stage knl = 8 of four different models
with initial power law spectra P (k) ∝ kn. The area between two lines gives the one–sigma
deviations of four realisations from their mean. The solid lines correspond to n = −2, dotted is
n = −1, dash–dotted lines give the results for n = 0, and n = +1 is shown with dashed lines.
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Figure 5.8 Minkowski functionals for the evolutionary stage knl = 8 of four different models
with initial power law spectra. Line styles are the same as in the previous figure, but instead of
the density threshold δ, the rescaled threshold ν introduced by Gott III et al. (1987) is used.
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5 The distribution of dark matter

Figure 5.9 The following set of figures compares the global Minkowski functionals of the
whole density field (solid line) to the Minkowski functionals of the largest (dashed) and second
largest (dotted) objects. The areas indicate the mean and standard deviation over the four
realisations of each model. In order to emphasise the region around the percolation transition,
the Minkowski functionals are plotted against the filling factor, which is equal to the volume
enclosed in all isocontours of the global field. In this particular plot, the values for an initially
power–law spectrum with an index of n = −2 are shown.
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5.3 Shapefinders

Figure 5.10 The same tendency as before is visible in this case where n = −1. As before, the
dominance of large networked structures is clearly visible – for example, the Euler characteristic
stays well below zero even for high thresholds, which indicates a spongy structure with many
tunnels in it. However, the networked structures have fewer loops, since they tend to split up
at lower thresholds.
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5 The distribution of dark matter

Figure 5.11 The situation is different in the case n = 0. The largest object splits up rapidly,
and is already simply connected at a filling factor correspongding to the fairly low density
contrast δ ≈ 0.5. Also, at thresholds around percolation, the second largest object becomes
comparable to the largest one, so the field is not dominated by a single networked structure,
but by several chunks.
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Figure 5.12 The effect described in the previous figure is even more pronounced for n = +1,
since this model is dominated by small–scale structures. Contrary to the models with negative
index n, where the Euler characteristic of the largest object approaches the value one for a
simply connected structure from below, one can even see a small positive peak around the
percolation threshold.
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5 The distribution of dark matter

Figure 5.13 The shapefinder or Blaschke diagram of the model with n = −2. The area of
each dot corresponds to the number of coherent objects whose shapefinders (P ,F) lie around
the centre of this dot. We only include objects larger than 10−4 times the simulation box, a
value several times larger than the smoothing volume. Note that the shapefinders of all objects
at all thresholds are used in the construction of the diagram. Nevertheless, most information
comes from thresholds close to percolation, where small objects are abundant.
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5.3 Shapefinders

Figure 5.14 The average planarity shapefinder P as a function of the cluster mass. Line styles
are explained in Figure 5.7. As in Figure 5.13, all objects at all thresholds are used to improve
statistics.
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5 The distribution of dark matter

Figure 5.15 This plot shows the same type of distribution as the previous Figure 5.14, but
this time the average filamentarity shapefinder F is plotted as a function of the cluster mass.
Again, line styles correspond to models as explained in the caption of Figure 5.7.
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6 Structure in galaxy catalogues

Dis donc, tonton, demande Zazie,
quand tu déconnes comme ça,

tu le fais esprès ou c’est sans le vouloir?
(Queneau 1959)

In contrast to the previous chapter, where our analysis of the large–scale structure of the
Universe focussed on a density field reconstructed from the distribution of dark matter particles,
we will now turn our attention to the distribution of luminous matter. In this chapter, we analyse
the redshift space topology and geometry of the nearby Universe by computing the Minkowski
functionals of the Updated Zwicky Catalogue (UZC, Falco et al. 1999). The UZC contains the
redshifts of almost 20,000 galaxies, and is 96% complete to the limiting magnitude mZw = 15.5
in more than one fifth of the sky. The UZC includes the famous Center for Astrophysics (CfA)
Redshift Survey (Huchra et al. 1999; Huchra et al. 1995; Huchra et al. 1990; Geller & Huchra
1989; Huchra et al. 1983; de Lapparent et al. 1986; Davis et al. 1982). From the UZC
we can extract volume limited samples reaching a depth of 70h−1Mpc before sparse sampling
dominates. We compute the Minkowski functionals of these samples, taking into account the
boundary effects by using unbiased estimators (Section 6.1.1), and quantify the shape of the
large–scale galaxy distribution by deriving measures of planarity and filamentarity from the
Minkowski functionals (Section 6.1.2).

Recently, a similar analysis on the nearby Universe has been performed by using the LCRS
(Bharadwaj et al. 1999). The main advantage of using the UZC over the LCRS is the geometry
of the survey: the LCRS consists of six separated slices only 1.◦5 thick; thus, an analysis of the full
three–dimensional structure cannot be performed. In fact, Bharadwaj et al. (1999) are unable
to discriminate whether the “filaments” seen in the LCRS are actually sections of “sheets”.
Because the UZC consists of two coherent regions covering ∼ 14% and ∼ 7% of the sky
respectively without discontinuities, we can address this point here. In fact, Geller & Huchra
(1989) were the first to point out the two–dimensionality of the structures by identifying the
“Great Wall” in the CfA2 redshift survey. On the other hand, with the UZC, we can only
probe the topology of a volume 70h−1Mpc deep, which is too small to be representative of the
Universe.

We also compare the results with redshift space mock catalogues constructed from high res-
olution N–body simulations of two Cold Dark Matter models with either a decaying massive
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6 Structure in galaxy catalogues

neutrino (τCDM) or a non–zero cosmological constant (ΛCDM). In these dark–matter sim-
ulations, semi–analytic modelling is employed to form and evolve galaxies (Kauffmann et al.
1999a). This means that the density bias, the distribution of galaxies relative to the dark
matter, is taken self–consistently into account by including the physics of galaxy formation
and evolution explicitly. We are able to compile redshift space mock catalogues which contain
galaxies, along with their observable properties, rather than dark matter particles.

It turns out that in both models the large scale galaxy distribution is less coherent than the
observed distribution, especially with regard to the large degree of planarity of the real survey.
However, given the small volume of the region studied, this disagreement might still be a result
of cosmic variance.

6.1 Method

As described in Chapter 2, we consider a volume–limited subsample from a galaxy catalogue
as a set of points {xi} ⊂ D, where i = 1 . . . N and D is the spatial region of the survey.
Since the geometry of single points is trivial, we decorate each point with a ball B of radius r,
and measure the Minkowski functionals of the resulting union set, the so–called Boolean grain
model (Wicksell 1925). In short, we construct the union set

Ar =
N⋃
i=1

Bxi (6.1)

and look upon the quantities Vµ (Ar) as functions of the ball radius r. By increasing the size of
the balls, connections are established between points farther apart, until the survey volume is
completely filled by the Boolean grain model. The radius can therefore be used as a diagnostic
parameter.

6.1.1 Incomplete sky coverage and finite survey depth

Currently, estimation of geometrical quantities such as Minkowski functionals relies on homo-
geneous sampling of the underlying point distribution. Galaxy catalogues, however, are usually
magnitude–limited, and therefore intrinsically inhomogeneous. The standard solution is to use
a series of volume–limited subsamples. However, even with volume–limited subsamples, care
needs to be taken to obtain meaningful results that are not affected by the sample geometry.

For comparing samples of different size, we may define volume densities vµ of the Minkowski
functionals of this objects by

vµ =
1

|D|
Vµ(Ar), (6.2)

if D is a large box with periodic boundary conditions.
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6.1 Method

Figure 6.1 The volume fraction of the reduced window as a function of the shrinking distance.
The dashed line corresponds to full sky coverage of 4π; the solid line is for the CfA2n window.
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6 Structure in galaxy catalogues

First of all, to take into account the boundary effects on the volume functional v0, the sample
window D must be reduced by the radius r to obtain an unbiased estimate. If Dr denotes the
set of all points that are farther than r from the boundary of the sample window D, we have

v0 =
V0(Ar ∩Dr)

V0(Dr)
. (6.3)

This correction was introduced by Maurogordato & Lachièze–Rey (1987) for calculating the
void probability function of the CfA1 catalogue, and extended by Schmalzing et al. (1996) for
all Minkowski functionals of a point set in a convex window.

While for a smooth body, all Minkowski functionals vµ, µ = 1, 2, 3 can be written as surface
integrals, this is no longer possible for the Boolean grain model, which has edges and corners at
intersections of two or more balls. Nevertheless the contributions of these non–regular surface
to the Minkowski functionals may still be evaluated using a more general concept of surface
integration that includes edges and corners (Federer 1959; Schneider 1993). Following Mecke
et al. (1994), we arrive at the so–called partition formula, which sorts contributions to the
Minkowski functionals from the various types of boundary, i.e. surface points belonging to one,
two or three balls1. The partition formula states that

Vµ(Ar) =
N∑
i=1

V (i)
µ (Ar) +

1

2

N∑
i,j=1

V (ij)
µ (Ar) +

1

6

N∑
i,j,k=1

V (ijk)
µ (Ar). (6.4)

V
(i)
µ (Ar) denotes the contribution from the uncovered surface of the ball around point xi, while

V
(ij)
µ (Ar) comes from the intersection line of balls i and j, and V

(ijk)
µ (Ar) is located at the

corner made by the intersection of balls i, j and k. Rearranging the summations, we have

Vµ(Ar) =
N∑
i=1

Vµ(Ar; xi), (6.5)

where the partial Minkowski functional Vµ(Ar; xi) sums up contributions that include the point
i located at xi. Since an intersection, and hence a non–zero contribution, is only possible if all
balls are less than 2r apart, the partial Minkowski functionals measure the local morphology in
a well–defined neighbourhood, namely a ball of radius 2r, around each point.

Equation (6.5) is already useful for the practical evaluation of Minkowski functionals for a set
of points in a rectangular box with periodic boundary conditions. Basically, one calculates all
partial Minkowski functionals and sums them up to estimate the density through Equation (6.2),
by

vµ =
1

|D|

N∑
i=1

Vµ(Ar; xi). (6.6)

1Although intersections of four and more points may occur for very special point distributions (Platzöder
1995), they are irrelevant since they provide no contribution on average. In practice, slight displacements
of the order of the numerical resolution can be used to resolve such situations without losing accuracy.
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In passing, let us briefly note that for very large N , when calculating all partial Minkowski
functionals becomes impractical, it is conceivable to select M ≤ N points at random, and
estimate the functionals vµ of the whole box by averaging over M points only.

Even for a complicated survey geometry, the global Minkowski functionals of the Boolean grain
model can now be written as sums of the partial Minkowski functionals. Since only neighbours
within 2r around a point contribute to its partial Minkowski functionals, we can simply restrict
the summation to the part of the sample that is further than 2r from the boundary. Calling
this shrunken window D2r, we have

vµ =
1

|D2r|

N∑
i=1

χD2r(xi)Vµ(Ar; xi) (µ = 1, 2, 3), (6.7)

where

χD2r(x) =

{
1 if x ∈ D2r

0 if x 6∈ D2r
(6.8)

is its characteristic function. In the language of spatial statistics, this quantity is a minus
estimator for the volume densities of the Minkowski functionals. Minus estimators especially
for the two–point correlation function are already known in cosmology; they have been used
for example by Coleman & Pietronero (1992), and thoroughly investigated by Kerscher (1999).
One should keep in mind that minus estimators provide unbiased estimates only if applied to a
sample from a stationary point process. This is why we always use volume–limited subsamples
from catalogues when carrying out our analysis.

Our approach works for arbitrary sky coverage, including the non–convex boundaries of the CfA2
survey. Moreover, at any radius, we use all available points, since points outside the reduced
sample window still contribute as neighbours of points remaining inside. The only drawback of
our approach, when compared to the method of Schmalzing et al. (1996), is that the window
now shrinks by twice the radius. This fact considerably reduces the maximum allowed size of
the Boolean ball.

We may quantify the loss of accuracy by the ratio |Dr|/|D| between the volumes of the reduced
and the original windows. For complete sky coverage, we have

|Dr|
|D|

=
(

1− r

R

)3

, (6.9)

where R gives the depth of the volume–limited sample and r is the distance to be kept from the
boundary. If the sky coverage is not complete, this fraction decreases rapidly. This is illustrated
in Figure 6.1, which compares the reduced window size for full sky coverage, and for the 10%
sky coverage of the CfA2n window (defined in Section 6.3.1). Apparently, analysing the CfA2
catalogue with Minkowski functionals becomes impractical at radii above 10h−1Mpc. We set
our maximum Boolean ball radius at 5h−1Mpc, so our results are not affected by this problem.

103



6 Structure in galaxy catalogues

Figure 6.2 These panels compare the best fit of our toy model (dotted) to the Minkowski
functionals measured from the CfA2N subsample (solid).
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6.1 Method

6.1.2 Definition of filamentarity and planarity through a toy model

Consider a random mixture of N bodies where, contrary to the Boolean grain model considered
before, each body has different Minkowski functionals. The average Minkowski functionals of
the resulting union are given by (Mecke 1994)

v0 = 1− e−ρV 0

v1 = e−ρV 0ρV 1

v2 = e−ρV 0

(
ρV 2 −

3π

8
ρ2V

2

1

)
v3 = e−ρV 0

(
ρV 3 −

9

2
ρ2V 1V 2 +

9π

16
ρ3V

3

1

) (6.10)

where V µ is the number weighted average over the isolated Minkowski functionals of all different
bodies.

Although the Boolean grain model used in our analysis places identical balls around all points,
we may use the formula above for calculating analytically the Minkowski functionals of a simple
toy model. In fact, we can take into account the inhomogeneous distribution of identical balls
by considering them as randomly distributed objects with Minkowski functionals characteristic
of their respective environment.

Let us assume that points are located in one–dimensional filaments, in two–dimensional sheets,
or in a homogeneous field. If each of these types of structure were isolated from the rest, we
could calculate the Minkowski functionals per single point analytically (Schmalzing 1996). For
the average point in the filament, sheet and field, respectively, we have2

V
(fil)

0

V0(B)
= 3

4

x+ e−2x

x2
− 3

8

1− e−2x

x3
,

V
(fil)

1

V1(B)
= 1

2

1− e−2x

x
,

V
(fil)

2

V2(B)
= 1

2

1− e−2x

x
− x

∫ 1

0

dte−2xt
√

1− t2 arcsin t,

V
(fil)

3

V3(B)
= e−2x,

(6.11)

2We have that Ψ(x) = 2√
π

∫ x
0

dt exp(t2) and I0(x) is the modified Bessel function of order zero.
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V
(sheet)

0

V0(B)
= 3

2π

1

x2
− 3

4π

e−πx
2
Ψ(
√
πx)

x3
,

V
(sheet)

1

V1(B)
= 1

2

e−πx
2
Ψ(
√
πx)

x
,

V
(sheet)

2

V2(B)
= 1

2

e−πx
2
Ψ(
√
πx)

x
− π

2
x2e−πx

2

×
∫ 1

0

dt exp(
π

2
x2t2) I0(

π

2
x2t2) t2 arcsin t,

V
(sheet)

3

V3(B)
= e−πx

2

(1− πx2),

(6.12)

V
(field)

µ

Vµ(B)
= 1, (µ = 0, . . . , 3) (6.13)

where we have normalised the functionals by dividing through the values for an isolated ball of
the same radius, and x = r/d denotes the radius divided by the mean separation of the points
on the filament or sheet.

If we further assume that those idealised structures are mixed randomly to form the point
distribution we wish to study, the Minkowski functionals vµ are given through Equation (6.10),
where the V µ are a weighted average over the three types of idealised structure. We can
therefore calculate the vµ numerically, extract the V µ, and perform a linear fit to obtain the
percentage for each type of structure in the mixture. By using the quantities 1 − V µ/Vµ(B),
which are exactly zero for field galaxies, we obtain

1− V µ

Vµ(B)
= F

(
1−

V
(fil)

µ

Vµ(B)

)
+ P

(
1−

V
(sheet)

µ

Vµ(B)

)
(6.14)

for the toy model. We fix the free parameters F and P by minimising the χ2 of all four
Minkowski functional profiles at the same time. This procedure yields two numbers for F and
P ; we interpret them as measures of filamentarity and planarity in the point distribution.

The standard method of linear fitting solves the normal equations (Press et al. 1987), and also
gives an error for our measurements, usually of the order of 0.01. As an example, Figure 6.2
compares the Minkowski functionals of the CfA2N sample and the best fit toy model. Re-
finements of the fitting procedure, such as a Principal Component Analysis (Kendall 1980) are
conceivable, but appear inappropriate in view of the vast simplifications and resulting systematic
problems of the toy model. The assumption that galaxies arrange in infinitely thin filaments and
sheets is of course a strong simplification. Nevertheless, this simplified model already allows us
to put a quantitative measurement on our intuitive impression of the local Universe.
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6.2 The Updated Zwicky Catalogue

6.2 The Updated Zwicky Catalogue

We now briefly describe the properties of the Updated Zwicky Catalogue (UZC, Section 6.2.1).
In Section 6.2.2 we compute its Minkowski functionals with the method based on the Boolean
grain model.

6.2.1 Description

Falco et al. (1999) provide new measurements of the positions and redshifts of most galaxies
in the Zwicky Catalogue, which has been the basis for the CfA1 and CfA2 redshift surveys
(see Falco et al. 1999 and references therein). The UZC represents a homogeneous and well
calibrated redshift catalogue of almost 20,000 galaxies. Furthermore, the catalogue is now
publicly available.

The UZC covers the northern celestial hemisphere which is not obscured by the Galactic disk;
the redshift catalogue is ∼ 96% complete to a limiting Zwicky magnitude mZw = 15.5.

The CfA2 redshift surveys have been compiled over many years and this name has indicated
progressively larger areas of the sky, as the surveys were reaching completion. The UZC contains
all of the CfA2 survey analysed in the literature to April 1999. Following Falco et al. (1999),
we refer to the area with right ascension ranges 8h ≤ α1950 ≤ 17h and 20h ≤ α1950 ≤ 4h

and declination range −2.◦5 ≤ δ1950 ≤ 50◦ as the CfA2 region. The first right ascension
range defines the CfA2N region containing 12,082 galaxies with measured redshift. The regions
between 3hand 4hand between 20hand 22hare sparsely populated in the catalogue largely because
of galactic obscuration. Therefore we restrict the CfA2S region to the 4,436 galaxy redshifts in
the right ascension range 22h ≤ α1950 ≤ 3h. Both areas used in our analysis are more than 98%
complete. Moreover the UZC contains some galaxies fainter than the magnitude limit. These
galaxies are mainly in multiplets which were unresolved by Zwicky. They affect the properties of
the galaxy distribution on very small scales but should leave our analysis unchanged. Note that
the actual number of available redshifts in the UZC is currently increasing, as the catalogue is
being updated.

Visual inspection shows well–defined structure in the CfA2 surveys, with large voids and sheet–
like structures. Figure 6.3 shows a cone diagram of the volume–limited samples from CfA2N
and CfA2S we analyse here. The dense feature close to the boundary of the northern part of
the catalogue is the “Great Wall” (Geller & Huchra 1989, see also Figure 6 of Falco et al.
1999). In CfA2S, the apparent galaxy concentration is the Perseus–Pisces supercluster.

6.2.2 Topology and geometry

In our analysis, we use volume–limited samples 70h−1Mpc deep. This provides a good com-
promise between object number (of all volume–limited subsamples, the 70h−1Mpc one includes
the highest number of objects) and depth (parts of the Great Wall are closer than 70h−1Mpc).
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6 Structure in galaxy catalogues

Figure 6.3 Cone diagram of the volume–limited subsample of 70h−1Mpc depth we analyse here
from the UZC. The larger and smaller cones correspond to the northern and southern region,
respectively. The large dot marks the location of our galaxy and alludes to Adams (1986).
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6.2 The Updated Zwicky Catalogue

Figure 6.4 Minkowski functionals of CfA2N (solid line) and CfA2S (dashed line). All curves
were calculated from volume–limited samples 70h−1Mpc deep. Note that the CfA2N Minkowski
functionals are systematically larger than the CfA2S ones, indicating larger clustering (Marzke
et al. 1995).
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6 Structure in galaxy catalogues

Since the scaling behaviour of Minkowski functionals with the number density is not known in
general, we take care to always analyse samples with the same number density of galaxies. From
all volume–limited samples, we choose a set of slightly smaller random samples such that the
number density corresponds to exactly 1,000 galaxies in the CfA2n volume (see Section 6.3.1
for a definition).

The results of our analysis of the UZC are shown in Figure 6.4. Instead of the Minkowski
functionals vµ themselves, we plot the quantities 1 − V µ/Vµ(B). A thorough motivation of
their use is given in Section 6.1.2; most notably they are exactly equal to zero for a stationary
Poisson process, i.e. a random distribution of points with spatially constant density. Generally
speaking, values above zero reveal a clustered distribution of galaxies. Note, however, that
the V µ can be written as an alternating series containing the hierarchy of correlation functions
(Schmalzing et al. 1999b), so clustering does not simply mean that the two–point function is
positive. As an example, consider 1 − V 0/V0(B). By Equation (6.10) this quantity increases
monotonically with 1− v0, the void probability function (White 1979). Hence larger values in
our plots indicate larger voids in the point distribution, which in turn means that points have
to cluster more tightly.

Some of the functionals, most notably the volume v0, indicate stronger clustering for CfA2N
than for CfA2S. In fact, CfA2N contains more clusters than CfA2S and the Great Wall is more
apparent than the Perseus–Pisces supercluster in CfA2S. The two-point correlation function
already showed that the CfA2N clustering is peculiarly large when compared to other surveys
(Marzke et al. 1995; Diaferio et al. 1999a).

We use a toy model to characterise the geometry of CfA2: we assume that galaxies are dis-
tributed in one-dimensional filaments, two-dimensional sheets or in a homogeneous field. We
can compute the Minkowski functionals for this model analytically. Two coefficients, F and P ,
give the relative contribution of filaments and sheets in the galaxy distribution (see Section 6.1.2
for details). Note, however, that this approach has the main shortcoming of assigning struc-
tures which are loosely clustered to the planarity component, because alternative assignments
would yield considerably worse fits. Therefore, F and P yield the relative importance of the
two structural components, but their exact values should be considered cautiously.

By fitting our toy model to the CfA2N Minkowski functional curves, we obtain F = 0.12 and
P = 0.67 for the filamentarity and planarity contribution, respectively. The high degree of
planarity is expected from the visual appearance of the Great Wall in the catalogue. For the
CfA2S we find F = 0.01 and P = 0.75. The large value of P in both regions reflects the
tendency of galaxies to be distributed in two-dimensional structures or in loose structures rather
than in filaments. Moreover, the smaller size of the CfA2S region also tends to increase slightly
the signal for planar and loose structures.

Because of its simplicity, our toy model provides a straightforward way of measuring planarity
and filamentarity, but it is inadequate to model more complex realistic situations. We are
planning some refinements in order to obtain results in better agreement with our intuitive
interpretations of the galaxy distribution.
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6.3 Mock galaxy redshift surveys

Table 6.1 Parameters of the two GIF simulations (Kauffmann et al. 1999a) used in our analysis.
The Hubble constant h, the particle mass mp, and the comoving size L of the simulation box
are in units of H0 = 100km s−1/Mpc, 1010h−1M�, and h−1Mpc, respectively.

model Ω0 ΩΛ h σ8 mp L
ΛCDM 0.3 0.7 0.7 0.90 1.4 141
τCDM 1.0 0.0 0.5 0.60 1.0 85

6.3 Mock galaxy redshift surveys

We compare the morphology of the CfA2n redshift survey with two variants of a CDM model.
In Section 6.3.1 we briefly describe the simulations and how we model galaxy formation and
evolution. Section 6.3.2 discusses how the luminosity limit of the galaxy sample, the shape of
the sample volume and the peculiar velocity distortions in redshift space affect the Minkowski
functionals. Section 6.3.3 contains the comparison of CfA2n with the mock galaxy redshift
surveys.

6.3.1 Models

We consider two simulations from the GIF project (Kauffmann et al. 1999a): a CDM model
with either Ω0 = 1 (τCDM) or Ω0 = 0.3 and Λ = 0.7 (ΛCDM). The simulations contain
2563 dark matter particles each. The normalisation σ8 of the power spectrum of the initial
density perturbations was chosen to reproduce the present day abundance of rich galaxy clusters.
Table 6.1 summarises the parameters of the models.

The simulations were run with Hydra (Pearce & Couchman 1997), the parallel version of the
AP3M code (Couchman 1991; Couchman et al. 1995), kindly provided by Jenkins et al. (1997).

Kauffmann et al. (1999a) combine these high resolution N -body simulations with semi-analytic
modelling to form and evolve galaxies within dark matter halos: gas cooling, star formation,
supernova feedback, stellar evolution and galaxy–galaxy merging are the relevant processes in-
cluded. At any cosmological epoch, the observable properties of the galaxies, namely luminosity,
colour, star formation rate, and stellar mass, are the result of the galaxy’s merging history, its
interaction with the environment and the passive evolution of its stellar content.

The models predict photometric and clustering properties of galaxies at redshift z = 0 (Kauff-
mann et al. 1999a; Diaferio et al. 1999a), and their evolution to high redshift (Kauffmann
et al. 1999b; Diaferio et al. 1999b) which are in reasonable agreement with observations.
Moreover, these analyses suggest further diagnostics for constraining the cosmological model
and determining the relevance of the different galaxy formation processes.

These simulations represent the only models, available to date, where galaxies form and evolve
in a self-consistent cosmological model and within a volume of the Universe sufficiently large for
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Figure 6.5 Cone diagrams of two mock catalogues. The upper and lower cones are a volume–
limited subsample constructed from the CfALF ΛCDM model and the CfALF τCDM model,
respectively. The observer galaxy is indicated by the large dot.
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an analysis of the large scale galaxy distribution (see also Pearce et al. 1999). In fact, Diaferio
et al. (1999a) extract mock galaxy redshift surveys from the simulations at z = 0 for a direct
comparison with the CfA2N redshift survey, whose volume ∼ 7 × 105h−3Mpc3 is comparable
to the volume of the simulation boxes. Specifically, they consider the area 8h ≤ α1950 ≤ 17h,
8.◦5 ≤ δ1950 ≤ 44.◦5 which has a declination range smaller than CfA2N. We refer to this region
as the CfA2n region. In order to resemble the CfA2n appearance in the mock catalogues as
closely as possible, the mock redshift surveys were compiled by locating the observer home
galaxy within the simulation box on a galaxy similar to the Milky Way at ∼ 70h−1Mpc away
from a Coma–like massive cluster.

Diaferio et al. (1999a) analyse both the CfA2n and the mock redshift surveys with the same
standard observational techniques. They show that the small scale clustering properties of
galaxies, namely galaxy group properties, the redshift space correlation function and pairwise
velocities, are reproduced by both models independently of Ω0. Despite this success, a visual
inspection of the mock redshift surveys shows remarkable differences in the large scale distri-
bution of galaxies. Both models fail to produce structures as coherent and as sharply defined
as in the CfA2n survey, although ΛCDM catalogues seem to be in better qualitative agreement
with the data (see their Figures 5–8). Two examples of volume–limited subsamples constructed
from these models are shown in Figure 6.5.

The B-band galaxy luminosity function predicted by the semi–analytical models is not a good
fit to the CfA survey luminosity function (Marzke et al. 1994). To investigate the effect of
the luminosity function on the small-scale clustering properties, Diaferio et al. (1999a) assign
new luminosities to the galaxies in order to reproduce the CfA luminosity function exactly,
while preserving the galaxies’ luminosity rank. We thus have two sets of mock catalogues,
where the galaxies have luminosities according to the semi–analytical model luminosity function
(SALF) or the CfA luminosity function (CfALF). We have analysed both the SALF and CfALF
mock catalogues. Similarly to other measures related to the underlying mass distribution, the
Minkowski functionals are basically independent of the luminosity function adopted. Throughout
this analysis, we show results from the CfALF catalogues alone. Moreover, we consider ten mock
catalogues for each simulation to assess the robustness of our results.

6.3.2 Luminosity, geometry and redshift space effects

Kauffmann et al. (1999a) show that the two–point correlation function is similar for galaxy
samples with different magnitude limits. The Minkowski functionals are able to extract more
information from the galaxy distribution. In fact, bright galaxies cluster stronger than faint
ones. Figure 6.6 shows the Minkowski functionals for the ΛCDM simulation; τCDM yields very
similar plots. In order to keep constant the statistical significance of different galaxy samples,
we compute the Minkowski functionals only of subsamples containing the same number density
of galaxies, and average over ten subsamples. The solid lines show the Minkowski functionals for
galaxies brighter than MB = −17.5 + 5 log h. The Minkowski functionals for galaxies brighter
than MB = −18.7+5 log h are indicated by dashed lines. This absolute magnitude corresponds
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6 Structure in galaxy catalogues

Figure 6.6 Effect of luminosity and geometry on the Minkowski functionals of the CfALF
ΛCDM model. The dashed and solid lines are for all galaxies in the simulation box brighter
than MB = −18.7 + 5 log h and MB = −17.5 + 5 log h respectively. The shaded area indicates
the 1σ–spread over ten subsamples.
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6.3 Mock galaxy redshift surveys

to an apparent magnitude mB = 15.5 at 70h−1Mpc. The difference between the two curves is
significantly larger than the scatter between different subsamples from the same set of galaxies.

We have also checked that the Minkowski functionals computed with our procedure (Sec-
tion 6.1.1) are insensitive to the shape of the sample volume. We do this by calculating the
Minkowski functionals of the real space position of the galaxies averaged over the volume–limited
subsamples extracted from the ten mock redshift surveys. The dashed lines in Figure 6.6 lie
within the scatter of the resulting Minkowski functionals (shown as the dark shaded area in
Figure 6.7). Since they come from volumes which have differing shape (periodic, rectangular
box versus CfA2n volume ) but contain galaxies with roughly the same luminosity, we can de-
duce that the difference due to the sample geometry is negligible in comparison to the scatter
between individual mock catalogues. Note that for mock catalogues, the scatter is much larger
than for subsamples from the whole simulation box, simply because a mock catalogue contains
fewer galaxies.

Redshift space distortions tend to destroy structure on small scales, because groups and clusters
in real space are diluted in redshift space by the finger–of–god effect. Figure 6.7 shows this
difference in the ΛCDM model. The Minkowski functionals of the real and redshift space galaxy
distributions almost coincide at larger values of the Boolean ball radius, because redshift space
distortions become less relevant on large scale.

6.3.3 Comparison with the CfA2 catalogue

Figure 6.8 compares the morphological properties of CfA2n with the mock catalogues: neither
of the two models is capable of reproducing the CfA2n properties. At Boolean ball radii
∼ 1 − 2h−1Mpc, all the four Minkowski functionals of CfA2n are five times the r.m.s. above
the average mock catalogue of the ΛCDM. Given the rather small number of ten realisations,
we can conclude that the CfA2n clustering is not reproduced by the ΛCDM model at the 90%
confidence level. The τCDM model shows an even smaller degree of clustering. At larger
radii and for the mean curvature v2 and Euler characteristic v3, the disagreement between the
models and observations is less dramatic, but also less significant, because the sample volume
is filled by a considerably smaller number of Boolean balls. It is crucial to recall, however, that
the scatter of quantities derived from the variance over all ten mock catalogues underestimates
the sampling variance, because the mock surveys are constructed from the same small parent
simulation.

The failure of the ΛCDM in reproducing the CfA2n Minkowski functionals is particularly in-
teresting, because, on average, this model fits other observations reasonably well and in any
case better than the τCDM model (Kauffmann et al. 1999a; Kauffmann et al. 1999b). The
Minkowski functionals confirm that ΛCDM should be preferred to τCDM.

It is worth noting that, because of the smaller degree of clustering of CfA2S when compared to
CfA2N (see Figure 6.4), the difference between the CfA2S and the models is less pronounced,
although still significant. The result is an example of the power of the Minkowski functionals
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6 Structure in galaxy catalogues

Figure 6.7 Minkowski functionals of the ΛCDM mock catalogues in real space (dark shaded
area) and in redshift space (light shaded area). The shaded area indicates the r.m.s. spread
over the ten mock catalogues.
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6.3 Mock galaxy redshift surveys

Figure 6.8 Structure in the CfA2n redshift survey, and in the mock catalogues extracted from
the ΛCDM (dark shaded area) and the τCDM (light shaded area) models. The areas indicate
the 1-σ scatter over the ten mock catalogues constructed for each model. All curves are for
volume–limited samples 70h−1Mpc deep.
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6 Structure in galaxy catalogues

analysis. In fact, Diaferio et al. (1999a) show that the two point correlation function of
the mock catalogues agrees quite well with the CfA2S function. As expected, the Minkowski
functionals are able to extract more information on the clustering properties of galaxies.

We can also perform the fitting procedure described in Section 6.1.2 to estimate the planarity
and filamentarity of the structure contained in the mock catalogues. ΛCDM yields F = 0.01
and P = 0.64, while τCDM results in F = 0.02 and P = 0.60 for the average mock catalogues.
As pointed out in Section 6.2.2, the large values of P compared to F indicate that the galaxies
tend to be distributed in two-dimensional or loose structures rather than filaments. Compared
to the values determined from the real catalogue in Section 6.2.2 (F = 0.12 and P = 0.67), P
is ∼ 10% smaller in the models than in CfA2, again indicating a smaller degree of clustering.

We cannot exclude that the failure of the models in reproducing the Minkowski functionals of
CfA2N is due to the small size of both the simulation box and the real survey. In fact, the
initial power spectrum of the density perturbations does not contain Fourier components with
wavelength larger than the box size. This prevents the development of large-scale non–Gaussian
features such as the Great Wall. Moreover, as already indicated by an analysis of the IRAS
1.2Jy catalogue (Kerscher et al. 1998), a volume–limited subsample 70h−1Mpc deep is too
small to be a fair sample of the Universe. Therefore, our analysis is likely to be dominated by
local effects, which should average out when deeper catalogues are considered. This hypothesis
could already be tested with simulations in larger volumes (see e.g. Doroshkevich et al. 1999),
where one could estimate the cosmic variance, or with a constrained realisation (Mathis et al.
1999), which would not suffer from the fair sample problem.

6.4 Discussion

de Lapparent et al. (1986) and Geller & Huchra (1989) first pointed out that the large–
scale galaxy distribution in the CfA2 redshift survey has a two–dimensional sheet–like structure
rather than a one–dimensional filamentary appearance. Here we quantify this visual impression
by analysing the redshift space topology and geometry of the UZC. By constructing a Boolean
grain model of balls centred around the galaxies, we obtain unbiased estimates for the Minkowski
functionals of the galaxy distribution. We then fit the Minkowski functionals to a toy model to
extract quantitative information on the degree of filamentarity and planarity in CfA2. We find
that filament– and sheet–like structures contribute 12% and 67% to the Minkowski functionals
of CfA2N respectively, while the remainder comes from a homogeneous distribution of galaxies.
Our results therefore strongly suggest that the filaments identified in the LCRS (Bharadwaj et
al. 1999) are actually sections of sheets.

Apparently, our simple model is inadequate in other realistic situations, such as CfA2S (the
southern part of the UZC), where looser structures are present. However, the encouraging result
we obtain with CfA2N indicates that it is worth pursuing this approach with some refinements.
When deeper surveys as the Sloan Digital Sky Survey will be available, our approach can
represent a valuable tool to quantify the topology of the galaxy distribution. Most notably,
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6.4 Discussion

Figure 6.9 The average Minkowski functionals of mock CfA2 catalogues extracted from
truncated Zel’dovich simulations (see Chapter 3 for details) of 60h−1Mpc (solid lines) and
240h−1Mpc (dashed lines) sidelength. The differences are not significant, especially on small
scales.
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6 Structure in galaxy catalogues

contrary to Sahni et al. (1998) or Schmalzing et al. (1999a), the method presented here does
not rely on shape measurements of isolated isodensity contours. Hence we can also obtain
meaningful results in low to intermediate density environments, where objects in a smoothed
field already percolate and are inaccessible to measurements.

We also compare CfA2n, a smaller volume of CfA2N, with mock redshift surveys extracted from
a ΛCDM and a τCDM model. The models do not show the high degree of clustering of CfA2n.
However, CfA2n seems to be quite a peculiar region of the Universe and the disagreement
between the models and, for example, CfA2S is less dramatic. Moreover, the Minkowski func-
tionals of the ΛCDM are closer to observations than the Minkowski functionals of τCDM. In
conclusion, although our topological analysis confirms earlier results which indicate that overall
ΛCDM is a better representation of the real Universe than τCDM, we show, at the same time,
that ΛCDM is not yet a satisfactory model of the Universe.

Vogeley et al. (1994b) compare the genus statistics of CfA2 with a ΛCDM model. They
find that this model is consistent with CfA2 on scales ≥ 10h−1Mpc, but it fails to reproduce
CfA2 on smaller scales. They use a simple bias scheme to identify galaxies and extract mock
catalogues from N -body simulations. So the physics acting on small scales, which is missing
from their simulations, might be responsible for the disagreement. Here, we used semi–analytic
modelling to form and evolve galaxies in N–body simulations, but still the agreement between
ΛCDM and CfA2 does not improve.

Note that our Boolean grain model approach follows a direction complementary to the genus
statistics analysis generally used. The standard method introduced by Gott III et al. (1986)
employs a density field smoothed on varying scales. Increasing the smoothing kernel width
successively erases structure on small scales (ter Haar Romeny et al. 1991). The analysis of
Vogeley et al. (1994b), for example, employs widthes between 6h−1Mpc and 20h−1Mpc and
addresses the issue of the Gaussianity of the distribution of the initial density perturbations. We
adopt the Boolean grain model approach by Mecke et al. (1994) and decorate each galaxy with
a sphere of radius r varying from zero to 5h−1Mpc. This procedure captures the morphology
of distinct structures on larger scales while preserving the small scale structure information.

Finally, the small volume of both the survey and our simulation box represents a severe limit
to our analysis, because we are unable to quantify the effect of cosmic variance. Figure 6.9
shows the Minkowski functionals for mock CfA2 catalogues extracted from boxes of 60h−1Mpc
and 240h−1Mpc, respectively. Although some differences at larger radii are visible, they are
far from significant, and the functionals at small radii practically coincide. Since the particle
distributions were calculated using the second order Zel’dovich schemes presented in Chapter 3,
and “galaxies” are not biased against the dark matter, these results should be taken with a
grain of salt. However, they present a first indication that increasing the simulation box size
would not remedy the observed discrepancies between the UZC data and the CDM models. We
expect that in the end surveys covering larger volumes should enable our topological approach
to discriminate between cosmological models successfully.
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the “Zel’dovich approximation”, Mon. Not. Roy. Astron. Soc. 254 (1992), 729–737.

Buchert, T., Lagrangian theory of gravitational instability of Friedmann–Lemâıtre cosmologies – a
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Weiß, A. G., Gottlöber, S., & Buchert, T., Optimizing higher order Lagrangian perturbation theory

for standard CDM and BSI models, Mon. Not. Roy. Astron. Soc. 278 (1996), 953–964.
White, M. & Bunn, E. F., The COBE normalization of CMB anisotropies, Ap. J. 450 (1995),

477–485.
White, M. & Bunn, E. F., The COBE normalization of CMB anisotropies: Erratum, Ap. J. 460

(1996), 1071.
White, S. D. M., The hierarchy of correlation functions and its relation to other measures of galaxy

clustering, Mon. Not. Roy. Astron. Soc. 186 (1979), 145–154.
White, M., Higher order moments of the density field in a parametrized sequence of non–Gaussian

theories, Mon. Not. Roy. Astron. Soc. (1999), to appear, astro-ph/9811227.
Wicksell, S. D., The corpuscle problem I., Biometrika 17 (1925), 84–99.
Winitzki, S. & Kosowsky, A., Minkowski functional description of microwave background

Gaussianity, New Astronomy 3 (1997), 75–100.
Worsley, K., Local maxima and the expected Euler characteristic of excursion sets of χ2, f and t

fields., Adv. Appl. Prob. 26 (1994), 13–42.
Worsley, K., Testing for a signal with unknown location and scale in a χ2 random field, with an

application to fMRI, Adv. Appl. Prob. (1998), accepted,
http://www.math.mcgill.ca/~keith/chisq/.

Yamamoto, K. & Suto, Y., Two-point correlation function of high-redshift objects: An explicit
formulation on a light-cone hypersurface, Ap. J. 517 (1999), 1–12.

Yess, C. & Shandarin, S. F., Universality of the network and bubble topology in cosmological
gravitational simulations, Ap. J. 465 (1996), 2–13.

Yess, C., Shandarin, S. F., & Fisher, K. B., Percolation analysis of a Wiener reconstruction of the
IRAS 1.2 Jy redshift catalog, Ap. J. 474 (1997), 553–560.

Zel’dovich, Ya. B. & Shandarin, S. F., The maximum density in heavy–neutrino clouds, Sov. Astron.
Lett. 8 (3) (1982), 139–140.

Zel’dovich, Ya. B., Fragmentation of a homogeneous medium under the action of gravitation,
Astrophysics 6 (1970), 164–174.

Zel’dovich, Ya. B., Gravitational instability: An approximate theory for large density perturbations,
Astron. Astrophys. 5 (1970), 84–89.

Zel’dovich, Ya. B., A hypothesis, unifying the structure and the entropy of the Universe, Mon. Not.
Roy. Astron. Soc. 160 (1972), 1P–3P.

Zentsova, A. S. & Chernin, A. D., Evolution of entropy perturbations in the post–recombination
epoch. II – Nonlinear stage, Astrophysics 16 (1980), 108–113.

131



132



Danksagung

Die Betreuung meiner Promotion lag in vielen guten Händen. Ich fand mich in der angenehmen
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Das Astrophysikalische Institut Potsdam (AIP), das Max–Planck–Institut für Kolloid– und
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