
Thomas Hornung

Optimal control
with ultrashort laser pulses:
Theory and experiment





Optimal control
with ultrashort laser pulses:

Theory and experiment

Dissertation an der Fakultät für Physik

der Ludwig-Maximilians-Universität München

Thomas Hornung

München, den 10. April 2002



1. Gutachten: PD Dr. Regina de Vivie-Riedle
2. Gutachten: Prof. Dr. Hänsch
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Zusammenfassung

Die kohärente Kontrolle ist ein neues faszinierendes Feld, welches theore-
tische und experimentelle Bemühungen zur Kontrolle von Quantenphänome-
nen mittels geformter Laserimpulse umfasst. Unter Ausnutzung der Kohärenz
wird das Quantensystem so angeregt, dass ein bestimmter quantenmechani-
scher Zustand oder ein Reaktionsprodukt erreicht wird. Die nötige Impuls-
form für ein gewünschtes Kontrollziel kann nur in wenigen, einfachen Fällen
durch eine analytische Rechnung gewonnen werden. Stattdessen werden ite-
rative Verfahren angewendet, die keinerlei Kenntnis über den Kontrollme-
chanismus voraussetzen. In Experimenten wird eine Lernschleife einge-
setzt, bestehend aus einem Impulsformer, der durch einen evolutionären
Computercode gesteuert wird. Dieser evolutionäre Algorithmus selektiert
und erzeugt mittels Rekombination und Mutation jene geformten Impul-
se, die ein direkt mit dem Kontrollziel korreliertes experimentelles Signal
maximieren. In der optimalen Kontrolltheorie (OCT) wird die adäquateste
Impulsform dagegen durch die numerische iterative Lösung eines gekoppel-
ten Satzes von drei Gleichungen bestimmt, die zuvor durch Variation eines
Funktionals gewonnen wurden.

Diese Arbeit befasst sich mit dem Gebiet der kohärenten Kontrolle und
verfolgt zunächst einen experimentellen Ansatz, schafft dann die Brücke zur
Theorie, und entwickelt schließlich die Theorie weiter, so dass neue Systeme
und Anwendungskonzepte untersucht werden konnten.

Teil I. In diesem experimentellen Teil wird die Lernschleife angewendet
und durch gezielte Parametrisierungen die Suchmethodik verbessert. Das
Natrium Atom and das Kalium Dimer dienen dabei als Testsysteme, da hier
entweder theoretische Modelle zur Beschreibung der Feldwechselwirkung be-
reits vorlagen oder im Rahmen dieser Arbeit neu entwickelt wurden. Dabei
konnte auch die entscheidende Frage studiert werden, ob das komplexe La-
serfeld im Wechselwirkungsbereich noch die anfänglich aufgeprägte Form
besitzt. Die Kontrolle eines 1-Photonenüberganges im Na basiert auf der ein-
zigartigen Möglichkeit mit Impulsformung einen beliebig phasenkorrelierten
Doppelimpuls zu erzeugen. Zusätzlich konnte der Besetzungstransfer über
einen 2-Photonenübergang unter Verwendung einer Lernschleife maximiert
oder minimiert werden. Die sich dabei ergebenden einfacheren Impulsfor-
men sind in hervorragender Übereinstimmung mit dem theoretischen Mo-
dell. Nachdem die Kontrolle in einem Atom gezeigt werden konnte, wurde die
Lernschleife verwendet, um das Vierwellenmisch (FWM) Antwortsignal des
K2 in der Gasphase zu manipulieren. Das FWM Signal erlaubt es die Dyna-
mik auf der Grundzustands- und einer angeregten Potentialfläche gleichzeitig
zu erfassen. Es konnte nun gezeigt werden, dass eine korrekte Modulation
der wechselwirkenden Laserfelder das FWM Signalfeld auf die Messung einer
gewünschten Dynamik beschränkt. Theoretische Modelle wurden hergeleitet
und erklären diesen Effekt. Zudem konnte eine Impulscharakterisierung di-



rekt im Interaktionsbereich vorgenommen werden, indem das FWM Signal
spektral aufgelöst wurde.

Teil II. Die Lösungen der OCT können sehr komplexe optimale Laser-
felder sein, die schwer experimentell zu realisieren sind und zudem den Kon-
trollmechanismus verbergen. Die theoretischen Ansätze zu neuen Funktio-
nalen und Optimierungsstrategien in diesem Teil der Dissertation versuchen,
diese Lücke zwischen OCT und Experiment zu schließen. Mit ihrer Hilfe ist
es möglich, die Komplexität der optimalen Impulse auf ein Minimum zu re-
duzieren. Das Ergebnis sind robuste Felder, deren Spektren die Handschrift
des Kontrollmechanismus tragen. Ferner ist es möglich, neben diesem robu-
sten auch weitere optimale Wege zum Kontrollziel aufzudecken. Diese Tech-
niken erlauben ein detailliertes Studium selektiven Zustandstransfers und
molekularer Besetzungsinversion mit geformten Femtosekunden-Impulsen.
Auch die Einflüsse typischer experimenteller Gegebenheiten, wie molekula-
re Rotation oder das Vorliegen eines thermischen Ensembles, wurden auf
ihre Kontrollierbarkeit hin erforscht. Schließlich wurde ein einfacher Weg
für die experimentelle Realisierung eines mit OCT optimierten Laserfeldes
vorgeschlagen, indem das nötige Transmission- und Phasenmuster für den
Impulsformer berechnet wird.

Teil III. Dieser abschließende theoretische Teil erweitert den Anwen-
dungsbereich von OCT auf die Kontrolle dissipativer Systeme und solcher,
deren Zeitentwicklung durch eine nichtlineare Gleichung gegeben ist. In be-
zug auf Dissipation werden in atomaren Systemen STIRAP1)-ähnliche op-
timale Lösungen erreicht. Komplexere Laserfelder ermöglichen es, interne
Freiheitsgrade von Molekülen zu kühlen. In bezug auf die nichtlineare Zeit-
entwicklung wurde OCT angewendet, um die partielle Umwandlung eines
atomaren in ein molekulares Kondensat mittels Ramantransfer, verstärkt
durch eine zeitabhängige magnetische Feldänderung über eine Feshbach Re-
sonanz zu optimieren. Dieser Prozess wird durch eine erweiterte Gross-
Pitaevskii Gleichung beschrieben. Somit ist es das erste Mal, dass die op-
timalen Kontrollgleichungen für eine nichtlineare Schrödingergleichung her-
geleitet und numerisch gelöst wurden. Optimale Nanosekunden-STIRAP-
und Femtosekunden-Ramanimpulse werden vorgestellt, die eine signifikant
höhere Konversionsrate aufweisen als bisherige Rechnungen.

1)stimulated Raman scattering involving rapid adiabatic passage



Abstract

Coherent control is a new fascinating field subsuming theoretical and
experimental efforts aiming at controlling quantum phenomena using the
interaction with tailored laser fields. Building on the coherence property a
quantum mechanical system is laser-driven into a specific quantum mechan-
ical state or along a reaction pathway to a desired product. The needed
pulse shape for a specific aim can be calculated analytically in a straight-
forward way only in a few simple cases. Instead the problem of finding
the correct field is solved by iterative procedures that require no knowledge
about the control mechanism. In experiments a learning-loop is set up,
consisting of a pulse shaper steered by an evolutionary computer code. The
evolutionary algorithm selects and produces by mutation and recombina-
tion tailored pulses maximizing an experimental signal, directly correlated
with the control aim. In optimal control theory (OCT) instead, the op-
timal pulse shape is found by the numerical iterative solution of a coupled
set of three equations, previously obtained from the variation of a functional.

The work in the present thesis researches the field of coherent control
and investigates at first an experimental approach, bridges than the gap to
theory and finally further develops theory in order to study new systems
and applications.

Part I. This experimental part concentrates on characterizing the use-
fulness of the learning-loop setup including efforts to improve its search
methodology by developing the concept of parameterizations. The sodium
atom and the potassium dimer served as test systems, for which an accu-
rate theory of the interaction with the tailored light field already existed
before or could be developed in this thesis. Thereby also the important
question of the accurate delivery of a complex shaped pulse into the in-
teraction region could be addressed. In the sodium atom the control of
the one-photon transition served to characterize the unique possibility of
pulse shaping to produce an arbitrary relative carrier phase shift between
consecutive pulses. In addition, the population transfer via a two-photon
transition could be maximized (“bright” pulses) or cancelled (“dark” pulses)
using the learning-loop approach. The simpler optimal tailored pulses could
be compared with theory and were in excellent agreement. After the suc-
cessful control in an atom, the learning-loop was applied to manipulate the
four-wave mixing (FWM) response of K2 in the gas phase. The FWM sig-
nal monitors simultaneously the dynamics occurring on ground and excited
electronic potentials. It is shown, that suitable modulation of the interact-
ing pulses can restrict the FWM signal field to only monitor one selected of
the two dynamics. Theoretical models explaining this effect were deduced.
Finally a pulse characterization within the interaction area could be realized
by spectrally resolving the FWM signal.



Part II. The use of OCT can result in complex optimal pulses difficult
to realize in experiment and hiding the control mechanism in their intricate
pulse shapes. The theoretical work in this part of the thesis tries to bridge
this gap between OCT and experiment by introducing new functionals and
optimization strategies. With these efforts it is possible to restrict the opti-
mal pulse complexity to a minimum, thereby obtaining robust pulses, whose
spectra are a direct signature of the control mechanism. Moreover it is pos-
sible to distill for a single control task besides the most robust also further
optimal pathways. These techniques allow the detailed study of state selec-
tive transfer and molecular population inversion using tailored femtosecond
pulses. The influence of typical conditions in experiment such as molecu-
lar rotation or a thermal ensemble on controllability is investigated. Lastly
an elegant way is proposed to characterize the possibility of experimental
realization of a theoretically optimized pulse by calculating the required
transmission and phase pattern for pulse shaping.

Part III. This last theoretical part concentrates on extending the ap-
plicability range of OCT to the control including dissipation and to the
control of systems governed by nonlinear dynamical equations. Concern-
ing dissipation, optimal solutions of STIRAP2) character are obtained for
simple atomic systems and more complex fields are used to cool internal
degrees of freedom of a molecular sample. Concerning nonlinear time evo-
lution, OCT is applied to the partial conversion of an atomic to a diatomic
molecular condensate via Raman transition, enhanced by a time-dependent
magnetic field sweep over a Feshbach resonance. This process is described
by a generalized Gross-Pitaevskii equation. It is the first time that opti-
mal control equations are derived for a nonlinear Schrödinger equation and
solved numerically. Optimal nanosecond STIRAP type and femtosecond Ra-
man pulses are presented, that enhance the conversion rate to a molecular
Bose-Einstein condensate over previous results.

2)stimulated Raman scattering involving rapid adiabatic passage
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Introduction

There has been longstanding interest in optimizing naturally occurring pro-
cesses or in controlling them to occur in a specific way. To this end mathe-
matician J. Bernoulli developed the formalism of variational calculus, while
engineers build a feedback controlled loop, where the control knobs are
steered according to some signal obtained from the system under control.
This approach was so general that it could be applied to any field of natural
science. In chemistry it was however soon realized, that the control knobs
at hand, like temperature, pressure or the choice of a catalyst with which
to influence the outcome of reactions were limited.
With the advent of coherent light sources, the continuous wave (cw) lasers,
a new possibility of control was realized. The coherence property of lasers
allowed to speak of phase as a meaningful quantity, since for the first time
interference experiments with light were made possible. Then way back in
the 1986 Brumer and Shapiro realized that the concept of interference could
have potential implications for the control of chemical reactions [1]. As a
proof of principle they devised a simple experiment, where initial and final
state were lower and upper level of an atom. Then they connected both
states with two light induced pathways, a one- and three-photon transition.
A relative phase change between the two lasers of different color allows to
choose between constructive or destructive interference of the two pathways
controlling thereby the amount of excited state population. In the same year
Tannor, Kosloff and Rice proposed to use coherent pulse sequences beyond
the cw-limit to control the selectivity of reactions [2]. The experimental
realization of this proposal was however only in reach with the advent of
femtosecond laser sources.
The rapid development of new laser sources towards ever shorter pulse du-
rations spurred the field of coherent control for three main reasons. One is
simply related to the pulse duration itself. Control is coherent only if the
coherence or phase relationship in the system generated by the interaction
with the laser pulse survives the control period. Now a number of dephas-
ing mechanism that destroy coherence, and distribute the initially localized
energy all over the system, can occur even on a femtosecond timescale. This
means femtosecond laser pulses are really necessary to control these sys-
tems. Another argument for short pulse durations is that the controlled
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2 Introduction

action must match the timescale of the dynamics occurring in the system.
The fastest possible motion of nuclei is the vibration of H2 and occurs on a
few femtosecond timescale. The 1999 nobel prize in chemistry was awarded
to the field of femtosecond pump-probe experiments, since these were the
first experiments showing snapshots of nuclear motion. Photography of elec-
tron motion needs even shorter, attosecond pulses. Another implication of
femtosecond pulses is their high intensities and broad spectra hosting a rain-
bow of colors. Both of these properties greatly enhance the possibilities of
control since the number of pathways is increased considerably. The many
coherent frequencies make it possible to induce a phase relationship between
transitions energetically far apart and the high intensities enable highly non-
linear processes.
But control with light deserves control of the light itself. An ultrashort
pulse has a shape, a temporal phase and a polarization state and all of them
need to be controlled and measured accurately. Various methods have been
used to shape femtosecond pulses. Most of these techniques involve devices
such as liquid-crystal spatial light modulators, acousto-optic modulators, or
deformable mirrors, that are designed to modulate the phase and/or ampli-
tude of the dispersed spectral components of a femtosecond pulse [3–6]. It
is routinely possible to generate user-defined waveforms for coherent control
with these pulse shapers and characterize them using a variety of ultrafast
measuring techniques. Several experiments show control using simple tai-
lored fields [7–13].
Unfortunately it is by far not always possible to figure out, how to con-
trol a system. The difficulty is to find the optimal tailored pulse, that
leads to the wanted outcome of the experiment by the correct interference
of the multiple light-induced pathways. Consequently, the optimal control
revolution began, when Judson and Rabitz proposed to use the feedback or
learning loop, adapted to the experimental techniques used in ultrafast laser
pulse control, to solve this search problem [14]. Starting from some initial
randomly tailored pulse a signal, from the system under control, directly
correlated to the desired aim is used as feedback to a learning algorithm,
that accordingly steers the pulse shaper. After thousands of experiments or
hundreds of iterations the optimized pulse is automatically found without
the need of theoretical input. This idea has been very successfully applied
to many problems in physics, chemistry and biology [15–25].

A similar challenge had to be solved in theory, where the optimal pulse
should drive the theoretical model system in a specified way. Of course the
model system governed by some dynamical equation is devised by the the-
orist himself, however this does not imply that the control of the system is
always obvious to him. Therefore, Rabitz [26,27] and independently Tannor,
Rice and coworkers [2,28,29] derived a numerical framework named optimal
control theory (OCT) using variational calculus. OCT is an iterative pro-
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cedure that solves the control problem by itself. It converges in a few tens
of iterations by making use of the known future information and the pos-
sibility of backward in time propagation. The fast convergence is essential,
since the numerical propagation of the system is very time consuming. In
experiment this is not an issue, since the quantum mechanical system solves
its dynamical equation in real time. With OCT numerous control problems
could be solved [30–35].

The experimental and theoretical efforts to control quantum systems
with tailored ultrashort pulses constitute the field of coherent control [8,36–
40]. The learning-loop in experiment and the OCT in theory are both iter-
ative procedures that provide an optimal field in a fully self-contained way.
No knowledge about the mechanism is needed as input, but also no under-
standing is obtained about the way the field acts to achieve the desired goal.
Moreover, no general approach exists to obtain this information. Analytical
calculations are in this sense more elegant, since an equation is obtained
describing the interaction of the tailored field with the system, manifesting
the control possibilities [41–43].

The experimental work in part I of this thesis is part of the first genera-
tion coherent control experiments. Simple systems were chosen in order to
be able to derive a closed form equation describing exhaustively the tailored
laser field interaction with the system. This approach makes the control
mechanism evident. This was a good starting point to test the accurate de-
livery of the pulse shape into the interaction region, the limits of the pulse
shaping apparatus and the performance of the feedback approach. The new
concept of parameterizations in time and frequency domain was first in-
troduced as a method of implementing knowledge into the iterative search,
simplifying considerably the interpretation of the control mechanism. This
allows to establish whether the control is due to, i.e. the ordering of fre-
quencies (chirp), some relative phase effect in a pulse train or the number
of interacting pulses. The work on these simple systems has provided basic
understanding of control mechanisms and later found applications in the
control of complex molecular and biological systems.
Part II of this thesis tries to adapt OCT in order to bridge the gap between
coherent control theory and experiment allowing finally for interpretation of
the optimal result. Modified functionals and strategies are shown that ob-
tain simple, robust and realizable tailored laser pulses. Moreover the mask
pattern needed to tailor the calculated pulse is defined as direct interface
between theory and experiment. This allows to characterize quantitatively
to what extend a laser pulse is reproducible in experiment. Finally it is
possible to check very precisely the correctness of the theoretical model, by
noting discrepancies from theoretically predicted results when applying the
calculated tailored pulse shapes in experiment.



4 Introduction

In part III new applications and concepts of OCT are presented. This work
was done in collaboration with D. Tannor (Weizmann Institute, Israel) and
B. Verhaar (TU Eindhoven, Netherlands). Here OCT is applied to molecular
cooling with tailored femtosecond pulses and to the partial conversion of an
atomic to a diatomic molecular condensate via Raman transition, enhanced
by a time-dependent magnetic field sweep over a Feshbach resonance.
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Coherent control experiments entered a new era when the ultrafast pulse
shaping technology [4,44,45] was developed and Judson and Rabitz proposed
the concept of a learning-loop [14]. They realized that the system to be con-
trolled can solve its Hamiltonian in real time and that therefore thousands
of experiments can be carried out in just a second. This is the essential ad-
vantage that allows the use of a feedback-loop to solve the inverse problem of
finding the pulse that corresponds to a specific solution of the Schrödinger
equation without having to resort to theory. The wanted outcome (e.g.
bond breaking) is measured by an experimental signal correlated to it (e.g.
mass peak of fragment). Differently shaped laser pulses are consecutively
sent onto the system leading to an experimental signal, that again serves as
feedback to measure the performance of each individual laser pulse. This
”trial and error“ approach will finally end up with the perfect laser pulse.
No knowledge of the Hamiltonian is needed, but the feedback signal must
be chosen carefully to be really a measure of the desired outcome.
When designing a coherent control experiment the following considerations
are of central importance:

1. The wanted outcome must be dependent on the characteristics of the
laser pulse adjustable through the pulse shaping device at hand. On
one hand this implies that the nature of the light used is versatile
enough. Especially the hope is that the properties of the laser pulses
in the femtosecond regime their selves (polarization, bandwidth, phase,
intensity, ultrafast interaction) are sufficient to the problem (see sec-
tion 1.1). Taking again the example of bond-breaking it is essential
that energy redistribution processes in the system are much slower
than the local deposition of energy by the laser pulse. On the other
hand the pulse shaping device must have sufficient capabilities to in-
dependently change the necessary characteristics of the laser field (see
section 1.1).

2. The ”trial and error“ strategy can be improved considerably if an in-
telligent and fast learning scheme is used to adjust the shaping device.
This algorithm moreover has to cope with uncorrelated signal changes
due to unavoidable experimental noise (see section 1.2) .
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Chapter 1

Essentials: The learning-loop

The components of a learning-loop can look very different depending on the
specific application. In abstract terms a learning-loop consists of an action
under external control which acts on a system and produces there a sys-
tem response. Due to the natural correlation between action and response
an algorithm can be used to learn how to change the action to control the
response in a desired fashion. In the coherent control experiments as al-
ready pointed out in the introduction to this chapter the controlled action
are the tailored femtosecond laser pulses. The external control knobs are
all integrated in a single pulse shaping device. The system response is the
feedback signal retrieved from experiment. It is feeded into the optimiza-
tion algorithm that accordingly steers the pulse shaper to improve the laser
pulse shape. The time for the learning-loop to provide an optimal pulse is
given by the total number of iterations multiplied by the time it takes to
perform one iteration. This time is given by the response time of each of
the elements that constitute a closed-loop experiment: laser repetition rate,
pulse shaper, learning algorithm and feedback signal retrieved from experi-
ment. Hence it is not possible to be specific, so the total optimization time
can range between a few minutes and several hours. In the following a more
detailed description of a tailored pulse, its characterization and the feedback
algorithm is discussed. This chapter concludes with a practical application
of the learning-loop approach: the compression of femtosecond laser pulses
to their bandwidth limit.

11
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Figure 1.1: A closed-loop process for teaching a laser to control quantum systems.
The loop is entered with either an initial design estimate or even a random field in
some cases. A current laser control field design is created with a pulse shaper and
then applied to the sample. The action of the control is assessed, and the results
are fed to a learning algorithm to suggest an improved field design for repeated
excursions around the loop until the objective is satisfactorily achieved [38].

12



1. Essentials: The learning-loop 13

1.1 Tailored femtosecond pulses

The various techniques to tailor a laser field can be divided into two cat-
egories. Those operating directly in the time-domain using fast electronic
switching devices to structure the time-envelope of the pulse and those in the
frequency-domain that shape the spectrum of the pulse. Frequency-domain
techniques are the only suitable for shaping femtosecond laser pulses, since
these techniques as they operate in parallel on many frequencies of the pulse
do not require electronic switches, which are useless in the femtosecond
regime due to their comparatively slow switching times (picoseconds). In-
stead spectral shaping is accomplished by a zero dispersion 4-f setup, that is
essentially two spectrometers: the first dispersing the spectral components
onto space in its Fourier plane and the second, used in reversed direction to
the first, collimates again these frequencies to a single beam of light. The
laser pulse passing this setup does not feel any change, but is essentially
Fourier transformed and back again. Introducing a device (Spatial Light
Modulator = SLM) that can apply a spatial phase and transmission pattern
in the Fourier plane of the 4-f setup [see Fig. 1.2] the spectrum of the pulse
is modulated [6, 45,46]. The process of shaping can be described by

εout(ω) =M(ω)εin(ω). (1.1)

Here εin(ω) is the spectrum of the incident pulse and εout(ω) of the outgo-

f f f f

grating 1 grating 2

programmable 
   LC mask

Fourier plane

Figure 1.2: Typical setup of a femtosecond pulse shaper, consisting of a Spatial
Light Modulator located at the Fourier plane of the 4-f geometry. Here f is the
focal length of the lenses.

ing. The outgoing pulse is the same as the incoming pulse if the 4f-setup
is accurately calibrated and the SLM is not addressed externally. Conse-
quently, in order for the outgoing pulse to be Fourier limited the pulse must
be already bandwidth limited as it enters the shaping device. The SLM is
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represented mathematically by a complex function of frequencyM(ω), since
frequency is mapped onto space according to the dispersion relation of the
spectrometer. Eq. (1.1) ignores the effect that the spectral components are
also scattered away from their incoming direction, after passing the spa-
tial modulation pattern. This leads irremediably to a shaping of the beam
profile in conjunction with the time structure of the pulse, also known as
space-time coupling [47].
SLM’s can be simple static lithographically edged transmission and phase
patterns or more sophisticated programmable devices. Essentially three
SLM types are used in coherent control experiments. An acoustic optic
modulator AOM [5,46], which is a crystal driven by a piezo loud speaker to
produce acoustic waves in it. The ultra fast light pulse sees a snapshot of
this traveling acoustic pattern and is Bragg scattered acquiring its phases
and amplitudes. Then also adaptive, electrostatically deformable membrane
mirrors can be used for phase-only shaping [6]. The third type of SLM, a
liquid crystal SLM [4] used in this thesis, consists of an array of 128, 97 µm
wide active elements (pixels), that change their transmission and/or retar-
dance properties according to locally applied voltages. Between each two
pixels 3 µm inactive transmitting areas exist, called gaps. The desired mod-
ulation pattern is available within the orientation time of the liquid crystal
molecules, which is about 100 ms.
The pulse modulated by a LC-SLM along the tilted axis due to the linear
space-time coupling [47] can be expressed mathematically by the discrete
Fourier transform of Eq. (1.1) [45]

ε(t) =

N/2
∑

−N/2

an exp(iφn)εin(t− nτ). (1.2)

The pulse consists therefore of an equidistant comb of subpulses with am-
plitudes an and phases φn separated from one another by a finite time τ and
extending in time from [−N/2τ,N/2τ ]. This time interval is called effective
shaping window, since the controllable portion of the modulated pulse can
only extend in this time interval due to a finite number N of adjustable pix-
els. The minimal time step τ can be evaluated to be approximately one half
of the incident pulse duration, depending on how much spectrum is made
to fit on the active mask area. In Fig. 1.3 these and further peculiarities
of the LC-SLM due to its pixelation are depicted and are also described
in Refs. [47, 48]. The spectrum on the gaps is transmitted without being
changed and therefore recollimates to a weak replication of the incident
pulse at t=0 [Fig. 1.3(b)]. Also replica of the modulated pulse occur outside
the shaping window inside the antinodes of a sinc modulation pattern in time
[Fig 1.3(c)]. This is due to scattering of the frequency components at the
rectangularly shaped pixels. The finite focal size of the spectral components
however smears out this modulation pattern in space leading to a Gaussian
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Figure 1.3: Peculiarities of a liquid crystal Spatial Light Modulator. (a) Desired
pulse shape. (b) Effect of the gaps leading to an unshaped pulse at time zero.
(c) Effects due to the discreteness of pixels introducing diffraction of the spectral
components and generating pulse replicas. (d) Effect of the finite focal size of each
spectral component leading to a Gaussian weighted suppression of the waveform.

centered around t=0 and diminishing considerably the replica [Fig. 1.3(d)].
Due to the space time coupling these replica occur at the outermost parts of
the spatial profile and can therefore be taken away spatially using a pinhole.
The last effect of discreteness to be pointed out is the sampling criterion.
As shaping by an LC-SLM can be at best a discrete sampling of a desired
modulation pattern it suffers from the Nyquist theorem. Nyquist’s sampling
theorem states that a periodic function must be probed at least twice per
period, or twice over a phase interval of 2π. With reference to a phase func-
tion that is to be imposed onto a spectrum, a phase interval of 2π hence
must be sampled by at least two pixels. Consequently the phase jump over
one pixel must be much less than π.
In order to calculate the mask pattern necessary to tailor a desired pulse
shape an algorithm is needed. In the case of phase and amplitude shaping
a simple Fourier transform connects the coefficients 128 an and 128 φn val-
ues of Eq. (1.1) with the 128 retardance and 128 transmission values of the
pixels [47,48]. Things complicate if a pulse form specified by the set (an,φn)
is to be produced by phase-only shaping. It is clear that this problem can
only be approximatively solved since 128 phase mask values can not specify
256 time domain values characterizing the shape of the pulse. A fast and
practical algorithm to solve this problem is described in Ref. [49].
Recent developments of pulse shaping have been to increase the LC-SLM
number of pixels [50], to modify the setup in order to arbitrarily modulate
also the polarization of the laser pulse [51] and to obtain spatiotemporal
coherent waveforms [52]. Since their exist no liquid crystal materials being
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transmissive and producing the necessary retardance values in the ultravio-
let and mid IR, shaping at these frequency ranges was essentially obtained
by frequency conversion of shaped visible pulses [53, 54].

1.2 Feedback algorithm and parameterization

Feedback algorithm. Finding an extremum of a function depending on
many variables is a problem that has been under investigation since the
invention of differential calculus. The primary task of any optimization al-
gorithm is to start from an ensemble of suitably chosen initial parameters
and then to suggest a revised set which drives the critical observable to-
wards the desired optimum, i.e. to generate new search directions in the
multidimensional parameter space. Starting from this new parameter set,
the procedure is reiterated until some convergence criterion is fulfilled.
The algorithm of choice for the learning-loop has to fulfill various additional
properties: it must be stable against experimental noise, it has to learn as
much as possible from the feedback signal in order to rapidly improve the
tailored pulse performance, it must avoid local maxima and it has to cope
with many adjustable parameters namely the voltages applied to the mask.
Therefore deterministic schemes such as steepest descent are not suited since
they are prone to get stuck in local minima and are very sensitive to noise.
The learning-loop therefore implements the more suited random schemes
such as evolutionary strategies [55], genetic algorithms [56] and simulated
annealing [57]. Out of these indeterministic schemes evolutionary strategies
are known to be robust against experimental noise [58]. However their con-
vergence to a global maximum is not proven mathematically while it is for
simulated annealing.
In this thesis an evolutionary strategy which uses 48 individuals (vectors of
LC voltages) was applied. These are randomly chosen and represent one
generation. For every one of the 48 mask settings of one generation the
fitness value is read from the experiment. This serves to quantify the per-
formance of each individual. The most successful ones are taken as parents
to the next generation, while the others are discarded. By mutating the
parents, i.e. addition of Gaussian white noise with a pre-specified width on
each of the vector elements (genes), and by recombining pairs of parents,
i.e. interchanging of their genes, the new generation is built. By successive
repetition of this scheme, only those vectors corresponding to the highest
fitness values will survive and produce offsprings (”survival of the fittest“).
Mutation serves as dominant search operator, and therefore the extent of
random change of each gene must be intelligently restricted. Excessive mu-
tation will cause the new search points to be widespread in parameter space
and no convergence will be achieved. Very small mutational changes, on
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the other hand, will allow only very slow convergence. Hence an adaptive
control of the mutation rate [55] was implemented, which ties the amount
of change to the number of foregoing mutations which had proven to be
successful (i.e. produced a better fitness value).

Parameterizations. A very important aspect in optimization is the right
choice of parameters. A reduction or a specific choice of parameters can lead
to an increase in convergence rate, but also to a reduction of the final signal
value achieved. Instead of using the completely free optimization, where all
the voltages applied to the pixels are taken as individual parameters it can be
much more efficient to parameterize the mask function or the time envelope
of the pulse. A nonlinear frequency chirp of Nth order would then most effec-
tively be parameterized by a polynomial phase function φ(n) =

∑N
i=1 ain

i.
Instead of 2 · 128 voltage parameters only N parameters ai would be nec-
essary. Similarly a direct time domain parameterization is more suited to
represent, e.g. a train of N pulses with equal amplitude, variable time sep-
aration and phase. Here 2N-1 parameters suffice according to Eq. (1.2) to
fully characterize such a pulse train. This a much reduced number of pa-
rameters compared to a parameterization based on the LC voltage settings.

Parameterization achieves a great improvement beyond the mere reduc-
tion of parameters [59,60]. This can best be understood in the abstract no-
tion of phase space. One or several optimum solutions for the specific control
process are scattered throughout the phase-space of the system considered,
hopefully reachable through arbitrary pulse shaping. The algorithm’s task
is to converge into the global optimum after a number of consecutive runs.
Since feedback pulse shaping means e.g. trying all different voltages for
each of the 128 pixels of a Spatial Light Modulator (SLM), the number of
parameters can be very high and therefore numerous problems arise, that
one has to cope with: convergence slows down, the possibility to start at
different phase space locations to cover different solutions is statistical, im-
plementation of theoretical knowledge is difficult and there is no structure
in the changes the algorithm performs.
Parameterizations establish order into the statistical approach of evolution-
ary algorithms and have many important consequences. Each parameteri-
zation represents a subset of phase space, meaning phase space is fractioned
into tiny regions of parameterizations. This involves the starting locations
on phase space to be predetermined and the algorithm to converge much
faster since the subset can be chosen to be of a specific size by reducing the
number of parameters used in that parameterization. This makes it pos-
sible to run the algorithm many times and explore thoroughly this chosen
region of phase space for solutions. The importance of incorporating theo-
retical information into the experiment is obvious, but the pulses calculated
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by theory are still not always realizable 1) and therefore can only approxi-
mately be used as an initial guess. Nevertheless, it is possible to implement
the process, which has been stated by theory to be responsible for the specific
control mechanism, into a learning-loop using adequate parameterizations.
The evolutionary algorithm then makes only modifications to few parame-
ters compatible with the mechanism. Due to these very structured changes
one is able to monitor effects induced in the studied system by the prognos-
ticated process. The whole pulse shaping phase space is addressed if there
is no parameterization used at all (for the LC-SLM case 2 · 128 independent
pixels times ≈ 1000 voltage values). Switching between different parame-
terizations in time and frequency domain therefore still allows to cover a
great extent of the pulse shaping phase space with the advantage of having
only few parameters the algorithm has to operate on. When the algorithm
is free to switch between parameterizations it will essentially try out dif-
ferent control mechanisms and adapt the most optimal one. This idea is
culminated if once a database of control mechanisms is established. With
parameterizations it is moreover possible to perform experiments with more
sophisticated feedback signals that take a long time to be retrieved (as an
example see chapter 3).

1.3 Pulse characterization and interpretation

Pulse characterization. Measurement of the optimal tailored pulse is an
essential first step in determining the control mechanism. In order to fully
characterize a femtosecond laser pulse, a measurement technique is needed
that can retrieve the phase φ(t) and intensity I(t) of a laser field, that is
mathematically described in the slowly-varying envelope approximation as:
√

I(t) exp (iωt+ φ) [61]. The most widely used methods that can even be
applied down to the single cycle 5 fs regime are:

• Frequency resolved optical gating (FROG) [62]. It involves spectrally
resolving the signal beam of an autocorrelation measurement.

• Spectral phase interferometry for direct electric-field reconstruction
(SPIDER) [63, 64]. SPIDER is a specific implementation of spectral
shearing interferometry. Here an interferometer is used to produce
two pulse replicas that are delayed with respect to one another. They
are then frequency mixed with a chirped pulse in a nonlinear crystal.
Each pulse replica is frequency mixed with a different time slice, of the
stretched pulse, and, consequently, the upconverted pulses are spec-
trally sheared. The interference between this pair of pulses is recorded
with a spectrometer followed by an integrating detector.

1)The realizability of calculated laser pulses could be considerably improved using strate-

gies presented in chapter 7.
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• Temporal analysis by dispersing a pair of light electric fields (TAD-
POLE) [65, 66] is a test-plus-reference spectral interferometer. An
unknown test pulse is mixed at a beamsplitter with a time delayed
reference pulse, whose electric field shape is known from a FROG or
SPIDER measurement. The pulse pair enters a spectrometer and the
two spectra combined yield a spectral interferogram. The interfero-
gram yields the complete information of the test pulse by a simple
Fourier transformation and an inverse filtered Fourier transformation.
With TADPOLE it is possible to measure tailored pulses of a few fem-
tojoule and also extend the range of measurable pulse complexities
beyond the possibilities of the available nonlinear crystals.

The advantage of the interferometric approaches is that they require
only a one dimensional data set to reconstruct the one dimensional field and
can use a direct data inversion to do so in real time. In contrast the FROG
technique measures a two-dimensional representation of the one-dimensional
field and consequently requires the collection of a relatively large amount of
data. The needed algorithm to invert the data and reconstruct the field is
thereby more sophisticated. The advantage of FROG is of practical nature
as it does not require a new apparatus since mostly an autocorrelator and
spectrometer are available.
In this thesis the second-harmonic FROG (SHG FROG) technique was used
to characterize the tailored pulses. A more detailed description of this tech-
nique follows. The method measures the spectrogram of the pulse, which is
sufficient to completely determine ε(t) [62] (besides the absolute phase)

S(ω, τ) =

∣
∣
∣
∣
∣
∣

∞∫

−∞

dt ε(t)g(t− τ) exp(−iωt)

∣
∣
∣
∣
∣
∣

2

. (1.3)

Here g(t− τ) is the gate function used to represent the autocorrelator type
used. The autocorrelator using second harmonic generation has a gate
g(t, τ) = ε(t)ε(t − τ). Measuring the spectrogram hence means to acquire
the spectrum of the autocorrelation signal for each time delay τ . The al-
gorithm used to retrieve the complete pulse shape from this spectrogram
is based on the method of generalized projections. It is quite sophisticated
and will therefore not be explained. The interested reader should refer to
Ref. [62]. It should be noted however that in the case the incident laser field
to the pulse shaping device is well characterized it is possible to use the pulse
shaping equation to make a rough ”measurement“ of the outgoing tailored
pulse. The mask pattern itself then serves to characterize the shaped laser
field, of course under the premise that further material in the optical path
after the pulse shaper does not have a measurable effect on the pulse shape
or can be accounted for.
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Interpretation. The result of an optimization run is the maximum
yield achieved and the respective mask pattern and optimized laser field.
The laser field shows usually such a complex shape, that it is completely
obscure what essentially the control mechanism is. In order to answer this
question several approaches can be pursuit. Purely experimental approaches
include the following possibilities: The learning-loop iteration can be re-
peated several times with different initial guess laser pulses generations. The
optimal mask patterns attained can be then compared to find similarities.
Perhaps groups of similar mask patterns then identify the control pathways.
Another approach used is to shoot the laser pulse not only onto the exper-
iment of interest but simultaneously on a second experiment with a well
known response. This reference experiment could be for example a non-
resonant two-photon transition in an atom. If the experimental signal cor-
relates closely with the reference than the control mechanism is clearly the
same, i.e. a non-resonant two-photon transition [67].
A very powerful technique was already discussed earlier and is the concept
of parameterization. Here, changes applied to individual pulse parameters
can determine whether the control is due to the specific pulse separation,
chirp or phase relationship.
Perhaps the best way to obtain the control mechanism is to compare the
obtained laser pulse with optimal control theory predictions. However in
order to do so there is a gap to surmount between them as will be discussed
in detail in part II of this thesis [60, 68].

1.4 Simple example of a learning loop application:
pulse compression

In this section a simple learning-loop setup is realized with the aim of com-
pressing femtosecond pulses originating from an optical parametric amplifier
with noncollinear-type phase-matching [69–73]. This simple, but technically
important example shall illustrate the individual elements, that constitute
a learning-loop as discussed previously and acts as easy introduction to the
automated control experiments of increasing complexity in the next chap-
ters.
Pulse compression is commonly achieved by phase-only shaping. The central
task is to apply on the shaper the exact phase function compensating for the
intrinsic phase of the pulse, that leads to pulse lengthening and distortion.
Especially ultrashort pulses in 20 fs regime as considered here, suffer from
group velocity dispersion (GVD) of second and higher orders introduced by
dispersive elements installed in the beam path behind the compressor, such
as cell windows, wave plates, cuvettes filled with solvents, etc. A major
problem is hence the faithful delivery of ultrashort pulses to the location
where the actual experiment is performed, especially when the ultrafast dy-
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namics of molecules in liquid solvents is to be investigated.
An elegant solution to this problem is presented here, where phase tailoring
of 20 fs ultrashort pulses steered by an evolutionary algorithm is used to
compress distorted pulses to their bandwidth limit at any chosen point in
the experiment [74–76]. The main advantages of the setup are the swiftness
of the automated compression procedure (typically less than five minutes)
and the capability to compensate phase distortions of arbitrary appearance.
The learning-loop setup was optimized to the problem at hand by build-
ing a pulse shaper able to support the broad bandwidth of the pulses, by
choosing an adequate parameterization and finally by choosing a feedback
signal reaching a maximum for a flat phase or shortest pulse duration. A
schematic of the learning-loop setup is shown in Fig. 1.4.

PMT

BBO (10µm)

filter

optimization

algorithm

 f=200mm

ACnc-OPA

LC

Figure 1.4: Learning loop setup for automated compression of pulses from a
noncollinear OPA [76].

Pulse shaper. An essential requirement for high-quality shaping is an
accurate Fourier transformation from the time into the frequency domain
and back. The pulses must pass the shaping unit undisturbed as long as no
filtering is performed. This is especially restrictive for femtosecond pulses
below 30 fs. Great care must thus be taken to avoid clipping of the spec-
trum (80 nm full width at half maximum) at the aperture of the LC mask.
The overall accepted bandwidth of this shaper was designed to be above
that of the pulses generated by the noncollinear OPA. Imaging distortion by
chromatic aberration becomes important for these very broad spectra and
must be avoided. Therefore an all reflective pulse shaping setup is desired,
where the lenses are replaced by mirrors [77]. Cylindrical optics are used to
reduce the power density impinging on the LC mask and thus prevent dam-
age. The off-axis angles are kept as small as possible to alleviate imaging
aberrations introduced by the focusing mirrors. To ensure that the shaper
acts as a zero-dispersion compressor as long as the LC mask is inactive, a
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pair of prisms before the shaper was installed in a first run to compress the
incident pulses close to the Fourier limit (< 20 fs). The shaper was then
adjusted until the outgoing pulse was not further broadened.

Feedback signal. The frequency doubled light captured by a photomul-
tiplier tube (PMT) after focusing the tailored pulse with a spherical mirror
(f = 200 mm) onto a nonlinear crystal (BBO, 10 µm), serves as feedback
signal. A spectral filter (UG-11) in front of the PMT blocks the fundamental
wavelengths. This feedback signal is proper since bandwidth limited pulses
generate maximum SHG signal [75].

Parameterization. Since GVD leads to smooth reshaping of the pulse
phase, the most efficient parameterization is of polynomial type

Φn =

Kmax∑

k=2

ck

(
n−N0

N

)k

, n = 0, . . . , N − 1 = 127, (1.4)

with quadratic terms (k = 2) as lowest polynomial order k since constant
(k = 0) or linear (k = 1) phase terms only produce a phase- or time- shift,
respectively. In all the following compression experiments the optimization
procedure was confined to the search for only second and cubic order phases,
i.e. Kmax = 3 in Eq. (1.4). The parameters ck and N0 are optimized by
the algorithm. Because the spectrum of the OPA is widely tunable, N0 has
been included as parameter to ensure that the offset of the phase function
coincides with the center of the spectrum after the optimization has been
accomplished. Alternative concepts of parameterization such as linear ap-
proximation or cubic splines were tested as well but resulted in many more
loops of the algorithm while eventually achieving comparable pulse dura-
tions.
Having setup the learning-loop its performance is ready to be tested. The
chirped output pulses of the noncollinear OPA with a pulse duration of 270
fs [see Fig. 1.5(c)] were sent into the pulse shaper without previous compres-
sion using a prism compressor. The algorithm was then applied and a pulse
duration below 16 fs was again obtained [see Fig. 1.5(a) and 1.5(c)]. The au-
tocorrelation measurements were performed in a noncollinear arrangement,
either with a 10-µm BBO crystal, or with a 2-photon SiC diode [78]. The
mask pattern found by the algorithm to compress the output pulses to their
Fourier limit had mainly quadratic chirp [Fig. 1.5(b)]. Since the phases are
specified to within modulo 2π wrapping of the phase occurs if the 2π inter-
val is exceeded. Unwrapping of the phase mask pattern in Fig. 1.5(b) would
reveal a strongly curved parabola over all the mask pixel area.
The convergence data of Fig. 1.6 shows the feedback value of the best and
worst individual of each generation. In addition the mean feedback value of
best and worst is calculated for each generation. At the beginning a random
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Figure 1.5: (a) Autocorrelation of the pulse behind the shaper after polynomial
phase optimization. (b) Optimal phase function applied on the mask by the algo-
rithm. (c) Compressed (hollow dots) and uncompressed (filled dots) pulse.

generation is created, whose performance can be already significant depend-
ing on the number of individuals and the complexity of the optimization
problem. The evolutionary selection then leads to an increase of the best
feedback value over the number of iterations until it stagnates at its opti-
mum value. The fluctuation of this value depends on experimental noise
and also on the sensitivity of the control parameters - that is large jumps
are expected if small changes to the control parameters have a large effect
on the feedback signal. This is clearly visible in Fig. 1.6. On the contrary,
if the noise level is low and insensitive parameters are used a smooth in-
crease and also an approach of worst and best feedback signal indicating
convergence would be expected. The terminal value of the SHG signal was
approached after about 25 generations. At a pulse repetition rate of 1 kHz
and averaging over 50 pulses the adaptive compressor thus compensates the
chirp and produces short output pulses in less than five minutes. This figure
should be still reducible with a biased initial population taking advantage
of a-priori physical knowledge such as the supposed sign of the chirp to be
compensated. With other parameterizations of the phase function, it was
found that the convergence speed as well as the final SHG value was de-
pendent on the internal strategy parameters of the algorithms. As a rule of
thumb: the more complex the optimization, for example the more parame-
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Figure 1.6: The convergence curve of pulse compression as measured by the
intensity of the SHG signal. Fitness of best (filled dots) and worst (hollow dots)
individual of each generation. A mean is also calculated (line).

ters to optimize, the more “careful” the optimum has to be approached by
a proper choice of internal strategy parameters mentioned above. This has
been investigated in detail in Ref. [58].



Chapter 2

Control of atomic transitions
with phase-related pulses

The following experiment is part of the first generation of coherent control
experiments. At this time it was essential to characterize the effectiveness
of the learning-loop and find an answer to the following questions:

• Did the algorithm converge to the global maximum? Is the result
dependent on the initial guess?

• How many iterations are necessary? How long does an optimization
run take?

• When do the optimal pulses coincide with theory? How can the as-
sumptions of theory be met?

• Is the pulse shape seen by the atoms or molecules in the interaction
region really the one applied and measured a distance away? Or is it
distorted by pulse propagation, absorption or focusing?

• What is the importance of an accurate initial guess?

The control of the one and two-photon-transition in the sodium atom was
chosen due to the existence of an accurate theory predicting already the
character of the optimal solutions. This close link between theory and exper-
iment allowed to quantify the above answers and use the atom to ”calculate“
solutions beyond the analytical limit.

2.1 Experimental setup

The femtosecond pulse source for experiments on sodium was a commercial
Ti:Sapphire laser system (CPA-1000, Clark MXR Inc.) which supplied 1 mJ

25
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/ 100 fs / 800 nm pulses at a repetition rate of 1 kHz. Frequency conversion
to the wavelength interval between 580 nm and 700 nm in an optical para-
metric amplifier (IR-OPA, Clark) yielded pulse energies around 5 mJ. The
programmable pulse shaping apparatus is a symmetric 4-f arrangement [4]
composed of one pair each of reflective gratings (1800 lines/mm) and cylin-
drical lenses (f = 150 mm). Its active element - a liquid crystal (LC) mask -
is installed in the common focal plane of both lenses. Meticulous alignment
must ensure zero net temporal dispersion. This is achieved once the shapes
of input and output pulses match as long as the LC mask is turned off. The
technique of frequency resolved optical gating (FROG) [62] served to charac-
terize the generated pulses. Sodium was evaporated in a heat pipe oven [79]
pressurized with 10 mbar of Argon as a buffer gas. The temperature was
set sufficiently low (520 K) to eliminate pulse propagation effects [80, 81].
The experimental setup is sketched for the one- and two-photon control in
Fig. 2.1. Details of the excitation and detection schemes will be supplied in
context with the respective experiments.
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Figure 2.1: Experimental setup. (a) Collinear pump-probe arrangement to control
the one-photon excitation of Na via a double-pulse sequence. The inset illustrates
the pertinent spectroscopic details. τ marks the delay between both pulses. (b)
Experimental layout and spectroscopic details of the pump- and detection schemes
of the two-photon experiment. Fluorescence from 4p serves as feedback to the
control algorithm.
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2.2 One-photon Na(3s → 3p) transition

In pursuit of the goal to control the one-photon transition in sodium [see
Fig. 2.1(a)] we employed phase- and amplitude shaping of the incident spec-
trum centered around 589 nm to generate a phase-related double-pulse se-
quence [see Fig. 2.2]. Moderate focusing (f = 300 mm) into the heat pipe

Figure 2.2: Typical FROG calculation, in the time domain, of pulse envelope (a)
and phase of a generated double pulse (b).

resulted in a power density of ≈ 1011 W/cm2 which was sufficient to saturate
the 3s → 3p transfer. Only the population induced in the 3p1/2 state was
probed with a narrowband (∆ω = 0.2 cm−1) Nd-YAG pumped dye laser
(20 µJ, 3 ns, 50 Hz) which was fired synchronous with the Ti:Sa system and
tuned to the 3p1/2 → 5s [see Fig. 2.3]. Pump and probe beams were aligned
collinearly and diligent care was taken to ensure that the probed volume
was completely overlapped by the pump.
In the following we will give a theoretical description of the response of

this two-level system to the sequence of two phase-related pump pulses. The
treatment will be restricted to the 3s (|1〉) and 3p1/2 (|2〉) states and the
temporal evolution of the excited level as induced by the pulse pair. Co-
herences between the finesplit 3p levels due to broadband excitation are not
detected as only 3p1/2 is probed. The phase of the initially excited popula-
tion evolves freely in time as exp(iω12t) and later interferes with the different
phase of the population induced by the follow-up pulse. The description of
a one-photon absorption in a first order approximation yields a population
of the probed excited state which is given by |c2(t)|2 , where

c2(t) =
2π

i~

t∫

−∞

dt Hs
12(t

′) exp(iω12t
′) (2.1)
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Figure 2.3: Level scheme of the sodium atom, showing the one photon transition
from 3s to 3p1/2 and 3p3/2. Due to the broad bandwidth of the laser pulse both 3p
levels are coherently populated. In the experiments only the 3p1/2 level population
is probed by a nanosecond laser tuned in resonance to 5s. The frequency between
3s and 3p1/2 is denoted ω12 and the femtosecond laser with center frequency ω0

is detuned by δω from the probed 3p1/2 level. The two arrows separated by τ
indicate, that the excitation is performed with a tailored double pulse having a
variable interpulse separation τ .

Hs
12(t

′) is the interaction Hamiltonian which, assuming the dipole approx-
imation, is given by Hs

12(t
′) = µε(t′), where µ is the dipole moment and

ε(t′) symbolizes the electric field of the laser pulse. In the slowly varying
envelope limit a pulse is described as a time dependent envelope function
including a carrier wave with the central frequency of the laser field, ω0.
This approximation is valid for pulse durations down to a few femtoseconds.

A phase-related double pulse can be created in two ways, simply by a in-
terferometer or alternately using arbitrary pulse shaping and will be used in
the following to control the population in the excited state of the one-photon
transition. To later understand the two control limits a clear definition of
the phase of a femtosecond pulse will be given here. A femtosecond pulse
has a constant zero phase if the maxima of electric field and envelope coin-
cide. When the electric field is displaced with respect to the envelope the
pulse has a constant nonzero phase in time. The delay between two pulses is
defined as the difference in time between the maxima of the pulse envelopes
irrespective of the phase, that each individual pulse has. This definition
applies to what happens in the time domain.
However as is clear from section 1.1 pulse shaping is best expressed in the
frequency domain, since this naturally takes into account that the spectrum
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of the pulse can not be increased by additional frequencies. Therefore the
best comparison between an optical delay line and the pulse shaper capabil-
ities can be seen in the frequency domain [82].
In this domain, as can be seen easily by calculating the Fourier transform,
the phase of a pulse is given by the intercept of the φ(ω) at ω = 0 and the
delay between the pulses is simply given by the slope of the phase function
at ω0

1). An interferometer with an ideal delay line in one of its arms is
only able to create a pulse pair with the same phase as shown in Fig. 2.4.
This can be calculated by using the Maxwell equations and the field is given
mathematically by the following equation [see also Fig. 2.4(a)].

ε(t) =
2∑

n=1

exp

[

−
(
t− nτ
∆

)2
]

cos[ω0(t− nτ)] (2.2)

Note that both pulses do not share a common carrier wave2), but instead
both have a constant temporal zero phase irrespective of their pulse sepa-
ration. In the frequency domain this translates to the spectral phase shown
for different delays in Fig. 2.4(b). As the delay is increased the slope of the
phase function of the second pulse increases, while the intercept is always
zero showing that both pulses are phase locked.
The possibilities to create a phase-related double pulse are maximal when
using a pulse shaper. The phase and delay can be changed independently
from one another. Exemplarily in Fig. 2.5 a double-pulse is shown that
shares a common carrier wave. That is the envelope slides over this common
carrier as the delay is changed. The carrier is shown as dotted line. Hence
the phase of the second pulse must change as -ω0τ if τ is the delay. This
can be most intuitively seen again in the frequency domain [see Fig. 2.5(b)].
The intercept at ω = 0 changes exactly according to φ(ω) = −ω0τ as the
delay is changed, while the phase at ω0 stays always zero showing that both
pulses share a common carrier wave. This is mathematically expressed by
the following equation [see also Fig. 2.5]

ε(t) =
2∑

n=1

exp

[

−
(
t− nτ
∆

)2
]

cos(ω0t) (2.3)

Of course a pulse shaper can be used to generate double pulses which are
any intermediate configuration between the case discussed here and the ideal
interferometer case of Fig. 2.4. Since the one-photon transition is sensitive
to the relative phase of the double pulse, the control parameter, the two
methods can be distinguished. In order to see this the equations for the in-
terferometer case are derived and thereafter the pulse shaping case is studied.

1)Not considered here are orders of the phase function higher than one, since these are

not needed to create phase-related double pulses.
2)A carrier wave is defined by its frequency and the phase
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0
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Figure 2.4: Double pulse created by a Mach-Zehnder interferometer (ideal delay
line). (a) Electric field of both pulses have the same phase, i.e. they are phase
locked. They have no common carrier wave and are given by the equation in (a).
(b) Spectral phase of the second pulse in (a). Note that the intercept a ω = 0 is 0,
showing that both pulses are phase locked. Increasing phase slopes correspond to
increasing pulse separations.

(a) (b)

0
ω0

ω

φ(ω)

Figure 2.5: Double pulse as can be created using a pulse shaper. (a) Envelope
of both pulses slide over a common carrier wave, i.e. the two electric fields have
different phases. Mathematically they are expressed by equation in (a). (b) Spectral
phase of the second pulse in (a). Note that the intercept a ω = 0 is given by -ω0τ ,
while the phase is zero at ω0 showing that both pulses have common carrier wave.
Increasing phase slopes correspond to increasing pulse separations.
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Interferometer. Splitting a pulse creates two pulses with the same
phase. The time separations between the pulses can be adjusted with a
delay stage [see Fig. 2.4]. The electric field is then

ε(t) = exp(−iω0(t− t1)) exp(iφ1)a1(t− t1)
+ exp(−iω0(t− t2))a2(t− t2) exp(iφ2) (2.4)

Setting t1 = 0 and φ1 = 0 and introducing the time separation t2 = τ and
phase relationship φ2 = δφ the equations simplifies to

ε(t) = exp(−iω0t)a1(t) + exp(−iω0(t− τ))a2(t− τ) exp(iδφ). (2.5)

Inserting this expression into Eq. (2.1) one obtains

c2(t) ∝
t∫

−∞

dt′ exp(iδωt′)a1(t
′) +

[ t∫

−∞

dt′ exp(iω12(t
′ − τ)) exp(iω12τ)

exp(−iω0(t
′ − τ))a2(t

′ − τ) exp(iδφ)
]

c2(t) ∝ f1 + f2 exp(iω12τ) exp(iδφ)

|c2|2 ∝ cos(ω12τ + δφ) (2.6)

In ideal interferometers δφ = 0 3), hence the phase can not be influenced and
changing τ will lead to a signal from the excited state that is periodic with a
frequency of the one-photon transition frequency ω12. For the sodium atom
this frequency is ω12 = 2π/1.97 fs and will induce very fast oscillations of
the probed signal. This signal is not resolvable using the LC based pulse
shaper to adjust the interpulse separation, since the minimal time step is
restricted due to pixelation to about 40 fs (see section 1.1). Such atomic
oscillations were investigated earlier in Cs by Blanchet et al. using a stabi-
lized interferometer [12].

Pulse shaping. In frequency domain pulse shaping the phase difference
δφ of the double pulse pair can be chosen arbitrarily and independent of its
separation in time, τ . Contrary to the interferometer case if only the pulse
separation τ in a shaped double pulse is changed the phase will change
according to δφ = −ω0τ , since the pulses slide over a common carrier wave
[see Fig. 2.5]. Pulse shaping however allows to apply an additional phase α,
so that δφ = −ω0τ+α and complete control over the pulse phase is recovered
irrespective of τ . Inserting this relation for δφ into Eq. (2.6) results in [83,84]

|c2|2 ∝ cos(ω12τ − ω0τ + α)

|c2|2 ∝ cos(δωτ + α), (2.7)

3)In reality the mirrors in the delay stage if not interferometrically stabilized will make

the phase relation fluctuate around this mean value of zero.
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where δω = ω12 − ω0 stands for the detuning of the laser frequency from
the one-photon transition, here 3s → 3p1/2. This equation predicts, that a
change of the temporal pulse pair spacing while α = const. induces a slow
oscillation characterized by the detuning. Note that the physical phase of
the second pulse, that is the position with relation to the carrier is given by
φ2 = −ω0τ +α in Eq. (2.7). Again we note here the important difference to
the interferometer case: applying mask patterns that change τ at constant
α, will in reality change the phase of the second pulse, since the envelope is
displaced over the carrier wave. This can be seen in the following sequence
of plots [see Fig. 2.6], resembling a set of tailored double pulses with differing
time separations, but constant α = π. The column (a) shows the electric
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Figure 2.6: Shaping a sequence of double pulses with α = 0 differing only in their
time separation τ . Since both pulses have a common carrier wave, their relative
phase changes as ω0τ , where ω0 is the center frequency of the laser. (a) column:
Electric fields. (b) column: Phase in time. (c) column: Transmission mask patterns.
(d) column: Phase mask patterns.

fields, (b) the flat phase of the pulses in time, (c) and (d) the corresponding
transmission and phase pattern on the SLM. The wiggling (or better the
slope if unfolded) of the mask patterns increases as the pulse separation
becomes bigger. The intercept (not shown) as known from the previous
discussion changes here as -ω0τ .
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In essence this Fig. 2.6 is equivalent to Fig. 2.5. In order to clearly
distinguish the phase of the two pulses, their temporal width was chosen
to be only a few optical cycles. Equation (2.7) predicts on the other hand,
that tuning the relative phase α of the pulse doublet at fixed τ gives rise
to a periodical (1 s−1) oscillation shifted by δωτ . In Fig. 2.7 five tailored
double pulse pairs at constant separation τ are shown, where merely the
phase parameter α was changed. The (c) and (d) column show the mask
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Figure 2.7: Shaping a sequence of double pulses with constant time delay differing
only in their phase relationship. (a) column: Electric fields. (b) column: Phase in
time. (c) column: Transmission mask patterns. (d) column: Phase mask patterns.

patterns, that have to be applied in order to change the relative phase. The
mask patterns in all four rows are the same, but shifted sidewise. This is a
very general relationship as a sidewise shift of a mask pattern changes the
intercept at ω = 0 and as shown before this is equivalent to influencing the
relative phase in a tailored pulse. Note that the slopes in all mask patterns
of Fig. 2.7 are exactly the same. This again shows the relationship between
slope and delay. The first two columns (a) and (b) depict the electric field
and phase of the double pulse as a function of time.
The experimental data presented in Fig. 2.8 show the population of the

3p1/2 state in dependence of an exclusive variation of either α [Fig. 2.8(a)]
or τ [Fig. 2.8(b) and (c)], respectively.



Figure 2.8: Population of Na (3p1/2) vs. characteristics of double pulse. (a)
α-transient. The relative phase α is varied and plotted for three different pulse
separations τ (1.2, 1.6, and 2.0 ps). Cosine functions are fitted to the data. The
slope of the lines connecting the maxima allows to deduce the detuning δω. (b)
and (c) τ -transient. The pulses are set to equal phase α while the time separation
τ is changed. The time step resolution is 1×40 fs for (b) and 2×40 fs for (c).
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This kind of shaping was obtained by applying the mask patterns of
Fig. 2.7 or Fig. 2.6, respectively. The detuning δω can be calculated from
the slope of the lines connecting the maxima of the cosine modulation. It is
δω ≈ π

c·800fs=131cm−1. While Fig. 2.8 (a) agrees perfectly with the pulse
shaping model [see Eq. (2.7) and Ref. [4]], a change of the pulse spacing
seems to cause an ambiguous picture. An oscillatory behavior of the popu-
lation which exceeds the capability of time resolution of the pulse shaping
setup is superimposed by a slow modulation approximately proportional to
the detuning [see Fig. 2.8(b) and (c)]. This is in distinct contrast to the
expected slow oscillation. If the phase of the second pulse would obey ω0τ
as a function of the time difference τ , as is presumed when pulse shaping is
performed, only a slow oscillation should show up. This can be explained
also in a simple physical picture. The phase of the population excited by the
first pulse into the 3p1/2 state begins to evolve in time as −ω12t. The phase
of the follow-up pulse as it slides over the carrier evolves with the carrier
frequency and is −ω0t. In the case the laser center frequency would be in
perfect resonance with the one-photon transition a phase locking between
the laser field and the atom would be achieved, since both phases would
be the same at all times evolving in absolute harmony with each other. In
this case the follow-up pulse excites a second population that will always
constructively interfere with the population already in the 3p1/2 state and
no modulation would be visible; δω = 0 and Eq. 2.7 reduces simply to
|c2|2 ∝ cos(α). For any slightly off-resonant excitation one then simply ex-
pects a slow modulation, since the phase evolution of the first excited 3p1/2

state population is only partly compensated for by the carrier phase evolu-
tion. The worst case being the interferometer case, where the phase of the
second pulse does not change as a function of the pulse separation and the
maximum phase dynamics of the probed 3p1/2 state is then visible in the
τ−transient. Stated in other words, the τ−transient is simply the phase
evolution of the excited state population that an observer sees when he is
locked to the phase of the follow-up pulse. In the case of pulse shaping the
phase of the second pulse is locked to the carrier frequency and therefore the
observer sees effectively a rotating wave approximation of the excited state
phase dynamics.
Referring again to the experimental data, where a very fast not resolvable
oscillation is observed, the conclusion is that the shaper cannot create double
pulses sharing a common carrier wave, as would be expected for constant
α. As it seems, the phase of the second pulse does not accurately obey
φ2 = −ω0τ as a function of the delay with respect to the first. The exper-
imental transient reveals a beating pattern which is seemingly expressible
as the sum of cosines with frequencies δω, ω12, ω0. Such a transient would
indeed appear if, next to the two pulses with variable time separation τ shar-
ing a common carrier wave [ideal pulse shaper, Eq. (2.7)], a third pulse with
a fixed phase would act on the system. This third pulse could be created
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by reflection on beam optics or as in a detailed discussion by Wefers and
Nelson [47] have shown that the passively transmitting gaps of the liquid
crystal array give rise to such an additional pulse. Notwithstanding its low
intensity it must be considered in the regime of saturation where this ex-
periment was performed. Both possibilities would describe this third pulse
with Eq. (2.6). Another tentative explanation of the τ -transient rests on the
assumption of a general nonlinear τ -dependence of the phase of the second
pulse. This would ascribe the displacement of the phase from its ideal linear
ω0τ behavior of the second pulse to inhomogeneities in the shaper.
In conclusion, measurements which show the feedback of the controlled one-
photon excitation to a variation of τ represent an extremely sensitive cri-
terion of the quality of a pulse shaper incorporating a discrete mask and
could serve to quantify the deviation from ideality, since an “ideal” shaper
satisfies the condition formulated in Eq. (2.7). A possibility is to record the
τ -transient with enhanced temporal resolution by using shorter pulses, by
increasing the number of pixels, and by performing an analogous experiment
addressing an atomic transition in the IR (smaller ω12). This should pro-
vide deeper understanding of the physical reasons which are behind these
surprising results.

2.3 Two-photon Na(3s →→ 5s) transition

The objective of the study that will be presented in the forthcoming chap-
ter is the coherent control through spectral phase manipulation of a non
resonant two-photon process via feedback optimization steered by an evo-
lutionary algorithm. The aim is to find tailored pulses that maximize or
minimize the two-photon transfer of population 3s →→ 5s in sodium. Due
to the broad bandwidth of the laser pulse multiple pathways connect initial
3s and final 5s state. Therefore controlling the relative phase of each tran-
sition will lead either to constructive or destructive interference, “bright”
or “dark” tailored pulses. A schematic diagram of the experimental layout
as well as the relevant spectroscopic details of the employed pump and de-
tection scheme are displayed in Fig. 2.1(b). The exciting laser was tuned
to λ = 598 nm which is close to the 3s →→ 5s resonance, and focused to
provide a maximum power density of ≈ 1011 W/cm2 inside the heat pipe.
The population of the 5s target level optically decays to 3p or undergoes col-
lisional relaxation to the 4p state [see Fig. 2.9]. Both levels are monitored
separately via their fluorescence to the 3s ground state at 589 nm and 330
nm, respectively. Due to the spectral width of the ultrashort 598 nm pulses
a competitive (1+1)-photon excitation of 5s via 3p (at 589 nm) can not be
excluded right away. The low frequency wing of the spectrum is in resonance
with this strong one-photon 3s→ 3p transition. It must be thus offered evi-
dence that the 5s level is indeed populated as the result of only non resonant
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4p
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Ω ω
0

Figure 2.9: Level scheme of the sodium atom, showing the two photon transition
between 3s and 5s. Due to the broad bandwidth of the laser pulse several two-
photon transition pathways exist. The 3p levels are excited by the wings of the
spectrum and leads to 1+1 resonant enhancement. The frequency between 3s and
5s is denoted by ω0. The detuning from half of this frequency (ω0/2) is given by
Ω. The 5s population decays to the 3p levels and also via 4p back to 3s.

two-photon pathways; only then experiment can be directly compared with
the theory of Ref. [11] that will be presented later. To show that indeed
spectral blocking of the low frequency wing of the spectrum suppresses the
1+1 photon transition via 3p a prediction from a theoretical treatment of
the quantum control of multiphoton transitions by shaped ultrashort pulses
which excludes strong field effects by Meshulach et al. [41] will be exploited.
In this paper they calculated the effect of a mask pattern consisting of π
phase step on the probability of N-photon absorption in a two-level system.
The plots of this quantity vs. the normalized step position peak at the fre-
quency of the N-photon absorption. They are symmetric with respect to this
maximum and vanish for N values of the phase step position. The number
of minima is thus indicative of the order of the absorption process. Fig. 2.10
shows the experimental result for the 3s →→ 5s transition as a function of
the π step position induced by the SLM. The position of the maximum and
the occurrence of two symmetrically arranged minima suggest a two-photon
process induced by a wavelength of ≈ 602 nm. This number is directly
read from a spectrum of the laser pulse which was taken while pixel #43
(maximum) was blocked (see Fig. 2.10). The implementation of a feedback
controlled optimization routine requires to identify an observable which is
uniquely tied to the quantity to be controlled. Population of 5s gives rise to
fluorescence from the 3p and 4p levels. 3p may, however, also be pumped
in a 589 nm one-photon step from 3s. The text to follow describes two
experiments which address and settle this tentativeness. The data of the
first test are illustrated in Fig. 2.11 and show the fluorescence from the 3p
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Figure 2.10: (a) π phase step shifted across the mask. Fluorescence from collision-
ally populated 4p shows symmetry around pixel #43. (b) OPA spectrum behind
SLM observed with pixel #43 set to minimum transmission and left spectral wing
blocked by a razor blade.

and 4p levels, following excitation of 5s by 1 mW of unchanged or modified
pump pulses. The latter were obtained by clipping, in the Fourier plane,
the blue wings (<591 nm) of the frequency spectrum. The ensuing pulse
spectrum is shown in the right panel of Fig. 2.10. Fluorescence from 4p
appears with equal intensity for either excitation condition. The 3p analog,
however, is drastically diminished in the absence of the wavelength match-
ing the one-photon resonance. The previous measurement strongly indicates
that 5s, which is the precursor to 4p, is accessed nonresonantly, rather than
by a (1+1)-sequence. Supporting evidence comes from an examination of
the fluorescence intensities vs. laser power, which is displayed in Fig. 2.12.
Again, the 4p signal appears unimpressed by the particularities of the pump
laser’s frequency profile and exhibits a quadratic slope, indicative of a two-
photon process. The 3p data are more complex. In the presence of 589 nm
the signal behaves linearly for low laser intensity and scales ∝ I1.5 above
approximately 0.2 mW, pointing to saturation [85]. Blocking the resonant
wavelength produces the same low-intensity behavior, but a quadratic slope
beyond 0.2 mW. The bottom line of the conclusions which may be drawn
from both checks is as follows: Given the conditions of our experiment (pump
≈ 1 mW) 4p is exclusively feeded from 5s which owes its population to a
nonresonant 2-photon excitation. The 3p state draws to some extent from
5s, but is predominantly pumped in a resonant single step when the pulse
is left unmodified. We may thus apply Meshulach’s model [11] to describe
the coherently controlled population of Na(5s) and we have identified 4p
fluorescence as a directly linked criterion which is suited to serve as input to
the steering algorithm which updates the modulator. The nonresonant two-
photon interaction of an ultrashort pulse with a two-level system induces a
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Figure 2.11: Response of 3p and 4p fluorescence to the presence or absence of
589 nm light (one-photon resonance)

transition with a probability S2 [11]:
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(2.8)

where ω0 is the energy of the 3s →→ 5s transition which corresponds to
301 nm. Two-photon transitions occur for all pairs of photons which satisfy
the condition ω1 + ω2 = ω0. The detuning of frequencies ω1, ω2 from ω0/2
is denoted by Ω. Control of the excitation process is exercised via the in-
terference term and can either maximize or minimize the probability S2, as
Meshulach et al. [11] have recently demonstrated for the nonresonant two-
photon transition of Caesium. Maximization is obviously achieved if the
interference term vanishes, which describes the minimum duration trans-
form limited pulse. This solution is not singular, however, since any shaped
pulse with the same power spectrum A(ω) but with an antisymmetric phase
function, φ

(
ω0
2 +Ω

)
= −φ

(
ω0
2 − Ω

)
, will yield the same result, irrespec-

tive of the particular appearance of the phase distribution. This result is
counterintuitive since longer, i.e. less intense, pulses should be less effective
in transferring population. In their paper, Meshulach et al. [11] have also
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Figure 2.12: Power dependence of (a) 3p and (b) 4p fluorescence with or without
589 nm light.

formulated phase requirements to produce so-called dark pulses which alto-
gether cancel the two-photon pumping probability. No net transitions are
induced as long as φ(Ω) = cos(βΩ). The total of solutions, discriminated by
virtue of the parameter β, is symmetric with respect to the center frequency
ω0/2.
In the present experiment the designed pulses were created by phase-only
modulation. The task to pinpoint the conditions which either maximize or
cancel S2 was left to an evolutionary strategy which was integrated in a feed-
back loop. Unbiased by any a-priori modeling the algorithm set out from
a phase filter φ(n) = a cos(b · n + c) with n as the variable which numbers
the LC pixels, and a, b, and c as free parameters to be optimized. This
approach is still tractable but sufficiently general to comprise Meshulach’s
solution [11]. The experiment was run repeatedly for either objective and
achieved convergence within five generations. The phase filters which were
retrieved as a result of the optimization procedure are symmetric (cosine) in
the case of extinction, and antisymmetric (sine) in the case of enhancement
of fluorescence. Symmetry persists with reference to the center frequency
ω0/2 which impinges on strip #43 (see Fig. 2.13). This good agreement
with theory which this three parameter optimization produces requires to
put upper and lower restrictions on the parameter b. In the bright pulse case
b must be sufficiently large to allow at least four oscillations of the phase
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Figure 2.13: Periodic phase functions obtained from three consecutive optimiza-
tion runs. In accordance with theory, traces show symmetry for dark (a) and
antisymmetry for bright pulses (b). Dotted line marks pixel #43.

over the width of the mask. In the absence of this lower limit the algorithm
would merely compensate the chirp of the incoming pulse to produce the
Fourier limited shape, i.e. the pulse having the minimum time duration,
which obviously maximizes S2. To optimize the dark pulses b has been lim-
ited to yield a maximum of eight phase oscillations. Lifting this restriction
would result in very long pulses which are dark due to insufficient intensity.
In a further experiment we lifted the restriction on the dimensionality of the
parameter space and tried a model of the phase filter which permitted an
unbiased choice of parameters. Aiming at the generation of dark pulses we
introduced a phase function defined by the minimum number of sampling
points connected by a linear interpolation. Each of these points may as-
sume 64 discrete values within a range from 0 to 2π. Six parameters proved
sufficient to achieve this goal. The dark pulse retrieved by the algorithm
is shown in Fig. 2.14(a) whereas Fig. 2.14(b) represents the phase setting
of the mask. The property of being “dark” is indeed phase-related, which
is convincingly shown by comparison with the effect induced by a chirped
pulse of equivalent energy and duration. The evolution of a dark pulse as
mirrored by the decrease of the 4p fluorescence feedback signal is shown in
the top row of Fig. 2.15. Compared to an unmodulated pulse the 5s pop-
ulation is reduced to <3%. The left panel proves the insensitivity of the
one-photon 3s → 3p transition to a phase-only modulation.



Figure 2.14: Free optimization using a six-parameter phase function with linear
interpolation. (a) Cross-correlation of a typical dark pulse. (b) Phase values as
achieved in three different runs.

Figure 2.15: Convergence data of the six-parameter search for the dark pulse.
Figure shows the best and worst mask patterns for each generation. (a),(b) If
589 nm light is present in the excitation spectrum 3p fluorescence is not a suitable
feedback signal, since the direct excitation to 3p is phase insensitive. (c),(d) As long
as 589 nm light is blocked, 3p and 4p fluorescence are equally suited as feedback
signal.

43
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Once the resonant pumping of 3p is suppressed by blocking the rele-
vant wavelength the fluorescence from this level perfectly matches that of
4p [Fig. 2.15, bottom row]. 3p is now populated via radiative decay of 5s
and is hence equally suited as feedback input.
Both, the three- as well as the six-parameter approach converge after less
than 10 generations, i.e. within less than 5 minutes. A comparative inspec-
tion of the phase functions returned by either method raised the question of
the existence of additional solutions which are of altogether different charac-
ter. We thus expanded the previous parametrization to 128 sample points,
each falling between 0 and 2π as before. Fig. 2.16 documents the conver-
gence towards the dark (left) and the bright pulse (right) which was attained
after ≈ 10 generations. In accordance with theory an antisymmetric phase
function causes population enhancement [Fig. 2.16 (b)]. No likewise ap-
parent symmetry properties, however, characterize the suppression of two-
photon pumping. Re-runs of the optimization procedure produced identical
experimental results but differing phase functions. The solutions which the
algorithm produced bore no resemblance with the prediction of theory. The
shaped pulses show a complex phase- and amplitude-time structure of com-
parable duration (≈ 2ps). It is thus not their peak power but rather their
phase distribution which produces qualities such as “bright” or “dark”.



Figure 2.16: Convergence data of the 128-parameter search for the dark (left)
and bright (right) pulse. (a) Normalized fluorescence intensity to document con-
vergence. Dashed lines mark “no signal” (0) and “unshaped reference pulse”(1).
(b) Right: phase structure of bright pulse showing antisymmetry. Reference posi-
tion has shifted to pixel 64 (≡ 602 nm) due to re-alignment of optical setup. (c)
Pulse shape and phase structure in the time domain. Bright and dark pulses show
a complex structure, but note their similar durations.
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2.4 Summary and Outlook

The influence of phase modulated femtosecond laser pulses on one- and
two-photon transitions in an atomic prototype system was studied and the
implementation of a feedback loop using evolutionary algorithms was tested
under realistic experimental conditions. The one-photon-transition presents
an excellent tool to test the quality of phase-related pulses, as the excitation
of the 3p level in sodium depends critically on the relative phase of the double
pulse. It has been shown that the experimental outcome could be explained
by a combination of two limiting cases. The relative contribution depends
on the nature of the phase coupling within the pulse sequence, which is in-
fluenced by the experimental conditions of the setup. The phase modulated
excitation of the two-photon-transition shows that the feedback approach
can be successfully used to find femtosecond laser pulses for different con-
trol objectives, even without an intelligent initial guess supplied by theory.
The best solutions for both extremes were obtained within five generations.
Allowing the feedback algorithm to search in an extended parameter space
the algorithm found new phase structures in addition to known analytic
solutions. These structures are not intuitively understandable and call for
further theoretical studies.
Having a combined look at the results on the one- and two-photon transition
the conclusion is, that it is in principle possible to control the linear versus
the nonlinear process, since the pulse shapes for suppression and enhance-
ment depend on the character of the transition. This can be done in an
automated way using the learning-loop setup presented in Fig. 2.1(b).



Chapter 3

Control of dimers using
shaped DFWM

In this chapter the powerful spectroscopic tool of nonlinear four-wave mixing
(FWM) techniques is combined with pulse shaping. The FWM technique is
an ideal method, since it can be used to monitor ground and excited state
dynamics during pulse control. This peculiarity of the FWM process will be
explained in the following where the time domain framework of nonlinear
processes will be reviewed [86]. In section 3.2 a theoretical model describing
a new type of control technique using shaped pulses within the degenerate
FWM process will be derived and verified experimentally in section 3.3. In
the final section the FWM response of the potassium dimer is spectrally
resolved to provide a FROG-type measurement of the shaped excitation
field used in these studies.

3.1 Theory of nonlinear spectroscopy

In nonlinear spectroscopy the radiation field interacts with the system creat-
ing a time-dependent material polarization P(r, t) which generates an elec-
tric field according to Maxwell’s equation. The intensity of this field is
the experimental spectroscopic observable. The Hamiltonian Hint for the
system’s interaction with the external radiation fields is given by

Hint = −µ(Q)E(r, t), (3.1)

where µ(Q) and E(r, t) denote the dipole operator depending on system
degrees of freedom Q and the electric field of the external radiation, respec-
tively. The definition of the material polarization P(r, t) is given by [86]

P(r, t) = tr{µ(Q)ρ(r, t)} (3.2)

47



48 3. Control of dimers using shaped DFWM

where tr means sum over all degrees of freedom in the total matter system,
and ρ(r, t) denotes the density operator obeying the Liouville equation,

∂ρ(r, t)

∂t
=

1

i~
[HM +Hint, ρ(r, t)]. (3.3)

HM is the Hamiltonian of the unperturbed matter system. Taking the in-
teraction picture, one can obtain ρ(r, t) in a perturbation series of Hint from
Eq. (3.3). By substituting the resulting expression into Eq. (3.2), one gets
the formal expression for P(r, t) as follows [86]:

P(r, t) =
∞∑

i=0

P(n)(r, t) (3.4)

P(n)(r, t) =

∞∫

0

dtn

∞∫

0

dtn−1 · · ·
∞∫

0

dt1R̄(tn, tn−1, . . . , t1)

...E(r, t− tn)E(r, t− tn − tn−1) · · ·E(r, t− tn
−tn−1 · · · − t1), (3.5)

where
... denotes the tensor contraction, and R̄(tn, tn−1, . . . , t1) is the non-

linear response tensor of matter system defined by

R̄(tn, tn−1, . . . , t1) =

(
i

~

)n

〈[[[[· · · [µ(tn + · · ·+ t1),

µ(tn−1 + · · ·+ t1), . . .], µ(t)], µ(0)]〉 , (3.6)

with µ(t) = exp(iHM t/~)µ(Q) exp(−iHM t/~) and the expectation value of
an arbitrary operator A being defined as 〈A〉 = tr {Aρ(0)}. Here ρ(0)
denotes the initial density operator of the material system.
In four-wave mixing (FWM) spectroscopy, one selectively measures the third
order polarization P(3)(r, t) among the perturbation series, and the nonlinear
response tensor relevant to the FWM spectroscopy reads as

R̄(t3, t2, t1) =

(
i

~

)n

〈[[[µ(t3 + t2 + t1), µ(t2 + t1)],

µ(t1)], µ(0)]〉 , (3.7)

An explicit expression for the nonlinear response tensor can be obtained if a
specific Hamiltonian is assumed [87]. Once the response has been calculated,
the polarization can be obtained for any shaped pulse E by a three-fold
integration

P(r, t, τ, τ1) = (−i)3
∞∫

0

dt3

∞∫

0

dt2

∞∫

0

dt1R̄(t3, t2, t1)

E(r, t− t3)E(r, t− t3 − t2 + τ1)

E(r, t− t3 − t2 − t1 + τ + τ1). (3.8)
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Here a complete specification of the pulse ordering is used, where the pulse
separation between the first and second is τ and second and last laser pulse
is τ1. Eq. (3.8) will be of central importance for the following sections. In
general more then 64 double sided Feynman diagrams, representing different
Liouville space pathways, contribute to the third order nonlinear response
tensor. However, by controlling the center frequency, the polarization di-
rection, and the propagation direction of the input external fields, and by
measuring the signal field propagating along a specific direction, only a few
of the components of the polarization vectors can be selectively measured.
In the next section it is shown theoretically that it is possible to influence
contributions to the degenerate FWM (DFWM) signal by shaping one (or
more) of the excitation pulses. Then an experimental section follows showing
that the theoretical predictions are accurate.

3.2 Control using shaped pulses in the DFWM
process: Theory

In this section a theoretical description for a new control scheme is de-
veloped. Here the control is not achieved as in previous experiments (see
Ref. [88] and the excursion in section 3.3), where an additional second time
separation is introduced in the DFWM pulse sequence as control knob, but
instead by correctly modulating one of the three pulses as depicted schemat-
ically in Fig. 3.1(a). The other two pulses are time coincident, that is τ1 = 0
in Eq. (3.8). This sequence will be termed S-UU, where S denotes shaped

τ

  

 

  

 shaped

time

τ

  

  shaped

time

(a) (b)

Figure 3.1: A new control mechanism based on the DFWM sequence of pulses
depicted here is investigated. (a) S-UU pulse sequence. Here the pulse in one of
the three DFWM beams is shaped (S) arbitrarily, while the unshaped (U) pulses
in the other two beams are made time coincident. (b) SS-U sequence. Now the
situation is reversed. The two time coincident pulse are tailored arbitrarily and
arrive first in the interaction region, followed by one single unshaped pulse. Note
that the time-coincident pulses are always identically shaped.

and U unshaped. A pulse sequence where the two time coincident pulses
are identically shaped and the pulse in the third beam is unshaped will be
termed SS-U in the following and is depicted in Fig. 3.1(b). At first a theory
is developed that accounts for FWM control experiments using pulses tai-
lored into a sequence of two or more subpulses with a constant phase in time.
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This theory gives the same results for S-UU and SS-U and therefore it will
exemplarily derived for the S-UU case. The theory is completely analytical
and extraordinarily simple, however can not account for a time dependent
phase within the pulse duration as happens for e.g. chirped pulses. There-
fore, in the second part of the section a completely different theory based
on a perturbative wave packet approach is used to lift this restriction of
constant phase over the pulse envelope and predict the FWM signal for ar-
bitrarily tailored pulses. Results are presented only for the experimentally
measured case of linearly chirped pulses in the sequence SS-U. This second
theory based on a numerical calculation is more general than the theoretical
model restricted to pulse trains, which is still solvable analytically.

Theory 1: Tailored pulse trains.
If the pulse in one of the beams is shaped using an LC-SLM it can be
expressed as a sum of Fourier limited pulses occurring at times ∆j , each
with an envelope aj and phase φj

E(t) =
∑

j

aj(t−∆j) exp(iφj) (3.9)

Replacing the first E-field of the three involved electric fields in Eq. (3.8) by
the expression given in Eq. (3.9) transforms the polarization into summands
of polarizations induced by three Fourier limited pulses (FL-DFWM)

E(t1)E(t2)E(t3) =




∑

j

aj(t− t3 −∆j + τ) exp(iφj)





E2(t− t3 − t2)E1(t− t3 − t2 − t1)
=

∑

j

[aj(t− t3 −∆j + τ) exp(iφj)

E(t− t3 − t2)E(t− t3 − t2 − t1)]
(3.10)

If the phase of the subpulses is not a function of time, it can be taken out
of the integral for each term, leading to the following expression for the
nonlinear polarization P:

P(M)(t,∆, τ) =
∑

j

exp(iφj)

∞∫

0

dt1

∞∫

0

dt2

∞∫

0

dt3 R
(3)(t3, t2, t1)

aj(t− t3 −∆j + τ)E(t− t3 − t2)
E(t− t3 − t2 − t1) (3.11)

It is therefore possible to express the multiple DFWM polarization as a
summation of FL-DFWM terms P(M) =

∑
P(3)(τ, t−∆j , φj). The resulting
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DFWM signal, which is the integral over the polarization, is then also a sum
over FL-DFWM signal contributions interfering with each other depending
on their relative phase and delay

I(M)(τ) =

∫

dt
∣
∣
∣P(M)(t, τ)

∣
∣
∣

2

=

∫
∣
∣
∣
∣
∣
∣

∑

j

P(3)(τ, t−∆j , φj)

∣
∣
∣
∣
∣
∣

2

=
∑

j

I(3)(τ,∆j , φj). (3.12)

To obtain this result the incoherent sum over the polarizations was taken
∣
∣
∣
∑

j . . .
∣
∣
∣

2
=
∑

j |. . .|
2, which is necessary assumption in order to take into

account the integration time of the acquisition electronics [89].
Clearly Eq. (3.12) shows that the expected DFWM signal when using tai-
lored pulses can be simply expressed as a summation over retarded DFWM
transients I(3) as measured when using Fourier limited pulses (FL-DFWM).
Once a model for the FL-DFWM transient [see Fig. 3.8] is derived the con-
trol theory is complete. The simplest model assumes a sum of two sine
functions, one with the frequency of the electronic ground state vibration,
ωg, of the potassium dimer and one with the frequency of the excited state
vibration, ωe,

I(3)(τ) = sin(ωeτ) + r sin(ωgτ). (3.13)

The factor r is included for weighting. In the potassium dimer the vibra-
tional round trip time in the ground state is 360 fs and in the first excited
potential is 520 fs. Of course, a more sophisticated model for FL-DFWM
could be used here instead but the model fits the data well enough. Damp-
ing effects are neglected because the dephasing time T2 (> 200 ps) is much
larger than the typical τ values. Eq. (3.13) is the fundamental building block
of the theoretical predictions for I (M). According to Eq. (3.12) it is only
necessary to add several Eq. (3.13) to simulate the control experiments. In
the following two examples of this theory are given.

• Pulse train. The case of excitation with an equidistant pulse train
was modeled by adding terms given by Eq. (3.13) in number equal to
the number of subpulses constituting the pulse train,

I(τ) =
∑

k

I(3)(t− k∆) = [sin(ωeτ) + r sin(ωgτ)]

+ [sin(ωe(τ −∆)) + r sin(ωg(τ −∆))] (3.14)

+ [sin(ωe(τ − 2∆)) + r sin(ωg(τ − 2∆))] + · · ·

• Phase related double pulse. The shaped double pulse excitation
can be then expressed according to Eq. (3.12) as a sum of a transient,
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that is not delayed and a delayed transient, which has an inherent
phase φ transferred by the second subpulse,

I(τ) = I(3)(τ) + I(3)(τ −∆) = [sin(ωeτ) + r sin(ωgτ)]

+ [sin(ωe(τ −∆) + φ) (3.15)

+r sin(ωg(τ −∆) + φ)]

Figure 3.2: Theoretical model calculation for the DFWM signal using one pulse
train with interpulse separation ∆ and two unshaped time coincident pulses. (a)-(e)
Simulated transient for different ∆. (α)-(ε) Fourier transform data of the transients.
FL-DFWM transient for reference is (a) and (α), respectively.

The control of the DFWM signal using a pulse train excitation according
to equation (3.14) is shown in Fig. 3.2 for different interpulse separations.
In (a) to (e) the transient is shown and its Fourier transform data is shown
in (α) to (ε). The data in (a) and (α) serves as reference and shows the
transients obtained using Fourier limited pulses (empty mask). In Fig. 3.3
the control of DFWM signal X and A contributions using a double pulse
with phase α = 0 and variable delay (a) to (e) and using a double pulse
with variable phase α and with an interpulse separation ∆ = τg (α) to (ε)
is shown as calculated according to Eq. (3.15). The FL-DFWM is shown in
(a) and serves as reference. Both numerical simulations show that control
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Figure 3.3: Theoretical model calculation for the DFWM signal using one shaped
double pulse with variable time separation ∆ and relative phase α and two unshaped
time coincident pulses. (a)-(e) Fourier transform data of the DFWM transient for
different ∆ and α = 0. (α)-(ε) Fourier transform data of the transient for ∆ = τg

and different relative phases α. Fourier transform data of the FL-DFWM in (a)
serves as reference. Note that (α) and (b) are the same pulse configuration.

over the wave packet contributions in the DFWM signal is indeed possible,
and that there is a quantitative difference between using a pulse train or a
double pulse. In the pulse train case exact matching of the inter pulse sepa-
ration to integer multiples of the vibrational round trip time of the state to
be selected is optimal [Fig. 3.2 (b)-(d)]. Instead when using double pulses
especially in order to select the ground state contribution in the signal an
exact matching is not as optimal as some intermediate inter pulse separa-
tion [see Fig. 3.3(e)]. The control using the relative phase in the shaped
double pulse shows a periodicity of 2π and the X and A contributions can
be completely influenced.
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Theory 2: Arbitrarily shaped pulses.
The theoretical model derived previously is restricted to pulses with con-
stant phase in time. Certainly it is also of interest to predict the outcome
of a four-wave mixing (FWM) experiment using a chirped or even an ar-
bitrary tailored pulse excitation. Therefore a different theoretical model is
used here, based on a numerical third order perturbative calculation of the
FWM polarization. This theory was developed by S. Meyer [89] for the case
of unshaped excitation pulses in FWM and has been very successful in cal-
culating the FWM response of I2 in the gas phase [90]. The basics of this
theory will be sketched here only shortly and the reader interested in more
details is referred to Refs. [89, 91]. In the context of this thesis it will be
extended to the case of arbitrarily tailored excitation pulses.

In the following the pulse sequence SS-U is assumed with τ being the
pulse separation between the two time coincident shaped pulses SS and the
unshaped pulse U. These pulses will be identified by their wave vectors ks,
ks′ and ku, respectively. Starting point is again a formula for the polarization

P (t) = 〈ψ(t)|µ|ψ(t)〉, (3.16)

where µ is the transition dipole moment. The wave function of the system
ψ is decomposed according to perturbation theory into the following sum

|ψ(t)〉 =
∞∑

N=0

∣
∣
∣ψ(N)

〉

. (3.17)

Here N indicates the order of the perturbation, that is the number of inter-
actions of the system with the laser field. The FWM process occurs between
the ground electronic potential g and a single excited electronic potential e
being in resonance with the center wavelength of the interacting laser pulses.
The unperturbed initial wave function

∣
∣ψ(0)

〉
is a thermally populated vibra-

tional eigenstate of the ground state potential. The time-dependent wave
function for an odd (even) number of interactions N will be in the electronic
excited (ground) state potential. In general the N -th order wave packet in
the electronic potential p at time t+∆t is generated from a wave packet of

equal order in the same electronic state p (
∣
∣
∣ψ

(N)
p (t)

〉

) and a wave packet in

the other electronic state p′ with order N -1 (
∣
∣
∣ψ

(N−1)
p′ (t)

〉

) both at time t via

the iterative scheme [92]
∣
∣
∣ψ(N)

p (t+∆t)
〉

= Up(∆t)
∣
∣
∣ψ(N)

p (t)
〉

+iEj(t+∆t)µUp′(∆t)
∣
∣
∣ψ

(N−1)
p′ (t)

〉

. (3.18)

Here p 6= p′ stand for the two different electronic potentials g and e involved
in the FWM process. Up is the field-free propagator in the electronic poten-
tial p and Ej(t) describes the time-dependence of the electric field j. The
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way the electric fields are calculated here, is the major difference to the orig-
inal formulation by S. Meyer. The two shaped pulses Es and Es′ are given
according to the pulse shaping equation Ej(ω) = Mj(ω)E

FL(ω) from the
complex Fourier limited field EFL(t) = g(t) exp(−iωt). The pulse envelope
of the unshaped pulse g(t) is chosen as a Gaussian. The time-propagation is
performed using the split-operator technique (see Ref. [93] and section 5.2).

In order to evaluate the polarization within this perturbative regime
Eq. (3.17) up to third order is inserted into the Eq. (3.16). The processes
contributing to the resulting third order polarization are schematically rep-
resented using double-sided Feynman diagrams. For the pulse sequence SS-U
considered here, three double-sided Feynman constitute the FWM polariza-
tion signal [91]1)

P (3)(t, τ ;
∣
∣
∣ψ(0)

g

〉

) = 2Re

{
〈

ψ(2)
g (ks′ − ku)

∣
∣
∣µ
∣
∣
∣ψ(1)

e (ks)
〉

+
〈

ψ(2)
g (ks′ − ks)

∣
∣
∣µ
∣
∣
∣ψ(1)

e (ku)
〉

+
〈

ψ(0)
g

∣
∣
∣µ
∣
∣
∣ψ(3)

e (ks − ks′ + ku)
〉
}

. (3.19)

The k vector interactions with negative sign are g ← e electronic state
emissions and are calculated using the conjugate of the electric field, that is
E?
j , while the positive sign interactions use Ej and indicate g→ e absorption.

Of course Eq. (3.19) calculates only the polarization contribution of one

single vibrational state v, that served as initial condition
∣
∣
∣ψ

(0)
g

〉

= |v〉. In

order to account for a thermal ensemble of molecules the incoherent sum
of all polarization contributions of different vibrational states within the
Boltzmann distribution must be evaluated. The total DFWM signal I(τ) is
then given by integrating the sum of all polarization contributions from the
thermal ensemble over two times the fwhm (full width at half maximum)
duration of the last interacting pulse U [89]

I(τ) ≈
∑

v

τ+fwhm∫

τ−fwhm

|P (t, τ ; |v〉)|2dt. (3.20)

A model system is chosen based on the characteristic properties of the potas-
sium dimer with some modifications to reduce the necessary computing time.
The model system consists of an harmonic potential as ground state X, the
real anharmonic excited state potential A1Σu and the K-K separation de-
pendent dipole moment between X and A potentials [see Fig. 3.4]. The

1)The errata to this publication
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Figure 3.4: A simplified model for the K2 molecule. (a) The electronic potentials.
The ground state potential is assumed to be an harmonic oscillator with the min-
imum displaced by the same amount relative to the minimum of the excited state
as in the real system. The excited state potential is the real A1Σu K2 potential.
(b) The real K-K distance dependent dipole transition moment µ between the two
potentials.

minima of X and A state are spaced by 1.36 eV which corresponds to a
wavelength of 910 nm (11 000 cm−1). Also the relative displacement of the
two potentials in radial direction corresponds to the real system. The mass
of the prototype system was chosen to be 3000 a.u. (which is about ten
times lighter than the real K2 mass) to accelerate the dynamics and thereby
reduce the necessary time for propagation. For the same reason the pulse
duration of the interacting pulses was chosen to be only 7 fs with a center
wavelength at 820 nm.
A thermal ensemble is assumed, where only the first three vibrational states
of the ground state potential are considerably populated. The calculations
of the DFWM signal I(τ) are performed for different amount of linear fre-
quency chirp of both positive and negative sign. In Fig. 3.5 the Fourier
transform data of the transients obtained for the different amount of chirp
are shown, where the data was normalized to have the same value of the X
peak to directly see the effect of chirp on the A state peak. The maximum
chirp of ±90 fs2, broadens the initially 7 fs pulse to about 36 fs. The in-
set shows the difference in peak heights A-X for the different chirp values,
summarizing the information of the Fourier transform data of the DFWM
signal displayed in the main graph. Clearly for the largest negative chirp
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Figure 3.5: The Fourier transform of the DFWM signal obtained through excita-
tion with a SS-U sequence, where the two time coincident pulses are shaped with a
linear chirp. Each dotted line corresponds to a different linear chirp. Clearly visible
the X and A peak corresponding to the vibrational recurrence time in the respec-
tive potential. The data is normalized to have the same X state peak magnitude.
The peak height difference A-X is plotted as a function of chirp in the inset and
summarizes the information of the main graph.

the A state is maximal, while for the largest positive chirp it is minimal 2).
A further enhancement of the peak difference A-X can be expected if the
anharmonicity of the ground state potential is taken into account. Finally
these calculations indicate that the control of the peak heights in the Fourier
data of the DFWM signal is not due to a considerable manipulation of pop-
ulation, since the norm of the wave packets evolving on the potentials is only
slightly influenced by chirp within this perturbative regime. Thus the con-
trol of peak heights as displayed in Fig. 3.5 must be due to an interference
of the three summands in Eq. (3.19).

2)The effect depends moreover on the center-wavelength and bandwidth of the interact-

ing laser pulses.
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3.3 Control using shaped pulses in the DFWM
process: Experiment

Experimental setup.
In order to realize the theoretical control predictions of the previous section
a femtosecond DFWM experiment according to Fig. 3.6 was built up and
the molecule K2 was chosen. Laser pulses of 100 fs at 825 nm from a com-
mercial femtosecond laser system with chirped pulse amplification (CPA)
are split into three beams each having an energy of 50 nJ / pulse. The
polarization of each beam was horizontal and the beams were arranged in
a folded forward BOXCARS geometry typically used in DFWM-gas phase
studies [94] [see Fig. 3.6(a)]. Here the three parallel incident beams are

(b)
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Figure 3.6: (a) Experimental setup showing the fs-DFWM learning loop. (b)
Arrangement of the beams in space. (c) Nomenclature for the different directions
in the BOXCARS square.

aligned to trespass the edges of a square in space [see Fig. 3.6(b) and (c)],
a configuration that naturally conserves the momentum. The signal is then
only captured in the direction marked with a hollow dot [see Fig. 3.6(c)]
and is ks = −ka + kb + kc with a frequency given by ωs = −ωa + ωb + ωc.
Since the FWM signal is measured in a new direction it is essentially back-
ground free and is moreover a highly localized probe, since it is generated
by a polarization created in the small focal region in space where the three
incident beams cross. The signal is detected either in a spectrometer fitted
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with a linear array CCD detector (Ocean Optics S2000), or in a scanning
monochromator (Acton Research SpectraPro 300i). The beams are focused
into a heat pipe filled with potassium and argon as buffer gas heated to a
temperature of 360◦C. One of the beams is sent through an all-reflective
pulse shaper with a phase and amplitude modulating LC-SLM at its Fourier
plane (see section 1.1) opening thereby the possibility to shape one or even
two of the incident pulses into an arbitrary pulse form. The pulse shape
is optimized by letting an evolutionary algorithm steer the pulse shaper as
already described in the introductory chapters.

Review of earlier experiments.
The center frequency of 825 nm of all beams matches the high Franck-
Condon overlap region between the X and A state potential of the potassium
dimer [see Fig. 3.7]. This ensures resonant enhancement of the third order

K-K distance

E
n
e
rg
y

Figure 3.7: Sketch of the potentials of ground and first excited state of K2 and
the DFWM process.

signal and excitation of wave packets on both ground and excited state.
This kind of gas phase FWM measurement was explored by A. Materny
et al. on I2 supported by theory from V. Engel and coworkers [90, 95, 96].
They used a temporal ordering of the pulses, where the first pulse arrived
separated in time by a delay τ from the time-coincident pulses inside the
other two beams. The Feynman diagrams for this time-ordering of the
pulses predict that the signal has contributions from ground and excited
state potential surfaces. Fig. 3.8 shows such a measurement on K2 where
the spectrally integrated DFWM signal is recorded as a function of delay
τ . In good agreement with earlier experiments the Fourier analysis of the
data reveals two main peaks, corresponding to the vibrational round trip
time in the ground X (τg = 360fs ∼ 92.4 cm−1) and excited A potential
energy surface (τe = 520fs ∼ 70 cm−1). Due to the broad bandwidth up to
six A-state and three ground state vibrations are coherently excited, leading
to the higher harmonic lines of the next but one vibrational beating clearly
visible in the Fourier spectrum (2X and 2A). This data can be further an-
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τ

Figure 3.8: DFWM transient resulting from excitation with three unshaped fem-
tosecond pulse showing the vibrational period of potassium A and X state. In the
inset the corresponding spectrum (FFT) ot the transient is plotted. The DFWM
pulse excitation sequence, where one pulse is delayed by τ with respect to the other
time-coincident pulses is also shown.

alyzed by performing a short time Fourier transform. Here the convolution
of the data with a Gaussian window function is calculated and then Fourier
transformed. This procedure is repeated for different temporal position of
the window function. Thereby a two-dimensional data set is obtained, that
reveals the temporal evolution of the spectral components (not shown). The
spectrogram of the 60 ps long DFWM transient revealed a weak, irregular
beat structure with the main revivals being in good agreement with the mea-
surements of E. Schreiber and coworkers on 39,41K2 [97]. No regular beat
oscillation maxima with a period of 10 ps, typical of the 39,39K2 isotope,
could be observed.
The control idea pursued in this chapter is to either enhance the A state
contribution in the DFWM signal with respect to X or vice versa by suit-
ably shaping the first pulse. Before proceeding however it should be noted
that a change in the contributions to the DFWM signal does not necessarily
mean that molecular population is controlled. Instead it can simply be the
selection of Feynman diagrams that leads to a different DFWM signal, i.e.
the dynamics are still there however can not be probed since the diagram
is disallowed. That such a selection of diagrams is indeed possible was first
shown by M. Dantus and coworkers [88, 98, 99]. Here a further time delay
τ1 was introduced separating in time the previous time coincident second
and third pulse. The parameter τ still served as the scanning delay. They
showed that it is possible to manipulate the DFWM signal contributions
by choosing different values for τ1 [88]. Indeed the signal has only A state
contribution if either τ1 = nτg or τ1 = n + 1

2τe is fulfilled. Here n is an
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integer multiple. Correspondingly both conditions τ1 = nτe or τ1 = n+ 1
2τg

will lead to mere X state contribution in the DFWM signal. The measure-
ments on the potassium dimer [see Fig. 3.9] agree with their experiments on
I2. Here the first two interacting pulses generate such a population coher-

Figure 3.9: DFWM using a variable time separation ∆ between the first two
pulses. For the case of ∆ = 2 × the vibrational period in the ground state (τg).
(a) shows the transient, that shows only A state dynamics (α). (b) and (β) depict
transient and its Fourier transform for ∆ = 1.5 τg.

ence depending on their time separation, that the third pulse producing the
macroscopic DFWM polarization projects out only a specific dynamics. It is
however clear that completely suppressing, e.g. the ground state dynamics
in the transient does not mean that no ground state wave packet is generated
by the FWM pulse sequence. In fact the ground state wave packet is there,
its dynamics is however not captured any more. This short excursion to pre-
vious experiments shows, that care must be taken in DFWM experiments to
distinguish control over the dynamics projected into the signal with control
over populations, that could also give rise to only a specific dynamics in the
signal.

Experiments with the new control scheme.
In the following the new control scheme as proposed in section 3.2 is ex-
perimentally verified. Here a pulse sequence is chosen, where τ1 = 0 and
the control is instead achieved by shaping one of the three excitation pulses.
In order to also extend the theoretical control predictions of section 3.2 a
learning-loop setup is used, automatically finding the optimal solutions. All
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constituting components were already discussed before and only the feed-
back signal has to be explained in detail. In the experiments a transient
of 5 ps (termed FFT window) was recorded with the monochromator fixed
at one wavelength [Fig. 3.10]. The transient was sufficiently long to clearly
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Figure 3.10: The feedback signal is derived from the transient by FFT and evalu-
ating the difference in peak heights between A and X. This number serves as feed-
back to an evolutionary algorithm which uses genes either representing frequency
or time domain.

resolve the two peaks of X and A state vibration in the Fourier transform
data. The A peak at 1.9 ps−1 will be labelled by I(νe) and the X peak at
2.7 ps−1 by I(νg) in the following. The feedback signal was computed by
subtracting from the difference of the vibrational peak heights [I(νe)−I(νg)]
the noise level of the Fourier data:

Feedback signal = ±(I(νe)− I(νg))− b · noise (3.21)

The variable b is a weighting factor multiplying the noise subsoil which is
calculated by summing over the intensities at the frequencies ranging from
5 ps−1 until 19 ps−1. This assures that the contrast between peak heights
and noise is high for any optimized pulse. The algorithm should maximize
the difference in peak heights, ±(I(νe) − I(νg)), taking the + sign for A
optimization and the - sign for X.
Crucial requirement for this feedback to work is the acquisition of the tran-
sient for time separations τ greater than the temporal shaping window of the
modulator in order to avoid probing while the system is still being excited
[Fig. 3.10]. The shaping window is computed as number of pixels times
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temporal resolution of the SLM and can be interpreted as the maximum
time span into which a shaped pulse may extend (see section 1.1) [45]. The
necessary scanning of the delay unit over a range of 5 ps with a resolution of
50 fs in order to obtain the feedback-signal took about half a minute. Since
the algorithm converged within five generations, each consisting of 20 indi-
viduals, it took about one hour to get the optimal pulses. Much longer times
would have been needed if the algorithm would have had to adjust the 256
voltages, two for each pixel, of the mask. Instead parameterizations, as de-
scribed in section 1.2, were used throughout reducing the number of control
knobs and therefore the size of the search space drastically. Three differ-
ent control mechanisms were studied: phase-related double pulses (pump-
dump) [12,13], pulse trains (impulse stimulated Raman scattering) [84] and
finally chirped pulses [9, 42, 100]. The parameterization was either chosen
directly in the time or in the frequency domain, depending which domain
required less parameters to represent the desired field. Switching between
the two different parameterizations did not afford adapting internal strategy
parameters of the evolutionary algorithm. In all the optimizations the pulse
sequence was SS-U.

Parameterization in the time domain.
A parameterization in the time-domain is used as an effective way of restrict-
ing the optimization to phase-related double pulses. This is good starting
point to test the theoretical control results for the case of Eq. (3.15). For
the representation of such a double pulse in the frequency domain at least
256 parameters are needed, using the applied voltages to the shaper as genes
whereby each parameter comes with a discretization of 64 grey levels. In
contrast using genes that represent each pulse in the time only four param-
eters are needed: amplitude and phase at a specific temporal position. The
temporal position could attain 128 values corresponding to the discrete posi-
tion spaced by half the incident pulse temporal width [4] within the shaping
window (see section 1.1). Phase in the range of [0,2π] and amplitude in
the range [0,1] were discretized in 20 steps. The algorithm converged for
both optimizations of A and X within five generations. A double pulse of
time separation 540 fs optimizes A and a time separation of 740 fs opti-
mizes X, respectively [Fig. 3.11]. The theoretical predictions assuming the
model of Eq. (3.15) accurately matches experimental results [solid line in
Fig. 3.11]. Also additional double pulses matching a multiple of the vibra-
tional periods were tried giving similar results in perfect agreement with
theory (not shown). The importance of the phase-relationship between the
two subpulses [101] was investigated by recording DFWM transients for var-
ious double pulses with different phases but fixed interpulse separation. The
data was Fourier transformed, and the ratio of the vibrational contributions
from the A and X states was calculated. In Fig. 3.12 this ratio is plotted
against the applied phase differences. Each point represents one measure-
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Figure 3.11: FROG measurements of (a) reference pulse and (b), (c) optimized
pulses using a direct time parameterization. The corresponding transients are (α)
and (β),(γ). The Fourier transform of this data (1)-(3) and theoretical model (solid
line) shows that pulse (b) optimizes A contribution while (c) X contribution.

ment. The data show a 2π period and this result is independent of whether
the shaped double pulse in the DFWM sequence arrives first or last in the
interaction volume. This implies that the ratio between A and X contribu-
tions can be controlled for any fixed pulse separation by varying the relative
phase only. Using again the theoretical model [Eq.( 3.15)] gives good agree-
ment with the experimental phase data [see Fig. 3.12]. Theory can now be
used to predict the outcome of the experiment for a whole range of inter-
pulse separation and phase relationships. The results of this calculation is
shown in Fig. 3.13: the signal landscape or merit function [I(νe)− I(νg)] as
a function of phase difference and time delay of the shaped double pulse.
The maxima (white) correspond to the set of solutions for maximal A state,
while the minima (black) to maximal X state. Therefore an “egg carton”
like merit function was experimentally realized, that was ideally suited to
test the performance of the evolutionary algorithm in the experiment. There
is a series of maxima and minima along the cut at 370 fs, 570 fs, 790 fs and
1030 fs alternating with mod 2π. Indeed the maxima are most pronounced
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Figure 3.12: Ratio of the vibrational contribution of A and X state (A/X) to the
transient plotted versus the phase difference in the double pulse sequence.

Figure 3.13: Merit function of the optimization problem restricted to phase-
related double pulses. It was calculated by computing the feedback signal according
to Eq. (3.21) for different time separations and delays of the shaped double pulse.
Note that the delay ∆ starts at 0.1 ps, where the tailored double pulse consists of
clearly separated subpulses in time.

at 570 fs and 790 fs and seem to be of nearly equal amplitude. At around 2
ps there is again a recurrence of maxima and minima but with slightly lower
amplitude. It is interesting to note that the algorithm found the solutions
at 540 fs and 740 fs for this double pulse excitation and avoided the shallow
minima and maxima around.
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Parameterization in the frequency domain.
The frequency domain is ideally suited to parameterize pulse trains and
chirped pulse. In order to find the optimum pulse train and thereby ver-
ifying Eq. (3.14) a phase function φ(x) = a sin(b · x + c) with parameters
a, b, c was set onto the mask. If the spectral phase of a femtosecond pulse is
modulated by such a periodic pattern, it leads to replication of the incom-
ing Fourier limited pulse at equidistant times forming a pulse train. The
parameter b adjusts the interpulse separation. The algorithm restricted to
these 3 parameters should aim for a pulse sequence ideally suited to excite
only X state dynamics. It found a pulse shape with an interpulse separation
of exactly twice the vibrational period in the ground state, that is 720 fs
[see Fig. 3.14]. This however is not the only optimal pulse train solution to

Figure 3.14: Transient and FFT before (a),(α) and after (b),(β) optimization
using the φ(x) = a sin(b · x + c) parameterization in the frequency domain. Solid
line in (α) and (β) is theoretical model calculation. (c) The FROG trace of the
optimal pulse.

the problem as could be verified by adjusting the parameter b and thereby
the interpulse separation to an integer multiple of the upper state (530 fs)
- leading to excitation of only A state dynamics [Fig. 3.15 bottom row] -
or ground vibrational roundtrip time of 380 fs exciting specifically only X
[Fig. 3.15 middle row]. The theoretical results are shown as solid line in this
figure. The other interpulse separations predicted by the theoretical model
[see Fig. 3.2] were also found to be correct (results not shown).
Finally by investigating the effect of chirp, solutions beyond the multi-

ple pulse DFWM theory could be found. Instead of building the genes for
the evolutionary algorithm from individual pixel values, the genes here rep-
resent Taylor coefficients (a, b, c, d) of a third order polynomial expansion:
φ(x) = a(x− d)3 + b(x− d)2 + c(x− d). This analytic function is the phase
function applied to the SLM and is ideally suited to shape chirped pulses
(see section 1.4 and Refs. [61, 76]). The algorithm should find the critical
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Figure 3.15: Pulse trains modulated by spectrally periodic phase functions,
a sin(bx + c). The DFWM transient (a)-(c) and its FFT (α)-(γ) for excitation
with a FL pulse, pulse train with ∆ = 380 fs and pulse train with ∆ = 530 fs.
Theoretical prediction (solid line, right figures) is accurate.

chirp needed to completely suppress the X state dynamics and it came up
with the solution shown in Fig. 3.16. Analysis of the pulse reveals mainly
negative quadratic but also some cubic phase. It was experimentally verified
that for a positive linear chirp of the same amount leading to the same longer
pulse duration no enhancement of A state dynamics could be observed. The
tendency that negative chirp enhances the A state contribution in the sig-
nal is very well predicted by the theoretical model of the previous section
[see Fig. 3.5]. These encouraging results call for a more detailed theoretical
study, that will be done in the near future.

Figure 3.16: Transient and FFT before (a),(α) and after (b),(β) optimization
using polynomial parameterization in the frequency domain. (c) The FROG trace
of the optimal pulse. The A optimizing pulse has negative linear and quadratic
chirp and a pulse duration of about 560 fs.
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3.4 Using DFWM as an in situ-FROG

Using a fiber optics spectrometer fitted with a linear multichannel CCD de-
tector (Ocean Optics S2000) instead of a photomultiplier, it was possible to
analyze the spectrum of the DFWM signal, and all frequency components
inherent in the FWM signal were captured at once. Since the excitation
pulse consists of a broad and coherent spectrum, a very wide coupling of
ro-vibronic levels between ground and excited state is observed with each
spectral component of the DFWM signal showing its own vibrational dy-
namics [90].

The spectrally resolved FWM data does not only consists of a molecular
dynamics part, but also provides a cross-correlation measurement of the
unshaped pulses with the tailored pulse. This part of the two dimensional
dataset is equivalent to a χ(3) FROG [102], where the electronic part of the
optical response, R(3), of the molecule provides χ(3). This signal, D(ω, t),
also known as wavelength resolved stimulated photon echo (WRSPE) [103]
is described by the following equation:

D(ω, τ) =

∣
∣
∣
∣

∫

dt R(3)E2(t)E(t− τ) exp(−iωt)
∣
∣
∣
∣

2

. (3.22)

A FROG retrieval algorithm could be used to calculate from this WRSPE
data the electric field of the tailored pulse. However the WRSPE data
in itself already reveals some information about the shaped pulse used in
DFWM. This is clearly visible in Fig. 3.17 where the spectrally resolved
DFWM signal is shown for three differently modulated excitations. From
left to right these are: empty mask, negative linear chirp, positive quadratic
chirp and a phase related double pulse. For example it is possible to see
the amount, the sign and the type of laser pulse chirp in the interaction
volume [Fig. 3.17(b) and (c)]. It is interesting that the FWM response of
the molecule directly resembles the phase of the exciting pulse. This is due
to the fact that the frequencies are emitted in the same order as they are
excited. Since the frequency is the first order differential of the phase, the
frequency of a pulse with quadratic phase increases linearly, while parabol-
ically for cubic phase. This means that the phase of the pulse is directly
transferred to the molecule. Excitation with a tailored double pulse leads to
the formation of the clearly separated time bands due to a deep modulation
of the DFWM spectrum. The amplitude and phase modulation pattern of
the shaped excitation pulse [see Fig. 2.7] coincides with the pattern of the
DFWM spectrum [see Fig. 3.17(d)]. The frequency emission pattern of the
molecule shifts along the wavelength direction under a variation of the phase
accomplished by a shift of the mask pattern, but also the vibrational motion
goes over from the excited to the ground state as displaced on the vertical
and vice versa (not shown here, but discussed earlier).
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Figure 3.17: Spectrally resolved DFWM signal. (a) Unmodulated pulse. (b)
negative linear chirp. (c) positive quadratic chirp. (d) phase-related double pulse
∆ = 480 fs and α = π.

3.5 Summary and Outlook

In the potassium dimer studies of this chapter, molecular dynamics in both
involved electronic states could be studied simultaneously. Especially the
ground state dynamics are difficult to access by other means. DFWM also
has the advantage to be selective to a very localized region in space; the
interaction region of the three involved beams. Therefore volume effects
are naturally excluded. In addition, the control scheme of multiple pulse
DFWM is not restricted to electronically resonant processes which increases
the possibilities to obtain control where resonances are experimentally diffi-
cult to access.
The results presented here show, that it is possible to control the DFWM
response of the potassium dimer. Especially a learning-loop approach is fea-
sible despite the sophisticated feedback signal if parameterizations are used.
The results are in perfect agreement with a theoretical model developed
along these lines.
A theoretical analytical model was derived explaining the control of the
FWM signal as interference effect outside the molecule. The theory clearly
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assumes that each subpulse of the tailored sequence together with the time-
coincident pulses generates the same DFWM signal, but time delayed and
phase shifted. These identical ejected signals interfere with each other lead-
ing to an overall signal with only one dynamics. The molecule hence re-
sponds always in the same way to each subpulse and the control occurs
outside the molecule, due to an interference of the emitted radiation. Still
this analytical theory could not be applied to the case of chirped excitation,
and a different model was used based on a numerical perturbative approach.
Thereby an enhancement of the A state contribution in the signal with neg-
ative chirped could be explained. However a complete vanishing of the X
state peak as observed in experiment is still not understood. Future calcu-
lations will help clarify this effect.
Moreover it was shown that a wavelength resolved DFWM signal serves
as a molecular FROG. This shows that tailored pulses are faithfully deliv-
ered into the interaction region. Also different spectral regions of this two-
dimensional data correspond to processes of coherent anti-Stokes Raman
scattering (CARS), coherent Stokes Raman scattering (CSRS) and DFWM.
The small wavelength side corresponds to CARS, the center wavelength
portion to DFWM and finally the large wavelength spectral part to CSRS
processes [95]. A heterodyne measurement would moreover give full infor-
mation about the electric field of the DFWM signal [66].

Four-wave mixing experiments especially the recent developments of mul-
tidimensional spectroscopies [104–106] are ideal to study complex molecules.
The broad featureless line shapes of 1-D spectroscopies are expanded with
these higher dimensional methods into a second dimension leading to di-
agonal and cross peaks revealing the microscopic dynamics. In essence
multidimensional spectroscopy is the analog of NMR in the femtosecond
regime [107]. From this similarity one can understand, that application of
carefully shaped and timed femtosecond pulses can provide a novel multidi-
mensional view of molecular structure as well as vibrational and electronic
motions, interactions, and relaxation processes. A combination of pulse
shaping with nonlinear spectroscopies as was done in this thesis is there-
fore a very promising field. Indeed there exist already experiments showing,
that this new control method is applicable to microscopy [108,109]. Another
perspective of this method is to probe an altered ground state population
distribution among the vibrational states, since the FWM signal is composed
of the individual vibrational contributions weighted by their respective pop-
ulations. An altered ground state population of a specific shape can be
produced using tailored pulses as will be shown in section 8.1.



Chapter 4

Coherent control
experiments: Concluding
remarks

The control examples of this experimental part have shown, that a learning-
loop is a powerful control setup. The prerequisite, that shaped pulses arrive
in the interaction zone without important phase or amplitude distortions is
fulfilled. This is proven, by the experimental one parameter scans agreeing
perfectly with theoretical predictions and also by direct measurements in the
interaction region by using DFWM. All control results, that could be com-
pared with a theory have converged to the global optimum, despite the ”egg
carton” shaped merit functions with many local minima. Evolutionary al-
gorithm seem to be therefore very appropriate. There convergence rate and
fidelity depends on the number of control knobs. In all experiments parame-
terizations were used for this reason, but also to enable control experiments
with time consuming feedback signals and to simplify the interpretation of
the optimal pulse in the end. Parameterization is a constraint, that is used
to incorporate knowledge about a possible control mechanism. In the next
part of this thesis the effort will be to unite theoretical methods predicting
optimal pulses with experimental constraints. Modifications to the optimal
control algorithm are presented, such that finally the calculated pulses can
be directly implemented in experiment, so that in principle optimal control
pulses beyond parameterized results can be understood.
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Part II

Coherent control theory
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In the first part we have seen that the experimental method to obtain
optimized pulses for some aim is to use a learning-loop approach. This ap-
proach could also be implemented by a direct mapping of all the elements:
pulse shaper, experiment and learning algorithm into theory. However the
learning-loop setup converges only after thousands of experiments, a fact
that is not important in experiment since the system is able to solve its
Hamiltonian in real time. However the theoretical implementation will have
to solve the Hamiltonian by a time consuming numerical propagation of
the underlying dynamical equations. Therefore it is necessary to develop a
new optimization algorithm that needs less number of iterations. This was
accomplished independently by D. J. Tannor [29] and H. Rabitz [27] by for-
mulating the problem with variational calculus, being aware of the fact that
the future information can be used to speed up performance considerably.
Section 5 will explain this optimal control algorithm. The next sections con-
centrate on trying to link theoretically tailored laser fields for the control
of the potassium dimer with experiment, on discovering new control mech-
anisms and solving two different control aims: state selective transfer and
molecular population inversion. In trying to accomplish this task the opti-
mal control algorithm has to be extended in order to provide experimentally
realizable pulses. Moreover the needed mask patterns to shape these pulses
are calculated.
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Chapter 5

Essentials: Optimal Control
Theory (OCT)

Whereas in experiment optimal pulses are designed by a learning-loop setup,
the design in theory is performed with two major computation tools [110,
111]: local [32, 112] and global control [110, 113]. The algorithm used in
the global approach is also known as optimal control theory (OCT). Both
methods assume the complete knowledge of the system Hamiltonian and
essentially use in time propagation to optimize the fields. The important
differences to both approaches are:
In local control at every instant of time the control field is chosen to achieve
monotonic increase in the desired objective. Two conditions are used at any
time step, one to determine the phase of the field and one to determine the
amplitude. In order to write down the condition to be fulfilled at all times
it is necessary to already know of a mechanism that will effectively drive the
initial state to the desired target. In contrast to OCT, which incorporates
information on later time dynamics through forward - backward iteration,
these methods use only information on the current state of the system. OCT
is a much more versatile computational tool, since it needs only information
on the initial and target state. The algorithm uses both of this information
in future and past to find the optimal field, that connects both states. The
field is not constraint to any condition and therefore the algorithm itself will
discover the most suitable pathway. It therefore includes all the solutions
of local control as a subset. In rare cases, since convergence to the global
optimum is not proven for OCT, it may be outperformed by local control.
A direct comparison of the two methods is presented in Ref. [111]. In the
following section variants of global control will be explained.

77



78 5. Essentials: Optimal Control Theory (OCT)

5.1 Global control as a variational problem

The task of finding an optimal laser field for a given objective is solved by the
mathematical framework of control theory [114]. Here it is assumed, that
the system is characterized either classically by momentum and location or
quantum-mechanically by its wave function or density matrix and obeys a
dynamical equation. The evolution depends not only on the initial state, but
also in a deterministic way on a time dependent external control variable,
in our case the laser field. Moreover an additional constraining function is
considered, that limits the control to certain boundaries or forbids system
trajectories, that do not obey the equations of motion. The task is now to
find the control field that will steer the system from its initial state as close
as possible to its final state in a specified time T. Control theory states that
in order to solve this problem a functional incorporating the objective and
the constraining function must be defined with the help of a Lagrange mul-
tiplier. This functional is then to be maximized. That is done by setting its
functional derivative equal to zero. The functional derivative is calculated
by variation with respect to the parameters of the functional, being contin-
uous functions over the optimization interval. The obtained optimal control
equations typically have the structure of three coupled differential equations:
one for the wave function, one for the Lagrange multiplier, each with certain
boundary conditions and finally, an equation for the optimal field, which in
turn is expressed in terms of the wave function and the Lagrange multiplier.
These are the general remarks and now a detailed derivation follows.

Variational calculus can be used to find an extremum of any function
f(x) constraint by an equation G(x) = 0. The extremum is then found by
calculating J ′

λ(x), where Jλ(x) = f(x) − λG(x) and λ is the real valued
Lagrange multiplier. In the case of optimal control theory G(x) is com-
plex function. Variational calculus can be easily extended to cope with this
complication. The functional expressed using only real functions is then
Jλ1,λ2 = f(x)− λ1Gr(x)− λ2Gi(x). Here Gr and Gi are the real and imag-
inary parts of G. Using the relationship

λ1Gr + λ2Gi =
λ1

2
(G+G?) +

λ2

2i
(G−G?)

= (λ1 − iλ2)G+ (λ1 + iλ2)G
? (5.1)

λ1Gr + λ2Gi = Re(λG) (5.2)

were λ = λ1 − iλ2 is now a complex Lagrange multiplier. This allows to
write the variational problem simply as

Jλ = f(x)− Re(λG) (5.3)

J ′
λ(x) = 0 (5.4)

G(x) = 0 (5.5)
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Moreover it is important to match the variation at the boundaries to the
boundary values supplied. Now this variational approach can be specialized
for optimal control theory [27–29, 115] using explicit expressions for G and
f

f (ψ(t), ε(t)) = |A|2 − α
T∫

0

dt
|ε(t)|2
s(t)

. (5.6)

Optimization is performed only within a time interval [0,T]. The functional
f is composed of two summands. The first specifies the yield, that is the
overlap with the target state ψf or the expectation value of an hermitian
operator X, depending how the control aim is most favorably expressed.
The target state description could for example be used to optimize for a
specially shaped wave packet, while it is better to use an operator to e.g.
aim for wave packet focusing without specifying the specific shape of the
target wave function. In the following the OCT will be termed differently
depending on the form of A : if A = 〈ψf |ψ(T )〉 it will be called wave function

OCT [27] and if A = 〈λ(T )|X|ψ(T )〉 operator OCT [35, 116,117].
The second term in J penalizes the electric field fluence. The weight fac-
tor α, also known as penalty factor, allows for flexibility in choosing the
relative importance of the physical objective and the fluence. The shape
function s(t) was first introduced into OCT by Ref. [115] and is used to
avoid abruptly changing fields and set a minimum for the pulse bandwidth.
Especially s(t) is a function of smooth switch on and off behavior imprinting
this property on the optimized field. The maximization of f is constrained
by the dynamical equation for ψ, which in the case of wave functions is the
Schrödinger equation.

G = i∂tψ(t)− [H0 − µε(t)]ψ(t), ψ(t = 0) = ψi. (5.7)

Other dynamical equations will be treated in chapter 11 of this thesis. The
unconstrained objective functional Jλ can be formed according to Eq. (5.3)
by employing a complex valued Lagrange multiplier function λ(t)

Jλ = f − 2Re



A

T∫

0

dt〈λ(t)|
[

i(H0 − µε(t)) +
∂

∂t

]

|ψ(t)〉



 . (5.8)

At an extremum of the objective functional J the condition δJλ = 0 is satis-
fied. The prefactor A is necessary to obtain separable differential equations
after variation. The prefactor could be omitted when A is used as target
in the functional instead of |A|2.1) The Lagrange multiplier λ(t) is chosen

1)However the numerical iteration works perfectly without this prefactor.



80 5. Essentials: Optimal Control Theory (OCT)

such that the variation of Jλ with respect to ψ is zero, i.e., ∂Jλ/∂ψ = 0 [see
Eq. (5.4)]. This leads to the following differential equation

i∂tλ(t) = [H0 − µε(t)]λ(t), λ(t = T ) = ψf . (5.9)

ψf is the boundary condition for ψ at t=T for wave function OCT, while
for operator OCT no such boundary exists, and ψf = Xψ(T )/|Xψ(t)|. Per-
forming the variation with respect to the electric field ε(t), the subsequent
differential equation is obtained

α

s(t)
ε(t) + Im {〈ψ(t)|λ(t)〉〈λ(t)|µ|ψ(t)〉} = 0. (5.10)

Eqs. (5.7), (5.9) and (5.10) are coupled through the electric field. Three
different schemes were proposed to solve this coupled set of three equations
with boundary conditions at final and initial time. There difference lies
merely in the way Eq. (5.10) is used.

Gradient-type. Open form iteration scheme. Here Eq. (5.10) is
taken as the gradient of Jλ with respect to ε(t) [31, 34,118,119]

δJλ
δε(t)

=
α

s(t)
ε(t) + Im {〈ψ(t)|λ(t)〉〈λ(t)|µ|ψ(t)〉} , (5.11)

and is used in a steepest-descent procedure to optimize ε(t). The iterative
scheme for calculating the optimal field is as follows:

1. Establish the initial state vector ψ(0) = ψi, and an initial guessed field
εk=0(t).

2. Propagate ψ(0) forward to final time T, simultaneously calculating the
objective f [Eq. (5.6)].

3. Propagate backwards λ(T ) = ψf (or λ(T ) = Xψ(T )/|Xψ(T )| for op-
erator OCT) to time t = 0 using Eq. (5.9). Simultaneously propagate
backwards ψ(T ) as well [or if possible use the stored values from the
forward propagation Eq. (5.7)]. During these reverse propagations use
again the field εk=0(t) and calculate the gradient δJλ/δε(t) for all t
using Eq. (5.11).

4. The new field is

εk+1 = εk − β δJλ
δε(t)

, (5.12)

where β is a positive constant determined by a search procedure that
minimizes fk+1 = f [εk+1

β (t)].
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5. Repeat step 2 - 4 until fk+1 converges to a maximum.

Into this gradient-type approach experimental constraints can be most easily
implemented, just by modifying the gradient. A very common situation in
coherent control is to parameterize the field ε(ci, t) (see section 1.2). The
gradient can be easily adapted to this case by calculating the derivative with
respect to the parameters

δJλ
δci

=

T∫

0

dt′
[
α

s(t′)
+ Im

{
〈ψ(t′)|λ(t′)〉

〈
λ(t′)

∣
∣µ
∣
∣ψ(t′)

〉}
]
δε(t′)

δci
, (5.13)

and use them in the gradient approach [118, 119]. However this approach
has one central disadvantage linked to the use of a gradient. The method is
prone to get stuck in the local minima of search space and the convergence
rate is rather slow. This is the reason why a global iterative procedure was
developed, termed Krotov method [114, 120, 121]. This scheme uses an im-
mediate feedback and converges quadratically [27].

Krotov or closed iteration schemes. This method implements an
iteration scheme differing from the one presented before in unifying step
(3) and (4) into one single step. Instead of propagating λ(T ) with εk(t)
backwards all time steps until t=0; λ(T ) is now propagated back with the
improved field εk+1(t). In order to do so the new field is calculated at each
time step using as immediate feedback the equation obtained by variation
with respect to the field

εk+1 =
s(t)

α
Im {〈ψ(t)|λ(t)〉〈λ(t)|µ|ψ(t)〉} . (5.14)

The iteration scheme has to proceed then in a stepwise manner: λ(T ) is
propagated to λ(T − dt) by the field εk+1 using Eq. (5.14) evaluated at T ,
then back again one step with εk+1 computed using ψ and λ at T − dt and
so on until initial time. The wave function ψ(t) however is propagated back
as in the gradient iteration scheme using the old field εk. This iterative
procedure is pictured in Fig. 5.1.

It is also possible to use instead of Eq. (5.14) the following one

εk+1 = εk +
s(t)

α
Im {〈ψ(t)|λ(t)〉〈λ(t)|µ|ψ(t)〉} , (5.15)

that is the overlap term is not directly equal to the new field, but is only
used as correction to the field from the previous iteration. This method
will be termed modified Krotov in the following. It is known to reach a
higher maximum for the objective than Eq. (5.14). It is important to say
that in this rapidly convergent scheme it is impossible to parameterize the
field. Instead the electric field is changed freely at each point of time by the
algorithm as it proceeds.
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>

<
>
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Figure 5.1: Schematic of the numerical iterative procedure used to solve the
coupled system of equations obtained from the variation of the functional. The
boundary conditions are the wave functions at initial time ψi and final time ψf .
One iteration consists of a forward in time propagation of ψ with the field ε(n) of
the previous iteration n until final time. Followed by the backward propagation of
the Lagrange multiplier λ from final time using the new field ε(n+1), that obtains a
new value at each time step using essentially the overlap of ψ and λ [Eq. (5.14)].

5.2 Propagators for the dynamical equation

Central to all the presented optimal control algorithms is of course the
solution of the time dependent dynamical equation. The time dependent
Schrödinger equation is a first order differential equation. Therefore in prin-
ciple all numerical tools solving these could be simply applied, such as adap-
tive Runge-Kutta or predictor-corrector schemes. Over the years however
much more efficient and meanwhile widely used methods have been devel-
oped [122–124]. Some of the advantages are that they allow accurate control
over the propagation error, make a balanced overall treatment possible by
using the Fourier representation [125] and normally conserve some physical
quantity. The following discussion is not an excessively detailed one, how-
ever profound enough to explain the merits and generality of the Chebychev
expansion scheme especially with respect to its use in the OCT algorithm
by comparing it with other two popular schemes: second-order-differencing
(SOD) and split-operator (SPO).

Second order scheme (SOD). The explicit second order scheme is
ψ(t + ∆t) ≈ ψ(t −∆t) − 2i∆tHψ(t). If the Hamiltonian is Hermitian, the
SOD propagation scheme preserves norm calculated as 〈ψ(t−∆t)|ψ(t)〉 =
〈ψ(t)|ψ(t−∆t)〉 = const and energy 〈ψ(t−∆t)|H|ψ(t)〉 = const. The ex-
act form of energy and norm conservation (e.g. 〈ψ(t)|ψ(t)〉), can be used
to monitor the calculated error, since neither of these values is strictly con-
served. The non-conservation of the real quantities leads to ambiguities in
how to calculate the overlap between λ and ψ in Eq. (5.10). Various possibili-
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ties exist, e.g. 〈ψ(t)|λ(t−∆t)〉, 〈ψ(t−∆t)|λ(t)〉 and all other combinations,
but all of them lead to more than exponential explosion of the norm in the
OCT scheme for values of the penalty factor below some threshold. That
means while the mere SOD propagation scheme has still no problem with
the intensity of the field, the SOD OCT will not be able to use that field as
initial guess.
Therefore other propagation methods must be used in optimal control the-
ory. The following two methods exploit the closed form expression of the
Schrödinger equation propagator U = exp[iH(t)dt] and are superior.

Split Operator Method (SPO). Since the Hamiltonian is the addition
of the kinetic and potential part (H = T+V (ε)) the propagator can be writ-
ten approximately as U ≈ exp(− i

2Tdt) exp(iV (ε)dt) exp(− i
2Tdt) +O(∆t3).

The potential part includes the interaction with the laser field. It is there-
fore non-diagonal. If the diagonal matrix of the V is called D and Z is
the matrix of eigenvectors, then the split-operator scheme is simply U ≈
exp(− i

2Tdt)Z exp(iDdt)Zt exp(− i
2Tdt) + O(∆t3). The algorithm can not

handle operators that mix spatial coordinates and momenta. The scheme
does not conserve energy. The error can only be controlled by choosing a
smaller time step.

Chebychev Scheme (CH) [126]. CH is a global propagator, since in
case the problem is time independent sometimes a single time step completes
the calculation. This does not mean that it is not suited for time dependent
problems, on contrary it is one of the most accurate propagation schemes to
date. The main idea behind global propagators is to use a polynomial expan-
sion of the exponential in the evolution operator U ≈ ∑N

n=0 anPn(−iHt).
The problem then becomes the choice of the optimal polynomial approx-
imation. It is known that the complex Chebychev polynomials optimally
approximate the evolution operator [122,126]. In practical implementation,
the maximum order N can be chosen such that the accuracy is dominated
by the accuracy of the computer. There is no need to use a smaller time
step. The method is not unitary but due to its extreme accuracy the de-
viation from unitarity can be used as accuracy check. The time reverse
propagation is done by simply changing the sign of the expansion coeffi-
cients. The method can work with any functional form of the Hamiltonian
operator provided an estimate of the eigenvalue range can be made. If this
range is underestimated it becomes unstable. There exist a generalization
to this scheme, that is capable of propagating nonlinear Schrödinger equa-
tions [127].

Finally the performance of the propagation schemes depends critically
on the basis set the time-dependent Hamiltonian is expanded in. This can
be eigenstates of the field free Hamiltonian, statistical wave functions to
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treat ensemble problems most efficiently [128] or the coordinate and mo-
mentum space [124,125]. Especially the last basis set is the most promising,
since the key operation used, the Fourier transform can be implemented as
parallel code on many processors [129]. Moreover a nonlinear mapping of
the coordinate space can be used to efficiently support highly bound states
reaching far out to interatomic distances above 50 a.u. [130]. Also repulsive
potentials and conical intersection [131] can be treated.
The propagators for the Liouville equation with dissipation and the Gross-
Pitaevskii equation will be discussed in the corresponding chapters 10 and 11,
respectively.



Chapter 6

The system and the transfers
under study

The aim of the following theoretical chapters is to modify optimal con-
trol theory in order to find experimentally realizable pulses. Realizability
concerns the complexity of the pulse shape, the intensity and the spectral
bandwidth which must be within the current state of the art capabilities.
In order to perform realistic calculations the potassium dimer is chosen as
a prototype system. This dimer is well characterized experimentally and
the potentials and dipole transition moments are accurately known. Since
the experimentally used laser pulses centered around 820 nm excite initial
ground state population mainly into the first excited (A 1Σu) and through
multiphoton-excitation into other resonant electronic potentials (2 1Πg, 4
1Σg and the ion channel) these potentials were taken into account in the the-
oretical model [see Fig. 6.1]. Due to this provision multi-photon processes
are naturally accounted for during optimization. For reasons of simplicity
these surfaces will be termed X,A,2,4,ion. In the following the wave func-
tion |ψ〉 is represented as a vector in the electronic components (X,A,2,4).
The coupling of the ion is much too weak to play any role in the studied
control processes. The Schrödinger equation can be either cast into space
or eigenfunction representation. In the most simplistic description only the
bond length r of the molecule is included in the dynamics. In this case the
Schrödinger equation is

i∂t〈x|ψ〉 =
−~2

2mred

{
∂2
r + 〈x|V |x〉

}
〈x|ψ〉+ 〈x|Vint(ε)|x〉〈x|ψ〉 , (6.1)

with the interaction potential

〈x|Vint(ε)|x〉 = ε(t) {|X〉〈A|µXA(x) + |A〉〈2|µA2(x)

+ |A〉〈4|µA4(x) + c.c.} . (6.2)
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Figure 6.1: The potential surfaces of the potassium dimer taken into account in
the calculations. The coupling to the ion is so weak, that it plays no role. All the
potentials depicted here are resonant to the center frequency of the exciting laser.

Here the partial derivatives ∂
∂i are written as ∂i for convenience. The re-

duced mass for the system is mred = 35804.977 a.u. The dipole moments
r-dependence must be taken into account [132] since transfers can occur at
different interatomic separations, e.g. the inner or outer turning point. The
potentials V represent the electronic surfaces X,A,2,4 considered and are dis-
cretized on a regular grid of dx = 0.02 a.u. with 512 points. The interatomic
distances ranging from 5.0 to 15.22 a.u. suffice to support the vibrational
bound states populated during the interaction of the system with the laser
field. The ionic state can be safely ignored since the intensities allowed in
the optimization are not sufficient to ionize K2. The time step was chosen
to be 6.0 a.u.
More specifically two different transfers in the K2 molecule are optimized
using ultrashort laser pulses: state selective transfer (in the following ab-
breviated by SST) [115] between two eigenstates of the ground electronic
potential (X 1Σg) and population inversion (in the following abbreviated
by PI). Since the potassium dimer is an homonuclear molecule the direct
light induced transfer between two eigenstates of the same electronic poten-
tial is forbidden. In order to connect these initial and final eigenstates the
transfer has to take a detour that includes a potential surface with different
electronic structure. The interest in SST lies in the fact that a broadband
pulse normally creates a superposition of eigenstates. A suitably induced
Raman-pumping between the wave packets evolving on the surfaces during
the optimal pulse however must be capable of focusing the population again
into a single target eigenstate at final time. Due to the ultrafast timescale of
this transfer dissipation effects are negligible. Therefore and due to its near
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unit transfer efficiency it is a real alternative to stimulated Raman scatter-
ing involving adiabatic passage (STIRAP).
In the PI calculations the aim is to transfer ground state population either
concentrated in a single vibrational state, resembling the conditions in a
cold-molecular beam, or in a thermal distribution of eigenstates, as occurs
in a heat pipe oven, to A 1Σu [42]. It is then possible to characterize the
difference between pulses producing real population transfer into the A state
and those of chapter 3 controlling the A state contribution in the four-wave
mixing signal. The calculations for SST and PI are presented in chapter 8.





Chapter 7

Experimentally realizable
laser pulses

The aim of this chapter is to define an interface between optimal control
theory and experiment that characterizes whether a calculated pulse is also
applicable in experiment. Since the Hamiltonian is normally only an approx-
imation to reality these theoretical pulses will not have the same degree of
control in experiment as they have in theory. However the hope is, that they
can provide a feedback-signal above the experimental noise level in order to
start the learning-loop approach. This link between theory and experiment
is especially important for problems, where the control is difficult to achieve
without a good starting point, to check the theoretical model and to under-
stand the mechanism.
Experimentally, pulses with nearly arbitrary time-frequency behavior can be
tailored using pulse shaping techniques. In view of the direct implementa-
tion to experiment the pulse shaper constraint should be included in optimal
control theory. In this case the calculated pulse will always be within the
experimental possibilities. The standard functional has no provisions in this
respect and therefore it is not surprising that it is left partly to chance
whether an optimal pulse is realizable or not. The exact reason for pulse
complexity will be explained in detail in section 7.2. In the following differ-
ent possibilities to include pulse shaping into OCT using gradient methods
are suggested. These proposition will not be further pursued in this thesis
due to the local and therefore inferior search of gradient type methods. In
addition these methods were already proposed in literature and are adapted
here only to the pulse shaping situation.

• Pulse shaping constraint in the time-domain. A pulse modu-
lated by a pixelated Spatial Light Modulator is expressible as a sum of
incident Fourier limited pulses with variable phases φn and amplitudes
an (see section 7.2). It is then possible to use simply the gradient OCT

89



90 7. Experimentally realizable laser pulses

scheme (see section 5.1), that allows for fields of a certain functional
form and use the set (an,φn) as parameters.

• Pulse shaping constraint in the frequency-domain. The fre-
quency domain picture of pulse shaping has the advantage to be the
most general. Not only a pixelated SLM can be considered but any
kind of 4f-setup pulse shaper. A functional building in this constraint
has the form

Jnew = J +

∫

dω {ε(ω)−M(ω)εFL(ω)}2 . (7.1)

This again would lead to open form iterative equations known as the
gradient-filtering procedure first introduced by Gross et al. [31]. The
variation of the functional with respect to the electric field

∂J

∂ε(t)
= −2Im

{

〈λ(t)| ∂H
∂ε(t)

|ψ(t)〉
}

(7.2)

(7.3)

is filtered spectrally using the relation

∂J

∂ε(t) filter
=

∫

dω FFT

{
∂J

∂ε(t)

}

M(ω)eiωt (7.4)

and only then applied in the Krotov equation to calculate the improved
electric field

ε(k+1) = ε(k) − ∂J

∂ε(t) filter
. (7.5)

This restricts the optimal field to the frequencies impinging on the
maskM(ω). However this approach cannot be used in the closed form
iteration scheme since this would require to build the improved electric
field at each time step and immediately use it to propagate λ a time
step further (see section 5.1). This means that the gradient ∂J

∂ε(t) only

exist at every point of time but never in the whole interval [0,T]. A
necessary condition for its Fourier transform to exist and indispensable
to evaluate Eq. (7.5).

The above approaches always lead to schemes applying gradient type meth-
ods of optimization. Since these are inferior to the global search capabilities
of the closed form equations of OCT, in the following sections methods are
presented, that constrain the pulse spectrum and reduce pulse complexity
compatible with the closed and therefore global and rapidly convergent it-
eration scheme.



7. Experimentally realizable laser pulses 91

7.1 The definition of a realizable laser pulse

An experimentally realizable pulse is best defined by the mask pattern
needed to shape it. If this pattern has no complex features and does not
extend over a too broad spectral range it will be possible to load this pattern
directly onto the shaping device. Therefore the mask pattern is the direct
interface between coherent control theory and experiments. The algorithm
to extract the mask pattern proceeds as follows.

Figure 7.1: Schematic of the mask extraction algorithm. (a) The spectrum of the
tailored pulse is tightly fitted by a Gaussian. The mask is calculated by dividing
the tailored by the fitted spectrum. (b) As a result the unmodulated pulse (gray
line) is obtained from the modulated one (black line).

1. The real optimized pulse defined on the interval [0,T] with time steps
dt is Fourier transformed to obtain its spectrum.

2. The spectrum is complex and fulfills the condition ε(ω) = −ε?(−ω)
since ε(t) is real and has two maxima centered around ±ω0 [termed
ε±(ω)] the center frequency of the laser pulse. Time and frequency dis-
cretization are connected through the relation dω = 2π/(Ndt) where
N is the number of discrete points.

3. The properties of pulse shaping are essential to this step. The spectral
part ε+(ω) centered around +ω0 is taken and fitted with a Gaussian
spectrum with no phase modulation εin(ω) = gauss(ω − ω0). This fit



92 7. Experimentally realizable laser pulses

shall represent the spectrum of a bandwidth limited pulse, which in
normal operation is incident to the pulse shaping device. No extra
frequencies are generated during pulse shaping since this device can
only attenuate and retard spectral components. Therefore the fit must
not be of smaller bandwidth than ε+(ω). It should also not be chosen
much broader since the number of needed pixels would increase un-
necessarily. This is due to the fact that the pixelated mask in order to
work correctly has to extend over the range of significant amplitude
[ω0 − ∆ωin, ω0 + ∆ωin] of the incident spectrum. Therefore a direct
connection between incident spectral width(∆ωin) and the number of
pixels exists : #pixel=2∆ωin/dω. In conclusion the fit is chosen to
closely encompass ε+(ω) [see Fig. 7.1(a)]. The width of the Gaussian
allows one to compute the time duration of the incident pulse using
the time-bandwidth product and the Fourier limited field is obtained
by a Fourier transformation of the Gaussian [see Fig. 7.1(b)].

4. The mask pattern consisting of a transmission and phase modulation
is finally calculated according to

M(ω) = ε+(ω)/εin(ω). (7.6)

M(ω) is then a complex function Mn = Tn exp(iφn), where n is the
pixel index. The transmission pattern is accordingly Tn coerced into
the range [0,1] and the phase is φn. The frequency bandwidth seen by
each pixel is dω.

This algorithm can now be applied to optimal control pulses to calculate
the needed shaping pattern and supplies a decision criterion for the realiz-
ability of the pulse. Normally due to the required amplitude modulation,
the Fourier limited pulse will be shorter and of higher intensity, usually by a
factor of five [see Fig. 7.1(b)]. As an example we take a typical control pulse
obtained through optimization with the standard functional (section 5.1).
In this case it is a pulse optimizing the v′′=0 to v′′=3 transfer in X 1Σg

via the first excited state with a yield of 96%. Performing a 5 fs short-time
Fourier transform (STFT) of the pulse Fig. 7.2(a) is obtained. The result-
ing optimal mask is shown in Fig. 7.2(b). It exhibits a very complicated
structure, requires a high number of pixels and an incident FL pulse with a
duration of about 6 fs. These modulated pulses are hardly realizable with
state of the art technology and are therefore not suited for comparison be-
tween experiment and theory. Nevertheless, by calculating the mask pattern
the connection between theory and experiment on optimal control is estab-
lished and the gap between them is disclosed. The next chapters describe
methods that simplify the pulse structure.
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Figure 7.2: (a) STFT of the pulse optimizing the v′′=0 to v′′=3 transfer in X 1Σg

via A 1Σu. (b) The required mask pattern to tailor the pulse in (a). Here |M(ω)|
denotes the transmission and arg[M(ω)] the phase of the mask pattern.

7.2 The role of the penalty factor

The idea of this chapter is to find a way of finding robust and simple optimal
fields. As described in the introduction to chapter 7 and Ref. [133] this can
be done by using local control and changing the functional, parameterizing
the fields and using a e.g. gradient scheme or genetic algorithm to do the
optimization task. Here it is shown that it can be accomplished directly
within the rapidly convergent algorithm. The advantages of doing so are
multiple: the convergence is fast and the optimization is unconstrained and
global.
The penalty factor α is introduced in the OCT functional to regulate the
pulse intensity of the optimized field. It is also suited to reduce the pulse
complexity as a rather abstract following discussion will explain.
The central points: dependence of the threshold value for α on the initial
guess and the important correlation between high thresholds and robust
optimal pulses are illustrated by performing OCT calculations on the potas-
sium dimer (described in chapter 6). In all optimizations presented, the
shape function was set to s(t) = sin(πt/T ) with T = 1.6 ps. Figure 7.3
shows the spectra of pulses optimizing the v′′=0 to v′′=3 transfer via the
first excited state all with a yield above 90%, for different α values. The
dependence of the optimized pulse on this penalty factor will be discussed
in the following.

First it is reasonable to assume, that multiple pathways exist connect-
ing the initial with the target state of the system and moreover that these
pathways are not all equivalent. The equivalence statement is central to
this argumentation and means that each pathway has a different activa-
tion threshold, i.e. there exist pathways that can be excited with rather
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Figure 7.3: Optimization results with maximum penalty factor, starting from
different initial guess pulses. 1.6 ps at 10 974 cm−1. (b) 1.6 ps at 11 698 cm−1 (c)
Broadband addition fo 3-fs pulses. (d) Second run with optimized field from (a) as
initial guess.

low pulse intensities, such as resonant one-photon processes and other that
deserve much higher pulse intensities due to perhaps their non-resonant or
multiphoton character. Moreover the equivalence statement means that not
all transitions contribute equally much to the yield, i.e. there may be some
pathways that are so effective in connecting the initial with the target state
that no other pathway has to be excited and perfect control is achieved. Of
course each pathway consists of a number of transitions and therefore re-
quires that the excitation pulse has frequencies matching these transitions.
It logically follows that a low value for the penalty factor leads to com-
plex optimal pulses since the allowed intensity is sufficient to excite many
pathways each differing in its transition frequencies consequently leading to
broad excitation spectra. On the contrary if the penalty factor is chosen
very high the field intensity can be only very modest, and the optimal pulse
can only spent a limited amount of energy in building up just the frequen-
cies, that excite the very few yield promoting transitions with low activation
energy. As a result the optimal field will be very simple and the yield as
high as for the low α case. From that one could easily conclude that it is
very simple to obtain a realizable and simple pulse, the optimization only
has to be performed with high α. But in order to do so the initial guess has
to be nearly perfect (i.e. has to have already a high yield) as the maximal
value for α depends strongly on the performance of the initial guess. The
following argumentation should make this important point clear.
In order to allow for high α values the very few pathways have to be excited
having a low activation threshold and high yield. This however deserves
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already a tailored pulse with the correct time-frequency ordering, which is
normally not known, since this pulse is the goal of the optimization. For this
reason it is safe to assume in the following that the initial guess will excite
non-optimal transitions, their number and character depending of course on
the pulse intensity. In this set a transition with minimum (µ−) and maxi-
mum (µ+) dipole moment will exist. Their respective excitation thresholds
will be called ε̂− and ε̂+, where ε̂− > ε̂+. The pulse in the following iteration
is given by Eq. (5.10) and therefore its maximum amplitude is ∝ µ+/α.
Now, if α is substantially larger than one, such that

µ+/α < ε̂− (7.7)

the new field will not be capable to excite over again the µ− transitions in
all the forthcoming iterations. That is in the following iterations the µ−
transition will be eliminated from the pulse’s excitation capabilities until
finally no transition is left over. Eq. (5.10) amounts to zero and the zero
field results.
On the contrary if α is small enough, such that

µ+/α > ε̂− (7.8)

no frequencies are eliminated. The algorithm can improve the laser field in
the next iterations and Eq. (7.8) will be always fulfilled since improvement
of the field means excitation of regions with stronger and stronger transition
dipole moments. Of course the transition frequencies of the region excited
by the initial guess pulse will remain also in the optimal field ending up in a
complex pulse [see Fig. 7.3(a)] of unnecessarily high intensity (1012 W/cm2).

The maximum choice of this value therefore depends on the initial guess
optimality. In the case of imperfect initial guess the α threshold can be
much too low to obtain a simple pulse [see Fig.7.3(a)]. In Fig. 7.3(a) and
7.3(b) the initial guess

ε0(t) = (0.001 a.u.)s(t) cos(ωt) (7.9)

was tried with the center frequency at ω = 10 974 cm−1 (a) [ω = 11 698 cm−1

in Fig.7.3(b)] which allowed for α = 400 (α = 1100). A comparison of the
complex broadband spectrum Fig. 7.3(a) with the two separated frequency
bands in Fig. 7.3(b) impressively demonstrates the impact of α. Enormous
simplification was attained with a negligible loss of yield. As already pointed
out such a good initial is normally unknown. One can accommodate for the
lack of knowledge of the optimal frequencies by taking a broadband initial
guess, e.g., a few femtosecond cycle pulse. However this provision does not
account for the perhaps necessary time-ordering of these optimal frequen-
cies. In the considered transfer here, however it already permits the setting
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of α = 1000 [see Fig. 7.3(c)].
A more generally applicable procedure is to perform a first OCT optimiza-
tion with a small α value and the use this optimized field, however complex,
as initial guess for a second OCT run. In the second run α can be set to
unprecedented high values and consequently after a few iteration cycles the
intensity of the pulse is so much reduced (109 W/cm2) that it can only excite
the most robust and strongest transitions. As a result the pulse is very sim-
ple and experimentally realizable [see Fig. 7.3(d)]. By this means α = 2000
could be chosen and the yield was still 94%. When an even higher value for
α was chosen, no remarkable further simplification could be obtained (i.e.
α = 3000 gives 90%). The main advantage of this second filtering OCT
run is that the dependence of the OCT performance in retrieving robust
pulses on the initial guess pulse is completely eliminated. Figures 7.3(c) and
7.3(d) again demonstrate, that simple spectral structure is unequivocally
correlated with high α values.

In summary I have shown, that whenever a pulse with a complex time-
frequency behavior is optimal it might be necessary to rerun the optimization
with this complex pulse as initial guess, allowing for a high penalty factor.
This proposition is based on the fact that most of the time-frequency be-
havior only leads to an increase of pulse energy with the consequence of
exciting secondary multiphoton or off-resonant pathways. There contribu-
tion to the yield being of minor importance. The second high α optimization
extracts from the complex pulse, the time-frequency behavior necessary to
excite the most fundamental and important pathway. Looking back it is
now clear, that only if the initial guess has the time-frequency distribution
necessary to excite the optimal pathway, i.e. the important frequencies must
be ordered correctly in time, a high α optimization is possible. Comparing
again Figs. 7.3(a),7.3(b),7.3(c) and 7.3(d) the following interpretation can be
made: the pulses in Figs. 7.3(b) and 7.3(d) have similar spectra and therefore
seem to excite the same pathway, meanwhile a second only slightly different
pathway could be isolated Fig. 7.3(c) with merely a different choice of initial
guess. Since the frequencies of the robust pathways in Figs. 7.3(b) and 7.3(c)
are also inherent in the spectrum Fig. 7.3(a), its complexity can therefore
be attributed to the simultaneous excitation of many different pathways.
It would be very valuable if all these possible control mechanisms could be
distilled in an isolated fashion, however Figs. 7.3(b) and 7.3(c) show that
this is only limitedly possible by choosing different initial guesses. This will
be the central topic of the next section.
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7.3 The additional laser source

In order for the optimized laser field to be a probe for different control mech-
anisms it must be simple. In the last section it was proven that a simple
pulse can only result for high α values, which are in turn only allowed if
the initial guess pulse excites the strongest transitions in the system. As a
consequence this means that only the most prominent control mechanism is
reflected in the optimal pulse. In this section a new functional will be de-
vised that allows the optimal field to be also a probe for alternative control
pathways besides the most prominent one. As a signature of a new pathway
the optimized pulse spectrum will be used. If for the same objective pulses
with clearly different frequency signature can be optimized, than each of
these pulses stands for a different control mechanism. The achieved yield
for each different process is only of secondary importance, since it can not
be assumed that every control process is a 100% efficient.
How must the functional be changed in order for OCT to explore a different
control mechanism or stated in different words, how can OCT be obliged
to sustain frequencies besides the most prominent ones even for high α? A
simple answer to this question is to search for all system transitions offer-
ing these frequencies and replace their dipole transition moments by strong
artificial ones and also include the optimization of these transitions as an
extra objective in the functional of Eq. (5.8). This provision will make them
contribute essentially to the yield. The disadvantage of this simple answer
is that changing the dipole transition moment of one transition will change
the system as a whole.
Therefore based on this idea, but in a more flexible non-invasive implemen-
tation, the new functional is defined as

J = JL + JS + α

T∫

0

dt
|ε(t)|2
s(t)

, (7.10)

where

JL =
∣
∣〈ΨL

f |ΨL(T )〉
∣
∣
2 − 2Re

[

〈ΨL
f |ΨL(T )〉

T∫

0

dt
〈
ΛL(t)

∣
∣

[

i(HL − µLε(t)) +
∂

∂t

]
∣
∣ΨL(t)

〉



 . (7.11)

As before JS describes the system with its free evolution Hamiltonian HS

and dipole transition moment µS [Eq. (5.8)]. JL is a new additional func-
tional. Instead of changing transitions in the system a two-level atom with
an adjustable transition frequency ω12 and a dipole transition moment fulfill-
ing the requirement µL >> any µS of the system is added as an independent
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unit. An extra objective
∣
∣
∣〈ΨL

f |ΨL(T )〉
∣
∣
∣

2
in Eq. (7.11) realizes the influence

of the ω12 transition on the yield. Both provisions always allow the algo-
rithm to find an optimal pulse for the two-level system, even for very high α
values where it is still impossible for a system transition to be excited due to
their by definition lower dipole transition moments µS . Only by gradually
reducing α the OCT will start optimizing the system as well by including
the necessary frequencies in addition to ω12. If there exists a pathway for
excitation of the molecule at the adjusted laser frequency a simple optimal
pulse will emerge characterizing further this new control mechanism, by its
frequency signature. The addition of the laser system as a second system to
be optimized in the functional of Eq. (7.10) assures the constant existence
of the frequency ω12 of Eq. (7.15) inside any optimized field for the whole
system consisting of molecule and two-level atom.
Identifying the two-level atom as an accurate representation of a laser, it
is clear that this generalized functional describes a more realistic optimal
control experimental setup, since it makes a vital extension in also including
the laser and not only the quantum mechanical system. This is necessary,
since it is not self-evident that a laser can be tuned to and shaped at any
wavelength. Instead, a laser system, together with a pulse shaping device,
exist for a wavelength range, and the question arises whether they can con-
trol the system by a suitable adjustment.
Variation of the whole functional leads to five coupled equations; two for the
time evolution of the system, two for the evolution of the laser system and,
one for the field. Only the last three are written down here explicitly, since
the system equations are known already from the earlier sections

i
∂ΨL(t)

∂t
= [HL − µLε(t)] ΨL(t), ΨL(t = 0) = Φi (7.12)

i
∂ΛL(t)

∂t
= [HL − µLε(t)] ΛL(t), ΛL(t = T ) = Φf (7.13)

ε(t) = −s(t)Im
{

〈λ(t)|ψ(t)〉〈ψ(t)|µS
α
|λ(t)〉

+〈ΛL(t)|ΨL(t)〉
〈
ΨL(t)

∣
∣
µL
α

∣
∣ΛL(t)

〉}

. (7.14)

The solution of this set of nonlinear coupled differential equations is com-
puted iteratively as before. The additional numerical effort to propagate the
laser system is negligible. The algorithm has to optimize two objectives: a
transfer in the system from ψ(t = 0) to ψ(t = T ) and the laser transition
from ΨL(t = 0) =

(
1
0

)
to ΨL(t = T ) =

(
0
1

)
. The initial guess is no longer

an input to the algorithm, but is instead always computed according to

ε0(t) = (0.001 a.u.)s(t) cos(ω12t) . (7.15)

Eq. (7.15) describes a field that maximizes the laser yield, since it is in res-
onance.
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By performing optimizations with this new functional for different ω12 it is
for the first time possible to show up in an isolated fashion one pathway
after another for a single objective in the system under consideration. The
optimal pulse has a clear structure and a mixture of all pathways shadowing
each other is avoided. This new feature is illustrated in Figs. 7.4(a) and
7.4(b). In Fig. 7.4(b) the optimum electric field spectrum is depicted, where
the initial guess center frequency ω12 was tuned to 11 698 cm−1 correspond-
ing to the location of one of the most prominent peaks in the spectrum of
Fig. 7.3(b). This optimal laser tuning allows for the highest α values and
the least supplementary frequencies. A system yield of 94% was reached
with α = 2000 [see Fig. 7.4(b)]. The initial guess pulse for these two data
sets was the same, but the new functional allowed for higher α values. Note
the similarity of the optimized pulse spectra Fig. 7.3(b) and Fig. 7.4(b). In
Fig. 7.4(a) the spectrum of the optimized field is shown for a laser frequency
ω12 = 10 974 cm−1, which is detuned from optimum. The initial guess is
automatically calculated through Eq. (7.15). At α = 1300 a system yield of
96% is reached. It has to be noted that although the initial guess pulses are
the same for the data in Fig. 7.3(a) and Fig. 7.4(a), the new formulation
of the functional allows an α value three times higher than in the standard
functional (α = 400). Again due to the high value of the penalty factor
the intensity of the pulse is considerably reduced to maximum amplitude of
0.0002 a.u. (or intensity of 109 W/cm2). The four extra remote frequency
bands are essential and cannot be suppressed. This was tested by gradually
decreasing the penalty factor from the value where only the laser transition
frequency can exist. The algorithm for calculating the necessary mask pat-
tern explained in section 7.1 was applied and resulted in the transmission
and retardance mask functions of Figs. 7.4(α) and 7.4(β). The colors mark
the regions were the phase behavior is important due to significant spectral
intensity.
The new functional in combination with the Krotov method of building the
new field without memory behaves similarly to the modified Krotov method
with the difference that Eq. (7.14) is a correction equation to the initial
guess field which is εini

ε(t) = εini(t)− s(t)Im
{

〈λ(t)|ψ(t)〉〈ψ(t)|µS
α
|λ(t)〉

}

, (7.16)

with

εini(t) = −s(t)Im
{

〈ΛL(t)|ΨL(t)〉
〈
ΨL(t)

∣
∣
µL
α

∣
∣ΛL(t)

〉}

. (7.17)

Clearly this is different from the modified Krotov (see section 5.1), where the
correction is applied to the field of the previous iteration. In other words one
could say that in modified Krotov the memory lasts only one iteration, while
in the new functional the memory of the beginning is kept. As a result in
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Figure 7.4: Optimal fields calculated with the generalized functional for two dif-
ferent laser source center frequency tunings indicated as white arrows. (a) ω12 =
10 974 cm−1. (b) ω12 = 11 698 cm−1. (α) Mask pattern of (a). (β) Mask pattern
of (b). Here |M(ω)| denotes the transmission and arg[M(ω)] the phase of the mask
pattern. Only the colored regions of the phase mask are important, since only there
considerable spectral amplitude is transmitted through. Within the colored phase
regions red section are most important, while blue are less important.

modified Krotov the laser transition frequency can vanish, while it can not,
when using Eq. (7.14) since an additional yield term for the laser system
that needs the initial guess is included in the functional [see Eq. (7.10)].
The functional presented here is even able to control the amount of spectral
frequency at the laser transition within the optimal pulse, by controlling µL

and thus is more general.
Besides of the previously discussed features, the functional of Eq. (7.10) is
the first step towards controlling simultaneously multiple objectives with
a single laser pulse. It was already mentioned that Eq. (7.10) leads to
an OCT variant, that optimizes the light field of the laser source and the
system simultaneously for low enough α. This idea can be generalized and
it is possible to assume even more objectives in the same system [134] or
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more generally in different systems

J =
∑

k,s

{
∣
∣
∣〈ψk,sf |ψk,s(T )〉

∣
∣
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2
− 2Re
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∣
∣
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i(Hs − µsε(t)) + ∂
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]
∣
∣
∣ψk,s(t)

〉
]





. (7.18)

This equations will deliver an optimal pulse for the transfer into k target
states starting from m (≤ k) initial states in s different systems, incoherently
from one another. Incoherent because the absolute value of each individual
target is taken as objective and not the absolute value of their sum. Variation
of this functional gives equations similar to Eqs. (7.12)-(7.14)

i∂tλ
k(t) = [Hs − µsε(t)]λk(t), λs(t = 0) = φmi (7.19)

i∂tψ
k(t) = [Hs − µsε(t)]ψk(t), ψk(t = T ) = φkf (7.20)

ε(t) = −s(t)
α

∑

k

Im
{

〈λk(t)|ψk(t)〉
〈

ψk(t)
∣
∣
∣µs
∣
∣
∣λk(t)

〉}

. (7.21)

A possible application of this very general functional is to solve the problem
of molecular π-pulses, that invert an initial Boltzmann distribution. Another
recent application of this functional is the design of laser pulses suitable for
molecular quantum computing [135], where operation of a single pulse on
several qubits is required.
In conclusion new strategies to reduce the complexity of pulses obtained
by the OCT algorithm and to discover new control mechanisms were de-
veloped. The parameter α is of critical importance if robust pulses are to
be retrieved. A new formulation of the functional including the laser sys-
tem, allows high α values and therefore produces immediately spectrally
purified pulses. These robust pulses are amenable to a detailed study and
their experimental realization is an easy task with state of the art pulse
shaping technology. The new, more general functional can be used to distill
all optimal control pathways for an objective by tuning the laser frequency.
The pathways are thereby made accessible to a more detailed study. This
powerful tool can be used to clear off complex excitation patterns and dis-
cover new optimal control processes in quantum mechanical systems, since
the solutions will always include the laser frequency and be as simple as
possible.

7.4 Projector method

The aim of this section is to derive a new OCT functional that provides
optimal pulses with a pre-specified spectral width and leading to coupled
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equations still solvable with the closed loop iteration scheme.
In the early formulation of the OCT algorithm a filtering technique [31] was
proposed to restrict the optimal fields to a specified frequency bandwidth
(see introductory remarks to chapter 7). This technique cannot be applied
within the framework of closed equations [Eqs. 5.7,5.9 and 5.10]. The electric
field in the closed form iteration is calculated at each step and not in a one-
cycle-to-next-cycle (one cycle of iteration includes a number of steps) style as
in gradient type methods (see discussion in section 5.1). Therefore a spectral
constraint using filtering in the Fourier domain can only be applied at the
end of the iteration cycle, where the complete spectral information of the
pulse is present. Consequently the algorithm has felt no spectral constraint
during the whole cycle and application of the filter would only disturb the
convergence. In the following a new functional is presented which allows for
spectral pressure also within this closed form, rapidly convergent OCT.

In order to derive the new functional, that allows to include spectral
pressure, the following idea is central. The electric field is essentially build
from the overlap of populated eigenstates of the field free Hamiltonian [see
Eq. (5.10)]. Even if the wave function is represented on a grid its eigenstate
composition can be obtained through projection. The spectral width of the
optimal pulse is controlled indirectly by allowing the wave functions ψ and
λ to consist only of a pre-specified set of eigenfunctions. The idea behind
this reduction of the number of eigenstates contributing to a wave packet
is, that a spectrally broad pulse will excite coherently many eigenfunctions,
while a spectrally narrow pulse will excite only a few eigenfunctions at any
time. The projection of the wave function on the constituting vibrational
eigenstates at three different times and for three excitation pulses with a
fwhm of 10 fs, 50 fs and 100 fs is shown in Fig. 7.5. Clearly the width of the
decomposition greatly reduces as the pulse becomes of smaller bandwidth.
Therefore an intelligent reduction of contributing eigenstates in Eq. (5.10)
will reduce the number of transitions with different frequencies and hence
these frequencies will be the only ones appearing in the pulse spectrum.
To be more specific let us consider an optimal transfer in the potassium
dimer involving only the X and A state and their vibrational levels. Taking
the case that the initial state is a single vibrational eigenstate the spectral
width can be simply controlled by allowing only vibrational levels around
this initial state (set X) and a set of vibrational levels in the A state (set A).
The choice of these two eigenstate sets will specify the center wavelength
and spectral width of the pulse. The maximum frequency will be given by
the transition between the lowest eigenstate in set X and the highest in set
A, while the minimum allowed frequency is simply the difference of energies
between the highest energetic eigenstate in set X and the lowest in set A.
Since the sets X and A can be chosen arbitrarily, for instance they do not
have to be connected, the spectrum of the pulse can be arbitrarily tailored.
Indeed only a not-connected set X will allow pump-dump pulses with very
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Figure 7.5: A state wave packet decomposition in eigenstates at initial, interme-
diate and final time for excitation with three different pulse durations.(a) 10 fs (b)
50 fs and (c) 100 fs. Each line depicts a snapshots of the wave function at one
specific time.

different frequencies of the pump and dump step. Similarly to the shape
function s(t) that influences the appearance of the optimal pulse envelope a
shape function on the eigenstates will mold the pulse spectrum.
If P is the projector onto the subsets of eigenstates and P̄ the projector on
all other eigenfunctions, the relation 1 = P + P̄ holds true. This relation is
used to split Eq. (5.10) into two summands ε(t) = ε(t)y + ε(t)n, where the
first summand is the spectrally small part, while the other with superindex
n contains further spectral components to be eliminated.
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Here the complex numbers ail(t) = 〈vl|ψi(t)〉 have been used. Considering
only the term ε(t)y leads to the new OCT algorithm with spectral restric-
tion. The closed equations for λ and ψ itself are the same as before with
the exception of the equation for ε(t) which has changed into Eq. (7.22).
Numerically this formula is implemented by applying the projector on both
wave functions ψi(t) and ψf (t) each time a new point of the electric field is
calculated through Eq. (5.10), i.e. at each time step of the iteration. These
projected wave functions are only used to construct the electric field. The
propagation is continued with the original unprojected wave functions for
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the next time step followed again by the projection step. This process is re-
peated until the end of the cycle. Propagation on a grid as is performed here
needs the original wave functions to be propagated and not the projected
ones, since this would lead to the destruction of convergence. Therefore
the projector can not be included directly in the Schrödinger equation con-
straint of Eq. (5.8). Alternatively, when all eigenfunctions are known and
not only the ones needed for the projector in Eq. (7.23), the propagation
can be performed directly in the basis of eigenfunctions and not on a grid.
In the case of the potassium dimer about 30 vibrational eigenstates of each
electronic state are needed to achieve the same numerical results as with a
grid of 256 points. A reduced set of eigenfunctions can be used only in the
projector to evaluate the electric field according to Eq. (7.22), but not for
the propagation of the molecular system.

The iterative scheme is started by taking as a favorable initial guess the
optimized pulse from an unconstraint OCT run. After convergence the
mask function can be extracted from the spectrum of the optimal pulse by
using Eq. (7.6). Since the spectral width of the optimal pulse is controlled
with the parameter ∆v in the shape function W, the number of pixels can
be reduced drastically. It is now possible to design experimentally realizable
pulses with this OCT variant that controls the spectral width of the optimal
laser pulse. Moreover it is a fast and efficient code for providing optimally
shaped pulses which can directly serve as input to the experiment. Spectral
pressure also tends to simplify the laser pulse features, enabling the extrac-
tion of the control mechanism.
Just to show that this works, the population transfer from v′′ = 0 (|v′′0〉)
to v′′ = 2 (|v′′2〉) in the ground state using the first electronic excited state
A 1Σu as an intermediate pathway will serve as prototype control. It is not
necessary to define a projector in the ground state, since initial and target
vibrational state are within the bandwidth of a 50 fs pulse. Only a projector
onto a specified subset of N excited state vibrational eigenfunctions |vn〉 of
the field free Hamiltonian H0 is defined and weighted with a shape function
W(n)

P =
N∑

n=1

W (n)|vn〉〈vn|. (7.23)

The shape function was chosen to be a Gaussian distribution

W (n) = exp

{

−
(
v − v0

∆v

)2
}

. (7.24)

Here v0 is the maximum and ∆v is the width of the desired eigenfunction
distribution. In the extreme case v0 = 6 and ∆v = 3 was selected, which
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corresponds to a pulse at ≈ 820 nm with spectral bandwidth corresponding
to 50 fs.
The results are shown in Fig. 7.6. The yield y is defined as the overlap with
the target eigenfunction

y = |〈ψi(t = T )|φf 〉| or alternatively as y = |〈ψf (t = T )|φi〉|, (7.25)

where |φi〉 = |v′′0〉 and φf = |v′′2〉. The first column shows a pulse calcu-

Figure 7.6: Optimal control pulses transferring population from v′′ = 0 to v′′ = 2
in the ground state using the first electronic excited state A 1Σu as an intermediate
pathway. Each column depicts one optimal pulse, retrieved by gradually increasing
spectral pressure. (a)-(c) pulse envelope. (α)-(γ) pulse phase. (1)-(3) STFT of the
pulse.

lated with OCT using no spectral restriction. The optimized pulse produces
a yield of 0.94. The FL pulse from which the shaped pulse originates has
a duration of 10 fs and a complex mask pattern with a number of pixels
exceeding the usual experimental number of 128 [see Fig. 7.7(a)]. When
spectral pressure is applied by reducing the parameter ∆v the optimal field
becomes more robust, but efficiency is gradually reduced. These results are
shown in Fig. 7.6(a) and 7.6(b), respectively. Interestingly some spectral
pressure can be applied without loosing much efficiency (b). This pulse still
has a yield of 0.92 with the advantage of having a spectrum corresponding
to a longer pulse of 20 fs and a realizable mask pattern [see Fig. 7.7(a) and
7.7(b)]. Figure 7.6(c) shows a pulse that has a yield of 0.76, and is even
easier to shape due to its 40 fs FL duration and simplex mask pattern [
Fig. 7.7(c)]. The pulse consists of a clearly structured pulse sequence, where
the third pulse is linearly negatively chirped.
The difference of the projector and the new functional method is best ex-
plained in view of its application. The projector method should be used,
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Figure 7.7: Transmission |M(ω)| and phase arg[M(ω)] of the mask patterns
needed to tailor the pulses of Fig. 7.6. (a) Is the mask pattern for the pulse in
Fig. 7.6(a), (b) for the pulse in Fig. 7.6(b) and (c) for the pulse in Fig. 7.6(c).

when the spectral shape, especially bandwidth, shall be constraint. The
pulse simplicity can be adjusted by the spectral width of the projectors and
it is best to use very low values for α. Since the algorithm is not able to
search freely for the most robust pathways and is instead constraint to the
allowed frequencies, the optimal pulse must have sufficient energy to excite
the allowed, but perhaps non-optimal pathways.
The new functional answers the question what extra frequencies besides the
laser center frequency are needed to optimize the target, that is which is the
most efficient transfer mechanism for a given laser source. The new func-
tional provides more potential applications, it can also be applied whenever
a electric field is sought that optimizes several targets at once. The main
difference to the method of this section is the impossibility to constrain the
new emerging frequencies to a specified spectral window. Using the algo-
rithm of the past section appropriately means to start with high α values
and reduce the α parameter to enable a growth of the frequencies in the
optimized pulse until the desired yield is achieved. The optimized pulse
obtained by the method of section 7.3 has always the lowest possible pulse
energy, just enough to excite the most robust pathways out of the excitation
region selected by the center frequency of the laser source.



Chapter 8

Application

In the following two sections simple femtosecond laser pulses are obtained
using the method of section 7.2 for the SST and PI transfer introduced in
chapter 6.

8.1 State selective population transfer (SST)

In this section the efficient femtosecond-laser induced transfer of population
between two eigenstates of the ground electronic state is investigated. Both
states must be connected via the first electronically excited state since a
direct IR transition is forbidden due to the homonuclear character of the
potassium dimer. Earlier work [136] has shown that this system can be
effectively treated as a lambda system if nanosecond or continuous wave
lasers are used. In this realm STIRAP can be efficiently used. Here a
completely different regime is investigated, where the applied pulses have
a broad frequency spectrum coherently exciting a superposition of many
eigenstates, but as will be shown are still selective to a single eigenstate
due to their proper pulse shape. Moreover the simultaneous excitation of
many eigenstates makes the problem not reducible to a simple lambda sys-
tem. This conceptual formulation is appropriately solved with the rapidly
convergent OCT (see section 5.1), which naturally excludes the counterintu-
itive STIRAP solutions since only frequencies of populated levels constitute
the pulse during the iterations. The results extend previous work of our
group [115].

Single well defined initial state. The powerful method of high
penalty factor optimization allows to deduce the control mechanism behind
these optimal pulses by merely looking at their short-time Fourier transform.
A comparison of the STFT of the pulse transferring above 90% of the popu-
lation from v′′ = 0 to v′′ = 2 [Fig. 8.1(a)] with the pulse doing this for v′′ =

107
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0 to v′′ = 5 [Fig. 8.1(b)] reveals a Tannor-Rice-Kosloff pump-dump mecha-
nism. The pump and dump frequencies differ by the energy spacing between
initial and target vibrational state and the overlap in time of the subpulses
is bigger in the case of v′′ = 0 to v′′ = 5. The correct time separation, phase
and center frequencies of the subpulses lead to a pump-dump mechanism
that is vibrationally state selective at final time. Figure 8.2 shows snap-

Figure 8.1: Pulses optimizing transfer between two eigenstates of X 1Σg via A
1Σu. (a) v

′′ = 0 to v′′ = 2. (b) v′′ = 0 to v′′ = 5.

shots of the wave packet during the optimal v′′ = 0 to v′′ = 2 transfer on
the grid 8.2(a)-(d) and its projection onto eigenstates 8.2(α)-(δ). At inter-
mediate times [Figs. 8.2(b) and (c)] the ground state wave packet consists
of a coherent superposition of eigenstates, while at initial and final time it
is a single eigenstate of the field free Hamiltonian. The pulse is hence tai-
lored to be selective to states within its excitation bandwidth. The Raman
pumping realized between moving wave packets on the potential surfaces, is
such that population ends again in the ground state and is concomitantly
shaped into an eigenstate. Once the target wave packet has the shape of
an eigenstate it will also have its energy. There remains some population
in high energy ground eigenstates, since the transfer is not complete, that
is 100%. The population in the higher excited potentials is negligible and
essentially the pulse couples only the two lowest electronic states, X and
A. This is general to all eigenstate transfers with moderate ∆v, since the
optimal pulses all have low peak amplitude on the order of 2 10−4 a.u. (=
an intensity of 109 W/cm2) [see Figs. 8.3(a) and 8.4(a)-(d)]. The effect of
phase in this transfer was also investigated. The subpulses of the tailored
v′′ = 0 to v′′ = 5 laser field [Fig. 8.3(a) and its spectrum Fig. 8.3(α)] are
calculated, by extracting from all Fourier components the ones belonging to
the pump and to the dump frequency [115,137]. The resulting subpulses are
shown in Figs. 8.3(b) and (c). Clearly the earlier pulse has the higher fre-
quency and serves as pump, while the later pulse dumps the population [see
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Figure 8.2: One dimensional wave packet propagation, showing snapshots of the
optimal v′′ = 0 to v′′ = 2 transfer.(a)-(d) grid representation of the wave function.
(α)-(δ) eigenfunction representation of the wave function.

Fig. 8.3(βγ)]. Having calculated the subpulses it is possible to combine them
again to a single pulse using a method described in Ref. [115,137]. Thereby
their relative phase can be changed, by adjusting the absolute phase of one
of the pulses relative to the other. A change in phase just shifts the carrier
with respect to the envelope and when combining with the other subpulse
will lead to a phase dependent interference in the temporal overlap region
of the two pulse constituents. The combined pulse is then propagated and a
plot of phase versus yield can be generated [Fig. 8.3(1)] and shows a periodic
modulation with a maximum yield at 1 rad. The maximum yield is below
95% since the spectrum of the combined pulses coincides only in the main
two frequencies and thus is only an approximation to the original pulse of
Fig. 8.3(a).
Another peculiarity of the eigenstate transfer with femtosecond pulses is

that whenever v′′ = 0 is involved the optimal pulse is more complex and
looses its time symmetry. This can be inferred from Fig. 8.4, where the
optimal laser fields 8.4(a)-(d) and their spectra 8.4(α)-(δ) are plotted.
Here the transfers with ∆v = 2 between v′′=0 to v′′=2 [Figs. 8.4(a) and
α] and v′′=2 to v′′=4 [Figs. 8.4(b) and β] and ∆v = 4 from v′′=0 to v′′=4
[Figs. 8.4(c) and (γ)] and v′′=4 to v′′=8 [Figs. 8.4(d) and (δ)] clearly show
that whenever v′′ = 0 is involved the laser field is asymmetric in time and the
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Figure 8.3: (a) Laser pulse optimized for v′′=0 to v′′=5. (b) and (c) are its
subpulses. (α) Spectrum of pulse (a) and (βγ) spectra of the subpulse (b) in black
and subpulse (c) in gray. (1) Change of the yield as a function of the phase-
relationship of the subpulses.

pump and dump frequencies show both a doublet. Inspection of Figs. 8.4(β)
and 8.4(δ) reveals that the dump frequency in Fig. 8.4(β) and the pump
frequency in Fig. 8.4(δ) coincide. The control process uses the same inter-
mediate excited vibrational states for the transfer.
Another aspect to be considered in the following is the maximum value

achievable for ∆v in this kind of transfer. The larger ∆v is chosen the
smaller is the Franck-Condon factor connecting both states. However it is
still possible to transfer population from vibrational states near the dissocia-
tion continuum to v′′ = 0 of the ground singlet potential. This kind of trans-
fer is one of the key steps for conversion of a Bose-Einstein-condesate(BEC)
of atoms to a molecular BEC (or MBEC) [138,139] with ultrashort coherent
pulses as proposed in section 11.2.3. Methods so far proposed use STIRAP
as a very effective and selective process to complete this task [140–143]( see
also section 11.2). The total number of bound states in a potential depends
critically on its depth and for the available ab initio X and A potentials the
number of bound states in X was calculated to be 85 while it is 195 for the
A state. As an initial eigenstate near dissociation v′′ = 80 was chosen, while
the final state is v′′ = 0. This calculation was performed in the eigenstate
basis taking into account all bound vibrational eigenstates of the X and A
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Figure 8.4: Laser pulses optimizing different eigenstate transfers. (a) v′′ = 0 to
v′′ = 2. (b) v′′ = 2 to v′′ = 4. (c) v′′ = 0 to v′′ = 4. (d) v′′ = 4 to v′′ = 8. Their
corresponding spectra are in (α)-(δ).

potential1). Assuming a direct transfer to a vibrational state in the excited
potential and back down to the final state, the effective transition dipole
moment for this transfer is highest for v′ = 41, but is three orders of mag-
nitude smaller than the strongest transition in K2. Nevertheless it is still
possible to accomplish this transfer by a two-step process. The STFT of the
pulse is depicted in Fig. 8.5(a) for low α and 8.5(b) for high α. Again it

Figure 8.5: Laser pulse optimized for v′′=80 to v′′=0. (a) Optimization with low
and (b) with high penalty factor.

1)A grid based method would have been only effective with a nonlinear grid mapping

to reduce the number of necessary points to accurately support the wave packet dynamics

near dissociation.



112 8. Application

is most simple to derive the central mechanism by inspecting the laser field
Fig. 8.5(b). It consists of two main frequency bands at 12 000 cm−1 and
14 000 cm−1 and a less pronounced around 9 500 cm−1. A time resolved
analysis reveals, that the optimal transfer proceeds via a two-step process.
First the population is transferred to an intermediate level (around v ′′ = 40)
and from their down to v′′ = 0. This optimal process does not proceed over
v′ = 41, but over v′ = 140 [see Fig. 8.6(β)] enhancing thereby the transition
dipole moment of the overall process. In order to verify the tailored pulses

Figure 8.6: One dimensional wave packet propagation, showing snapshots of the
optimal v′′ = 80 to v′′ = 0 transfer. (a)-(d) grid representation of the wave function.
(α)-(δ) eigenfunction representation of the wave function.

for the SST transfer in experiment a beam of molecules or the preparation of
a single vibrational state in an excited potential [144] would be the method
of choice. Here the initial state would be well defined and coinciding with
the assumptions made in theory.
Nevertheless an experimental setup using an heat pipe oven, where the alka-
lis are simply evaporated, is less involved. Here the dimers in the gas phase
constitute a thermal ensemble. This case will be studied next.

Thermal ensemble initial state. The following calculations however
show that it is still possible to have an experimental signature for an optimal
eigenstate transfer even in a thermal ensemble. The main reason for this
is that the anharmonicity of the vibrational ladder is high enough that an
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optimized pulse will be efficient only between the specified initial and target
eigenstate and not generally between vibrational eigenstates spaced by the
same number of quanta. That is a pulse optimized for v′′ = 0 to v′′ = 2 is
not optimal for v′′ = 2 to v′′ = 4. The clear difference in the optimal pulses
was already shown in Figs. 8.4(a), 8.4(α), 8.4(b) and 8.4(β). The calcula-
tions assume an initial Boltzmann distribution over 16 vibrational states in
the ground state. In Fig. 8.7(c) the final ground state population is plotted,
for a tailored pulse optimized for v′′ = 0 to v′′ = 1 [Fig. 8.7(a)] and the
corresponding bandwidth limited pulse [Fig. 8.7(b)]. A distinguished peak

Figure 8.7: Thermal ensemble of K2 is excited with laser pulse optimized with
low α for the transfer from v′′=0 to v′′=1. (a) The optimized electric field. (b)
The corresponding Fourier limited laser pulses. (c) Final ground state distribution
induced by laser pulse (a) in gray and (b) in black.

at v′′ = 1 rises above an else nearly flat unstructured ground state popula-
tion. Clearly the two vibrational distributions would be distinguishable in
experiment and the tailored pulse could be identified as optimizing v′′ = 0
to v′′ = 1. As long as the Fourier limited pulse used to shape the optimal
pulse is of broad bandwidth a clear signature is visible for a whole range of
eigenstate transfers. This beautiful signature vanishes however if the band-
width of the tailored laser pulse is in the regime of bandwidth limited 100
fs pulses [see Fig. 8.8(c)]. This can be shown by propagating the v′′ = 0 to
v′′ = 1 obtained in a high α OCT run [Fig. 8.8(a)]. This simple pulse can
be shaped from a 100 fs Fourier limited pulse [Fig. 8.8(b)].
In a further example the possibility is considered of optimizing a pulse that
transfers all the population from v′′ = 0 to a specified vibrational superposi-
tion state in the first excited potential. The population of the excited state
will then reveal the eigenstate composition of the wave packet, despite the
initial Boltzmann distribution of states [see Fig. 8.9(c)]. The two distinct
peaks show evidence that the specified target state here is a superposition
state with v′ = 2 and v′ = 4 contributions. The signature again nearly
vanishes if a simple pulse optimized for the same target is to be used (not
shown). Therefore the control will be very hard to detect in experiment
using molecular gas cells with pulses above fwhm of 10 fs.
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Figure 8.8: Thermal ensemble of K2 is excited with laser pulse optimized with
high α for the transfer from v′′=0 to v′′=1. Else same as in Fig. 8.7.

Figure 8.9: Thermal ensemble of K2 is excited with laser pulse optimized with
low α for the transfer from v′′=0 to a coherent superposition of v′=2 and v′=4.
Else same as in Fig. 8.7.

8.2 Molecular π-pulse (PI)

Molecular π-pulses are light fields that transfer a thermal ensemble of states
(a Boltzmann distribution) completely into another electronic state. They
are analogous to atomic π-pulses where population of the ground state level
is transferred completely to the excited state of the two-level system. The
name π-pulse origins from these experiments, since a possible solution is to
wait half a Rabi-cycle and then switch off the pulse. More sophisticated and
robust mechanism use chirped pulses, that transfer population in an adia-
batic fashion [145, 146]. The concept of chirped pulses could be transferred
to the molecular regime as demonstrated by Wilson and coworkers [42]. A
chirp adapting to the form of the difference potential will make an effective
pump-dump while a chirp adiabatically crossing this difference potential will
transfer the whole population into the excited state surface. In the following
the optimal π pulse for the potassium dimer is designed and analyzed.

Single initial state. At first the simpler problem is considered, where
population is initially concentrated only in a single vibrational state and is
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transferred by a suitably tailored pulse into the A1Σu state. A summary of
the resulting pulses starting from different initial states is shown in Fig. 8.10.
Obviously the optimal pulses depend on the initial state. Figures 8.10(a)
and 8.10(d) and also Fig. 8.10(c) and Fig. 8.10(f) bear near resemblance and
are extremely ordinary consisting of a double or a single pulse, surrounded
by two small amplitude pulses, at the same center frequency. Figures 8.10(b)
and 8.10(e) are an intermediate case, where two main frequencies seem to
be more favorable for an efficient transfer.

Thermal initial state. Using the new functional introduced in sec-
tion 7.3 it is now possible to obtain a real molecular π-pulse. The initial
population is exemplarily taken to be a thermal distribution involving five
vibrational states in the ground state of K2. In this case s=1, k=m=5 in
equation 7.19. As target of the optimization the projector onto the first

Figure 8.10: STFT of pulses that transfer population concentrated initially within
a vibrational ground eigenstate v′′ into A 1Σu. Population is initially in (a) v′′=0.
(b) v′′=1. (c) v′′=2. (d) v′′=3. (e) v′′=4. (f) v′′=5.

excited electronic state (A) is considered. The resulting optimal pulse is
shown in Fig. 8.11. It has a nonlinear positive chirp and differs considerably
from each of the optimal pulses that invert only the population of one single
vibrational state [see Figs. 8.10(a)-(f)]. Therefore it can not be obtained by
simply averaging over all these pulses.



Figure 8.11: Molecular π-pulse transferring a initial Boltzmann distribution of
five vibrational ground states v′′ = 0. . .5 into A 1Σu.
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Chapter 9

Comparison experiment and
theory

9.1 Rotation and orientation effects

The motivation for studying the ro-vibronic motion of potassium dimers is
twofold. It is known from earlier work [147] that rotation can harm control
and it is important to quantify this effect for the SST control of K2 studied in
section 8.1. Moreover a direct comparison with experimental results is only
possible if the rotational degree of freedom is considered besides the already
treated initial thermal distribution (see section 8.2). In this section the effect
of the molecular rotation on the selective population transfer between vi-
brational levels is studied with shaped femtosecond pulses. The population
distribution within the rotational levels of one vibrational level can not be
controlled, i.e. selective control over ro-vibronic levels with these broadband
pulses is impossible, since the rotational spacing is ten times smaller than
the vibrational energy spacing. This can be understood by rethinking about
the control mechanism found to be responsible for state selective control
over vibrations. There control was achieved by consecutive pumping and
dumping of population between moving vibrational wave packets on both
electronic states. A considerable nuclear motion during the pulse action is
essential. Rotational wave packets move about ten times slower, their mo-
tion lying in the picosecond regime. This however means that a tailored
femtosecond pulse would have to extend over several picoseconds in order to
control by the same mechanism as found for the mere vibrational motion.
This is experimentally difficult to realize.
Following this argument of time scale separation one would expect only a
minor effect of the rotations on vibrational control. However for K2 a fur-
ther complication arises, that is harmful for control. The transition-dipole
moment lies along the internuclear axis. Consequently if the dimer is ori-
ented orthogonal to the field the laser control over the molecule vanishes,
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since the dipole moment for this orientation is zero. While the dynamics of
rotations are slow their effect can still be important since the rotating dipole
vanishes for orthogonal orientation to the external laser field. The theoret-
ical calculations in this section are therefore an extension to earlier studies
where only the static orientation of the molecule with respect to the field
was considered [35]. Alignment by the laser pulse is however not considered
and its influence is studied in future work.
In the following the wave function |ψ〉 is represented as a vector in the
electronic components (X,A,2,4). The Schrödinger equation can be solved
either in coordinate space or in the eigenfunction representation. For com-
pleteness, the full spherical Hamiltonian for the ro-vibronic description is
explicitly written down in both representations. On the grid the Hamilto-
nian is:

i∂t〈x|χ〉 =
−~2

2m

[

∂2
r +

1

r2

(

∂2
φ

sin2(θ)
+ cot(θ)∂θ + ∂2

θ

)]

〈x|χ〉

+ 〈x|Vint(ε)|x〉〈x|χ〉 . (9.1)

where the usual definition 〈x|χ〉 = r〈x|ψ〉 was used. This Hamiltonian is
three dimensional since the bond length r and the angles θ,φ specifying the
orientation in space of the molecule with respect to the laser field is consid-
ered. The interaction with the laser corresponds to the following matrix

〈x|Vint(ε)|x〉 = ε(t) sin(θ) {|X〉µXA(r)〈A|+ |A〉µA2(r)〈2|
+ |A〉µA4(r)〈4|+ c.c.} . (9.2)

Here the dipole moments between the electronic states i, j must be evaluated
in the coordinate representation: 〈x||i〉µijε(t)〈j||x〉 = ε(t) sin(θ)|i〉µij(r)〈j|
as the dipole moments are only r dependent. In the eigenfunction represen-
tation the Schrödinger equation is [148]

i∂t〈nvlm|ψ〉 = Enls〈nvlm|ψ〉
+

∑

n′v′l′m′

〈nvlm|Vint
∣
∣n′l′v′m′

〉
〈n′v′l′m′|ψ〉 . (9.3)

〈
n′v′l′m′

∣
∣Vint(ε)|nvlm〉 = ε(t)

{

|X〉〈A|µnX lX ,nAlA
XA

+ |A〉〈C|µnAlA,nC lC
AC

+ |A〉〈D|µnAlA,nDlD
AD + c.c.

}

(9.4)

The quantum numbers stand for: n - electronic state, v - vibration, l - or-
bital angular momentum and m - eigenvalue of the lz component. The dipole
transitions moments are calculated by a product of dipole matrix element
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and the coefficients al,m =
√

(l+m+1)(l−m+1)
(2l+1)(2l+3) describing the orientation of

the molecule relative to the laser [149]. The ro-vibronic eigenstates were
calculated by a Numerov scheme on the centrifugally distorted potentials of
the mere vibrating potassium molecule. They are in good agreement with
spectroscopic data. The number of ro-vibronic eigenstates in each potential
used in the expansion of the wave function was increased until the propaga-
tion data faithfully converged into agreement with the results on the grid.
Since the rotational quantum number is a also measure for the laser field
interactions, it is interesting to note that 15 rotations per vibration were
needed for accurate results.
As a linearly polarized control laser is assumed, the selection rules ∆m = 0
(lz is conserved) and ∆l = ±1 hold. Throughout this work a l′′ = 0 (which
implies m′′ = 0) ro-vibronic eigenstate served as initial state. Therefore the
quantum number remains always m = 0, which is equivalent to ignoring the
∂φ term on the grid.
The grid calculations reduce to an effective two dimensional problem with
only the bond length r of the diatom and θ the orientation angle of the
molecule with respect to the laser. In the two-dimensional calculations the
dipole transition moment was taken and extended to two dimensions by
multiplying with sin(θ). Here the angle θ is chosen to be in the interval
0 . . . 2π, which is two times the physical range, but necessary to fulfill peri-
odic boundary conditions. The number of grid points in r were 128 and 80
in θ direction.
The eigenfunction calculations also simplify since no sum over m has to be
considered. The geometric coefficients al,l′,m are then evaluated to al,l+1,m=0 =
〈l| cos(θ)|l + 1〉|m=0 between l and l+1 and to al,l−1,m=0 = 〈l| cos(θ)|l − 1〉|m=0

between l and l− 1. Here I recall the pure vibrational case treated in chap-

ter 8, where Eq. (9.1) simplifies to H =
[
−~2

2m ∂2
r + 〈x|Vint(ε)|x〉

]

〈x|χ〉 and
in Eq. (9.3) the quantum number of rotations l has not to be considered.
Calculations in both representations, were performed. The Chebychev scheme
[126] was used to numerically solve the two-dimensional non Cartesian Hamil-
tonian in both space and eigenfunction representation. A second order differ-
encing (SOD) approach is faster, but has dramatic instabilities when applied
to the iterative equations of OCT (see section 5.2). Instability of the SOD
occurred during the forward propagation of the iterative procedure when
the final time T reached the few ps and also for α < 100. Instead the
Chebychev expansion allows for a bigger time step (6.0 a.u.) and a precise
accuracy control. Twelve expansion coefficients were used.
In the following the vibrational only model will be termed 1-D and the ro-
vibronic model introduced in this section as 2-D.

1-D optimized pulses applied to 2-D problem. The first step was
to investigate whether the pulses of chapter 8 are also optimal for a rovi-
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brating molecule. As mentioned in the introduction the degree of control is
expected to depend on the initial orientation of the molecule with respect to
the applied field. Three different orientation are considered [see Fig. 9.1(a)]:
no angular orientation, sin2(θ) and the tightest orientation described by a
sin5(θ). At first the SST pulse optimizing the transfer from v′′ = 0 to v′′ = 2

Figure 9.1: No angular orientation (line), sin2(θ) (filled dots) and the tightest
orientation described by a sin5(θ) (hollow dots). (a) Orientation before pulse action.
(b) Starting from the v′′ = 0 initial state (gray line), the final v′′ = 2 state is reached
the better the pre-orientation. (c) The better the pre-orientation the better the
transfer into the first excited electronic state.

(see section 8.1) is propagated using the ro-vibronic Hamiltonian [Eq. (9.1)].
The yield is calculated as the overlap of a v′′ = 2 vibrational eigenstate with
the r-shape of the two dimensional ro-vibronic wave packet at final time
T. The r-shape is evaluated by integrating over the θ direction. The yield
achieved by these pulses is only about 50%, if the molecule is not oriented
(the angular probability distribution being uniform) with respect to the
laser. This yield-loss can be attributed to the fact, that the molecule has fi-
nite probability to be oriented parallel to the laser θ = 0 and θ = π, where no
laser control is possible due to the vanishing dipole moment. Outside these
non-accessible angles the laser control still behaves as before, reshaping the
i.e. initial v′′ = 0 r-shape [see Fig. 9.1(b)] into v′′ = 2. The timescale of
the ro-vibronic movement, that reshapes the θ distribution is given by the
rotational energy level separation in the potassium dimer. It is therefore
very slow and a large amount of population stays at θ = 0 and θ = π within
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the optimization time of T =1.74 ps. Orientation of the molecule before
laser control significantly enhances the yield. The data of Fig. 9.1(b) clearly
shows that the better the molecule is oriented in a certain direction (here
at right angles to the incident laser) the more pronounced the control. The
same dependence of the yield on prior orientation of the molecule can be
observed for the π pulses of section 8.2 under the additional influence of
rotation. Fig. 9.1(c) shows the r-shape of the A state wave packet at final
time. Note the increase of the norm as a function of initial orientation. The
yield for an pre-orientation even in θ is 73%, for sin(θ) is 83% and for sin5(θ)
is 90%. The line styles in Fig. 9.1(b) and 9.1(c) correspond to the three
orientations of Fig. 9.1(a).

2-D optimization of SST. To improve the yield of the laser fields of sec-
tion 8.1 for the two-dimensional problem, optimization with the grid based
Hamiltonian of Eq. (9.1) was performed. The initial state considered is
shown in Fig. 9.2(a). It is a v′′=0 state with a flat angular distribution

Figure 9.2: Snapshots of the two dimensional wave packet evolution on the grid
at times (a) 0 ps, (b) 0.44 ps and (c) 1.74 ps.

(lz=0 state). The target state was defined as ψ(r, θ) = v2
′′(r), constant in

θ. Figure 9.3 shows the STFT of the pulse connecting initial to final state
with a yield of 80%. The improvement of the yield compared to 56% is
therefore significant. The change in shape is only minor as compared to the
initial guess pulse taken from the pure vibrational model [see Fig 8.1(a)],
but exhibits less pronounced subpulses in between. The propagation data
of Fig. 9.2 shows a snapshot of the wave packet for the times (0, 0.44 ps,
1.74 ps) under the action of the pulse of Fig. 9.3. The wave packet at final
time T = 1.74 ps has a v′′=2 eigenfunction shape in r-direction, disturbed
by less amount of finite uncontrollable population at θ = 0 and θ = π.
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Figure 9.3: STFT of the laser pulse optimized within the two dimensional model
to maximize the selective transfer from v′′ = 0 to v′′ = 2.

2-D optimization of PI transfer. Taking the π pulses of section 8.2 as
initial guess the complete inversion of population initially in the electronic
ground state under the influence of rotations is considered. In order to
calculate such an optimal pulse the yield term of the functional is replaced
by |〈ψ|P |λ〉|2 with the projection operator P = |A〉〈A| onto the first excited
electronic state A. It is assumed that all the ground state population is
in v′′=0 l′′=0. The optimal pulse is shown in Fig. 9.4. It resembles a

Figure 9.4: STFT of the laser pulse optimized within the two dimensional model
to maximize the transfer from v′′ = 0 to A 1Σu.

phase correlated double pulse with an interpulse separation of 510 fs, the
vibrational period in the A state. The pulse of Fig. 9.4 is again similar to
the corresponding π pulse [see Fig. 8.10(a)], but has a more pronounced
intensity contrast. This optimization improved the transfer efficiency in the
case of complete random orientation of the diatom from 73% achieved by
the pulse of Fig. 8.10(a) to about 87% [see Fig. 9.4].



Part III

New directions of coherent
control theory
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This part is dedicated to cooling molecules, by two different methods.
The first concerns cooling the internal degrees of freedom of an initially hot
molecular ensemble by suitably shaped femtosecond pulses. It is a joint
project with Prof. David Tannor (Weizmann Institute, Israel). The second
approach is concerned with the partial conversion of an atomic to a diatomic
molecular condensate via Raman transition, enhanced by a time-dependent
magnetic field sweep over a Feshbach resonance. This research was done in
collaboration with Prof. Boudewijn Verhaar (TU Eindhoven, The Nether-
lands).
The optimization of the laser fields in both approaches was performed with
OCT based on density matrices. The usual wave packet approach fails, since
dissipation plays a central role in both approaches.
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Chapter 10

Cold molecules, a first
approach

In the following the optimal control framework for density matrices [113,150]
will be derived. Density matrix calculation provides the natural mathemat-
ical framework to describe coherences and dissipation. The density matrix
has diagonal elements, that represent the populations and outer-diagonal
elements, that are the coherences of the system. It fulfills the requirement
ρ = ρ†. The Liouville equation i∂tρ = −i[H, ρ] describes the time evolution
of the density matrix. This equation can be extended to include dissipation.
There exist many possible approaches, but the one that gives to the dynam-
ics of the system the correct physical and mathematical properties is the
Lindblad approach [151]. By correct is meant, that it allows for the proba-
bilistic interpretation of the diagonal elements of the density matrix at any
instant of time and is derived in a straightforward way from the quantum
model of spontaneous emission [151, 152]. For infinite Hilbert spaces it has
the form [150,151]

Ldρ =

N2∑

i=0

{

CiρC
†
i −

1

2

[

C†
iCi, ρ

]

+

}

. (10.1)

Here the anti commutator is denoted as [ , ]+. C
†
i = |b〉〈a| and Ci = |a〉〈b|

are the lowering and raising operators of the i-th two-level system |a〉,|b〉. A
total number of N2 two-level systems constitute altogether the whole system
under study. That is in order to write down Eq. (10.1) explicitly each spon-
taneous emission decay channel of the system has to be treated separately
as a two-level system decay and then summed over all these contributions.
In order to illustrate this, let us assume a system composed of three levels,
one excited level |e〉 decaying into two ground state levels |g1〉 and |g2〉. The
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density matrix of the system is then a 3 x 3 matrix

ρ =





ρ11 ρ12 ρ13

ρ†12 ρ22 ρ23

ρ†12 ρ†13 ρ33



 (10.2)

and the raising operators for the two spontaneous emission channels are

C1 =





0 0 c1
0 0 0
0 0 0



 , C2 =





0 0 0
0 0 c2
0 0 0



 (10.3)

Having defined the matrices it is simple to evaluate Eq. (10.1)

Ldρ =





γ1ρ33 0 −γ1
2 ρ13

0 0 −γ1
2 ρ23

c.c. c.c. −γ1ρ33



+





0 0 −γ2
2 ρ13

0 γ2ρ33 −γ2
2 ρ23

c.c. c.c. −γ2ρ33





=





γ1ρ33 0 −γ
2ρ13

0 γ2ρ33 −γ
2ρ23

c.c. c.c. −γρ33



 . (10.4)

Here γi = cic
†
i and γ = γ1 + γ2. Equation (10.4) is in words: the population

of the excited state decays into both ground state levels with a time constant
γ that is the sum of both these channels. The coherences between ground
and excited state decay with half of the excited state lifetime. This is also
known as T1/T2 time decay mechanism, where the population decays with a
time constant T1 that is always longer then the time constant of coherence
decay T2. The decaying population fills the ground state levels, each with
its own rate γ1 or γ2. So far the example, now let us turn to the derivation
of the OCT equations.
The natural extension of the coherent control functional to the case of den-
sity matrices is to replace the wave functions and use as the dynamical con-
straint instead of the Schrödinger, the Liouville equation of motion [113,150]

J = tr{ρfρ(T )} − α
T∫

0

ε2dt

−2Re







T∫

0

tr

{(
∂ρ

∂t
− L(ρ)

)

λ

}

dt






(10.5)

Variation of this equation leads into

∂ρ

∂t
= Lρ , ρ(0) = ρi (10.6)

∂λ

∂t
= −L†λ , λ(T ) = ρf (10.7)

ε(t) = −s(t)
α

Re tr {λµρ} (10.8)
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Note that the generalization of the overlap for matrices is the trace operation
tr {}. The target state at final time T is ρf . The dipole matrix is µ and λ is
the conjugate density matrix (Lagrange multiplier) introduced to fulfill the
dynamical constraint at all times. While the density matrix was defined to
fulfill the Liouville equation with a Liouvillian L = −i[H, ρ] + Ld including
dissipation, λ fulfills a different equation that corresponds to a backward in
time propagation. Inserting the explicit expression for the conjugate of L
into Eq. (10.7) one obtains

∂tλ = +i[H, ρ]−
(
∑

i

C†
i λCi −

1

2

[

C†
iCi, λ

]

+

)

. (10.9)

The signs are reversed and the role of Ci and C†
i in the first summand

interchanges due to conjugation. Evaluating the dissipative part for the
previously introduced three level system illustrates this difference

Ldλ =





0 0 −γ
2λ13

0 0 −γ
2λ23

c.c. c.c. −γλ33 + γ1λ11 + γ2λ22



 . (10.10)

This set of equations is again solved iteratively using the Krotov or modified
Krotov method [150] as described already in section 5.1. In contrast to the
wave function analog of Eq. (10.8) here the coherences play a central role
in shaping the optimal field as will be discussed in detail in the following
section, where the optimal control equations based on density matrices will
be applied to optimize STIRAP sequences.
In this chapter the Arnoldi method [153], which is a generalization of the
short-iterative-Lanczos algorithm to complex asymmetric Liouville opera-
tors, was used to propagate in time the Liouville equation with dissipation.
However there exist further schemes like split-operator with a symmetrized
dissipative part to conserve the norm [154], and two further polynomial
methods the Newton and Faber [155,156] approximation. An efficient prop-
agation scheme that uses a wave packet approach to the Liouville-von Neu-
mann equation for dissipative systems [157] could not be used since the initial
state considered is thermal and therefore an incoherent superposition.

10.1 Simple example: STIRAP an optimal control
solution

STIRAP [136] is the optimal solution for coherent transfer between two
states via a decaying excited state. No population is lost during the transfer
affected by dissipation on the same timescale, since the population is trans-
ferred adiabatically via a dressed state that is a superposition of initial and
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target state with no decaying state component. The superposition state is
generated by a counterintuitive ordering of frequencies, the dump preceding
the pump pulse. It is expected, as will be proven in a moment, that these
optimal solutions do not come out of the closed form, rapidly convergent
optimal control theory (OCT) formulation based on mere population evo-
lution [27, 29]. Therefore there have been several attempts to devise other
optimal control schemes also based on a wave packet description, like lo-
cal control [112, 158] or gradient-type [32, 159] optimizations to naturally
include these counterintuitive solutions. These methods however lack the
global search capability of the closed form expressions and are therefore in-
ferior. This section shall illustrate that it is not necessary to resort to these
less optimal schemes, since OCT based on density matrices as written down
in Eqs. (10.6-10.8) naturally includes the STIRAP solutions. This is due
to the fact, that the electric field is build from the coherences as well as
populations in the system [see Eq. (10.8)]. In contrast, the wave function
OCT is not able to optimize STIRAP due to Eq. 5.10. This can be proven
by contradiction. Without loss of generality let us assume the typical Λ
system with ground state levels |g1〉 and |g2〉 and decaying excited state
level |e〉. Let us assume further that wave packet OCT has converged into
the counterintuitive STIRAP sequence. Convergence means that ψ and the
Lagrange multiplier λ proceed along the same path in phase space. Since
the field is a STIRAP sequence the population in the excited state λe and
ψe is zero. Hence using Eq. (5.10) one obtains for the Λ system

ε(t) = −s(t)
α

Im{〈λg1|µ|ψe〉+ 〈λg2|µ|ψe〉+ c.c} = 0! (10.11)

and the field is for all times zero, which is in contradiction to the assump-
tion, that it is a STIRAP field.
If instead of the Krotov way of updating the field as assumed in Eq. (10.11),
the modified Krotov is used the statement of the above proof is less strict. In
this case it states that the correction to the field vanishes ones the STIRAP
field is found. This proof was also checked numerically. The wave packet
OCT in combination with Krotov is incapable of finding a STIRAP solu-
tion, even if the initial guess was already counterintuitive. Instead after
some iterations the zero field solution emerged. However using the modified
Krotov it was possible to optimize STIRAP, but it took several thousand
iterations, since the corrections are proportional to the square of the pop-
ulations and the populations of the decaying states being already small for
counterintuitive pulse sequences close to STIRAP. A consequence of slow
convergence is that the initial guess has to be already close to the optimal
STIRAP solution.
The above mentioned proof breaks down for density matrix OCT, since
clearly in the equation that predicts the electric field for the next iteration
both populations and coherences enter. In STIRAP the populations for
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the decaying states vanish, however not their coherences to the other levels.
This is the key reason, why density matrix OCT includes counterintuitive
solutions efficiently in its solutions space. To illustrate this, optimizations
on the Λ system will be performed in the following.
In the density matrix formalism the current state of the Λ system is de-
scribed by 3×3 matrix. A decay using wave functions can only be described
by an imaginary term iγ, which physically is a decay into nowhere. In the
Lindblad formulation decays into nowhere do not exist and each decay chan-
nel must have a source and a sink. Hence the Λ system must be extended by
a fourth, dark state |d〉. It merely serves as sink of the population decaying
from the excited state |e〉 and has no dipole coupling to any other state.
This darkness of the state just defines that the population that decayed is
lost to the laser transfer. A spontaneous decay back into the ground state
levels would also have been a possibility, but it is not the exact analog of the
iγ decay. The respective energies in wave numbers are {Eg1 = 0, Ee = 10973
cm−1, Eg2 = 2195 cm−1}. Due to the further dark state the density matrix
is 4×4

ρ =







|g1〉〈g1| |g1〉〈g2| |g1〉〈d| |g1〉〈e|
c.c |g2〉〈g2| |g2〉〈d| |g2〉〈e|
c.c. c.c. |d〉〈d| |d〉〈e|
c.c. c.c. c.c |e〉〈e|






, (10.12)

and the lowering operator describing spontaneous emission is

C =







0 0 0 0
0 0 0 0
0 0 0 Γ
0 0 0 0






. (10.13)

The consideration of coherences together with the Λ system extended by a
dark state are the essentials to obtain STIRAP-type solutions. Fig. 10.1(a)
displays the short-time Fourier transform (STFT) of the initial guess pulse.
It was designed to have already the counterintuitive ordering of frequencies.
However as the evolution of the populations in the system shows the upper
state is populated to a considerable amount [see Fig. 10.2(a)]. This means,
in the case spontaneous emission is turned on (Γ−2 ≈ 150 fs), the target
state is only poorly reached at final time [Fig. 10.2(c)]. The optimal control
pulse found in the case of this decay strength (Γ−2 ≈ 150 fs) is shown in
Fig. 10.1(b). This pulse improves considerable on the amount of population
transferred to the target state [see Fig. 10.2(d)]. That this pulse is indeed
nearly perfectly a STIRAP pulse can be seen in the propagation without
dissipation (Γ = 0), where at final time a population of less than 2% accu-
mulates in the excited state [Fig. 10.2(b)]. Due to the decay of coherences
(T2 = 2T1) in addition to population decay the transfer can not be complete.
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Figure 10.1: (a) Initial guess pulse. (b) Optimal pulse for Γ−2 ≈150 fs. (c)
Optimal pulse for Γ−2 ≈50 fs.

In the case of even stronger decay (Γ−2 ≈50 fs) leading to even shorter T1

and T2 times, the optimal pulse of Fig. 10.1(c) generalizes STIRAP. Instead
of only two center frequencies a comb of frequencies emerges to cope with the
stronger coherence (or polarization) decay. The extra frequencies serve to
build up further coherent bridges between the initial and final state, increas-
ing thereby the overall coherence, in order to compensate for the stronger
T2 decay.
After this simple illustrative example density matrix OCT is applied in the
next section to the problem of molecular cooling as pioneered by Tannor
and coworkers [150,160].

10.2 Molecular cooling with shaped laser fields

Before presenting the results on molecular cooling a definition of cooling
must be given. This introduction is based on a paper by D. Tannor [161].
The coolness of a sample is best defined by its purity, that is tr

{
ρ2
}
, which is

the expectation value of ρ itself. The adequacy of this measure is due to the
fact that tr

{
ρ2
}
=
∫ ∫

dq dp ρ2(q, p), the phase space density [160]. That
means every pure ensemble ρ = |ψ〉〈ψ| is absolutely cool, i.e. a coherent su-
perposition or wave packet is absolutely cool. In essence it is important how
the initial statistical mixture is transformed into a pure state. If this is done
by just stripping away population, then tr

{
ρ2
}
is constant1), that means

phase-space density is not increased and the sample is not cooler then it was
initially in the sense of having approached Bose condensation. Now it is well
known that the coldest gas in the universe, the Bose-Einstein-Condensate,

1)However in this process the von Neumann entropy decreases.
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Figure 10.2: State populations of the extended Λ system: initial (filled dots), tar-
get (hollow dots), excited decaying (straight line) and dark/sink (hollow squares).
(a) Evolution of population under influence of initial guess pulse. Γ = 0. (b) Evo-
lution of population under influence of optimal pulse. Γ = 0. (c) Same as (a) but
Γ−2 ≈150 fs. (d) Same as (b) but Γ−2 ≈ 150 fs.

can only be reached by increasing phase-space density. The central question
of cooling is then: How can a statistical ensemble be transformed into a pure
one, increasing at the same time the phase-space density? Atom physics tells
us, that lasers can be used to accomplish that task. At first, cooling using
electric fields seems to be a contradiction, since it is impossible to increase
phase space density with time-dependent terms in the Hamiltonian as was
shown in a paper from Ketterle and Pritchard [162]. One essential part
of this paper can be summarized in a single equation, that calculates the
change in purity achieved through an electric field [161]

d

dt
tr
{
ρ2
}
= 2tr {ρρ̇} = 2tr {ρ(−i)[H, ρ]} = 0 ! (10.14)

This equation states, that no cooling can be achieved, due to the permuta-
tion invariance of the trace tr {ρHρ− ρρH} = tr {ρρH − ρρH} = 0. The
essential key ingredient missing is dissipation, i.e. in the form of spontaneous
emission. Interestingly however dissipation does not lead automatically to
cooling, but can also lead to heating of the ensemble, depending on the
initial population distribution [161]. As an example take a pure ensemble
of two-level atoms, where the population of all atoms is initially in the de-
caying excited state. That means initially the ensemble is absolutely cool
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since it is in a pure state. As time progresses decay heats the ensemble since
the atoms will then be in an incoherent superposition: some atoms being
already in the ground and other still in the excited state.
Interactions with the externally controllable laser field do not change the

1 0.5 0.1

α

β

Figure 10.3: Schematic showing isopurity surfaces and the control possible with
Hamiltonian (gray arrow) and dissipative operations (black arrow). The multidi-
mensional space is spanned by sets of quantum numbers α and β the purity depends
upon.

purity and therefore move the ensemble around on an isopurity surface in
phase space2), while dissipation essentially uncontrollable is the only mecha-
nism connecting the isopurity surfaces. A schematic showing these relations
is shown in Fig. 10.3, where the black arrow shows a dissipative and the
gray arrow an Hamitonian action. Cooling is therefore an interplay of a
controllable part: the laser field and an uncontrollable part: dissipation.
Alternately cooling can be viewed as a two-step process, since d/dt(tr

{
ρ2
}
)

does not depend on the electric field, however the second derivative of ρ
does. Molecular cooling is then in a first time step an uncontrollable slow
dissipative action and in a second step a purely Hamiltonian fast action.
In atoms it is not important that dissipation is uncontrollable since closed
transitions exist, that means dissipation takes the system on the same way
back as it was excited. Even in Raman cooling the dissipation is not closed
but strongly controlled, since the spontaneous emission is most favorable in
the case of no velocity change. In molecules however dissipation takes the
excited population back not only to the levels that where initially populated,
but also to many others, leading essentially with each excitation to an ever
increasing population spread over the molecule.
Bartana, Tannor and Kosloff proposed to solve this intricate problem of
molecular cooling by using density matrix OCT [150]. They decomposed
the problem into cooling of the vibrational and afterwards of the rotational

2)a surface where the purity is constant
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manifold. The model for vibrational cooling was a molecule consisting of
two electronic potentials. They found the following cooling mechanism: the
optimal laser field does not interact with the target level in the ground po-
tential (“dark state”), while it pumps the population in all other ground
state levels to the excited state were it decays back into all ground state
levels, including the dark state. After several vibrational periods of the
molecule the induced cycling of population (excitation and decay) finally
fills the dark state and the molecule ends in a pure state. Rotational cooling
was studied in a truncated rotational manifold. The optimal cooling mech-
anism found in this case makes use of an alternation between right and left
circularly polarized light [163].
In both cases the optimal pulses emerged automatically from the density
matrix OCT [see Eq. (10.5)]. Note that the goal is to make the purity of
the molecule equal to 1, however no optimal control scheme can be derived
if tr

{
ρ2
}
is defined to be the target in the functional J . Therefore one has

to use the functional of Eq. (10.5) and define as target state some arbitrary
pure state. As a consequence the optimal pulse shape and possibly the final
purity can depend on the chosen target state. However from controllability
arguments [164, 165] such a dependence on the target state is not expected
to occur, since two different density matrices with the same purity can be
transformed into one another by an Hamiltonian operation. This mere pop-
ulation transfer takes place fast compared to the dissipation. Therefore
having reached some final value for the purity, transformation between the
class of ensembles with the same purity but different population distribution
among the levels in the system is possible.
The following numerical results however contradict this mathematical ar-
gumentation. Pure vibrational cooling is studied in a simplified molecular
system consisting of an excited set of five vibrational levels that decay into
five other vibrational ground state levels. The energy spacings are ∆λg ≈ 92
cm−1 (360 fs), ∆λe ≈ 67 cm−1 (520 fs) and correspond to the values in
the potassium dimer. A rotating-wave approximation is performed and the
dipole moments between excited and ground state levels were calculated
by taking into account the r-dependent K2 dipole moments. Spontaneous
emission occurs between all excited and all ground state levels and is not
subject to any selection rule. It was taken in the Lindblad form, where the
i-th lowering operator is ΓiCi. The decay constant Γ−2

i ≈ 2.5 ps, the final
time T = 28 ps and a time step 2.3 fs were chosen. The initial state was
taken to be the 10×10 matrix with all zeroes except to the first five diagonal
elements, that were set to 0.2. This is, the initial population is distributed
equally over the five ground state levels. The STFT of the optimal pulses are
shown in Fig. 10.4 for two different target states: v′′ = 0 [10.4(a)] and v′′ =
2 [10.4(b)]. The purity as a function of time for these two cases is shown in
Fig. 10.5. Clearly not only do the pulse shapes differ considerably, but also
the purity at the end depends strongly on the final pure state. As discussed
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Figure 10.4: STFT of optimal pulses that cool an initial population distributed
evenly over ground state levels. The pure target state was chosen to be v′′ = 0 (a)
and v′′ = 2 (b).

earlier this result is mathematically not expected, since if it is possible to
reach an ensemble purity of 0.7 with the population mostly in v′′ = 0 [see
Fig.10.5 line], why should it not be possible to concentrate the population
in v′′ = 2 without loosing purity, just by an Hamiltonian operation?! The
only explanation to this discrepancy is to assume that the OCT scheme does
not find the most optimal solution or that the solution is not allowed due
to the constraint on the pulse energy or shape s(t). The optimal laser fields
from chapter 8 connecting two pure states are in this mathematical sense
also imperfect, since their yield is less than 100%. From the mathematical
point of view both states are pure and therefore there must exist an Hamil-
tonian operation that fulfills the task with unit efficiency independent of the
initial/final state pair.
Even more surprising is that the purity at earlier times reaches a maximum
and falls off again on timescales much faster than dissipation before final time
[see Fig. 10.5]. A purity change with a timescale faster than dissipation (2.5
ps) should be impossible, since the fast acting Hamiltonian operations are
purity conserving.
The optimal pulses of Fig. 10.4 have to increase the purity and steer the
population into some final density matrix. Instead by defining the final
state to have the same diagonal elements, but the necessary coherences on
the off-diagonal to be pure it is possible to eliminate the second, population
transfer step from the pulses. The target state with tr

{
ρ2
}
having the same
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Figure 10.5: The evolution of purity in time for the two pulses of Fig. 10.4. Line
corresponds to 10.4(a) and hollow dots to 10.4(b).

diagonal elements as the initial matrix is the density matrix

ρf =

{
0.2 if i, j = 1 . . . 5
0.0 else

(10.15)

For this calculation the time step was reduced to dt = 1.16 fs. The optimal
pulse now resulting is shown in Fig. 10.6(c) and the purity at final time T
= 7 ps is 80% [see Fig. 10.7 line], that is a higher purity than was achieved
for the two previous optimizations, that used a specific eigenstate as final
state. In order to study the effect of the decay rate on the final purity a
decay rate five times slower, that is Γ−2

i ≈12.5 ps, is studied. Clearly for this
system the lower spontaneous emission rate will lead to slower cooling rate
and a smaller final purity. What happens however if not all, but only one
dissipative channel is increased by a factor of five? Calculations, where only
the v′ = 0 Ã v′′ = 0 spontaneous emission channel is increased by a factor
of five lead to the optimal field of Fig. 10.6(a) and to a purity versus time as
shown in Fig. 10.7. Increasing more dissipative channels (all five connecting
to v′′ = 0) by a factor of five results in the pulse of Fig. 10.6(b) and the purity
in Fig. 10.7. A comparison of all the tailored fields in Fig. 10.6 clearly shows
that the optimal pulse adapts to the spontaneous emission characteristics.
Moreover Fig. 10.7 shows that an increase of only part of the channels can
lead to an increased purity at final time. This increase of dissipation can
be easily done numerically, however it is not clear what physical mechanism
could be used to achieve such an increase. One possibility is to place the
molecule inside a lossy cavity. It is known that the cavity changes the
vacuum field density of modes increasing or decreasing thereby spontaneous
emission [166–169]. The field modes of the cavity can be controlled by
the curvature of the cavity mirrors [170]. The effect of the cavity can be
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Figure 10.6: STFT of cooling pulse for different dissipation. (a) Γ−2
i ≈12.5 ps

but dissipative channel v′ = 0 Ã v′′ = 0 increased by factor of five. (b) Γ−2
i ≈12.5

ps but all dissipative channels ending in v′ = 0 enhanced by factor of five. (c) All
dissipative channels with Γ−2

i ≈2.5 ps.

expressed by a simple formula [166]

η =
3Qλ3

4π2V
(10.16)

where η is the ratio of spontaneous emission to free-space emission rate, Q
is the cavity quality factor, λ the transition wavelength and V the mode
volume. In experiments η ≈ 3 . . . 5 can be realized. In a cavity a comb
of transversal modes can be created, that depend on the curvature of the
mirrors. Molecular cooling in a cavity was proposed by Vuletic et. al. [166],
where the cavity mode is blue shifted with respect to all molecular transition,
so that in a Raman scattering event the loss of energy is enhanced. Once
the molecule is translationally cold the internal degrees of freedom could
perhaps be cooled by matching the cavity modes with the band heads of ro-
vibronic transitions. This possibility is the topic of further research as well
as obtaining simpler cooling pulses, since electric fields like the one shown
in Fig. 10.8 are not yet realizable.



Figure 10.7: Purity evolution for the three pulses of Fig. 10.6. 10.6(a) corresponds
to filled, 10.6(b) to the hollow dots and 10.6(c) to the line.

Figure 10.8: (a) Electric field in rotating wave approximation of the pulse in
Fig. 10.6(c). (b) The spectrum of this pulse.
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Chapter 11

Cold molecules, a second
approach

11.1 Bose-Einstein-Condensates and Feshbach res-
onances

The Bose-Einstein-Condensate (BEC). The many-body Hamiltonian
describing N interacting bosons confined by a trapping potential Vtrap is
given, in second quantization, by

H =

∫

d3r

[

− ~2

2m
∇2 + Vtrap(r)

]

ψ̂†(r)

+
1

2

∫ ∫

d3r d3r′ψ̂†(r)ψ̂†(r′)V (r− r′)ψ̂(r′)ψ̂(r) (11.1)

where ψ̂(r) and ψ̂†(r) are the boson field operators that annihilate and
create a particle at the position r, respectively, and V (r− r′) is the two-
body interatomic potential. The dynamics of the condensate are predicted
by the Heisenberg equation with the many-body Hamiltonian Eq. (11.1):

i~∂tψ̂(r, t) =
[

ψ̂,H
]

(11.2)

This equation is solved to first order with the Ansatz ψ̂(r, t) = φ(r, t) +
ψ̂′(r, t), where essentially the condensate contribution φ is separated out
from the bosonic field operator. Here φ(r, t) is a complex function defined
as the expectation value of the field operator: φ(r, t) =< ψ̂(r, t) >. Its
modulus specifies the condensate density through n(r, t) = |φ(r, t)|2. The
function φ(r, t) is a classical field having the meaning of an order parameter
and is often called the “wave function of the condensate”. In a dilute and ul-
tracold gas only binary collisions in s-wave (l=0) geometry can occur, where
a single parameter, the s-wave scattering length a suffices to describe these
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interactions. All the details of the two-body potential are subsumed in the
scattering length and therefore two potentials resulting in the same scatter-
ing length are not distinguishable. This allows one to replace V (r− r′) with
an effective interaction

V (r− r′) =
4π~2a

m
δ(r− r′). (11.3)

Inserting this potential into Eq. (11.2) together with the replacement ψ̂ with
φ yields the Gross-Pitaevskii (GP) equation for the order parameter:

i~∂tφ(r, t) =
(

−~2∇2

2m
+ Vtrap + U0|φ(r, t)|2

)

φ(r, t) (11.4)

with

U0 =
4π~2a

m
. (11.5)

The validity of the GP equation is based on the condition that the s-wave
scattering length be much smaller than the average distance between atoms
and that the number of atoms in the condensate be much larger than 1. The
mean-field or self-energy term U0|φ|2 results from the above delta-function
pseudopotential and shows that the interaction energy in a cloud of atoms
is proportional to the density and the scattering length. The sign of the
scattering length indicates whether the atomic interaction is effectively re-
pulsive (a > 0) or attractive (a < 0). For negative a with Vtrap = 0 the GP
equation does not have a stationary solution. In practice that means the
condensate collapses. With a harmonic trap potential and a < 0 the GP
equation has a stable solution, but only if the mean-field energy is less than
the spacing of the trap levels. When a = 0 the atoms do not interact and
the stationary solution equals the single-atom ground-state wave function
in the trap potential (except for normalization).

Feshbach resonances. Feshbach resonances are scattering resonances
that arise when the total energy (internal+translational) of a pair of colliding
atoms matches the energy of the quasibound two-atom state, leading to
resonant formation of this state during collision. Magnetic tuning is possible
if the magnetic moments of the free and quasibound states are different. In
a time-dependent picture, the two atoms are transferred to a quasibound
state stick together and then return to an unbound state. Such a resonance
strongly affects the scattering length (elastic channel). Near a Feshbach
resonance the scattering length a varies dispersively as a function of the
magnetic field B:

a = ã

(

1− ∆

B −B0

)

, (11.6)
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where ∆ is the width of the resonance at B = B0, and â is the scattering
length outside the resonance. Clearly, the scattering length a covers the full
continuum of positive and negative values, above and below the resonance.
A microscopic understanding of a Feshbach resonance can be obtained in
a quantum mechanical description of interaction processes between alkali
atoms. The effective Hamiltonian describing the collisions of two ground-
state alkali atoms is

H =
p2

2µ
+

2∑

j=1

(

V hf
j + V Z

j

)

+ V c (11.7)

comprising the relative kinetic energy operator with reduced mass µ, a
single-atom hyperfine V hf

j and Zeeman term V Z
j for each atom j, and a

central two-atom interaction term V c. The central interaction V c repre-
sents all Coulomb interactions between the electrons and the nuclei of both
atoms. It depends only on the quantum number S associated with the mag-
nitude of the total electron spin ~S = ~s1 + ~s2, which can be 0 or 1 for alkali
atoms, and the internuclear distance r:

V c = VS(r)PS + VT (r)PT (11.8)

with PS and PT the projection on the singlet (S = 0) and triplet (S = 1)
subspaces. The potentials VS and VT are the Born-Oppenheimer molecular
potential curves connected to the 32S1/2 + 32S1/2 separated-atom limit;
in spectroscopic notation the corresponding molecular electronic states are
X1Σ+

g and a3Σ+
u . At large separations (r > 16 a0 to 19 a0, depending on

the atomic species), the central potentials may be written as

VS,T (r) = −
C6

r6
− C8

r8
− C10

r10
± VE(r). (11.9)

The first term represents the van der Waals interaction. It is followed by
the next two terms in an electric multipole expansion of the Coulomb in-
teractions between the charge distributions of the two colliding atoms: the
dipole-quadrupole and quadrupole-quadrupole interactions. The different
permutation symmetries of the molecular electronic wave functions ψS and
ψT are responsible for the exchange interaction energy VE(r).
The hyperfine terms are given by

V hf
j =

ahfj
~2
~sj ·~ij , (11.10)

where ~sj and ~ij are the electron and nuclear spin operators of atom j and

ahfj a constant related to the hyperfine splitting. Alkali atoms have only one

valence electron, therefore s1 = s2 = 1
2 . Under the influence of the hyperfine

interaction the electronic ground state (3S for Na) splits into two new levels,
with the total spin vector ~f =~i+ ~s = i± 1

2 (see Fig. 11.1 at B = 0).



Figure 11.1: Hyperfine states of sodium |f,mf 〉. Shown is the energy dependence
of these states in an external magnetic field B (Zeeman dependence). The relative
orientation of the nuclear and electron spin is depicted by the large and small balls
at the right. ~f = ~i + ~s is the orientation dependent total spin vector of nuclear i
plus valence electron spin s. The projection of ~f on the quantization axis is given
by mf .

144
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The Zeeman interaction accounts for the external magnetic field. Choos-
ing the z-axis of the laboratory frame along the magnetic field ~B = B~ez,
they have the form

V Z
j = (γeszj − γN izj)B. (11.11)

Asymptotically, where the two-atom interaction V c can be neglected, the
system is described by separate atoms, each in an eigenstate of its own
hyperfine and Zeeman operators. These are the magnetic-field dependent
hyperfine states |f,mf 〉 shown in Fig. 11.1. The kind of states with increas-
ing (decreasing) energy with increasing magnetic field are called low-field
(high-field) seeking states, respectively. While low-field seeking states can be
trapped in a magnetic-field minimum, a BEC in a high-field seeking state can
only be trapped by all optical means. The differences in field dependence be-
tween the hyperfine states are responsible for Feshbach resonances [171,172].
The details of a cold collision enhanced by a Feshbach resonance is shown
schematically in Fig. 11.2. The colliding atoms are assumed to be in the
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Figure 11.2: Shown are the collisional potential energy surfaces of two hyperfine
states |f1,mf1〉 and |f2,mf2〉. The atoms in the BEC are assumed to be in the
hyperfine state |f1,mf1〉 possessing a kinetic energy Ekin. (a) Off resonance situa-
tion. The colliding atoms can not penetrate the quantum reflection region. (b) The
external magnetic field is tuned in resonance with the Feshbach resonance. Spin
flip tunneling is now enhanced due to the bound state resonance condition. The
tunneling rate is α. (c) The quasibound state has a local lifetime. If during this
time the external field changed, the dissociating atoms acquire additional kinetic
energy leading to a trap loss γ0.

lower energetic hyperfine state |f1,mf1〉. As they approach each other they
enter a small range near the beginning of the long-range region (r ≈ 20
a0), where the exchange interaction VE is of the same order of magnitude
as the hyperfine-Zeeman energies. This is a crucial region because in an
external field the hyperfine induced spin flip of the one atom in presence of
the other can bind the interacting atoms by bringing them to a hyperfine
state |f2,mf2〉 with a higher threshold energy. Normally no bound state of
the |f2,mf2〉 scattering potential coincides in energy with the total energy
of the colliding atoms and the atoms get reflected back [see Fig. 11.2(a)].
If the Zeeman dependence of the two hyperfine states is different it is pos-
sible to tune a bound state of the |f2,mf2〉 scattering potential exactly in
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resonance with the collision threshold. Now the atoms can tunnel into the
quasibound molecular state, where they are at small interatomic separations
and form a molecular condensate [Fig. 11.2(b)]. After some local lifetime
of the resonance the two atoms dissociate again. If during this lifetime the
magnetic field is decreased and the |f2,mf2〉 hyperfine state is high-field
seeking the quasibound state will have risen in energy. As a consequence
the dissociating atoms will have acquired an additional kinetic energy and
will be lost from the trap [173]. This decay is characterized by the constant
γ0 [ Fig. 11.2(c)]. Note that this decay does not occur if the magnetic field
was instead increased.
In the many body Hamiltonian, the spin flips to quasibound states are de-
scribed by [174]

HFR = α

∫

d3rψ̂†
m(r)ψ̂a(r)ψ̂a(r) + c.c., (11.12)

where ψ̂m, ψ̂
†
m (ψ̂a, ψ̂

†
a) are the annihilation and creation field operators

of the molecules (atoms). The α parameter in Eq. (11.12) is the transi-
tion matrix element proportional to the overlap of the molecular continuum
and bound state wave functions. The expectation value of the Heisenberg
equations for atoms and molecules gives the equation of motion for the con-
densate fields φm =< ψ̂m > and φa =< ψ̂a >:

i~φ̇m =

[

−~2∇2

4M
+ Em + λmnm + λna

]

φm + αφ2
a

i~φ̇a =

[

−~2∇2

2M
+ U0na + λnm

]

φa + 2αφ?aφm, (11.13)

where M denotes the mass of a single atom, nm and na represent the con-
densate densities, nm = |φm|2 and na = |φa|2, and λm, U0 and λ represent
the strength of the molecule-molecule, atom-atom and molecule-atom in-
teractions. The α-terms that couple the equations describe the tunnelling
of pairs of atoms between φm and φa-fields. Eq. (11.13) replaces the usual
single condensate Gross-Pitaevskii equation (11.4).
The following sections study the stabilization of the naturally forming mole-
cular condensate during a Feshbach resonance via optimally shaped Raman
fields in the nanosecond and femtosecond regime.

11.2 Optimal conversion of an atomic to a mole-
cular BEC

Cold molecules have been produced and detected through photoassocia-
tion [175–177] of laser-cooled atoms, where the molecules are formed in-
coherently in many different ro-vibrational levels and have a relatively large
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energy spread of 100 µK. However it is also possible to form molecules
by a stimulated Raman transition from a freely moving pair of condensate
atoms [138, 140, 142, 178, 179]. Note that the energy and impulse is con-
served, since the Raman light fields can be applied counter propagating and
the energy released during molecule formation is carried away by the light
fields. The free to bound photoassociation process is not very efficient due
to poor Franck-Condon overlap of the relatively short distances of atoms in
the molecule and the diffuse interatomic distances of a pair of interacting
trapped atoms. The free atoms can not penetrate small distances due to the
quantum reflection region [180], which is opaque for atoms moving at 1 nK
kinetic energies. A further complication is that the Franck Condon factors
are best for bound states near the dissociation limit of the excited electronic
states, and thus the pump laser tuned to this wavelength will unavoidably
excite the nearby atomic transition.
A more promising scheme is the partial conversion of an atomic to a diatomic
molecular condensate via a stimulated Raman transition, enhanced by a
time-dependent magnetic field that sweeps over a Feshbach resonance [143].
Here a dramatic increase of the free-bound transition probability by seven
orders of magnitude can be achieved, since the colliding atoms can pene-
trate to the short distance range. The conversion rate depends critically
on the Raman fields used, which were hand-optimized guided by physical
intuition [143]. In this thesis the required fields are calculated by optimal
control theory [27, 29], which is very successful in finding solutions close to
global optimum. In order to do so, the well known optimal control equations
had to be extended to the case of nonlinearities in the dynamical equation.
The BEC to M-BEC conversion is moreover a challenge, because it is part
of the important class of problems in which the coherent transfer is affected
by dissipation on the same timescale.

11.2.1 Nonlinearity

In order to make theoretical predictions useful for experiment, the theory will
be specialized to a recent experiment on Feshbach resonances carried out at
MIT [181,182]. Here a BEC in the high-field seeking state |f = 1,mf = +1〉,
for which two Feshbach resonances at realizable magnetic field strengths of
853 G and 907 G were theoretically predicted [183], is trapped by all op-
tical means. Then by sweeping the external magnetic field with a rate of
0.31 10−2G/µs over the 853 G resonance 60% quasibound molecules could
be created. The parameters of the Feshbach resonance and the Na BEC
are summarized in Table 11.1. The atomic condensate (of Na atoms as an
example) is described by the field φa(~x, t), the atom pairs in their inter-
mediate Feshbach 32S1/2 + 32S1/2 quasibound state as a molecular Bose-
Einstein condensate with order parameter φ1(~x, t). Two further condensate
components are considered: the molecules in the intermediate electronically
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Table 11.1: The parameters of the calculation.

ã 3.3 nm γ0 5.3 µK
∆ 0.0091 G γsp 6 107 · ~ s−1

n 5.2 1014 cm−3 m 0.38175 10−25

Ḃ ± 0.31 10−2 G/µs α
√

2 · 10−16~γ0/8
U0 4π~2ã/m ∆µ 2α2/(U0∆)

ė1 Ḃ ·∆µ

excited 32S1/2 + 32P1/2 bound state with a bound state energy of -1346
cm−1 (0−g symmetry (J, I,MI) = (2, 3,+1)) of the coherent Raman transi-
tion and the molecules in the final state, described by φ2(~x, t) and φ3(~x, t)
respectively. The final internal state associated with φ3(~x, t) is chosen to be
the ro-vibronic ground state of the molecule in the a3Σ+

u triplet potential
with spin structure (S,MS , I,MI) = (1,+1,3,+1). The amplitudes of the
coherent fields are assumed uniform φj =

√
nj exp(iΘj) and the interaction

with the light fields with center frequencies ω1 and ω2 is taken in a rotating-
wave approximation. The coupled Gross-Pitaevskii equations of Eq. (11.13)
describing the evolution of a mixed atomic/molecular BEC at a Feshbach
resonance had to be extended to further include the influence of the Raman
pulse pair [143]:

iφ̇a = U0|φa|2φa + 2αφ?aφ1

iφ̇1 =

(

E1 −
i

2
γ0

)

φ1 + αφ2
a +

1

2
µ1εL1φ2

iφ̇2 =

(

E2 −
i

2
γsp − ωL1

)

φ2 +
1

2
µ1εL1φ1 (11.14)

+
1

2
µ2εL2φ3

iφ̇3 = (E3 − ωL1 + ωL2)φ3 +
1

2
µ2εL2φ2

The system described by these equations is essentially a Λ-type molecular
system, coupled to a source of atoms via tunnelling. U0 is the off-resonant
strength of the condensate self-energy, α the rate constant of atom to quasi-
bound molecule conversion. The energy of the quasibound state E1− i

2γ0 is
assumed complex, since it can dissociate into atoms leaving the trap when-
ever the energy E1 is positive (see section 11.1). That means that the decay
is only nonzero after (before) crossing the resonance for a positive (negative)
magnetic field sweep, respectively. The real part E1 undergoes a Zeeman
shift varying linearly in time E1 = Ḃt and is defined to cross the resonance
value shifted to 0 at time 0, at which instant the φ1 to φ2 conversion is
most efficient. E2 − i

2γsp is the complex excited state energy with γsp the
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Figure 11.3: Schematic of the BEC to M-BEC conversion scheme using nanosec-
ond Raman pulses with Rabi frequencies ΩL1 and ΩL2. Indicated are the triplet
potential a3Σ+

u and the excited potential of O−g symmetry. The colliding atoms
of the BEC are described by the field φa, the formed quasibound state by φ1, the
bound level in the excited potential by φ2 and finally the target level in the ground
state potential by φ3. The decay due to spontaneous emission is γsp and the decay
of the quasibound state due to dissociation and trap loss is γ0.

spontaneous decay width and E3 the energy of the final bound molecular
state. For a more detailed description see Ref. [143]. Included in this model
is the boson stimulation of the free to bound transition [142] and also the
change of self-energy of the condensate due to reduction of the atomic BEC
component during the conversion process. Not included is the effect of atom-
molecule and molecule-molecule self-energy terms [see Eq. (11.13)], since no
accurate experimental or theoretical information on the relevant ultracold
collisions is presently available.
The aim is to find pulses εL1 and εL2 that take the initial population in φa
(atomic BEC) completely over to φ3 (stable molecular BEC). Starting point
is the formulation of a functional, that is to be varied in order to obtain the
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coupled equations solved iteratively on the electric fields:

J = 〈φ3|φ(T )〉 − α1

T∫

0

ε21(t)

s(t)
dt− α2

T∫

0

ε22(t)

s(t)
dt

−2Re







T∫

0

〈λ(t)|∂t + iW (φ(t), t)|φ(t)〉dt






(11.15)

Here φ(t) is a vector with the four components φi(t) describing the current
state of the mixed condensate system governed by Eq. (11.14). Again, the
first term describes the aim, that is to maximize the overlap with the bound
molecular state at final time tf . The next two terms are used to regulate the
maximal pulse energy by choosing adequately the dimensionless parameters
α1, α2. The dynamics predicted by Eq. (11.14) occur on an interval of ti =
-400 µs to tf = 100 µs, while the laser interaction interval was constrained
using a shape function to [-50 µs, 50 µs]. This selection of the optimization
window will allow laser fields with a fwhm of several µs and not shorter
than the dynamics induced by the initial guess pulse, which consists of a
sequence of nanosecond pulses. In a later section the optimization window
will be reduced to picosecond, leading then to a shaped femtosecond Raman
pulse pair.
The functional becomes unconstrained due to the last term that takes into
account that the evolution of φ is governed by Eq. (11.14), written in
the form i∂tφ(t) = W (φ(t), t). Here W (φ(t), t) is the right hand side of
Eq. (11.14) and includes all nonlinear terms. In order to express this con-
straint to be fulfilled at every time step a Lagrange multiplier λ(t) is neces-
sary. Variations with respect to φ, λ, ε1 and ε2 have to be calculated to find
the fields that maximize the functional. Beginning with the electric fields
the following two equations are obtained:

ε1(t) = −s(t)
α1

µ1Im {〈λ1|φ2〉+ 〈λ2|φ1〉} (11.16)

ε2(t) = −s(t)
α2

µ2Im {〈λ2|φ3〉+ 〈λ3|φ2〉} (11.17)

Variation with respect to λ leads to Eq. (11.14) with the boundary condition
at initial time φ(ti) = φ1. The φ variation leads to the following equation
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of motion for λ

iλ̇a = U0

(

2|φa|2λa + φ2
aλ

?
a

)

+ 2α (φ?aλ1 + φ1λ
?
a)

iλ̇1 =

(

E1 +
i

2
γ0

)

λ1 + 2αφaλa +
1

2
µ1εL1λ2

iλ̇2 =

(

E2 +
i

2
γsp − ωL1

)

λ2 +
1

2
µ1εL1λ1 (11.18)

+
1

2
µ2εL2λ3

iλ̇3 = (E3 − ωL1 + ωL2)λ3 +
1

2
µ2εL2λ2.

Due to the nonlinear nature of Eq. (11.14) the evolution of the Lagrange
multiplier λ depends on φ itself and is not independent as for the linear
Schrödinger equation. The Lagrange multiplier has to fulfill the boundary
condition λi(tf ) = δi4φ4 at final time.
The obtained system of four equations, where Eq. (11.14) and Eq. (11.18)
depend on the fields ε1(t),ε2(t) given by Eq. (11.16) and Eq. (11.17), respec-
tively, is solved as usual by iteration on the electric fields [27]. One iteration
is composed of the following steps. Starting with an initial guess pulse, φ(t)
is propagated from its initial value until final time is reached. These values
of φ(t) at each point of time are stored. Then φ(tf ) is projected onto the fi-
nal state φ4 and normalized to one. This vector is then used as the boundary
condition for λ at final time tf . Both electric fields at t = tf are calculated
using Eq. (11.16) and Eq. (11.17). These field values are used in conjunction
with the stored value of φ to calculate λ a further step backward. This is
repeated until initial time is reached. The obtained improved field is used
as initial guess in the next iteration.
The proposed iteration scheme, one out of three possible in the case of the
linear Schrödinger equation, is the only one that will work, since λ can
only be propagated if φ is already known and moreover the propagation will
only be well-behaved if Eq. (11.18) is propagated backward in time, due to
the + sign of the γ0 and γsp decay terms. Numerically the propagation is
performed using a variable-order, variable-step Adams method [184]. An
alternative propagator could have been the polynomial in time proposed by
R. Baer [127].
The optimization is not expected to work efficiently in the case of spon-
taneous emission from the excited state, since the OCT is based on wave
functions and not density matrices (see the proof in section 10.1). Therefore
the following results were obtained with γsp = 0 and only in the next section
a density matrix based OCT for this problem will be derived.
Using the Krotov method and starting with a sequence of counterintuitive
pulses in analogy to Ref. [143] [Fig. 11.4(a)], which are known to be a good
initial guess, the results of Fig. 11.4(b) are obtained for α1 = 5 · 104 and
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α2 = 1 · 1010. The population induced by the initial guess evolves according
to Fig. 11.5(a) reaching a population in the molecular BEC at final time
of 12%. The optimal pulse population dynamics are shown in Fig. 11.5(b)
with a clearly improved conversion rate to the M-BEC of 42%. The optimal
pulse is a µs changing field with the subpulse coupling the quasibound to ex-
cited state preceding the subpulse coupling the bound to bound transition.
Therefore population is slowly transferred into the excited state and there-
after dumped completely again [Fig. 11.5(b)]. With γsp turned on this pulse
is no more optimal, since the laser transfer occurs on the same timescale as
the decay and population will be lost.

In the following two sections the optimal control equations will be mod-
ified in order to provide solutions even in the presence of dissipation. Dissi-
pation is circumvented by not populating the decaying levels (section 11.2.2)
or being faster than the decay mechanism by applying tailored femtosecond
pulses (section 11.2.3).
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Figure 11.4: (a) Initial guess consisting of a STIRAP sequence of nanosecond
pulses. (b) Optimal pulse.
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Figure 11.5: Atomic BEC (filled dots) and molecular BEC: quasibound (hollow
dots), excited (line), ground (squares) with γsp = 0. (a) Population transfer induced
by initial guess. (b) Population transfer induced by optimal pulse.
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11.2.2 Use of optimal nanosecond pulses

In this section the density matrix analog of the GP equations of Ref. [143] is
derived to include also the evolution of the coherences in the system. This is
necessary in order to obtain optimal pulses for the real problem of BEC to
M-BEC conversion in the µs regime, where dissipation of the excited state
is a central problem. This was shown already in section 10.1, where an
optimal control functional based on dissipation was capable of optimizing
STIRAP pulse sequences. In this section the density matrix formulation of
optimal control theory is combined with the nonlinear dynamical equation
of the previous subsection to provide experimentalists with highly efficient
µs pulse sequences converting an atomic to a molecular BEC. The density
matrix elements are ρa = 〈φa|ρ|φa〉, ρai = 〈φa|〈φa|ρ|φi〉 and ρij = 〈φi|ρ|φj〉
with i, j = 1 . . . 3 indexing the molecular levels. Here ρai describes the
formation of the molecular quasibound state from the two colliding atoms
as in Eq. (11.12). Now the density matrix analog of the coupled Gross-
Pitaevskii equations [ Eq. (11.14)] predict the population dynamics

iρ̇a = 2αρa1 − c.c.
iρ̇11 = E1ρ11 − αρa1 +ΩL1ρ12 − c.c.
iρ̇22 = E2ρ22 − ΩL1ρ12 +ΩL2ρ23 − c.c.
iρ̇33 = E3ρ33 − ΩL2ρ23 − c.c.

(11.19)

and the coherence dynamics

iρ̇a1 = (E1 − 2U0ρa)ρa1 − 4αρa(ρ11 −
1

4
ρa) + ΩL1ρa2 (11.20)

iρ̇a2 = (E2 − 2U0ρa)ρa2 − 4αρaρ12 +ΩL1ρa1 +ΩL2ρa3

iρ̇a3 = (E3 − 2U0ρa)ρa3 − 4αρaρ13 +ΩL2ρa2

iρ̇12 = (E2 − E?
1)ρ12 − αρa2 +ΩL1(ρ11 − ρ22) + ΩL2ρ13

iρ̇13 = (E3 − E?
1)ρ13 − αρa3 − ΩL1ρ23 +ΩL2ρ12

iρ̇23 = (E3 − E?
2)ρ23 − ΩL1ρ13 +ΩL2(ρ22 − ρ33).

Here I used the same nomenclature as in the previous section. Again the aim
is to find pulses εL1 and εL2 that take the initial population in ρa (atomic
BEC) completely over to ρ33 (stable molecular BEC) without populating
the intermediate decaying excited state. Starting point is the formulation
of a functional, that is to be varied in order to obtain the coupled equations
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solved iteratively on the electric fields:

J = < 3|ρ(tf )|3 > −α1

tf∫

ti

ε2L1(t)dt− α2

tf∫

ti

ε2L2(t)dt

−2Re







tf∫

ti

tr {[ρ̇(t) +W (ρ(t), t)]λ(t)}dt







(11.21)

Here ρ(t) is the 4×4 matrix

ρ =







ρa ρa1 ρa2 ρa3
c.c. ρ11 ρ12 ρ13

c.c. c.c. ρ22 ρ23

c.c. c.c. c.c. ρ33







(11.22)

describing the current state, including coherences, of the mixed condensate
system governed by Eq. (11.19). The first term describes the aim, that is to
maximize the overlap with the bound molecular state at final time tf . The
next two terms are used to regulate the maximal pulse energy by choosing
adequately the parameters α1, α2. The optimization interval is [ti, tf ] and
in the calculations ti = -400 µs and tf = 100 µs were chosen. Beginning
with the electric fields the following two equations are obtained:

∆εL1(t) = −µ1

α1
Im{ρ12(λ22 − λ11) + λ12(ρ11 − ρ22)−

λ13ρ
?
23 − λ23ρ

?
13 + λa1ρ

?
a2 + λa2ρ

?
a1} (11.23)

∆εL2(t) = −µ2

α2
Im{ρ23(λ33 − λ22) + λ23(ρ22 − ρ33) +

λ12ρ
?
13 + λ13ρ

?
12 + λa2ρ

?
a3 + λa3ρ

?
a2}. (11.24)

Clearly these equations, that are used to predict the optimal fields in each it-
eration, depend on the populations and coherences of the system. In compar-
ison the equations (11.16) and (11.17), obviously lack the coherence terms.
The iteration behavior using Eqs. (11.23) and (11.24) with Eqs. (11.16) and
(11.17) was compared. The density matrix formulation of the GP equations
is not only a physically more complete picture, but the coherence terms
lead to a much faster optimization of STIRAP light fields compared to wave
function OCT (see the proof in section 10.1).
Variation with respect to λ leads to Eq. (11.19) with the boundary condition
at initial time ρ(ti) = ρa. The ρ variation leads to the following equation of
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motion for λ

iλ̇a = −2U0(ρ
?
a1λa1 + ρ?a2λa2 + ρ?a3λa3) +

2α[(ρa − 2ρ11)λa1 − 2ρ?12λa2 − 2ρ?13λa3]− c.c.
iλ̇11 = E?

1λ11 − 4αρ?aλa1 +ΩL1λ12 − c.c.
iλ̇22 = E?

2λ22 − ΩL1λ12 +ΩL2λ23 − c.c.
iλ̇33 = E?

3λ33 − ΩL2ρ23 − c.c.
iλ̇a1 = (E?

1 − 2U0ρa)λa1 − α(λ11 − 2λa) + ΩL1λa2 (11.25)

iλ̇a2 = (E?
2 − 2U0ρa)λa2 − αλ12 +ΩL1λa1 +ΩL2λa3

iλ̇a3 = (E?
3 − 2U0ρa)λa3 − αλ13 +ΩL2λa2

iλ̇12 = (E?
2 − E1)λ12 − 4αρaλa2 +ΩL1(λ11 − λ22) + ΩL2ρ13

iλ̇13 = (E?
3 − E1)λ13 − 4αρaλa3 − ΩL1λ23 +ΩL2λ12

iλ̇23 = (E?
3 − E2)λ23 − ΩL1λ13 +ΩL2(λ22 − λ33)

Due to the nonlinear nature of Eq. (11.19) the evolution of the Lagrange
multiplier λ depends on ρ itself and is not independent as for the linear
Schrödinger equation. The Lagrange multiplier has to fulfill the boundary
condition λi,j(tf ) = δi4,j4 at final time. The obtained system of four equa-
tions (Eq. (11.19), (11.23), (11.24), and (11.25)), where Eqs. (11.19) and
(11.25) depend on the fields ε1(t),ε2(t) given by Eqs. (11.23) and (11.24),
respectively, is solved by iteration on the electric field using the modified
Krotov method, since the Krotov method always results in a zero light field
when γsp is turned on. This was already proven in section 10.1. Iteration was
stopped when the yield did not increase monotonically anymore. Critical to
the iteration performance are the values of α1 and α2, which were chosen as
close as possible to their thresholds, below which convergence breaks down
and strong oscillatory behavior sets in. Too high values will slow down con-
vergence drastically. For the problem at hand α1 = α2 = 2 103 proved to
be the best and closest to threshold.
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The STIRAP sequence of seven consecutive equidistant pulses of Ref.
[143] [Figs. 11.6 and 11.7] transfers 16% of the population into the molecu-
lar BEC if a positive magnetic field sweep is applied [see Fig. 11.8(a)] and
25% in conjunction with a negative sweep [see Fig. 11.8(b)].
Taking this STIRAP sequence as initial guess Raman pulse into the op-
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Figure 11.8: Population dynamics as induced by the STIRAP sequence of seven
pulses. (a) for positive linear magnetic field sweep. (b) for negative linear magnetic
field sweep.

timal control formulation, the yield could be improved upon considerably.
The resulting optimal light fields are shown in Figs. 11.6 and 11.7, for the
case of positive and negative magnetic field sweep, respectively. Under the
influence of the pulse in Fig. 11.6 [Fig. 11.7] the population evolves accord-
ing to Fig. 11.9 [Fig. 11.10]. In the upper panel the population dynamics
are depicted and in lower panel the coherences. While the population in the
excited state ρ22 is less than 1% during the transfer the coherence terms,
especially the important one, ρ13, coupling the quasibound state with the
target state, are ten times larger. These terms give important corrections to
the electric fields in each iteration via Eqs. (11.23) and (11.24), while they
are completely missing in the electric field correction equations in the wave
function OCT.
The optimal Raman pulses of Figs. 11.6 and 11.7 achieve 42% molecular
BEC depending only slightly on the magnetic field sweep direction. The
optimal pulses for these two cases differ considerably, since decay and tran-
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Figure 11.9: Dynamics of population (a) and coherences (b) induced by optimal
pulse for positive magnetic field sweep. Populations: atomic BEC ρa (filled dots),
quasibound ρ11 (hollow dots), excited ρ22 (line) and ground ρ33 (filled squares).
Coherences: ρa1 (filled dots), ρa2 (line), ρa3 (hollow dots), ρ12 (dotted line), ρ13

(filled squares) and ρ23 (dashed line).

sition frequency have a time behavior, that depends on the magnetic field
sweep. Remember, that the decay is only active at t < 0 (t > 0) and
the free to bound transition frequency increases (decreases) for a negative
(positive) magnetic field sweep. Besides of some subpulses with a different
pulse shape, amplitude and slight time shifts within the sequence the opti-
mal pulses still show a clear resemblance with the initial guess pulse. Note
that nearly all the εL2 subpulses precede the εL1 pulses in the optimized
results as was also the case for the initial guess STIRAP sequence. Only
the fifth pulse pair of the field in Fig. 11.7 acting during the maximum Fes-
hbach resonance has intuitive ordering. This shifting between intuitive and
counterintuitive ordering is perhaps necessary to avoid back dissociation via
the reverse bound-bound-free transition, which is only partly suppressed by
the Zeeman shift over time of the quasibound state. Note also that the ex-
cited state molecular population is much reduced for the optimal field [see
Fig. 11.10] in comparison to the initial guess [see Fig. 11.8]. This leads to
the conclusion, that the optimal mechanism for the negative magnetic field
sweep is to improve the STIRAP sequence.
A further reason for the improvement in the transfer efficiency could be that



160 11. Cold molecules, a second approach

10
-2

10
-1

10
0

po
pu

la
tio

ns

-10 0 10

time [ µs ]

10
-4

10
-3

10
-2

10
-1

co
he

re
nc

es

Figure 11.10: As Fig. 11.9 for negative magnetic field sweep.

the optimal pulses are suitably modulated to adapt to the nonlinearities and
the refilling by the atomic BEC in this process. At least a different pulse
sequence is calculated starting from the same initial guess if only the Λ sys-
tem, consisting of quasibound state with external magnetic field dependent
energy, the excited bound and final state, is considered.

In conclusion, the Gross-Pitaevskii equation modeling the BEC to M-
BEC conversion via Raman light fields and a magnetic field sweep, was
modeled using a density matrix formalism. This is an ideal Ansatz for
the formulation of the optimal control framework in the case of dissipation.
With it two Raman pulse sequences, each for a different sign of the magnetic
field sweep, that both achieve 42% molecular BEC were obtained. In this
thesis it could be shown for the first time, that optimal control theory can
be derived and applied successfully in the regime of nonlinear Schrödinger
equations. STIRAP-like sequences are natural solutions of this density ma-
trix based optimal control formulation and it is not necessary to resort to
other proposed, less efficient optimal control schemes.
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11.2.3 Use of optimal femtosecond pulses

The decay of the excited state during the transfer from an atomic to a mo-
lecular BEC occurs on a nanosecond time scale. One also notices that the
depletion of the quasibound state by each STIRAP pulse pair is only par-
tial, indicating that higher pulse intensities are necessary. A natural way
to avoid excited state decay and increase pulse intensity is to shorten the
pulse duration of the Raman pulse pairs. In this chapter the feasibility
of tailored femtosecond pulses for the atomic to molecular BEC transfer is
studied. An appealing feature of femtosecond pulses is there coherent band-
width allowing the preparation of a macroscopic BEC wave packet, whose
time evolution can then be watched directly.
In order to optimize a femtosecond pulse the optimization window was re-
duced to T = 1 ps and the duration of the shape function accordingly.
Note that it is no more necessary to use the density matrix formulation of
the Gross-Pitaevskii equations, since populating the excited state for only
one picosecond will not lead to any decay. Due to the broad bandwidth
of the femtosecond pulses the number of excited and ground target states
was increased from one to three and there dynamics were accounted for by
expanding the Gross-Pitaevskii equations [Eq. (11.14)].

iφ̇a = U0|φa|2φa + 2αφ?aφ1

iφ̇1 =

(

E1 −
i

2
γ0

)

φ1 + αφ2
a +

1

2
µ1εL1

3∑

k=1

φ2k

iφ̇2i =

(

E2i −
i

2
γsp − ωL1

)

φ2i +
1

2
µ1εL1φ1 (11.26)

+
1

2
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φ3k

iφ̇3i = (E3i − ωL1 + ωL2)φ3i +
1

2
µ2εL2

3∑

k=1

φ2k

Here the index i and k extend from 1 to 3. Note that the dipole moments
from the quasibound state to all target states are assumed equal to µ1, as
also the dipole moment µ2 from each excited state to each final ground
state in the triplet potential. The objective was chosen to be the over-
lap with the third eigenstate of the triplet potential, i.e. 〈φ|φ33〉, where
φ = (φa, φ1, φ2i, φ3i) is the wave function of the coupled BEC/M-BEC sys-
tem. Two regimes for the energy spacings E2i and E3i were studied: near
degeneracy as is the case for hyperfine energy spacings and vibrational spac-
ings giving rise to 500 fs dynamics. The initial state of the optimization was
calculated by starting a propagation without Raman fields at -400 µs. Only
a magnetic field is applied with a negative slope of -0.31 10−2 G/µs until it
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Figure 11.11: Schematic of the BEC to M-BEC conversion scheme using fem-
tosecond Raman pulses with Rabi frequencies ΩL1 and ΩL2. Indicated are the
triplet potential a3Σ+

u and the excited potential of O−g symmetry. The colliding
atoms of the BEC are described by the field φa, the formed quasibound state by
φ1, the populated bound levels in the excited potential by φ2i and finally the levels
in the ground state potential by φ3i. The decay due to spontaneous emission is γsp

and the decay of the quasibound state due to dissociation and trap loss is γ0.

reaches the Feshbach resonance value at time 0 (same as in the calculations
of the previous chapters). Then the magnetic field is kept at this value until
the quasibound state population reaches a maximum. That occurs about 20
µs later as shown in Figure 11.12(a). The atomic component at this point
is about 28% [Fig. 11.12(b)] since it has tunnelled into the quasibound level
populating it to 60%, while the missing population (12%) has decayed at
times < 0 due to the γ0 decay. Since no laser fields were active the popula-
tion in the other molecular states is still zero.

Vibrationally spaced levels. The state of the system at 20 µs is taken
as initial condition to the optimization, which is performed in the time
interval [20 µs, 20 µs + 1 ps] obtaining the pulses in Fig. 11.12(b). The dy-
namics induced by this optimal femtosecond Raman pulse pair is shown in
Fig. 11.12(a). Note that the nonlinear coupling term α in the GP equations
is negligible over this timescale and therefore the atomic BEC component
stays absolutely constant at its initial value of 28%. The three excited state
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Figure 11.12: Molecular levels at vibrational spacing. Filled dots atomic BEC,
quasibound hollow dots, excited vibrational states lines without symbol and ground
vibrations lines with square symbols. (a) Evolution of the BEC during a magnetic
field sweep without external light fields until the time 20 µs. The evolution after
the time 20 µs is an expanded view of the 1 ps pulse pair action on the condensate.
(b) The femtosecond tailored pulse pair. εL1 is black line and εL2 is filled dots.

levels are populated at intermediate times, but completely dumped at fi-
nal time T [Fig. 11.12(a)]. With a 100% efficiency the quasibound state
population is transferred to one single target bound state in the triplet po-
tential. This transfer is moreover highly selectively as the population in the
other two bound triplet levels is negligible at final time T. Therefore a single
femtosecond pulse pair produces 60% molecular BEC, completely depleting
the quasibound state population at the instant of its action. Therefore this
scheme is much more efficient than the nanosecond STIRAP sequence. Even
a higher percentage of molecular BEC could be produced if after the quasi-
bound state is replenished from the atomic BEC source a second optimized
pulse pair is applied. However this pulse must have a different shape to
avoid back pumping of the already achieved triplet potential population to
the quasibound state. It would be also possible to apply the same pulse pair
of Fig. 11.12(b) successfully a second time if after each pulse pair action the
molecular component is separated from the atomic BEC. Anyway it will be
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only possible to pump the remaining part of the BEC component expect-
ing then a 28% increase in molecular BEC if no three body decay is assumed.

Near degenerate levels. Further results are presented in Figure 11.13 for
near degenerate molecular levels φ2i and φ3i. Since the levels have a small
energy spacing it is not possible to selectively populate one triplet potential
level and the populations in all the levels are equal [Fig. 11.13(a)]. In order
to be able to calculate the total population in the molecular state the square
of the populations is plotted. Again at about 20 µs the complete emptying of
the quasibound state component by the femtosecond pulse pair is observed.
The pulse pair is shown in Fig. 11.13(b) and is a simple double pulse sequence
for this case of near degenerate levels. In Fig. 11.13(a) the propagation was
continued to about 220 µs after the pulse action to see the recurrence of the
quasibound state component referred to in the previous paragraph. Here no
three body decay loss is assumed. Again, applying a second pulse pair at
the time 80 µs could then transfer even more population into the molecular
BEC component. Future work will consider the dependence of the dipole
couplings between the levels and the exact energies of the levels and describe
more accurately the three body decay mechanisms. It is then also possible
to optimize the external magnetic field besides the Raman field.
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Figure 11.13: Molecular levels at near degeneracy. Line style same as in
Fig. 11.12. (a) Evolution of the BEC during a negative magnetic field sweep, but
without external light field until time 20 µs. Optimal pulse pair action during 1 ps
at t=20µs and then evolution of the condensate under a magnetic field staying at
the Feshbach resonance value. (b) Optimal femtosecond Raman pulse pair. εL1 is
black line and εL2 is the filled dots.
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Chapter 12

Coherent control theory:
Concluding remarks

In the theoretical part of this thesis the framework of optimal control theory
was introduced and further developed. Among these developments three are
of central importance.
At first a strategy was derived on how to obtain simple, robust and there-
fore experimentally realizable pulses. With this strategy the optimal result
is only slightly dependent on the initial guess, that is there exist no more
multiple solutions for one aim, but only the most robust survives. Experi-
ment can directly implement the calculated pulses by applying the optimal
mask pattern onto the shaping device.
Second a new generalized functional was presented, with which it is possible
to obtain multiple, different optimal control solutions by scanning the laser
center frequency provided by the laser source. Thereby again multiple solu-
tions for a single aim can be obtained with the advantage that each of the
results is simple, robust and therefore amenable to detailed study. Among
the results obtained with the above insight into optimal control theory the
following can be emphasized. Experimentally realizable pulses inducing a
state selective transfer among vibrational levels spaced by less than the spec-
tral bandwidth could be shown. Molecular π-pulses were presented starting
from an initial Boltzmann distribution of states. Optimal control using den-
sity matrices was applied to obtain for the first time STIRAP pulses and
was also employed to molecular cooling.
Finally the optimal control framework could be extended to include the
Gross-Pitaevskii equation, that is a non linear dynamical equation. Here
the Raman-photoassociation process of a BEC to a M-BEC assisted by a
Feshbach resonance could be improved by letting optimal control theory
find tailored nanosecond STIRAP or femtosecond shaped fields. The hope
is now to have encouraged experiments to try out the optimal nanosecond
and femtosecond Raman pulses proposed here. These pulses could perhaps
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be further improved or adapted to the experimental peculiarities using a
learning-loop approach. A possible experimental learning-loop setup could
be to outcouple small bunches of matter from the BEC and let it fall through
the photoassociation tailored laser crossed by a probe laser detecting the
number of molecules produced. Thereby a feedback signal would be ob-
tained from each falling BEC droplet.
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für die tatkräftige Unterstützung in allen Phasen der Promotion, die vielen
anregenden Diskussionen und die nahezu freundschaftliche Betreuung. Bei-
den bin ich sehr dankbar, dass sie sich für diese theoretisch/experimentelle
Doktorarbeit eingesetzt haben. Dass meine Zukunftspläne bald Realität wer-
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