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Zusammenfassung

Wir betrachten eine breite Klasse von Skalarfeldern mit nicht-kanonischen
Ableitungstermen. Es wird gezeigt, daf solche Skalarfelder im Stande sind,
eine Inflationsphase zu treiben, die wir mit “k-Inflation” bezeichnen. Die
Bedingungen an den Lagrangian des Skalarfeldes, die das Vorhandensein von
Potenzgesetz-, Pol- und de Sitter- Inflationslésungen garantieren werden her-
geleitet. Wir zeigen, dafl diese Bedingungen allgemein erfiillt werden kénnen,
sogar in Abwesenheit eines Potentialtermes. Die entsprechenden Lésungen
sind {iblicherweise Attraktoren, und deshalb fiihren ziemlich allgemeine An-
fangsbedingungen zu einer Inflationsphase. Bei diesen Losungen dauert die
Inflation lange genug, um die heutige Homogenitéit und Isotropie unseres
Universums zu begriinden. Die Existenz eines “Slow-Roll Regime” fiithrt zu
einem nahezu Skalen-invarianten Spektrum von Dichtestérungen und die Ab-
weichung vom “Slow-Roll” erméglicht einen natiirlichen Ubergang von der
Inflationsphase in ein strahlungsdominiertes Friedmann Universum.

Ein Skalarfeld mit nicht-kanonischen Ableitungstermen kann auch er-
kldren, warum das Universum eine Phase beschleunigter Expansion zu einer
so spaten Zeit seiner Entwicklung eingegangen ist. Frither existierende Mo-
delle, die spiite kosmische Beschleunigung unterbringen, miissen sehr genau
angepaflit werden. Im Gegensatz dazu fiihrt k-Essenz, ein geeignetes nicht-
kanonisches Skalarfeld, zu spiter kosmischer Beschleunigung ohne diese ge-
naue Anpassung. Da k-Essenz kosmische Beschleunigung vor Equipartition
nicht auslésen kann, und da unser Dasein durch Strukturbildung an letzteres
gebunden ist, erklért ein solches Skalarfeld, warum wir kosmische Beschleuni-
gung gerade erst heute beobachten. Wir liefern eine genaue Beschreibung des
dynamischen Mechanismusses, der ein solches Verhalten erlaubt, und kon-
struieren konkrete Beispiele. Wir zeigen, dafl es zwei Losungsklassen gibt.
Die eine Klasse sagt ein Ende der Beschleunigunsphase voraus, wihrend bei
der anderen die beschleunigte Expansion des Kosmos ewig fortschreitet.
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Abstract

We consider a broad class of scalar fields with non-canonical derivative terms.
It is shown that such scalar fields may be able to support a stage of inflation
we call “k-inflation”. The conditions on the scalar field Lagrangian which
guarantee the existence of power-law, pole-like and de Sitter inflationary so-
lutions are derived. We demonstrate that these conditions can be generically
satisfied even in the absence of a potential term. The corresponding infla-
tionary solutions are generically attractors, and hence inflation starts from
rather arbitrary initial conditions. These solutions last long enough to ex-
plain the present homogeneity and flatness of the universe. The existence
of a slow-roll regime leads to a nearly scale invariant spectrum of density
perturbations and the departure from slow-roll induces a natural transition
from inflation to a radiation-dominated Friedmann universe.

A scalar field with non-canonical derivative terms can also explain why
the universe has entered a period of accelerated expansion at such a late stage
of its evolution. Previously existing models that accommodate this sort of
late type cosmic acceleration have to be fine-tuned. Unlike these models, an
appropriate non-canonical scalar field, k-essence, leads to late time cosmic
acceleration without fine-tuning. Because k-essence can not trigger cosmic
acceleration before equipartition, and because our own existence through the
growth of structure is related to the latter moment of time, such a model
naturally explains why we happen to observe cosmic acceleration precisely
today. We provide a detailed discussion of the dynamical mechanisms which
allow such behavior and construct concrete examples. We also show that
there are two classes of solutions which may yield late time cosmic acceler-
ation, one in which the acceleration continues forever and one for which the
acceleration has finite duration.
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Introduction

In most theoretical models studied in modern cosmology scalar fields play a
prominent role. They can drive inflation [38], they may be responsible for
phase transitions in the early universe [38], they have been proposed as dark
matter candidates [9], and they could even support the apparent present
stage of accelerated expansion of the universe [14]. The consideration of
scalar fields in modern cosmology is deeply rooted in theories of elementary
particle physics, where scalar fields also play an essential role. As we will
discuss, the effective field theories that describe such scalar fields generically
contain “non-canonical” derivative terms different from the common squared
field gradient %augb 0*¢. Usually, often without explicit justification, these
terms are assumed to be small and are discarded in cosmological applications.
In this thesis we show that they can be determinant, leading to a stage of
inflation and an explanation of late time cosmic acceleration.

Certainly, one can naively imagine two situations where non-canonical
derivative terms may be relevant. The first one is at high energy densities.
It is commonly believed that in the early stages of the universe, its expansion
was accelerated. Such a stage of accelerated expansion is known as inflation
[38]. In the common inflationary scenarios, typical energy scales are of the
order of 10'* GeV, much above the energy scales reached in present (and
probably near future) accelerators. It is hence possible that non-canonical
derivative terms played a significant role then. This is the idea behind “k-
inflation”. In k-inflation the scalar field which drives inflation is assumed to
have a general Lagrangian containing non-canonical derivative terms. The
conditions that guarantee the existence of inflation for such a Lagrangian can
be satisfied even by a potential-less scalar. Hence, in the latter case inflation
is driven by the kinetic energy density of the field, and not by its potential
energy density, as in the usual models. Thus, in principle, k-inflation offers
the possibility of implementing a successful stage of inflation in models where
ordinary potential-driven inflation is not feasible.

The second possible case where non-standard derivative terms may be
relevant is when non-linear dynamics forces them to remain large. This is
also what happens in k-essence models. Surprisingly, recent measurements of
large scale structure, cosmic microwave background anisotropies and type Ia
supernovas seem to suggest that the universe is presently undergoing a stage
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viii INTRODUCTION

of (late) cosmic accelerated expansion [4]. The straightforward interpretation
of this expansion, that the universe is dominated by a cosmological constant,
faces a tremendous fine tuning problem. k-Essence is a scalar field—of the
same type as in k-inflation—which may effectively act as a cosmological con-
stant. It was introduced to explain late time cosmic acceleration naturally,
namely, without explicitly encoding the time of dominance in the model pa-
rameters. In fact, due to its special attractor properties, k-essence can only
behave as a cosmological constant and dominate the energy density of the
universe after equipartition. This is the moment of time radiation ceases to
be the most important energy component in the universe and the structures
in the universe—galaxies and clusters— start to develop. Because life can
not evolve until these structures form, we happen to observe late time cosmic
acceleration today both because our own existence and the time of k-essence
dominance are related to equipartition.

This thesis is mainly based on work done in collaboration with T. Damour,
V. Mukhanov and P. J. Steinhardt and published in [1], [2] and [3]. In order
to avoid repeating references we will omit citations of these papers in the
future. Regarding our choice of citations, in the context of a doctoral thesis
we have opted for mentioning general references rather than original work.

The dissertation is organized as follows. In chapter 1 we shortly summa-
rize the basic notions of cosmology and inflation we shall use in the rest of
our work. We also explain why, generically, effective field theories include
non-canonical derivative terms, and illustrate our discussion with examples
from string theory and non-linear electrodynamics (Born-Infeld theory). In
chapter 2 we introduce and define the “k-field”, the scalar field which shall be
responsible for inflation and an explanation of late time cosmic acceleration.
Inflation driven by the k-field, k-inflation for short, is thoroughly discussed in
chapter 3. Here we derive the properties the k-field Lagrangian has to satisfy
in order to successfully account for the big bang initial conditions and discuss
how the three main types of inflation discussed in the literature [40] can be
driven by a k-field. In chapter 4 we address late time cosmic acceleration
and suggest how it can be related to the onset of matter dominance through
a suitable k-field. Finally, in the last “chapter” we draw our conclusions and
shortly discuss possible further avenues. Among the appendices, the reader
may find the table of symbols and notation in appendix A particularly useful.



Chapter 1

Basics

This introductory chapter consists of two parts. The first one is a short
summary of the basic notions of cosmology [57, 33] we shall need in later
chapters. We particularly emphasize two aspects: The recently observed
late time cosmic acceleration of the universe [45, 51, 4] and inflation as a
solution of many of the puzzles of the standard big-bang cosmology [38].
In the second part we present less-known developments about fields with
non-canonical derivative terms as they appear in different particle-physics
contexts. The material presented in this second part is the link for our later
considerations of non canonical scalar fields in a cosmological setting.

1.1 Standard cosmology

1.1.1 The observed universe

Looking at the sky one observes myriads of stars. The most important one
for our lives however, the sun, can be observed only during daylight. This
daylight needs around 8 minutes to travel from the sun to our eyes. Proxima
Centauri, the next closest star, is around 1 pc away from us, and this means
that light needs around 3.3 years to reach the earth from that star. Proxima
Centauri is not our only companion star: Our galaxy, the Milky Way, contains
around 2 - 10! stars, and light has to cross 30 kpc in order to travel from
one of its ends to the other. This distance is small if we compare it with the
distance to the largest of our close galaxy neighbors in the local group, the
Andromeda M31 galaxy, which is around 1 Mpc far away from us.

The local group is a rather small cluster of galaxies, containing around 30
galaxies of different types, spanning a distance of around 3 Mpc. It is part of
the so called local Virgo supercluster, which contains around 10 clusters of
galaxies and is roughly 30 Mpc wide. At this level the hierarchical structure of
the universe seems to stop. If one explores even larger distances, one observes
that superclusters arrange themselves into filament-like structures, which

1



2 CHAPTER 1. BASICS

surround large voids of 50 Mpc typical size. On distances larger than about
200 Mpc, the universe starts to resemble a homogeneous web of filaments
(figure 1.1). Our telescopes can not reach however arbitrarily far objects,
since light travels at a finite speed and the universe has a finite age, around
1.5 - 10 years. During that time light travels around 3000 Mpc, the size of
our present so-called “horizon”.

As we look to large distances we observe the state of the universe at earlier
times in the past, since light travels at a finite speed. The oldest signal from
the universe we can observe at present is the cosmic microwave background
radiation. It consists of a gas of photons with Planckian spectrum with a
temperature of around 2.7 K. This temperature is nearly independent on the
direction we look at on the sky; it merely shows small anisotropies of the
order of AT/T ~ 10° (figure 1.2).

i o

Figure 1.1: A diagram of the galaxy distribution in a sky slice with the Earth
at its vertex. The plot shows around 50000 galaxies (dots) reaching out to
~1000 Mpc distance [43].

1.1.2 The Friedmann-Robertson-Walker metric

As we have mentioned, the matter distribution of the universe seems to be
homogeneous when averaged over large enough scales and, in addition, the
microwave radiation is nearly isotropic around us. In turns out [56] that both
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properties considerably constrain the possible shapes of our universe!.

The metric of a homogeneous and isotropic universe can take only three
different forms, corresponding to the three different values x may have in the
metric

d 2
ds®> = dt* — a’(t) (1 i 5+ r?(d#” + sin’ 0d¢2)> . (1.1)
— KT
For an open—hyperbolic— universe k = —1, for a flat—Fuclidean— universe

k = 0 and for a closed—spherical—universe k = +1. Spatial lengths are
proportional to the scale factor a, which depends in principle on cosmic time
t. Whereas the form of the metric (1.1) is determined solely by the symmetry
of the universe, the time evolution of a(t) depends on the underlying theory
of gravity. Today, the most compelling, simple and well tested one [61, 62]
is general relativity [56], which we shall adopt throughout our whole work.
General relativity relates the curvature of spacetime to its content through
Einstein’s equations. If €y,; and py; denote the total energy density and the
total pressure of the universe’s constituents, then Einstein’s equations for the
metric (1.1) reduce to the set

a\? &k &G

(&) +& = T5ew -2
. 47 G
a = _T(gtot + 3 prot) @, (1.3)

where, as in the rest of the thesis, a dot means derivative with respect to
time, d/dt.

It can be easily verified that, in general, equations (1.2) and (1.3) do not
have static solutions; the scale factor either grows, @ > 0 or decreases, a < 0.
As a matter of fact E. Hubble observed that distant galaxies seemed to recede
from us with a speed proportional to their distance, a phenomenon that was
interpreted as a consequence of the universe’s expansion. The proportionality
constant H was called Hubble parameter, and it can be easily shown using
(1.1) that

a
H = - (1.4)
Significant efforts in observational cosmology have been devoted to mea-
sure as exactly as possible the present value of the Hubble parameter Hy ~
68 +£6 km sec™" Mpc™' [34]. One of the reasons is that this value determines
the “critical energy density”

_3H 2
Ecrit = %,
LAll our statements about the universe concern its local structure, i.e. its structure in

a region of the size of the horizon. Therefore, they do not necessarily apply to its global
properties.

(1.5)
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Figure 1.2: Temperature anisotropies in the cosmic microwave background as
measured by the COBE [6] satellite experiment. The different colors denote
variations in the CMBR temperature of the order AT ~ 107° K.

which is crucial in order to determine whether our universe is open, flat or
closed. In order to see why, let us rewrite equation (1.2) in the form,

1= Qtot + chrva (16)
where €);, the density parameter of the ¢ component, denotes the energy
density of any component 7 measured in units of the critical energy density,

€j

0 = (1.7)

3
Ecrit

and where we have defined the equivalent of an energy density of curvature by
the relation eqyy = —3k/(87Ga?). Therefore, from (1.6), if the total energy
density of the universe is critical the energy density in curvature is zero and
the universe is flat. If the energy density in the universe is subcritical, the
energy density in curvature has to be positive and the universe is hyperbolic.
And if the energy density of the universe is bigger than critical, the universe
is spheric. To conclude let us notice that since H is time dependent, the
critical energy density varies with time; today ecq; ~ 1072 g cm™3.

1.1.3 The constituents of the universe

Do we live in a flat, open or closed universe? As discussed above, the answer
to this question depends on the total energy density of the universe, which
is the sum of the energy densities of the different constituents the universe
contains. One of them is the matter structures like galaxies and clusters are
made of. Surprisingly this matter is mostly not the (baryonic) matter we are



1.1. STANDARD COSMOLOGY )

familiar with, but a sort of “dark matter”. For our purposes it will suffice
to know that this matter behaves as a nonrelativistic gas of dust particles,
and hence we shall call it just “dust”. The most important property of dust
is that it does not exert any pressure, or in other words, the ratio of its
pressure to its energy density (what we shall call the equation of state w) is
zero. It follows from this fact that the energy density of dust ¢4 decreases in
agreement with what one expects from particle number conservation,

1
Eq X —- (18)

a3
Besides of dust, an important component in the universe is the radiation
found in the cosmic microwave background and a (yet unobserved) neutrino
background. As opposed to dust, the ratio of its pressure to its energy density
is w, = 1/3, and from this it follows that

1
Er O - (1.9)
Finally, a concordance of several recent measurements seems to imply that
there is an important additional constituent in the universe, which is some-
times denoted as “dark-energy”. Very little is known about this compo-
nent. The only quite certain fact is that it has a negative equation of state
Waark < —0.6 [48]. Theorists have considered for a long time that the uni-
verse may contain a sort of dark energy called “cosmological constant” A,
which has an equation of state wy = —1, and hence would perfectly fit the
behavior of the observed dark energy component. Hence, in most analysis,
the dark energy component is assumed to be a cosmological constant. The

energy density of a cosmological constant does not change with time,

ex = const. (1.10)

The triangle diagram of figure 1.3 shows the experimental constraints on
the energy densities of dust, curvature and a cosmological constant. Today,
the energy density of radiation is negligible, 2, ~ 10~*, and hence it does not
appear in the figure. Notice that because of equation (1.6), the contributions
of the different components add to one, 234+ 42y = 1. The figure clearly
shows that observational data favor a universe with 2; ~ 0.3, 24 ~ 0.7 and
Qcurv &~ 0. Thus, dark energy is the most important component of the
universe today, and the total energy density is critical, the universe is flat.
In the next subsections we shall explore the consequences of these results.

1.1.4 Brief thermal history of the universe

Einstein’s equations can be used to track the evolution of the universe back
in time and describe its history. Our universe is expanding today and hence
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Figure 1.3: The “cosmic triangle” [4] is a convenient way to show the exper-
imental constraints on the energy density fractions of the constituents of the
universe: dust (£24), curvature (Qcyrv) and cosmological constant (£2,). Mea-
surements of large scale structure, fundamentally cluster abundances, mainly
constrain the amount of dust in the universe (red strip). Measurements of
cosmic microwave anisotropy mainly constrain the amount of curvature (blue
wedge), and Type I supernova observations mainly constraint the acceleration
of the universe (green strip). The three completely independent constraints
intersect at a single “point” 3 ~ 0.3, Qp =~ 0.7, Qeury = 0.

it was smaller in the past. Because of the different scale factor dependencies
of the various energy densities, (1.8), (1.9) and (1.10), their relative contri-
butions to the total one change as one goes back in time. This change is
shown in figure 1.4, which plots the of the energy densities of a cosmological
constant, dust, curvature and radiation. As a time variable it is convenient
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to use the scale factor itself, and hence the figure uses “redshift”

o
= — — 1.11
2== (1.11)

instead of cosmic time £. Observe that the redshift grows as we proceed back
in time. In our description of cosmic history we shall proceed from small
redshift to large redshift, i.e. from the present to the past.

As shown in figure 1.4, if the universe is presently dominated by a cos-
mological constant, its energy density soon (at z &~ 1) becomes negligible,
whereas curvature remains negligible all the way back from the present (mea-
surements show that the universe is nearly flat today). Hence, during most
of our recent past, the universe has been dust dominated. At z a2 1.1-10% the
universe’s photons decoupled from the electrons and were able to propagate
freely. We observe this radiation today as the cosmic microwave background
of subsection 1.1.1. Hence, by looking at the microwave background we see
a picture of the universe at the time it was 1100 times smaller than today.
Because the temperature of radiation in an expanding universe is inversely
proportional to the scale factor, this implies that at that time its temperature
was around 3000 K. The domination of dust concluded at matter-radiation
equipartition, z ~ 4 - 10®, where the energy densities of radiation and dust
became equal. For larger redshifts, radiation was the dominant component
of the universe.

S| >
_90 h = '8 |
n = o
- 100 2 oy |
w = o
- 1= o, |
& > 3
© _110 |9 ol |
— S L
1} |
O
-120 ' ]
>
| |
| ‘ ‘| ‘ \1
10 8 6 4 2 0

Log,( 1+2)

Figure 1.4: Past cosmic evolution of the energy densities in radiation (red),
dust (blue), curvature (green) and cosmological constant (black).
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As the redshift increases the universe becomes smaller and hotter. When
the temperature was about 10!° K, i.e. at the time the universe was 10'°
times smaller than today, the light elements (D, He, Li) were formed from
a soup of baryons. The predicted abundances of the different light elements
are in perfect agreement with the observed abundances [33, 52|, and confirm
again the “hot” universe theory.

As we continue back in time we enter the realm of speculation. If we
would blindly follow Einstein’s equations we would meet a point where the
scale factor vanishes and the energy density of the universe becomes infinite.
This moment of time is the so-called “Big-Bang”. For several reasons how-
ever, cosmologists strongly believe that prior to reaching this singularity (i.e.
at smaller redshift), the universe underwent a stage of “inflation”. What
happened prior to inflation is unknown.

1.2 Inflation

1.2.1 Problems of the standard cosmology

The standard hot big bang scenario is not a theory about the “big-bang”
itself; it only describes the evolution of the universe from an initial moment
of time close to that hypothetical event. Therefore, the initial conditions
implicitly present in the scenario can not be explained within the scenario
itself. This fact would not be important if the big bang initial conditions
were fairly generic. On the contrary, it turns out that these initial conditions
are extremely unnatural. Historically, their different unnatural features have
been grouped into the following main three problems:

e The flatness problem

As shown in figure 1.4, the energy density of curvature decreases much
more slowly than the energy densities of matter and radiation but
nonetheless, it is still negligible today. Therefore, in the early uni-
verse the energy density of curvature had to be, seemingly without any
explanation, highly suppressed in comparison to the energy density of
radiation.

e The horizon problem

We mentioned previously that the universe seems to be homogeneous
on large enough scales. Actually, we know that it was nearly homo-
geneous already at the time of recombination, since the temperature
of the microwave background radiation is nearly the same on all sky
directions. It can be shown however that if cosmic evolution proceeded
according to the standard cosmology, at the time of recombination the
visible universe consisted of 10° causally disconnected regions. Within
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the standard cosmology those regions never had a chance to interact
and thermalize to a common temperature, and hence, there is no ex-
planation for this initial homogeneity of the universe.

e The problem of the origin of structure

Finally, although the early universe was nearly homogeneous, it ac-
tually contained small inhomogeneities from which the structures we
observe today emerged by gravitational instability. In the context of
the standard cosmology, the spectrum of these “primordial” inhomo-
geneities belongs to the initial conditions. It can be neither explained
nor predicted.

1.2.2 Inflation and big bang initial conditions

The initial conditions of the standard hot big-bang scenario can be easily
explained by an early stage of accelerated expansion of the universe known
as “inflation”. As an example of how inflation solves the problems above, let
us first address the flatness problem. Consider the evolution of the curvature
density parameter Q... It follows from its definition that

d|chrv| . _2|chrv| i
dt aH )

Therefore during inflation (@ > 0) |Qcury| decreases, whereas if the expansion
of the universe is decelerated it increases. This example already shows that
not any stage of inflation may be able to solve the problems of the standard
scenario. In fact, inflation should last sufficiently long in order to drive ey
to small enough values. The criteria an inflationary scenario should meet in
order to successfully explain the big-bang initial conditions are the following:

e Causality

Inflation should last long enough to inflate an initially causally con-
nected patch into a region that encompasses today’s observable uni-
verse. Only then does inflation solve the homogeneity problem, since
only a causally connected region may be expected to be initially homo-
geneous. Generically, a causal inflationary stage automatically solves
the flatness problem (see however [12]).

e No hair

The problems of the standard hot big bang model concern its initial
conditions. Inflation would not fix them, if it required itself a fine
tuned initial state. Hence, on one hand inflation should emerge from
rather generic initial conditions and on the other hand the properties
of the inflationary stage should be independent of the conditions of
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the initial causally connected region our observable universe originated
from. Only in that case does inflation have predictive power. The term
“no hair” refers to the analogous situation in black hole formation,
where the final black hole state is independent of the initial collapse
conditions.

e Correct spectrum of density perturbations

During a stage of accelerated expansion the physical wavelength of en-
ergy density perturbations grows faster than the size of the Hubble
horizon, which is the size of the region where causal microphysical pro-
cesses may operate. Hence, inflation provides the necessary conditions
to explain the origin of those perturbations. This does not mean how-
ever that any inflationary scenario explains the observed spectrum of
density perturbations. The amplitude of this spectrum should have the
right magnitude (& 107°) and the right shape (nearly scale invariance).

e Exit and Reheating

The inflationary scenario should account for the end of inflation and the
transition to a radiation-dominated Friedmann universe. In particular
it should explain how the universe is “reheated”, i.e. it should explain
the origin of the hot radiation of the standard cosmology.

1.2.3 Inflationary scenarios

Many inflationary scenarios have been proposed during the past 20 years
[38]. Nearly all of them rely on a scalar field to drive the inflationary stage.
The reason can be traced back to equation (1.3). From that equation one
can namely derive a condition on the equation of state of a component which
drives inflation. In fact, accelerated expansion implies that

Dot 1
< ——. 1.12
Etot 3 ( )

Wiot =

The simplest form of matter which can satisfy the last equation is precisely
a scalar field. The equation of state of a homogeneous scalar field is

0 —V(p)
202+ V(p)’

where V(i) is the scalar field potential. Depending on the value of ¢?, w
can take any value in the range —1 < w < 1, which overlaps with the one
required by inflation (1.12).

The value that the equation of state of the field does actually take during
cosmic evolution is determined by the field equation of motion. The second
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common feature of most inflationary scenarios is the existence of a “slow-
roll” regime (see also [16]): If the potential V is flat enough, i.e if it satisfies
the slow-roll conditions

Vo
Vi

2
(&) <1 and

1 1.13
% <1, (1.13)

the field is driven from a fairly big set of initial conditions into a slow-rolling
stage (¢? < V(p)) where its equation of state is “de Sitter-like”, w ~ —1.
During that stage, the scale factor grows nearly exponentially in time, and
the expansion rate is determined by the (nearly constant) value of the scalar
field potential, a o exp(v/V1).

The “slow-roll” conditions (1.13) are satisfied by many different poten-
tials, and in many cases the different inflationary scenarios just differ in the
choice of the potential. Particularly natural choices are the potentials of the
so-called “chaotic scenarios”, such as V() = m2p?/2 or V() = Ap*/4. The
word “chaotic” was intended to mean the “no hair” feature we mentioned
above: If the field is big enough, ¢ > 1, it is soon driven to the slow roll
regime where w &~ —1 and the universe expands exponentially. During that
regime the field slowly rolls down the potential, until it reaches field values
¢ ~ 1 and the slow-roll conditions are violated. Afterwards the field starts
to oscillate around the potential minimum and due to the couplings of the
inflaton field to other matter fields the universe is “reheated”, that is, the
radiation needed for a smooth transition to the familiar Friedmann radiation
dominated universe [36] is generated. A phase diagram of the evolution of
the scalar field [5] is shown in figure 1.5 .

1.3 Late time cosmic acceleration

The universe mainly consists today of two thirds of a dark energy component
with a negative equation of state, wq.x < —0.6 and one third of pressureless
dust. Hence, the ratio of total pressure to total energy density in the universe

1S
Dtot

Etot

1
Wiot = ~ Qdark * Wdark < —04 < _5'

Thus, according to equation (1.3), the universe’s expansion should be accel-
erating today, as if the universe had started a late stage of inflation. In fact,
the magnitude to redshift relation of Type Ia supernovas [45, 51] seems to
directly imply this cosmic acceleration, as we mentioned in subsection 1.1.3.

The simplest candidate for a dark energy component which drives cosmic
acceleration is a cosmological constant. This interpretation raises, however,
an issue similar to the flatness problem of the standard big bang cosmology
(see figure 1.4 and subsection 1.2.1). Indeed, the value of a cosmological
constant that has started to dominate the energy density of the universe just
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attractor

Figure 1.5: The motion of a homogeneous scalar field with potential V() =
%ngoz in flat space. At large energies (large values of ¢), regardless of initial
conditions, the field rapidly approaches the inflating attractor (red) where
€ + p = 0. During that stage the universe inflates. Once the field reaches
lower energies the field and its velocity ¢ start oscillating around the origin.
During these oscillations particles are produced, the universe is reheated.

recently has to be extraordinarily small, e, ~ 107124, compared to the naively
expected value €5, =~ 1 (all quantities in Planckian units). A key challenge
for theoretical physics is to address this cosmic coincidence problem: why
does the dark energy component have a tiny energy density compared to
the naive expectation based on quantum field theory, and why does cosmic
acceleration begin at such a late stage in the evolution of the universe [28].

Different proposals have been made to solve this challenge. The extraor-
dinary fine-tuning of a cosmological constant has led some authors to use
the anthropic principle as an explanation [58, 28]. Essentially, the anthropic
principle states that our own existence explains the fact that the cosmolog-
ical constant is so small. For if the cosmological constant were significantly
larger, cosmic acceleration would have started before structure had ever had
a chance to develop, and intelligent beings would never have evolved.

A different alternative consists in introducing “quintessence” [50, 23, 14],
a dynamical component which may behave effectively as a cosmological con-
stant. As in inflation, this dynamical component is usually a scalar field with
an appropriate potential. It turns out that, still, the moment of the domi-
nance of this field has to be encoded in the scalar field potential, and hence,
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although quintessence models are a phenomenologically viable alternative to
a cosmological constant, they do not explain the cosmic coincidence problem.
In chapter 4, we illustrate this fine tuning, and at the same time we propose
a quite different alternative which avoids it. First, we will need however some
concepts about non-canonical scalar fields.

1.4 Non-canonical scalar fields
in particle physics

Quantum field theories [59, 49] provide a very successful framework to de-
scribe elementary non-gravitational particle interactions. This success is best
exemplified by the standard model, which, up to the recent indications of
non-vanishing neutrino masses [24], has been tested repeatedly during the
past in a vast number of accelerator experiments up to energies of about 100
GeV or distance scales of 1071¢ cm.

Calculations in quantum field theories generically yield divergences. These
divergences are absent of the physical predictions of the theory as long as
the Lagrangian is “renormalizable”. Hence, it was thought for a long time
that any satisfactory field theory should be renormalizable. The criterion of
renormalizability played a significant role in the development of the standard
model since, besides of allowing very precise finite predictions, it strongly re-
stricts the possible terms that may appear in the Lagrangian. Consider a
scalar field not coupled to any other field for instance. Among the infinite
number of Lorentz-invariant terms which the Lagrangian may contain, renor-
malizability just allows six of them: O¢, 8,00, ¢, ¢*, ¢* and ¢*. The term
O¢ yields a boundary term in the action, and does not contribute to the
field equations of motion, and the linear term ¢ can be eliminated by a field
redefinition. Thus, the most general renormalizable Lagrangian reads

1 m? g A
I ow __2__3__4
£_2 u 09 2¢ 3!¢ 4!¢‘

In particular, the Lagrangian contains only one derivative term, %(9”(;5 ot o,
which is (up to field redefinition) uniquely determined by renormalizability.
We shall call that derivative term, a “canonical” kinetic term, and a scalar
field with a canonical kinetic term a “canonical field”.

The non-renormalizability of Einstein’s gravity and the Wilsonian ap-
proach to the renormalization group [49] have changed the viewpoint about
renormalizability. Currently it is mostly believed, that the field theories we
use to describe particle interactions (as for instance, the standard model) are
just low energy approximations of a more fundamental theory, which may
not even be a field-theory at all [59]. These low-energy approximations are
characterized in general by non-renormalizable effective field theories, which
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may contain any term compatible with the symmetries of the theory. Thus,
the Lagrangian of an effective theory describing a scalar field may generi-
cally contain, besides the renormalizable ones above, any other term such as,
for instance, ©°, ©?0,0 0"¢, (0,6 0"¢)?, 0,0,6 0*0" P, etc. Symmetries may
strongly restrict in that case the terms which do appear in the Lagrangian.
For example, if the theory has the symmetry ¢ — ¢ + A and we insist upon
keeping the field equations second order, the Lagrangian can depend only
on the quantity 0,¢ 0*¢ alone, £ = L(0,¢ 0*¢). Although effective theories
contain every possible term consistent with the symmetries of the theory,
renormalizable field theories still retain in this picture a special role. In fact,
it can be shown by simple dimensional arguments [59] that at sufficiently low
energies, non-renormalizable terms in any effective field-theory yield negligi-
ble contributions to scattering amplitudes, and thus at low enough energies,
every quantum field theory should look like a renormalizable one.

The infinities appearing in ordinary quantum field theories (say, quantum
electrodynamics) are already a hint that, as it is commonly believed, these
theories are not fundamental. Some of these divergences reflect the infinite
self-energies of the particles they describe. This problem, though, is not ex-
clusive of quantum field theories, and has been known for instance in classical
electrodynamics for a long time. Infinities seem to arise because particles are
point-like; arbitrarily close to a point-particle the electric field becomes arbi-
trarily large. Heuristically, there are mainly two conceivable ways of avoiding
infinite self-energies: The strength of the electromagnetic field can be forced
to have a bound or point-particles can be replaced by higher-dimensional ob-
jects (like strings). The first approach was pursued back in the 30’s by Born
and Infeld, when quantum field theorists were still struggling with infinities,
whereas the second leads to string theory. Remarkably, Born-Infeld theory
has recently emerged in string theory as describing the low energy dynamics
of higher-dimensional objects known as “branes”.

1.4.1 String theory

In string theory [31, 47], point particles are replaced by a one-dimensional
object, the string. Today, it seems to be the only theory which incorporates a
quantum description of gravity and particle gauge interactions. String theory
is not a field-theory in the usual sense, but rather a field theory defined on
the two-dimensional surface swept by the string. This two-dimensional field
theory allows the perturbative computation of scattering amplitudes in an
expansion in powers of its coupling constant gfmng. This coupling constant
is determined by the expectation value of the dilaton ¢, a scalar field which
invariantly appears in the massless excitations of any string theory, according
to the relation g2, = e?. Once the scattering amplitudes for the different
particles are computed, one can write down an effective field theory which
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reproduces those scattering amplitudes. Because the string is not a point-
like object, but rather a one dimensional “string” with tension 1/a/, such an
effective action contains an infinite number of terms which can be organized
in a derivative expansion in powers of o/ (o/ has dimensions of a squared
length). This leads to a structure of the type

1 10 0 2
S = oyt [ 40V~ BOR = BY(0)09)°  (114)

+o! [VBY(6)(09)" + -] + O],

where the ellipsis stands for other four-derivative terms (like (dg)?, wa s e
The coupling functions B can be expressed as an expansion in power of the
string coupling g2 ;,, = €%,

By(¢) = e ®+cyo+cgie? +---,
B (9) = e +cpotcone’ +-o,
BY(9) = e+,

where the ellipses contain higher contributions in g2, including non per-
turbative ones. Observe that at tree level, the coupling of the dilaton is
“universal”; all coupling functions are equal e~®.

The action (1.14) shows several interesting features of string theory. The
most striking one is the dimensionality of spacetime; string theory is only
consistent if formulated in ten spacetime dimensions. Since our spacetime
seems to be four-dimensional, one usually assumes that out of the ten dimen-
sions six are “compactified”. This means that the ten-dimensional spacetime
M9 ig assumed to have a tensor product structure, M0 = M®) x K©)
where M® is our four dimensional world and K® are six “small” (say,
Planckian size) additional dimensions. Upon compactification, these extra
dimensions enter the four dimensional effective action as a set of additional
scalar fields describing the shape of the compact manifold K®. Those fields,
called “moduli” fields, are similar to the dilaton. The second remarkable
fact is that string theory does not yield Einstein gravity but a scalar-tensor
theory. Although the curvature terms has not the conventional form, by
a conformal rescaling of the metric, g,7" = Bg(d))gg%fl it is always possible
to write the four-dimensional gravitational action in Einstein-Hilbert form,
although the resulting couplings to matter may not respect Einstein’s equiv-
alence principle.

Equation (1.14) nicely illuminates our previous discussion about effective
actions. At low energies, the predictions of string theory can be extracted
from a low-energy effective action which generically contains any term com-
patible with general coordinate invariance. These terms can be organized in
an expansion in powers of the string tension 1/a/. On dimensional grounds, a
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term containing 2n derivatives and m powers of a dimensionless field ¢ is (in
Fourier space) proportional to (a/k?)"¢™. Thus, whereas for fixed m terms
with an increasing number of derivatives become increasingly negligible at
low momenta (k < 1/v/o), for large field or m values they may still be
important.

1.4.2 Born-Infeld Action and Branes

Already in 1934 Born and Infeld proposed an alternative theory of electro-
magnetism which avoids the infinite self-energy of the electron [8]. They
argued that every sensible theory should avoid letting physical quantities
become infinite. As an example they pointed out how the Lagrangian of a
free particle in classical mechanics, %mﬁ, which allows infinite speeds, is
replaced by m(1 — v/1 — #?) in relativistic mechanics, an expression which
sets the speed of light as the upper limit of any velocity. Hence, Born and
Infeld proposed replacing the usual Lagrangian of the electromagnetic field
iFuyF“” by 1/1+ %FWFW — 1. (A similar way of limiting the curvature of
spacetime was considered in [10].)

The Born-Infeld action can be easily derived from symmetry arguments.
The simplest action invariant under general coordinate transformations has
the form [ d*z\/— det a,,, where a,, is an arbitrary (covariant) second rank
tensor. Such a tensor can be split into a symmetric and an antisymmetric
part, a,, = gu + Fj,. The symmetric part g,, can be interpreted as the
metric of spacetime, and the antisymmetric part F),, as the electromagnetic
field strength. One arrives hence at the Born-Infeld action

SBorn—Infeld = — / dp+1$\/— det (g + Fu), (1.15)

where for generality we allow an arbitrary dimensionality of spacetime.

The Born-Infeld action (1.15) also describes the motion of a p—dimensional
extended object, a p—brane, with an electromagnetic field propagating on
the “world-volume” swept by it [30]. For a vanishing electromagnetic field
(1.15) is equal to the “area” swept by the brane, and the action principle
states that this surface is minimal. The motion of the brane is characterized
by the embedding of the brane in a higher dimensional “target” spacetime,
M = ZM(z#). If this target spacetime is flat, the metric on the brane is just
given by the induced metric

. 0zM 92N
Guv = TIMN Ozl O .

The electromagnetic field is characterized by the values of the electromagnetic
potential along the brane, A,(z"), and the electromagnetic field strength is
as usual related to the potential by F),, = 0,4, —d,A4,.
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As a particular example, let us consider a 3-dimensional brane moving
in a 5-dimensional flat spacetime with metric gy y = diag(+1,—1,---,—1).
The embedding of the brane can be chosen in the following way: z# = z#
for u =0...4 and ¢ = 2°(z*) for the fifth dimension. Then, for a vanishing
electromagnetic field the Born-Infeld action reads,

—/d‘lx,/l — 0,000, (1.16)

where the four dimensional metric is 7, = (+1, -1, -1, —1). Thus, from a
four-dimensional point of view, the presence of an extra dimension appears
in the action as a scalar field with a highly non-standard kinetic term. We
shall meet a similar kinetic term much later in our work. At this point let
us notice that a kinetic term of the form (1.16) has been shown to have
deep connections with fluid-mechanical systems, namely, with the so-called
Chaplygin gas [32, 35].
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Chapter 2

General Model: The k-field

We have seen that an effective action may contain any term compatible
with the symmetries of the underlying theory. In the case of a scalar field
minimally coupled to gravity, those terms include any combination of the field
itself and its properly contracted derivatives. Among all these infinite number
of terms only two are commonly considered in cosmological applications: The
canonical kinetic term 30, 0*¢ and the field potential V' (¢). In this thesis
our aim is to consider more general Lagrangians and verify whether additional
non-canonical terms may play any significant role in cosmology. At this point,
the success of general relativity to explain a vast wealth of data ranging from
Mercury’s peryhelium advance to light element abundances shall serve us
as a guideline to restrict the type of terms we shall consider among the
overwhelming range of possibilities. As hinted in equations (1.2) and (1.3),
the vacuum equations of motion in general relativity are second order. As a
matter of fact, all equations of motion in nature (at least classically) seem to
require just a set of two initial conditions (position and momentum). We are
thus naturally lead to the “k-field”, the subject this short chapter is devoted
to.

The k-field is a scalar field whose Lagrangian contains any term involving
maximally one field derivative. The best way to characterize it is to write
down its action, which describes not only the k-field self-interactions, but
also its interactions with additional matter fields of the theory. This is done
in section 2.1. It turns out that the k-field can be described as a perfect fluid
with definite pressure and energy density. The perfect fluid analogy is used in
section 2.2 to formulate the field equations of motion in a flat, homogeneous
universe. Of course, due to the very nature of the k-field, these equations are
second order and do not involve higher derivatives. Afterwards, in section
2.3, we consider small perturbations around the homogeneous background in
order to find the behavior of small inhomogeneities. Its qualitative evolution
is determined by the “speed of sound”, which we relate to the stability of the
background solutions. We conclude by expressing the k-field action in a dif-
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ferent parameterization, which will allow us to formulate certain restrictions
on the k-field Lagrangian in a simpler way.

2.1 The Action Principle

We want to consider a scalar field with non-canonical kinetic terms involving
at most one field derivative. In a cosmological setting, we should describe
how this field is coupled to gravity, and how it interacts with additional
matter components in the universe, such as dust particles and radiation. By
definition, the k-field ¢ is described by the action

Stot [guua v, wm] = SEH[g;w] + Sk [guua 90] + Sm[g/u/a wm]a (2-1)

where g,, and 1, denote the spacetime metric and the remaining matter
fields respectively. The total action is divided into different sectors, each
one describing a different component. Sgpy is the Einstein-Hilbert action of
general relativity,

Sen = —/d4$\/—_9§,
so we deal exclusively with Einstein gravity in four spacetime dimensions.
Notice that a scalar-tensor type of gravitational action (for instance (1.14))
can be recast into Einstein-Hilbert form by a conformal transformation any-
way, although such a conformal transformation may alter the couplings of
the scalar field in a way not compatible with (2.1). The reader interested in
the relationship between different conformal frames may consult [18]. The

factor 1/6 reflects our unit choice c=h =87 G/3 = 1.
The k-field itself is described by the action

Si= [ d'sy/=gp(p, X). (2:2)

The requirement that the k-field Lagrangian do not involve higher order field
derivatives, along with general coordinate invariance, forces p to depend on
the field derivatives through the combination

1 1
= 5(8(,0)2 = Eg“”(?u(pa,,(p, (2.3)

which we shall call the “kinetic” variable. The function p contains the
kinetic and potential terms of the k-field. By a “canonical scalar field”
one understands a field for which the Lagrangian can be cast in the form
p(p,X) = X —V(p), where V is the scalar field potential. Here we aim to
consider more general, non-canonical forms, and we will assume that p is a
general function of its arguments. In particular, later on we will focus on
factorizable Lagrangians,

p(p, X) = K(p)p(X), (2.4)
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since as we shall show, the latter form of p turns to be general enough to
accommodate a wide class of cosmologically interesting situations. It also ap-
pears naturally from the effective actions of string theory and it is able to de-
scribe a canonical self interacting scalar field (the Lagrangian p = X —V can

be cast in the form (2.4) by the field redefinition dppnew = dwola//V (@o1d))-

Finally, the action S, describes the remaining “matter” fields v, of the
theory. For our purposes it will suffice to consider dust—nonrelativistic
particles— and radiation. Notice that the matter action does not depend
on ¢; matter and the k-field are coupled only gravitationally.

The properties of any continuous field or matter distribution are described
by the energy momentum tensor. The energy momentum tensor of the k-
field is obtained by functional differentiation of the k-field action (2.2) with
respect to the metric,

Tk — 2 6Sy  Op(p, X)

= — (0, X) G- 2.
N ox  OnPOny p(, X) g (2.5)

An important fact is that the above expression can be put in perfect fluid
form. For a perfect fluid

T;u/ - (5 +p)uuuu — PO, (26)

where u* is the four-velocity of the fluid and where ¢ and p are the energy
density and the pressure measured by an observer at rest with respect to that
fluid. Accordingly, by comparing (2.5) with (2.6) one finds that the energy
density of the k-field is

e =2Xpx —p, (2.7)

its pressure is precisely the function p(p, X) and its four velocity is given by

Oup
V22X’

where o = sgn(dy ). From equation (2.7) follows that for the Lagrangians
(2.4) the energy density can be factorized similarly to the pressure,

(2.8)

Uy =0

e=K(p)-&(X), &X)=2Xpx —p. (2.9)

Consequently, a tilde denotes the X-dependent part of a quantity that can
be factorized into ¢ and X dependent parts. To conclude, let us note that
because the four velocity enters (2.6) only quadratically, there is a sign am-
biguity in the choice of u,. Our sign choice corresponds to a future directed
u,. In any case, this ambiguity is irrelevant since only the combination w,u,
enters the equations of motion.
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2.2 Equations of motion

Our universe is isotropic and homogeneous on large enough scales and there
is also firm evidence by now that its spatial sections are flat (see chapter
1). Hence, we will consider the motion of a homogeneous k-field ¢(t) in
a homogeneous and isotropic flat universe described by the metric ds? =
gudztdz” = dt* — a®(t) d7?. In fact, a homogeneous and isotropic universe
is a consequence of a (sufficiently long) stage of inflation, and we will show
below how a k-field may drive such a stage and thus justify our assumption.

The equations of motion of our model are obtained by functional dif-
ferentiation of the total action (2.1) with respect to the different fields of
the theory. By differentiating (2.1) with respect to the metric one obtains
Einstein’s equations G, = 3 (¥, + ™T,,), where ¥)T,, and (™T,, are
the energy-momentum tensors of the k-field and matter respectively. The 00
component of Einstein’s equations yields equation (1.2), which for our unit
choice and spatial metric reads

H? =¢iy =€ + €m- (2.10)

The matter and k-field equations of motion have the form of the “conservation
laws” .
@Opr,., =0, (2.11)

which also follow from Einstein’s equations. Here 7 is an index denoting mat-
ter (m) or k-essence (k). The behavior of a homogeneous perfect fluid—be it
dust, radiation or the k-field— in a homogeneous background is completely
characterized by the v = 0 component of equation (2.11), which is an ex-
pression of energy conservation, de;/dt = —3H (¢;+p;). It will be convenient
to remove the Hubble parameter from the last equation by a suitable time
choice. Introducing the number of “e-foldings” N = loga/ag as a new time
variable the equation can be rewritten as

de i
dN

where we have introduced, as costumary, the ratio of pressure to energy
density

w; = &, (2.13)

7

which we shall somehow loosely call the “equation of state”. Equation (2.12)
suffices to settle the behavior of dust and radiation, since their equations of
state are constant. Indeed, for a constant equation of state (2.12) can be
immediately integrated, yielding the scale factor dependence of the energy

density
1

W. (2.14)

£; X
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The equation of state of dust is wy = 0 and hence it follows that g4 o< 1/a®.
In a similar way for radiation w, = 1/3 and hence &, o 1/a*. However,
the equation of state of the k-field is not a constant, since for factorized
Lagrangians it depends explicitly on X,

2Xpx —p 2Xpx—p

wp, (2.15)

In order to describe the evolution of the k-field we should hence know how
X changes in time. Substituting the expression of the energy density (2.9)
into equation (2.12), and using equation (2.10) to relate the Hubble constant
to the total energy density one gets

dX  B8X:E K
= VR (x) bo [ (2.16)
dN 87)( 2K3/2 Etot

where o = sign(dy/dN) and where we have defined the new function

r(X) = ,/%(1 + w(X)). (2.17)

Equation (2.16) is one of the main results of this chapter. It is the equa-
tion of motion we are going to use to compute the evolution of the k-field.
Notice that it becomes singular at K = 0, and as a result the sign of K does
not change during cosmic evolution. Therefore we shall assume, without loss
of generality, that K is positive. An analogous statement holds for € x. Since
its sign is also conserved during cosmic evolution we shall mostly assume it
to be positive, as for a canonical scalar field.

2.3 Stability

Our universe is obviously not completely homogeneous. In order to take into
account inhomogeneities of the k-field (which could be in principle responsible
for the actual inhomogeneity of the universe) we shall develop first order
perturbation theory around the homogeneous and isotropic background we
have considered in section 2.2. We start by introducing perturbations in the
k-field, ¢ — ¢(t) + d¢(t,Z). These perturbations will induce perturbations
in its energy density (¢ — € + d¢), pressure (p — p + dp) and four-velocity
(u = u + du). Because we are exclusively dealing with perturbations of
the field, we drop the “k” subindex meanwhile. The perturbations of the
energy-momentum tensor are related, through Einstein’s equations, to metric
perturbations. In longitudinal gauge, the perturbed metric reads

ds® = (1 + 2®) dt* — a*(t) - (1 — 2®) di?, (2.18)
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where the metric perturbation ® = ®(¢, %) is a generalization of the Newto-
nian potential in an expanding universe [42].

The equations of motion of the k-field perturbations can be derived by
linearizing (2.11). It was shown in [26] that when the k-field dominates the
energy density of the universe, the linearized equations can be reduced to a
single equation for a single perturbation variable,

2 182
2—7;2)—03 v—gg—;vzﬂ. (2.19)
Here n denotes conformal time (dn = dt/a), v is an expression linear in
the perturbations ® and d¢p, and z is a function of time determined by the
background evolution. For our purposes, the most important quantity is the
squared speed of propagation of perturbations ¢, which is given by

2o  Dbx D.x
== . 2.20
S E’X é:X ( )

Cc

If the squared speed of sound c¢? is positive, equation (2.19) describes an
oscillator driven by an external force. Hence, solutions are oscillatory and
describe “sound” waves propagating with speed c;. On the other hand, for
c2 < 0, equation (2.19) has a growing solution that signals the gravitational
instability of the background solution. In the latter case the exponential
growth of the perturbations hinders the existence of a well-defined, stable,
background around which perturbation theory may be developed, and hence,
in the following we shall always require ¢ > 0.

Notice that although the k-field action is manifestly invariant under (lo-
cal) Lorentz transformations, the speed of sound (2.20) can also take values
bigger than 1 [26, 27]. This fact does not seem to contradict any physical law.
Indeed, the assertion that “nothing can travel faster than light” follows from
causality requirements in flat Minkowski space [54]. We are dealing however
with a curved spacetime with a preferred reference frame, the one where the
k-field is homogeneous, and the usual considerations do not apply. Similarly,
the k-field may also violate any of the standard energy conditions [56]. These
are rather “ad-hoc” postulates thought to be valid for all reasonable classical
matter, and are essential in the derivation of certain singularity theorems.
The weak energy condition states that the energy density measured by any
observer should be positive, and implies for a perfect fluid that ¢ > 0 and
e+p > 0. When considering flat cosmologies the requirement £y,; > 0 follows
from Einstein’s equation (2.10), and hence we will impose ¢ > 0 for consis-
tency. The strong energy condition states that for a perfect fluid € + 3p > 0,
and as we have mentioned it has to be violated during inflation. Finally, the
dominant energy condition follows by requiring that the speed of energy flow
measured by any observer be less than the speed of light, implying ¢ > |p|,
a condition which can be also easily violated by the k-field.
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2.4 Alternative Lagrangian parametrizations

Up to now, the X-dependent part of the Lagrangian p, has been a completely
arbitrary function. In this section we want to study how different criteria
translate into restrictions on the form of p. These restrictions can be stated
in a simpler form if the pressure is not parametrized as in (2.4), but as

9(y) _ 1
(e, y) = K(p) Y where y = o (2.21)
In this new parametrization y plays the role of X and the function g plays
the role of p, with the advantage that conditions on the form of p can be re-
expressed as simpler conditions on g. This will be particularly useful in our
discussion of the global properties of the k-field Lagrangian in the chapters
about k-inflation and k-essence.
Consider for instance the energy density of the k-field, equation (2.7). We
want this energy density to be positive during the cosmic evolution of the
field, 2Xp x — p > 0. Because in the new parameterization

E=—g, (2.22)

positivity of the energy density translates into the simple condition that g be
decreasing, dg/dy < 0. On the other hand, as stated above, we know that we
may restrict our considerations to regions where € x = 2Xp x — p is positive,

and because .

~ 3
EXx = §y 9.y

that means that we may assume that g is concave, d?g/dy® > 0. The last
quantity also determines the sign of the speed of sound through equation
(2.20), which in the new parameterization can be expressed as

2o 9—Ygy
Cs = -
Y G.yy

Stability requires a positive squared speed of sound, implying g — yg, > 0,
since we take g to be concave. The last stability condition also has a simple
geometrical interpretation: The intersection of the tangent to g at a given
point with the g-axis should happen above the y-axis. In particular, the
speed of sound is zero at points whose tangent passes through the origin.

Finally, for later purposes, it will be convenient to express the k-field
equation of motion also in terms of the new variable y. It can be easily
verified from (2.16) and (2.21) that y obeys the equation

K[p Ek
dy 3 o |k 92.23
AN 2 1,4(y) lr(y) + Ty K3/ Etot ] ’ (2.23)
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where r and wy, expressed in terms of ¢ and y, read

) =g gyt = o ) =L o



Chapter 3

k-Inflation

Inflation explains many of the puzzles of the standard big-bang cosmology.
Hence, considerable efforts have been devoted to developing different infla-
tionary scenarios. In most of them inflation is driven by a self-interacting
scalar field with Lagrangian p = X — V(). There are many different models
of this kind and all of them rely on some sort of “slow-roll” regime, during
which the scalar field slowly rolls down its potential V. Because the speed
of the field is proportional to the slope of the potential, slow-roll inflationary
scenarios work only if the corresponding potential is sufficiently “flat”.

Of course, the choice of the Lagrangian cannot be arbitrary. Ultimately,
the Lagrangian responsible for inflation should stem from a fundamental the-
ory of particle interactions. Some of the first inflationary models appeared
for instance in the context of grand unified gauge theories, but these scenarios
lost, their appeal with further developments in the subject. Today many par-
ticle physicists consider string theory as a candidate for a truly unified theory
of gravitation and gauge interactions. Therefore, it would be natural to look
for inflation in this framework. String theory predicts indeed the existence
of a whole set of scalar fields known as moduli, which are natural candidates
for the inflaton. However, it is difficult to implement inflation with such
scalar fields because they remain massless to all orders in perturbation the-
ory and, even if one includes non-perturbative effects, the non-perturbative
potentials are not flat enough [11]. There is nevertheless an alternative way
to implement an inflationary stage. In fact, as we have seen in chapter 1, the
low-energy effective action of string theory contains non-canonical scalar field
kinetic terms. Thus, we may think of each of these scalar fields as a k-field.
In this chapter we show that, even if the theory does not contain any scalar
field potential, under appropriate conditions a k-field may lead to a stage
of inflation we call k-inflation [1]. Indeed, k-inflation may be also attractive
in a non-stringy context; it provides an in principle totally different way to
implement inflation, keeping at the same time its main virtues.

This chapter is organized as follows: In section 3.1 we describe the general
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properties of a k-field Lagrangian which allows inflation and how its form is
constrained once further restrictions (such as, for instance, the absence of a
potential term) are imposed. In section 3.2 we find two of the main types
of inflation discussed in the literature—power-law and pole-like inflation—
by looking at solutions of the equations of motion with constant equation of
state. We formulate precisely for what kind of Lagrangians these solutions
exist and argue that in the pole-like case, an exit from inflation is impossible.
Next, in section 3.3, we discuss de Sitter-like inflation and how it can be
driven by a k-field. The existence of de Sitter-like k-inflationary solutions
requires certain generic conditions to hold. We show that although they
reduce to the known “flatness” conditions on the potentials if the field is a
canonical one, they can be satisfied even by potential-less k-field Lagrangians.
After briefly presenting in section 3.4 the perturbation spectra predicted
by k-inflation and discussing some of its phenomenological consequences we
conclude by arguing in section 3.5 that besides of accounting for a sufficient
number of e-foldings, the k-field can also describe how inflation ends and how
the transition to a radiation dominated universe occurs.

3.1 General properties

During inflation, the universe’s expansion is accelerated. The k-field may fuel
this acceleration only if its equation takes values smaller than —1/3, and in
particular, provided its pressure becomes negative while its energy density is
positive. Let us first consider what kind of functions p allow such behavior.
On general grounds, for small X we expect p to have an expansion in powers
of X,

ﬁ(X):Co+ClX+02X2+"'.

The first obvious observation is that if p has to become negative, at least
one coefficient ¢; should be smaller than zero (recall that we assume K > 0).
In the standard inflationary scenarios one has in fact ¢g < 0, ¢; > 0 and
the remaining coefficients vanish. The corresponding Lagrangians describe
(after a field redefinition) a canonical scalar field with a potential which
depends on K. Since during such inflationary stages the energy density is
dominated by the potential, we will call this kind of inflation “potential-
driven”. Different Lagrangian choices may be possible as well. In fact, as
we will see, inflationary solutions exist as long as the function p(X) satisfies
certain simple conditions at a single point X,. However, although these local
conditions can be easily satisfied, the inclusion of further requirements on
the Lagrangian may strongly restrict the global form of the Lagrangian in a
non-trivial way.

As a paradigmatic illustration of our last statement let us consider the
case of inflation driven by a potential-less k-field. By definition, a Lagrangian
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has no potential if 5(X = 0) = 0. Besides of having no potential, a further
natural condition we shall impose is that the Lagrangian should reduce to the
canonical one for small values of X, p(X) ~ X, X < 1. These conditions
and its implications can be easily visualized in terms of the function g(y) of
(2.21). In order for inflation to proceed, g should become negative, and in
order for g to describe a canonical potential-less Lagrangian at small values
of X, it should behave as g(y) &~ 1/y for large values of y (see section 2.4).
A possible form of such a function is shown in figure 3.1. As clearly seen
in that figure, the sign of the slope of g has to change inevitably during a
transition from negative pressure to the 1/y behavior at large y. But since
the energy density of the k-field is —g ,, this means that an eventual inflating
region (where g < 0) is separated from the “vacuum” (y = oo) by a region
of negative energy densities. Moreover, during the same transition the sign
of g, also changes, implying that € x also changes its sign. Recall however
that during cosmic evolution the sign of € x is conserved, and hence, points
where £ x = 0 are non-traversable barriers. Thus, for the class of Lagrangians
(2.4), a transition from inflation driven by a k-field to a stage where the k-
field behaves as an ordinary potential-less field is not possible. This does not
mean of course that a transition is impossible. Below we are going to show
that by considering Lagrangians which reduce to (2.4) in certain limits, such
a transition may be accomplished.

a(y)
A

p>0
canoni cal
field

L i nflation

Figure 3.1: A sample function g(y) interpolating between negative pressures
and the 1/y behavior of a canonical potential-less scalar field at large y. The
dashed line corresponds to regions of negative energy density, and the crosses
denote unsurmountable barriers.
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3.2 Power-law and pole-like k-inflation

In order to look for k-inflationary solutions let us first of all write down the
equation of motion of the k-field. At this point, in contrast to our previous
discussion, we assume that the energy density of the universe is dominated
solely by the k-field. This assumption is self-consistent, since the energy
density of the k-field during inflation (wj, < —1/3) decreases much slower
than the ones of dust (wquss = 0) and radiation (wr.q = 1/3). Thus, setting
Etot = €k in (2.16) we obtain the “master equation” we are going to use in
this chapter,

X vV8Xé K
LX) o] (3.)
dN €.x 2K3/2

where 7(X) is the function defined in (2.17).

We shall find a very important class of inflationary solutions driven by
the k-field by studying solutions of (3.1) for which the equation of state wy is
a constant. Because the equation of state of the k-field is only X-dependent,
this implies that itself must be constant for those solutions. On the other
hand, from the right-hand side of the master equation (3.1) it is evident that
non-trivial solutions with dX/dN = 0 may exist only if

= const.

P
K3/2
Thus, the requirement of a constant equation of state during inflation con-
siderably constraints the possible functions K. As a matter of fact, the most
general solution of the previous equation is K oc 1/(¢ — ¢,)?, and without
loss of generality we choose

1
K(p) = —, 3.2
(0) = 23 (3:2)
which yields K ,/K*? = —2. Notice that, we assume the k-field to be

positive, ¢ > 0. For a negative field, the statements about the sign of ¢
below have to be reversed.

Once K is assumed to be given by (3.2), the equation of motion (3.1)
implies that there are solutions with constant X = X, if the condition

r(X,) =0 (3.3)

is satisfied, where 0 = 1 for a growing field (d¢/dt > 0) and ¢ = —1 for
a decreasing field (dy/dt < 0). Thus, (3.3) implicitly defines the possible
constant values of X = X, allowed by the equation of motion. The corre-
sponding expansion is inflationary simply if

wi(X,) < —1/3. (3.4)

In principle, conditions (3.3) and (3.4) suffice to guarantee the existence of
inflationary solutions. Given p one computes 7(X) according to (2.17) and
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finds the solutions to (3.3). If at any of those solutions (3.4) is satisfied, then
the given p admits an inflationary solution. For example, let us consider the
Lagrangian of a canonical scalar field, p = —C + oX. If and only if o > 2/9
the equation r(X) = 1 has a (single) solution X, at which w(X,) =4/9a—1.
The former restriction on « arises because for such p the equation of state of
the k-field can not be bigger than one. Likewise, the requirement of having
an inflationary solution translates into o > 2/3. After a field redefinition,
©Yold = €XP(¢new/V/@), the same Lagrangian reduces to the canonical one
P(Pnew, Xnew) = —C exp(—2¢new/v/@) + Xpew, and it can be easily verified
that our last condition on « is equivalent to the one the exponential potential
has to satisfy in order to have an inflationary solution [39]. On the other
hand, the equation 7(X) = —1 has a (single) solution X, if and only if
a < 0. The equation of state corresponding to this solution is smaller than
-1, w(X,) = 4/9a—1, and as we shall see, this means that the corresponding
solution describes “pole-like” inflation. Observe that since the kinetic term
has the “wrong” sign, for negative o the Lagrangian can not be cast in
canonical form. This is a consequence of the fact that the equation of state
of a canonical field can only take values in the range —1 < w < 1. A scalar
field with the “wrong” sign of the kinetic term has been also considered in
[13] in the context of late time cosmic acceleration.

In the following it will be more useful to adopt an alternative “construc-
tive” approach. Suppose we want to build a Lagrangian which allows solu-
tions with a constant equation of state given by wj and a constant speed of
sound given by c;. It is easy to verify that at any arbitrary point X, the
function p should satisfy

8X, wy,

p(X,) = _— 3.5
4 1
D x(X,) = = 3.6
p.x(X.) 0T+ w (3.6)
2 1 1

D X, = —-1]. 3.7
pxx(X.) 0X, 1+ w, (a;? ) (3:7)

For such p, r(X.) = sgn(l + wj) and thus, according to (3.3), along an
inflationary solution with wy < —1, the field has to decrease, o = —1.
Because the energy density is (for constant X') proportional to 1/¢? it follows
that i) that the energy density increases with time—as expected from wy <
—1— and ii) that ¢; becomes singular after a finite cosmic time interval.
This singularity is also manifest in the functional dependence of the scale
factor on t,

2
a(t) o (=)0,

which has a pole at ¢ = 0 (¢ takes negative values and approaches the pole
t = 0 as cosmic time elapses). Therefore, inflation with w, < —1 is called



32 CHAPTER 3. K-INFLATION

pole-like inflation or “super-inflation” [40] . Pole like inflation—in the string
conformal frame— also appears in the so-called “pre-big bang” model in
string cosmology [29, 37]. In this scenario a pole-like epoch of inflation occurs
prior to what is supposed to be the big-bang. One of the main obstacles
faced by this scenario is the smooth transition from the inflationary stage
to the common radiation dominated Friedmann expansion of the universe.
Similarly pole like k-inflation is confronted with an analogous “graceful-exit”
problem. After a graceful exit we expect the k-field to smoothly join a non-
inflationary branch of the Lagrangian, where € x is positive. On the other
hand, it follows from equations (3.5) that for a stable background (c:* > 0)
€ x = 2XP xx + P x is negative during pole-like inflation. Thus in this case
during a graceful exit € x should change sign, what we know can not happen.
At this level, pole-like inflation seems unable to account for a successful
inflationary scenario.

During an inflationary stage with wy > —1 the field decreases with time,
o = 1. The scalar factor increases as a power of cosmic time according to

a(t) o ECETy ,

and therefore one speaks about power-law inflation. Whereas an exit from
pole-like inflation seemed to be impossible, there is no hurdle preventing an
exit from power law inflation. In particular, by choosing an appropriate sec-
ond derivative of p at X, the squared speed of sound can be adjusted to any
arbitrary (positive) value without conflict with € x(X,) > 0. In subsection
3.2.2 we illustrate with an explicit example how a transition from a power-law
stage to a radiation-dominated universe may be accomplished.

3.2.1 Attractors and repulsors

Under appropriate conditions there are solutions of the k-field equations of
motion for which the equation of state and the kinetic variable X are con-
stant. However, there is no guarantee that these solutions will be ever realized
if the initial values of the k-field are not chosen specifically to match them. In
this subsection we study how the k-field evolves from generic, non-fine tuned,
initial conditions. We shall find that solutions of constant X = X, can be
divided into two groups: attractors and repulsors. The attractor solutions
are always reached if the initial value of X is chosen sufficiently close to X,
whereas repulsor solutions are never reached as long as the initial value of X
is not exactly chosen to agree with X,.

Recall that the inflationary solutions we are discussing only exist for K o
1/¢?. The motion of the k-field, equation (3.1), is then dictated entirely by
the function r, and the possible values of constant X = X, are determined
by the condition r(X,) = £1. Because stability requires sgn(€ x) = o, it
follows readily by linearizing the equation of motion around X, that such a
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solution is an attractor if o - dr/dX > 0 and a repulsor if o - dr/dX < 0.

Since ~
dr _3 €x

dX 28X
this means that all solutions with w(X,) < 1, and in particular all inflationary
solutions, are attractors. Notice that relation (3.8) also restricts the possible
form of o - r(X). It grows for w < 1 and decreases for w > 1. Figure 3.2
shows two possible forms of (X)) corresponding to two different Lagrangians.
The intersection points of the r(X) curve with the lines r = +1 denote the
solutions of constant equation of state. A Lagrangian which allows power-
law inflation (¢ x > 0) may yield several intersections, whereas a one which
allows pole-like solutions (£ x < 0) can yield only one. The global evolution
of the k-field proceeds as shown by the arrows in figure 3.2. The arrows point
towards the attractors and away from the repulsors. Hence, all intersections
where w, < 1 are attractors.

The “no-hair” property of k-inflationary models crucially rests on the
existence of these inflationary attractor solutions. For a large set of initial
conditions the field is driven to the inflationary solutions discussed above.
Once those solutions are reached, the field “forgets” its past, and the prop-
erties of the inflationary stage are determined uniquely by the function p
at X,, regardless of initial conditions. Observe however that we have not
considered departures from homogeneity in the initial conditions. Although
this issue certainly deserves careful consideration, and non-canonical terms
may play also a significant role here, such a study would surpass the scope
of this work.

(1—w), (3.8)

3.2.2 Examples

In the previous subsection we have identified the criteria which guarantee
the existence of inflationary solutions with constant equation of state. In
this subsection we shall illustrate how these criteria can be easily satisfied
even in the absence of a potential, and at the same time we shall demonstrate
that an exit from such a (power-law) inflationary solution is possible. These
examples are based on simple toy models, designed to illustrate the essential
features of power-law k-inflation. Certainly, other forms are also possible.
Consider the toy k-field potential-less Lagrangian

1 29 13
X)=—(X+—-L - X? —X3) 3.9
P X) = 5 (X4 35 L) X4 x). (39)
and let L(¢) be any function which becomes L_ = —1 for large negative

© — Qenq and L, = +1 for large positive ¢ — Yeng, as shown in figure 3.2.2.
When —¢ > @enq > 0 the Lagrangian is of the form (2.4). Its coefficients
have been chosen in order that in this limit it allows an inflationary solution
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III E,x >O, o=1

Figure 3.2: Two generic functions r(X) . The intersection of the curves with
the r = %1 lines correspond to solutions of the equations of motion with
constant equation of state. Cosmic evolution proceeds along the arrows, and
therefore any intersection where w < 1 is an attractor.

X = X, = 8 with constant equation of state w = —2/3. In the limit
© > Qena > 0, the Lagrangian (3.9) is also of the form of (2.4), but in that
limit, there are no points where 7(X) = 41, and X = 0 is the only late time
attractor of the system.

Consequently, if the initial value of ¢ is much smaller than 4, the field
rapidly approaches the power-law inflating attractor solution at X, = 8. At
this attractor, the field steadily grows until it reaches the vicinity of @enq.
Then, due to the change in the form of p around @e,q, the power-law attractor
solution ceases to exit and the field is forced to approach the remaining late-
time attractor of the system, the vacuum X = 0. We have solved numerically
the equations of motion for a k-field described by (3.9) for different initial
conditions. The evolution of the field is depicted figure 3.4 in form of a phase
diagram and confirms our previous description of the field motion.

To summarize, our toy model exemplifies that it is possible to construct
k-inflationary models which satisfy at once the following requirements: i)
have a power-law inflating solution, ii) do not contain any potential term,
iii) reduce to the Lagrangian of a canonical scalar field for small values of X
and finally iv) allow for a graceful exit from inflation.
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¢=9,,

\
=g

Figure 3.3: Generic form of the function L(p). It approaches L_ for large
enough negative values of ¢ — @e,q and it approaches L, for large enough
values of ¢ — peng. The parameter @e,q is an arbitrary (positive) field value.

3.3 Slow-roll k-inflation

During power-law and pole-like inflation the equation of state of the k-field is
exactly constant. In this section we relax the condition of having a constant
equation of state during the inflationary stage. Instead, we look for solutions
with a slowly varying w; close to —1. Our motivations are twofold. On
one hand, a stage of accelerated expansion close to de Sitter is important
because, generically, its spectrum of density perturbations is nearly scale
invariant. On the other hand, a stage of expansion where w is exactly —1
never stops, and hence can not belong to a successful inflationary model.
By considering an inflationary stage with a slightly changing de Sitter-like
equation of state we cover both issues at the same time.

The equation of state of the k-field depends only on the variable X.
Hence, looking at solutions of the equations of motion where wy is nearly
constant is equivalent to looking at solutions with nearly constant X. The
equation of motion of the k-field (3.1) can be rewritten as

dr K

3 ®
=== () [r(X0) + o5 (3.10)

Because in order to derive the last equation we multiplied both sides of (3.1)
with 1 —wyg(X), its apparent solution wg(X) = 1 is an artifact. If X is nearly
constant, the X dependent function r should be approximately constant too,
and consequently, our desire of a nearly constant equation of state suggests
that dr/dN = (dr/dX)(dX/dN) should be negligible.
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q)end

Y
=

Figure 3.4: Schematic phase diagram of the solutions to the equations of
motion derived from (3.9). For —¢p > @enq > 0 the field rapidly approaches
a constant value of X where the equation of state is —2/3. Once the field
reaches the vicinity of @enq it abandons this constant value of X and smoothly
approaches the vacuum X = 0. Regions with negative energy density are not
reachable by flat cosmologies, and are hence excluded.

We denote a regime where dr/dN is negligible as “slow-roll”. During
slow roll we may neglect the left-hand side of equation (3.10) and hence,
the slow-roll approximate solution of the equations of motion X.(¢) is given
implicitly by X
_02K’;"/2. (3.11)
Notice that the above slow-roll solution expresses X as a function of ¢, and
not X as a function of N. At this point we should verify whether our “slow-
roll” assumption is consistent. By requiring dr(Xg)/dN to be much smaller

than any term in the right hand side of (3.10) we obtain the condition

r(Xe) =

K, _ § K,
Kl/QK,(p 9 K3/2

3 [6(Xa)
2

<32V7xX,

(1 —w(Xs)). (3.12)

The expression on the right hand side of the inequality is expected to be a
number of O(1), and thus the slow-roll condition (3.12) imposes a restriction
on the derivatives of K. Observe that for K oc 1/¢? equation (3.12) is
trivially satisfied, since the left hand side of the inequality exactly vanishes.
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This is a consequence of the fact that for such K there are solutions with
exactly constant X.

In the following, we could use (3.11) and the inequality (3.12) to study
how deviations from the 1/¢? dependence may induce power-law inflationary
solutions with nearly constant equation of state, and we could also study
how these deviations affect the value of the equation of state during inflation.
Instead of following that path, for the reason exposed above, we shall require
that our approximate slow-roll solution describe quasi de Sitter inflation,

1+ w(Xy) < 1.

Since, 1 4+ w(X) itself is proportional to r(X), it follows automatically from
(3.11) that our slow-roll solution corresponds to a quasi de Sitter inflationary
stage if the additional “slow-roll” condition

K
€= KTZ <1 (3.13)

is satisfied. In that case, we may expand the implicit slow-roll solution (3.11)
explicitly in powers of the small parameter €. The zeroth order approximation
corresponds to the limit € — 0, where r(X;,) exactly vanishes and w(Xg;) is
exactly —1. Let us denote by X, the point where r(X,) = 1 + w(X,) = 0.
Defining 6.X by the relation X = X, 4+ 6X one finds from (3.11) and (3.8)

to first order
V2eX K,
3B x |y K2

The last expressions can be used to compute the value of any X-dependent
quantity Q(Xs), as long as X, is not equal zero. To lowest order Q® =
Q(X,) and to first order Q) = @ x(X,)-§X. Accordingly, Q is constant to
lowest order during quasi de Sitter inflation, whereas the slow-roll condition
(3.12) guarantees that the relative change in the first order correction Q)
during an e-folding is small (this statement will become clearer below). As
an example, let us compute the squared speed of sound during slow roll. To
lowest order the speed of sound vanishes, and to first order one finds

g o 1) K
T 3V2XéEx|,

P

¢ W. (3.14)
Thus, the stability of the solutions imposes the condition that the function K
should decrease as the field evolves, and the slow-roll relation (3.12) implies
that the speed of sound is essentially constant on Hubble time scales.

0X = —0

*

3.3.1 Slow-roll conditions and
potential driven inflation

In the previous section we have shown that there are two main criteria which
guarantee the existence of slow-roll, quasi de Sitter inflationary solutions.
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The first one, (3.12), is the essential part of the slow roll approximation,
namely, the neglect of the change of X during an e-folding. The second one,

_ K,
€= K32 <1

just fixes the equation of state during slow-roll to a value close to —1. It
is interesting to note that the first slow-roll condition (3.12) is practically
equivalent to requiring that the relative change in the slow-roll parameter €
be small, dloge/dN <« 1. Taking into account that € < 1 during slow roll
inflation the first criterion reduces then to

K
n quf((p < 1, (315)

Il

since one expects the right hand side of (3.12) to be a coefficient of O(1).
These flatness criteria— (3.13) and (3.15)—are satisfied by a very wide class
of functions. They include

1. Any positive power: K o @™, n > 0 for ¢ > 1
2. Any negative power different from —2: K o ¢™, =2 #n < 0, for p < 1
3. Any growing exponential: K o exp(ng), n > 0 for ¢ > 1

4. Any function with an asymptotic behavior K — const and K , — 0 as
Y — 00

In order to better understand the meaning of these slow roll conditions
it will be useful to study them in the particular case of a canonical scalar
field. The Lagrangian p = K(—1+ X) can be brought into standard form,

P = =V (@new) + Xnew by the field redefinition dynew = /K (Qold) dpola- The
potential V is just the function K expressed in terms of the new variable and

hence, in that case, the slow-roll conditions translate into restrictions on the
potential. This way, the slow-roll criterion (3.13), which was an expression
of the fact that the equation of state should be de-Sitter like, takes the form
(dropping the “new”-label)

Ve
=<K 1L
TV
The slow-roll criterion (3.15), which was a necessary condition for the slow
roll approximation (3.11), needs a modification due to the fact that X, = 0
at the de Sitter point. In the latter case the slow-roll approximation is valid
if (dropping again the “new”-label)

Vo _ ¢ Vo
v 1T T

1.
7Ty <
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The reader may have recognized the last two expression as the old flatness
conditions of the potential driven scenarios [38]. Our approach shows that
there are in a certain sense more universal than originally expected, since
they originate from the existence of quasi de Sitter inflationary solutions in
a much wider class of Lagrangians.

3.3.2 Attractors and repulsors

Our analysis of slow-roll, quasi de-Sitter inflation has been “local”. The exis-
tence of an X, for which w(X,) = —1, along with local conditions (involving
derivatives at a single point) on the function K guarantee the existence of de-
Sitter like inflationary solutions (at least for an O(1) number of e-folds). In
this subsection we describe the global evolution of the field. By that we mean
that we study the evolution of the field away from those inflationary solutions.
Since they only exist provided (3.13) and (3.15) are satisfied, for simplicity
we restrict ourselves to the lowest order € — 0, i.e. to a p-independent K.

For constant K the k-field can be derived directly from the energy con-
servation equation (2.12), which takes the simple form

é’Xd—N: —3¢-(1+w). (3.16)
In the limit € — 0, the slow-roll solutions we have discussed are just given
by X = X, = const., where X, is any point where de equation of state
is exactly the de Sitter one, w(X,) = —1. In order to study the evolution
of the scalar field away from such solutions, it is going to be convenient to
consider a parametric plot (£(X),p(X)) in the p — £ plane. The concrete
form of such a plot depends on the form of the Lagrangian p(X). In figure
3.5 we show the one of a hypothetical generic Lagrangian. The inflationary
solutions are located at the intersection of the plot with the € +p = 0 line
and denoted by thick dots. We assume that the Lagrangian has the standard
potential-less form for small values of X, and hence, in the vicinity of the
origin p = £. Observe that during the transition from the origin to the
inflationary solutions, the curve goes through negative energy densities, as
pointed out in section (3.1). Nevertheless in flat cosmologies the total energy
density cannot become negative (2.10), and hence those regions are excluded
(shaded). The arrows on the (p, &) curve, point along the direction of cosmic
evolution of the k-field. Thus, the points where € x = 0, denoted by a cross,
are repulsors. Because the speed of sound has a different sign at both sides
of the crosses, there are stable regions with positive squared speed of sound
(denoted by “s”) and unstable regions where the squared speed of sound
are negative (denoted by “u” and dashed). Since regions where ¢ < 0 are
absolutely unstable, the dashed parts of the plot have no physical meaning.
Figure 3.5 also shows that all de Sitter inflationary solutions are attractors of
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the system (thick dots). Among the latter, the k-field vacuum X = 0 plays a
special role, since the energy density and the pressure of the k-field vanishes
at that point.

v,,/////////7 — -

Figure 3.5: Parametric plot (£,p) for an hypothetical generic Lagrangian
P(X). The cosmological evolution proceeds along the arrows. The shaded re-
gion excludes the region of negative energy densities; it is unreachable for flat
cosmologies. The intersections of the plot with the lines p = —¢ correspond
to de Sitter inflating attractor solutions. Those solutions are approached ei-
ther from regions with positive squared speed of sound (continuous) or from
absolute unstable regions (dashed). The crosses denote repulsors of the field
evolution.

Because inflating solutions are attractors, if the k-field starts in an ap-
propriate stable branch of figure 3.5, it will be soon driven to an inflationary
solution. Once the field reaches that solution, de Sitter inflation will proceed
indefinitely into the future. This is the reason why a stage of purely de Sitter
stage is not suitable for an inflationary scenario. Ideally, after certain num-
ber of e-folds, inflation should stop and approach the vacuum. In the next
section we discuss how the violation of the slow-roll conditions may induce
such a transition.
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3.3.3 Examples

In order to illustrate our discussion about slow-roll k-inflation let us consider
simpler versions of our previous examples of subsection 3.2.2. Our purpose is
to show that even the most simple potential-less non-canonical Lagrangian, a
quadratic one, can support a stage of inflation under appropriate conditions.

The most general quadratic potential-less k-field Lagrangian is p(¢, X) =
L(p)X + M(¢)X?. By a field-redefinition one can eliminate the @-dependent
coefficient M, and hence, without loss of generality the most general quadratic
Lagrangian can be written as

(o, X) = L(p) X + X2 (3.17)

By an additional field redefinition, dpnew = |L(¢)| /2 dy, p can be also cast
in factorized form (2.4), though the form of p depends on the sign of L,

p((pnewa Xnew) = LQ((pnew) ) [Sgn(L) ) Xnew + Xr%ew] .

If we were only interested in functions L with a definite sign, both parametriza
tions would be equivalent. However, an essential feature of L in our examples
is that it changes sign at certain ¢e,q— Lagrangians of this kind appear for
instance in string theory [21]—, and hence, we shall keep the parameteriza-
tion (3.17) when solving the equations of motion. Nevertheless, as long as
L has a definite sign, the factorized form is still valid and useful. In partic-
ular, for L < 0 there is a de Sitter point at X, = 1/2. Using K = L? the
slow-roll conditions (3.13) and (3.15) can be reformulated in terms of L(y);
surprisingly they have the same form as in terms of K,

Ly
—_— 1. 1
L (L) < (3.18)

)

L,
S

Let now L be any function which changes sign at arbitrary @enq; it approaches
any negative constant L_ for large enough negative values of ¢ — @enq and it
approaches a positive constant L for ¢ >> @enq (figure 3.2.2). Since for such
functions the conditions (3.18) are trivially satisfied for big enough negative
values of the field ¢, it follows that there exists a quasi de Sitter inflationary
solution in that range. The squared speed of sound during inflation can be
computed using (3.14),

_ P

s 6 (—L)3/2’

and therefore stability requires the field to grow with time. Thus, during
inflation the field unavoidably approaches @enq, where the slow-roll conditions
become violated and inflation ends. Once the field crosses that point, the
k-field reaches a region where L > (0. In this region there is no de Sitter
point, and the linear term of the Lagrangian has the usual canonical form.
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Here X = 0 is the only late time attractor of the system, and therefore as
time continues increasing the k-field approaches the vacuum X = 0 where
its energy density vanishes.

We have solved the field equations of motion for the Lagrangian (3.17)
and a function L of the generic form of figure 3.2.2. The numerical solutions,
shown in the schematic phase diagram of figure 3.3.3, nicely illustrate all
the features we have discussed previously. Regardless of initial conditions
cosmic evolution drives the k-field to the de Sitter-like inflationary solution
where X =~ 1/2. When the field reaches the vicinity of the origin, inflation
ceases and the field smoothly approaches the vacuum X = 0. The reader
should compare that phase diagram with the one of ordinary potential driven
inflation of figure 1.5.

Figure 3.6: Schematic phase diagram of the solutions to the equations of
motion derived from (3.17). For —¢ > @enq > 0 the field rapidly approaches
a nearly constant value of X where the equation of state is de-Sitter like.
Once the field reaches the vicinity of @e,q it abandons this value and smoothly
approaches the vacuum X = 0.

3.4 Power spectra

One of the most important aspects of any inflationary scenario is its predicted
primordial spectrum of metric perturbations. These metric perturbations can
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be directly related to the CMB temperature fluctuations, and thus by mea-
suring these fluctuations, one can discard and distinguish between different
inflationary models.

The spectrum of metric perturbations produced during k-inflation was
computed in [26] both for slow-roll and power-law models. Here we shall
concentrate on slow-roll models, although many of the discussed properties
also apply to power-law k-inflation. The spectrum of scalar perturbations is
conveniently expressed in terms of the Bardeen variable {, which is propor-
tional to the Newtonian potential ® in (2.18). The latter is at the same time
related to the CMB temperature fluctuations on large angular scales through
0T /T ~ ®/3 [42]. The power spectrum P of the variable ( is by definition

1
Pi = o5 KRR,

where (k) is the Fourier transform of the function ¢(Z). According to [26]
this spectrum is given, for slow roll models, by

1 €
Pf=———
k dr? e, - (1+w)|,

where | means that for given comoving mode k, the corresponding function
should be evaluated at “sound-horizon crossing”, c;k = aH. The last expres-
sion reduces to the standard result for the usual potential-driven slow-roll
models, where ¢; = 1. Generically however, in slow-roll k-inflation the speed
of sound is small, and hence, this difference leads to slightly different results.
Using equations (3.14) and (3.11) this spectrum can be expressed completely
in terms of K. Assuming that the X, dependent-factors are of O(1) one gets

K4
P,ng—Q

P

S

The previous formula gives already a hint on the value of K during inflation.
We know that temperature anisotropies of the CMB have typical amplitude

6T _
-~ V PE =~ 1070, (3.19)

and hence, during inflation ¢ - K ~ 107°. Besides of the amplitude of the
spectrum, there are also constraints on its slope. The (scalar) spectral index
ng is defined as

dInP¢
~ dlnk’
Its value on large scales has been determined by the COBE experiment to
be ng ~ 1.2+ 0.3 [6]. A spectrum with ng = 1 does not depend on £, and is
called a scale invariant “Harrison-Zeldovich” spectrum. As in the common

Nng —
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potential driven models, the spectral index can be expressed in terms of the
slow-roll parameters (3.13) and (3.15),

ng — 1 oc 4e — 2n.

Because the slow roll parameters are small, slow-roll models (both potential
and kinetic driven) predict a nearly scale invariant spectrum, as anticipated
previously.

During k-inflation, a background of gravitational waves is also generated
from vacuum tensor metric fluctuations. Its spectrum Pr = dInPr/dInk
agrees with the one of the usual potential driven inflationary scenarios, since
the gravitational sectors are the same in both cases. For our purposes the
most important fact is that the ratio of the spectrum of scalar perturbations
to tensor perturbations is constrained through the so-called “consistency re-
lation”

Ph

ﬁ = —865 N
In the usual potential driven models ¢, = 1. Thus, by testing whether
P" /PS¢ = —8ny one can phenomenologically distinguish between k-inflation

and the conventional one.

3.5 Causality, exit and reheating

Among all the different criteria a successful inflationary scenario should sat-
isfy, we have only addressed the no-hair property, the spectrum of density
perturbations and, partially, the exit from a k-inflationary stage. Besides,
k-inflation should also explain why the observable universe seems to be flat
and homogeneous, and how the radiation in contains was produced. In this
section we discuss both remaining issues.

k-Inflation proceeds as long as the function K satisfies certain conditions.
If K o< 1/¢?, the universe inflates with a constant equation of state, whereas
if K satisfies the slow-roll conditions (3.13) and (3.15), the universe undergoes
a stage of quasi de Sitter inflation. Therefore, if any of those conditions is
violated around certain field @e,q, inflation stops when the field reaches the
vicinity of that value. During both types of inflation the value of X can be
regarded as constant, and hence, the number of e-foldings of inflation can be
easily computed from (2.3) by recalling the definition of N,

Pend
AN oy S % / JE (3.20)

where ¢;,; is the value of the k-field at the beginning of inflation.
It is of utmost importance that inflation lasts long enough. In fact, in
order to solve the homogeneity problem, an initial horizon-sized patch should
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be blown up into a region that at least contains today’s observable universe.
Since the universe has expanded by a factor T}y, /T, since the end of inflation,
where T34 is the reheating temperature and 7 ~ 3K, causality requires

1 anTm _ 1
— AN h > —.
H, Ty,  H

Below we argue that in the simplest k-inflationary reheating scenario Ty, ~
1072H,,. Assuming that the Hubble parameter is nearly constant during
inflation and because today’s horizon is 1/Hy ~ 10%® cm., we find that the
necessary amount of inflation is

AN > 67. (3.21)

The same calculation implies that a length scale which has today the size
of the observable universe crossed the horizon around 67 e-foldings before
the end of inflation. Although inflation may have lasted longer than just 67
e-folds, the modes which crossed the horizon before have lengthscales which
are bigger than today’s observable universe, and hence are not relevant from
an observational point of view. Therefore we shall call the moment of time
around 67 e-folds before the end of inflation the “beginning” of inflation.

As an example of how causality constrains the possible k-Lagrangians,
let us consider any power-law function K = ©?"* for n > 0. These functions
satisfy the slow-roll criteria (3.13) and (3.15) roughly for ¢ > @enq = 1.
In order for the squared speed of sound to be positive during inflation, the
field has to decrease (see equation (3.14)) and hence while inflation proceeds
the k-field steadily approaches the field value @e,q where inflation ends. By
integrating (3.20) and recalling our definition of the beginning of inflation
one finds K (guwi)/?pim;i ~ 67, where ¢y, is the value of the field at the
beginning of inflation. Combining that equation with the restriction which
follows from the amplitude of scalar perturbations (3.19) one can finally solve
for the initial value of the field and the initial value of K,

K(Qpini) ~ 10_12 - 10_14, Pini ~ 107 - 109

This example shows that, as in the usual potential driven models, k-inflation
generically needs the presence of small parameters, which can be traced back
to the smallness of the CMB temperature fluctuations.

Observe that in the previous example the end of inflation is “natural”.
For the given choice of K, the field approaches the point where the slow-roll
conditions are violated and inflation ends. On the other hand, for power-
law k-inflation, K oc 1/¢?, inflation never ends and thus the form of the
Lagrangian has to change in order for an exit to be possible (see section
3.2.2). The situation is analogous to the one in in conventional potential
driven scenarios. Whereas for chaotic power-law potentials inflation ends
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when the field reaches the vicinity of the potential bottom, for exponential
potentials inflation never ends and a change in the form of the potential is
needed to force an exit.

The evolution of the k-field after the end of inflation determines the way
the universe is reheated. In the following we shall assume that the Lagrangian
is such that after inflation the k-field is located around the vicinity of the
vacuum X = 0, where p(X) ~ X (as in the previous examples in subsections
3.2.2 and 3.3.3). In that case, the equation of state of the k-field is given by
wy =~ 1, and hence, the energy-density of the k-field can be easily computed
from (2.7) to behave as ey o< 1/a®. In the conventional potential driven
inflationary scenarios, the coupling of the inflaton to other fields [36] produces
the radiation needed to reheat the universe. In our models (2.1) the k-field
is coupled to the remaining matter fields only gravitationally, and hence, the
heating of the universe can only proceed by gravitational particle production
[7, 22]. The energy density of particles produced during the transition from
de Sitter to a stage of power law expansion was computed in reference [17].
Any scalar particle species whose mass m is much smaller that the Hubble
parameter at the end of inflation He,q is produced with an energy density
given by

ol

i 1072, 2,
The last formula can be heuristically understood as stating that one massless
particle of energy =~ Henq is produced per Hubble volume at the end of
inflation. Moreover, since these particles are massless, their energy density
subsequently drops as 1/a*. Therefore, because the energy density of the
k-field drops as &, oc 1/a%, the produced particles soon dominate the energy
density of the universe, and a smooth transition to a radiation dominated
universe occurs.

Gravitational particle production is, in a certain sense, “universal”; any
massless scalar particle will be produced at the end at inflation. Hence, it
has been objected [19] that in such a way cosmologically “dangerous” moduli
particles (like the dilaton of string theory), may be overproduced. In fact, the
abundances of these particles are so severely constrained by nucleosynthesis
and the observed matter fraction that gravitational particle production would
certainly violate those limits. However, up to now the constraints remain
speculative. The parameters which enter the different constrains (masses and
couplings of these particles) are unknown and vary significantly depending on
the model. Hence, those objections are not based on firmly enough ground
yet to have any implications for our reheating scenario.



Chapter 4

k-Essence

As we mentioned in the introduction, a new key challenge for theoretical
cosmology is to address the cosmic coincidence problem: why does the dark
energy component that seems to drive cosmic acceleration have a tiny energy
density and why does cosmic acceleration begin at such a late stage in the evo-
lution of the universe. If dark energy is a cosmological constant, its value has
to be extraordinarily fine tuned in order to match the present observations.
Quintessence models [50, 23, 14] were hoped to alleviate the cosmic coinci-
dence problem, but as we will show using their k-field analogue, kinetically
driven quintessence, they are not essentially different from a cosmological
constant. Thus, the reason for cosmic coincidence both dark energy forms
suggest is either pure-coincidence or the anthropic principle. The purpose of
introducing k-essence is to provide a dynamical explanation which does not
require fine-tuning of initial conditions or coupling parameters and which is
decidedly non-anthropic. In this scenario, cosmic acceleration and human
evolution are related because both phenomena are linked to the onset of
matter-domination. The k-essence component has the property that it only
behaves as a negative pressure component after matter-radiation equality,
so that it can only overtake the matter density and induce cosmic accelera-
tion after the matter has dominated the universe for some period, at about
the present epoch. And, of course, human evolution is linked to matter-
domination because the formation of planets, stars, galaxies and large-scale
structure only occurs during this period.

The chapter is organized as follows: In section 4.1 we illustrate the way
in which the onset of dark energy domination is contained in the parameters
of certain quintessence models. In section 4.2 we explain the basic idea of
k-essence and how it differs from ordinary quintessence. The behavior of
k-essence is essentially determined by the properties of attractor solutions
to the equations of motion, and hence we also summarize the equations of
motion presented already in chapter 2. In section 4.3, we classify the possible
attractor solutions for k-essence. In some cases, the attractor solution causes

47
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k-essence to mimic the equation of state of the matter energy density; we refer
to this as a tracker solution. In other cases, k-essence mimics a cosmological
constant, quintessence or dust without depending on the presence of any ad-
ditional cosmic energy density. In section 4.4, we show how these principles
can be used to control how k-essence travels through a series of attractor
solutions as the universe evolves beginning from general initial conditions.
In particular, we show how k-essence can transform automatically into an
effective cosmological constant at the onset of matter-domination, as is de-
sired to explain naturally the present-day cosmic acceleration. In section 4.5,
we show how to utilize these concepts to design model Lagrangians. We ex-
plore two illustrative examples. In one case, the future evolution of k-essence
causes the universe to accelerate forever. In the other case, k-essence ulti-
mately approaches an equation of state corresponding to pressureless dust,
and the universe returns to a decelerating phase.

4.1 Fine tuning in quintessence models

The reason why a cosmological constant has to be extremely fine tuned to
a tiny value in order to accommodate late time cosmic acceleration is that
its energy density is constant. Hence, a possible way to circumvent this fine
tuning could consist in introducing a dynamical component which may drive
cosmic acceleration. This is the idea behind quintessence models [50, 23, 14].
An attractive feature of some of these models is the existence of attractor
solutions, along which the equation of state of quintessence follows the equa-
tion of state of the dominant component of the universe [53]. During these
“tracking” stages the equation of state of quintessence is a constant dictated
by the dominant matter equation of state. In these scenarios, quintessence
is subdominant in the past, but since its energy density decreases slower
than the matter one it eventually dominates sooner or later. As quintessence
starts dominating, its equation of state approaches —1, and a late stage of
cosmic acceleration begins.

We have already studied the connection between accelerated expansion
(inflation) and scalar fields. In particular, we have seen that potential driven
inflation is a particular example in the broader context of k-inflation. Hence,
it is natural to study up to what extent quintessence models can be recovered
from a more general class of k-field models (related work has been done
independently by the authors of [15]). Therefore, using the properties of the
quintessence models discussed above as guidelines, let us look for solutions of
the k-field equations of motion along which wy, is a constant. We shall assume
that the total energy density is dominated by a matter component with
constant equation of state w,,. In that case, H can be directly computed,
from (1.4) and (2.14), to be H = 2/[3(1 + wy,)t]. For constant X (constant
wg) the equation of motion of the k-field takes the simple form dlog K =
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—3(1 4+ wg)dN, and hence, using dN = (H/¢)dyp we find substituting the
known behavior of the Hubble parameter that

dp (14+wy)-t-¢  14+w,p—@,

since ¢ = 0v/2X is constant. Setting for simplicity ¢, = 0 and integrating
the above equation we obtain K () = A\?/¢®", where \? is the integration
constant, and where

14+ wy

n= .

14+ w,
For given background and k-essence equations of state, the last formula de-
termines the function K which guarantees the existence of solutions with
constant wy. Alternatively, for given K oc 1/¢?", if there is a point X, such
that wy = wy(X,,) satisfies (4.1), X = X,,, = const is a solution of the k-field
equation of motion in the given matter-dominated background. The relation
(4.1) shows that the equation of state of the dominant background compo-
nent dictates the equation of state of the subdominant k-field component, a
behavior known in the context of quintessence models as “tracking”. Along
these solutions, the ratio of k-essence to total energy ratio is given by,

€k _ \2 91 +wm)*\" . n—1
-~ = (78Xm E(Xm) - et (4.2)

(4.1)

Obviously our results hold as long as the k-field is subdominant and the
Hubble parameter is mainly determined by the matter component. Thus,
the tracking solution is valid as long as (4.2) is much smaller than one.
Quintessence was introduced to explain late time cosmic acceleration by re-
placing the cosmological constant by a dynamical component. Therefore at
some point it should start to dominate the energy density of the universe,
er/etor = 1, and drive cosmic acceleration. This observation restricts the
possible values of n to n < 1, since the contribution of the k-field should
become more important as the universe evolves. Notice that for such val-
ues of n, the function K satisfies the slow-roll conditions of subsection 3.3.1.
Therefore, as soon as the k-field starts dominating, our considerations about
k-inflation apply, and it follows from them that the k-field is attracted to a
quasi de Sitter inflationary stage, triggering cosmic acceleration as observed.

The moment of k-field dominance can be estimated for given A by sub-
stituting ex/eios &~ 1 into (4.2). And vice versa, for a known moment of
quintessence dominance, (4.2) fixes the value of A. Since quintessence seems
to have started to dominate only recently and & (today) ~ 107'?* we find,
assuming the remaining parameters to be of O(1),

A2 g 1071240, (4.3)
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The last formula is the main result of this section. If we set n = 0, we are
back in the case of a cosmological constant, and the formula exhibits the
tremendous fine tuning needed to explain its dominance today. Different
choices of n, say n = 1/2, do not improve the situation, and only if n is fine
tuned to a value close to 1 does A take “natural” values. On the other hand
let us stress that even in that case the formula above shows that quintessence
models do not explain why late time cosmic acceleration happens precisely
today, since the moment of k-field domination has to be encoded into the
values of n and A.
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Figure 4.1: Plot of the energy densities of radiation (red), matter (blue)
and kinetically driven quintessence (black) versus “time”. The energy den-
sity of quintessence is plotted for two different sets of initial conditions.
Both converge to the tracking attractor, along which the equation of state
of quintessence is dictated by the equation of state of matter according
to (4.1). Thus, around equipartition, the slope of the quintessence curve
slightly changes due to the change of the background total equation of state.
Once quintessence starts dominating, the k-field approaches a slow-roll k-
inflationary stage, yielding late cosmic acceleration. The moment of domi-
nance is determined by a scaling parameter in the Lagrangian.

Nevertheless, one attractive feature of the solutions we have discussed is
that they are attractor solutions, so that the cosmic evolution is insensitive
to the initial energy density of the k-field. This feature is apparent in figure
4.1, which shows the result of the numerical integration of the equations of
motion of k-essence for different initial conditions. In that particular example



4.2. FUNDAMENTALS OF K-ESSENCE 51

the k-field is described by the potential-less Lagrangian

P, X) = %f(—x LX),

The results proof that a k-field may accommodate late time cosmic accelera-
tion in exactly the same way as quintessence models, even in the absence of a
potential. It is also evident from the structure of the equations that the func-
tion that determines the behavior of the solutions is K and not p. The role of
p is just to allow an equation of state that satisfies (4.1). In that sense we can
find what kind of potentials our kinetically driven quintessence models corre-
spond to. By a field redefinition the Lagrangian p(p, X) = M@ 2*(—1 + X)
can be cast in canonical form, p = X — V(). The potential has power-law
form, V(p) o< ¢=2"/(=") which not surprisingly is the class of potentials
known to yield tracker solutions [53].

4.2 Fundamentals of k-Essence

Our short analysis of kinetically driven quintessence has shown that the value
n = 11n (4.1) is somehow special. For this value the equation of state of the
k-field exactly matches the one of the matter component, and hence the ratio
of k-field to total energy density is a constant during tracking. This behavior
is known from quintessence models with an exponential potential. A feature
of these models is that the field tracks both radiation (during radiation dom-
ination) and matter (during matter domination). However, as long as the
field tracks any equation of state, it cannot overtake the matter-density and
induce cosmic acceleration. Indeed, for a purely exponential potential, the
field never overtakes the matter density and dominates the universe. Hence,
this is an unacceptable candidate for the dark energy component.

The distinctive feature of the k-essence models we shall consider is that
k-essence only tracks the equation of state of the background during the ra-
diation dominated epoch. A tracking solution during the matter dominated
epoch is physically forbidden. Instead, at the onset of matter domination,
the k-essence field energy density £, drops several orders of magnitude as
the field approaches a new attractor solution in which it acts as a cosmo-
logical constant with pressure p; approximately equal to —e;. That is, the
equation of state is nearly —1. The k-essence energy density catches up and
overtakes the matter density, typically several billions of years after matter
domination, driving the universe into a period of cosmic acceleration. As
it overtakes the energy density of the universe, it begins to approach yet
another attractor solution which, depending on details, may correspond to
an accelerating universe with w < —1/3 or a decelerating or even dust-like
solution with —1/3 < w < 0. In this scenario, we observe cosmic accelera-
tion today because the time for human evolution and the time for k-essence
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to overtake the matter density are both severals of billions of years due to
independent but predictive dynamical reasons. This behavior is summarized
in figure (4.2), which shows the cosmic evolution of k-essence compared to
the ones of dust and radiation. The reader should compare it with the anal-
ogous figures 1.4 and 4.1, which include the energy density of a cosmological
constant and quintessence instead.
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Figure 4.2: Plot of the energy densities of radiation (red), matter (blue) and
k-essence (black) versus “time”. During radiation domination k-essence be-
haves as a radiation component, and thus, nucleosynthesis constraints restrict
the amount of k-essence present at that time (dashed line at 1+ z ~ 10'0),
After equipartition (dashed line at 1 + z ~ 4 - 10%), instead of following
the matter track, the energy density of k-essence drops by several orders of
magnitude and freezes until it overtakes the energy density of matter.

k-Essence relies on a specific, but broad, class of factorized k-field La-
grangians. In order to study their properties it will be convenient to use
the alternative parameterization of the k-field Lagrangian discussed in sec-
tion 2.4. Recall that in that parameterization y = 1/v/X and p = g(y)/y.
Restrictions on the form of the Lagrangian take then very simple forms.
For instance, we shall require positive energy density and positive speed of
sound, which translate into the condition that g be a growing convex function
respectively,

1
E=—g >0, aX:§f¢>0, (4.4)

where, as in the rest of this chapter, we use a prime to denote a derivative
with respect to y. The k-field equation of motion in terms of y has a similar
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form to the one in terms of X and reads (we write it down again here for
completeness)

dy 3wg(y) — 1 K, €k
-J _ TR\ - ! 4.
dN 2 7r'(y) rw)+ "2 K Etot | (45)

where the function r(y) is given by

9dg 3 g—vyg
T(y) ] dy y( wk) 2\/5 /—_g, ( )

and where the total energy density consists of the energy densities of the k-
field and the matter component (dust and radiation). Note that we assume
that, because of a yet unknown mechanism, the cosmological constant exactly
vanishes.

4.3 Classification of Tracker and Attractors

The attractor solutions for k-essence can be divided into two classes. In one
class, k-essence mimics the equation of state of the matter-radiation com-
ponent in the universe. We refer to these as trackers because the cosmic
evolution of k-essence follows the track of another energy component. The
second class of attractors consists of cases where k-essence is drawn towards
an equation of state which is different from matter or radiation. These at-
tractors are important in the limits where k-essence is either a negligibly
small or an overwhelming large fraction of the total energy density. The
types of attractors available at any given moment in cosmic history depend
on whether the universe is radiation or matter dominated. For all types of
attractors, there is an associated basin of attraction, a set of initial conditions
which evolve towards the attractor.

In the presence of a matter component (dust or radiation) with constant
equation of state w,,, equation (4.5) can have tracking solutions for which
the k-essence equation of state equals w,,. To reveal when it can happen and
to find these solutions explicitly we just need to note that if such solutions
exist, they have to be generically of the form y (N) = y,,, = const, where y,,
satisfies the equation

9

Vg = Wy, (4.7)

Y=Ym

W (Ym) = —

Substituting this ansatz into equation (4.5) and noting that the ratio e /eyt
should stay constant during the tracking stage, we see that y (N) = y,, can be
a solution of equation (4.5), only if K () o< 1/¢? (we have already observed
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this fact in our discussions of k-inflation and kinetically driven quintessence).
Therefore, we consider from now on only scalar fields with Lagrangian

9(y)

p="=". (4.8)

vy
It is worth reminding that this kind of dependence on a scalar field occurs
in the string tree-level effective action when expressed in the Einstein frame.
In this case, equation (4.5) simplifies to

&y _3we) =1 g
o el R )

Etot

where we restrict ourselves to the most interesting case of positive ¢ on the
branch of positive ¢. To close the system of equations for the two unknown
variables y and e /ey, we use the equation

% — 3% (1 - %) (Wi — wi () (4.10)

which immediately follows from equation (2.12). If y,, is a solution of equa-
tion (4.7), then y (N) = y,, = const, satisfies equations (4.9) and (4.10),
provided

72 (ym) = ( Sk )m <1, (4.11)

Etot
where the inequality is simply the physical constraint that e < £¢0 (assuming
positive energy densities £, and &,,). If r (ym) > 1, a tracker solution y(N) =
Ym is physically forbidden.

4.3.1 When are trackers attractors?

To find out when trackers are stable solutions with a non-trivial basin of at-
traction, we study the behavior of small deviations from the tracker solution.
SUbSt’itUting ) (N) = Ym + (5y and 5k/€tot (N) = (gk/gtot)m + 5(5k/€tot) into
equations (4.9) and (4.10) and linearizing, we obtain

doy 3 (wy (ym) = 1) |, 6(ex/Etot)

dN "2 Tm0Y = =g | (4.12)
dd (ex/Et0t) _ 2 2 !
—aN - —3r;, (1 — rm) wy, (Ym) 99, (4.13)

where the index “m” denotes evaluation of the appropriate quantities at the
tracker point y,, and (gx/€i01)m has been replaced by 72 (y,,) according to
equation (4.11). Differentiating equation (4.12) with respect to N and using
equation (4.13), one obtains the following closed equation for dy:

d25y 3 d5y 9 2 2
el S (=) T D1 =)+ w) (¢~ wa)y = 0. (414)
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Here ¢? is the squared “speed of sound” of k- essence at the tracker point
and we took into account that wy (y,,) = wn,. equation (4.14) is a second
order differential equation with constant coefficients and has two exponential
solutions. It is easy to see that for |w,,| < 1 both solutions decay if

e > Wy, (4.15)

Therefore, since ¢2 = (g — ¢'y)/g"y?, any tracker can be easily made an

S
attractor by arranging a small second derivative of g at the tracker point.
As important examples, let us consider the two most interesting cases,
namely, trackers in the presence of radiation (labeled “r” in the equations

below) and cold matter (labeled “D” for “dust”).

4.3.2 Radiation trackers

For radiation trackers, w,, = w, = 1/3 and equation (4.7), which defines the
location of the radiation trackers (y,, = v.), reduces to

Y9 (yr) = —39(yr)-

The ratio of the energy densities is given by

( S ) =7 () = —29'(ur)yy (4.16)

Etot T

and radiation trackers exist only if at the points y, satisfying equation (4.3.2),
r? (y,) < 1. These trackers are stable attractors only if ¢” (y,) < —4¢' (y,) /Yy
Radiation trackers are always located in the region where g > 0 (positive
pressure), corresponding to y < yp in figure 4.3. For a given ¢(y), there can
be more than one radiation tracker. For each of them, the geometrical way
of finding the value of y corresponding to the tracker is given in figure 4.3.
These trackers can have different values of 72(y,) = (4/€tot),- Numerically, a
likely range for r2(y) is 107! <1072, This is also the range we wish to have in
order that cosmic acceleration begin at roughly the present epoch. We label
the radiation tracker with the desired value of 7?(yr) as R, and a second
possible radiation tracker with a different, value of r%(y,) (the one closest to
yp) as r(?) in figure 4.3. If r2(y,) is much smaller than 1072, the energy
density falls so much at the onset of matter-domination (before it freezes at
a constant value) that it would not yet have overtaken the matter density
today. If r%(y,) is much greater than 10!, then the contribution of k-essence
to the total energy density would change the expansion rate in the early uni-
verse and adversely affect the predictions of primordial nucleosynthesis. The
current constraints on 7?(y,) from nucleosynthesis vary from 4 per cent [55]
to 20 per cent [44], depending on how the observations are weighted.
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Figure 4.3: A sample function g(y). Boldface letters denote the correspond-
ing attractors; their positions are given on the y-axis. The tangent to the
curve at a radiation tracker, such as R, goes through 4yr/3, whereas the
tangent to the curve at the de Sitter point S goes through the origin.

4.3.3 Dust trackers

k-Essence can also track dust (wp = 0) in the (cold) matter dominated
universe. Since the pressure is proportional to ¢g(y) and is zero for dust, it
must be that

9(yp) =0 (4.17)

at the dust attractor point, y = yp. An additional condition for the exis-
tence of the dust tracker is that r (yp) < 1 (see discussion following equa-
tion (4.11)). In this case the ratio of energy densities at the dust tracker is
given by

9

(:;)D =1 (yp) = =5 9'(y) v (4.18)

If a dust tracker exists then it is always an attractor, since the stability condi-
tion equation (4.15) just means here that the “speed of sound” of k—essence
should be positive. Note, that for the monotonically decreasing convex func-
tions g under consideration only a maximum of one dust attractor can exist
(see figure 4.3) since g has only one zero. It is very important to point out
that one can easily avoid a dust tracker by considering functions g such that

r* (yp) = —3¢'(yp) yp > 1 at yp.
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4.3.4 De Sitter Attractors

We have noted that k-essence can have attractor solutions which are not
trackers in that they do not mimic dust or radiation. These attractor solu-
tions play an important role in two extreme cases, namely, when the energy
density of matter or radiation is either much bigger or much smaller than
the energy density of k-essence. In this subsection, we study the case when
the background is dominated by matter-radiation and k-essence is an in-
significant component, ¢ < &,,. In this case, if g(y) satisfies some simple
properties, k-essence has an attractor solution in which it behaves like a cos-
mological constant (w, — —1). We refer to this solution as the de Sitter
attractor (labeled “S”).

Our purpose is to construct models in which k-essence has a positive pres-
sure, radiation tracker solution (R) during the radiation-dominated phase
and approaches a state with negative pressure shortly after the onset of the
matter dominated phase. At the very least, it is necessary that g(y) be pos-
itive for some range of y and negative for another range since the pressure
is proportional to g(y). This simple condition is generically sufficient to pro-
duce a de Sitter attractor solution: Since ¢’ must be negative (the positive
energy condition, equation (4.4)), it follows that g must have a unique zero,
Yp, the only dust attractor possible. Furthermore, g(y) is positive for y < yp,
a range which must include the radiation tracker, y = yg. For y > yp, the
pressure (x g) and, correspondingly, wy = —g/yg' are negative. From this
observation, combined with the stability condition (¢g"” > 0), it follows that
the derivative of r(y) (see definition (4.6))

) 3 4"y

T 4N2Vg

r (w, — 1) (4.19)

must be negative for y > yp. Since r (y) is positive at y = yp and has a neg-
ative derivative for y > yp, generically (provided ' does not approach zero
too rapidly) r(y) should vanish at some point y = ys > yp and then become
negative. As immediately follows from the definition of r, the equation of
state of k-essence at y = ygs (point S in figure 4.3) corresponds to a cosmo-
logical term: wg(ys) = —1. Hence, we see that de Sitter attractors exist for
a very wide class of g(y) and are a generic feature of k-essence models.

In the absence of matter, y (N) = ys = const is not a solution of the equa-
tions of motion. However, when matter strongly dominates over k-essence
(ex/etos K 1), there exists a solution in the vicinity of this point. (Formally,
in the limit e;/eyos — 0, y (V) — ys is an exact solution of equations (4.9)
and (4.10).) Setting w,, = wy = —1 in equation (4.12) it can be also verified
that this is a stable attractor. For finite, but very small ratio gy /e < 1,
the approximate solution, corresponding to w ~ —1, is located in the vicinity
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of ys and has the form:

&k

—_— (N) xxexp (3(1 4 wy)N) (4.20)
and ) 12
y(N) = ys + (3 + wm) " (ys) <£ (N)) . (4.21)

As shown below, if at any moment of time e /e lies below the basin
of attraction of the tracker solutions, k-essence will be driven first to the
de Sitter attractor and stay in its vicinity as long as €y /eqor is sufficiently
small. We will utilize this property at the transition from the radiation- to
the matter-dominated phase.

4.3.5 k-Attractors

Whereas the de Sitter attractors are important when k-essence is an in-
significant contribution to the total energy density, the k-attractors arise
when k-essence is the dominant energy component. In the absence of mat-
ter (ex/etot = 1), the function y (N) = yr = const, where y; satisfies the
equation

r(ye) =1, (4.22)

is a solution of equation (4.9), while equation (4.10) is satisfied identically.
This solution describes a power-law expanding universe as in our discussion
of power-law k-inflation, section 3.2. The equation of state can be easily
obtained from equations (4.6) and (4.22):

22 1

— = const, (4.23)
S\ —gii

1+ wy (y) =

and the scale factor is
a o< t3(1+2wk) — tV YR/, (4.24)

If —g,y2/2 > 1 the solution describes power law inflation, which is an at-
tractor of the system provided that 7’ (yx) < 0. (See section 3.2, in particular
figure 3.2, for the analogous condition in terms of the variable X.)

The existence of a k-attractor depends mainly on the form of the function
r(y). A k-attractor corresponds to r(yx) — 1 (i.e., the limit where the energy
density is totally dominated by k-essence). In general, if r(y,) > 1 for some
y. and there exists an S-attractor (r(ys) = 0), then there must exist a k-
attractor somewhere between them, y, < yx < yg, simply because r (y) is a
continuous function.

In particular, we are interested in the case where there is no dust attractor
because 7(yp) > 1, and yet there is a de Sitter attractor with r(ys) = 0. In
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this case, not only must there exist a k-attractor at some yp < yx < ¥ys,
but we know that it has negative pressure (since g(yx) < 0), is stable (since
wr < 1, see equation (4.19)) and is the unique k-attractor with negative
pressure (since 7’ is monotonically decreasing in this y—interval).

Note also that this negative-pressure k-attractor only exists if there is
no dust tracker solution, that is, r(yp) > 1. If there is a dust tracker,
(r (yp) < 1), then, since r'(y) < 0 for y > yp, there is no point y = yx > yp
where r(y) = 1 and, hence, there is no k-attractor at yp < y < ys.

It is possible to have other k-attractors with positive pressure at y < yp
(the closest one to yp is denoted by k(?7) in figure 4.3), but they will prove
to be irrelevant in our scenario.

4.4 Cosmic Evolution and Attractor Solutions

Once all possible attractors for k-essence have been identified, it is easy to
understand the evolution of the k-field as a voyage from one attractor so-
lution to another as different phases of cosmic evolution proceed. For both
the radiation- and matter-dominated phases, there are several possible con-
figurations of relevant attractor solutions. In this section, we systematically
classify the attractor configurations for each phase and their consequences
for cosmic evolution.

4.4.1 Radiation-Domination

We assume that g(y) has been chosen so that there exists an attractor solution
(R) at y = yg such that r*(yr) = (ex/€tot) r is in the range one to ten percent.
This energy ratio leads most naturally to a matter-dominated epoch that lasts
a few billion years and cosmic acceleration beginning at about the present
epoch. Depending on the form of r%(y), which is determined by g(y) in the
Lagrangian, there will be additional attractors during the radiation epoch.
Whether y is drawn to the correct attractor yr depends on initial conditions
and the other attractors. Ideally, we want y = yg to have the largest basin of
attraction so that most initial conditions join onto the desired cosmic track.
The combination of cosmologically relevant attractors during the radiation-
dominated phase can be one of three types:

A,) R, S and no other attractors at ys > y > yg. This occurs only if
the function r (y) decreases for yr < y < ys. Conversely, if r (y) increases
somewhere in the range y > yg then it inevitably leads to the appearance of
an extra k and/or r attractor at y > yg. Let us prove it.

If the function 7 (y) increases within some interval, it means that the
derivative 7’ (y) is positive there. On the other hand, as it follows from
(4.19), '(y) is positive only if wy > 1. Since wi(yr) = 1/3, wi(ys) = —1 and
wg(y) > 1 somewhere in the interval yp < y < yp, there must be another
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point g within this interval, where wy(y) = 1/3. If r (y) < 1, this point
is a radiation tracker different from R with a different value of 72(y). If
r?(y) > 1, then ¥ is not a tracker at all; but, since r (ys) = —1, there must
exist a point in the interval ys > y; > y where r (yx) = 1, which corresponds
to a k-attractor. That is, either there is a an extra radiation tracker or there
is an extra k-attractor.

For models of type A, where r?(y) is monotonically decreasing, a dust
tracker solution with 7(yp) < r(yg) is inevitable and k—essence will be at-
tracted immediately to it after matter-radiation equality, a situation we are
trying to avoid in order to explain the present-day cosmic acceleration. The
model p(X) = —1 + X falls in the above category; with a field redefini-
tion, the action can be recast into the model of a field with canonical kinetic
energy rolling down an exponential potential [60, 20|, an example which is
well-known to track in both the radiation and matter dominated epochs.

B,) R, S, K plus possibly other attractors at y < yp. This situation
takes place when there is no dust tracker solution (r (yp) > 1)

C.) R, S (no K attractor) and at least one additional attractors r(?) or
k(7). This case occurs whenever there is a dust tracker solution (7 (yp) < 1))
with the property that r (yp) > 7(yg) or, in other words, (ex/etot)p >
(ex/etot)r- Even though there exists a dust tracker solution, we will show it
is nevertheless possible to have a finite period of cosmic acceleration at the
present epoch before k-essence reaches the dust tracker solution in the future.
For this to occur, the function r (y) must increase somewhere in the interval
yr < y < yp. This is precisely the case considered above (see discussion of
case A,), where we argued that there must be an extra r and/or k-attractor
in the interval yp < y < yg. Furthermore, the attractor closest to yp must
have r(y,/x) > r(yp) > 7(yr); otherwise, we could find another attractor
in the interval y,,, < y < yx, as can be shown by repeating the argument
presented under A, for this interval. If r(y,,x) > 7(yp) > r(yr), this second
tracker has a larger fraction of k-essence.

A phase diagram of the system of equations (4.9)-(4.10) describing the
global evolution of the k-field during radiation domination is shown in figures
4.4, 4.5 and 4.6 for each of the cases A,, B, and C, respectively. Phase
trajectories cannot cross the lines where e /et is equal to zero or one, and,
hence, their tangents are horizontal there. The position of the radiation
tracker R is fixed by the intersection of the y = yx line (dashed) and the
r?(y) curve (dotted). If r?(y) is bigger than one at the intersection point, the
tracker does not exist. Notice that the phase trajectories go in the direction of
increasing (decreasing) ey /e for wi(y) < 1/3 (wi(y) > 1/3) and therefore,
their tangents are horizontal at the points where wy(y) = 1/3. On the other
hand, phase trajectories evolve in the direction of increasing (decreasing) y
for ex/etor < T2(y) (€x/€tot > T(y)) and at the points where these phase
lines cross the curve r%(y) their tangents are horizontal (see equation (4.5)).
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Figure 4.4: Phase diagram for case A, during the radiation-dominated epoch.
Phase lines flow in the direction shown by the arrows, dashed horizontal
lines determine the y coordinate of attractor solutions and boldface labels
the corresponding attractor points. The dotted line shows the points where

Ek/Etot = TQ(?J)-

The form of r(y) also gives a clue about the equation of state wg(y): in
the region where 7 (y) is an increasing function of y we have wg(y) > 1 and
where it decreases wy(y) < 1. Hence, as noted previously, 7(y) is what mainly
determines the structure of the phase diagram.

As clearly seen in the figures in all cases, if the k-field is initially located
near the R-tracker, it converges to it. Therefore, the basin of attraction is
non-zero in all three cases. The attraction region can include equipartition
initial conditions, the most natural possibility.

For A,, figure 4.4, the R-attractor has the largest basin of attraction, the
complete phase plane. If one starts, e.g., at (ex/to1)i = €xp (—30) (£ /Etot) Rs
then the k-field rapidly reaches the vicinity of the de Sitter point S and joins
the attractor connecting this point to the R-tracker.

The cases B, and C, have limited basins of attraction, and so are not as
favorable from the point of view of initial conditions. If the energy density of
the k-field is much smaller than the value at the R-tracker, the k-field travels
first to the vicinity of the S-attractor, where it meets the phase trajectory
that connects it to the K-attractor (case B,) or the r-attractor (case C,). In
either situation, the field never reaches the R-tracker. Although the latter
two cases have smaller basins of attraction than case A,, only cases B, and
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Figure 4.5: Phase diagram of a model of the type B, during the radiation-
dominated phase. In the relevant region of the diagram all trajectories can
be traced back to a common origin. Some of the phase trajectories converge
to the radiation tracker R, while others, after approaching the de Sitter point
S finally reach the K-attractor. The saddle point x “separates” both types
of trajectories.

C, can produce cosmic acceleration today. One can simply assume that the
initial value of the k-field lies somewhere in the basin of attraction, a reason-
able possibility. An alternative is to introduce additional ¢ —dependence in
the Lagrangian, as for instance, L = g (y, @) /yp?, where g (y, ) — g1 (y) at
high energies (¢ is smaller than some ¢,) and g (y, ) — g2 (y) at relatively
low energies (¢ is bigger than ¢, ), such that ¢g; (y) has an A,-set of attractors
and g, (y) has a B, /C,-set of attractors. Note, that the exact value of ¢, is
not important at all, we only have to be sure that the transition from one
regime to the other happens before equipartition. Although modifying the
Lagrangian may seem more complicated, it has the advantage that it removes
nearly altogether dependence on initial conditions.

4.4.2 Matter Domination

We have shown that it is possible to choose a wide range of models and
initial conditions for which the k-field converges to the R-tracker during the
radiation-dominated epoch. The goal is to produce a scenario in which k-
essence overtakes the matter density and induces cosmic acceleration today.
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Figure 4.6: Phase diagram of a model of the type C, during radiation domi-
nation, with same notation as in figure 4.5.

Yet, the contribution of k-essence to the total energy density must not spoil
big bang nucleosynthesis or dominate over the matter density at the end
of the radiation-dominated epoch (see subsection 4.3.2). To satisfy these
conditions, it typically suffices if the R-tracker satisfies

(ex/€t0t)r = 72 (yr) =~ 1072 = 107 1. (4.25)

In this subsection, we study the evolution as the universe enters the
matter-dominated epoch and the k-field is forced to leave the radiation
tracker. In a dust dominated epoch the relevant attractors can appear in
the following two possible sets: Ay) S, K and By) S, D.

In both cases successful k-essence models are possible. In the case Ay
there is no dust tracker solution, (r (yp) > 1). Therefore, as seen in the
phase diagram of figure 4.7, when the radiation-dominated epoch is over, k-
essence approaches first the S-attractor; afterwards, when its energy density
has increased significantly, it moves to the K- attractor (a state with negative
pressure but wy > —1). If wg (yx) < —1/3, the expansion rate accelerates for
the indefinite future; if —1/3 < wy (yx) < 0, the expansion rate decelerates.
Either way, the matter-radiation density is increasingly negligible compared
to k-essence in the far future.

In the second case (By), there is a dust tracker solution. If (ex/e0t)p < 1,
k-essence contributes only a small fraction of the total energy density at this
attractor, and it approaches this attractor almost immediately after matter-
radiation equality. This is not desirable since then k-essence cannot dominate
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today or cause cosmic acceleration. However, if (g4 /et0t)p = 72 (yp) — 1 or
(ex/€4)p > 1, there can be a period of cosmic acceleration before the k-field
reaches the dust attractor since it can first approach the S-attractor and
remain there for a finite time, see figure 4.8. Ultimately, though, the acceler-
ation is temporary; the k-field proceeds to the dust tracker, the expansion of
the universe begins to decelerate, and the ordinary and (cold) dark matter
density approaches a fixed, finite fraction of the total energy. We refer to the
scenario as a “late dust tracker” because the dust attractor is reached long
after matter-domination has begun.

Taking into account that r(yp) is near unity or greater for both case Ay
and By, we obtain from equations (4.6) and (4.25):

<_
9pyp ~ 16

! 2 9
IR YR ( Sk ) ~5-(107% + 10°2). (4.26)
R

Etot

We can also infer from figure 4.3 that ¢, - (yr — yp) < 9 (yr) = —Yyrgr/3
and, therefore, for (e /o) < 1,

Ur o 3 (6—’“> ~2.(107% +107?)
R

Yp — 16 \&yoy
and )
gp _ 1 <5k) 4 . 103
< —=(—) ~6-(10°+=10""). 4.27
gr ~ 16 \&ot/ g ( ) (427)
Since e, = —¢'/¢? and |¢' (ys)| < |¢' (yp)|, we conclude that after radi-

ation domination, when the k-field reaches the vicinity of the S-attractor,
the ratio of energy densities in k-essence and dust can not exceed ep/eq <
(ek/Et0t)%/16 =~ 6-(10~6+10"1). This is the nadir of k-essence; once k-essence
approaches the S-attractor, its contribution to the cosmic density increases
again until it becomes comparable to the matter density. In case Ay, the
k-field will evolve further to the K-attractor and the k-essence energy will
increasingly dominate over the matter density. In case By, the k-field ap-
proaches the D-tracker where the ratio of k-essence to the matter density
approaches some fixed positive value.

The statements above are generic and do not depend significantly on the
concrete model as long as it satisfies the simple criteria formulated above.
Let us stress that the only “small” parameter used is the ratio (ex/£¢0t)r,
which has to be of the order of 1072 = 107!, a very natural range for these
models and one that satisfies constraints of big bang nucleosynthesis (see
subsection 4.3.2). For this range, the present moment is approximately the
earliest possible time when cosmic acceleration could occur.

Finally note that, during the transition from the radiation tracker R
to the de Sitter attractor S, the equation of state of k-essence has to take
values bigger than one, and hence the dominant energy condition €, > |pg| is
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Figure 4.7: Phase diagram of a model of type A; during the matter-
dominated epoch. All trajectories have a common origin and all of them
finally reach the K-tracker. Trajectories which “skim” the line g /et = 0
reach this attractor after going through a nearly de Sitter stage (the S-
attractor).

violated during a certain finite time interval. This violation implies that k-
essence can be observed to travel at superluminal speeds, as already remarked
in section 2.3.

4.5 Constructing Models

In previous sections, we have presented a general theoretical treatment of the
attractor behavior of k-essence fields in a cosmological background. We have
emphasized the properties needed to formulate models which will lead natu-
rally to cosmic acceleration at the present epoch. In this section, we discuss
how to apply the general principles to construct illustrative toy models.

Let us summarize the conditions we have derived for building viable La-
grangians. First, we must satisfy the general positive energy and stability
conditions in equation (4.4). If g takes positive and negative values, they
already suffice to guarantee generically the existence of a radiation point yg
where w(yg) = 1/3, a unique dust point yp where w(yp) = 0, and a unique
de Sitter point ys where w(ys) = —1. The radiation point is an attractor if
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Figure 4.8: Phase diagram of a model of type By during the matter-
dominated epoch. All trajectories have a common origin and all of them
finally reach the D-tracker. Trajectories which “skim” the line gx/egor ~ 0
reach this attractor after going through a nearly de Sitter stage.

¢"(yg) is sufficiently small,

g"(yR) < _4g,(yR), (4.28)

Yr

and the remaining prerequisites needed to ensure a successful scenario are
then reduced to simple restrictions on the derivative of g at two separate
values of y:

i) At ygr, 72 = —2¢'(yr)y% ~ 1072 = 107"
ii) Atyp either 7% = —9y% ¢'(yp)/8 > lor 1—r% = 14943 ¢'(yp)/8 < 1.

The first condition in ii) corresponds to cases where there is no dust attractor,
and the second condition to cases where there is a dust attractor with a small
matter to k-essence energy density ratio.

A straightforward way of constructing a function with given derivatives
at two points is to glue two linear functions with the required slopes, as
shown in figure 4.9. Observe that if g(y) is linear around the radiation point
the attractor requirement (4.28) is automatically fulfilled. In order to have a
finite ¢2, it suffices to introduce small quadratic corrections to the glued linear
functions. We implement this procedure to build a toy model expressed in
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terms of artificial parameters (from the point of view of fundamental physics)
that can be simply related to figure 4.9 and our earlier discussion of attractor
solutions. One should appreciate that, for this pedagogical purpose, we have
“overparameterized”the problem—the outcome is rather insensitive to most
parameters as long as they obey certain simple general conditions. Simpler
forms with fewer parameters are certainly possible.

a(y)
A

Or |-\

9. ____________ :

: : D
: : -
Yr Yo ng\

Figure 4.9: A simple toy model for ¢g(y) consisting of two linear pieces meeting
at the “crossing point” y.. Here yg and yp are the radiation and the dust
attractor values, and the derivatives of g at these points are gy and gp,
respectively.

Let ggue(y) be any smooth function constructed by gluing the two linear
pieces of figure 4.9. The function ggye depends on y and has yg, g%, yp and
g as parameters, where yg and yp are the radiation and the dust attractor
values, and the derivatives of g at these points are g% and ¢}, respectively.
Our toy model corresponds to

5% yp

9(Y) = Ggrue(y) (1— Y ) (4.29)

The factor ggue describes the function in figure 4.9 and the factor in paren-
thesis provides the quadratic corrections needed to have a positive speed of
sound. It so happens that the latter factor also shifts the de Sitter point
from y = oo, as it would be for purely linear functions, to finite y, although
this is not crucial for our purpose. For s > 1 the de Sitter point is located
at ys ~ s-yp and g = Gglue-
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Once a general form for g is known, such as the example above, one
can study how the model parameters affect the resulting cosmology. Our
conclusion is that the predictions of the toy model are relatively insensitive
to the gluing function or to the particular values of yg,yp, gk, 9, and ys
as long as they satisfy certain simple relations. For instance, what sets the
values of €, and wy today? Do these depend on the precise form of the
interpolating function? We have solved numerically the equations of motion
for a wide range of gluing functions ggy. in equation (4.29). For a typical
parameter choice, the final value of € does not depend on the particular
gluing function as long as ggue conforms closely enough to figure 4.9.

The value of Q today does depend on the evolution of €;/e,,. At early
times the field is locked at the radiation tracker, and its fractional energy
density ratio is given by —2g¢kLy%. After radiation-matter equality the field
can not follow the radiation tracker anymore and its energy density drops by
several orders of magnitude until 4/, reaches a minimum value at the time
wy falls below zero. We shall label this minimum value with the subscript
“min”. The energy density at this minimum is roughly given by

€k 2 b
— N ore=—. 4.30
(5m)min TRg}-l ( )

The position of the minimum in time only depends on the distance between
the radiation and crossing point y. — ygr. As y. — yg increases from zero,
the minimum is shifted from matter-radiation equality to later times. After
reaching the minimum, the field moves on to the de Sitter attractor and
€/€m grows as (z + 1) 3, where z is the redshift. In order to have k-essence
dominate today, it must be that € /e, during the radiation epoch lies roughly
between 10~" and 1072, Then, (€x/&m)min lies in the range 107* < 107° and,
provided 7. is chosen appropriately, this has k-essence dominating at about
the present epoch. One can see these conditions impose constraints on certain
combinations of our parameters, although in a fairly natural range not very
far from unity.

As discussed in subsection 4.4.2, there are two possible future fates for the
universe depending upon whether there is a “late dust tracker” solution or not.
By requiring 7%, > 1 we avoid a dust tracker and, therefore, insure that the
k-field approaches the k-attractor when k-essence starts to dominate. The
equation of state of k-essence at the k-attractor depends on the parameter s.
By increasing s the equation of state wy at the k-attractor approaches —1,
and in the limit s — oo, wi(yx) — —1. If wy < —1/3, the expansion rate
of the universe accelerates forever. Using the maximal value of wy at the
present epoch as allowed by supernovae observations, say, s can be simply
adjusted to insure that wj at the k-attractor is less than or comparable to
this value. In this case, the equation of state of k-essence today will be less
than or equal to wg(yx ), which is set by s, as described above.
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If r2 < 1, it is possible to have successful models if r% is sufficiently close
to 1. In such a model the equation of state of k-essence will finally reach
wg = 0 in the far future; so, ultimately, cosmic acceleration ceases and the
expansion begins to decelerate again. Nevertheless, it is still possible to have
a finite period in which the equation of state is negative and which includes
the present epoch. It is worth noting that models without a dust attractor
are more generic and natural, since they do not require a special tuning of
r (yp) to a value close but smaller than unity at the dust point. Below we
illustrate examples of both types.

4.5.1 Model without dust attractor

Models that belong to the general class Ay illustrated in figure 4.7 do not
have dust attractor solutions because r(yp) > 1. Choosing the following
values of the parameters, yz = 0.1, g% = —5, yp = 17, g), = —5 - 107% and
s?-yp = 135, we have r(yp) = 1.2. Therefore, there has to be a K-inflationary
attractor, which is located for our parameter choice at yx =~ 28. At the K-
attractor, k-essence has the equation of state wy (yx) ~ —0.43. The ratio of
the energy densities at the R-tracker in this model is (gx/eior)r = 0.1. The
results of the numerical calculations are presented in figures 4.10 and 4.11.
We see that during the radiation stage k-essence quickly reaches the radiation
tracker, in particular, the oscillations of the equation of state wy in figure
4.11 around wy = 1/3 decay exponentially rapidly. The k-field has the same
equation of state as radiation until the moment when dust starts to dominate.
Around this time the energy density of k-essence suddenly drops by three
orders of magnitude and the equation of state, after a very short period of
increase, drops down to wy ~ —1, the value of the equation of state along
the S-attractor. After that, when the energy density of k-essence becomes
significant, wy, starts to increase towards the K-attractor value, -0.43. Since
()i is not yet unity, the current value is somewhere between the K-attractor
value and -1; in this example, the value today (z = 0) is wy ~ —0.69. The
energy density of k-essence today is (2 ~ 0.65, and because we assumed
a flat universe, €2,, = 0.35. For completeness let us mention that we have
defined “today” (z = 0) to be the moment when the matter-radiation energy
density ratio is given by (€,/€m)today = 4.307 - 1075/ (Q,,h?).

4.5.2 Model with a late dust attractor

Taking yp = 11-1073, g%, = =34, yp = 11, ¢, = —8-107% and s? - yp = 56,
we can construct a model with a “late dust tracker”, corresponding to the
phase diagram in figure 4.8. The parameters have been deliberately chosen
to differ significantly from the ones in the model without dust attractor in
order to illustrate that fine tuning is not necessary.



70 CHAPTER 4. K-ESSENCE
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Figure 4.10: The ratio of k-essence to matter energy density, €;/ep, vs. 1+2
for a model with a k-attractor.
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Figure 4.11: The equation of state wy, vs. 1+ z for a model with k-attractor.

The late dust attractor is reached after k-essence passes near the de Sit-
ter attractor following matter-radiation equality. At the late dust tracker
(ex/ct0t)p = 7% (yp) =~ 0.88 and, correspondingly, (gx/e4)p =~ 7. Hence, the
fractional contribution of the matter density is small but remains finite in
the indefinite future. The ratio of energies at the R-~tracker is (ex/eot)r =~
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Figure 4.12: The ratio of k-essence to matter energy density, ex/em, vs. 1+2
for a model with a late dust tracker solution. In this type of model, wy — 0 in
the far future and the ratio of k-essence to matter energy density approaches
a constant.

8.3 -1073. The results of the numerical calculations are presented in figures.
4.12 and 4.13. The evolution of the k-field here is very similar to the one
we described in the previous case; the differences between both models occur
at small red-shifts. The fraction of the critical energy density of k-essence
today is in this model also €2, = 0.65 and the equation of state wy takes
the value —0.4. The future evolution of the model with a late dust attractor
is completely different from what we found in the previous one. Here the
ratio of the energy densities of k-essence and dust will continue growing in
the future only until it becomes approximately 7. After that it will start to
oscillate around this value with exponentially decaying amplitude while the
pressure approaches the dust point, where w; = 0.

4.5.3 Examples

The toy models presented thus far are all built on the ansatz shown in figure
4.9, which entails numerous parameters. We have pointed out that the large
number of parameters is not a necessary feature. We have introduced this
form for pedagogical purposes, since it enables one to study directly the
relation between the attractor solutions and cosmic evolution. Indeed, our
analysis showed that the cosmological solution is relatively insensitive to most
of the parameters provided they obey a few broad conditions.
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To emphasize the point, consider a model of the form

BX) = —b+2\/1+ X - h(aX), (4.31)

where h(aX) is some smooth function that can be expanded in a power series
in X. This particular form is reminiscent of the Born-Infeld action (1.16) in
which h(aX) could represent higher order corrections in X. (This choice of a
square-root form is not essential—simply an example.) As a specific case, for
b= —2.05and X-h(aX) =X —(aX)?+(aX)?—(aX)*+(aX)?— (aX/2)° the
Lagrangian defined by (4.31) satisfies all constraints and produces Q,, = 0.3
and w;, = —0.8 today if one chooses a = 10~*. This particular example has
a cosmic evolution similar to the one described in subsection 4.5.1 (no dust
attractor). We see that in this case, as with a wide range of other functional
forms, the condition b > 2 and the choice of the single parameter a suffices
to satisfy all of the conditions of the multi-parameter toy models.

|

05 \j |

MM |
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° |
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log (1 + 2)

Figure 4.13: The equation of state wy vs. 1 + z for a model with a late dust
tracker solution.



Conclusions and Outlook

The inclusion of non-canonical kinetic terms in the Lagrangian of a scalar field
can have quite non-trivial and unexpected cosmological effects. Technically,
the k-field approach, at least in the examples we have constructed, relies
on attractor properties that naturally arise if the action contains terms that
depend non-linearly on the gradients of the k-field. Non-linear terms of
this type are expected to appear in any effective field theory an do indeed
arise in most models unifying gravity with other particle forces, including
supergravity and superstring models. In the past, these contributions have
been ignored for reasons of “simplicity”. The examples of k-inflation and k-
essence demonstrate that the effects of non-linear dynamics can be dramatic.
The non-linear dynamics is totally missed if the kinetic energy terms are
truncated at the lowest order contributions. Hence, the kinds of attractor
effects discussed in this work have gone unnoticed in most treatments of field
theory.

With k-essence, we have provided a novel explanation of the late time
cosmic acceleration problem. Introducing a dark energy component with
negative pressure has resolved many observational problems with the cold
dark matter model including the recent evidence from supernovae searches
that the universe is undergoing cosmic acceleration. At the same time, the
dark energy component presents a profound challenge to cosmology and fun-
damental physics. What is its composition and why has it become an impor-
tant contribution to the energy density of the universe only recently? The
example of k-essence shows that it is possible to find a predictive, dynamical
explanation that does not rely on coincidence or the anthropic principle. Un-
like a cosmological constant or quintessence models of the past, the energy
density today is not fixed by fine-tuning the vacuum density or other model
parameters. Rather, the energy density today is forced to be comparable to
the matter density today because of the dynamical interaction between the
k-essence field and the cosmological background. An important question to
consider is whether there are observational tests to distinguish k-essence from
alternative explanations. One notable feature of k-essence models compared
to the more general tracker quintessence models [63, 53] is that the equation
of state wy, is increasing at the present epoch. For quintessence scalar fields
rolling down tracker potentials, the quintessence tracks the matter density
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(w = 0) during most of the matter-dominated epoch, and only recently has
begun to decrease towards w = —1. Hence, measurements of dw/dz for the
dark energy [25] would distinguish these two possibilities from one another
and from a cosmological constant. However, this test would not distinguish
k-essence from more contrived quintessence models that can also be tuned
so that wy is increasing today as well. A second feature of k-essence is the
non-linear kinetic energy contribution. A consequence is that the effective
sound speed c? is generically different from unity, whereas ¢? = 1 for a scalar
field rolling down a potential. Depending on the model, the distinctive sound
speed can have subtle or significant effects on the cosmic microwave back-
ground anisotropy. As regards the future of the universe, our work here
offers a new, perhaps pleasant possibility. In previous models with cosmo-
logical constant or quintessence, the acceleration of the universe continues
forever and ordinary matter—that composes stars, planets and life as we
know it— becomes a rapidly shrinking fraction of the energy density of the
universe. In the “late dust tracker”scenario which we have introduced here,
the acceleration is temporary and the matter density approaches a fixed,
finite fraction of the total.

From a different perspective, our analysis of k-inflation has shown that in-
flation is an even more generic phenomenon than originally suspected. While
most inflationary scenarios rely on an appropriate scalar field potential, k-
inflation demonstrates that inflation can be implemented in a much larger
class of Lagrangians, a class that contains even potential-less fields. In our
treatment, the dependence of the Lagrangian on the scalar field on one hand,
and its derivatives on the other, has been decoupled. Inflation proceeds if
the field derivative dependent part (X ) allows an inflationary equation of
state and if the field-dependent part K (¢) satisfies certain flatness conditions,
which for a canonical Lagrangian reduce to the familiar slow-roll conditions.
The conditions on p are easily met by a wide class of Lagrangians, including
those that do not contain the equivalent of a potential term. Alternatively, if
a potential term is responsible for the inflationary stage, our considerations
imply that the addition of higher order non-canonical kinetic terms (such as
X?) to the Lagrangian will not spoil the inflationary solutions. It is also im-
portant to note, that although k-inflation and potential driven inflation share
most of the main desirable features of an inflationary scenario and are similar
in many aspects, they can be phenomenologically distinguished through the
influence of the non-canonical kinetic terms on the speed of sound of the k-
field perturbations. This speed of sound may be in fact determined in future
experiments from the consistency relation of scalar and tensor perturbation
spectra.

Since both k-essence and k-inflation are based on the same idea, the k-
field, it is natural to wonder whether both can be accommodated in a single
model. Such a k-field would provide a unified account of phenomena at such
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different energy scales as inflation and late-time cosmic acceleration, and
relate times as different as 10734 sec and 10'° years. Moreover, it could even-
tually link the amplitude of the primordial density fluctuations—and hence
the time of structure formation— to the moment of late cosmic acceleration®
through the dependence on these numbers on a single parameter.

A k-field may also play a significantly different role in cosmology, as sug-
gested by the considerations of Born and Infeld on non-canonical electro-
magnetic fields. As we mentioned, the Born-Infeld action was introduced to
prevent field strengths from becoming singular. Singularities on the other
hand do indeed generically appear in cosmological solutions, and they are
believed to signal the breakdown of the underlying theories used to describe
our universe. Yet, an appropriate k-field Lagrangian may restrict the possi-
ble values of the scalar so as to avoid these singularities and yield a viable
cosmology by explaining both inflation and late time cosmic acceleration.
Certainly, though it may be regarded as wishful thinking, such a k-field
would incorporate much of our understanding of the universe.

We thank A. Vilenkin for raising this issue.
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Appendix A

Symbols and Notation

Symbol | Meaning Defined in
a Scale factor Page 3
CMBR | Cosmic microwave background radiation
const A constant value
c? Squared speed of sound of the k-field Equation (2.20)
D Dust attractor Section 4.3
g Enters an alternative field parametrization Equation (2.21)
g Determinant of the metric g = det g,
v Spacetime metric.
G Newton’s gravitational constant.
We work in units where 87G/3 =1 Page 20
h Hubble parameter in units
of 100 km sec ! Mpc*
k Comoving wave number
K ¢-dependent part of the k-Lagrangian Equation (2.4)
K k-Attractor Section 4.3
H Hubble parameter Equation (1.4)
N Number of e-foldings Page 22
P Pressure
pc 1 Parsec, 3.3 light years
P X-dependent part of the k-field pressure Equation (2.4)
T Enters the k-field equation of motion Egs. (2.17), (2.24)
R Scalar curvature
R Radiation attractor
S Action functional
S de Sitter attractor Section 4.3
T Temperature
Tw Energy momentum tensor Page 22
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86 SYMBOLS AND NOTATION
Symbol Meaning Defined in
t Cosmic time Page 3
v Perturbation variable Equation (2.19)
1% Scalar field potential
w Equation of state Equation (2.13)
xz Comoving coordinates
X Squared gradient of the k-field Equation (2.3)
y Alternative kinetic variable Equation (2.21)
z Redshift Equation (1.11)
0A Perturbation of the variable A Page 23
O 0/0x*
AA Flat Laplacian (97 + 07 4 02)A or
AA Change of the variable A
€ 1st Slow roll parameter Equation (3.13)
€ Energy density
5 X-dependent part of the k-field energy density | Equation (2.9)
Eerit Critical energy density Equation (1.5)
% The k-field Page 20
1) A generic scalar field
o The Newtonian potential Equation (2.18)
K Labels the three possible geometries of space Page 3
A Cosmological constant
n 2nd Slow roll parameter Equation (3.15)
N Flat spacetime metric, diag(+1,—1,...,—1).
Q Density parameter Equation (1.7)
o Sign of the k-field “velocity” Page 21
Subindices | Meaning Defined in
0 Denotes the value of a quantity today
1 Labels any component Page 22
m Labels matter (radiation and dust) Page 22
r Labels radiation
d Labels dust
k Labels the k-field Page 22
tot Total
, Derivative with respect to the variable z
Others Meaning
q Time derivative of ¢, dg/dt
q Derivative of q with respect to y, dg/dy
A+ B Between A and B
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