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Abstract 14 

In the present study, variation in the morphology of the lower pharyngeal element 15 

between two Sicilian populations of the rainbow wrasse Coris julis has been explored 16 

by the means of traditional morphometrics for size and geometric morphometrics for 17 

shape. Despite of close geographical distance and probable high genetic flow between 18 

the populations, statistically significant differences have been found both for size and 19 

shape. In fact, one population shows a larger lower pharyngeal element that has a larger 20 

central tooth. Compared to the other population, this population has also medially 21 

enlarged lower pharyngeal jaws with a more pronounced convexity of the medial-22 

posterior margin. The results are discussed in the light of a possible more pronounced 23 

durophagy of this population. 24 

 25 

Keywords: Labridae, pharyngeal jaws, geometric morphometrics 26 

 27 

Introduction 28 

The pharyngeal jaw apparatus of perciform fishes is a well-developed system that 29 

functions in sophisticated prey processing behaviours, complementing the functions of 30 

the oral jaw apparatus (Wainwright 2005). The pharyngeal jaw apparatus has been 31 

studied in many Teleostei (Sibbing 1982; Tigano et al. 1999; Vandewalle et al. 2002). 32 

Among Teleostei, labroid fishes share a derived condition of the pharyngeal jaw 33 

apparatus that, besides other peculiarities, is characterized by the fusion of the lower 34 

pharyngeal elements into a single structure (Wainwright 2005). Morphological variation 35 

in the lower pharyngeal jaw has been widely explored in cichlids at the interspecific 36 

(Barel et al. 1977; Smits et al. 1996) and intraspecific levels (Meyer 1990a,b; 37 

Huysseune 1994; Smits et al. 1996, 1997). At the intraspecific level two morphs of 38 

lower pharyngeal jaws, papilliform or nonhypertrophied and molariform or 39 
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hypertrophied, have been described in relation to a soft or a more durophagous diet 40 

respectively. In general terms durophagous forms possess enlarged pharyngeal jaw 41 

bones that are able to resist the higher pressures, produced by enlarged muscles, needed 42 

to crush hard preys (Wainwright 2005). In studies on the lower pharyngeal element, 43 

tooth size has been previously found to be larger in the most durophagous forms 44 

(Hoogerhoud 1984; Meyer 1990b; Smits et al. 1997). Many studies also describe an 45 

increase in size of the lower pharyngeal element in the most durophagous forms, be it in 46 

certain specific measurements like width (Barel et al. 1977; Hoogerhoud 1984) or as a 47 

general enlargement (Liem & Kaufman 1984) or hypertrophication (Smits et al. 1997). 48 

A more pronounced convexity of the posterior margin of the element has also been 49 

described in the most durophagous forms (Smits et al. 1997). Such an excurvation is 50 

consistent with the hypothesis (Smits et al. 1997) that food items are crushed on the 51 

caudo-medial part of the element. The occurrence of the papilliform or molariform 52 

morph has been generally interpreted as a result of phenotypic plasticity (Meyer 53 

1990a,b) although Kornfield & Taylor (1983) believed that the two morphs in 54 

Cichlasoma minckleyi are determined genetically. Morphology of the lower pharyngeal 55 

jaw element has been studied both using a descriptive approach (Barel et al. 1975; Smits 56 

et al. 1997; Herler et al. 2006) and using traditional morphometrics (Hoogerhoud 1984; 57 

Meyer 1990b; Smits et al. 1996). Geometric morphometric methods have shown a 58 

growing success throughout the 1990's (Adams et al. 2004) and are also particularly 59 

powerful in the analysis of patterns of variation below the species level (Loy 1996). 60 

Landmark-based methods are nowadays widely used but they have the important 61 

limitation that in certain structures a sufficient number of landmarks may not be 62 

available or important shape features may be lost using only landmarks (Rohlf 1990; 63 

Adams et al. 2004); in such cases the use of outline-based methods is imperative. The 64 

“sliding semilandmarks” approach proposed by Bookstein (1997) has the advantage of 65 
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putting outline data in the same analytical framework as landmark data (Zelditch et al. 66 

2004). This method consists of digitizing a number of points, called semilandmarks, 67 

along the outline of interest, which are not homologous but retain positional 68 

correspondence. In addition to being scaled, translated and rotated as in usual Procrustes 69 

superimposition, semilandmarks are allowed to slid along a vector that approximates the 70 

outline curve in order to minimize differences due to variation in the positions of the 71 

semilandmarks along the curves. After this step, the semilandmarks are treated in 72 

subsequent analyses as if they were landmarks. Despite the fact that labrids have been 73 

considered marine counterparts of cichlids (Westneat et al. 2005), studies on the 74 

morphological variation of lower pharyngeal jaws in this group have been scarce and 75 

focused essentially at the interspecific level (Koblmüller et al. 2003). Coris julis 76 

(Linnaeus) is a labrid species that is widely spread in the Mediterranean Sea and along 77 

part of the European and African Atlantic coasts and it represents the only 78 

Mediterranean species of its genus (Tortonese 1970; Quignard & Pras 1986). The 79 

species feeds mainly on mollusks, echinoderms and crustaceans (Tortonese 1970; 80 

Quignard & Pras 1986; De Pirro et al. 1999; Guidetti 2004). C. julis has also recently 81 

generated interest as bioindicator species (Chiea et al. 2002; Bonacci et al. 2003; 82 

Bonacci et al. 2007; Ferrito et al. 2008a,b; Tomasello et al. 2008). Despite variation in 83 

color among different sites (Michel et al. 1987; Laurent & Lejeune 1988; Arigoni et al. 84 

2002) and the view of C. julis as a species that “presents conspicuous morphological 85 

variation between populations” (Aurelle et al. 2003), the intraspecific morphometric 86 

variation in this species is still largely understudied. The aim of the present study is to 87 

compare the morphology of the lower pharyngeal jaw element between two 88 

geographically close Sicilian populations of C. julis (Linnaeus), thus exploring for 89 

trophically-related morphological variation. For this purpose, traditional and geometric 90 

morphometric techniques were used to study variation in size and shape, respectively, to 91 



Fruciano C, Tigano C, Ferrito V. 2011. Traditional and geometric morphometrics detect morphological variation of lower pharyngeal jaw in 
Coris julis (Teleostei, Labridae). Italian Journal of Zoology 78(3), 320-327. 

This is the Author’s Accepted Manuscript version of the paper. The final published version can be found at http://www.tandfonline.com/doi/full/10.1080/11250003.2010.547876 

study variation in size, and to study variation in shape. Two geographically close 92 

sampling sites were chosen to avoid differences in the pharyngeal element between 93 

populations to be caused by genetic differences maintained by geographic distance, 94 

which at such a small scale seems very unlikely. The two sites also show very different 95 

environmental conditions, one of them being subjected to industrial pollution which has 96 

probably led to degraded macrobenthic associations (Russo 1982). In such an 97 

experimental design, any difference in the pharyngeal element size or shape could be 98 

explained as environmental-driven. The use of traditional methods allows a comparison 99 

with previous findings in the literature, while higher statistical power and better 100 

depiction of the results are guaranteed by the use of geometric morphometric 101 

techniques. 102 

 103 

Materials and methods 104 

Specimen collection and preparation 105 

For the morphometric analyses of the present study a total of 92 specimens of C. julis 106 

from two Eastern Sicilian populations has been used. Half of them were caught in the 107 

Augusta harbor (37°11’49” N 15°14’07” E) while the remaining 46 were caught near 108 

Riposto, in Torre Archirafi (37°43’30” N 15°13’00” E). The specimens were then 109 

stained with the technique described by Dingerkus and Uhler (1977) and their standard 110 

length (SL) recorded. After staining, the lower pharyngeal jaw (Figure 1) was collected 111 

from each specimen and examined using a Wild microscope. Measurements of traits of 112 

the lower pharyngeal jaw were taken using the microscope micrometer. The lower 113 

pharyngeal element was also photographed using a digital camera. All specimens were 114 

included in the traditional analysis, only specimens which provided optimal pictures 115 

were used in the geometric morphometric analysis. A preliminary survey of stomach 116 

content was also carried out on additional specimens caught at the studied sites 117 
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(Augusta n=21; Riposto n=28) and at a third site (Baia del Silenzio-Brucoli; 37°17’N 118 

15°08’E; n=17), close to Augusta but out of the industrially polluted area. Despite the 119 

fact that hard stomach content is crushed finely by pharyngeal jaws, thus limiting prey 120 

identification, the recognizable portion of the content was identified at the lowest 121 

possible taxonomic level. 122 

 123 

Meristic counts and traditional morphometrics 124 

The number of teeth both on the rostral zone and for the entire dentigerous portion of 125 

the pharyngeal bone was recorded for each specimen. The measurements taken on the 126 

lower pharyngeal jaw are listed in Table I and shown in Figure 2; the nomenclature of 127 

the various portions follows Barel et al. (1975, 1977). Both the meristic counts and the 128 

standard length of the specimens were compared between the populations by the means 129 

of a Mann-Whitney U test. For the statistical analysis of the morphometric 130 

measurements, a preliminary test of common slopes was performed on the regression of 131 

each log-transformed measurement on logSL. The comparison of regression slopes was 132 

carried out with GraphPad Prism version 5.01 for Windows (GraphPad Software, San 133 

Diego, USA). If the slopes being compared were not statistically different, then all the 134 

measurements for that variable were included in the analysis that consisted of a 135 

MANCOVA/ANCOVA of log-transformed measurements using logSL as covariate 136 

(thus removing allometric variation). Comparison of slopes aside, all the statistical 137 

analyses were performed using the STATISTICA (StatSoft Inc.) software package. 138 

 139 

Sliding semilandmarks 140 

Two grids were drawn on the images of the pharyngeal elements of each of 58 141 

specimens (29 for each population) using the “comb” option of the MakeFan6 program 142 

of the IMP software package (Sheets 2002). The first grid was drawn to span the 143 
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posterior portion of the pharyngeal element, the second to span the rostral zone. Using 144 

the software tpsDig (Rohlf 2006), 34 points were digitized at most of the intersections 145 

between the lines and the external contour of the pharyngeal element, following the 146 

scheme depicted in Figure 3. Points 1 and 18 were used as fixed landmarks, while the 147 

remaining points were treated as sliding semilandmarks. Semilandmarks were slid and 148 

configurations aligned with tpsRelw (Rohlf 2007a) using five iterations and setting as 149 

sliding criterion the minimization of the squared Procrustes distance; this criterion was 150 

chosen because it removes all the tangential variation along outlines whereas choosing 151 

the criterion of minimizing bending energy some of the tangential variation is retained 152 

(Perez et al. 2006). Symmetrized half-configurations were computed with the software 153 

SAGE (Márquez 2007). A preliminary test for common slopes between the two 154 

populations for the regression of shape variables on logSL was performed using tpsRegr 155 

(Rohlf 2007b), following the procedure presented in the program help files. The 156 

allometric component was then removed using the software Standard6 of the IMP 157 

package to regress the shape variables on logSL, and the residuals were summed to the 158 

predicted shape at the minimum observed SL. Using the software tpsRelw, the dataset 159 

of standardized half-configurations was then used for the calculation of the weight 160 

matrix, a matrix of shape variables that comprises both the uniform and non-uniform 161 

shape components and that was analyzed with standard multivariate statistic methods 162 

(Bookstein 1991). The statistical comparison of the two populations was then carried 163 

out using NTSYSpc (Rohlf 2007c) by the means of a CVA using the weight matrix as a 164 

data matrix. Statistical analyses were performed on symmetrized half-configurations 165 

and not on whole configurations, because if whole configurations were used the very 166 

high correlations between members of each pair of symmetric semilandmarks would 167 

potentially lead to the within-group covariance matrix being nearly singular and 168 

statistical analyses, such as CVA, that require within-group covariance matrix inversion 169 
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would not be possible (Corti et al. 2001; Klingenberg et al. 2002). For visualization 170 

purposes the size-standardized half-configurations were regressed on the canonical 171 

scores using tpsRegr (Rohlf 2007b), a procedure previously used for landmark data 172 

(Loy et al. 1996; Cavalcanti 2004; Kaliontzopoulou et al. 2007). The estimated extreme 173 

shapes of such regressions were then back-reflected using the program LMEdit of the 174 

IMP package and the two resulting extreme shapes were visualized using the 175 

"wireframe graph" option of the software MorphoJ (Klingenberg 2011). The same 176 

analysis has been performed using elliptic Fourier descriptors with the same results that, 177 

therefore, will not be presented here. 178 

 179 

Results 180 

The preliminary survey of stomach content showed that the frequency of individuals 181 

with hard stomach content was lower in Riposto than at the other two sites. While 182 

Molluscs and Crustaceans were common at all sites, the stomach content of specimens 183 

caught within the Augusta harbour was dominated by Gastropods while at the other two 184 

sites a more diverse and balanced content was found. The Molluscs recognizable 185 

morphotypes were also different among all sites. In stomach content of specimens from 186 

the Riposto area were also found parts of Anellids and Echinoderms, which were, 187 

however, less common than Molluscs and Crustaceans. 188 

 189 

Meristic counts and traditional morphometrics 190 

There was no statistically significant difference between the two populations in regards 191 

to meristic counts and SL (Table II). The univariate tests for common slopes performed 192 

for the regression of the log-transformed measurements on logSL showed no statistical 193 

difference (p>0.05) between the slopes estimated using observations from a single 194 

population and the slopes estimated using observations from both populations so all 195 
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variables were used in the traditional morphometric analyses. The multivariate analysis 196 

showed highly significant statistical differences between the two populations (Wilk's 197 

Lambda, d.f. = 8, p=0.000007). Descriptive statistics and significance level of between-198 

sites comparisons for the meristic counts and morphometric measurements are provided 199 

in Table II. 200 

 201 

Sliding semilandmarks 202 

The test for common slopes of the regression of shape variables on logSL was not 203 

statistically significant so the regression approach to removal of the allometric 204 

component of shape variation was used. In the CVA 67.3% of the cases were correctly 205 

classificated (cross-validated classification) and the multivariate tests showed 206 

significant statistical difference between groups (Wilk's Lambda, d.f. = 57, p=0.0043). 207 

The shape variation corresponding to the direction of the canonical vector is shown, as 208 

back-reflected entire shape, in Figure 4. 209 

 210 

Discussion 211 

In the present study the morphological variation in size and shape of the lower 212 

pharyngeal jaws in two geographically close populations of C. julis has been studied by 213 

the means of geometric morphometric techniques and univariate comparisons of linear 214 

measurements. The most relevant result of the present study is that both approaches 215 

have shown, despite the small geographic distance (about 58 Km), strong statistical 216 

support against the null hypothesis of no differences between the populations. The 217 

traditional morphometric analyses performed (Table II) show in general a marked 218 

difference between the two populations in the size of the measured traits (but there is no 219 

significant difference in SL). The means of the measurements for each population 220 

(Table II) indicate that the Augusta population has a larger lower pharyngeal element 221 
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and the size of the studied tooth is larger. The geometric morphometric approach detects 222 

a significant difference in the shape of the lower pharyngeal element between the 223 

populations consisting in an enlargement and a more pronounced caudal convexity of 224 

the central portion of the lower pharyngeal element in the Augusta population. These 225 

morphological traits of the Augusta population might be explained based on previously 226 

published work (Barel et al. 1977; Hoogerhoud 1984; Liem & Kaufman 1984; Meyer 227 

1990b; Smits et al. 1997) as changes towards a more durophagous form. The differences 228 

assessed in various previous studies (Meyer 1990b; Huysseune et al. 1994) are between 229 

clearly distinguishable pharyngeal morphs (namely a “papilliform” and a “molariform” 230 

morph) in polymorphic species that show very few intermediate morphs (Meyer 1989). 231 

However, in the populations of C. julis studied in the present work there is not a sharp 232 

discontinuity between extremely different “morphs” but a number of anatomically 233 

localized, yet statistically significant, differences in shape (of the lower pharyngeal 234 

element) and a generalized difference in size (both in the lower pharyngeal element and 235 

its central tooth) between populations so that at one sampling site (Augusta) the 236 

pharyngeal element possess more durophagous traits. The preliminary surveys of 237 

stomach content carried out for this study, which show that in Augusta C. julis feeds 238 

mainly on Gastropods, and previous literature suggest that the morphological 239 

differences between sites might be due to the differences between the two sites in the 240 

diversity of the macrobenthic invertebrates that can be preyed upon by C. julis. In fact, 241 

the Augusta harbor presents intense industrial pollution (Sciacca & Fallico 1978; 242 

Magazzù et al. 1995) whereas the Riposto area has no significant industrial pollution. 243 

As a probable consequence of such pollution in the Augusta harbor it has been 244 

documented a degraded situation where the molluscs comprise 85.55% of the 245 

macrobenthic community (Russo 1982). The malacological association itself has been 246 

described as degraded with only 73 species, among which Corbula gibba (Olivi, 1792) 247 
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constitutes 78% of the association. On the opposite, an extremely diverse macrobenthic 248 

association has been found in localities close to Riposto (Cantone et al. 2003; Russo et 249 

al. 2004). 250 

Another possible cause of the difference in hardness of the ingested food at two 251 

geographically close locations is the different substrate composition of the Augusta area 252 

(with a calcareous substrate) and the Riposto area (which presents a volcanic rocky 253 

substrate). In fact, water parameters have been found to influence calcification in 254 

molluscs and other marine organisms (Bevelander & Benzer 1948; Gazeau et al. 2007). 255 

Interestingly enough, Vizzini and Mazzola (2009) have documented in C. julis a certain 256 

degree of variation in the trophic level index among geographically close sampling 257 

localities. This species has planktonic eggs (Quignard & Pras 1986) so, given the small 258 

geographical distance, it is unlikely that the differences found in the present study are 259 

due to a low genetic flow between the two populations. Therefore, given that 260 

phenotypic plasticity has been recognized in cichlids’ lower pharyngeal jaws element in 261 

response to different trophic resources (that is to different levels of hardness of food) 262 

(Huysseune et al. 1994), it seems reasonable to hypothesize that the morphological 263 

variation between the two populations studied in the present paper may be explained as 264 

the variation of phenotypically plastic traits (size and shape of C. julis lower pharyngeal 265 

jaw) in response to the different trophic resources found at the two collection sites. An 266 

alternative hypothesis to explain the morphological differences assessed in the present 267 

work would be a differential mortality of different phenotypes in the two sites. Juveniles 268 

with a wide range of genetically-determined phenotypic traits after the larval phase 269 

would settle in different sites and then the different environments would select 270 

individuals belonging to one or the other side of the morphological spectrum, thus 271 

leading to the gradual shift of each population towards a different direction in the 272 

morphological space. Meyer (1989) hypothesized a similar mechanism for the two 273 
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morphs of Amphilophus citrinellus (Gunther), where the relative abundance of hard and 274 

soft prey determine the relative abundance of the two morphs. However, while Meyer 275 

(1987) hypothesized for A. citrinellus that the temporal fluctuations in the relative 276 

abundance of hard and soft prey would perpetuate the coexistence of both morphs 277 

preventing the competitive exclusion of either one, for C. julis the dispersion during the 278 

larval phase would seem sufficient and more likely if ever a differential-mortality 279 

mechanism was responsible for the observed differences between populations. Both the 280 

hypotheses of phenotypic plasticity and of environmentally-induced differential 281 

mortality, however, will need specifically designed studies, such as common-garden 282 

experiments, to be properly tested. 283 
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Tables 459 

 460 

Table I. Abbreviations for the traditional morphometric measurements. 461 

WBT Width of the biggest tooth 

LBT Length of the biggest tooth 

PDW Width of the dentigerous area 

PDL Length of the dentigerous area 

PDR Length of the rostral dentigerous area 

LPW Width of the pharyngeal element (comprising the horns) 

LPL Length of the pharyngeal element 

LPR Length of the rostral part of the pharyngeal element 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 
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 475 

Table II. Mean, standard deviation (S.D.) and significance of comparisons for meristic 476 

counts and morphometric measurements; all measurements in mm. 477 

Variable 

Augusta Riposto 

p-level 

Mean S.D. Mean S.D. 

SL 101.15  11.60 98.13 17.07 0.086 

Total number of teeth 41.39 5.57 40.98 5.96 0.79 

Number of teeth on the rostral portion 13.39 2.43 13.35 2.79 0.58 

WBT 1.17 0.21 0.97 0.28 0.000005 

LBT 1.25 0.25 1.02 0.30 0.000001 

PDW 5.11 0.67 4.64 0.86 0.00001 

PDL 4.69 0.65 4.29 0.78 0.011 

PDR 2.73 0.37 2.51 0.51 0.029 

LPW 7.29 1.14 6.65 1.35 0.0093 

LPL 5.38 0.92 4.75 1.09 0.0002 

LPR 3.38 0.69 3.03 0.84 0.02131 
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Figure captions 479 

 480 

Figure 1. Picture of a Coris julis lower pharyngeal jaw stained with alizarin red. 481 

 482 

Figure 2. Schematic representation of the morphometric traits measured. In grey the 483 

dentigerous area. Abbreviations are given in Table I. 484 

 485 

Figure 3. Schematic representation of the two grids and the position of the digitized 486 

semilandmarks. 487 

 488 

Figure 4. Shape variation corresponding to the difference between the two populations. 489 

The grey dashed line (open circles) represents the predicted shape in the direction of the 490 

Augusta population, the black line/circles represent the average shape between the two 491 

shapes predicted by the CVA analysis. 492 
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