
Final Report to European Commission Contract No. 867UK(H)

Episodic variations in stream water chemistry associated with acid rainfall and run-off and the effect on aquatic ecosystems, with particular reference to fish populations in N.W.England

Contractor: North West Water Authority

Warrington, U.K.

Project Leader : E.Harper

FINAL REPORT TO EUROPEAN COMMISSION

CONTRACT NO. ENV.867 UK (H)

TITLE: EPISODIC VARIATIONS IN STREAM WATER CHEMISTRY ASSOCIATED WITH ACID RAINFALL AND RUN-OFF AND THE EFFECT ON AQUATIC ECOSYSTEMS, WITH PARTICULAR REFERENCE TO FISH POPULATIONS IN N.W. ENGLAND.

CONTRACTOR: NORTH WEST WATER AUTHORITY, WARRINGTON U.K.

PROJECT LEADER: E.HARPER

<u>CO-AUTHORS</u> D.H.Crawshaw, R.F.Prigg, M.Diamond, J.F.Robinson and D.Cragg-Hine

GRAPHICS A.M.Davies

This project was also part funded by the Department of the Environment whose support is gratefully acknowledged.

June 1986

Frontispiece : River Duddon at Duddon Hall looking upstream towards fish counter.

FINAL REPORT TO EUROPEAN COMMISSION

CONTRACT NO. ENV.867 UK(H)

Abstract

- 1. In the North West region, biological, physical and chemical information was collected over a five year period from over 100 sites on upland streams most of which drained rocks of low buffering capacity.
- 2. In both Lake District and South Pennine sites striking differences were found between the composition of invertebrate communities inhabiting acid-stressed and less acid-stressed streams. In streams of very low pH (geometric mean pH (4.5) only Nemouridae, Limnephilidae, <u>Dicranota</u>, Chirononidae and Simulidae were found. As geometric mean pH increased above pH 4.5 the abundance and diversity of macroinvertebrates increased. The diversity and abundance of acid-sensitive taxa (those which showed a strong statistical correlation with mean pH) increased with stream pH above 5.0.
- 3. Principal component analysis applied to the Pennine data indicated that approximately 50% of the variation in the acid sensitive species Baetidae, Heptagenidae, <u>Gammarus</u>, Hydropsychidae and Gastropoda could be explained by variation in a principal component "representing" pH, calcium, alkalinity and aluminium (negatively). A more detailed analysis including more sites and salmonid abundance is planned as part of future work.
- 4. It is suggested that the presence of Baetidae, Heptagenidae, <u>Gammarus</u>, Hydropsychidae and Gastropoda can be used to indicate that a water is suitable for salmonids with respect to acid-stress.
- 5. Electric fishing surveys showed that acidic streams (geometric mean pH (5.5) generally had abnormally low densities of salmonids ($(0.2m^{-2})$ and that 0+ fish were very few or absent. The latter indicates recruitment failure. Salmon were more sensitive than trout to low pH.
- 6. The fisheries of the Esk and Duddon have declined over recent decades. Whilst this may not be solely due to acidification, on two occasions in recent years there have been simultaneous salmonid mortalities associated with low pH events. On the second of these, a complete record of pH changes was obtained from continuous monitoring equipment. So far as is known, such a record of a mortality of fresh run salmonids is unique, in Britain at least. No further mortalities have been observed in the Esk or Duddon catchments, although a suspected acid related mortality was investigated on the River Glenderamachin (R. Derwent catchment) in June 1984.
- 7. A number of streams and standing water bodies including Levens water have been identified where fish were present in catchable numbers prior to 1970, but which now appear to be fishless.

- 8. Preliminary analysis of data from a new fish counter on the River Esk suggests that upstream migration of salmonids may be inhibited by spates when the pH drops to 5.3.
- 9. Continuous river monitoring has demonstrated a remarkably consistent relationship between river pH and river flow, which appears to be independent of rainfall pH. The change in the nature of this relationship from one year to the next is being investigated as a possible tool for examining trends in acidity by eliminating the effects of seasonal and meteorological factors.
- 10. Liming of a small acid tributary of the Esk (Spothow Gill) has enabled fish to survive (after restocking) in a stream which had become fishless since around 1970.
- 11. A combination of selective tributary liming (Esk and Duddon) and restoration of agricultural liming levels to pre 1975 levels (Esk catchment only) shows promise as a short term measure for halting the decline of fisheries in these two catchments. The Authority has now commenced a programme of experimental liming along these lines.

CONTENTS

			PAGE
	1.	Introduction	1
	2.	Study Areas in the North West	4
	3.	Data Collection	7
	4.	Water Quality Conditions	12
	5.	Biological Conditions	21
	6.	Fish and Fisheries	28
	7.	Land Use	43
	8.	Discussion	45
	9.	Conclusions	50

÷

LIST OF FIGURES AND APPENDICES

Fig.1	Histogram showing the numbers of S.Pennines sites with particular chemical characteristics
Fig.2	Histograms showing the numbers of Lake District sites with particular chemical characteristics
Fig.3	Mean aluminium concentration v minimum pH
Fig.4	Mean humic substances concentration v minimum pH
Fig.5	Mean conductivity v minimum pH
Fig.6	Mean calcium concentration v minimum pH
Fig.7	Summary of data from continuous monitors for the period
-	1.6.83 to 30.11.83
Fig.8	Summary of data from continuous monitors for the period
	1.4.84 to 31.10.84
Fig.9	Summary of data from continuous monitors for the period
	1.7.85 to 31.12.85
Fig.10	Summary of data from continuous monitors for the period
	1.1.86 to 30.6.86
Fig.ll	Distribution of minimum pH at both sites
Fig.12	Relationship between flow and pH during 1983
Fig.13	Relationship between flow and pH during 1984
Fig.14	Relationship between flow and pH during 1985
Fig.15	Relationship between flow and pH during 1986
Fig.16	Relationship between rainfall pH at Cropple How and river pH
Fig.17	Relationship between flow and conductivity during 1985
Fig.18	Relationship between flow and conductivity during 1986
Fig.19	Changes in water quality and typical episode - from
	automatic sampler
Fig.20	pH and river flows during September 1983 fish mortalities
Fig.2l	Histograms showing nos. of invertebrates to various parameters
Fig.22	Relationship between flow at [ropple How and pH at Spothow Gill

•

w.,

.

Appendix :	1	Ranking of a selection of salmonid nursery (type) stream sites in NWWA Northern Area
Appendix :	2	Distribution of acid-tolerant & acid-intolerant macroinvertebrates
Appendix 3	3	Distribution of mayflies
Appendix (4	Nos. of invertebrates found in 3mm kick samples - S.Pennine sites during 1985-86
Appendix !	5	Proportion of variance in nos. of animals taken by kick sampling in S.Pennines
Appendix (6	Fish and Invertebrates
Appendix '	7	Cumbrian Hill streams with abnormally low trout densities
Appendix 8	8	Sampling Points for acid rain project
Appendix 9	9	Summary of chemical analysis for acid rain sample points
Appendix 3	10	Map of study area, showing sampling sites

EEC ACID RAIN REPORT

1. INTRODUCTION

1.1 Historical perspective of acid rain events in Europe

The enormous increase in public concern over "acid rain" and its reported effects in the last decade could give the misleading impression that it is a new phenomenon. In fact it is now generally acknowledged that the onset of acidification of sensitive surface waters most probably coincided with the start of the industrial revolution in the 1850's. Diatom records from lake sediments support this view (Battarbee 1984). Loss of fish populations resulting from an increase in the acidity of natural waters was reported in Norway as long ago as the 1920s (Dahl 1926) and in England acid rainfall was recorded locally over 100 years ago (Smith 1872).

However, concern over the acidification of surface waters on a regional basis did not emerge until the early 1970s. In the space of a few years, surface water acidification was recognised in southern Scandinavia (e.g. Gjessing et al 1976), Canada (e.g. Conroy et al 1976) and USA (e.g. Schofield 1976). The effect of fish populations has caused particular acidification on Leivestad et al (1976) documented the decline of concern. Atlantic Salmon populations in rivers in Southern Norway, while a detailed analysis of 700 lakes in this region revealed an association between fishery stocks and water chemistry (Wright & Snekvik 1978). Populations were sparse or absent at pH 5.5 or less. As many as one-third of 2000 lakes assessed in S.Norway are considered to have lost their fish populations since the 1940s (Sevaldrud and Muniz 1980).

1.2 Evidence of potential problems in the UK

Until recently relatively little information was available concerning the effects of acidification in the UK. However, work in geologically sensitive (i.e. susceptiable to acidification) areas of Scotland (Harriman & Morrison 1982) and Wales (Stoner et al 84) has shown that fish have become sparse or absent in acidic waters. A comprehensive summary of observations in the UK is given by Warren et al (1986).

In SW Cumbria acid related fish mortalities in 1980 and 1983 in the River Esk and Duddon catchments have been documented (Prigg, 1983a; Crawshaw, 1984). It was these observed mortalities, coupled with a dramatic decline in the numbers of migratory salmonids returning to these two rivers, which initially led to the research programme that is described in this report.

Many previous studies have concentrated on the effects on lakes or tarns and possible remedial measures relevant to standing water bodies. It was felt that a detailed study of effects on streams would add a new perspective to this work, in particular the possibility of monitoring the water quality in detail during the course of a mortality of salmonid fish.

Particular emphasis was placed on an investigation of episodic variations in stream water chemistry and their role in aquatic ecosystems, particularly fish populations.

1.3 The Research proposal

The project formed the initial stages of a planned long-term investigation into the acidification of waters in the North West of England and was integrated with relevant studies being carried out by other organisations in the U.K.

In general, the emphasis of the project was to quantify the importance of short-term episodic variations in stream chemistry associated with rainfall, snowmelt and run-off and to place these variations in the context of longer term changes in water quality, particularly acidificatioon, which were receiving more widespread scientific attention. Specifically the project focussed attention on two critical river catchments and measured in-river changes in water chemistry associated with run-off events and the biological impact in the short and medium term. The project was complemented by detailed studies on rainfall chemistry, on soil modifications and on effects in lakes being undertaken by other research institutes (Freshwater Biological Association; Institute of Terrestrial Ecology) and by studies on other waters throughout the north-west of England by the Authority.

One of the areas of the UK receiving the largest input of acidity from the atmosphere has been identified as S.W.Cumbria where surface waters are generally poorly buffered on account of the underlying geology. A decline in migratory salmonid fish populations in the Rivers Esk and Duddon has been observed in recent years and the recorded occurrences of intermittent fish mortalities has been associated with pulses of acidic run-off. These two river catchments offered a combination of features unique within the UK and possibly Europe where precise relationships between river flow, water chemistry, fish movement and biological status could be determined and critical identified. Furthermore, it proposed conditions was to determine the effects of remedial actions, such as changes in agriculture and forestry practices on the catchments, to improve conditions for fauna and flora. The results of this work may have widespread significance.

The work proposed in the project involved:

- (i) Continuous monitoring and data logging at one site in each catchment of pH, temperature, river level (flow) and upstream fish movement; together with automatic sampling of water for chemical analysis in response to rises in river level. Flow gauging facilities already existed at one site on each river, but only the Duddon had an existing fish movement recording weir and station. An early requirement was therefore the construction of such a facility on the Esk.
- (ii) Surveys of invertebrate and fish population distributions in surface waters in the catchments. Population structure, reproductive success, growth rate and movement of fish to compare the status of fisheries in affected and unaffected waters.

- (iii) Collection and chemical analysis of water samples from streams, lakes and tarns in and around the study catchments with the use and development of analytical techniques as appropriate for particular deteminands such as monomeric aluminium and humic content. The range of analyses at particular sites included major cations and anions relevant to an understanding of the relationships between deposition and surface water chemistry. Background levels and seasonal trends were determined.
- (iv) Collection and analysis of rainfall samples at suitable sites for each separate rainstorm.
- (v) The co-ordination of data collection; evaluation of records for trend analysis; integration with other research and evaluation of results; proposals for remedial action.

2. STUDY AREAS IN THE NORTH WEST

.

- 2.1 General description
- 2.2 Solid geology
- 2.3 Soil series
- 2.4 Land Use

2. STUDY AREAS IN THE NORTH WEST

2.1 Description of catchments See Appendix To for outline maps.

The study areas focussed on three regions of North West England - S.W.Cumbria, the Lake District and the Southern Pennines. Each region is described in more detail below:

2.1.1 The English Lake District

The streams of the English lake District vary from highly acidic to extremely alkaline. All of the acid streams drain bedrock of the Borrowdale volcanic series, Skiddaw slates and igneous intrusions (eg Eskdale granite). The Silurian slates of the Southern Lake District have a higher buffering capacity producing streams of higher alalinity. Hard alkaline waters drain the carboniferous limestone at the edge of the Lake District.

In the North and West of the central Lake District, acid and alkaline streams have a patchy distribution with alkaline and acid soft water streams occurring in close proximity to each other eg streams in the upper Esk and Duddon catchment described below. Acid streams are rare in the Eastern Lake District (Sutcliffe and Carrick)

2.1.2 S.W.Cumbria (Esk and Duddon)

These two catchments were identified as critically sensitive catchments on the basis of geology and known fishery problems.

The Esk rises on the southern slope of Scafell Pike and is a relatively short river being some 23.6 km to the tidal limit. At the gauging station at Cropple How, 3.4 km above the tidal limit, its catchment area is 70.2 km² and its average daily flow (ADF) is approximately 5.6 m^3/s .

The Duddon rises some 6 km to the south east of the source of the Esk at the top of Wrynose Pass. The distance to the tidal limit is 22.0 km and at Duddon Hall, 1.5 km above the tidal limit the catchment area is 78.2 km^2 and the ADF is approximately $6.2 \text{ m}^3/\text{s}$.

Whilst the ADFs and maximum flows are approximately in the ratio of the catchment areas, the minimum flow on the Esk of 0.09 m^3/s is approximately one-third of that on the Duddon. This is mainly due to a release of compensation water from Seathwaite Tarn but may also be influenced by a greater proportion of groundwater than the Esk.

2.1.3 The South Pennines

The South Pennine region has been classified as being of high to medium susceptibility to acid deposition (Kinniburgh and Edmunds 1984). The catchments of the streams under study were of two main types, those dominated by blanket peat bog and those dominated by acidic upland grassland, both overlying hard rock of low buffering capacity. Two exceptions were Hurst Reservoir catchment of heather and cranberry moorland and Earnsdale Reservoirs catchment of alkaline grassland.

2.2 Solid geology

The upper reaches of the Esk rise on rock of the Borrowdale Volcanic series but lower down the catchment, granite is the dominant feature apart from alluvium and river gravel in the valley bottom. The Duddon catchment is also virtually all underlain by rocks of the Borrowdale Volcanic series. A narrow band of Coniston Limestone does cross the catchment at the southern extremity but it is unlikely that this affects the chemistry of any of the sampling sites in the catchment. Another rock type worthy of mention is the substantial area of Skiddaw Slates to the north of the Esk and Duddon. A number of streams at the eastern end of this area including the upper River Caldew, Grainsgill Beck, and the River Glenderamackin within the Derwent catchment, have some of the lowest calcium concentrations found in the sampling programme.

Crummock Water, Ennerdale Water and Buttermere which are often regarded as "sensitive lakes", lie at the western end of the area of Skiddaw Slates. Wastwater, Thirlmere, Haweswater and Ullswater lie on the Borrowdale volcanics, but the latter two lie on the eastern side of this area which appears to be less susceptible to acidification than the western side.

Coniston Water and Windermere to the south are both in an area of Bannerdale slates, Coniston flags and Stockdale shales which are considerably richer in calcium. These two lakes may therefore be regarded as less sensitive to the effects of acidification.

The underlying rocks in the Southern Pennines are millstone grits and coal measures. The acidic sites under study drained the former. Millstone grits are made up of granites, quartz and cements and would be expected to contribute little buffering capacity to waters draining them.

2.3 Soil Series

The chemistry of the surface waters in a catchment is likely to be as much affected by the soils overlying the solid geology as by the underlying rock itself. A brief description is therefore included, the soil series quoted being from the Soil Survey of England and Wales.

Both the Upper Esk and Duddon rise on thin soil described as "humic rankers", a soil type not found elsewhere in northern England apart from parts of the upper Ribble and Lune catchments. The rest of the Esk catchment is mainly typical brown podzolic soils, although in the valley bottom there is the alluvial band already referred to, composed of brown earths or alluvial gleys.

One extra feature in the Duddon catchment is the presence of Cambric stagnohumic gley soils in the Cockley Beck, Seathwaite area and on the western slopes in the Ulpha area. Much of Corney Fell, also in this area, is composed of raw oligo-fibrous peat soils from which the streams with the highest humic content flow.

2.4 Land Use

The Valley bottoms of both the Esk and Duddon are used extensively for permanent pasture and were limed extensively in the past though this has declined significantly in the last 10 years. (See Section 7 for changes in this and other uses). The little afforestation in the Esk is restricted to two small coniferous plantations. In the Duddon there is a fairly extensive plantation of 400 hectares (Dunnerdale Forest) consisting of mature conifers and this is being extended to include a further 200 hectares around Grassguards Gill. The existing plantation comprises about 5% of the catchment above Duddon Bridge. There are also deciduous woodlands in the lower parts of the catchment.

In the upper parts of these catchments, the remaining Lake District sites and those of the Pennines, the land is used almost entirely for sheep grazing. Generally, these pastures are on unimproved moorland which in most catchments are dominated by acidic upland grass with some areas of heather (Erica cinerea), bracken (Pteridium aquilinium), peat bog and rocky outcrops. The poorly drained catchments on the Pennines are covered in blanket peat bogs. Two catchments on the Pennines comprise improved dairy/sheep pasture (Earnsdale Reservoir and Turton and Entwistle Reservoir). The land is generally too wet for forestry and where plantations occur they are undergrazed by sheep.

3. DATA COLLECTION

3.1 Chemical sampling programme
3.2 Continuous water quality monitors
3.3 Biological surveys for distribution of macroinvertebrates

3.4 Fish surveys

3.5 Fish counters

3.6 Other information on fish abundance

Τ.

3. DATA COLLECTION

3.1 Chemical sampling programme

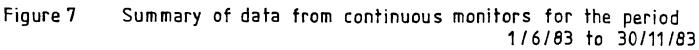
3.1.1 S.W.Cumbria and Lake District

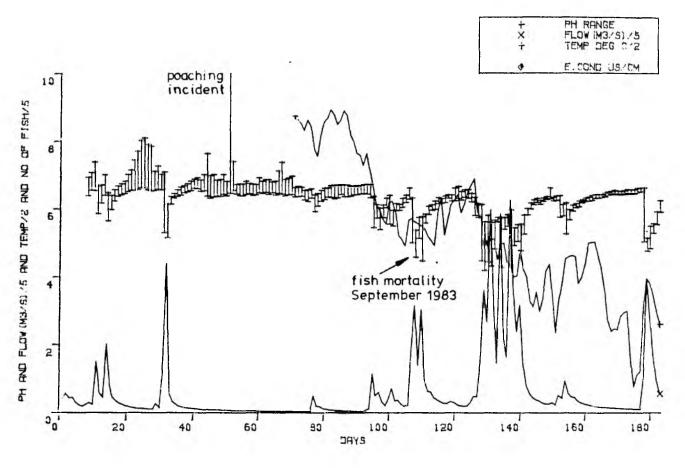
In order to provide baseline data, 100 sites were selected to be sampled quarterly. These included all 75 sites where biological data were also collected and where, in some cases, extra water samples were taken for more limited analysis. The other 25 sites included, for comparison, sites in largely non-sensitive catchments such as the Lune, and in all cases the sites were chosen at points as far up the catchment as it was reasonably practicable to sample. This programme commenced in 1982.

Analysis of water samples included pH, alkalinity, calcium magnesium; aluminium (total and unacidified); ammoniacal nitrogen; nitrite and nitrate nitrogen; conductivity; chloride; and humic substances (carried out by gas chromatographic comparison with a standard sample of humic and maleic acids).

3.1.2 S.Pennines

One of the objectives of the study was to carry out a comparison of the chemistry of the generally very clear Lake District waters, with the highly coloured peaty Pennine waters and to assess the possible role of these humic substances in modifying the toxic effects of high aluminium concentrations. Accordingly, analysis of samples was as described for the Lake District samples.


A total of 30 sites were selected consisting of 20 reservoirs and 10 stream sites which were either inflows to or outflows from reservoirs. The programme allowed for collection of both chemical and biological data from these sites. (The biological data included separate assessment of the individual feeder streams to any particular reservoir). The programme started in 1984 and all sites were sampled quarterly.


3.2 Continuous water guality monitors

Continuous monitoring of water quality took place at two sites, the River Esk at Cropple How and the River Duddon at Duddon Hall. Both sites were towards the bottom of the catchments at existing flow measurement stations (see Appendix 1).

The Duddon station included an existing nearby fish counting weir, whilst the Esk fish counting weir was constructed during 1985 and commissioned in October 1985. The data currently gathered (April 1986) at both stations is thus:

pH, temperature, electrical conductivity, river level at 15 minute intervals fish counts in previous 15 minutes 4 lbs (1.8kg) fish counts 4 lbs (1.8kg)

RIVER ESK AT CROPPLE HOW

RIVER DUDDON AT DUDDON HALL

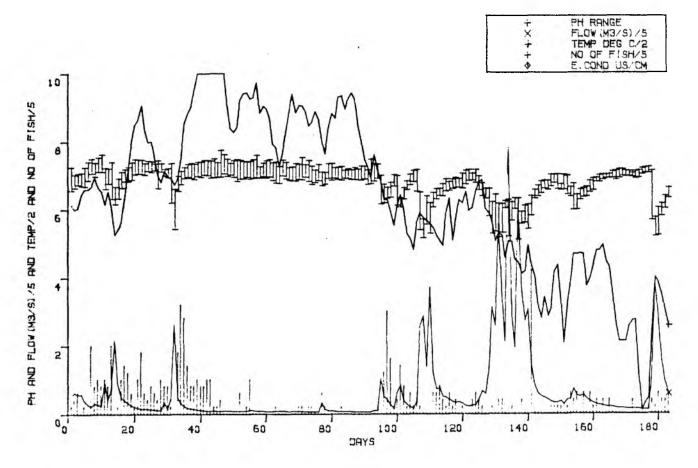
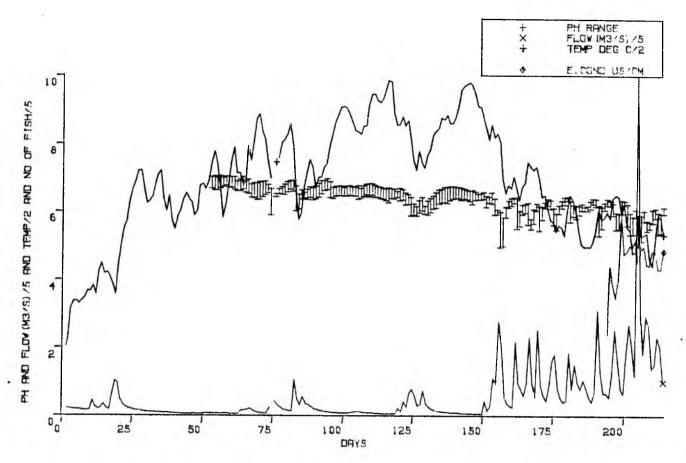



Figure 8 Summary of data from continuous monitors for the period 1/4/84 to 31/10/84

RIVER ESK AT CROPPLE HOW

RIVER DUDDON AT DUDDON HALL

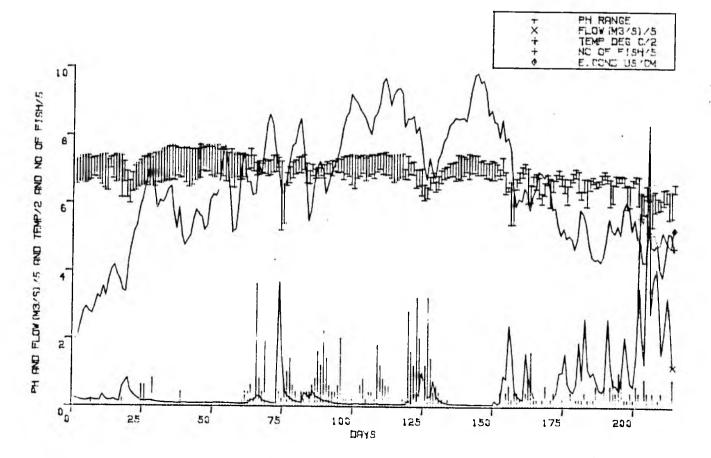
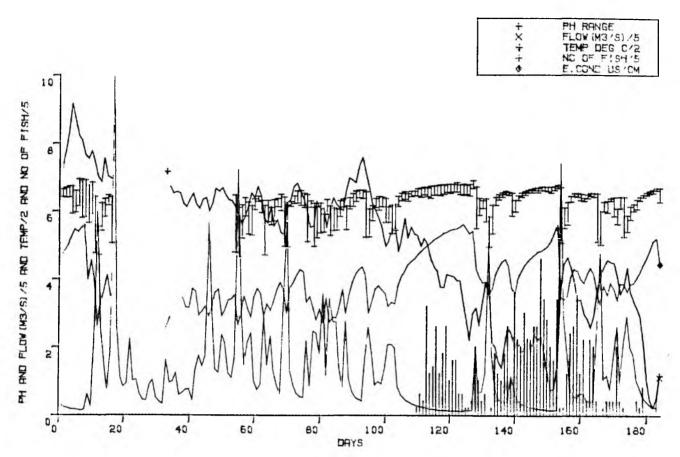
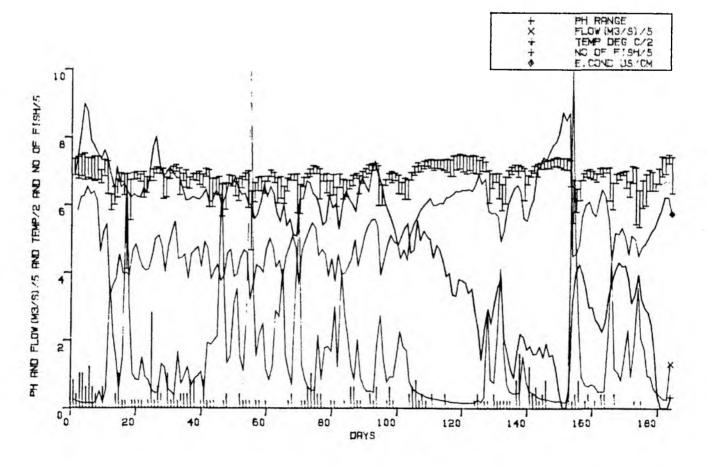
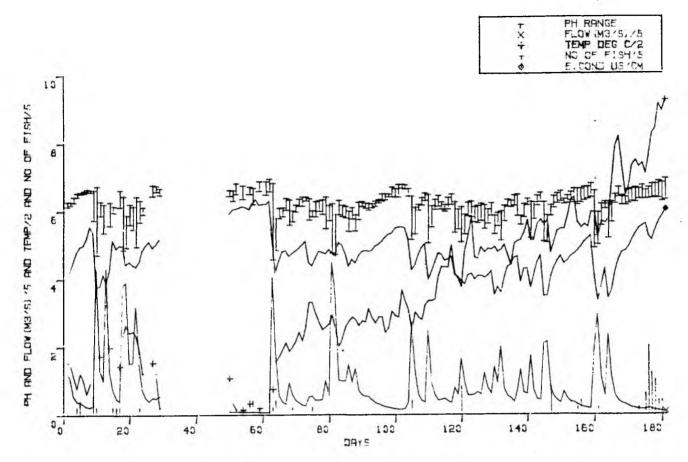
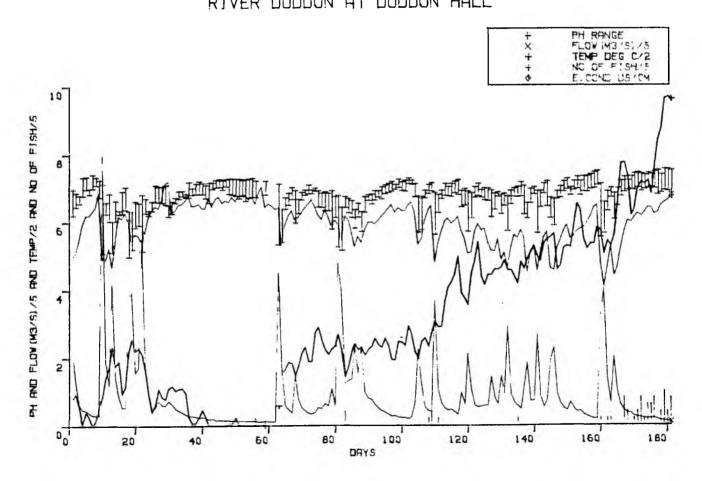




Figure 9 Summary of data from continuous monitors for the period 1/7/85 to 31/12/85


RIVER DUDDON AT DUDDON HALL


RIVER ESK AT CROPPLE HOW

Summary of data from continuous monitors for the period Figure 10 1/1/86 to 30/6/86

RIVER ESK AT CROPPLE HOW

RIVER DUDDON AT DUDDON HALL

Automatic water samplers at each site were triggered when the water level reached a pre-set height (which could be varied). Composite samples (made up of 4 half-hourly sub-samples) were then taken at 2 hour intervals for 48 hours. These samples, which gave valuable evidence of the changes in water chemistry during episodic events, were analysed for pH, alkalinity, calcium, aluminium (total and unacidified), magnesium, conductivity, chloride and humic substances.

3.2.1 Maintenance of pH probes

The pH probes were replaced at 6 monthly intervals and great care was taken to select probes which did not display a "streaming potential" in the laboratory (i.e. changes in output related to velocity of water past the probe).

Particular care was also taken during the 3 weekly calibration exercise. Low conductivity buffer solutions were utilised, and these were cooled to river water temperature before the calibration took place. This was in order to minimise errors due to rapid changes in the automatic temperature compensation mechanism.

3.2.2 Data storage and processing

All the 15 minute readings (which included an indication of when the automatic sampler had operated) were stored on Golden River 10 channel data loggers which were capable of storing up to 40 days data. In practice data was retrieved at 3 weekly intervals on the maintenance and calibration visits. Data were subsequently transferred to an ICL 2970 mainframe computer where all subsequent processing was carried out.

3.3 Biological surveys for distribution of macroinverbetrates

3.3.1 Structure of sampling programme

The structure of the biological sampling programme developed from initial concern about influences of acidification on the Esk and Duddon, and was extended to cover other likely sensitive areas in the Lake District. This produced data from 75 upland stream sites, typically salmonid nursery streams within the Lake District National Park, divided equally between the Esk, Duddon and a group of other hill-stream sites. The sampling aimed to generate numerical data descriptive of the fish stocks, benthic macroinvertebrates and relevant water chemistry parameters at all sites. (Prigg 1983a).

Subsequent work has sought to provide more detailed biological data on sites which appeared to have acid restricted faunas and to investigate linear (upstream/downstream) changes within these acidified streams. The geographical coverage of streams draining the western mountain mass of the Lake District has been improved by sampling of additional sites.

The study area covering acid streams in the S. Pennines used similar methodology to that employed in the Lake District work.

3.3.2 Invertebrate Sampling

Benthic macro-invertebtrates were "kick sampled" from riffles in the 75 hill stream sites in the Lake District, in most cases, once in winter, once in late spring and One kick-sample of once in late summer during 1982. invertebrates was collected from riffles at each of the forty-eight sites in the Southern Pennines during the period December 1985 to February 1986. "Kick-Sampling" involved the operator vigorously kicking the substrate immediately upstream of the mouth of a standard pond net (square mesh size = 0.7 mm) for a duration of three minutes whilst moving in an upstream direction sampling all of the micro-habitats present. The samples were apparent preserved in 70% methanol (Pennine sites) or formaldehyde solution (Lake District sites) for later examination in the laboratory where the identification and abundance of invertebrates was recorded using the standard NWWA scale (1=1, 2=2-5, 3=6-20, 4=21-100, 5=101-500, 6=500).(The actual number of animals per sample was recorded for the Pennine sites only and used in the principal component analysis section 5.2.2)

3.4 Fish Surveys

3.4.1 Structure of Sampling Programme

The programme for the investigation of wild fish stocks in the study area was closely associated with the invertebrate survey work and thus the structure of the programme was as described in 3.3.1, above.

3.4.2 Electric Fishing

Fish populations of flowing water sites in the study area were surveyed using multi-catch depletion methods in measured, stop-netted sections. The gear used was a Honda 300E 220V 50 Hz. 300VA A.C.generator and a rectifier unit providing a D.C. output, with on most sites, a stationary cathode and single mobile anode.

The multi catch depletion method used involved either 2 or 3 repeated fishings. In assessing population size from the two catch data, Seber and Le Crens (1967) two catch formula was used, and for three catch data, Zippin's (1956) procedure was applied.

It was readily possible by length/frequency analysis to distinguish 0+ age class salmonids from older age groups, and estimates were made of the population sizes of both age groups independently.

The fork lengths of all salmonids caught were measured to the nearest millimeter. In order to relate fish length data to actual biomass of fish present at a site, crude biomass density estimates were produced for comparative purposes based on the assumption that

 $W = 0.01 \times 1^3$ where W = weight g.and 1 = length cms

When compared to estimated biomass density based on measured length/weight relationships which were available for the Esk sites, it was clear that the crude estimate underestimated the field estimate by 7%-41% (i.e. mean condition factor exceeded unity at the Esk sites).

3.4.3 Gill Netting

Fish populations of four acid upland tarns in the S.W. Lake District were sampled by gill netting. The nets used were monofilament sinking gill nets, 36.5m long, and composed of twelve panels of different mesh size ranging from 19mm to 150mm stretched mesh.

In the larger water bodies sampled, Levers Water and Seathwaite Tarn, seven such nets were set and left fishing for one day. Any fish caught were retained for length and weight determination and gut. content examination. Tributary streams which could have been utilised by trout as spawning streams were surveyed by electric fishing.

3.4.4 Fish Cages and Trial Stocking

As part of an investigation of three adjacent tributaries of the River Esk differing in their ability to support trout, brown trout were placed in the streams enclosed in cylindrical Netlon plastic mesh cages, 0.65m long with a radius of 0.15m. Each cage held five fish and was staked in the stream in a suitable sheltered location. The survival of the fish and stream water chemistry was monitored in a number of exposures of up to several weeks duration (Prigg 1985a).

Trial stocking with hatchery-reared salmonid fry was carried out on four streams. In the Duddon catchment salmon fry were introduced into the upper reaches of Tarn Beck and Grassguards Gill and their survival monitored by electric fishing survey (Prigg 1983b). In the Esk catchment Spothow Gill and an adjacent unnamed tributary were stocked with trout fry following the application of crushed limestone to the upper catchment of Spothow Gill. The survival of the fry was monitored. (See 6.6.2)

3.5 Fish Counters

The fish counter at Duddon Hall on the River Duddon has been in use since 1980, although it is switched off during the winter and spring months when no migratory salmonids are entering the river.

The River Esk counter at Cropple How was commissioned in October 1985.

The purpose of these counters is to record the numbers of adult salmon and sea trout migrating upstream. The counters are fully automatic and operate on the resistivity principle (Lethlean 1951 and Bussell,1978). They are of the "wide gap" type and span the full width of the river. Downstream movement of fish is not recorded because of practical constraints with this type of counter which make it impossible to obtain a reliable count of fish moving downstream. Both counters discriminate fish into two size groups, i.e. fish less than 4 lb (1.8 kg) in weight, and fish over 4 lb. The majority of fish under 4 lb are sea trout and those over 4 lb are likely to be salmon.

The data from the counters at both sites were recorded on the Golden River data loggers which also stored data on river level and water quality parameters. As information on fish movement, river level and water quality was collected simultaneously, it was possible to relate upstream movement of salmon and sea trout to the prevailing environmental conditions.

3.6 Other Information on Fish Abundance

A number of other sources of information relating to the past state of the fish stocks in the study area have been considered These include official returns of migratory salmonid catches by licence holders, references in past River Board reports to mortalities in areas we now know to be susceptible to acidification (Prigg 1983a), and recollections and records of individual anglers, riparian owners, local water authority staff etc. (Robinson 1984)

4. WATER QUALITY CONDITIONS

- 4.1 Classification of sites
- 4.2 pH
- 4.3 Aluminium
- 4.4 Humic substances
- 4.5 Electrical conductivity
- 4.6 Calcium
- 4.7 Discussion of results
- 4.8 Summary

4. WATER QUALITY CONDITIONS

4.1 Classification of sampling sites

A detailed classification of the sampling sites has been carried out (Bull & Hall,1985) which demonstrated that the sites fell in general into identifiable groups as follows, judged on physical characteristics only although there was some overlap.

Esk & Duddon tributaries Esk & Duddon main river sites Other lake district sites S.Pennine sites

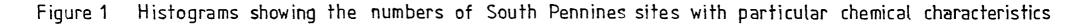
It was noted that the Duddon tributaries included more sites at higher altitude than the Esk, and that the Lake District sites tended to be larger streams than the Esk and Duddon tributaries. This was not unexpected, but needs to be borne in mind when making comparisons between sites.

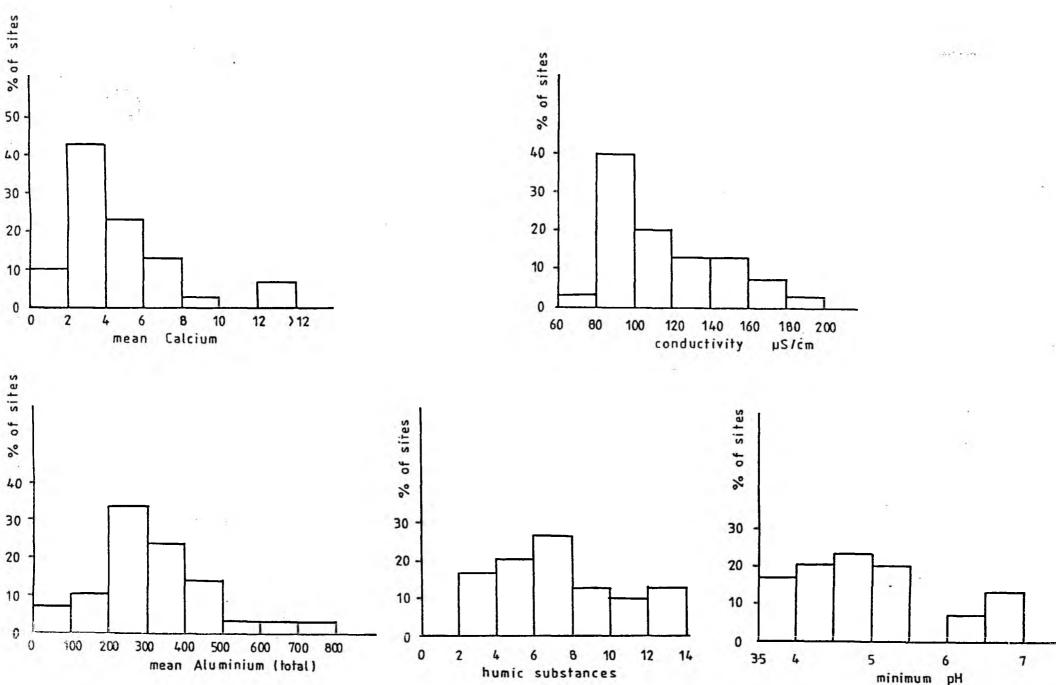
The sites in the S.Pennines were substantially different for a variety of reasons. Most of the streams in this area are utilised as public water supply reservoirs and are renowned for the highly coloured peaty water they produce as they drain the thick layer of sphagnum bog that covers this part of the S.Pennines.

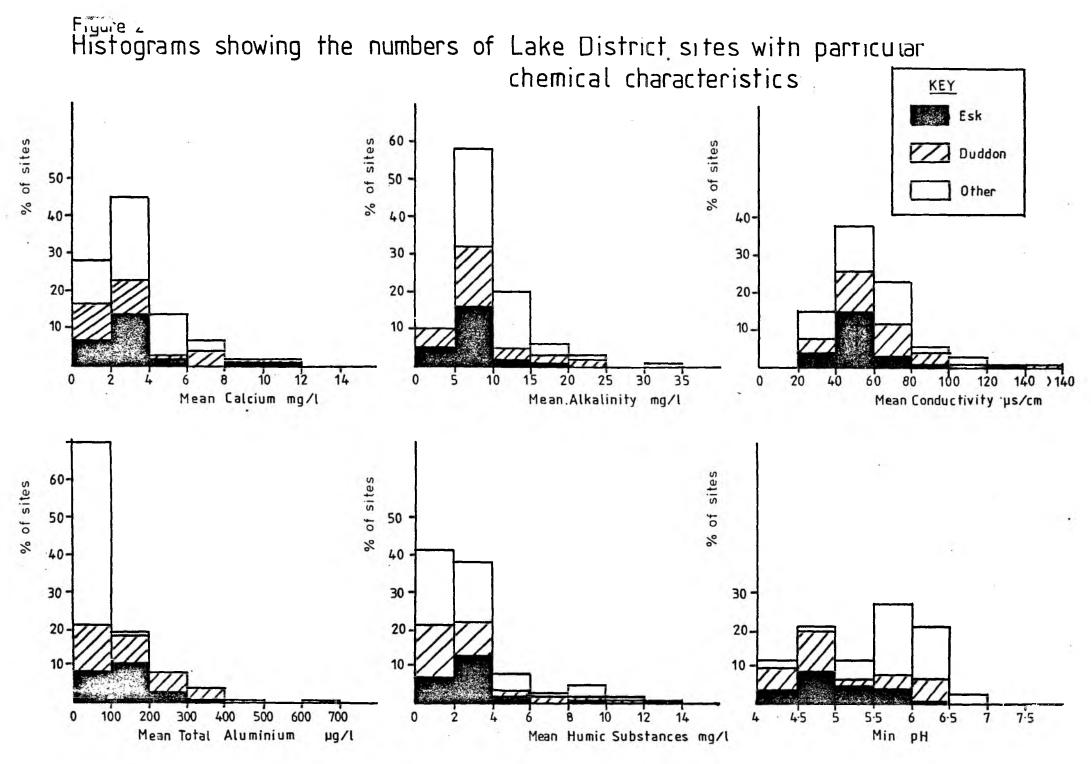
4.2 pH

S.W.Cumbria

The most consistently acid tributaries sampled were a group of Upper Duddon tributaries, Doe House Gill, Gaitscale Gill, Troughton Gill, Mosedale Beck, Dale Head Gill and Black Beck. The group on the Esk in equivalent positions on the catchment exhibited a wider range of pH although the lowest pHs found were similar.


On the Duddon catchment, a marked increase in pH of both tributaries and the main river is found downstream of the confluence with Tarn Beck. There is also a gradual downstream increase in pH on the River Esk but it is much less pronounced.


The net effect is that whilst the upper Duddon is generally slightly more acid than the Esk, the lower Duddon is generally more alkaline (in fact the Duddon Hall site is generally about 1 pH unit more alkaline than the Esk at Cropple How).


Lowest pH recorded in these catchments during routine quarterly sampling was 4.0 on Spothow Gill (tributary of R.Esk).

S.Pennines

There are a substantial number of extremely acidic sites in the S.Pennine group. Lowest pH recorded at any site was pH 3.6 at Whiteholme Reservoir but 17% of sites had a minimum pH of less than 4.0 and 37% were less than pH 4.5 whereas in the Lake District group (inc.Esk and Duddon) only 11% were below pH 4.5 and none below pH 4.0. (See Figs 1 & 2)

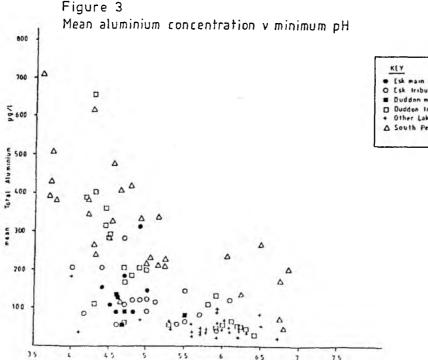
.

4.3 <u>Aluminium</u>

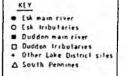
In "acid sensitive" catchments where the bedrock is resistant to weathering, and the overlying soils are low in calcium and magnesium, there may be insufficient time, or insufficient calcium, for normal buffering mechanisms to operate. In these circumstances, aluminium and manganese from alumino-silicates in clay and soil particles may exchange with some of the hydrogen ions present in the water flowing through or over the soil, and pass into the surface waters initially as Al³⁺ and Mn²⁺.

Speciation of aluminium is extremely complex and may well have considerable influence on the subsequent effects on biota. For example, aluminium complexes can be formed with organic acids of humic origin which greatly reduce its toxicity.

S.W.Cumbria and Lake District

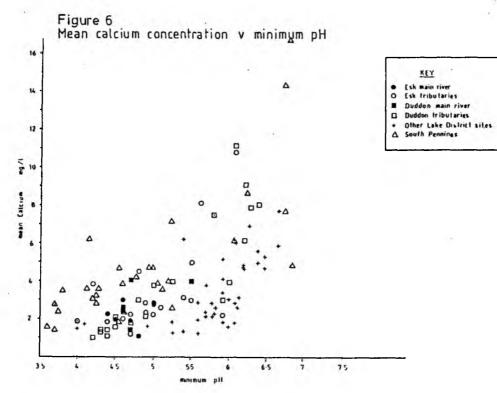

For the reasons outlined above, aluminium shows in general a close inverse correlation with pH (see Fig.3) and sample points . with low pH nearly all had elevated aluminium levels.

The indications are, from the relatively few samples on the Esk tributaries taken in high flow acid conditions, that despite the evident very rapid fall in pH there was still time for the appropriate exchange reactions to operate, and aluminium to be released into solution.


Thus the concept of "unmodified" rainfall seems an unlikely possibility even in high flows, and it is likely that there will always be aluminium available if there are hydrogen ions available in the surface water to exchange with it.

S.Pennines

In line with the low pH, aluminium concentrations in the S.Pennine group were generally much higher. 83% had a mean aluminium concentration greater than 200 ug/l as compared with 14% of Lake District sites. In addition to this, however, for any given pH the S.Pennine group tended to have a higher aluminium concentration than the Lake District sites. For instance in the pH range 4.0-5.0 only 26% of sites in the Lake District had mean aluminium greater than 200 ug/l compared to 93% of the Pennine sites. (See Figs 1 & 2)


minimum pH

In the Pennine group, none of the sites had such a low conductivity. Although there was a tendency for the higher pH sites to have a higher conductivity, there was a large degree of scatter, and the most acid site (Whiteholme Reservoir) had the third highest conductivity. (See Fig 5).

4.6 <u>Calcium</u>

Lake District

In general a similar pattern for calcium distributions was found as for pH, (See Fig. 6) with notable exceptions being Grainsgill Beck and the River Caldew immediately downstream, which along with the upper Esk and upper Duddon, had minimum values of around 0.5 mg Ca/l and mean values below 2.0 mg Ca/l. At these levels the toxicity of aluminium is much enhanced (Brown 1983).

S.W.Cumbria

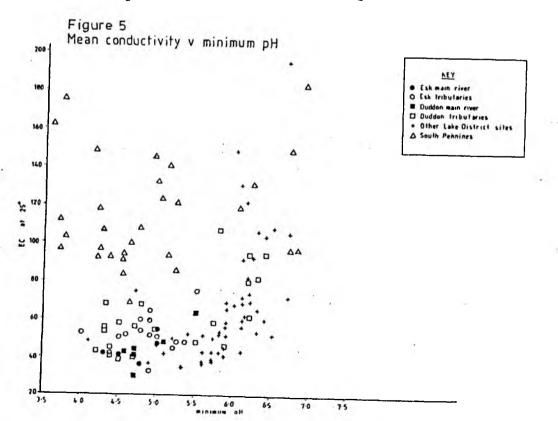
.. ..

Calcium concentrations in the Duddon increased considerably between the sampling point downstream of Tarn Beck (mean 2.6 mg Ca/l) and Ulpha (mean 3.8 mg Ca/l). This was mainly due to the influence of a fairly large tributary, Crosby Gill (mean 7.3 mg Ca/l) which drains Ulpha Fell. Calcium levels and to a lesser extent pH continued to rise between Ulpha and Duddon Hall so that the water chemistry of the Duddon at the latter point was very different to the river at the upper sampling sites. Once again, on the Esk there was a downstream increase in calcium but it was less marked than on the Duddon and the mean concentration at the lowest site was only 2.8 mg Ca/l.

- 14 -

Fig.4 demonstrates a weak positive correlation between pH and humic substances, for the Lake District sites showing that it is highly unlikely that organic acids were making a significant contribution to the acidity at the points sampled in the Lake District and S.W.Cumbria.

S. Pennines


Another major difference between the Lake District and Pennine Groups was the levels of humic substances. For example 79% of the Lake District group had mean humic levels of less than 4mg/1, in contrast to the Pennine group, where only 17% were less than 4 mg/1. Also 23% were greater than 10 mg/1 as compared with only 3% of the Lake District sites. (See Figs 1 & 2).

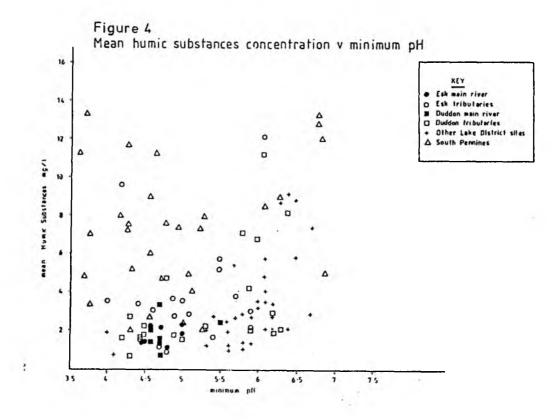
One of the findings of the Lake District sampling was that the higher humic levels were associated with the less acid sites. In the Pennine group a different picture emerged. The sites which were "peatiest" (mean humic substances concentration greater than 10 mg/l) could be divided into two groups, one north of Manchester where the pH was generally high (min. 6.5) and a second group south of Manchester all with pH 5.0.

Overall there does not seem to be a strong correlation between the acidity and the levels of humic material. However, the presence of high humic levels along with high aluminium levels at some sites gave a good opportunity to assess the role of humics in reducing the toxicity of aluminium by complexing, so that the biology of these sites was of particular interest.

4.5 Electrical conductivity

Again there was a marked difference between the Lake District and Pennine groups - not solely related to acidity. Over half of the Lake District group were "very pure" waters where the mean conductivity was less than 60 s/cm. The more acid sites were virtually all in this low conductivity band.

Thus, whilst it is clear from Fig 3 that there is a substantial degree of correlation between pH and aluminium concentrations within each group, the actual pH/aluminium relationship is not the same for both groups.


4.4 <u>Humic substances</u> S.W.Cumbria

> Despite the fact that the Esk passes through the Great Moss, which is an area of peat bog where the river gradient is relatively low the concentrations of humic substances were low throughout. Higher concentrations were found in one or two tributaries such as Mere Beck.

> The results from the upper part of the Duddon were very similar to the Esk, but several tributaries, notably Blea Beck (mean 9.7 mg/l, range 5.5-17 mg/l) increased concentrations in the main river between Ulpha and Duddon Bridge.

Lake District

Of the other streams and tributaries sampled, Stock Ghyll (Leven catchment) had the highest concentrations (mean 9.1 mg/l, max.35.0 mg/l), together with Swindale Beck and other tributaries in the Eamont catchment.

Pennines

As might be expected, there was a correlation between calcium and pH, with the most acid sites having the lowest calcium concentrations. However, the Pennine group once again displayed a different pattern from the Lake District sites.

Within the pH range 4-5 only 7% of Pennine sites were below 2 mg Ca/l mean calcium concentration. In the Lake District group over half the sites in this pH range were below 2 mg/l. (See Fig 6).

The calcium concentrations of the streams sampled in both the Lake District and Pennine groups were of course extremely low compared with streams draining limestone areas or other calcium rich rocks. (c.f. River Lune at Wath mean 26.2 mg Ca/l) But even the sites with lowest calcium concentrations mentioned above (where there was the possibility of increased aluminium toxicity) had higher concentrations than some Norwegian lakes draining hard granite catchments where mean concentrations as low as 10-20uEq/l (0.2-0.4 mg Ca/l) are common.

4.7 Discussion of Results

Presumably these increased calcium (and aluminium) concentrations and the associated anions, were partly responsible for the higher electrical conductivity of the Pennine sites as compared to the Lake District group. The fact that so many of the Pennine reservoirs had an extremely low pH despite these increased calcium concentrations indicates that the input of acidity into the system must be extremely high. This is, of course, entirely consistent with the proximity to large emission sources and urban areas known to have caused substantial damage to vegetation in this area (Ferguson and Lee 1983).

4.8 Summary of Observations

Taken as a whole, there were consistent patterns in water quality throughout the region. Significant differences were seen between Lakeland and S.Pennine streams and lakes. The S.Pennine sites tended to be more acid, with higher aluminium concentrations but also with higher concentrations of humic substances. However, there was little correlation between pH and the concentration of humic materials.

The observation that some sites in the S.Pennines were extremely acid, despite higher calcium concentrations and electrical conductivity than at sites of comparable or less acidity in the Lake District, suggested that the S.Pennines was subject to a high acid loading. This was quite consistent with observed effects on vegetation in the area.

4.9 Discussion of results from continuous monitors. (River Esk and Duddon).

1.

Figs 7 to 10 show summaries of typical data from the two stations. Mean daily flow, temperatures and conductivity are plotted together with the daily pH range and total daily fish count where it was available.

It can be seen at once that virtually every substantial rise in river flow is accompanied by a fall in the pH. This is true for both stations, except that the Duddon (at this point) tends to be about 1 pH unit more alkaline than the Esk throughout the record. Apart from this, the records are remarkably similar.

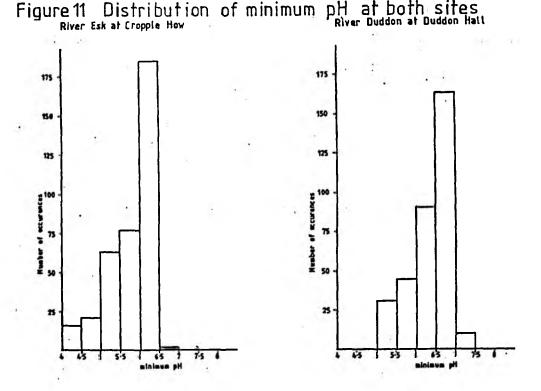
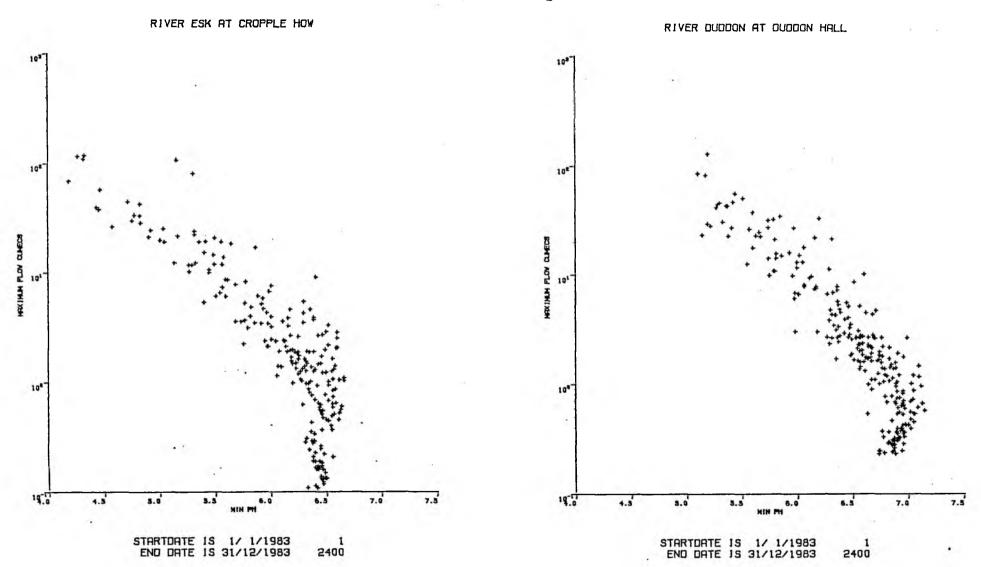
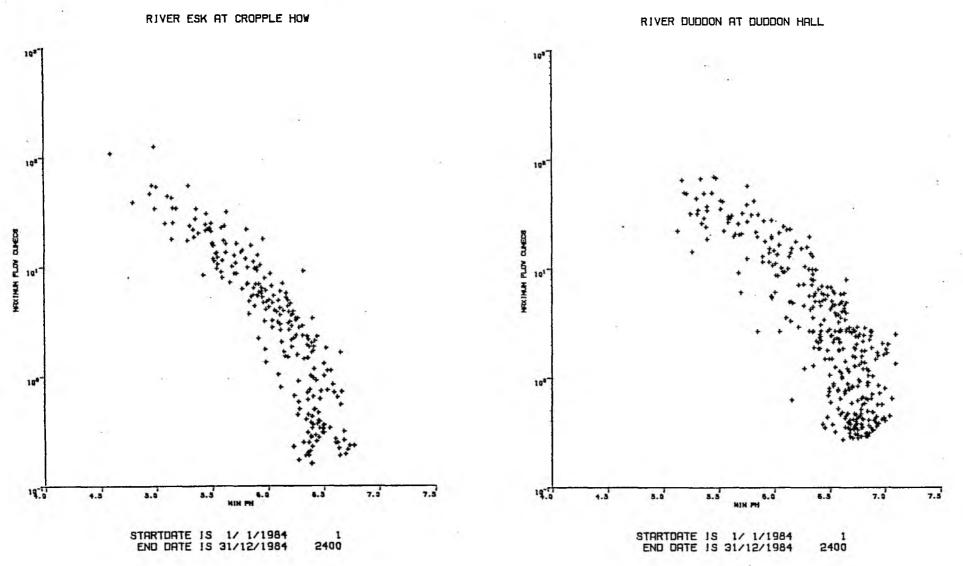
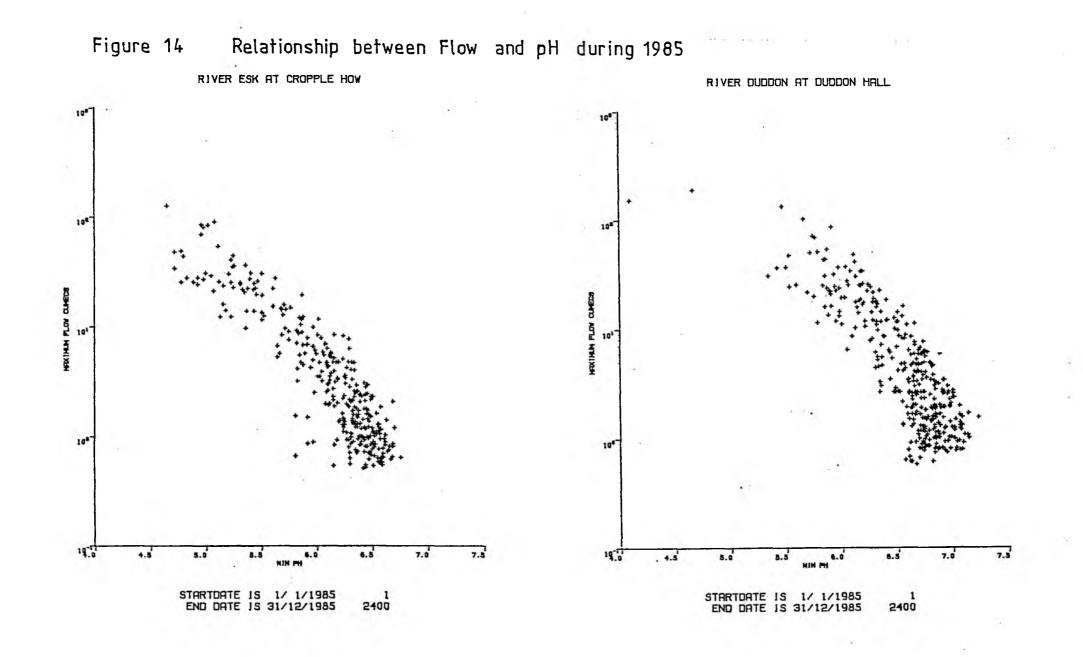


Fig 11 shows the overall distribution of minimum daily pH at both sites, but the most interesting feature is the very strong correlation between flow and pH demonstrated in Figs 12 to 15.

Newson (1984) presented similar data from spot sampling in the Wye (grassland) and Severn (forested) catchments in Plynlimon (Mid Wales). The Severn (and tributaries) showed similar relationships between flow and pH to the Esk and Duddon, but the Wye behaved differently and the pH declined much less at high Newson attributed this to bicarbonate buffering by flows. solution of Calcite and to liming as part of pasture improvements. Those streams not buffered in this way were constantly acid, especially from peaty sources.

The fact that the Esk and Duddon do not behave in this way adds support to the conjecture that humic acids contribute little to the acidity in these two catchments. (See Section 4.4).

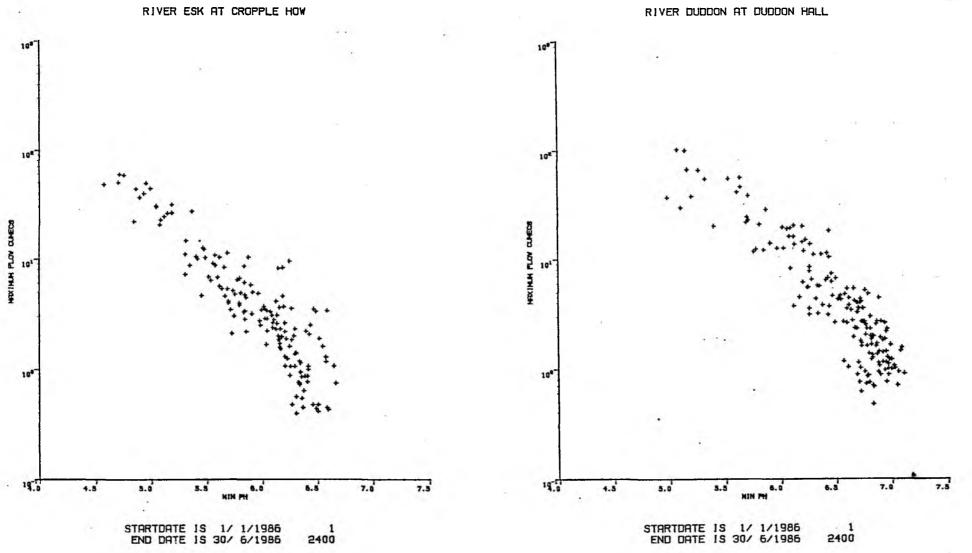
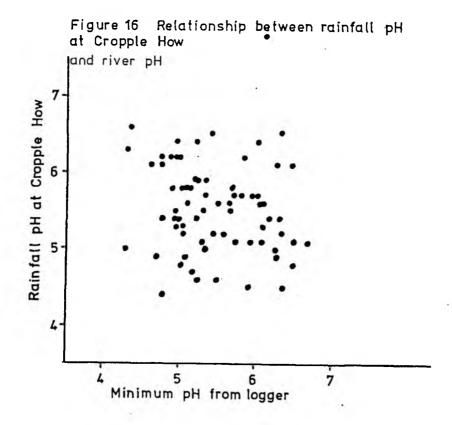

Figure 12 Relationship between Flow and pH during 1983

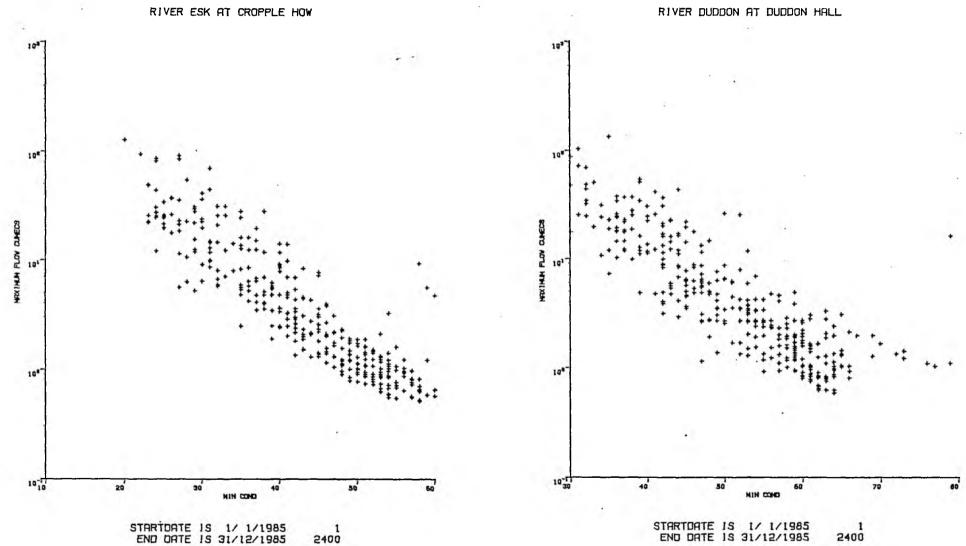
Figure 13 Relationship between Flow and pH during 1984

The observed pH/flow relationships are consistent with the behaviours to be expected from an acidicied soil which has a reduced ability to release calcium, or other cations, in exchange for H^+ in rain water.

 Ca^{2+} (soil) + H⁺ (in flowing water) - Ca^{2+} (surface water) + H⁺ (soil) Equ. (1).


Soil samples taken from a selection of fields in the Esk Catchment have shown that a substantial number of fields are extremely acid (minimum observed pH 4) so that there is plenty of scope for acidification of inflowing water both in the valley bottom and on unimproved land at higher attitude.

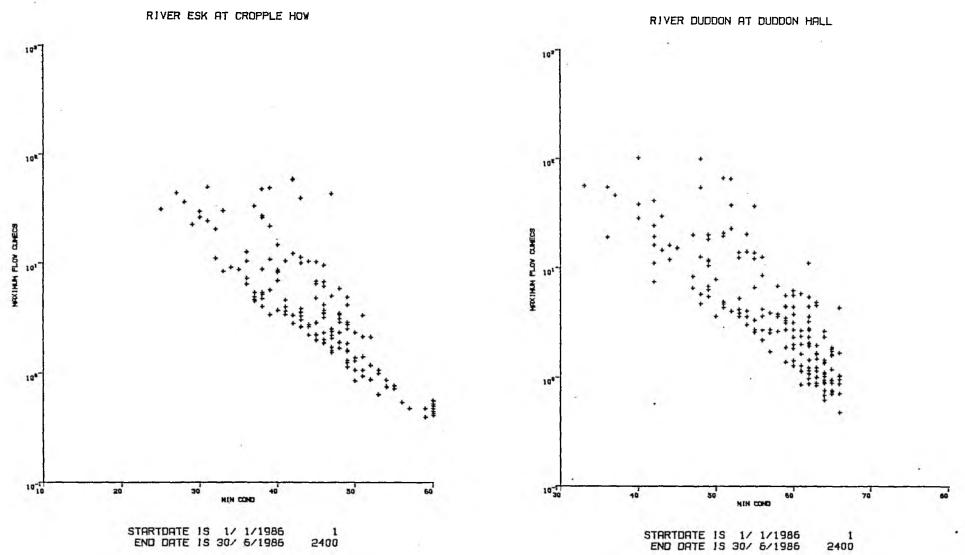
 Ca^{2+} (inflowing water) + soil $H^+ - Ca^{2+}$ (soil) + H^+ (surface water). Equ. (2).


....

When rainfall is more acid than the soil, mechanism (1) comes into operation to reduce the acidity. When rain is less acid than the soil however, a relatively common occurrence on the Esk catchment, mechanism (2) operates, and the surface run-off becomes more acid than the incident rainfall.

The net effect therefore is that the final pH of the run-off is governed by the residence time (which is determined primarily by the rate of flow) and not by the initial pH.







2.0 2.11

ACCOUNTED AND

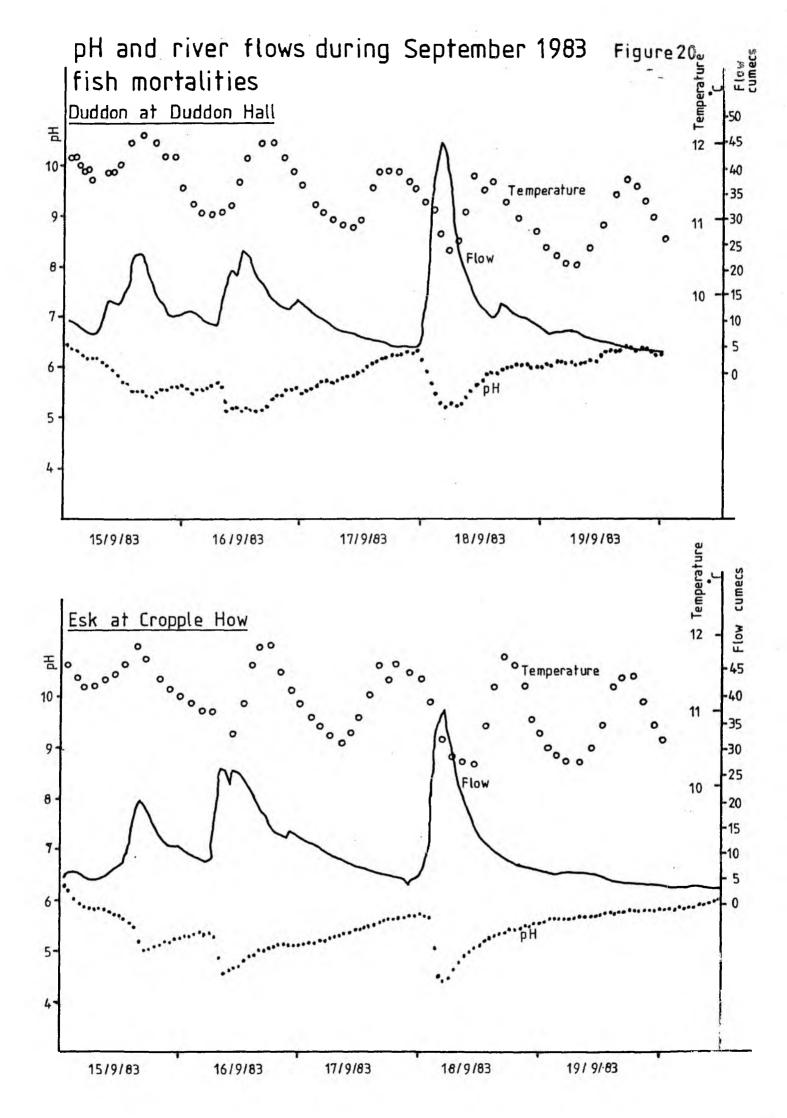


Fig. 16 demonstrates the complete lack of any obvious correlation between the rainfall pH and the river pH as measured at Cropple How.

The ability for either mechanism (1) or (2) to operate will depend on the amount of acid deposition or the extent (in a limited area of the catchment) to which agriculgural liming has How rapidly changes in either of these counteracted this. factors will communicate themselves to the surface water is not known but some of the year to year variation evident in Figs 12 - 15, may well be explained by variation in the net deposition It is intended to pursue this particular aspect in pattern. future working, notably in relation to the marked shift towards higher pH evident throughout the flow range in 1984. If this shift in pH was found to be associated with a decrease in the local deposition pattern from 1984 it would of course be a very significant finding.

4.10 Episodic Changes - results from automatic samplers

The discussion in the preceeding section centred round pH and demonstrated that, in these two catchments at least, the pH of episodes is reasonably predictable and determined by the river flow. In October 1984 conductivity monitors were installed at both sites and the conductivity/flow relationships are demonstrated in Figs. 17 and 18.

Again a remarkably consistent pattern is evident. There does not seem to be any evidence of significant high conductivity episodes such as caused by sea salt. In all cases a rise in river flow was accompanied by a fall in the conductivity. This was somewhat unexpected in view of the reporting of regular sea salt episodes at Loch Dee in Galloway, (pers comm. R. Harriman).

A large amount of information has also now been obtained from automatic samplers triggered by a rise in river level to a present value. As for pH and conductivity the behaviour of cations such as calcium and aluminium during episodes has been found to be remarkably consistent.

The pattern observed has been that as the flow rises so pH, conductivity and the calcium concentration falls, whilst the aluminium levels rise. A typical episode is shown in Fig 19.

The adverse combination of these various changes would be more than sufficient to explain the observed mortalities of fresh run salmonids in 1980 and 1983. (Fig 20).

5. BIOLOGICAL CONDITIONS

- 5.1 The structure of macro-invertebrate communities
- 5.2 The distribution of indicator species
- 5.3 Discussion of the spatial and temporal patterns of distribution

5.4 Summary

5. BIOLOGICAL CONDITIONS

5.1 The Structure of macro-invertebrate communities

5.1.1 Cumbrian hill streams

An analysis of data from a survey carried out in 1982 from 75 hill stream sites showed that most acid streams had macroinvertebrate communities lacking many common and widely distributed Ephemeroptera, Trichoptera, Crustacea Mollusca in many cases with exceptionally low and diversity in terms of number of species present. The acid hill stream faunas were invariably insect dominated, with the Plecoptera providing most species, an average of five or six species being taken in a winter kick sample. Common species apparently unrestricted in their occurrence in the most acid stream (see also Appendix 2) included Plecoptera such as Amphinemura sulcicollis, Protonemura meyeri, Leuctra inermis, Leuctra hippopus and Chloroperla torrentium, caddis including Plectrocnemia conspersa and Rhyacophila dorsalis, and Diptera incuding Dicranota sp., Chironomidae and Simuliidae.

5.1.2 Pennine Hill Streams

.

In the Southern Pennines the structure of the invertebrate communities inhabiting hill streams was clearly influenced by pH. Three types of communities could be distinguished and related to changes in pH.

- (i) In streams of very low geometric mean pH (between 3.6 and pH 4.4) only insects from the following families were found and they were neither abundant or diverse : Nemouridae, Limnephilidae, <u>Dicranota</u> sp., Chironomidae and Simulidae. Streams of this type generally drained peat bogs and were more acidic than any of the Lake District sites.
- (ii) In streams of low geometric mean pH (between pH 4.5 and 5.5) the fauna was often abundant and diverse and included species from those groups mentioned above plus Annelida, Hydracarina, Protonemura sp., <u>Amphinemura</u> sp., Leuctra spp, Chloroperla spp, Dytiscidae, Sialis sp., Rhyacophila spp, <u>Plectrocnemia</u> sp and Tipulidae,. All of the above groups had distributions which appeared to be independant of pH above pH 4.5
- (iii) As geometric mean stream pH increased above pH 5.0 there was a general trend for the insect fauna to become more abundant and diverse. The increase in diversity with pH was due to the appearance of species particularly sensitive to low pH including most species of Ephemeroptera plus <u>Ancylus</u> sp., Gastropoda, <u>Gammarus</u> sp, Taeniopterygidae and Perlodidae.

5.2 The distribution of indicator species

5.2.1 Cumbrian hill streams

Because of the interest in salmonid fish populations it was of particular note that two common and widespread taxa, <u>Baetis</u> sp. and <u>Gammarus</u> sp., important in the diet of salmonids in streams in which they occur, also appeared to have a distribution pattern closely related to the geometric mean. Both genera were conspicuously and consistently absent from the most acid sites.

<u>Gammarus</u> was the most restricted in distribution, and did not occur in streams where the geometric mean pH was lower than 5.9. The lowest recorded pH from sites with <u>Gammarus</u> came from Fisher Beck and Hardknott Gill (Duddon) where the minimum recorded pH was 5.5. In both these instances the occurrence was sporadic. Such a sporadic occurence in Hardknott Gill (Duddon) is noted in the literature (Sutcliffe and Carrick, 1973).

The observed distribution of <u>Gammarus</u> in our sites is in general accord with the statement regarding <u>G. pulex</u> that in Britain it has not been found in water with pH consistently below 5.7 (Gledhill et al., 1976).

With the exception of the sporadic occurence noted above in Hardknott Gill (Duddon), <u>Gammarus</u> was absent from the upper Esk and upper Duddon catchments, and has not been encountered in the main river sampling on either system. All sampled sites with <u>Gammarus</u> had a healthy salmonid fish population, but conversely absence of <u>Gammarus</u>, though noted in all fishless or very low fish density streams, did not specifically indicate such a state, many streams without <u>Gammarus</u> having a good standing crop of juvenile salmonids.

Baetis sp. distribution was less restricted than Gammarus, and all sampled sites with Gammarus present had Baetis recorded at some time. In the most acid sites where it occurred, Baetis was sporadic, not occurring on all sample occasions; this was the case at Linbeck and on the Esk upstream of Hardknott Gill, both with mean pH 5.5. Where an animal is found infrequently or in low numbers at a site it is possible that it has drifted in from a more suitable (more alkaline) tributary upstream. For example, in a South Pennine site, Hurst Reservoir, mayflies were not found in the main feeder (pH 5.25, spot measurement at time of sampling) except downstream of a minor feeder stream (pH 6.74) in which Siphlonurus lacustris was abundant. Baetis was not recorded at any sites where the mean pH was less than 6.0 and where the lowest pH recorded was less than 5.5.

The foregoing generalisations derive from 1982 data, but later extensions of the sampling programme support them. Thus, for example, in the upper Glenderamackin catchment (Prigg 1985b) <u>Baetis rhodani</u> was absent from the Glenderamackin upstream of Bannerdale Beck, with mean pH 5.4, sporadic in the Glenderamackin upstream of Bullfell Beck with mean pH 5.9, and present on all sample occasions in Bullfell Beck with mean pH 6.0. The specific records from which the <u>Baetis</u> occurrences were generalised included <u>B.rhodani</u>, <u>B. scambus</u>, <u>B.</u> <u>muticus</u>, <u>B. tenax</u>, and <u>B. niger</u>, in that order of abundance; distribution relative to pH for all <u>Baetis</u> sp is shown in appendix 3, which also shows the distribution of other mayflies found.

Excluding the markedly seasonal Ephemerellidae, nymphs of the genus <u>Baetis</u> and of the family Heptageniidae were generally the most numerically significant Ephemeropterans in the salmonid nursery streams in Cumbria. It is interesting that in the 1982 survey no samples with <u>Baetis</u> sp. absent had Heptageniidae or Ephemerellidae present, except for one winter sample from the Esk at Cropple How which had an isolated specimen of <u>Rhithrogena semicolorata</u> present.

'For absence of <u>Baetis</u> read absence of mayflies' would be a very attractive generalisation and it is only confounded by the presence of Leptophlebidae and/or <u>Siphlonurus</u> <u>lacustris</u> in some of the very acidic upper catchment sites where <u>Baetis</u> sp is absent in the upper Esk (and Black Beck, Duddon), and by infrequent occurrences of <u>Ameletus</u> <u>inopinatus</u> in sites lacking <u>Baetis</u> at River Duddon (Troutal) and River Derwent (Seathwaite).

Siphlonorus lacustris was the only mayfly nymph found in the most acid streams in summer collections in a study of a group of upland stream in central Scotland (Harriman and Morrison, 1982). Regarding Leptophlebidae, our own studies on a highly acidic 'acid mine drainage-type' polluted stream (Prigg, 1978) showed live, ochre-coated Habrophlebia fusca in some of the acidified sites, and it may be that the family is relatively acid resistant; at the upper Esk sites referred to, the species noted were <u>Paraleptophlebia</u> submarginata and Leptophlebia vespertina.

In the sampling to date, all sites with Baetis sp. present on at least one sampling occasion had trout similarly present. It must be stresed that the sample sites, except for a few very small tributaries in the Upper Duddon catchment which were sampled partly because of their occurrence in an earlier study, were selected as likely to contain trout, with no known physical or chemical environmental limitations on a juvenile trout stock. Within streams meeting such broad environmental criteria as potential upland salmonid nursery streams it is reasonable to propose that the presence of <u>Baetis</u> sp will be associated with the presence of trout. It is unreasonable, and factually incorrect, to suggest that Baetis sp. presence will indicate trout presence in all other stream types.

Total salmonid density in streams with <u>Baetis</u> sp present was in excess of 0.2 salmonids/m² in all cases but one, that of an upper site on Mosedale Beck (Wastwater catchment survey, Prigg 1985c) with only 0.1 salmonids/m².

Twenty of the sites without <u>Baetis</u> sp. had trout present, though most of these were sites with very low stock densities.

5.2.2 Pennine Hill Streams

Although the distributions of many of the macroinvertebrate taxa appeared to change with pH some of them occurred too in'frequently to be considered as useful indicator species. For example <u>Siphlonurus</u> <u>lacustris</u> and <u>Leptophlebia</u> <u>vespertina</u>, mayflies which are known to be tolerant of low pH were only found at two and three of the sites respectively in the Southern Pennines. Some taxa, such as <u>Gammarus</u> sp and Helodidae, are known to be common and widespread in the North West but they were found at few of the sites in this study, perhaps because the sites were predominantly of low pH. However, for completeness some of these taxa are included in Table 5.2 which attempts to use macroinvertebrates to indicate the lower limits of geometric mean of stream pH . The table is based on the survey of the whole North West Water region summarised in Appendices 2, 3 and 4

-24-

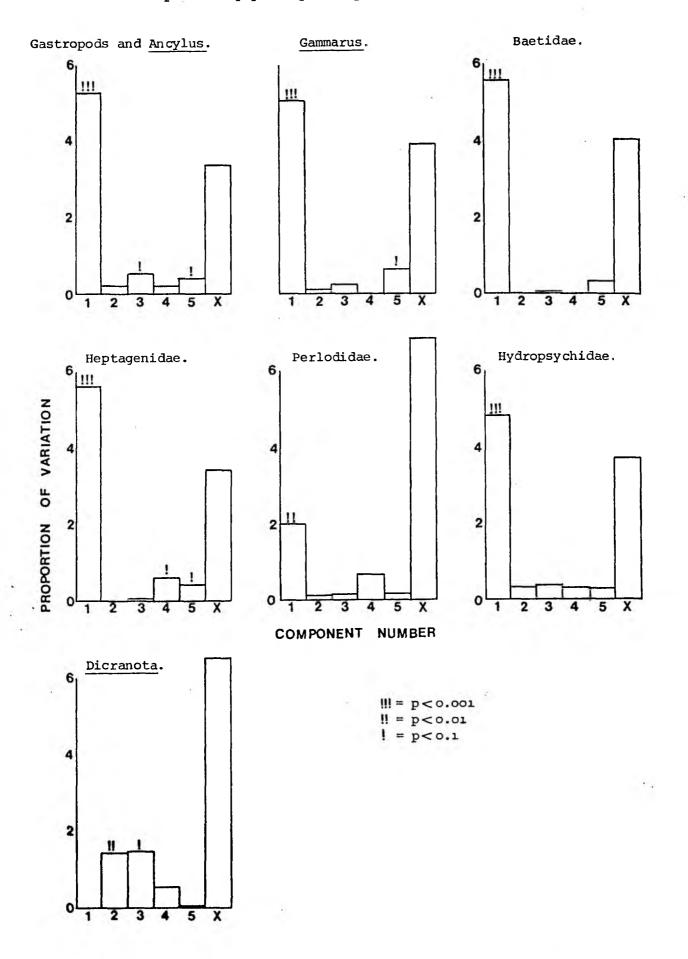
It is interesting to note that four of these taxa, Heptagenidae, Gastropoda, <u>Ancylus fluviatilis</u> and <u>Gammarus</u> sp all have pH 5.9 as their lower limit of distribution. The presence of these four common and widespread taxa and <u>Baetis rhodani</u> can be used to indicate whether or not the pH of the water is suitable for salmonids (see 5.2.1). Baetis is particularly useful because it can disperse in flight to all suitable sites.

TABLE 5.2.1 The indication of the lower limits of hill-stream mean (Based on a survey 123 hill-streams in the North West Water region)

Invertebrates present

Indicated pH

4.4


рH

Nemouridae, Limnephilidae, Dicranota, Chironomidae and Simulidae, present in the absence of other macroinvertebrates

Siphlonurus lacustris	pH	4.6
Leptophlebia vespertina	PH	5.0
Isoperla grammatica	рН	5.0
Sphaeridae	рН	5.1
Brachyptera risi	PH	5.3
Hydropsyche instabilis	PH	5.3
Baetis rhodani	рН	5.5
Heptagenidae	рН	5.9
Gastropoda	рН	5.9
Ancylus fluviatilis	PH	5.9
Gammarus pulex	PH	5.9

Figure 21

Proportion of variation in the numbers of invertebrates in kick samples attributable to principal components of chemical and physical factors in South Pennine streams. (Only cases where more than 30% of the variance is explained by principal components are included).

- 3) Not all of the measured physico-chemical parameters have yet been included in the principal component analysis. The amount of variation attributable to the principal components may be increased when the remaining variables and the data from the Lake District sites are added.
- Table 5.2.2 Eigenvectors of chemical and physical components with principal components. High Eigenvectors indicate a strong correlation within any one component.

		Component Number					
	1	2	3	4	5		
Alkalinity	0.4586	0.0925	0.1253	0.5583	-0.2029		
Calcium	0.4891	0.0987	0.0675	0.0283	-0.4368		
Aluminium	-0.4189	0.2158	0.4048	0.0769	-0.6785		
Humic Acids	0.2671	0.5641	-0.3157	-0.6144	-0.1868		
рН	0.4560	-0.2331	-0.1858	0.1255	0.0072		
Magnesium	0.1557	-0.7086	0.2334	-0.4990	-0.2957		
Conductivity	0.2674	0.2458	0.7920	-0.1985	0.4305		

5.3 Discussion of the spatial and temporal patterns of distribution.

5.3.1 Cumbrian hill streams

Given the good indicator status of <u>Baetis</u>, it is justifiable to consider the distribution of acid restricted invertebrate communities as evidenced by lack of <u>Baetis</u>. The geographical pattern of its distribution in Cumbria was broadly comparable to that found for impoverished fish populations (See 6.6.1)

Most of the sites lacking <u>Baetis</u> were found in the headwaters of stream systems radiating from the western mountain mass of the Lake District.

Besides the upper Esk and upper Duddon catchments, affected sites included the extreme upper catchment of the Brathay, the upper main tributaries of Great Langdale Beck, the River Liza, and upper Lingmell Beck.

The main outlying sites lacking <u>Baetis</u> were in the upper Glenderamackin and upper Blea Beck (Lune) catchments. Where <u>Baetis rhodani</u> was not present on all sampling occasions the data showed that it was most likely to be encountered in mid-late summer samples. There were some indications that the frequency of occurrence was notably lower in spring samples from the more acid sites. An interesting example of what may be a real change in distribution during our survey was noted at the upper Derwent site at Seathwaite. No Baetidae were present in three separate seasonal samples during 1982, but a single autumn sample in 1985 yielded a number of specimens of <u>Baetis rhodani</u> and a single specimen of the caddis <u>Hydropsyche instabilis</u>, not recorded at the site in 1982. This improvement in macroinvertebrate fauna was matched by an increase in juvenile samonid population as noted in 6.1.3

When considering limited historic data from a series of sites down the River Liza (Prigg 1986b) in relation to recent kick sample records, it is concluded that whilst <u>Baetis rhodani</u> was found at middle and lower sites on the Liza prior to 1980, it was not found subsequently, possibly reflecting a critical acidification trend.

The invertebrate fauna of Spothow Gill on the Esk catchment was monitored before and after the liming exercise (See 6.6.2). The monitoring of the biota is continuing, but no recolonisation by mayflies or other acidification sensitive indicators has yet been observed.

5.3.2 Southern Pennines

As each of the sites has so far only been sampled on one occasion, no comments can be made on the temporal and spatial patterns of distribution of macroinvertebrates in the Southern Pennines.

5.4 Summary

- Great differences were found between the invertebrate communities inhabiting "acidic" (pH < 5.5) and non acidic (pH > 5.5) hillstreams in the Lake District and South Pennines
- 2. In streams of very low geometric mean pH (<4.5), which only occurred in the Pennines, only Nemouridae, Limnephilidae Dicranota sp., Chironomidae and Simulidae were found.
- 3. In streams of pH between 4.5 and 5.5 fauna was often abundant and diverse and included, in addition to those mentioned above, Annelida, Hydracarina, Protonemura sp, <u>Amphinemura</u> sp., Leuctra sp, Chlorperla sp, Dytiscidae, Sialis sp, Rhyacophila sp, Plectrocnemia sp and Tipulidae.
- 4. "Acid-sensitive" taxa occurred in streams with geometric mean pH's above 5.0. The abundances of these taxa gave statistically significant correlations with geometric stream pH and included Baetidae, Heptagenidae, <u>Gammarus</u> sp,Mollusca and Perlodidae. Principal component analysis applied to the Pennine data indicated that the abundance of these animals was related to a component loaded by pH, alkalinity, calcium and aluminium (negatively) and this component could be attributed with approximately 50% of the variation in the numbers of these animals.
- 5. The presence of Baetidae, Heptagenidae, Gastropoda, <u>Ancylus</u> <u>fluviatilis</u> and <u>Gammarus</u> sp can be used to indicate whether the pH of a water is suitable for salmonids.
- A more thorough analysis of the data is necessary and will be presented in the future.

6. FISH AND FISHERIES

- 6.1 Fish Distribution
- 6.2 Fish growth and recruitment
- 6.3 Migration and movement patterns

. . .

- 6.4 Fish mortalities
- 6.5 Historical information
- 6.6 Discussion of observations
- 6.7 Summary

1.0

6. FISH AND FISHERIES

6.1 Fish Distribution

6.1.1 Esk Fish Populations

In summer 1981, an electric fishing survey covering 23 sites through the Esk catchment drew attention to the apparently fishless state of the upper Esk catchment above the upstream limit of migratory salmonid access, and demonstrated a lack of salmonids in two streams readily accessible to upstream migrants and with a physical character that would be associated with salmonid nursery areas (Spothow Gill and unnamed tributary downstream of Spothow).

Futhermore, several tributary sites had abnormally low densities of resident juvenile salmonids, notably Blea Beck and Whillan Beck. In the case of Blea Beck there was no evidence of successful recruitment that year (no 0+ trout were captured).

Juvenile salmonid densities in the main river sites were very low, most notably at the most upstream site quantitatively sampled, Wha House Bridge.

The juvenile salmonids encountered were largely trout, salmon being found only at one tributary site, Whillan Beck (very low density of 0+ fish), and in one main river site at Forge Bridge.

The 1982 survey again indicated the fishless state of the upper Esk and its tributaries in all sampled sites above impassable falls downstream of the Esk/Lingcove beck confluence.

Spothow Gill still lacked salmonids and had only eels present, but one 1+ or older trout was found in the unnamed tributary downstream of Spothow Gill

The latest survey, in 1984 again showed no salmonids in Spothow Gill or the unnamed tributary downstream.

An interesting observation is that although the tributary streams retained comparable relative ranking in terms of fish stock density as between 1981-1982, in most cases there was evidence of an improved stock of 0+ fish in 1984. 0+ fish were present in Blea Beck and Whillan Beck had more trout, in both the 0+ and 1+ and older grouping than in 1981.

Many of the more acid tributaries and main stream sites had notably higher population densities of 1+and older salmonids in 1984 than in 1982 or especially 1981.(Prigg 1986a).

Another pointer to an improvement in fish stock between 1981 and 1984 was the distribution of salmon (salmon being more sensitive to acidification effects than trout). Salmon were present at only 2 sites in 1981, 5 sites in 1982 and 6 sites in 1984. However, juvenile salmon were still absent from the upper part of the Esk catchment, the most "upstream" record being a single individual from Birker Beck in 1984. No fish could be found in Blea Beck (Lune catchment) or Great Langdale Beck at the sites sampled. An abnormally low trout density was recorded from the River Liza site, and the salmonid stock density was even poorer on the River Derwent at Seathwaite.

These streams with poor fish stocks were subject to more detailed investigation. It soon became apparent that the Great Langdale Beck site was subject to complete drying under moderate drought conditions and that the total absence of fish was directly attributable to these physical conditions. However, it was also clear from a survey in July 1983 on a major tributary, Oxendale Beck, not so susceptible to droughting at the survey location, that the trout stock, although present in moderate density, had an unusual population structure, with younger age clases poorly represented relative to older fish, and fry of the year were absent.

Repeat sampling of the Blea Beck (Lune) site in June 1983 produced only three old large trout and a large eel in a 76 m long site. No juvenile trout or fry were present. An additional site 500 m further upstream was fishless,whereas some 500 m downstream, below the A6 road a reasonable trout population with a high proportion of yong fish was present. On several occasions in 1983 chemical samples taken through this reach demonstrated a rapid increase of calcium levels and pH with passage downstream.

The fish population of River Liza site was sampled again in October 1985 when a comparable impoverished stock was found. On this occasion two further sites downstream had slightly better trout stocks, though still relatively poor.

The River Derwent at Seathwaite was sampled again in October 1985, and had a markedly improved stock relative to 1982, with both juvenile trout and salmon densities increased. A site identified as of special interest in the 1982 survey was on the River Brathay at Fell Foot, where despite low mean pH and calcium (5.5 and 1.8 mg/l Ca respectively) a reasonable stock of trout was present. It was speculated that the stock might benefit by upstream migration from Little Langdale Tarn, which probably had a less extreme pH regime.

Sampling in June 1983 demonstrated a roughly comparable population at the Fell Foot site, which surprisingly included a number of American Brook Trout (Salvelinus fontinalis). It was later learnt that these fish had been stocked into Little Langdale Tarn in 1982. Two sample points, upstream of both Fell Foot farm and drainage from improved land in the vicinity, were also sampled on the Brathay in June 1983, and both yielded exceptionally low salmonid densities. Interestingly, at one site the four salmonids present were all specimens of Salvelinus fontinalis. The documented greater resistance of this species than Salmo trutta to acidification effects seems relevant in this location.

4

6.1.2 Duddon Fish Populations

In 1982 no evidence could be found of juvenile salmonid populations in Doe House Gill, Gaitscale Gill, Black Beck, and, more significantly, Tarn Beck at the site above Tongue House. Moasdale Beck and The Syke had abnormally low trout densities, with no evidence of 0+ fish, and Castlehow Beck had an odd population structure, having only 0+ fish present. The upper main river had a very sparse trout population. No eels were found at any sites in the catchment further upstream than Grassguards Gill, yet all other sites had eels present. Juvenile salmon were present in Tarn Beck upstream of Gobling Beck, Crosby Gill, Holehouse Gill and Logan Beck, and in the main river sites at Ulpha Bridge and Duddon Bridge.

Many of the tributary streams in the lower half of the catchment were quite productive nursery areas; in the upper catchment Hardknott Gill was the most productive trout nursery area, but its exceptionally high stock density in 1982 was partly an artefact due to drying up of large areas of the stream which concentrated of fish in residual flowing reaches.

The absence of juvenile salmon in the upper Duddon the Tarn Beck confluence was not catchment above anticipated by local Fisheries staff. То further investigate possible restrictive influences on salmon survival 5000 fed salmon fry were stocked into Tarn Beck upstream of Tongue House Farm, and a similar number was released into the upper reaches of Grassguards Gill, above impassable falls. The stocking was undertaken in May 1983. A follow-up survey in Tarn Beck in August 1983 showed no in situ survival, and similar findings were made on Grassguards Gill in September 1983. Three fish samplings in upper Grassguards Gill in 1982-83 failed to produce any salmonids; in fact the only fish found was one eel on one occasion.

A series of samplings of upper Tarn Beck between 1982 and 1986 showed at best exceptionally low trout densities above Tongue House Farm consisting of largely 1+ or older fish which may derive from a stock upstream in Seathwaite Tarn. Below Tongue House Farm, and particularly below the confluences of Long House and Sunny Pike Gills, trout densities improved, and evidence of successful recruitment as judged by the presence of trout fry of the year was noted.

6.1.3 Other Cumbrian Stream Sites - Fish Populations

In 1982 fish stock data was acquired on 25 Cumbrian hill covering a relatively wide range of stream streams productivity, but which had no previously known physical or water quality limitation precluding a resident juvenile salmonid population and were expected to contain such a fish fauna. The survey attempted to give a broad cover of possibly sensitive catchments and so for example, relatively harder water hill streams draining from the N.Pennines into the R. Eden catchment, (for which previous data showed uncompromised juvenile salmonid stocks) were not included.

As a result of a fish mortality in June 1984 on the upper reaches of the River Glenderamackin, electric fishing surveys were subsequently conducted in this catchment in May and November 1985. The circumstances of the probable acid event causing the mortality have been described (Prigg 1985b). It is clear from the fish surveys that the upper reaches of the Glenderamackin above Bannerdale Beck are virtually fishless, with no evidence of successful trout recruitment, but that following addition to the flow of the less acidic Bannerdale and Bullfell Becks the main river improves. The latter becks sustain trout (and salmon in the case of Bullfell Beck) and show evidence of successful trout recruitment.

In extending coverage of Lake District catchments, fish surveys were carried out in the Wastwater Catchment(Prigg 1985c), additional sites in the upper Derwent catchment (Langstrath Beck and Greenup Gill), and Buttermere tributaries (Warnscale Beck and Gatesgarthdale Beck). Trout were present at all of these sites (and salmon in abundance in Gatesgarthdale Beck); the only one to show no evidence of trout fry of the year present was Langstrath Beck, though trout densities were low at several of the Wastwater Catchment sites.

6.1.4 Acid Tarns - Fish Populations

The most striking finding of the gill netting surveys was the failure to demonstrate the presence of fish in Levers Water despite significant netting effort in October 1984 and September 1985. On both these occasions electric fishing of the two main tributaries Hawse Beck and Cove Beck also failed to find any trace of fish. (See 6.5.3 for information on historic fish populations).

The Seathwaite Tarn netting (using the same 7 survey nets used at Levers Water) of June 1983 yielded fifteen trout between 18.5 and 32.0 cm long, in good condition. Electric fishing of the main tributary, Tarn Head Moss Beck, demonstrated a fair population of juvenile trout, with fry of the year present.

In June 1985 no fish were found in Stony Tarn, but the Blea Tarn netting yielded large numbers of stunted perch.

6.2 Fish Growth and Recruitment

6.2.1 Growth and Condition of Fish

Consideration of the data on mean length of 0+ salmonids shows a number of upper catchment streams in the Esk and Duddon catchments to have very small 0+ trout present by comparison with generally more productive streams sampled at about the same time. There is also a clear tendency for trout fry in the main river sites on the Esk and Duddon to be larger at the more downstream sites.

Considering only the Esk data, there is a moderate consistency of relative ranking of sites based on 0+ trout length in 1981 and 1982, with for example Fisher Beck and Lin Beck producing 0+ trout over 2 cm longer on average when measured in July than Hardknott Gill and Dodknott Gill fish. The 1982 data were based on electric fishing the Esk sites slightly later in the season than the 1981 sampling (from four to nineteen days later depending on site), and despite the generally greater fry density in the 1982 survey, half of the 1982 sites had recorded mean length of 0+ trout greater than in 1981, though in many cases the differences are not statistically significant.

In all cases where 0+ salmon were recorded on the Esk, their mean length was lower than that of the 0+ trout with which they were competing.

The need to take account of density-dependent influences, and the problems of accounting for different times of sampling make a formal assessment of the role of pH in influencing the mean O+ salmonid lengths a difficult exercise. However, inspection of the data does suggest that where O+ trout populations exist in relatively highly acidic upper catchment streams they may well be of low mean length, but there seems to be no very clear and consistent general relationship between this quantity and stream pH regime as defined by our measurements of geometric mean pH or lowest recorded pH.

In considering biotic effects observed in acid hill streams it should be made clear that some of the factors that contribute to acidification susceptibility, such as minimal ground water contribution to stream flow, will also influence other aspects of the stream environment which are potentially limiting, including susceptibility to drought induced loss of wetted bed area, and temperature regime. The latter factor is particularly important to considerations of fish growth in waters of different chemical composition (Edwards et al. 1979). It is also noteworthy that an earlier study on the Duddon showed that temperatures of the upper basin were generally cooler than the lower basin and the cool periods persisted longer (Minshall and Kuehne, 1969). Moreover, certain Plecopteran life cycles were several weeks longer in the upper basin than in the lower basin (Minshall, 1969).

Another aspect of the growth performance of the fish stock observable in the course of the fish population survey was the length/weight relationship in the fish sample. Athough this was only formally investigated in the 1982 Esk catchment sampling, it was visually obvious in the course of measuring the fish in other samplings, that the condition factor of 1+ and particularly older fish in some of the highly acid streams was extremely poor. Field notes refer specifically to very thin older specimens in Duddon catchment sites at Moasdale Beck, Duddon downstream of Doe House Gill, and Duddon upstream of Cockley Beck Bridge

6.2.2 Recruitment

The sampling of salmonid fry of the year during electric fishing survey in summer or autumn gave a qualitative indication of successful recruitment at the sampled site in that year. In a number of the acidified sites no such evidence of recruitment was recorded, and in a number of cases the sparse population present was strongly biased in favour of older fish. Such findings might arise in a relict resident population which failed to recruit new stock in some "bad" years (due to e.g. higher susceptibility of early life stages to acidification-related stresses) or in a situation where a more or less fishless stream benefitted from upstream immigration of adults perhaps as potential spawners.

Sites at which a very low density of trout was present on some or all sampling occasions but no 0+ trout at the times of sampling include the Glenderamackin above Bannerdale Beck, Tarn Beck upstream of Tongue House, Moasdale Beck, River Brathay sites upstream of Fell Foot, Langstrath Beck, and Blea Beck (Lune).

6.3 Migration and Movement Patterns

6.3.1 River Duddon:

Data on pH, water temperature, and river discharge, as well as fish counts, have been available from the Duddon Hall counter site since May 1983. Fish movement over the counter has been recorded at a wide range of flows, but typically increases in discharge encourage upstream movement of fish. Most of this movement takes place during the few days following a spate when flows are declining, and in fact at peak flows, fish movement is reduced (See Figs.7-10 Duddon) As it is at these peaks at which the minimum pH values have been recorded it would be possible to conclude that low pH was inhibiting fish migration. However, an apparent inhibition of upstream movement of migratory salmonids at the peak of spates has also been reported for rivers such as the Lune where there is no evidence of significant reduction of pH during the peaks of spates (Stewart, 1973) Nevertheless, there is some evidence that low pH may be affecting fish migration in the Duddon because in 1983 and summer 1985, when lower minimum pH figures were recorded than in other periods, the failure of fish to move upstream at the peaks of spates was more pronounced. Initial observations suggest that fish movement is inhibited by pH 5.3 or less.

From the data obtained to date there is no evidence that water temperature is having any significant effect on migratory behaviour of salmon and sea trout in the Duddon.

6.3.2 River Esk:

Records of fish movement, flow, pH, water temperature and conductivity have been available from Cropple How site since mid-October 1985. By the end of December 1985 some 425 fish under 4 lb (1.8kg) and 61 fish over 4 lb had been recorded over the counter. Even the limited amount of data available to date has shown a pronounced inhibition of upstream movement of salmon and sea trout at peak flows when the minimum pH values were recorded. On the few occasions when an increase in flow did not result in a substantial drop in pH, inhibition of fish movement did not occur. Examples of this occurred on 5th November and 18th December 1985 when flows rose to 19.6 $m^{3}s^{-1}$ and 28.16 $m^{3}s^{-1}$ respectively, but the minimum pH values recorded were 5.50 and 5.62 (see Fig.9 Esk) On both these dates, 10 fish were recorded over the counter, whereas in the preceding few days only one or two fish per day had been recorded. On the basis of the small number of observations available to date, it would seem that fish movement is reduced when the pH falls below about 5.5

6.3.3 General Comments:

As yet it is not possible to state categorically that low pH flushes are inhibiting upstream movement of salmonids, because these low pH events coincide with peak flows which may in themselves be an inhibitory factor. However, collection of more data should help to resolve this matter. Observations on behaviour of fish when increased flows occur without a significant drop in pH will be particularly valuable.

The data runs available to date are not long enough to determine any trends in the abundance of salmon or migratory trout in these two rivers.

	- Rivers Esk and Duddon					
	<u>1981</u>	<u>1982</u>	<u>1983</u>	<u>1984</u>	1985	
Duddon:						
Salmon - nets	5	1	59	51	10	
Salmon - rods	5	23	5	7	31	
Sea trout - nets	11	15	84	101	38	
Sea trout - rods	43	31	13	13	20	
Esk						
Salmon - rods	15	7	4	2	38	
Sea trout - rods	85	27	27	19	80	
	14.1					

Reported catches of Salmon and Sea Trout

6.4 Fish Mortalities

On two occasions in recent years there have been simultaneous fish mortalities in the Rivers Esk and Duddon associated with low pH events.

In June 1980, when a spate occurred following a prolonged dry period, there was a serious mortality in the Esk involving over 100 adult fish and a much larger number of juvenile salmonids. Most of the adults killed were sea trout which had just entered the river from the sea, but a few salmon were also killed. The mortality occurred over several days, and pH levels of 5.0 were recorded. It is suspected that during the peak flows the pH fell even lower. At the same time, there was a report of six dead adult sea trout being found in the River Duddon.

A second set of mortalities occurred in mid-September 1983 when 34 fresh run sea trout and 2 salmon were killed in the lower reaches of the Esk, and 2 dead sea trout and one dead salmon were reported from the Duddon. On this occasion there were no reports of dead juveniles being found.

Records of pH were available for both rivers at this time. In the Esk the pH fell to below 4.5, and then lay for several days between 5.0 and 5.5. (See Fig 20).

Conditions were not as extreme in the Duddon, but on two days in mid-September the pH fell to 5.0.

It is suspected that the actual cause of the fish deaths was elevated concentrations of aluminium, (which is also at its most toxic at pH 5) exacerbated by the reduction in calcium concentrations.

6.5 Historical Information

6.5.1 Electric Fishing Surveys

Numerical fish stock data should provide the best evidence for the historic fishery status of the streams under study, but unfortunately the majority of these clean hill streams received little survey attention in the past.

In the period 1972-75, sites on Smithy Beck, Whinlatter Gill and Aiken Beck, which are all catchments with conifer plantations, were examined to investigate the success of salmon fry planting in hill streams, and detailed data on fish and invertebrates is available (Prigg 1973, Prigg 1976) There was no evidence in the 1982 survey of a decline in the juvenile salmonid nursery potential of any of these streams relative to the 1972-75 surveys.

A limited electric fishing investigation was carried out on the River Liza (another catchment dominated by conifer plantations) in August 1973. A repeat survey at this site in October 1985 showed no significant differences, with a comparable low density trout population and fry of the year still present. Although it was clear from a full consideration of recent chemical and biological data on the Liza (Prigg 1986b) that the fauna was notably restricted by acidification, it was concluded that there was no evidence for a decline in trout stocks over the period concerned.

.

7

6.5.2 Catch Returns by Licence Holders

Another source of historical information is fish catch data for salmon and sea trout, provided as licence returns by anglers and commercial fishermen. Failure of a high proportion of licensees to make returns, and the relatively uncritical reliance on accurate licensee response, serve to make such records an index of catch rather than a precise measure of it. The records present an even more tenuous picture in relation to stock, when major variables such as effort, catchability, and channel conditions are not subject to detailed analysis.

However, even allowing for such major provisos, it was considered worthwhile to look in rather broad terms at the migratory fish catch returns in the Esk and Duddon in their own right and in relation to other local game Most local migratory fisheries showed high fisheries. catches in the mid 60's falling away dramatically as the onset of 'salmon disease', U.D.N. (first observed in Cumbria in the River Calder, Ehen and Irt in June 1966), influenced local fisheries. During the late 60's and early 70's there was a general trend of decreasing returns for migratory fish. Further, although it could be argued that whereas the Eden and Derwent salmon returns, both in total and for rods only, show some signs of recovery the group of South West Cumbrian salmon fisheries, comprising the Ehen, Irt, Calder, Esk and Annas and some minor streams, show no clear evidence of recovery.

Salmon rod catch data for these latter rivers show that the greatest decline has been on the Ehen, which provided the largest returns in this group in the early sixties. In contrast the relatively small returns from the Esk proportionately less affected with 1977 appear а particularly good year. Official records also show very high sea trout returns for the year 1977 on the Esk. Both these findings seem odd in relation to reported angler complaints concerning the Esk. It seems possible, on closer examination (Prigg 1982), that the 1977 data for the south west Cumbrian River Esk may have benefitted by mis-assignment of some returns referring to the Border Esk.

The salmon returns for the S.W. Cumbrian nets and fixed engines, largely attributable to the fixed engine (garth) operating on the estuary of the Esk, show a marked decline in the late 70's, though variable fishing effort may be a Salmon returns from the contributory factor Duddon estuarine fishery, (three draw nets), show some recovery from the post U.D.N. decline, though 1981 returns were particularly low. (It is known, however, that the efficiency of this fishery is highly susceptible to changes in channel configuration). Longer term records of sea trout catches in the Duddon are available than for the Esk where returns for sea trout were not sought prior to 1976. Again a post U.D.N. decline is noted though it is not as marked as that reported by Egremont and District Anglers' Association from their own catch records on the (evidence submitted to Ennerdale Water Public Ehen Enquiry, 1980). In view of claims that the Ehen fishery has been adversely affected by water abstraction, its status as a control against which to judge the Esk and Duddon is in doubt.

.

It is also true that although the Esk and Duddon are the most acidified major river catchments in our area, the Ehen system is not unaffected. Thus, although an extensive electric fishing survey in 1982 showed no evidence of fish stock restriction attributable to pH regime in the main river Ehen downstream of Ennerdale Lake, observations show that the River Liza upstream of Ennerdale Lake has a chemical regime which is restrictive for salmonids. The historic role of the Liza in the migratory fish economy of the Ehen is unclear, but it has been suggested that its contribution to the salmon production of the Ehen system was once more significant than it is today.

6.5.3 Records and Recollections of Local Observers

During a survey of land use and farming practice (Robinson 1984), local anglers and farmers in these two catchments were asked to give their views on the past status of angling and for their general observations on the numbers of fish seen, migratory fish spawning and the areas in which the main spawning was concentrated. In addition it was possible to examine the angling diary of a fisherman who fished the Esk from 1898 to about 1945. Anglers and farmers reports indicated that in the last 10 years or so there has been a dramatic decline in the numbers of migratory fish caught and in the numbers of fish in the river. The decline is well illustrated by the marked reduction in the numbers of migratory fish now seen in the main spawning areas on both rivers; above Wha House Bridge on the Esk, and above Dale Head on the Duddon. In these upper reaches in the main rivers there has also been a substantial decline in the numbers of fish observed spawning in the tributaries. Fish now spawn only in those streams least affected by acidification and even in these, numbers are reduced.

The once viable trout fishery on the Esk has completely disappeared. Of the tributaries only two can now be said to hold stocks of takeable trout, those in Whillan Beck and Birker Beck, both streams relatively unaffected by acidification. However, the once productive trout fishery in Hardrigg Gill at the top of Whillan Beck has now ceased to exist. While a trout fishery is still present in Devoke Water and Burnmoor Tarn, Stoney Tarn which still had a population of trout in 1951 is now completely fishless. This probably indicates the the upper reaches of Blea Beck are similarly affected.

Notable sites where there is no longer a fish population but which local sources describe as yielding trout to anglers historically are:-

Stony Tarn ("still had a population of trout in 1951") Lingcove Beck ("late 60"s")

Upper Esk on Great Moss ("up to mid 60's")

Upper Grassguards Gill (information in 1983 that "fish caught above falls thirty years ago")

The most significant record of such apparent loss, though is in relation to Levers Water. In "The Tarns of Lakeland" by W. Heaton Cooper first published in 195, the author states :- "There are plenty of good trout in Levers Water, and many more have been taken out of it, sometimes with a rod and sometimes by the deadly and illegal otter or lath, a board with a keel and several hooks, that is quided by two lines and so can cover most of the tarn". Such poaching activity would nowadays be fruitless as judged from the gill netting surveys. Levers water is operated as a water supply reservoir, and long serving staff at the reservoir recollect two small trout being found on a filter screen from the source about ten years ago. There have been no more recent indications of the presence of fish.

Data published by the Freshwater Biological Association (Carrick and Sutcliffe 1982) show Levers Water with mean pH of 4.7 and negative alkalinity in the period August 1974 - March 1978. A single record from nearby Seathwaite Tarn during that period, noted in the same publication, shows pH 5.1 and negative alkalinity. The recent netting and electric fishing surveys in Seathwaite Tarn during which pH values in the Tarn as low as 4.5 were recorded, showed a viable native trout population to be present. However, given the likely borderline status of this tarn's water quality in relation to trout survival it is interesting to note the description of an unusual fish mortality which occurred in this water in June 1956. The event is recorded in the Lancashire River Board 6th Annual Report 1957, and in the aforementioned "The Tarns of Lakeland" by W. Heaton Cooper. The accounts do not conflict, but the latter is much fuller, as follows:-"Albert Dixon, of the Freshwater Biological Association, told me that a few years ago they received a request from the Barrow Corporation to go up immediately and investigate there. A large number of trout had been found dead in one place near the outlet, and poisoning was suspected. They found no trace of any impurity in the water or the fish. They did find, however, that all the inlet streams were packed with trout. There had been a drought followed by thunderstorms the day before the fish were discovered, and it was thought that lightning had struck the water in one part of the tarn, killing the fish, and that the shock throughout the whole tarn had frightened all the other trout". With our present knowledge of acidification effects, such an event nowadays involving, apparently, heavy precipitation following a drought and localised aggregation of fish in havens with preferred conditions, would certainly require us to consider some type of acid event.

6.6 Discussion of observations

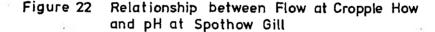
6.6.1 <u>Geographical distribution of sites with impoverished</u> fish stock

Sites with no demonstrable fish population or exceptionally low stock densities are mostly found congregated in our study area in a relatively tight spatial grouping in the upper parts of the drainage systems associated with the western mountain mass of the Lake District, in areas where the underlying rock is of the Borrowdale Volcanic series, and where annual rainfall exceeds 2200 mm/year and in many sites 2800 mm/year.

with comparable faunal Two main outlying areas upper identified: the restrictions have been Glenderamackin which drains a steep upland catchment underlain by Skiddaw Slates and notable for very low calcium levels (mean ca 0.6 mgCa/l), and the upper catchment of Blea Beck (Lune) draining a region of Shap granite.

The most affected sites, listed in Appendix B, are near or above the limit of human settlement in the valleys where they occur. They have no improved agricultural land in their catchment and the commonest land use on the poor acid soils is rough grazing for sheep. The catchment of Black Beck, and to a lesser extent upper Grassguards Gill is dominated by coniferous plantation, and the upper Blea Beck (Lune) area is a grouse moor.

The streams with few or no salmonids had no marked geographical distribution within the South Pennines. Except for Hurst Reservoir's feeder streams, they were all very brown waters draining peat bogs or peaty soils overlying steep unimproved uplands (In contrast to the Lake District sites, trout were not detected in any of the noticeably peat-coloured waters in the South Pennines). The feeder streams of Hurst Reservoir were clear waters draining steep heather/cranberry moorland.


6.6.2 Chemical condition of sites with impoverished fish stock

The affected sites were characterised by low mean pH and low calcium concentrations, and often elevated aluminium levels in clear water (low humic) conditions. Early work in 1981 and 1982 suggested that there was a clear relationship between the pH regime of a stream and the probability of it being fishless or having an exceptionally low fish density or odd population structure, with streams showing geometric mean pH at or below pH 5.6 likely to be affected. More recent surveys support this general view, and have given good examples of improving fish stocks over short downstream distance as chemical conditions become improved by less acidic drainage inputs. Such improvements have been observed on Tarn Beck, Blea Beck (Lune), and the upper Brathay.

The impact of land use patterns and resultant drainage water chemistry is demonstrated in two small adjacent sub-catchments of the Esk, Doddknott Gill and Spothow Gill, the streams joining prior to a common confluence with the Esk. Dodknott Gill differs from Spothow in that it flows through improved drained grassland in the valley bottom, the upper catchments of both streams being Dodknott Gill is less acid and has a low comparable. density trout population; Spothow Gill lacks salmonids. In July 1982 five trout from Doddknott Gill were placed in a fish cage in Spothow Gill. They survived a 48 hour exposure apparently unharmed, demonstrating the absence of acute toxicity to the life stage exposed (1+ and 2+ fish) within Spothow Gill.

Subsequently a series of caged fish exposures of longer duration, extending in some cases through periods of high flow with increased acidity and aluminium, and diluted calcium levels have been undertaken and reported (Prigg 1985a). The resulting survival times of trout in Spothow Gill, and an unnamed tributary downstream of Spothow Gill, are relatively consistent with predicted survival times calculated using the regression equation developed from observation of pH, aluminium and calcium effects on mortality in Welsh streams in the acidified Upper Tywi catchment (Gee and Stoner 1984).

The final demonstration of the beneficial role of calcium came with the liming of the upper catchment of Spothow Gill in June 1985. In July 1985 trout fry were stocked in Spothow Gill, and in the unlimed unnamed tributary downstream Spothow Gill as control. At the end of September 1985 a high density of stocked trout fry remained in the lower reaches of Spothow Gill, but no trout could be found in the unnamed tributary. When last surveyed in March 1986 a good population of stocked trout still remained in Spothow Gill, a stream in which, prior to liming, no wild trout had been found and in which caged trout died under high flow conditions.

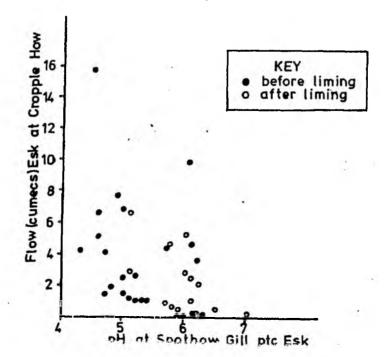


Fig. 22 shows how the relationship between observed pH in Spothow Gill and river flow (at a downstream site) has altered since the liming. In general the pH appears to have increased by around 1 pH unit (probably rather less at high flows). It certainly seems that the applied limestone has been capable of reducing the severity of acid episodes by increasing the pH and calcium concentrations, and reducing both the concentration and the toxicity of dissolved aluminium present.

6.7 Summary

- An electrofishing survey of the River Esk system showed a lack of salmonids in two accessible acidic tributaries and abnormally low densities in several other acidic tributaries. A particularly low relative abundance, or absence, of 0+ salmonids in such streams indicated recruitment failure.
- 2. There was a noticeable general improvement in 0+ salmonid stocks in the Esk system between 1981 and 1982 and an increase in the densities of 1+ and older fish between 1981 and 1984.
- 3. In the upper half of the Duddon catchment fish stocks appeared to be more severely affected by acid-stress than in the Esk there being generally very low salmonid densities in both the tributaries and main rivers. Even eels, which appeared to be more acid tolerant than salmonids, were not found in any sites in the catchment upstream of Grassguards Gill. O+ salmon planted into two of these fishless sites in May 83 were not recaptured in September 1983.
- 4. Further work indicated that low pH and associated factors had similar pathological effects on salmonids in other Lake District hill streams.
- 5. There were indications that the growth and condition of brown trout was less in acidic than non-acidic hill streams.
- 6. Although not conclusive, early evidence suggests that upstream migration of salmonids was inhibited more during the peak of spates in acidic than non-acidic streams. Initial observations on the Esk and Duddon suggest that movement was inhibited by pH 5.3 or less. No relationship between fish movement and temperature was found.
- 7. On two occasions in recent years there have been simultaneous mortalities of salmon and sea-trout in the River Esk and Duddon associated with low pH events.
- 8. Although anecdotal records and catch-returns indicate a decline in the fisheries of the Esk and Duddon this decline may not be solely attributable to acidification. Unfortunately although scientific surveys of the relevant fisheries have been performed in recent years, there is a general paucity of relevant historic data.
- 9. There are indications that liming of Spothow Gill has resulted in conditions becoming more suitable for trout. Planted fry have survived for almost a year.
- 10. At the present time the fish data for the S.Pennines are still being evaluated, but there is a consistent relationship emerging between water quality conditions and aspects of the fish status in acidified streams and lakes. Fish densities generally decrease below geometric mean pH 5.8 and waters with geometric mean pH below 5.0 are likely to be fishless.

7. LAND USE CHANGES IN S.W. CUMBRIA

.

7.1 General

7.2 Industrial activity

.

7.3 Agricultural activity

7. LAND USE CHANGES IN S.W. CUMBRIA

7.1 General

Land use in the three areas Esk and Duddon Valley and Wasdale Head was studied in detail. In each area hill farming was the general farming activity, though some dairy farming was carried out in the lower parts of the Esk and Duddon Valleys. There was no significant afforestation in the Esk Valley or at Wasdale However, extensive planting by the Forestry Commission Head. has taken place in the Duddon Valley. The most significant was the Dunnerdale Plantation planted between 1937 and 1954 covering During 1984 and 1985 this was an area of some 400 hectares. extended to 600 hectares by the completion of an extension area and filling of deciduous woodland in the lower part of the Duddon Valley further contributed to the total area. Coniferous plantations amounted to 5% of the overall area of the Duddon catchment.

7.2 Industrial activity

A major change in industrial activity in the Esk Valley related to mining and quarrying. Two main haematite mines North Gill (1870-1922) and Ghyll Moss (1870-1877) with a further small mine at Christcliffe operated in the valley. This mining resulted in the construction of a mineral line from Ravenglass to Boot. Following the closure of the mines it continued in industrial use until 1950 conveying granite from Beckfoot Quarry to Ravenglass. The line was subsequently replaced with a narrow gauge and still operates conveying visitors between Ravenglass and Boot.

Much of the deciduous woodland in the middle and lower reaches of the valley were until the beginning of this century, managed as coppice woodland producing timber suitable for charcoal making for the local smelting industry at Duddon Bridge, Millom and Haverigg. This coppice woodland has been allowed to revert and much was in poor condition.

Industry in the Duddon Valley was in the past limited to quarrying at Walna Scar and the management of deciduous woodland as coppices for charcoal production. Much of this was for the smelter at Duddon Bridge but also for iron production at Haverigg and Millom.

7.3 Agricultural activity

In both valleys agriculture largely comprised hill farming, sheep and some cattle. While the sheep farming has varied little this century, changes have occurred in relation to cattle. Originally cattle were limited to hill breeds which grazed the open fell land during the summer months, being brought down to lower land during the winter. Many farms have now changed or were changing to pedigree beef stock. This was kept on the lower pasture during the summer and housed over the winter months in byres. There has therefore, in the last few years, been a reduction in the numbers of cattle grazing the open fell. A major change in general farming practise has resulted in. a reduction in the quantity of lime applied to by-land grazing in the last 10 years. Between 1940 and 1976 when the general liming subsidy operated, annual application at rates up to 5 tons/acre was common throughout the whole of the Esk Valley and the upper half of the Duddon Valley above Ulpha. Since 1976 the area of land in these areas which has been limed has fallen significantly and in addition rates of application were limited to 2 tons/acre. Liming of grazing land in the lower part of the Duddon Valley was not so great as in the Esk during the period between 1940 and 1976. Rates of 2 tons/acre at 2 to 3 year intervals were the norm. This no doubt reflected the generally less acidic nature of the soil in this area.

In the Wasdale Head area, farming in this area was typical hill farming, with cattle, (Robinson, 1986) with little significant change in the general pattern of cattle rearing. Cattle were grazed on the fell land in summer and only brought to the lower pasture in winter. Most were over wintered in byres. The general usage of lime did not appear to have changed as significantly as on the Esk and Duddon catchments. Between 1940 and 1976 liming was undertaken at 2 to 3 yearly intervals, applied at 2 tons/acre. In the last 10 years there has, however, been some reduction in the frequency of application.

7.4 <u>Summary</u>

Whilst there have been a number of changes in land use in S.W.Cumbria in the last century, the most significant with regard to water quality is thought to be the reduction in agricultural liming since 1976. Calculations (Crawshaw, 1984) suggest that the amount of lime applied per annum prior to 1976 would have comprised a major component in the calcium budget of the catchment. This situation is peculiar to the Esk Catchment and leads to a possible strategy for improving water quality in the middle and lower reaches of the catchment, namely restoring the levels of agricultural liming to their former levels. This, and other possible remedial measures are discussed more fully in Section 8.

8. DISCUSSION

8.1 Possibilities for Future Remedial Action

8.1.1 Stream Liming

Since at least part of the problem of reduced salmonid populations is likely to be due to recruitment failure, it follows that any option for remedial action which can affect recruitment directly is worth investigating. Stream liming, whilst it is labour intensive, has the advantage of being capable of being directed towards specific vulnerable streams. It is not necessary to carry out a blanket liming of all tributary streams.

Following what appear to be encouraging results from a pilot stream liming exercise on a fairly acidic tributary (Spothow Gill), efforts are now being directed towards less acid streams where spawning success is marginal. One stream in the Esk (Fisher Beck) and one in the Duddon (Tarn Beck) have been selected for further study. Following liming and restocking in May-June 1986, both biological and chemical quality will be monitored over the next few years.

In all cases 15 mm limestone chippings were used. The intention was to select a size range that would be large enough not to be washed out in a spate, but not too large that the surface area to volume ratio was unfavourable. On the result to date this choice seems a reasonable one.

8.1.2 Liming of standing water bodies

This is an option which has not been actively pursued for practical reasons and because the effect on overall salmonid populations in the most affected catchments was likely to be minimal. However, two small acidic trout fisheries which came to our notice as a result of mortality acidification-related trout have been successfully limed. By controlled useage of any necessary top-up water from the highly acid inflow stream (avoiding flow addition under high flow condition) and by a programme of liming begun in 1983 the owner of a trout lake at Knott End Farm, Eskdale has developed a first class stillwater trout fishery. Monitoring on this site reflected both the improvement in chemical conditions and invertebrate fauna, the latter including the in colonisation by the mayflies Cloeon dipterum and Centroptilum luteolum.

The other site was a small moorland tarn, Flodders Tarn, near Appleby, outside our most vulnerable geographical area, but susceptible to acidification by virtue of level maintenance being dependent on direct precipitation, intermittent inflows of surface water from local peaty soil, and very limited groundwater storage in a perched aguifer of a thin layer of glacial sands. Both stocking failures involved hatchery reared rainbow trout succumbing in waters circa pH 5, obviously inappropriate to this relatively acid sensitive salmonid.

After liming, rainbow trout thrived in Flodders Tarn, but regrettably in the exceptional July conditions in 1983 upper lethal temperature limits were exceeded in this small, unshaded water.

8.1.3 Catchment liming

The River Esk catchment is one of very few rivers where not only have acid related mortalities of fresh run salmonids taken place, but continuous records of pH are available for the duration of one of these mortalities.

Land use changes in the catchment during the last 50 years have been studied in detail, and a change in the pattern of agricultural liming was one of the major changes identified.

It is unlikely that catchment liming will prove to be a practical proposition in many catchments affected by or threatened with acidification. However, where there is a substantial agricultural area in the affected catchment, and the overall levels of calcium are very low, then it is certainly worthy of consideration. In the case of the Esk, as was indicated in para 7, a liming strategy which simply reverts to what was normal agricultural pratice for some decades prior to 1975 may well have a substantial effect on the main river.

It is hoped that this agricultural catchment liming strategy, together with a selective stream liming strategy will prove of considerable value in restoring the depleted fisheries of the Esk catchment. It will also provide valuable information, not available from other studies, as to the rate of loss of calcium to surface waters from an application of limestone, to soils of varying degrees of acidity, in an area of high acid deposition. This information is an essential component in predicting the impact of agricultural liming as a counter to the effects of acid deposition.

8.2 The Impact of Acid-Stress on Macro-Invertebrates and Salmonids in Hill Streams

8.2.1 Benthic Macroinvertebrates

The results of this investigation the support generalisation that benthic invertebrate communities are impoverished in acid-stressed environments (e.g. Haines, 1981; Sutcliffe, 1983; Stoner, Gee and Wade, 1984; Aston et al 1985; Simpson, Bode and Colquhoun, 1985). However, many of the streams sampled in this study contained extremely few (< 6) taxa. A nation survey of hill-stream invertebrate communities in Great Britain indicated that samples from the North West were drawn from very soft waters (\langle 10 mgl⁻¹ CaCO3) and had fewer taxa than those from any other region (Warren et al 1986).

Sutcliffe and Carrick (1973) reported that in the River Duddon (one of the catchments sampled in this study) the faunas of streams with pH always less than pH 5.7 or fluctuating below pH 5.7 were characterised by 13 common or abundant taxa (the "Plecopteran Community") including six Plecoptera, four Trichoptera and three diptera, while in streams of pH greater than 5.7 the same taxa were common but in addition Ephemeroptera, the Trichopterans Wormaldia and Hydropsyche, the limpet Ancylus and Gammarus occurred. The same generalisation can be applied to the invertebrate faunas of the catchments in the present study with the minor addition of Nemura species to Sutcliffe and

Carrick's "Plectopteran Community.

The use of benthic macroinvertebrate as indicators of stream pH (Table 5.2.2) will generally be more meaningful than a limited number of point chemical measurements because the invertebrate community will be sensitive to the recent history of stream pH and, in particular, to episodic events which are likely to be missed by point chemical Certainly, whether a stream experiences measurements. "acid-stress" or not can be determined with far greater confidence by the analysis of a single three-minute kick-sample than by the analysis of a single sample of water. The tolerances of the various invertebrate taxa to stream pH indicated in this study (Table 5.2.2) are similar to those found by other workers (for review see Haines 1981). A TWINSPAN (Hill 1979) classification of hill stream invertebrate communities based on the results of a national survey selected Perlodidae, Hydropsychidae, Heptagenidae and Baetidae as the first level dichotomy separating soft acidic waters from harder more alkaline waters. (Warren et al 1986).

The use of <u>Baetis rhodani</u> to indicate the suitability of streams for salmonids as suggested here was discussed by Raddum and Fjellheim (1984) and a detailed account of the use of Ephemerophtera as indicators of stream pH is given by Engblom and Lingdell (1983).

Principal component analysis of the Pennine invertebrate data indicated that component 1 (alkalinity, aluminium, pH and calcium) accounted for approximately 50% of the variation in the abundance of acid-sensitive taxa (Gastropoda and <u>Ancylus</u>, <u>Gammarus</u>, Baetidae, Heptagenidae and Hydropsycidae) and the unexplained variation in these cases was less than 41% In contrast, Aston et al (1985) found that the principal components could only be attributed with more than 20% of the variation in the case of Ephemeroptera where component 1 (total dissolved solids) accounted for approximately 25% and component 2 (pH, aluminium and alkalinity) accounted for approximately 20% and in the case of Coleoptera where component 2 accounted for approximately 30% of the variation. The small amount of variation explained by Aston et al (1985) may be partly due to the pooling of data for acid-intolerant taxa within groups such as Plecoptera and Trichoptera. However, as Aston et al (1985) suggest, the importance of component 1 in their study is probably due to the inclusion of some District streams with relatively high calcium Peak (contributing to component concentrations 1) which probably reduces the impact of component 2 (pH, alkalinity and aluminium) on the invertebrate communities.

As previously mentioned the inclusion of more variables and all of the North West Region's sites in a Principal Component Analysis should prove valuable.

8.2.2 Fish

investigation was initiated by mortalities of This migratory salmonids simultaneously in the Rivers Esk and Duddon during a period of low pH, low alkalinity and high aluminium concentration - an acid episode. However, the major effort was expended in an investigation into the extent of acid-stressed hill streams in the North West typified by Water region. Such streams are the macroinvertebrate faunas previously characteristic mentioned and poor salmonid populations ((0.2 m^{-2}) with particularly low densities or an absence of 0+ fish (e.g. Stoner, Gee and Wade, 1984; Turnpenny, 1985)

In the laboratory it has been shown that acid-stress in salmonids is caused by the direct effects of pH and to a greater extent by the increased toxicity of aluminium ions (particularly $A1^{3+}$ and hydroxides of aluminium (>250 gl⁻¹) at low pH (for short review see Warren et al,1986) Brown (1983) notes that in general pH 5.5 is less toxic than pH 4.5 at low aluminium concentrations but more toxic at high aluminium concentrations. Calcium concentrations of 1 to 2 mgl⁻¹ reduce the pathological effects of low pH and high aluminium concentration (Brown 1983).

It is difficult to determine whether or not the poor salmonid populations in acid streams in the North West region are the result of chronic or acute acid stress. However, the lack or extremely low densities of salmonids in these streams may be due to the acid induced mortalities of eggs and alevins during the winter and early spring when these particularly sensitive forms are present and acid episodes are more likely

Although there has been a notable decline in the salmonid fisheries of the Esk and Duddon over recent decades this may not be solely attributable to acidification as declines have also occurred in nearby non-acidified However, it can be concluded that hill catchments. streams in these catchments and many others in the North West Water region experience acid stress because (1) Salmonid mortalities associated with acid episodes have been observed; (2) abnormally low density salmonid populations with characteristic Plecopteran dominated acid-tolerant invertebrate communities have been found in many such hill streams; (3) the distribution and abundance salmonids and acid-intolerant invertebrates of is statistically significantly correlated with pН and associated parameters; (4) experimental liming of such streams has improved conditions sufficiently for salmonids to survive, and (5) early evidence suggests that salmonid migration is inhibited by low pH.

As a Water Authority is is our duty to maintain and improve fisheries within our region. Towards this end we intend to continue experimental liming to assess its use in the amelioration of the effects of acid stress in nursery streams.

8.3 Use of continuous monitors in assessing trends in acidity

One of the principal difficulties in Britain at least, in identifying the impact of acid deposition on surface waters has been to establish trends in acidity. Whilst Batterbee (1983) has been able to reconstruct the historic pH records of some standing waters from examination of the sediment diatom records, very little relevant data exist for rivers and streams. Even where data are available, the problem of interpreting the effect of short and long term weather variations, makes identification of trends difficult.

However, since a key question in scientific and governmental circles has been the extent to which reduction in acid emissions would influence pH of surface waters, the identification of trends in a period when emisions are changing becomes increasingly important.

Whilst the main intention of the work using continuous monitors in SW Cumbria, was to discover more about episodic changes and their significance, it may well be that the monitors can be developed as useful tools for identifying trends.

In the relatively few years that the monitors have been operating since 1983, significant differences have been observed in the flow/pH relationship from one year to the next (see Para 4.9), although variations within a year seem less significant. If these differences between one year and another can be related to changes in likely local deposition patterns, then an important link between emission changes and surface water quality changes would be established.

This work is at an early stage and is being developed with the co-operation of the UK. Acid Waters Review Group.

-49-

9. CONCLUSIONS

- 9.1 The results of chemical monitoring during the period 1982-86 at a total of 130 sites in North West England have been examined. When taken together with available biological data especially historic fisheries information, they are consistent with the hypothesis that a number of these sites, with sensitive geology, have become acidified during the last twenty years.
- 9.2 A substantial number of the most acid sites were found to be fishless or had abnormally low densities of salmonids ($(0.2m^{-2})$ often with distorted population structures indicating recruitment failure.
- 9.3 It is suggested that the presence of Baetidae, Heptagenidae, <u>Gammarus</u>, Hydropsychidae and Gastropoda can be used to indicate that a water is suitable for salmonids with respect to acid-stress.
- 9.4 The fisheries of the Esk and Duddon have declined over recent decades and whilst this may not be solely due to acidification, on two occasions in recent years there have been simultaneous salmonid mortalities associated with low pH events. On the second of these two occasions a complete record of pH changes was obtained from continuous monitoring equipment. So far as is known such a record of a mortality of fresh run salmonids is unique, in Britain at least.
- 9.5 Since 1980 trends in fish populations have tended to improve in the catchments shaded and no mortality of fresh run fish has been observed since September 1983.
- 9.6 Preliminary analysis of the data from the fish counters suggests that upstream movement of fish is inhibited by low pH episodes, where the pH drops to 5.3.
- 9.7 Continuous river monitoring has demonstrated a remarkably consistent relationship between river pH and river flow, which appears to be independent of rainfall pH. Changes in the nature of this relationship from one year to the next are being in investigated as a possible tool for examining trends in acidity by eliminating the effect of seasonal and meteorological factors.
- 9.8 A combination of selective tributary liming (Esk and Duddon) and restoration of agricultural liming to pre 1975 levels (Esk catchment only) shows promise as a short-term measure for halting the decline in fisheries in these two catchments.

REFERENCES

Aston,R.J.; K.Sadler; A.G.P.,Milner and Shyman (1985). The effects of pH and related factors on stream invertebrates. Central Electricity Research Laboratories Report TPRD/L/2792/N84.

Battarbee (1984). Diatom analysis and the acidification of lakes, Phil.Trans R.Soc Lond.B. 305, 451-477.

Brown, D.J.A. (1983) Effects of calcium and aluminium concentrations on the survival of brown trout (<u>Salmo trutta</u>) at low pH. Bull.Env.CONCAM. TOKICOL 30,582-587.

Bull,K.R. & Hall,J.R. (1985). Effects of acid rain on freshwater ecosystes in NW England. (Interim report to Department of the Environment).

Bussell,R.B., 1978. Fish Counting Stations. Notes for guidance in their design and use. Department of the Environment, Central Water Planning Unit, Reading.

Carrick T.R. and Sutcliffe D.W. (1982) Concentrations of major ions in lakes and tarns of the English Lake District (1953-1978) Freshwater Biological Association Occ.Pub.No.16

Conroy, N.K. et al (1976). Influences of the atmosphere on Lakes in the Sudbury area. J.Int. ASSOC. Great Lakes Res 2, 146-165.

Crawshaw, D.H. (1984). The effect of acid run-off on the chemistry of streams in Cumbria. Ref TSN/84/3 NWWA.

Dahl,K. (1926). Acidity of water and the effect on trout fry. Tidsskrift. Norste Landbr., 232-242.

Edwards R.W., Densem J.W. and Russell P.A. (1979) An assessment of the importance of temperature as a factor controlling the growth rate of brown trout in streams. J.Anum. Ecol. 48 501-507

Engblom E and P-E. Lingdell (1983) Botton faunas anvandbarhet som pH-indikator. NATURVARDVERKET REPORT SNV pm 1741.

Ferguson and J.Lee (1983). At The Annual General Meeting of the British Ecological Society, Durham.

Gee,A.S. and Stoner J.H. The effects of seasonal and episodic variations in water quality on the evology of upland waters in Wales. Paper presented at IWPC/IWEC meeting on Acid Rain. Birmingham, March 1984.

Gjessing et al (1976). Effects of acid precipitation on freshwater chemistry from Research Report FR6/76. SNSF Project, As, Norway, pp65-85.

Gledhill T., Sutcliffe D.W. and Williams W.D. (1976). A revised key to the British species of Crustacea : Malacostraca occurring in freshwater with notes on their ecology and distribution. Freshwater Biological Association Scientific Pub. No. 322. Haines, T.A. (19891) ACidic precipitation and its consequences for aquatic ecosystems : A review. Transactions of the American Fisheries Society. V110:669-707

Harriman R. and Morrison B.R.S. (1982). Ecology of streams draining forested and non forested catchments in an area of central Scotland subject to acid precipitation. Hydrobiologia <u>88</u> 251-263.

Heaton Cooper W. "The Tarns of Lakeland" Third Edn. 1983 Frank Peters Publishing, Kendal.

Hill,M.O. (1979) TWINSPAN - a FORTRAN programme for grouping multi variate data in an ordered two-way table by classification of the individuals and attributes. Section of Ecology and Systematics, Cornell University, Ithaca, New York.

Kinniburgh D.G. & Edmunds W.M. (1984). "The Susceptibility of UK Groundwater to Acid Deposition" In Warren S.C. et Al (1986) Acidity in UK Fresh Waters, UAWRG, Interim report (DOE).

Lethlean,N.G. 1951. An investigation into the design and performance of electric fish screens and an electric fish counter. Trans.R.Soc.Edinb. 62(13), 479-526.

Leivestad, H. et al (1976). Effects of acid precipitation on fresh water organisms from Research Report FR6/76, SNSF Project, As, Norway pp86-111.

Minshall G.W. (1969) The Plecoptera of a headwater stream (Gaitscale Gill, English Lake District) Archiv.fur Hydrobiologie 65 494-514

Minshall G.W. and Kuehne R.A. (1969) An ecological Study of invertebrates of the Duddon, an English mountain stream. Archiv. fur Hydrobiologie 66 169-191

Newson M.D. Slope and Channel Run off processes in upland catchments. Interfaces between percipitation and streamflow acidity. Paper presented at IWPC/IWES meeting on Acid Rain, Birmingham. March 1984.

Prigg R.F. (1973) Interim report on nursery stream project. Fishery Department Report Cumberland River Authority.

Prigg R.F. (1976) Summary of main practical implications of salmon nursery stream investigations 1972-1975. Internal rpt. Fisheries Dept., Rivers Division, N.W.W.A.

Prigg R.F. (1978). Water Quality Biology of the River Keekle. Rpt. ref BN29 (10/78). Scientists Dept. Rivers Div. N.W.W.A.

Prigg R.F. (1982) Problems in utilising rod catch statistics from the River Esk (S.W.Cumbria). Tech. Note NCl23(10/82) Scientists Dept. Rivers Division, N.W.W.A.

Prigg R.F. (1983a) Juvenile salmonid populations and biological quality of upland streams in Cumbria with particular reference to low pH effects. Report BN 77-2-83 Scientists Dept., Rivers Division, N.W.W.A. Prigg R.F. (1983b) Follow-up to 1983 salmon fry planning in the Duddon catchment. Tech.Note NC 176 (10/83) Scientists Dept., Rivers Division, N.W.W.A.

Prigg R.F. (1985a) Preliminary report on caged trout experiments in Spothow Gill and Doddknott Gill, Eskdale. Tech. Note NC 260 (5/85) Scientists Dept., Rivers Division, N.W.W.A.

Prigg R.F. (1985b) Faunal and chemical observations on the River Glenderamackin above Mungrisdale following a probable acid event. Tech. Note NC 299 (12/85) Scientists Dept., Rivers Division, N.W.W.A.

Prigg R.F. (1985c) Acid rain project biosurveys of streams in the Wastwater catchment. Tech.Note NC 297 (12/85) Scientists Dept. Rivers Division, N.W.W.A.

Prigg R.F. (1986a) Length data on S.W.Cumbrian Esk trout. Tech. Note NC301 (1/86) Scientists Dept., Rivers Division, N.W.W.A.

Prigg R.F. (1986b) Preliminary note on the present fish population and potential of Ennerdale Water tributaries, with special reference to salmon. Tech.Note NC 306 (2/86) Scientists Dept., Rivers Division, N.W.W.A

Radum G.G. and A.Fjellheim (1984) Acidification and early warning organisms in freshwaters in Western Norway. p 1973-1980

Robinson J.F. (1984) A review of land use, farming and fisheries in the Esk and Duddon valleys. Scientists, Dept., (Water Quality North) N.W.W.A.

Schofield, C.L. (1976) Acid precipitation : Effects on fish. Ambio 5, 228-230.

Seber G.A.F. & Le cren E.D. (1967). Estimating population parameters from catches large relative to the population. J.Anim.Ecol.36,631-643.

Sevaldrud, I.H. and Muniz, I.P. (1980). Research Report IR 77/80 SNSF Project, As, Norway.

Simpson, K.W.; R.W., Bode and J.K., Colquhoun (1985) The macro-invertebrate fauna of an acid-stressed headwater stream system in the Adirondack Mountains, New York. Freshwater Biology 15, 671-681.

Smith,R.A. (1872). Air and rain: the beginnings of a chemical climatology. Longmans, Green and Co., London.

Stewart,L. 1973 Environmental engineering and monitoring in relation to salmon management. Prc. The Int.Atl.Salmon Found and AFL. Salmon Res.Trust Symp, St.Andrews, New Brunswick, Canada, 1972, 297-316.

Stoner, J.H. and A.S.Gee (1985). Effects of forestry on water quality and fish in Welsh rivers and lakes. J.Water Engineers and Scientists 39, 27-45.

Stoner, J.H., A.S.Gee and K.R.Wade (1984) "The effects of acidification on the ecology of streams in the Upper Tyivi Catchment in West Wales. Environmental Pollution (Series A) 35 125-157. Sutcliffe D.W. and Carrick T.R. (1973). Studies on mountain streams in the English Lake District. I. pH, calcium and the distribution of invertebrates in the River Duddon. Freshwater Biology $\underline{3}$ 437-462.

Sutcliffe, D.W. (1983) Acid precipitation and its effects on aquatic ecosystems in the English Lake District (Cumbria) F.B.A. Annual Report No.51 p30-62.

Sutcliffe D.W. & Carrick T.R. Acidity and Alkalinity of Water Bodies in the English Lake District. FBA lpp.

Turnpenny, A.W.H. (1985). The fish populations and water quality of some Welsh and Pennine streams. CEGB Report TPRD/L/2859/N85

Warren et al (1986) Acidity in United Kingdom Fresh Waters, UKAWRG Interim Report. April '86, 57pp D.O.E.

Wright,R.F. and Snekvik (1978). Acid precipitation. Chemistry and fish populations in 700 lakes in S.Norway. Verh.Int. Verein. Limnol <u>20</u>, 765-775.

Zippin C. (1956) An evaluation of the removal method of estimating animal populations. Biometrics <u>12</u> 163-189.

.

Reference sources for data presented in Appendix 6

- 1. Survey of salmonid stocks of River Ehen and tributaries with special reference to sea trout late summer 1975.
- 2. Survey of brown trout population of the upper part of the Petteril catchment and of Dacre Beck May 1975.
- 3. Internal F.B.A. report on Caldew electric fishing survey July 1971, by D.T. Crisp.
- 4. N.W.W.A. Rivers Division Technical Note NC68(7/81) 1981.
- 5. M-way survey 1976, N.W.W.A. Rivers Division (R.F.P. unreported).
- 6. Survey of salmonid stocks of Greta and Glendermackin tributaries with particular reference to juvenile salmon, Autumn 1974.
- 7. Juvenile salmon populations and Biological quality of upland streams in Cumbria with particular reference to low pH effects. 1982 data.
- 7*. Ditto 1981 data.
- 8. Survey of trout stocks in River Liddel, 1974.
- 9. Interim report on Nursery Stream Project.

Summary of main practical implications of salmon nursery stream investigations 1972-75.

- 10. Faunal and chemical observations on the River Glenderamackin above Mungrisdale following a probable acid event. Technical Note NC 299 (12(/85).
- 11. Acid rain project biosurveys of streams in the Wastwater Catchment. Technical Note NC 297 (12/85).
- 12. Data from N.W.W.A. survey of upper Derwent and Buttermere tributaries, October 1985 (R.F.P. unreported).
- Data from N.W.W.A. Rivers Division survey of Esk catchment summer 1984 (R.F.P. unreported).
- 14. Data from N.W.W.A. Rivers Division survey of upper River Brathay June 1983 (R.F.P. unreported).

References 1, 2, 4, 6, 8, 9, 10 and 11 are internal reports of N.W.W.A. Rivers Division or its predecessors by R. F. Prigg.

× .

- 55 -

. .

Ranking of a selection of salmonid nursery (type) stream sites in N.W.W.A Northern Area based on total 1+ and older Salmonid density estimates

Beck	Catchment	<u>Ref</u> .	<u>Fish/m2</u>
Melmerby Beck(a)	Eden	9	1.96
Whinlatter Gill	Cocker	7	1.83
Melmerby Beck(b)	Eden	9	1.19
Hardknott Gill	Duddon	7	1.07
Aiken Beck	Cocker	, 9	.84
Troutbeck	Greta	9	.75
Glenderaterra Beck	Greta	7	.75
Raven Beck	Eden	9	.73
Black beck	Ehen	9	• • 72
Whinlatter Gill	Cocker	9	.60
Mere Beck	Esk	7	.51
Mere Beck	Esk	7*	• 48
Hollins Beck	Ehen	í	• 45
Kirk Beck (a)	Ehen	1	•43
Blck Burn	Liddle	8	.42
Aiken Beck	Cocker	8 7	•42
Greendale Beck	Irt	7	•42
Tinnis Burn	Liddle	8	•42
Newlands Beck	Derwent	o 7	•42 •41
Black Beck	Ehen	1	•41 •40
		_	
Grainsgill Beck(a)	Caldew	4	.40
Logan Beck	Duddon	7	•38
Smithy Beck	Ehen	7	•38
River Bleng	Bleng	7	.38
Sparrishaw Beck(e)	Bela	5	• 38
Mere Beck	Esk	13	.38
Latterbarrow Beck	Esk	7	.36
Sparrishaw Beck (d)	Bela	5	.35
Sparrishaw Beck (b)	Bela	5	.33
Worm Gill	Calder	7	.33
Grainsgill Beck (b)	Caldew	4	.32
Gatesgarthdale Beck	Buttermere	12	.32
Croasdale beck (b)	Ehen	. 1	.30
Eel Beck	Esk	7*	• 28
Muir Burn	Liddle	8	• 27
Raise Beck	Rothay	7	• 27
Sparrishaw Beck(b)	Bela	5	• 26
Mere Beck	Ehen	1	• 26
Blea Beck	Duddon	7	• 26
Dacre Beck	Eamont	2	. 25
Mosedale Beck	Greta	6	. 25
Holehouse Gill	Duddon	7	• 25
Fisher Beck	Esk	7*	•25
Sparrishaw Beck(f)	Bela	5	• 25
Keskadale Beck	Derwent	7	• 25
Latterbarrow Beck	Esk	13	. 25
Croasdale Beck(c)	Ehen	1	.24
Parkend Beck	Caldew	3	.23
Thackthwaite Beck	Eamont	2	.23
Croasdale Beck (a)	Ehen	1	.23
Kirk Beck (b)	Ehen	1	.23
Sparrishaw Beck (c)	Bela	5	.23
PEALTENIAN DOON (C)		5	

	Beck	Catchment	Ref.	<u>Fish/m2</u>	
	Skitwath Beck	Eamont	2	•22	
	Rowland Beck (a)	Ehen	1	.21	
	Rowland Beck (b)	Ehen	1	.21	
	Fall BEck (b)	Bela	5	÷21	
	Gobling Beck	Duddon	7	.21	
	Lin Beck	Esk	13	.21	
		Irt	7	.20	
	Lingmell Beck	Bela	5	.20	
	Sparrishaw Beck(a)	Greta	6	.20	
	Troutbeck	Eden	9	• 20	
	Helm Beck	Esk	13	.19	
	Birker Beck		5	.18	
	Old Petterill	Petteril		.18	
	Stonethwaite Beck	Derwent	7 7	.18	
÷	Borrow Beck	Lune			
	River Brathay	Brathay	7	.17	
	Birker Beck	Esk	7	.17	
	Fall Beck (a)	Bela	5	.17	
	River Calder	Calder	7	.16	
	Hardknott Gill	Esk	13	.16	
1	St. Johns Beck	Greta	6	.15	
	Old Park Beck	Duddon	7	.15	
	Grassguards Gill	Duddon	7	.15	
•	Dub Beck (b)	Keekle	1	.14	
	Cooper Beck	Eamont	2	.14	
	Hollow Moss Beck	Duddon	7	.14	
	Smithy Beck	Ehen	9	.14	
	Sling Beck	Duddon	7	•13	
	Crosby Gill	Duddon	7	.13	
	Cockley Beck	Duddon	7	.13	
	Aira Beck	Eamont	7	.13	
	River Brathay	Brathay	14	.13	
	Bulfell Beck	Glenderamackin	10	.13	
	Greenup Gill	Derwent	12	.13	
	Warnscale Beck	Buttermere	12	.12	
	Grainsgill Beck (c)	Caldew	4	.12	
	Sparrishaw Beck (d)	Bela	5	.12	
	River Mite	Mite	7	.12	
	Tarn Beck (ptc Gobling)	Duddon	7	.12	
	Kershope Burn	Liddle	8	.12	
	Hardknott Gill	Esk	7	.12	
	Troutbeck	Leven	, 7	.11	
	Mosedale Beck	Irt	, 7	•11	
	Swindale Beck	Lowther	7	.11	
			1	•11	
	Waterside Beck	Ehen	13	.11	
	Doddknott Gill	Esk Glandaramaskin		.10	
	Bulfell Beck	Glenderamackin	10		
	Black Beck (b)	Ehen	1	.10	
	Blackdyke Beck	Eamont	2	.10	
	Lin Beck	Esk	7	.10	
	Latterbarrow Beck	Esk	7*	.10	
	Fisher Beck	Esk	7	.10	
	Lin Beck	Esk	7*	.09	
	Hardknott Gill	Esk	7*	.09	
	Derwent (Seathwaite)	Derwent	12	.09	

BeckCatchmentRef. $Fish/m^2$ Blea BeckEsk13.09Whillan BeckEsk13.09Weller BeckEsk13.09Nether BeckIrt11.00Mosedale Beck (upper)Irt11.07Old Petteril (b)Petteril'5.07Dodknott GillEsk7.06Dub Beck (a)Keekle1.06Birker BeckEsk7*.06Bannerdale BeckGlenderamackin10.06OddonT.04.04Bannerdale BeckGlenderamackin10.04Bannerdale BeckDuddon7.04Lingmell Beck (upper)Irt11.03Langstrath BeckDerwent12.03Whillan BeckDerwent12.03Dodknott GillEsk7*.02Blea BeckEsk7*.02Mailan BeckDuddon7.02Mosadale BeckDuddon7.02Masadale BeckDuddon7.02Masadale BeckDerwent7.01Clenderamackin (upper)Glenderamackin10.01Retabay, upper (b)Brathay14.02Brathay, upper (c)Brathay14.02Brathay, upper (b)Brathay14.01Clenderamackin (upper)Glenderamackin10.01Fib d/s SpothowEsk.7*.01<				
Blea Beck Esk 13 .09 Whillan Beck Esk 13 .09 Eel Beck Esk 13 .09 Lingmell Gill Irt 11 .09 Nether Beck Irt 11 .07 Odd Petteril (b) Petteril 5 .07 Dodknott Gill Esk 7 .06 Bub Beck (a) Keekle 1 .06 Birker Beck Esk 13 .06 Bannerdale Beck Glenderamackin 10 .06 Over Beck Irt 11 .04 Bannerdale Beck Glenderamackin 10 .04 Bannerdale Beck Duddon 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Modadale Beck Duddon 7 .02 Mosadale Beck Duddon 7 .02 Brathay 14 .02 Brathay	Beck	Catchment	Ref.	Fish/m2
Whillan Beck Esk 13 .09 Bel Beck Esk 13 .09 Lingmell Gill Irt 11 .08 Mosedale Beck (upper) Irt 11 .07 Odd Petteril (b) Petteril 5 .07 Dodknott Gill Esk 7 .06 Dub Beck (a) Keekle 1 .06 Birker Beck Esk 7* .06 Pisher Beck Esk 13 .06 Bannerdale Beck Glenderamackin 10 .04 Bannerdale Beck Esk 7 .04 The Syke Duddon 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Blea Beck Esk 7* .02 Moadale Beck Duddon 7 .02 Moadale Beck Duddon 7 .02 Moadale Beck Duddon 7 .02				
Berk Esk 13 .09 Lingmell Gill Irt 11 .09 Nether Beck Irt 11 .08 Mosedale Beck (upper) Irt 11 .07 Old Petteril (b) Petteril 5 .07 Dodknott Gill Bsk 7 .06 Dub Beck (a) Keekle 1 .06 Birker Beck Esk 7* .06 Bannerdale Beck Glenderamackin 10 .06 Bannerdale Beck Glenderamackin 10 .04 Bannerdale Beck Esk 7 .04 Lingmell Beck (upper) Irt 11 .03 Langetrath Beck Derwent 12 .03 Moilan Beck Esk 7 .03 Dodknott Gill Esk 7* .02 Masdale Beck Dudon 7 .02 Moilan Beck Esk 7* .02 Brathay, upper (a) Brathay 14				
Lingmell Gill Irt 11 .09 Nether Beck Irt 11 .07 Old Petteril (b) Petteril 5 .07 Dodknott Gill Esk 7 .06 Dub Beck (upper) Keekle 1 .06 Birker Beck Esk 7* .06 Bannerdale Beck Glenderamackin 10 .06 Over Beck It .11 .04 Bannerdale Beck Glenderamackin 10 .04 Blea Beck Esk 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Whillan Beck Esk 7* .03 Dodknott Gill Esk 7* .02 Masdale Beck Duddon 7 .02 Masdale Beck Duddon 7 .02 Masdale Beck Esk 7* .02 Masdale Beck Derwent 7 .01 Itis d/s Spothow Esk 7 .01 <				
Nether Beck Irt 11 .08 Mosedale Beck (upper) Irt 11 .07 Old Petteril (b) Petteril 5 .07 Dodknott Gill Esk 7 .06 Dub Beck (a) Keekle 1 .06 Birker Beck Esk 7* .06 Pisher Beck Esk 13 .06 Bannerdale Beck Glenderamackin 10 .04 Bannerdale Beck Glenderamackin 10 .04 Blea Beck Esk 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Dodknott Gill Esk 7 .03 Dodknott Gill Esk 7* .02 Whillan Beck Esk 7* .02 Whillan Beck Esk 7* .02 Brathay, upper (b) Brathay 14 .02 Brathay, upper (b) Brathay 10				
Mosedale Beck (upper) Irt 11 .07 Old Peteril (b) Petteril 5 .07 Oddhott Gill Esk 7 .06 Dub Beck (a) Keekle 1 .06 Birker Beck Esk 7* .06 Bannerdale Beck Glenderamackin 10 .06 Over Beck Irt 11 .04 Bannerdale Beck Glenderamackin 10 .04 Blea Beck Esk 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Whillan Beck Esk 7* .03 Dodknott Gill Esk 7* .02 Mosadale Beck Duddon 7 .01 Reabay, upper (b) Brathay 14	-			
Old Petteril (b) Petteril (b) 5 .07 Dodknott Gill Esk 7 .06 Dub Beck (a) Keekle 1 .06 Birker Beck Esk 7* .06 Pisher Beck Esk 10 .06 Bannerdale Beck Glenderamackin 10 .04 Bannerdale Beck Glenderamackin 10 .04 Bannerdale Beck Esk 7 .04 The Syke Duddon 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Esk 7 .03 Dodknott Gill Esk 7 .03 Dodknott Gill Esk 7* .02 Whillan Beck Esk 7* .02 Wasdale Beck Duddon 7 .02 Whillan Beck Esk 7* .02 Wasdale Beck Duddon 7 .02 Wasdale Beck Esk 7* .02 Wasdale Beck Esk 7* .01 Gl				
Dodknott Gill Esk 7 .06 Dub Beck (a) Keekle 1 .06 Birker Beck Esk 7* .06 Birker Beck Esk 13 .06 Bannerdale Beck Glenderamackin 10 .06 Over Beck Irt 11 .04 Bannerdale Beck Glenderamackin 10 .04 Bannerdale Beck Glenderamackin 10 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Whillan Beck Esk 7* .02 Moasdale Beck Duddon 7 .02 Moasdale Beck Duddon 7 .02 Moasdale Beck Duddon 7 .02 Brathay, upper (a) Brathay 14 .02 Brathay, upper (b) Brathay 14 .01 Glenderamackin (upper) Glenderamackin 10 .01 Pothow Gill Es				
Dub Beck (a) Keekle 1 .06 Birker Beck Esk 7* .06 Pisher Beck Esk 13 .06 Bannerdale Beck Glenderamackin 10 .06 Over Beck Irt 11 .04 Bannerdale Beck Glenderamackin 10 .04 Bannerdale Beck Esk 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Doknott Gill Esk 7* .02 Moasdale Beck Esk 7* .02 Moasdale Beck Duddon 7 .02 Whillan Beck Esk 7* .02 Brathay, upper (a) Brathay 14 .01 Glenderamackin (uper) Glenderamackin 10 .01 Parathay, upper (b) Brathay 14 .01 Glenderamackin (upper) Glenderamackin 10 .01 Parubow Gill <				
Birker Beck Esk 7* .06 Pisher Beck Esk 13 .06 Bannerdale Beck Glenderamackin 10 .04 Dower Beck Irt 11 .04 Bannerdale Beck Glenderamackin 10 .04 Bannerdale Beck Glenderamackin 10 .04 Bannerdale Beck Esk 7 .04 Ingmell Beck Esk 7 .04 Lingmell Beck (upper) Irt 11 .03 Dadknott Gill Esk 7 .03 Dodknott Gill Esk 7* .02 Moasdale Beck Duddon 7 .02 Wasdale Beck Duddon 7 .02 Wasdale Beck Duddon 7 .02 Brathay, upper (a) Brathay 14 .02 Brathay, upper (b) Brathay 14 .01 Glenderamackin (upper) Glenderamackin 10 .01 rti d/s Spothow Esk 7 .01 Spothow Gill Esk 7 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Fisher Beck Esk 13 .06 Bannerdale Beck Glenderamackin 10 .06 Over Beck Irt 11 .04 Bannerdale Beck Glenderamackin 10 .04 Blea Beck Glenderamackin 10 .04 Blea Beck Esk 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Dodknott Gill Esk 7* .02 Moasdale Beck Esk 7* .02 Moasdale Beck Dsk 7* .02 Moasdale Beck Esk 7* .02 Brathay, upper (a) Brathay 14 .02 Brathay, upper (b) Brathay 14 .01 Glenderamackin (upper) Glenderamackin 10 .01 Prevent 7 .01 .01 .01 Spothow Gill Esk 7 .01 .01 Spothow Gill Esk 7 .01 .01 Spothow Gill				
Bannerdale BeckGlenderamackin10.06Over BeckIrt11.04Bannerdale BeckGlenderamackin10.04Blea BeckEsk7.04The SykeDuddon7.04Lingmell Beck (upper)Irt11.03Langstrath BeckDerwent12.03Dodknott GillEsk7*.03Dodknott GillEsk7*.02Malale BeckDuddon7.02Whillan BeckEsk7*.02Moasdale BeckDuddon7.02Whillan BeckEsk7*.02Brathay, upper (a)Brathay14.01Glenderamackin (upper)Glenderamackin10.01R. LizaEhen7.01Derwent (Seathwaite)Derwent7.01Spothow GillEsk7*.01Spothow GillEsk.13.0Glenderamackin (upper)Glenderamackin10.01trib d/s SpothowEsk.7*.0Spothow GillEsk.7*.0Spothow GillEsk.7*.0Esk (Great Moss)Esk.7*.0Lingcove BeckEsk.7*.0Lingcove BeckEsk.7*.0Lingcove BeckEsk.7*.0Lingcove BeckEsk.7*.0Blea BeckCumper.7.0Geat Moss)Esk.7 </td <td></td> <td>_</td> <td>•</td> <td></td>		_	•	
Over Beck Irt 11 .04 Bannerdale Beck Glenderamackin 10 .04 Blea Beck Esk 7 .04 The Syke Duddon 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Whillan Beck Esk 7 .03 Dodknott Gill Esk 7* .02 Moasdale Beck Esk 7* .02 Moasdale Beck Esk 7* .02 Moasdale Beck Desk 7* .02 Moasdale Beck Esk 7* .02 Brathay, upper (a) Brathay 14 .02 Brathay, upper (b) Glenderamackin 10 .01 R. Liza Ehen 7 .01 Perwent (Seathwaite) Derwent 7 .01 Spothow Gill Esk 7 .01 Spothow Gill Esk 7 .01				
Bannerdale BeckGlenderamackin10.04Blea BeckEsk7.04The SykeDuddon7.04Lingmell Beck (upper)Irt11.03Langstrath BeckDerwent12.03Whillan BeckEsk7*.03Dodknott GillEsk7*.02Moasdale BeckDuddon7.02Whillan BeckEsk7*.02Moasdale BeckDuddon7.02Whillan BeckEsk7*.02Brathay, upper (a)Brathay14.01Glenderamackin (upper)Glenderamackin10.01R. LizaEhen7.01Derwent (Seathwaite)Derwent7.01Spothow GillEsk7*0Spothow GillEsk70Spothow GillEsk7*0Spothow GillEsk7*0Spothow GillEsk7*0Spothow GillEsk7*0Esk (Great Moss)Esk70Esk (Great Moss)Esk70Lingcove BeckEsk70Lingcove BeckEsk70Blea BeckJune70Blea BeckMudon70Blea BeckMudon70Blea BeckDuddon70GlenderamackinDuddon70Blea BeckEsk70				
Blea Beck Esk 7 .04 The Syke Duddon 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Whillan Beck Esk 7 .03 Dodknott Gill Esk 7* .03 Blea Beck Esk 7* .02 Moasdale Beck Duddon 7 .02 Whillan Beck Esk 7* .02 Brathay, upper (a) Brathay 14 .01 Glenderamackin (upper) Glenderamackin 10 .01 R. Liza Ehen 7 .01 Derwent (Seathwaite) Derwent 7 .01 Spothow Gill Esk 7 .01 trib d/s Spothow Esk 7 .0				
The Syke Duddon 7 .04 Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Whillan Beck Esk 7 .03 Dodknott Gill Esk 7* .02 Moasdale Beck Duddon 7 .02 Bratnay, upper (a) Brathay 14 .01 Glenderamackin (upper) Glenderamackin 10 .01 Perwent (Seathwaite) Derwent 7 .01 Prevent (Seathwaite) Derwent 7 .01 Spothow Gill Esk 7 .01 Spothow Gill Esk 13 0 Glenderamackin (upper) Glenderamackin 10 0 Spothow Gill Esk 7 0 Spothow Gill Esk 7 0<				
Lingmell Beck (upper) Irt 11 .03 Langstrath Beck Derwent 12 .03 Whilan Beck Esk 7 .03 Dodknott Gill Esk 7* .03 Blea Beck Esk 7* .02 Moasdale Beck Duddon 7 .02 Moasdale Beck Duddon 7 .02 Millan Beck Esk 7* .02 Brathay, upper (a) Brathay 14 .01 Glenderamackin (upper) Glenderamackin 10 .01 R. Liza Ehen 7 .01 Derwent (Seathwaite) Derwent 7 .01 Spothow Gill Esk 7* .01 Spothow Gill Esk 7 .0 Spothow Gill Esk 7 .0 Esk (Great M				
Langstrath Beck Derwent 12 .03 Whillan Beck Esk 7 .03 Dodknott Gill Esk 7* .03 Blea Beck Esk 7* .02 Moasdale Beck Duddon 7 .02 Whillan Beck Esk 7* .02 Whillan Beck Esk 7* .02 Brathay, upper (a) Brathay 14 .02 Brathay, upper (b) Brathay 14 .01 Glenderamackin (upper) Glenderamackin 10 .01 R. Liza Ehen 7 .01 Derwent (Seathwaite) Derwent 7 .01 Spothow Gill Esk 7* 0 Spothow Gill Esk 7 0 Spothow Gill Esk 13 0 trib d/s Spothow Esk 7* 0 Esk (Great Moss) Esk 7* 0 Esk (Great Moss) Esk 7 0 Lingcove Beck Esk 7 0 Lingcove				
Whillan Beck Esk 7 .03 Dodknott Gill Esk 7* .03 Blea Beck Esk 7* .02 Moasdale Beck Duddon 7 .02 Moasdale Beck Duddon 7 .02 Moasdale Beck Esk 7* .02 Brathay, upper (a) Brathay 14 .01 Glenderamackin (upper) Glenderamackin 10 .01 R. Liza Ehen 7 .01 Derwent (Seathwaite) Derwent 7 .01 Spothow Gill Esk 7* .01 Spothow Gill Esk 7* .01 Spothow Gill Esk 7* .01 Glenderamackin (upper) Glenderamackin 10 .01 Spothow Gill Esk 13 .0 Trib d/s Spothow Esk 13 .0 trib d/s Spothow Esk .7* .0 Esk (Great Moss) Esk .7* .0 Esk (Great Moss) Esk .7 .0				
Dodknott GillEsk7*.03Blea BeckEsk7*.02Moasdale BeckDuddon7.02Whillan BeckEsk7*.02Brathay, upper (a)Brathay14.02Brathay, upper (b)Brathay14.01Glenderamackin (upper)Glenderamackin10.01R. LizaEhen7.01Derwent (Seathwaite)Derwent7.01Spothow GillEsk7*.01Spothow GillEsk7.01Spothow GillEsk13.0Glenderamackin (upper)Glenderamackin10.0Spothow GillEsk7.0Spothow GillEsk13.0Clenderamackin (upper)Glenderamackin.0Itrib d/s SpothowEsk.7*.0Esk (Great Moss)Esk.7*.0Esk (Great Moss)Esk.7*.0Lingcove BeckEsk.7*.0Lingcove BeckEsk.7*.0Blea BeckLune.7.0Gt. Langdale BeckBrathay.7.0Black BeckDuddon.7.0Gaitscale GillDuddon.7.0	-			
Blea BeckEsk7*.02Moasdale BeckDuddon7.02Whillan BeckEsk7*.02Brathay, upper (a)Brathay14.02Brathay, upper (b)Brathay14.01Glenderamackin (upper)Glenderamackin10.01R. LizaEhen7.01Derwent (Seathwaite)Derwent7.01trib d/s SpothowEsk7.01Spothow GillEsk7.01Spothow GillEsk7.01Spothow GillEsk7.01Clenderamackin (upper)Glenderamackin10.01trib d/s SpothowEsk13.0Clenderamackin (upper)Glenderamackin10.0trib d/s SpothowEsk7*.0Esk (Great Moss)Esk7*.0Esk (Great Moss)Esk7.0Lingcove BeckEsk7.0Blea BeckLune7.0Gt. Langdale BeckBrathay7.0Black BeckDuddon7.0Gaitscale GillDuddon7.0				
Moasdale BeckDuddon7.02Whillan BeckEsk7*.02Brathay, upper (a)Brathay14.02Brathay, upper (b)Brathay14.01Glenderamackin (upper)Glenderamackin10.01R. LizaEhen7.01Derwent (Seathwaite)Derwent7.01Spothow GillEsk7.01Spothow GillEsk7.01Spothow GillEsk7.01Spothow GillEsk7.01Spothow GillEsk7.01Spothow GillEsk7.01Spothow GillEsk7.01Spothow GillEsk7.01Spothow GillEsk.01.01Ling Cove BeckEsk.01.01Lingcove BeckEsk.01.01Lingcove BeckEsk.01.01Lingcove BeckEsk.01.01Lingcove BeckEsk.01.01Lingcove BeckEsk.01.01Blea BeckLune.01.01Gattele BeckBrathay.01.01Black BeckDuddon.7.01SpothowBrathay.01.01SpothowBrathay.01.01Gleatenackin (upper).01.01.01Spothow.01.01.01Spothow.01.01.01Spothow.0			•	
Whillan BeckEsk7*.02Brathay, upper (a)Brathay14.02Brathay, upper (b)Brathay14.01Glenderamackin (upper)Glenderamackin10.01R. LizaEhen7.01Derwent (Seathwaite)Derwent7.01Spothow GillEsk7.01Spothow GillEsk7.01Spothow GillEsk7.01Spothow GillEsk7.01Glenderamackin (upper)Glenderamackin10.01Trib d/s SpothowEsk13.0Glenderamackin (upper)Glenderamackin.0.01trib d/s SpothowEsk.7*.0Sk.7*.0Glenderamackin (upper)GlenderamackinJs SpothowEskLingcove BeckEskLingcove BeckEskLingcove BeckEskLingcove BeckEskBlea BeckLuneLangdale BeckBrathayBlack BeckDuddonGaitscale GillDuddonBlack BeckDuddonDuddon <t< td=""><td></td><td></td><td></td><td></td></t<>				
Brathay, upper (a)Brathay14.02Brathay, upper (b)Brathay14.01Glenderamackin (upper)Glenderamackin10.01R. LizaEhen7.01Derwent (Seathwaite)Derwent7.01trib d/s SpothowEsk7.01Spothow GillEsk7*0Spothow GillEsk70Spothow GillEsk130Glenderamackin (upper)Glenderamackin100trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Esk (Great Moss)Esk70Lingcove BeckEsk70Lingcove BeckBrathay70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Gaitscale GillDuddon70				
Brathay, upper (b)Brathay14.01Glenderamackin (upper)Glenderamackin10.01R. LizaEhen7.01Derwent (Seathwaite)Derwent7.01trib d/s SpothowEsk7.01Spothow GillEsk7*0Spothow GillEsk70Spothow GillEsk130Glenderamackin (upper)Glenderamackin100trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Lingcove BeckEsk70Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Black BeckDuddon70Gaitscale GillDuddon70				
Glenderamackin (upper)Glenderamackin10.01R. LizaEhen7.01Derwent (Seathwaite)Derwent7.01trib d/s SpothowEsk7.01Spothow GillEsk7*0Spothow GillEsk70Spothow GillEsk130Glenderamackin (upper)Glenderamackin100trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Esk (Great Moss)Esk7*0Lingcove BeckEsk70Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Gaitscale GillDuddon70	-	_	14	
R. LizaEhen7.01Derwent (Seathwaite)Derwent7.01trib d/s SpothowEsk7.01Spothow GillEsk7*0Spothow GillEsk70Spothow GillEsk130Glenderamackin (upper)Glenderamackin100trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Lingcove BeckEsk7*0Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Gaitscale GillDuddon70		-	14	
Derwent (Seathwaite)Derwent7.01trib d/s SpothowEsk7.01Spothow GillEsk7*0Spothow GillEsk70Spothow GillEsk130Glenderamackin (upper)Glenderamackin100trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Esk (Great Moss)Esk7*0Lingcove BeckEsk70Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Black BeckDuddon70Gaitscale GillDuddon70	Glenderamackin (upper)	Glenderamackin		.01
trib d/s SpothowEsk7.01Spothow GillEsk7*0Spothow GillEsk130Glenderamackin (upper)Glenderamackin100trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Esk (Great Moss)Esk7*0Lingcove BeckEsk70Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Black BeckDuddon70Gaitscale GillDuddon70	R. Liza	Ehen		
Spothow GillEsk7*0Spothow GillEsk70Spothow GillEsk130Glenderamackin (upper)Glenderamackin100trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Esk (Great Moss)Esk7*0Lingcove BeckEsk70Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Gaitscale GillDuddon70	Derwent (Seathwaite)	Derwent		
Spothow GillEsk70Spothow GillEsk130Glenderamackin (upper)Glenderamackin100trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Esk (Great Moss)Esk7*0Lingcove BeckEsk7*0Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Gaitscale GillDuddon70		Esk		.01
Spothow GillEsk130Glenderamackin (upper)Glenderamackin100trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Esk (Great Moss)Esk70Lingcove BeckEsk70Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Gaitscale GillDuddon70	Spothow Gill	Esk		0
Glenderamackin (upper)Glenderamackin100trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Esk (Great Moss)Esk70Lingcove BeckEsk7*0Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Gaitscale GillDuddon70	Spothow Gill	Esk		0
trib d/s SpothowEsk130trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Esk (Great Moss)Esk70Lingcove BeckEsk7*0Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Gaitscale GillDuddon70	Spothow Gill	Esk	13	0
trib d/s SpothowEsk7*0Esk (Great Moss)Esk7*0Esk (Great Moss)Esk70Lingcove BeckEsk7*0Lingcove BeckEsk7*0Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Gaitscale GillDuddon70	Glenderamackin (upper)	Glenderamackin		0
Esk (Great Moss)Esk7*0Esk (Great Moss)Esk70Lingcove BeckEsk7*0Lingcove BeckEsk7*0Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Castlehow BeckDuddon70Gaitscale GillDuddon70	trib d/s Spothow	Esk	13	0
Esk (Great Moss)Esk70Lingcove BeckEsk7*0Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Castlehow BeckDuddon70Gaitscale GillDuddon70	trib d/s Spothow	Esk	7*	0
Lingcove BeckEsk7*0Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Castlehow BeckDuddon70Gaitscale GillDuddon70	Esk (Great Moss)	Esk	7*	0
Lingcove BeckEsk70Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Castlehow BeckDuddon70Gaitscale GillDuddon70	Esk (Great Moss)	Esk	7	0
Blea BeckLune70Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Castlehow BeckDuddon70Gaitscale GillDuddon70	Lingcove Beck	Esk	. 7*	0
Gt. Langdale BeckBrathay70Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Castlehow BeckDuddon70Gaitscale GillDuddon70	Lingcove Beck	Esk	7	0
Tarn Beck (Tongue H.)Duddon70Black BeckDuddon70Castlehow BeckDuddon70Gaitscale GillDuddon70	Blea Beck	Lune	7	0
Black BeckDuddon70Castlehow BeckDuddon70Gaitscale GillDuddon70	Gt. Langdale Beck	Brathay		0
Castlehow BeckDuddon70Gaitscale GillDuddon70	Tarn Beck (Tongue H.)	Duddon		0
Gaitscale Gill Duddon 7 0	Black Beck	Duddon	7	0
	Castlehow Beck	Duddon	7	0
Doe House Gill Duddon 7 0	Gaitscale Gill	Duddon		0
	Doe House Gill	Duddon	7	0

64.0

				PERCENTAC	GES OF TO	TAL KICK SAM	PLES WITH SPECI	ES NOTED			
Geometric mean pH	Number of streams	Total no. of kick samples	Amphinemura sulcicollis	Protonemura meyeri	Lextra inermis	Chloroperla torrentium	Plectrocnemia conspersa	Rhyacophila dorsalis	Baetis rhodani	Ganmarus sp.	Ancylus fluviatilis
4.5	2	5	60	40	40	40	20				-
4.6	1	3	67	33	67	33	100		ł		
4.7	1	3	33	33	33		100				
4.8	1	3	67	33	33	33	33	67		1	
4.9	1	3	33	33	67	33	67	33			
5.0	2	5	80	40	40	80	80	40			
5.1	1	2	50				100	50	{		
5.2	0	o	-	-	-	-	-	-	-	-	-
5.3	3	8	75	63	38	38	25	. 38			
5.4	2	5	60	60	40	20	60	20			
5.5	5	14	64	57	50	36	29	64	14		
5.6	6	15	60	53	47	27	33	33			
5.7	3	8	88	50	38	25	25	13		•	
5.8	2	5	60	60	20	20	. 40	60	1.1		
5.9	3	9	67	67	22	78	33	22	22	11	11
6.0	4	12	75	75	33	42	25	33	58	17	17
6.1	2	6	67	67	67	33	50	33	50		
6.2	6	18	50	39	61	33	28	17	78		11
6.3	5	15	87	47	27	53	33	40	87	20	
6.4	4	10	30	80	50	40]	60	80	· 30	20
6.5	7	20	45	40	30	35	30	50	75	50	30
6.6	5	15	73	60	60	33	40	73	93	40	7
6.7	4	12	67	42	58	17	17	58	100	42	25
6.8	1	3	67	33	67	33	1	67	67	67	33
6.9	3	9	67	56	33	33	11	56	100	78	11
7.0	0	0	-	-	-	-	-	-	-	· -	-
7.1	0	0	-	-	-	-	-	-	-	-	-
7.2	0	0	-	-	-	-	-	-	-		-
7.3	1	2	50	50	50	50			50	100	1

Note: (1) an empty cell in the body of the tables indicates a value of 0%

.

(2) - indicates no samples in streams of this geometric mean pH

DISTRIBUTION OF MAYFLIES IN KICK SAMPLES TAKEN FROM 75 CUMBRIAN HILL STREAM SITES OF GIVEN PH DURING 1982

.1

	PERCENTAGE OF TOTAL KICK SAMPLES WITH SPECIES NOTED PRESENT																							
Geometric mean pH	Number of streams	Total no of kick samples	Baetis sp	Baetis rhodani	Baetis scanbus	Baetis myticus	Baetis Ienax	Baetis miger	Centro- philum luteolum	Centro- philum pennulatum	Siphlonnys lacustris	Ameletus inopinajus	Rhith- rogena semi- colorata	lateral is		Extlyo- nurus. venosus	Ecciyo- nurus torrentis	Lepto- phlebia vespertina	Parale- prophlebia sp	Parale- phophlebia submargi- nato		Ephenr- era danica	Caanis sp	Caenis riwloru
4.5	2	5										1.12								1				
4.6	1	3									33													ĺ
4.7	. 1	3	1										ļ										1	ļ
4.8	1	3		1	1	1									ļ	1				1				
4.9	1	3													1		1							
5.0	2	5								1														
5.1	1	2									100													
5.2	0	0	-	-		1.5.			1.0		100	100-1		÷	1.0	19 S. 19	100	50	-	50]
5.3	3	8	-	-	-	-	-	-	-		-	7	-	2	-	-		-	-	-	-	-	-	-
5.4	2	5				Ì																		
5.5	5	14			1.1		ł				7	11.2						_				•		
5.6	6	15		14														7			7			1
5.7	3	8										13					i.			7				}
5.8	2	5			60							13									1			
5.9	3	9		1	60									.,							60		1	
6.0	4	12	1	22 58	44 50	17	8				i i		17	11							33	ļ		{
6.1	2	6												17	.8				1		42			1
6.2	6	18		50	17	17	1					17	33	17	17						17			
6.3	5	15		78	17	6						6	11	22	17	6					11			
6.4	4	10	1	87	53						7		20	13	13						20			13
6.5	7	20	_	80	40	10							30		30						30			
6.6	5	15	5	75	45	30						_	25	15	25	15	_			5	35			15
6.7	4			93	47	20						7	60	33	20		7				27			13
6.8	1	12	8	100	50	33							58	8	67	25			8		50		в	17
6.9	3	3		67	67	67			33	33			67		67	33					33			
7.0	0	9		100	56	44		11					44	11	56	11	11		1		67	22		56
7.1	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7.2	0	0	-	-	-	-	-	-	-		-	÷ -	-	-	-	-		-	-	-	-	-	-	-
7,3	1	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
1,3	1	2		50	50	50					ļ		50	50	50						50	[

Note: 1. an empty cell in the body of the table indicates a value of 0%

2. - indicates no samples in streams of this geometric mean pH

Appendix 3

SITE NUMBER	GASTROPODA & ANCYLUS	SPHAERIDAE	ANNELLIDA	GAMMARUS	BAETIDAE	HEPTAGENIDAE	TEPTOPHLEBIDAE	PROTONEHUPA	AMPHINEMURA	NEMOURIDAE	LEUCTRA WERMIS	LEUCTRA HIPPOPUS	PERIODIDAE	CHLOROPERLA	DYTISCIDAE	SITVIS	RHYACOPHILA	PLECTROCNEMIA	HYDROPSYCHIDAE	LIMNEPHILIDAE	DICRANOTA	CHIRONOMIDAE	SIMULIDAE	alkalinity (Bgl ⁻¹ Calo ₃)	CALCTUN (mg1 ⁻¹)	(^{1–} 16) MUININNY	HUMICS (mg1 ⁻¹)	GEOMETRIC MEAN PH	MAGNESIUM (mg1 ⁻¹)	CONDUCTIVITY (S cm ⁻¹)
4 5 6	0 0 0	0 0 0	3 0 3	0 0 0	10 0 50	0 0 3	0 0 0	0 10 1	0 3 0	10 3 10	0 250 50	10 0 3	0 1 0	1 0 0	0 0 0	0 0 0	0 3 0	1 0 1	0 0 1	0 0 0	1 10 3	3 0 50	3 3 50	8.2 5.5 23	6.2 3 12.4	161 137 98	13.5 13 15.6	5.4	1.5 1.6 2.2 1	92 90 130
8 9A 9B 10A 10B 11 12 13 14 15A 16 17A 17B 17C 18 19A 20B 20C 22 23 24 25 26 27 28 29C 30A 30B 30C 31 32 33 4 35 36A 36B 36C		0 12 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0	50 244 267 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	250 79 184 0 0 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	250 3 349 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 73 0 550 1 209 93 0 1 0 0 1 0 0 1 0 0 81 68 0 6 8 0 6 7 1 0 0 7 556 1 0 0 0 7 50 81 68 0 0 7 556 81 68 0 0 7 556 81 68 0 0 7 556 81 68 0 0 7 556 81 68 0 0 7 556 81 68 0 0 7 556 81 68 0 0 7 556 81 68 0 0 7 556 81 68 0 0 7 556 81 68 0 0 7 556 81 68 0 0 7 556 556 81 68 0 0 7 7 556 556 1 7 7 7 7 7 7 7 7 7 7 7 7 7	50 0 25 0 41 4 3 260 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 22 3 0 1 20 4 0 3 10 10 10 13 18 4 25 5 10 13 18 7 34 9 1 2 13 18 7 34 9 1 2 13 18 7 10 13 12 13 18 7 18 18 7 10 13 18 18 7 18 18 18 7 18 18 18 18 18 18 18 18 18 19 10 13 10 13 10 13 10 13 0 0 0 0 0 13 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 158 237 0 0 0 0 0 0 0 0 0 0 0 0 0	50 98 37 52 212 56 235 0 20 20 20 20 20 20 20 20 20	10 1 19 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 0 5 0 1 0 3 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0	0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 7 5 4 14 7 0 0 0 0 3 7 0 0 0 0 2 0 0 0 2 0 0 10 3 4 1 0 1 0 2 1 0 2 1 0 2 1 0 2 1 0 0 1 1 4 1 7 0 0 5 4 1 7 0 0 5 4 1 7 0 0 5 4 1 7 0 0 0 5 4 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 6 4 1 4 4 2 0 1 1 9 1 1 5 3 4 10 0 0 12 11 8 0 0 0 6 8 5 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1		0 19 13. 0 1 22 26 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 4 5 1 1 1 5 5 0 6 0 3 1 1 1 0 0 6 6 0 3 1 1 1 2 2 2 6 6 7 1 1 0 6 8 4 9 1 4 1 2 2 1 6 1 2 2 4	1 11 13 0 3 10 0 5 0 7 0 333 0 2 1 15 1 0 3 0 2 1 15 1 0 3 10 0 2 1 15 10 0 2 11 15 10 0 10 0 10 0 10 10 10 10 1	$\begin{array}{c} 0 \\ 43 \\ 11 \\ 0 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 3 \\ 2 \\ 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 1 \\ 7 \\ 0 \\ 2 \\ 0 \\ 1 \\ 7 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		5 8 4.1 4.5 3.6	46 70 280 280 212 405 612 212 330 330 330 330 330 330 332 332 332 33	12 13.2 8.9 8.9 12.8 7.2 11.3 2 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	7.3 4.8 4.8 5.9 4.4 3.9 5.42 5.22 5.7 4.7 4.5 5.9 5.7 4.7 4.5 5.9 5.7 4.5 5.9 5.7 4.5 5.9 5.7 4.5 5.9 5.7 4.5 5.9 5.7 4.5 5.9 5.7 4.5 5.9 5.7 4.5 5.9 5.7 4.5 5.9 5.2 4.5 5.9 5.7 4.5 5.9 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.4 4.5 5.2 4.4 4.5 5.2 4.4 4.5 5.2 4.4 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 5.2 4.5 5.2 4.5 5.2 5.2 5.2 5.2 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 4.5 5.2 5.2 5.2 4.5 5.2 4.5 5.2 5.2 5.2 4.5 5.2	1.4 1.4 1.4 1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.9 2 2 2 2.9 2 2 2.9 2 2 2.6 2.5 1.8 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	150 93 93 99 81 99 100 135 140 140 140 86 141 141 88 83 83 105 112 1150 112 122 94 100 100 162

-

DURING WINTER 1985-86 WITH SOME ASSOCIATED PHYSICO-CHEMICAL PARAMETERS

APPENDIX 4

PROPORTION OF VARIANCE IN THE NUMBER OF ANIMALS TAKEN BY KICK SAMPLING ATTRIBUTABLE TO

PRINCIPAL COMPONENTS OF SOME CHEMICAL AND PHYSICAL FACTORS IN STREAMS IN THE SOUTH PENNINES

			COMPONENT NUMBER			
	1	2	3	4	5	UNEXPLAINED VARIATION
GASTROPODA PLUS ANCYLUS	0.526 ***	0.024	0.052 *	0.020	0.041 +	.0.337
SPHAERIDAE	0.128 *	0.009	0.000	0.016	0.000	0.847
ANNELIDA	0.079	0.015	0.017	0.005	0.004	0.880
GAMMARUS	0.505 ***	0.012	0.027	0.000	0.064 *	0.392
BAETIDAE	0.556 ***	0.000	0.003	0.000	0.034	0_407
HEPTAGENIDAE	0.560 ***	0.000	0.001	0.060 *	0.041 *	0.338
LEPTOPHLEBIDAE	0.015	0.000	0.000	0.003	0.005	0.979
PROTONEMURA	0.000	0.035	0.084	0.000	0.015	0.866
AMPHINEMURA	0.056	0.026	0.033	0.033	0.030	0.822
NEMOURIDAE	0.034	0.018	0.017	0.053	0.012	0.866
LEUCTRA INERMIS	0.000	0.019	0.184	0.000	0.000	0.797
LEUCTRA HIPPOPUS	0.004	0.031	0.031	0.033	0.006	0.895
PERLODIDAE	0.199 **	0.012	0.016	0.068	0.020	0.685
CHLOROPERLA	0.004	0.066	0.027	0.022	0.002	0.879
DYTISCIDAE	0.030	0.001	0.015	0.000	0.003	0.951
SIALIS	0.005	0.000	0.128 •	0.039	0.007	0.821
RHYACOPHILA	0.009	0.073	0.128 *	0.001	0.033	0.756
PLECTROCNEMIA	0.014	0.078	0.007	0.005	0.891	
HYDROPSYCHIDAE	0.483 ***	0.037	0.041	0.035	0.032	0.372
LIMNEPHILIDAE	0.011	0.101 *	0.034	0.009	0.018	0.827
DICRANOTA SP	0.000	0.141 **	0.149 *	0.055	0.005	0.650
CHIRONOMIDAE	0.056	0.088 *	0.047	0.035	0.002	0.772
SIMULIDAE	0.161 **	0.002	0.056	0.013	0.005	0.763

* **= 7** 0.05

.05

** # P. 0.01

a) Tributary Sites

	and the second s								
	Site	Mean oH	lowest	Baetis SD	Gammarus sp	<u>total</u> salmonid	salmonid fry	juvenile salmon	Mean Ca.
						<u>density</u>			mg/1
	Mere Bcck	6.5	6.1	111	111	1.413	1	· · X ·	12.0
	Eel Beck	6.4	6.1	X/-	1/-	-			9.1
	Birker Beck	6.3	6.0	- J.I.	111	.300	1	x	5.3
	Latterbarrow	-			-				
	Beck	6.2	5.8	<i>\</i>]]	XXX	.800	~	\checkmark	4.2
	Hardlmott Gill	6.0	5.4	XX/	XXX	.616	. 1	x	3.4
	Fisher Beck	5.9	5.5	X//	./xx	•748	1	X	3.1
	Whillan Beck		5.1	X././	XXX	.065	1		2.4
	Doddknott							•	
	Gill	5.7	5-3	XXX	XXX	·257	\checkmark	X	4.9
	Trib d/s	5.6	5.3	xxx	xxx	.006	х	x	2.5
	Spothow		5.2	XXX	XXX	0	x	X	2.0
	Spothow Gill	5-5 5-5	9.2 4.9	XX/	XXX	• 3 84	/	· · · ·	
	Linbeck Blea Beck	5.J	4.9	XXX	XXX	•066	4	X	2.4 2.1
	Trib from					•000 ·	. •	· · ·	· · · ·
	Blea Tarn	5.0	4-9	XXX	XXX	÷ – 1	-		2.4
ъ)	Main river si	tes		+			4		
÷	Esk - Cropple How	² 6.0	5.0	¥.//	XXX	.077	1	1	3.7
•	Esk - Forge	5.8	5.0	X//	xxx	.064	v .	1	3.4
	Bridge Esk -	5.8	5.2	X./	X-X	•064		x	3.8
	Dalegarth	2.0	J•6	~~	25-25	•00+	¥		
	Esk – Wha House Bridge	5.4	4.9	X-X	X-X	.015	1	x	2.0
	Esk – u/s	5.5	5.2	√xx	XXX				1.7
•	Hardknott Esk - Doctor			e i	· · ·	-			
	Bridge	5.3	4•7	X-X	X-X	. 085	v	X	· 2.0
、	-						· · ·		
c)	Upper Esk - 1	imited	samples	5	10		• • •		· ·
	Catcove Beck	6.4	6.3	×⁄	XX.	\checkmark	· •	× X .	2.8
	Unnamed trib Long Crag	5.6	5.6	xx	XX	• 0	x	x	1.8
	Lingcove	= (67	xx	xx	0	x	. x .	1.4
1	Beck	5.6	5•3	ፈሌ	~~		·	•	147
	Unnamed trib Great Moss	5.5	5-4	xx*		0	X	x	2.8
	Esk - Great	<u> </u>							
	Moss	5.1	4.8	XX	XX	0	x	×	1.7
				- 6 - C					
Key	L							1	
+	1 Rhithrogena Leptophlebida	semic	olorata	present		Ephemeropt lacking Ba		ice in samp	les
,	web cobirreproa		or orbur	, churus f	TCOCHO 1	TOOVTUR Da			

presence demonstrated by sampling

Х not present in sample

no record ---

Note that the sequence of invertebrate records refers to 1) winter, 2) late spring - early summer, and 3) mid-late summer samples, in that order.

a) Tributary Sites

	Site	Mean pH	<u>lowest</u> <u>pH</u>	Baetis so	<u>Gammarus</u> <u>BP</u>	total salmonid density	<u>salmonid</u> <u>fry</u>	juvenile salmon	Mean Ca. nc/1
	Hollow Hoss Beck	7.3	7.1	-//	-1.1	1.638	1	x	11.0
	Holehouse Gill	6.9	6.3	J.I.I		.848	1	1	8.6
	Crosby Gill Gobling Beck		6.3 6.3	,,,, ,,,,	√x∕ xxx	•555 1•904		x	8-1 8-1
	Logan Beck Sling Beck	6.7 6.6	6.2 6.1	\!! \\\	√/X XXX	.609 .612		x	3-8 3-0
	Tarn Beck (ptc Gobling)		6.2	-X/	_XX	.181	1		2.3
	Blea Beck	6.5	6.1		14	1.568		X	5-8
	Old Park Beck		6.0	111	<u></u>	1.788		X	7.8
	Cockley Beck	6.1	5.6	×XX ζ	XXX	. 192	 	X	5-3
	Hardknott Gill	6.0	5.5		\ X/	2.040	1	X	4.4
	Grassguards Gill	5-9	5.3	XXX	XXX	•177	V	X	3-5
	Tarn Beck (Tongue H.)	5-4	5.2	XXX	XXX	0	X	X	2.2
	The Syke	5-3	4.9	XXX	XXX	• 037	X	X	2.3
	Castlehow Beck	5.0	4•7	XXX	XXX	•323	1	X	2.7
	Troughton Gill	4.9	4.4	XXX	XXX	_	-	·	1.5
	Moasdale Beck	4.8	4.5	XXX	XXX	.022	х.	X	1.2
	Doe House Gill	4.7	4.4	XXX	XXX	0	X v	X	1.2
	Black Beck	4.6	4.3	XXX.	XXX	0	x	X	1.5
	Dale Head Gill	4.5	4.3	XX-	XX-		<u> </u>	-	-8
.1.	Gaitscale Gill	4.5	4.2	XXX	XXX	0	x	X	1-1
ъ)		tes							
	Duddon - Duddon Bridge	6.5	5.6	111	XXX		v	1.	4.9
	Duddon - Ulpha	6.3	5•5		XXX	•305	V	1	4.5
	Duddon - Troutal	5•7	5.7	XXX	XXX	•078	\checkmark	X	3.7
	Duddon - u/s Hall Bridge	5•7	5.1	XX-	XX-	-	-	-	3.0
	Duddon - p tc Moasdale	5.1	4.7	XXX	XXX	.032	x	X	1.9
Key	۲.								
•	1 Ameletus pr 1 Siphlonurus		stris pre) esent)	Ephemeropi lacking <u>Ba</u>	tera presen aetis sp	nce in samp	les	

presence demonstrated by sampling

X not present in sample

- no record

L

Note that the sequence of invertebrate records refers to 1) winter, 2) late spring - early summer, and 3) mid-late summer samples, in that order.

Fish and invertebrate fauna - 'Other catchments' 1982

<u>Site</u>	Mean pH	lowest pH	Baetis sp	Germarus SD	total salmonid density	<u>salmonid</u> <u>fry</u>	<u>juvenile</u> <u>salmon</u>	Mean Ca. mg/1
Bannerdale Beck	6.9	6.5	~~	14	1.055	1	1	7-3
Swindale	6.8	6.5	111	X/1	-554	1	x	. 8.1
Beck Borrow Beck Troutbeck	6.7	6.3 6.1	111	XXX VV	1.232	1	√ ↓ x	8.1 7.4 2.2
Aiken Beck Raise Beck Aira Beck	6.6 6.6	6.4 6.1		XXX XXX V/X	-423 -358 -224	×	x	5.0 4.5
Whinlatter Gill	6.6	6.0	111	111	4.018	1	x	3.7
River Calder Worm Gill River Bleng	6.5 6.5 6.4	6.1 6.1 6.0		X/X XXX VXX	.312 .396 .687	111	~~~	3.0 2.6 3.0
Newlands Beck River Mite Mosedale Beck	6.4 6.3 6.3	5.9 5.9 5.9		XXX XXX XXX XXX	1.834 .409 .233 0	>>>×	~~~×	2.9 2.8 2.8 14.1
Blea Beck Stonethwaite Beck	6.3 6.2	5.8 5.9	×11 -111	XXX	.320	1	1	2.3
Lingmell Beck Greendale Gill Smithy Beck	6.2 6.2 6.2	5.9 5.9 5.8	11	XXX XXX XXX	.417 .611 .395	14	√ ✓ ×	2.1 1.7 2.2
River Derwent (Seathwaite)	6.2	5.7	xxx	xxx	.009	V	1	2.2
Glenderaterra Beck	6.1	5.6	111	XXX	1.440		1	1.3
Keskadale Beck Great Langdale	6.0 5.6	5.7 5.4	XXX	XXX XXX	•737 0	×	×	1.6
Beck River Liza	5.6	5.2	XXX	xxx	.016	1	x	1.5
River Brathay (Fell Foot)	5.5	5.0	XXX	XXX	-216	1	X	1.8

Key

1 Ameletus present (Ephemeroptera presence in samples lacking Baetis sp) #

v presence demonstrated by sampling
X not present in sample

- no record

Note that the sequence of invertebrate records refers to 1) winter, 2) late spring - early summer, and 3) mid-late summer samples, in that order.

Mean length of 0+ salmonids

Esk 1982

		Esk 1982			4. 3.	
Site	Species	Date	Mean	SD	Range	N
Doddknott Gill	Trout	6.7.82	3.54	.396	2.8-4.2	16
Latterbarrow Beck	Trout	7.7.82	5.39	•528	4.5-6.5	- 14
Latterbarrow Beck	Salmon	7.7.82	4.73	•525	3.8-5.4	10
Mere Beck	Trout	7 7.82	5.38	. 664	4.3-6.4	54
Blez Beck	Trout	8.7.82	5.48	.205	5.2-5.7	4
Whillan Beck	Trout	8.7.82	5.61	•304	. 5.0-6.0	13
Hardlmott Gill	Trout	9.7.82	4.05	•578	3.1-6.7	79
Birker Beck	Trout	9.7.82	4.35	•567	4.2-6.1	32
Fisher Beck	Trout	12.7.82	6-29	.569	4.8-7.5	61
Linbeck Gill	Trout	12.7.82	5.83	• 5 35	4.8-6.7	.24
Linbeck Gill	Salmon	12.7.82	5-24	•297	4.9-5.7	5
Esk at Doctor Br.	Trout	12.7.82	4.63	•435	4.0-5.0	4
Esk at Cropple How	Trout	19.7.82	5.36	•560	4.2-6.4	23
Esk at Cropple How	Salmon	19.7.82	5.30	.295	4.7-5.9	26
Esk at Forge Br.	Trout	19.7.82	5.35	•389	4.7-6.0	8
Esk at Forge Br.	Salmon	19.7.82	4.83	•568	4.2-5.4	4
Esk at Whahouse Br.	Trout	20.7.82	4.40	•693	3.6-4.8	3
Esk at Dalegarth	Trout	20.7.82	4.18	.715	3-5-5-4	12
	-	Esk 1981		4	· 4	Ŷ.
Latterbarrow Beck	Trout	16.7.81	5.26	•589	4.1-6.7	43
Fisher Beck	Trout	16.7.81	6.10	.415	5.2-6.5	11
Doddknott Gill	Trout	17.7.81	3.69	•398		8.
Hardknott Gill	Trout	17.7.81	3.56	•385	2.8-4.6	38
Mere Beck	Trout	21.7.81	5.29	-575	4.3-6.5	26
Eel Beck	Trout	21.7.81	6.10	.814	4.7-7.2	8
Whillan Beck	Trout	27.7.81	5.50	•455	4.9-5.9	4
Whillan Beck	Salmon	27.7.81	4.90		4.8-5.0	2
Birker Beck	Trout	27.7.81	6.09	.564	5.4-6.8	7
Lin Beck	Trout	28.7.81	5.98	.512	5.1-7.0	10
Esk Cropple How A	Trout	30.7.81	5.57	.691	4 .1- 6.4	31
Esk Cropple How B	Trout	30.7.81	5.70	•446	4.8-6.5.	16
Esk Wha House Br.	Trout	31.7.81	4.25		3.9-4.6	2
Esk Doctor Br.	Trout	31.7.81	4.10	.200	3.9-4.3	3
Esk Forge Br.	Salmon	4.8.81 ⁽	4.57	•345	4.1-5.0	7
Esk Forge Br.	Trout	4.8.81	5.63	.519	4.8-6.5	12
Esk Dalegarth Br.	Trout	4.8.81	5.10	.646	3.9-5.8	10
	X			3	4	1

Mean length of O+ salmonids

Ap	pendix	6	٠.
			-

		D L .			D	
Site	Species	Date	Mean	SD	Range	N
Duddon d/s Doe House	Trout	23.7.82	4 . 5 .			1
Cockley Beck Gill	Trout	26.7.82	4.9		4.8-5.0	.2
Hardknott Gill	Trout	26.7.82	6.14	.464	5.0-7.1	43
Castlehow Beck	Trout	26.7.82	4.60	•495	3.8-5.3	13
Grassguards Gill	Trout	27.7.82	5.63	.115	5.5-5.7	3
Gobling Beck	Trout	27.7.82	5-23	.462	4.1-6.0	52
Sling Beck	Trout	28.7.82	5.70	.614	4.6-6.8	18
Old Park Beck	Trout	28.7.82	5.14	•530	4.2-6.6	57
Tarn Beck (u/s Gobling)	Trout	28.7.82	4.80	•363	3.9-5.3	13
Hollow Moss Beck	Trout	29.7.82	6.02	.507	5.1-7.0	46
Crosby Gill .	Trout	29.7.82	6.56	.456	5.2-7.2	29
Crosby Gill	• Salmon	29.7.82	6.08	.493	4.8-7.1	40
Blea Beck	Trout	2.8.82	5.33	.532	4.0-6.5	51
Logan Beck	Trout	3.8.82	6.10	.603	5.0-7.2	11
Logan Beck	Salmon	3.8.82	6.13	.448	5.4-6.8	12
Hole House Beck	Trout	3.8.82	6.68	.676	5.4-8.2	44
Hole House Beck	Salmon	3.8.82	6.0			. 1
Duddon (Duddon Br.)	Salmon	2.8.82	5.98	•522	5.2-6.5	5
Duddon (Ulpha Br.)	Trout	4.8.82	6.72	•437	5.9-8.0	41
Duddon (Ulpha Br.)	Salmon	4.8.82	6.74	.450	5.8-8.0	48
Duddon (Troutal)	Trout	4.8.82	5.07	1.16	4.0-6.3	3

Mean length of 0+ salmonids

Other sensitive sites

Appendix 6

		Othe	er sensitive	sites			
1	Site	Species	Date	Mean	. SD	Range	N
ŕ	Aira Beck	Trout	5.8.82	5.95	•542	5.4-6.8	8
	Borrow Beck	Trout	5.8.82	6.08	•561	4.8-7.0	63
	Borrow Beck	Salmon	5.8.82	6.20	-3 73	5.3-7.1	56
	Derwent (Seathwaite)	Salmon	10.8.82	4.3			1
•	Stonethwaite Beck	Trout	10.8.82	5.25		4.7-5.8	2
	Stonethwaite Beck	Salmon	10.8.82	5.77	. 469	4.9-6.6	23
	Newlands Beck	Trout	11.8.8	5.32	•574	3.7-6.6	76
	Newlands Beck	Salmon	11.8.82	5.07	•395	3.9-5.8	56 .
	Keskadale Beck	Trout	11.8.82	6.349	•490	5.2-7.1	47
	Swindale Beck	Trout	12.8.82	6.38	· . 478	5.5-7.5	48
•	Bannerdale Beck	Trout	12.8.82	6.56	.677	5.3-8.2	116
	Bannerdale Beck	Salmon	12.8.82	5-5			1
	Glenderaterra Beck	Trout	13.8.82	5.72	.655	4.2-6.9	50
	Glenderaterra Beck	Salmon	13.8.82	5-49	.472	4.7-6.4	22
	Smithy Beck	Trout	17.8.82	6.0			1
	Whinlatter Gill	Trout	17.8.82	5.03	•551	3.8-6.3	41
	River Brathay	Trout	1.9.82	6.63	.058	6.6-6.7	3
	Troutbeck	Trout	2.9.82	6.36	•588	· 5.1-7.8	67
	Troutbeck	Salmon	2.9.82	6.83	•346	6.4-7.4	9
	Raise Beck	Trout	2.9.82	5.72	.410	5.1-6.3	8
	Lingmell Beck	Trout	3.9.82	5.09	•556	4.2-6.6	21
	Lingmell Beck	Salmon	3.9.82	5.46	•365	4.9-5.9	5
	Nosedale Beck	Trout	3.9.82	5.90	•346	5.4-6.2	4
	Mosedale Beck	Salmon	3.9.82	6.03	•717	5 . 2 -7.2	· 6
	Greendale Gill	Trout	3.9.82	5.98	.423	5.4-6.6	15
	Greendale Gill	Salmon	3.9.82	5.6	•		1
	River Calder	Trout	8.9.82	5.69	1.042	4.1-7.1	7
	River Calder	Salmon	8.9.82	6.35	•757	5 •3-7•9	20
	Worm Gill	Trout	8.9.82	6.68	•518	5.9-7.4	10
	Worrd Gill	Salmon	8.9.82	6.85		6.7-7.0	2
•	Mite	Trout	10.9.82	6.89	•620	5-9-7-9	26
	Mite	Salmon	10.9.82	6.25		6.1-6.4	2
	Bleng	Trout	10.9.82	5.90	• 654	4.6-7.4	29
	Bleng	Salmon	10.9.82	5.68	•456	4.9-7.1	25

÷.,

Comparison of two expressions for juvenile salmonid biomass applied to 1982

.

Esk Data

Combarison or the t	APICOBIONS 101 JUNCHILE	Baligonita Diomass at	1911ed CO 1902
Esk Data			
C11.	Estimated biomass	Crude index	Biomass density +
Site	density from measured	of biomass	Crude index
	length/weight	density - gms/m ²	
	regressions - gms/m ²		
W		- 	4 00
Mere Beck	9-98	7-72	1.29
Latterbarrow Beck	5.89	4.26	1.38
Fisher Beck	4.25	3.01	1.41
Birker Beck	3.92	3.12	1.26
Lin Beck Gill	2.92	2.37	1.23
Hardknott Gill	2.14	1.92	1.11
Esk at Doctor Bridge	1.55	1.19	1.30
Blea Beck	1.01	•94	1.07
Whillan Beck	•99	. 68 .	1.46
Doddknott Gill	•94	. 66	1.42
Esk at Cropple How	•36	-28	1.29
Esk at Dalegarth	-31	•26	1.19
Esk at Whahouse Br.	. 18	•15	1.20
Esk at Forge Br.	•16	. 13	1.23
Unnamed trib d/s	•14	•12	1.17
Spothow	14 M	*	

Cumbrian hill streams with abnormally low trout densities and no known point sources of pollution

		Catchment	<u>Mean Ca</u> mg/1	Geometric Mean pH	Lowest <u>pH</u>	Ready Access to fish recolonists from d/s sources
a)	exceptionally low density and no evidence of recruitment			~		
	Moasdale Beck	Duddon	1.2	4.8	4.5	1
	upper Brathay	Brathay	1.4*	5.0*	5.0*	\checkmark
b)	no salmonids on some occasions					
	Tarn Beck (U.S. Tongue House)	Duddon	2.2	5.4	5.2	1
	Blea Beck (Lune)	Lune	2.3'	5.7'	5.5'	?
	trib. D.S. Spothow Gill	Esk	2.5	5.6	5.3	✓
	upper Glenderamackin	Glenderamackin	0.6	5.4	5.3	4
c)	no salmonids present					
	upper Grassguards Gill	Duddon	1.9*	5.0*	4.8*	x
	Spothow Gill	Esk	2.0	5.5	5.2	1
	Esk, Great Moss	Esk	1.1	5.1	4.8	X
	upper Blea Beck (Lune)	Lune	2.0*	5.3*	5.0*	?
	Lingcove Beck	Esk	1.4	5.6	5.3	X
	Black Beck	Duddon	1.5	4.6	. 4.3	\checkmark
	Gaitscale Gill	Duddon	1.1	4.5	4.2	\checkmark
	Doe House Gill	Dudon	1.2	4.7	4.4	\checkmark

Note * Very limited data

 Limited data specific to fishing site, earlier reported summary data included some downstream improvement influences.

MAIN RIVER SAMPLING SITES ON THE RIVER ESK AND DUDDON

Archive Code	SPT No.	Grid Reference	Description
0174808719C	Ml	NY 27100 02500	River Duddon at Wr ynose - d/s of Rough Crag Gill
0174808719 T	M2	NY 24700 01800	River Duddon PTC Moasdale Beck
·017480872U	МЗ	NY 24600 01700	River Duddon at Cockley Beck Bridge.
0174808722V	M4	SD 23400 98400	River Duddon near troutal u/s of Cattle Grid.
0174808740	M5	SD 21300 95300	River Duddon d/s of Tarn Beck.
0174808760	M6	SD 19600 93000	River Duddon at Ulpha.
0174808780	M7	SD 19900 88200	River Duddon at Duddon Bridge.
0174808880E	M8	NY 21850 05100	River Esk in Great Moss.
0174808882	M9	NY 21200 01300	River Esk u /s Hardknott Gill.
0174808883C	M10	NY 20350 00900	River Esk at Whahouse Bridge.
017480885 B	M11	NY 18900 00700	River Esk at Doct ors Bridge.
0174808885GK	M12	NY 17160 00370	River Esk at Dalegarth Bridge.
0174808886	M13	SD 14900 99600	River Esk at Forge Bridge.
0174808888	M14	SD 13100 97700	River Esk at Cropple How Gauging Stations.

1

APPENDIX 8

LAKE DISTRICT TRIBUTARY SAMPLING SITES

.e. .9

	Archive Code	SPT No.	Grid Reference	Description
	0172806990	Tl	NY 68450 05150	River Lune at Wath
-2	0172807055	Т2	NY 56000 10100	Blea Beck u/s of A6 - u/s of Plantation.
	0172807095	тЗ	NY 55000 04000	Borrow Beck u/s of High Borrow Bridge.
1)	- 0173807769	т4	NY 44600 0770	River Kent as discharges from Kentmere Reservoir.
	0173807785	Т5	NY 42200 01600	Dubbs Beck as discharges from Dubbs reservoir.
	0173808240	Т6	NY 32700 11600	Raise Beck at foot of Dunmail Raise.
	0173808242	т7	NY 33200 10300	Raise Beck 40m u /s of Dunmaile Raise WTP.
	0173808284	т8	NY 39800 07650	Stuck Ghyll at Ambleside - Kirkstone Road Bridge.
	0173808310	T 9	NY 30000 03200	River Brathay at Fell Foot.
	0173808315	T10	NY 29250 04250	Bleamoss Beck as discharges from Blea Tarn.
	0173808335	Tll	NY 28500 06000	Great Langdale Beck near Middlefell Place – 20m u/s of bridge.
	0173808368	T12	NY 42000 05700	Trout Beck at Troutbeck Park - 20m u/s of bridge.
	0174808719F	T13	NY 25900 02100	Doe House Gill PTC River Duddon - u/s of Road bridge.
	017 48 08719J	T14	NY 25800 02100	Gaitscale Gill 10m PTC River Duddon.
	0174808719R	T15	NY 25700 02000	Troughton Gill PTC River Duddon - immed. u/s of Road Bridge.
	0174808719W	T16	NY 24650 01750	Moasdale Beck 10m PTC River Duddon.
	0174808722H	T17	NY 24600 01400	Cockley Beck Gill 10m u/s of Road Bridge.

·017480872	2E T18	NY 24100 01200	Hardknott Gull 10m u/s of River Duddon.
017480872	2R T19	NY 24100 00700	Dale Head Gill 5m u/s of Road Bridge.
017480872	2L T20	NY 25900 00200	Castlehow Beck 10m u/s of River Duddon.
017480872	2P T21	SD 23650 99750	Black Beck 10m u/s of River Duddon.
017480872	2T T 22	SD 23400 96600	The Syke 20m d/s of Road Bridge.
017480872	2Y T23	SD 22800 97500	Grassguards Gill PTC River Duddon.
017480872	5 T24	SD 25050 96600	Tarn Beck Overflow from Seathwaite Tarn.
017480872	8E T25	SD 23600 97500	Tarn Beck at Tongue House d/s of farm effluent influence.
017480872	8V T26	SD 22600 96100	Tarn Beck PTC Gobling Beck.
017480872	8X T27	SD 22600 98000	Gobling Beck PTC Tarn Beck.
017480873	5E T28	SD 21950 95900	Old Park Beck 5m d/s of Road Bridge.
-017480873	5K T29	SD 21300 95500	Sling Beck lOm PTC River Duddon.
017480874	5 T 30	SD 20400 93700	Hollow Moss Beck 25m u/s of River Duddon.
-017480875	0 T31	SD 20100 93700	Crosby Gill PTC River Duddon.
017480876	3 Т32	SD 19050 92550	Holehouse Gill 10m d/s of Bobbin Mill Bridge.
017480876	5 ТЗЗ	SD 19400 92100	Blea Beck 150m u/s of River Duddon.
017480876	8 T34	SD 18400 90300	Logan Beck d/s of Logan Beck Bridge.
017480888	0G T35	NY 22030 05000.	Unnamed trib. of River Esk on Great Moss.
017,480888	OM T36	NY 22600 04700	Unnamed trib. of River Esk from Long Crag.
017480888	OR T37	NY 22740 03650	Lingcove Beck.
017480888	1 Т38	NY 21520 02250	Catcove Beck.
			- D

0174808885	т39	NY 21200 01300	Hardknott Gill d/s River Esk.
0174808883G	т40	NY 20330 00700	Dodknott gill PTC River Esk.
0174808883M	т41	NY 20340 00650	Spothow Gill PTC River Esk.
0174808883R	Т42	NY 20280 00650	Trib of River Esk (d/s of Spothow Gill).
0174808885	т43	NY 19400 01000	Blea Beck PTC River Esk.
0174808885D	т44	NY 17300 00200	Birker Beck at Dalegarth Hall (Boiler Beck).
·0174808885G	т45	NY 17350 00400	Eel Beck 50m u/s River Esk.
0174808885H	т46	NY 16900 00400	Whillan Beck PTC Esk.
·0174808885K	т47	NY 15700 00200	Trib. of River Esk l km d/s Blea Tarn.
0174808886G	T48	14350 99500	Mere Beck d /s of Track from Stn.
017 4 808886M	т49	SD 14650 98700	Fisher Beck u/s of Road Bridge.
0174808887	т50	SD 14050 98200	Linbeck Gill d/s Devuke Water
0174808889M	T 51	SD 12350 97300	Latterbarrow Beck d/s Hinning House.
0174808897	T 52	NY 13200 00300	River Mite 20m u/s of Powerhouse Bridge.
0174808904F	т53	NY 18400 07700	Lingmell Beck 20m PTC Mosedale Beck.
0174808904K	т54	NY 18400 08200	Mosedale Beck 10m u/s of Down-in-the-Dale Bridge.
0174808906	T55	NY 16500 06700	Wastwater at Bowderdale.
0174808911G	т56	NY 14300 05600	Greendale Beck at Greendale.
0174808919	т57	NY 06600 05500	River Bleng t Blengdale - u/s of Forestry Commission Bridge.
0174808933G	т58	NY 06500 09100	River Calder 20m u/s of Worm Gill.
0174808933M	т59	NY 06600 09100	Worm Gill 20m u/s of River Clader.
0174808953F	Т60	NY 19200 12300	River Liza 400m d/s of YAA (10m u/s of Ford).

....

÷ .

 \odot

1074808955L T61 NY 13050 14250 River Liza PTC Enerdale Water 0174808953P T62 NY 12400 15000 Smithy Beck 30m u/s of Porestry Commission Bridge. 0174808953P T63 NY 11400 15000 Enerdale Water Near Howness Knott. 0174808950 T64 NY 06900 15800 River Elen at Ennerdale Bridge. 0175809026H T65 NY 23400 12200 River Derwent PTC Sour Milk Gill, Seathwaite. 0175809027K T66 NY 36300 30300 River clenderamackan at Hungrissdale. 0175809029P T67 NY 32100 14900 Thirlmere - Surface Water at drav-off tower. 0175809029P T68 NY 29600 25400 Glenderaterra Beck at Derwent Prolds. 0175809045F T69 NY 22300 19400 Keskadale Beck A/s of Bridge at Little Town. 0175809065B T71 NY 22300 19400 Keskadale Beck Near Gillorow. 0175809065B T72 NY 19000 13500 Buttermere Below Lower Gateswarth. 0175809066B T73 NY 12200 24500 Crummock Water at Mause Point. 0175809066DR T76 NY 18900 26250 Alken Beck 200m u/s of Darling Row Plantation. 0175809066DR T76 NY 18900 26250 Alken	-			- i -
Forestry Commission Bridge. 0174808953V T63 NY 11400 15000 Ennerdale Water Near Howness Knott. 0174808960 T64 NY 06900 15800 River Ehen at Ennerdale Bridge. 0175809026H T65 NY 23400 12200 River Derwent PTC Sour Milk Gill, Seathwaite. 0175809027K T66 NY 36300 30300 River Glenderamackan at Hungrisdale. 0175809029P T67 NY 32100 14900 Thirlmere - Surface Water at, draw-off tower. 0175809029Y T68 NY 29600 25400 Glenderaterra Beck at Derwent Folds. 0175809045F T69 NY 23150 19450 Mewlands Beck d/s of Bridge at Little Town. 0175809045M T70 NY 22300 19400 Keskadale Beck Near Gillorow. 0175809065B T71 NY 22400 13580 Gatesgarthdale Beck u/s Buttermere Green Slate Quarry. 0175809066B T73 NY 16200 18200 Crummock Water at Mause Point. 0175809066DN T75 NY 18900 24500 Whinlatter Gill 10m u/s of F.C. Bridge. 0175809066DV T76 NY 18900 24550 Aiken Beck 200m u/s of Darling Row Plantation. 0175809066DV T76 NY 18900 1	1074808955L	T61	NY 13050 14250	River Liza PTC Ennerdale Water
Knott. 0174808960 T64 NY 06900 15800 River Ehen at Ennerdale Bridge. 0175809026H T65 NY 23400 12200 River Derwent PTC Sour Milk Gill, Seathwaite. 0175809027K T66 NY 36300 30300 River Glenderamackan at Hungrisdale. 0175809029P T67 NY 32100 14900 Thirlmere - Surface Water at draw-off tower. 0175809029Y T68 NY 29600 25400 Glenderaterra Beck at Derwent Folds. 0175809045F T69 NY 23150 19450 Newlands Beck d/s of Bridge at Little Town. 0175809045F T69 NY 22400 13580 Gatesgarthdale Beck u/s Buttermere Green Slate Quarry. 0175809065B T71 NY 12200 18200 Crummock Water at Mause Point. Ourse Gateswarth. 0175809066B T73 NY 16200 18200 Crummock Water of Ling Heads. Of pr. C. Bridge. 0175809066DR T75 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809066BX T77 NY 09500 19500 Congra Moss 0175809066BX T77 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809066BX	0174808953P	T62	NY 12400 15000	-
-0175809026H T65 NY 23400 12200 River Derwent PTC Sour Milk Gill, Seathwaite. 0175809027K T66 NY 36300 30300 River Glenderamackan at Hungrisdale. 0175809029P T67 NY 32100 14900 Thirlmere - Surface Water at draw-off tower. 0175809029Y T68 NY 29600 25400 Glenderaterra Beck at Derwent Folds. 0175809045F T69 NY 23150 19450 Newlands Beck d/s of Bridge at Little Town. 0175809045M T70 NY 22300 19400 Keskadale Beck Near Gillorow. 0175809065B T71 NY 22400 13580 Gatesgarthdale Beck u/s Buttermere Green Slate Quarry. 0175809065M T72 NY 19000 13500 Buttermere Below Lower Gateswarth. 0175809066B T73 NY 16200 18200 Crummock Water at Mause Point. 0175809066DP T76 NY 19200 24500 Whinlatter Gill 10m u/s of F.C. Bridge. 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809019T T78 NY 25400 35300 River Ellen at Overwater. 0175809119T T78 NY 25400 35300 River Ellen at B6259 Roadbridge - at Ing Heads. 0176809403c T80 NY 40300 09500<	01748089530	T63	NY 11400 15000	
Gill, Seathwaite. 0175809027K T66 NY 36300 30300 River Glenderamackan at Hungrisdale. 0175809029P T67 NY 32100 14900 Thirlmere - Surface Water at draw-off tower. 0175809029Y T68 NY 29600 25400 Glenderaterra Beck at Derwent Folds. 0175809045F T69 NY 23150 19450 Newlands Beck d/s of Bridge at Little Town. 0175809045F T69 NY 22300 19400 Keskadale Beck Near Gillorow. 0175809045M T70 NY 22300 19400 Keskadale Beck Near Gillorow. 0175809065B T71 NY 22400 13580 Gatesgarthdale Beck u/s Buttermere Green Slate Quarry. 0175809065M T72 NY 19000 13500 Buttermere Below Lower Gateswarth. 0175809066B T73 NY 16200 18200 Crummock Water at Mause Point. 0175809066DP T76 NY 19200 24500 Whinlatter Gill 10m u/s of F.c. Bridge. 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809019T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Ellen at B6259 Roadbridge - at Ing Heads. 0176809403C <td< td=""><td>0174808960</td><td>T64</td><td>NY 06900 15800</td><td>River Ehen at Ennerdale Bridge.</td></td<>	0174808960	T64	NY 06900 15800	River Ehen at Ennerdale Bridge.
Hungrisdale. 0175809029P T67 NY 32100 14900 Thirlmere - Surface Water at. draw-off tower. 0175809029Y T68 NY 29600 25400 Glenderaterra Beck at Derwent Folds. 0175809045F T69 NY 23150 19450 Newlands Beck d/s of Bridge at Little Town. 0175809045M T70 NY 22300 19400 Keskadale Beck Near Gillorow. 0175809065B T71 NY 22400 13580 Gatesgarthdale Beck u/s Buttermere Green Slate Quarry. 0175809065M T72 NY 19000 13500 Buttermere Below Lower Gateswarth. Lower 0175809066D T73 NY 16200 18200 Crummock Water at Mause Point. 0175809066DF T74 NY 12800 21800 Loweswater 0175809066DF T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 017580919G T77 NY 09500 19500 Congra Moss 0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809403c T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403c T80 NY 40300 09500	·0175809026H	T 65	NY 23400 12200	
draw-off tower. 0175809029Y T68 NY 29600 25400 Glenderaterra Beck at Derwent Folds. 0175809045F T69 NY 23150 19450 Newlands Beck d/s of Bridge at Little Town. 0175809045M T70 NY 22300 19400 Keskadale Beck Near Gillorow. 0175809065B T71 NY 22400 13580 Gatesgarthdale Beck u/s Buttermere Green Slate Quarry. 0175809066B T72 NY 19000 13500 Buttermere Below Lower Gateswarth. 0175809066B T73 NY 16200 18200 Crummock Water at Mause Point. 0175809066DR T74 NY 12800 21800 Loweswater 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809086K T77 NY 09500 19500 Congra Moss 0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Eden at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass.	0175809027K	T66	NY 36300 30300	
Folds.0175809045FT69NY 23150 19450Newlands Beck d/s of Bridge at Little Town.0175809045MT70NY 22300 19400Keskadale Beck Near Gillorow.0175809065BT71NY 22400 13580Gatesgarthdale Beck u/s Buttermere Green Slate Quarry.0175809065MT72NY 19000 13500Buttermere Below Lower Gateswarth.0175809066BT73NY 16200 18200Crummock Water at Mause Point.0175809066CDT74NY 12800 21800Loweswater0175809066DRT75NY 19200 24500Whinlatter Gill 10m u/s of F.C. Bridge.0175809066DVT76NY 18900 26250Aiken Beck 200m u/s of Darling Row Plantation.0175809119TT78NY 25400 35300River Ellen at Overwater.0176809519GT79SD 78000 98800River Eden at B6259 Roadbridge - at Ing Heads.0176809403CT80NY 40300 09500Kirkstone Beck at Kirkstone Pass.0176809403KT81NY 40200 13200Goldrill Beck at Brotherswater	0175809029P	T 67	NY 32100 14900	
Little Town. 0175809045M T70 NY 22300 19400 Keskadale Beck Near Gillorow. 0175809065B T71 NY 22400 13580 Gatesgarthdale Beck u/s Buttermere Green Slate Quarry. 0175809065M T72 NY 19000 13500 Buttermere Gelow Lower Gateswarth. 0175809066B T73 NY 16200 18200 Crummock Water at Mause Point. 0175809066CD T74 NY 12800 21800 Loweswater 0175809066DR T75 NY 19200 24500 Whinlatter Gill 10m u/s of F.C. Bridge. 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Ellen at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	017580902 9 ¥	T68	NY 29600 25400	
0175809065B T71 NY 22400 13580 Gatesgarthdale Beck u/s Buttermere Green Slate Quarry. 0175809065M T72 NY 19000 13500 Buttermere Green Slate Quarry. 0175809066B T73 NY 16200 18200 Crummock Water at Mause Point. 0175809066CD T74 NY 12800 21800 Loweswater 0175809066DR T75 NY 19200 24500 Whinlatter Gill 10m u/s of F.C. Bridge. 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809088K T77 NY 09500 19500 Congra Moss 0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Ellen at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	0175809045F	T69	NY 23150 19450	-
Buttermere Green Slate Quarry. 0175809065M T72 NY 19000 13500 Buttermere Below Lower Gateswarth. 0175809066B T73 NY 16200 18200 Crummock Water at Mause Point. 0175809066CD T74 NY 12800 21800 Loweswater 0175809066DR T75 NY 19200 24500 Whinlatter Gill 10m u/s of F.C. Bridge. 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809088K T77 NY 09500 19500 Congra Moss 0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Eden at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	·0175809045M	т70	NY 22300 19400	Keskadale Beck Near Gillorow.
Gateswarth. 0175809066B T73 NY 16200 18200 Crummock Water at Mause Point. 0175809066CD T74 NY 12800 21800 Loweswater 0175809066CD T74 NY 12800 24500 Whinlatter Gill 10m u/s of F.C. Bridge. 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809088K T77 NY 09500 19500 Congra Moss 0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Eden at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	0175809065B	T71	NY 22400 13580	
0175809066CD T74 NY 12800 21800 Loweswater 0175809060DR T75 NY 19200 24500 Whinlatter Gill 10m u/s of F.C. Bridge. 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809088K T77 NY 09500 19500 Congra Moss 0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Eden at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	0175809065M	T72	NY 19000 13500	
0175809060DR T75 NY 19200 24500 Whinlatter Gill 10m u/s of F.C. Bridge. 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809088K T77 NY 09500 19500 Congra Moss 0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Eden at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	0175809066B	т73	NY 16200 18200	Crummock Water at Mause Point.
F.C. Bridge. 0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809088K T77 NY 09500 19500 Congra Moss 0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Eden at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	0175809066CD	T 7 4	NY 12800 21800	Loweswater
0175809066DV T76 NY 18900 26250 Aiken Beck 200m u/s of Darling Row Plantation. 0175809088K T77 NY 09500 19500 Congra Moss 0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Eden at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	0175809060DR	T 75	NY 19200 24500	F.C. Bridge.
0175809119T T78 NY 25400 35300 River Ellen at Overwater. 0176809519G T79 SD 78000 98800 River Eden at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	0175809066DV	т76	NY 18900 26250	
0176809519G T79 SD 78000 98800 River Eden at B6259 Roadbridge - at Ing Heads. 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	0175809088K	т77	NY 09500 19500	Congra Moss
 - at Ing Heads. - 0176809403C T80 NY 40300 09500 Kirkstone Beck at Kirkstone Pass. - 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater 	0175809119 T	т78	NY 25400 35300	River Ellen at Overwater.
Pass. 0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater	01768095 19 G	T 79	SD 78000 98800	
0176809403K T81 NY 40200 13200 Goldrill Beck at Brotherswater		T80	NY 40300 09500	
		T81	NY 40200 13200	

01768094030	T8 2	NY 47000 24400	Ullswater - R.Eamont at B5320 Road bridge (Pooley Bridge).
·0176809404H	T8 3	NY 37150 20750	Aira Beck 50m d/s of Footbridge near Dowthwaitehead.
0176809404R	T84	NY 43550 16880	Bannerdale Beck u/s of Footbridge at Dalehead.
0176809417F	T85	NY 55300 11650	Wet Sleddale Reservoir - Compensation water at weir.
0176809417M	T86	NY 50750 12350	Swindale Beck 20m u/s of Trib. from Swindale Head Farm.
·0176809417R	T87	NY 50300 15700	Haweswater as discharging to Haweswater Beck.
0176809612	T88	NY 32000 44000	Grainsgill Beck u/s Carrock Fell Mine.
0176809014	т89	NY 32800 32600	River Caldew 50m d/s Grainsgill Beck.
0175809026HE	T9 0	NY 233 122	Sour Milk Gill ptc. River Derwent.
0175809026P	T91	NY 254 139	Coombe Gill at B5289 ptc River Derwent.
0175809026T	T9 2	NY 273 131	Stonethwaite Beck d/s Greenup Gill.

....

÷

÷.

. .

4

APPENDIX 8

.

÷.

SOUTH PENNINE SAMPLING SITE

Archive Code	SPT No.	Grid Reference	Description
0172806479R	P 4	SD 566 553	River Grizedale at Grizedale Br.
0172806479K	P 5	SD 589 556	Tarnbrook Wyre at T
0172806567	P 6	SD 536 491	Grizedale Beck
0171804420	P 7	SD 702 590	R.Hodder at Cross of Great Br.
0171804160	P 8	SD 794 778	Cam Beck ptc Ribble.
017805234	P 9	SD 671 222	Earnsdale*
0171804638	P10	SD'888 315	Hurstwood*
0171804976	P11	SD 798 276	Mitchell's House No.l*
0171804707	P12	SD 806 397	Upper Ogden Reservoir*
0170806002	P13	SD 628 160	R.Yarrow imm. u/s Yarrow Res.
0169081192	P14	SD 832 156	Ashworth Moor*
0169800995	P15	SD 970 180 .	Blackstone Edge*
0169801083	P16	SD 897 164	Brownhouse Wham*
0169800708	P17	SD 846 269	Clough Bottom*
0169800695	P18	SD 842 202	Cowpe*
0169801055	P19	SD 968 124	Hanging Lees*
0169801188	P20	SD 851 171	Naden Higher*
0169810245	P21	SD 916 214	Ramsden Clough*
0169810247	P22	SD 961 204	Warland*
0169810248	P23	SD 974 201	Whiteholme*
0169801327	P24	SD 668 177	Inflow to Belmont Res u/s A675.
	P25		Inflow to Turton & Entwistle Res u/s A666 Rd. Bridge
0169800009	P26	SK 017 980	Arnfield Brook u/s Arnfield Res.
0169800002	P27	SK 112 999	R.Etherow u/s Woodhead Res.
	P28	SK 020 970	R.Etherow d/s Bott oms Res. at Tintwistle
0169800024	P29	SK 055 938	Hurst Res*.
0159800303	P30	SD 995 101	Castleshaw Upper*
0169800348	P31	SE 019 032	Chew Brook d/s Chew Res. u/s Dove Stone Res.
0169800342	P32	SE 028 055	Greenfield Res.*
016800292	P33	SD 986 122	Readycon Dean.*
0169800384	P34	SK 004 996	Higher Swineshaw*.
016980084	P35	SK 011 744	R.Goyt u/s Errwood Res.
0169800184	P36	SK 056 880	Kinder Res*.

* Reservoir Sites.

~*

WATER QUALITY SAMPLE SUMMARIES For Period 01/01/1982 00:01 to 25/09/1986 01:17

37 Flow Inst M3/s		ALKAL AMM INITY IA	1 117 11 N NO3-N NO2	8 7760 95 -N ALU A MIN MO L IUM ME	D9 241 23 L CAL MAGN NO CIUM IUM RIC AC MG/L MG/	ATU MG/L MG/L	COND ORTHO	MG/L	183 SULPHT ATE H MG/LS S04	UMIC
SPT :- 01748087190			27100 02500	RIVER D	UDDON AT WRYN	OSE - D/S OF	ROUGH CRAG	ILL		
MEAN S.D. M1 MAX MIN 5XILE NORM 5XILE NORM 5XILE LOG 95XILE LOG NO.OF GCCURS.	. 48 57	2.466 .036	6 .3932 .00	05 109.9 10	3.6 1.672 .6 1.3 .4944 .12 2.5 .83 0 .4 .37 -VE .8589 .39 0.2 2.485 .80 2.6 .996 .42 5 2.581 .81 11 18 1	19 95 05 24 85 8	41.09 .003 10.41 .001 63 <.01 22 <.00 23.96 .002 58.22 .003 60.04 .003 16 7	8		.4191 2.5 .9 .8806 2.259 .9852 2.335
SPT :- 0174808719T			24700 01800		IDDON PTC MOA	SDALE BECK	4 ×			
MEAN S.D. M2 MAX MIN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG NO.OF OCCURS.	.4435 5.7 4.7 4.52 5.979 4.553 6.009	.2271 .006 15.27 .006 2.715 .006 16.4 .006	0.0 0.0 .35 <.00 .35 <.00 7 .35 .00 7 .35 .00 7 .35 .00 7 .35 .00	3 57.5 3 38.89 32 30 33 -VE 13 121.4 15 17.35 13 130.7 1 2	1.866 .6 .5508 D. 2.5 .6 .9607 .6 2.772 .6 1.113 .6 2.879 .6 3	2	30 .006 0.0 0.0 30 <.01	7 7 7	2.666 2.666 2.666 2.666 2.666	0.0
SPT :- 0174808720		NGR 1- NY	24600 01700	RIVER DU	IDDON AT COCK	LEY BECK BRID	GE			
S.D. MB	.8391 8 4.7 4.383	3.495 .014 2.251 .017 10 .08 <1 <.00 -VE -V	7 .2856 .000 1.29 <.00 4 .05 .00 E -VE .000	07 153.8 155 05 440 440 1 <20 <10 06 -VE	5.9 .2536 .11 1.9 .85 .8 .39 VE .8769 .38	59 1.116 5.91 94 .689 7.49 2.6 34 .2 2 94 -VE -V 23 2.249 18.2 19 .3732 .731 2.418 18.3 7 19 19	4 11.98 .010 83 .04 24 <.00 E 25.34 -V	1 3.416 20 4 4 E 3.064	2.592 5 <2 -VE	.2438 1.9 1.1 .9767
SPT :- 0174808722V			23400 98400			OUTAL U/S OF				
MEAN S.D. M4 MAX MIN SXILE NORM SXILE NORM SXILE LOG SSXILE LOG NO.OF OCCURS.	5.603 .6893 7.1 4.6 4.469 6.737 4.546 6.803 28	5.053.020 3.913.030 16.095 <1 <.00 -VE -V 11.48.071 1.294.001 12.33.067 25 8	5 .4687 .002 8 .3988 .001 1.4 .005 4 .18 <.00 E -vE -v 2 1.124 .004 9 .106 .000 9 1.201 .004 8 8	215.3 178 3 180.3 166 600 460 2 <10 <10 7 -ve -ve - 1 511.8 451 6 49.76 35. 4 547.5 479 2 21 1	.7 2.109 .67 1.124 .22 5.5 1.5 1 .42 VE .26 .30 .8 3.958 1.0 79 .8177 .37 .2 4.236 1.0 2 22 2	75 62 55 49 65 96 0 EAM OF TARN BE	45.82 .009 9.998 .007 66 .02 27 <.00 29.38 -v 62.27 .021 31.4 .002 63.83 .023 19 7			.6093 2.4 .3678 2.372 .6224
SPT :- 0174808740		NGR :- SD	21300 95300	RIVER DU	DDON DOWNSTR	EAM OF TARN BE	ECK			
MEAN S.D. M5 MAX MIN SXILE NORM SXILE LOG 95XILE LOG	0.324 .596 7.6 5.1 5.344 7.304	4.861 .021 2.587 .030 12 .135 1 <.00 .6052 -V 9.117 .0713	1 .2743 .000 1 .2743 .000 5 .05 <.00 5 .05 <.00 6 .95 .003 1.248 .001 7 .9259 .003	7 111.4 105 5 330 320 2 10 <10 9 -VE - 1 319.2 278 1 32.34 18. 2 341.9 292	.4 .6144 .12 4.1 1 1.4 .55 VE 1.278 .55 3.299 .97 63 1.432 .57 .1 3.411 .98	71 .7534 12.4 2.4 49 .3 4 26 -VE -VI 09 2.446 28.6 21 .3988 .729 59 2.63 27.0	5 10.74 .063 76 .325 30 <.00 5 32.9 -V 1 68.24 .126 1 35.02 .000 69.89 .083	1.977 12 5 4 6 4.913 5 11.42 6 5.359 11.75	2.168 7 <4 1.321 8.456 2.225 8.974	-VE -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
SPT :- 0174808760			9600 93000		DON AT ULPHA					
S.D. M6 4.801 MAX 25.25 MIN .152 SXILE NORM -VE 95XILE NORM 11.62 SXILE LOG .4483 95XILE LOG 11.62	.6318 8.3 5.5 5.614 7.692	4.154 .0403 22 .155 1 <.005 .1421 -VE 13.8 .0938	1.26 <.000 1.26 <.000 5.05 <.000 -VE .0000 8.8636 .003 1.287 .001 5.9292 .003	8 205.1 77.2 5 930 225 2 <10 <10 8 -ve - 3 481.9 207 1 14.77 15.4 4 468.5 219	21 1.09 .181 5.4 1.25 1.9 .55 VE 1.716 .587 6 5.303 1.18 43 2.034 .622 .4 5.521 1.21	- 3 <4 8 - VE - VE 5 2.597 29.73 2 .3876 .6379 3 2.794 27.41	85 .08 39 <.005 42 -VE 79.44 .0388 43.96 .001	20 6 4.122 15.76 5.308	6 4 4563 - 8.21 4 1.647 1	.3 .2 7285 .196 .152
SPT :- 0174808780		NGR :- SD 1			DON AT DUDDO					
S.D. 18.16 MAX 93.97 MIN .246 SXILE NORM -ve 9SXILE NORM 38.16 SXILE LOG .3885 9SXILE LOG 30.47	5.803 7.64 5.844 7.677	22 .28 1 <.005 3.41 -VE 15.02 .0856 4.683 .0017	1.32 .064 <.05 .001 -VE -VE .7182 .0171 .0712 .0004	215 61.2 1100 190 20 10 -VE -V 473.6 166. 8.109 13.2	9 3.071 .325 29 3.2 1.7 .5 E -ve .519 9 9.686 1.59 7 1.431 .614 1 10.42 1.65	.2 <4 8 .2845 -VE 1 1.941 13.58 2 .4985 1.424 7 2.062 14.55	34.99 .0133 350 .09 26 <.005 9.025 -VE 124.1 .0326 26 16 .0013	3.707 37 4 2.632 14.82	2.269 1 5 4 1 1.49 1 1.954 5	.22 .6 .9 .334 .35

WATER QUALITY SAMPLE SUMMARIES For Period 01/01/1982 00:01 to 25/09/1986 01:17

	FOR P	ERIOD 01/01/1982 00:01 TO	25/09/1986 01:17	1.1	
	61 162 111 117 118 PH ALKAL AMMON NO3-N NO2- INITY IA N M.O. MG/L MG/L MG/L MG/L N N CACO3	N ALU AL CAL MAGNES MIN MONO CIUM IUM	MG/L MG/L 25C	ORTHO CHLOR Phosp ide Mg/L Mg/L	ATE HUMIC
SPT :- 0174808880g	NGR :- NY 21850 05100	RIVER ESK IN GREAT MOSS			
AN B. B. C.	266 3.733 .0055 .2247 .001 4952 2.25 .0018 .1325 .000 .6 8 <.01	7 180.3 162.2 1.113 .5227 6 119.6 131.6 .2232 .0744 4 20 380 1.5 .65 2 35 20 .7 .39 8 -VE -VE .7462 .4003 7 377.1 378.8 1.48 .645 9 55.69 39.07 .7875 .4099 8 405.7 405.9 1.513 .6532 13 9 15 15 15	37.92 9.827 58 24 21.75 54.08 24.13 55.83 13	.0055 1 .0018 0.0 <.01 1 <.004 1 .0026 1 .0084 1 .0032 1 .0088 1 5 1	3.333 .9875 .9428 .5276 4 1.9 <4 0.0 1.782 .1196 4.884 1.855 2.032 .382 5.062 1.986 2 8
T == 0174808882	NGR :- NY 21200 01300	RIVER ESK U/S HARDKNOTT	GILL		
STILE NORM 4. SXILE NORM 4. SXILE NORM 4. SXILE LOG 4. OSXILE LOG 6. D.OF OCCURS.	548 3.063 .0149 .2954 .0011 58 2.409 .023 .26 .0000 8 9 .09 1.11 <.004	5 203.3 131.9 1.676 .6824 159 95.7 .7796 .2007 680 330 4 1.1 2 10 .8 .45 -VE .3939 .3523 264.9 289.4 2.958 1.012 51.44 36.67 .734 .4076 5 99 311.2 3.147 1.051 35 16 38 38	45.12 13.53 71 28 22.85 67.38 26.66 70.04 35	.0062 3 .0019 0.0 .01 3 <.004 3 .0031 3 .0031 3 .0037 3 .0096 3 12 1	5.666 1.995 4.652 1.144 14 5.5 <2 .8 -VE .1125 13.31 3.879 1.344 .72 14.26 4.162 6 24
T :- 0174808883C	NGR :- NY 20350 00900	RIVER ESK AT WHAHOUSE BR	IDGE		
MEAN M10 5. X M10 5. N 5XILE NORM 4.7 95XILE NORM 6. *XILE LOG 4.7 XILE LOG 6.4 . OF OCCURS.	579 3.047 .0197 .3375 .0016 287 2.741 .0249 .2308 .0005 9 16 .09 1.11 <.004	181.2 132.2 1.842 .6908 165 85.13 .5974 .1559 750 340 3.4 1.1 <10	46-54 11-5 73 29 27-62 65-47 30-27 67-44 48	.0088 4.333 .0059 2.516 .02 7 <.004 2 -vE .1938 .0186 8.472 .0027 1.543 .02 9.095 15 3	8.095 2.244 3.224 1.997 12 10.6 <4 .7 2.791 -VE 13.39 5.53 4 .6772 14.13 5.889 7 27
SPI :- UI/48086858	MER :- NY 18900 00/00	RIVER ESK AT DOCTORS BRI	DGE		
MIN 4.3 STILE NORM 4.4 STILE NORM 4.4 STILE NORM 4.4 STILE LOG 4.5 TILE LOG 6.7 NU.OF OCCURS.	585 3.478 .0218 .3323 .0015 5915 2.548 .0267 .2503 .0006 4 1 1 1.11 <.004	260.5 124.1 2.023 .7292 335.3 102.7 .6442 .1761 1800 380 3 1.1 <10	48.67 11.96 70 29 68.35 31.74 70.39 34	.0079 5 .0044 0.0 .02 5 <.005 5 .006 5 .0152 5 .0029 5 .0163 5 .12 1	5.666 2.169 2.357 1.049 8 4 4 4 4 .6 1.789 .4441 9.543 3.895 2.712 .919 10.09 4.151 4 23
SPT :- 01748088856K		RIVER ESK AT DALEGARTH B			
D- M12 .87 MAX MIN 4.7 *XILE NORM 4.4 XILE NORM 7.3 XILE LOG 4.5 YSTILE LOG 7.4	767 3.968 .0368 .2516 .007 8 17 .125 1.05 <.004	740 325 10.6 1.8 <10 <10 .85 .45 -ve -ve -ve .3894 486.6 253.5 5.959 1.363 41.52 29.56 .8952 .4835	25.35 159 34 17.61 101 27.8 106.9	.0028 0.0 <.02 7 .005 7 .0028 7 .012 7 .0038 7 .0126 7	5.222 3.387 2.673 2.455 8 11.7 <4 .9 .8244 -VE 9.62 7.426 2.102 .9418 10.27 7.987 3 24
T :- 0174808886	NGR :- SD 14900 99600	RIVER ESK AT FORGE BRIDG			
MEAN S.D. M13 XILE NORM XILE NORM YOXILE NORM STILE LOG 9521LE LOG 7.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	247 75.1 1.095 .2552 1050 270 5.2 1.4 <10 <10 .95 .4 -ve -ve .8853 .4697 625.7 222.1 4.489 1.309 32.9 25.77 1.305 .5384	13.5 78 33 31.85 76.29 35	.0057 2.828 1 .02 11 .005 7 .0004 4.347 .0192 13.65 .0035 5.182 1 .0206 14.22	15 4.9 (2 1.1 .3953 .7173 13.16 4.571 2.45 1.205
SFT :- 0174808888	NGR :- SD 13100 97700	RIVER ESK AT CROPPLE HOW	GAUGING STATIONS		
MEAN D- M14 113.3 .50 x .113.3 .50 x .126 4.3 SXILE NORM -VE 5.1 95XILE NORM 202.5 6.7 XILE LOG .0882 5.1 XILE LOG .59.15 6.7	36 5.982 .0136 .4304 .0019 18 2.705 .0228 .2041 .0011 12 .21 2.1 .007	173.6 45.72 2.352 .4606 .4 2400 285 54 11 3 2.9 <10 .8 .4 .4 -vE 2.965 -vE -vE . 431.7 153.3 6.155 1.507 1. 20.06 27.65 .3937 .2523 .4 440.3 164.6 6.446 1.62 1.	842 2.456 14.21 13 200 44 20 852 .1563 17.83 778 8.236 64.6 086 1.483 22.45	.0603 14.11 1 <1 90 <.005 4 -VE -VE .1133 33.3 1 .0002 1.056 .0541 32.51 6	32.03 1.479 133 9.6 (2 1.1 -VE 1.297 71.04 6.166 1.305 1.85

WATER QUALITY \$AMPLE SUMMARIES For Period 01/01/1982 00:01 to 25/09/1986 01:17

÷

		1 162 ALKAL INITY M.O. MG/L CACO3	IA N Mg/L	117 N03-N Mg/L N	N02-1 MG/L	MIN	AL MONO MERIC	CIUM	MAGNES IUM	85 BOD 5 ATU MG/L 0		AT	ORTHO PHOSP MG/L	CHLOR	ATE MG/I	9968 TOTAL HUMIC SUBS MG/L	
y. T :- 017280	7095	NGR :-	- NY 55	000 04	000	BORR		D/5	OF HIGH	BORROS	BRI	DGE					
MEAN D- X SXILE NORM SXILE NORM SXILE LOG XILE LOG XILE LOG LOF OCCURS.	6.53 .492 7.2 5.9 5.72 7.33 5.75 7.36	13 3 6.146 25 4 2.889 5 23.11 3 5.613 9 24.6	.0167 .017 .05 <.01 -VE .0446 .0029 .0468	.0838 .079 .25	.0024 .0011 .004 <.002 .0006 .0041 .0011 .0044	39.76 23.5 70	21.66 14.33 40	5.857 3.791 12 2 -VE 12.09 1.858 13.01	1.221 .7382 2.6			70 24.49 110 50 29.7 110.2 37.77 115.5 5	.01 <.01 .005 .0095 .0052		10	8.085 3.512 13.1 4.3 2.307 13.86 3.742 14.69 7	
1"T :- 017380	7769	NGR :-	NY 44	600 07	700	RIVE	R KENT	AS DI	SCHARGE	FROM	KENT	IERE RI	ESERVOI	R			
AN T4 MAX SXILE NORM SXILE NORM SXILE LOG SXILE LOG SXILE LOG NO.OF OCCURS.	6.69 .337 7.2 6.3 7.24 6.13 7.24 6.15 7.26	2 11 2 2.768 15 7	.0133 .0128 .04	-3014 -1096 -4	.0018 .0005 <.004	21.61 26.34 73	6.666 0.0 <10	4.433	-7583 -0917 -9			53.66 5.507 60 50 44.6 62.72 45.11 63.17	.0067 0.0 <.01 <.01 .0067		1.414 7 5 3.673 8.326 3.983 8.56	3 1.2 1.092 2.878 1.231	
PT :- 017380		NGR :-	NY 42	200 01	600	DUBBS	BECK	AS DIS	CHARGES	FROM	DUBB	RESER	VOIR				
MEAN AX IN SXILE NORM SXILE NORM SXILE LOG SXILE LOG IO.OF OCCURS.	.378 7.5 6.4 6.23 7.47 6.25 7.49	8 40.66 3 14.85 6 42.46	.0129 .0164 .05 <.01 -VE .0398 .0016	.204 .75 .1 .0901 .7613 .1817	.0009 .004 <.002 .0007 .0037 .001	58.71 168 <10 -VE 136.2 3.787	1.666 10 <10 4.758 10.24 5.102	15 8.4 7.598 14.97 8.009	.4761 3.4 1.9 1.716 3.283 1.8				.0014 .01 <.01 .005 .0095		20 1.414 21 19 17.67 22.32 17.76 22.4 2	4.3 1.4 1.225 4.632 1.569	

WATER QUALITY SAMPLE SUMMARIES For Period 01/01/1982 00:01 to 25/09/1986 01:17

37 FLOW INST M3/S		MIN MONO CIUM IUM	85 92 77 180 172 85 92 77 180 172 800 5 COD COND ORTHO CHLOR AT PHOSP IDE 16/L MG/L 25c MG/L MG/L 0 0 US/CM P CL CL	183 9968 SULPHTOTAL ATE HUMIC MG/LSUBS S04 MG/L
SPT :- 0173808284		STOCK GHYLL AT AMBLESIDE	- KIRKSTONE ROAD BRIDGE	
EAN T8 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 32 1 444 1 807 258	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 7.3 1.414 12.22 9 35 7 2 5.673 -VE 10.32 27.4 5.903 .559 10.51 25.05 2 7
IPT :- 0173808310		RIVER BRATHAY AT FELL FO	тот	
MEAN S.D. T9 MAX 11N SXILE NORM 95XILE NORM 5XILE LOG 95XILE LOG 90.0F OCCURS.	.9391 2.48 .0604 .292 .0031	127.9 129.3 .5556 .1347 363 300 2.6 .7 2 <10 <10 .7 .3 -ve -ve .6315 .2967 404.1 329.4 2.459 .7397 60.01 17.91 .8196 .3293 .	2.3 14 55 <.05 10 (.5 <4 30 <.01 2 -ve .822 31.9 -ve 2.752 .917 9.998 58.38 .0278 9.39 .805 2.163 33.21 .0033 3.883 2.062 10.68 59.45 .0299 9.812	9.837 .5242 19 2.6 <2 1.2 -VE .9235 23.84 2.647 .9301 1.067
SPT :- 0173808315		BLEAMOSS BECK AS DISCHAR	GES FROM BLEA TARN	
MEAN S.D. T10 MAX MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG NO.OF OCCURS.	6.303 6.583 .0233 .1157 .0035 .4621 3.058 .018 .0963 .0044 6.9 13 .05 .25 <.02 5.2 2 <.01 <.04 .001 5.543 1.552 -VE -VE -VE 7.063 11.61 .0529 .274 .0107 5.573 2.885 .006 .027 .0004 7.091 12.35 .0568 .2933 .0107 13 12 7 7 7	27.28 21.99 .589 .1236 90 80 3.4 .8	7.778 .0107	3.333 2.637 2.403 .7745 6 4.1 <2 1.5 -VE 1.363 7.287 3.911 .9326 1.576 7.838 4.061 3 8
SPT :- 0173808335			MIDDLEFELL PLACE - 20M U/S	OF BRIDGE
MEAN S.D. MAX MIN 5XILE NORM 95XILE NORM 5XILE LOG 95XILE LOG NO.OF OCCURS.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52.43 44.62 1.883 .5661 47.52 39.59 .6474 .1238 160 110 3.1 .8 <10 <10 .7 .3 -ve -ve .8184 .3625 130.6 109.7 2.948 .7697 10.87 9.532 1.027 .3876 138.8 116.9 3.086 .7891 16 9 18 18	38.07 .01 7.69 .0094 50 <.05 22 <.01 25.42 -VE 50.72 .0255 26.85 .002 51.85 .027 14 8	3.833 1.257 1.649 .4036 5 1.7 <4 .6 1.119 .5933 6.547 1.921 1.787 .7151 6.937 2.003 2 7
SPT :- 0173808368	NGR :- NY 42000 05700	TROUT BECK AT TROUTBECK	PARK - 20M U/S OF BRIDGE	
MEAN S.O. T12 MAX MIN STILE NORM STILE LOG STILE LOG NO.OF OCCURS.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.111 4.371 3.271 1.767 7 7 <2 1.9 -VE 1.464 10.49 7.278 1.641 2.137 11.28 7.685 3 7
SPT :- 0174808719F	NGR :- NY 25900 02100 -	DOE HOUSE GILL PTC RIVER	DUDDON - U/S OF ROAD BRIDGE	
MEAN S.D. T13 MAX MIN STILE NORM STILE LOG STILE LOG NO.OF OCCURS.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	344.7 341.3 1.037 .5276 170 174 .2464 .1506 600 600 1.6 .8 100 130 .6 .33 65.02 55.03 .632 .3129 624.3 627.6 1.442 .7424 143.4 137.9 .6864 .343 666 670.6 1.483 .7648 17 11 18 17	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.666 1.433 1.333 .5679 4 2.8 <2 .9 .4735 .4992 4.859 2.367 1.096 .7111 5.187 2.497 3 9
SPT :- 0174808719J	NGR :- NY 25800 02100	GAITSCALE GILL TOM PTC R	IVER DUDDON	
MEAN S.D. T14 MAX MIN STILE NORM STILE NORM STILE LOG STILE LOG NO.OF OCCURS.	4.93 3.925 .0226 .4643 .0016 .566 2.638 .0331 .4409 .0005 7 10 .095 1.42 <.004 4.2 <1 <.01 .08 <.002 3.999 -vE -vE -vE .0008 5.861 8.265 .077 1.189 .0025 4.058 1.193 .0022 .09 .0009 5.912 8.894 .0742 1.258 .0026 18 18 7 7 7	374.6 339 .9471 .505 174.1 169.4 .2809 .1349 600 600 1.7 .8 155 130 .6 .32 88.19 60.28 .485 .2832 661.1 617.8 1.409 .7268 164.1 139.4 .5632 .3168 703.2 659.5 1.463 .7513 15 11 17 16	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.666 1.622 1.333 .4026 4 2.3 <2 1 .4735 .9603 4.859 2.284 1.096 1.053 5.187 2.353 3 9

WATER QUALITY SAMPLE SUMMARIES For Period 01/01/1982 00:01 to 25/09/1986 01:17

37 Flow Inst M3/S	РН	162 111 Alkal Ammon Inity IA N M.O. Mg/L Mg/L Caco3	117 118 NO3-N NO2-	7760 ALU MIN	9509 AL Mono Meric Unac	241 CAL CIUM	237 MAGNES IUM MG/L	BOD 5	92 COD	77 COND AT	PHOSP	IDE	SULPH	HUMIC
SPT :- 0174808719N		NGR :- NY 2	5700 02000	TROU	GHTON	GILL P	TC RIVE	R DUDD	ON -	IMMED	U/S OF	ROAD	BRIDGE	
EAN D- T15 MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG NO.OF OCCURS.														
SPT :- 0174808719W IEAN S.D. MAX MIN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG NO.OF OCCURS.	5.034 .359 5.8 4.5 4.443 5.624 4.466 5.645 25	3.151 .0116 2.433 .0156 9 .05 <1 <.004 -ve -ve 7.154 .0372 .8098 .0013 7.682 .0368 22 8	.2847 .001 .3513 .000 1.13 <.00 .008 <.00 -VE .000 .8626 .002 .0369 .000 .8723 .002 .8 8	5 290 5 153.8 5 530 2 30 7 36.88 5 543.1 7 112.9 5 581.2 19	231.2 174.3 530 20 -VE 518 61.24 556.6 12	1.138 .5343 3.2 .5 .2592 2.017 .4944 2.146 21	.5195 .1004 .7 .35 .3543 .6847 .3722 .699 20			39.69 9.55 58 27 23.98 55.4 26.12 57.01 17	.0056 .0018 <.01 <.004 .0027 .0086 .0032 .0089 7		6.555 4.857 12 4 -vE 14.54 1.774 15.63 5	1.66 .5502 3 1 .7551 2.564 .9265 2.679 10
SPT :- 01748087228		NGR :- NY 2	4600 01400	COCK	LEY BE	CK GIL	L 10M C	/S OF	ROAD	BRIDGE				
MEAN S.D. MAX MIN SXILE NORM SXILE NORM SXILE NORM SXILE LOG PSXILE LOG NO.OF OCCURS.	5.947 .6878 7.5 4.95 4.816 7.078 4.887 7.141 20	7.263 .0186 5.546 .0315 20 .09 1 <.01 -vE -vE 16.38 .0704 1.893 .0014 17.6 .064 19 7	.3857 .001 .4622 .000 1.39 <.000 -06 <.000 -ve .0007 1.146 .002 1.166 .002 7 7	164 136.9 430 15 -VE 389.3 38.07 416.5 16	80.45 64.43 200 10 -VE 186.4 19.72 199.9 11	2.784 2.09 9.5 .9 -VE 6.222 .7412 6.687 19	.8733 .3269 1.6 .4 .3357 1.411 .4509 1.483 18			50.26 14.64 70 24 26.17 74.35 30.17 77.17 15	.0072 .0014 .01 .005 .0095 .0095 .0096 6		3 1.855 5 <2 -VE 6.052 1 6.507 3	1.444 .5028 2.3 .9 .6174 2.271 .7821 2.379 9
SPT :- 0174808722E		NGR :- NY 24	4100 01200	HARD	KNOTT	GILL 1	DM U/S	OF RIVE	R DU	DDON				
MEAN S.D. T18 MAX SXILE NORM SXILE NORM SXILE LOG SXILE LOG ND.OF OCCURS.	5.977 .4618 6.7 5.15 5.217 6.737 5.249 6.766 20	7.561.0226 3.794.0454 17.135 <1 <.004 1.32 -ve 13.8.097 3.099.0012 14.73.0816 19 8	.4125 .0015 .4076 .0005 1.34 <.004 .1 <.002 -ve.0007 1.083 .0023 .0755 .0009 1.14 .0024 8 8	39 34.16 150 <10 -VE 95.19 8.479 101.5 17	20 13.92 50 <10 -VE 42.9 5.834 46.16 12	3.526 1.068 6.9 1.7 1.769 5.283 2.073 5.494 19	.7722 .1595 1 .4 .5099 1.034 .5403 1.058 18			52.4 10.53 72 29 35.07 69.72 37.02 71.27 15	.0056 .0018 <.01 <.004 .0027 .0086 .0032 .0089 7		3.333 2.403 6 <2 -VE 7.287 .9326 7.838 3	1.65 .8223 3.6 .5 .2975 3.002 .6806 3.204 10
SPT :- 0174808722H		NGR :- NY 24	100 00700	DALE	HEAD	GILL SM	D/S 0	F ROAD	BRID	GE				
MEAN S.D. T19 MAX MIN SXILE NORM SXILE NORM SXILE LOG PSXILE LOG NO.OF OCCURS.	4.906 .5615 6.8 4.3 3.982 5.829 4.04 5.88 16	4.187.0222 3.442.0381 14.1 <1 <.01 -ve -ve 9.85.0849 .992.0016 10.54.0768 16 6	.4883 .0016 .5413 .0005 1.55 <.004 .03 <.002 -vE .0007 1.378 .0025 .075 .0008 1.426 .0026 6 6	445 244.2 730 20 43.28 846.7 167.7 907.2 14	395.9 241.6 720 15 -VE 793.3 133.9 852.7 11	1.25 1.132 4.7 .6 -ve 3.112 .2597 3.31 15	.6093 .2449 1.31 .35 .2064 1.012 .2991 1.068 14			48.63 13.18 69 27 26.94 70.32 30.29 72.74 11	.0093 .006 .02 <.01 -vE .0191 .003 .0206 5		5 0.0 5 5 5 5 5 5	2.112 1.177 4.9 1.2 .1753 4.049 .7841 4.341 8
SPT :- 0174808722L		NGR :- NY 23	5900 00200	CAST	LEHOW	BECK 1	DM U/5	OF RIVE	R DU	DDON				
MEAN S.D. T20 MAX MIN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG NO.OF OCCURS.	5.161 .5564 6.5 4.5 4.245 6.076 4.299 6.123 18	4.277 .0129 3.455 .0164 11 .05 <1 <.01 -VE -VE 9.961 .0398 1.037 .0016 10.67 .0399 18 7	.4371 .0015 .4011 .0005 1.32 <.004 .09 <.002 -vE .0007 1.096 .0024 .0891 .0009 1.164 .0025 7 7	328 202.4 650 60 -vE 661 109.6 710.6 16	296.8 192.6 590 15 -VE 613.7 93.87 660.2 11	2.064 .6937 4.1 1 .9237 3.205 1.142 3.351 17	.7694 .1605 1.1 .47 .5053 1.033 .5363 1.057 16			55.46 14.39 80 33 31.78 79.13 35.27 81.69 13	.0061 .0014 <.01 <.005 .0039 .0083 .0042 .0086 6		5.5 2.121 7 4 2.01 8.989 2.781 9.468 2	2.288 .4676 3.2 1.8 1.519 3.058 1.608 3.127 9
SpT :- 0174808722P		NGR :- 50 23	650 99750	BLACI	BECK	10M U/	SOFR	IVER DU	DDON					
MEAN S.O. T21 MAX MIN SXILE NORM SXILE LOG 95XILE LOG NO.OF OCCURS.	4.743 .2761 5.6 4.3 4.289 5.197 4.303 5.21 23	3.15 .0152 2.808 .0139 10 .04 <1 <.01 -VE -VE 7.77 .038 .6682 .0031 8.273 .0404 20 7	.4871 .0015 .4257 .0005 1.42 <.004 -14 <.002 -vE .0007 1.187 .0024 1.063 .0009 1.266 .0025 7 7	613.5 219.9 890 250 251.7 975.3 325.9 1023 17	565.4 228.5 870 160 189.4 941.4 276.4 994.1 11	1.415 .3877 2.3 .9 .7781 2.053 .8774 2.125 19	.6822 .1285 1 .47 .4709 .8936 .4931 .9115 18			55.87 12.43 80 35.42 76.32 37.99 78.29 16	.0061 .0014 <.01 <.005 .0039 .0083 .0042 .0086 6		8.555 6.801 16 <4 19.74 2.118 21.17 3	2.555 .4953 3.5 1.8 1.74 3.37 1.829 3.44 9

....

37 Flow Inst M3/S	PH ALKAL AMMON NO3-N NO2-N INITY IA N M.O. MG/L MG/L MG/L MG/L N N CACO3	ALU AL CAL MAGNES BOD 5 COD MIN MONO CIUM IUM ATU IUM MERIC MG/L MG/L UG/L UNAC MG/L MG/L O UG/L CA MG	77 180 172 183 9968 Cond Ortho Chlor Sulphtotal At Phosp Ide Ate Humic 25c Mg/L Mg/L Mg/LSUBS US/CM P CL S04 Mg/L
MEAN D. T22 XX SXILE NORM SXILE NORM SXILE LOG XILE LOG D.OF OCCURS.	MGR :- SD 23400 98600 5.416 4.425 .0255 .46 .0016 .5205 3.652 .0442 .5191 .0005 6.4 15 .125 1.61 <.004	THE SYKE 20M D/S OF ROAD BRIDGE 241.4 229 1.905 .7687 173 177.6 .626 .1267 540 540 4 1 20 20 1.2 .52 -VE -VE .8762 .5603 526 521.2 2.935 .9772 68.05 58.57 1.069 .5794 565.9 559.6 3.065 .993 15 11 17 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SPT :- 0174808722	Y NGR :- SD 22800 97500	GRASSGAURDS GILL PTC RIVER DUDDON 200.9 160.8 2.758 1.188 151.3 154.3 1.108 .3369 490 400 4.9 1.9 20 10 1.1 .79 -VE -VE .9355 .6342 449.9 414.7 4.581 1.742 53.29 30.71 1.354 .7237 483.5 438.3 4.836 1.806 12 6 12 12	
PT :- 0174808725	NGR :- SD 25050 98600	TARN BECK OVERFLOW FROM SEATHWAITE 175.9 152.5 1.154 .64 59.86 61.75 .2252 .0949 270 215 1.6 .8 50 70 .9 .45 77.43 50.91 .7841 .484 274.3 254 1.525 .796 96.6 74.45 .8246 .4968 287 268.3 1.557 .8068 11 8 11 11	TARN
T :- 0174808728	NGR :- SP 23600 97500	TARN BECK AT TONGUE HOUSE U/S OF F 173.7 156.6 1.513 .6776 78.32 69.19 .8289 .1424 290 290 4.5 1.02 10 90 .8 .5 44.87 42.84 .1505 .4434 302.5 270.4 2.877 .9119 78.03 71.56 .572 .4711 321.3 286.9 3.082 .9335 18 12 18 17	ARM EFFLUENT INFLUENCE
SPT :- 0174608728	NGR :- SD 22600 96100	TARN BECK PTC GOBLING BECK 211.8 69.54 2.252 .7747 363.4 43.95 .5966 .1297 1600 150 3.4 1.1 30 10 1.5 .55 -VE -VE 1.271 .5614 809.6 141.8 3.234 .9881 15.54 22.65 1.418 .5813 732.6 152.5 3.341 1.004 17 11 19 19	•
AT 0174808728	NGR - SD 22600 96000		
PT :- 0174808735	NGR :- SD 21950 95900	OLD PARK BECK 5M D/S OF ROAD BRIDG 27.68 13.93 6.438 1.533 20.77 6.113 2.602 .4543 93 20 14 2.2 10 <10 3.3 .9 -VE 3.883 2.158 .786 61.85 23.99 10.71 2.28 7.378 6.403 3.148 .9123 66.47 25.44 11.31 2.369 16 11 18 18	E

.

37 Flow Inst M3/s	INITY 1	111 117 118 MMON NO3-N NO2-N	7760 9509 ALU AL MIN MONO	CIUM IUM	85 92 BOD 5 COD ATU MG/L MG/L	77 180 COND ORTHO AT PHOSP 25C MG/L	CHLOR SUL IDE AT MG/L MG	PHTOTAL E HUMIC /LSUBS
1	CAC03		UG/L	CA MG	0 0	US/CH P	CL SO	4 MG/L
SpT :- 0174808735K								1005
EAN .D. T29 MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG NO.OF OCCURS.	6.368 5.666 . .3931 3.087 . 7 12 . 5.7 2 . 5.721 .5889 . 7.015 10.74 . 5.743 2.151 . 7.034 11.5 . 19 18	0437 .3037 .0023 0995 .3183 .0012 29 .95 .005 .01 <.05 <.002 -VE -VE .0003 2074 .8273 .0044 0019 .0509 .0009 162 .8641 .0047 8 8 8	32.91 18.63 19.74 10.61 75 40 <10 <10 .4402 1.175 65.39 36.09 11.34 6.771 70.25 38.72 16 11	2.627 1.059 .9827 .2754 5.3 1.7 1.4 .65 1.011 .6064 4.244 1.512 1.357 .6733 4.462 1.561 18 18		55.93 .011 13.3 .009 74 .03 32 <.005 34.05 -VE 77.82 .0257 36.99 .0026 80.04 .0275 16 7	5.6 2.0 8 4 2.2 9.0 2.9 9.0 2.9	66 3.637 81 1.961 6.3 1.5 42 .4118 9 6.863 62 1.395 5 7.349 3 8
PT :- 0174808745	NGR :-	SD 20400 93700	HOLLOW MOS	S BECK 25M U/	S OF RIVER	DUDDON	÷	
EAN S.D. T30 MAX IN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG "0.0F OCCURS.	7.075 19.13 .4058 9.753 7.7 39 6.2 2 6 6.407 3.09 7.742 35.17 6.428 7.732 7.761 37.58 16 15	0221 .3337 .0019 0358 .2712 .0007 11 .95 .003 .01 .15 <.002 -ve -ve .0007 081 .7798 .0031 0018 .0803 .001 075 .8356 .0033 8 8 8	31.53 11.66 40.81 5.634 160 20 <10 <10 -vE 2.398 98.67 20.93 3.772 4.946 98.57 22.31 13 8	8.58 1.792 3.165 .6056 14 3 4.2 .92 3.373 .7965 13.78 2.788 4.473 .989 14.48 2.916 15 15		94.08 .0457 21.78 .0905 131 .25 52 <.01 58.24 -VE 129.9 .1946 62.93 .0026 133.4 .1643 12 7	10. 2.5 13 8 6.5 14. 7.0 15.	27 .4623
IPT :- 0174808750	NGR :-	SD 20100 93700	CROSBY GIL	L PTC RIVER D	UDDON			
STILE NORM	.4815 6.844 8.3 31 6.3 1 6.252 2.472 7.836 24.98	-VE -VE .0012 1695 .6132 .0037	125.5 17.64 520 50 <10 <10 -VE -VE 274.9 53.18 4.442 6.66	2.625 .5758 12 2.5 3.2 .7 2.253 .464 10.89 2.358	.6384 6.878 2.2 23 .7 <4 .3166 -VE 2.416 19.49 .5963 1.883	18.5 .0187 114 .08 43 <.005	1.87 3.0 12 7 7 <4 6.589 - 12.74 9.8 6.923 1.5 13.01 10.	64 2.799 10.6 2.3 VE 1.795 73 11 69 2.946 61 11.66
SPT :- 0174808763	NGR :-	SD 19050 92550	HOLEHOUSE	GILL 10M D/S	OF BOBBIN M	ILL BRIDGE		
MEAN S.D. T32 MAX MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG NO.OF OCCURS.	.4753 10.24 .	0387 .3237 .002 0814 .298 .0006 24 1 <.004 .01 .1 <.002 -VE -VE .0011 1727 .8139 .003 002 .0657 .0012 1412 .8641 .0031 8 8 8	22.45 14.1	2.719 .7101	0.0 0.0	89.26 .014 25.04 .0096 121 .03 44 <.01 48.07 -ve 130.4 .0299 54.65 .0042 135.1 .0321 15 7	2.8	75 1.373 52 15.18 29 3.361 35 16.21
SPT :- 0174808765	NGR :-	SD 19400 92100	BLEA BECK	150M U/S OF R	IVER DUDDON			
MEAN S.D. T33 MAX MIN STILE NORM STILE LOG 95TILE LOG 95TILE LOG	6.785 22.16 . .4356 27.97 . 7.6 105 . 6.1 4 < 6.068 -VE 7.501 68.17 . 6.093 2.764 .	0363 .789 .0081 0473 .7154 .0116 14 2.16 .037 .01 .2 <.002 -VE -VE -VE 1141 1.965 .0272 0043 .1635 .0008 1138 2.09 .0264 10 10 10	43.7 29.62 160 100 1.5 <10 -ve -ve 128.4 82.06 14.51 7.101 137.9 87.4	9.057 4.536 44 20 2.3 .8 -VE -VE 23.54 9.904 1.448 .1552	.7211 5.567 1.7 15 .3 4 -VE -VE 2.286 18.15 .3441 3 2.459 19.52	255.6 .0358 1050 .12 33 <.01 -VE -VE 584.3 .0887 14.23 .004 549.5 .0902	135.9 4.9 260 12 24 5 -VE .35 326.6 16.6 11.91 3.0 324.5 17.1	4.097 17 5.5 82 3.244 54 16.72 19 4.826 86 17.67
SPT :- 0174808768	NGR :-	SD 18400 90300	LOGAN BECK	D/S OF LOGAN	BECK BRIDG	E		÷
5XILE LOG 95XILE LOG	.609 5.442 . 8 20 . 5.8 2 < 5.681 .047 7.685 17.95 . 5.731 3.074 . 7.729 19.29 .	0356 .2275 .0019 0767 .277 .0007 225 .89 <.004 .01 .08 <.002 -vE -vE .0008 1617 .6831 .003 0017 .0301 .001 1305 .693 .0031 8 8 8	29.29 19.93 90 60 <10 <10	1.236 .4293 6.2 2.1 1.7 .8 1.349 5861	0.0 0.0 1 8 1 8 1 8 1 8 1 8 1 8 1 8	64.15 .0196 300 .06 23 <.01	1.6 5 4 1.1 6.5 1.7 6.9	33 6.466 49 3.439 12.3 2.7 19.8097 47 12.12 37 2.512 37 12.97 2 9
SPT :- 01748088806	NGR :-	NY 22030 05000	UNNAMED TR	IB OF R ESK O	N GREAT MOS	s		
MEAN S.D. T35 MAX MIN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG	5.407 4.615 . .3861 3.014 . 6.1 10 . 4.7 1 < 4.772 -ve 6.042 9.574 . 4.796 1.449 .	0211 .0875 .0015 0187 .1218 .0003 046 .27 .002 .01 <.03 <.002 .ve -ve .001 0519 .2878 .002 0045 .0093 .001 0553 .2816 .0021 4 4 4	109.1 90.52 370 270 10 <10 -vE -vE 296.3 229.8 23.19 12.26 314.1 237.4	.913 .1429 3.9 .8 .7 .35 .2213 .3533 3.224 .8236 .6717 .3857		41.66 .0053 9.253 .0023 58 <.01 25 <.004 26.44 .0015 56.88 .0091 28.34 .0025 58.35 .0097 11 3	2.20 7 <4 1.49 2.4 9.49	22 2.628 59 1.529 4.3 0.0 9 .1129 54 5.144 16 .9347 72 5.522 5 .522

1

					FOR PE	RIOD O	1/01/19	982 00	:01 10	25/09/	1986	01:17				
37 FLOW INST M3/S	PH	162 ALKAL / INITY 1 M.O. MG/L CACO3	AMMON LA N MG/L	N03-N	NO2-N MG/L	ALU MIN IUM	AL Mono Meric	CAL CIUM Mg/L	MAGNES IUM	BOD 5 ATU Mg/L	COD MG/L	COND AT 1	HOSP HG/L.	IDE MG/L	ATE MATE	TOTAL HUMIC Subs
SPT :- 0174808880	£	NGR :-	NY 22	2600 0	4700	UNNA	MED TR	IB OF	RESK	FROM LO	NG CR	AG				
AN D. T36 MAX MIN XILE NORM XILE NORM XILE LOG 95XILE LOG NO.OF OCCURS.													.0092 .0047 <.02 <.004 .0015 .0168 .0037 .018 7		3.833 1.649 5 44 1.119 6.547 1.787 6.937 2	2.587 1.556 5.4 0.0 .028 5.147 .8891 5.53 8
				7/0 01	100											
MEAN S.D. T37 N XILE NORM YSXILE NORM SXILE LOG 95XILE LOG 05XILE LOG . OF OCCURS.	5.516 .5818 7 4.9 4.559 6.473 4.614 6.522 15	3.733 - 2.463 - 9 1 -VE 7.784 1.159 8.376 - 15	0065 0026 01 0023 0108 0032 0114 5	.2007 .1169 .32 <.05 .0084 .393 .0713 .4219 .5	.0015 .0006 <.004 .001 .0005 .0026 .0007 .0028 5	14D.2 129 360 <10 -VE 352.4 28.47 374.2 13	141.2 129.8 330 <10 -VE 354.8 28.73 376.7 9	1.306 .3634 1.8 .6 .7088 1.904 .8035 1.972 15	.54 .0774 .65 .4 .4127 .6673 .4228 .6758 .15			36.57 8.179 55 23.12 50.03 24.81 51.33 13	.0057 .002 <.01 <.004 .0024 .009 .003 .0094 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.333 .9428 4 <4 1.782 4.884 2.032 5.062 2	1.25 .4276 2 .8 .5466 1.953 .6843 2.044 8
CPT 0174808881		NGR	NY 21	520 02	250	CATC	OVE BE	CK								
MCAN D. T38 IX SXILE NORM SXILE NORM XILE LOG XILE LOG J. OF OCCURS.	6.339 .5204 7.4 5.25 5.483 7.195 5.521 7.229 14	7 3.551 12 2 1.157 12.84 2.84 13.71 14	0065 0026 01 0023 0108 0032 0114 5	.0927 .0691 .2 .03 -VE .2063 .0249 .2217 5	.0019 .0008 <.004 <.002 .0006 .0033 .0009 .0035 5	47.08 29.88 105 <10 -VE 96.23 15.26 103.5 12	35 27.83 70 <10 -VE 80.78 8.661 86.64 8	2.342 .6548 3.5 1.3 1.265 3.42 1.437 3.542 14	.8157 .1681 1.1 .55 .5392 1.092 .5712 1.117 .14			48.51 6.985 62 36 37.02 60 37.94 60.78 12	.0055 .0018 <.01 <.004 .0026 .0084 .0032 .0088 5	7 0.0 7 7 7 7 7 7 7	5.222 2.673 8 <4 .8244 9.62 2.102 10.27 3	2.7 1.143 4.5 1 .8184 4.581 1.274 4.85 8
SPT :- 0174808883		NGR :-	NY 21	200 01	1300	HARD	NOTT G	ILL U/	S RIVER	ESK						
EAN D. T39 MAX MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG NO.OF OCCURS.	6.183 .6452 8.6 5 5.121 7.244 5.182 7.297 44	5.666 3.917 18 <1 -VE 12.11 1.667 13.03 43	0137 0128 055 004 -VE 0348 0027 0369 17	.2578 .2745 1.26 <.05 -VE .7094 .0422 .739 17	.0015 .0004 <.004 <.001 .0008 .0022 .0009 .0023 17	128 148 580 <10 -VE 371.5 18.39 381.2 34	56.77 59.65 210 <10 -VE 154.8 9.475 161.7 15	3.065 .8217 4.8 1.7 1.713 4.416 1.919 4.566 40	.8726 .1523 1.2 .65 .622 1.123 .6464 1.143 .38			56.32 11.33 75 39 37.67 74.96 39.78 76.63 34	.0086 .0068 .03 <.004 -VE .0199 .0021 .0213 16	7.5 6.364 12 3 -VE 17.96 1.703 19.2 2	7.7 3.574 13 <2 1.82 13.57 3.377 14.44 10	1.752 .88 4 .3046 3.199 .7177 3.416 23
YT :- 01748088836	£	NGR :-	NY 20	350 00	700	DODK	NOTT GI	LL PT	C R ESK							
IN STILE NORM STILE NORM STILE LOG STILE LOG STILE LOG D. OF OCCURS.	5.581 .4543 6.2 4.6 4.834 6.328 4.867 6.358 65	4.603 - 3.161 - 12 - 4.603 - 7.803 - 1.2 9.803 - 1.364 - 63	0101 0073 03 -004 -VE 0221 0028 0238 11	.4745 .2464 1.18 .3 .0693 .8798 .1886 .9407 11	.0015 .0005 <.004 <.001 .0007 .0024 .0008 .0025 11	223.4 259 990 <10 -VE 649.4 31.97 666 57	71.66 110.8 420 <10 -VE 254 6.315 239.6 20	3.471 1.281 7.3 1.3 1.363 5.579 1.809 5.862 60	.8843 .1528 1.4 .7 .633 1.135 .6572 1.155 58			62.52 8.347 82 47 48.79 76.25 49.8 77.12 57	.0061 .002 .01 <.004 .0027 .0095 .0034 .0099 10	6.666 2.081 9 5 3.242 10.09 3.853 10.51 3	7.222 5.274 13 <4 -VE 15.89 1.989 17.09 3	1.084 .5737 2.4 .3 .1405 2.028 .4232 2.17 19
.PT :- 0174808883M		NGR :-	NY 20	340 00	650	SPOTH	ION GIL	L .PTC	R ESK							
MEAN T41 AX T41 IN SXILE NORM 95XILE NORM 5XILE LOG 5XILE LOG 5XILE LOG 0.0F OCCURS.	5.525 .663 7 4 4.434 6.615 4.506 6.678 54	3.153 . 2.291 . 11 .	0163 0152 045 -004 -VE 0413 0032 0438 11	.3282 .277 1.11 .1 .7838 .075 .838 11	.0015 .0005 <.004 <.001 .0006 .0023 .0008 .0024 11	270.8 423 2800 20 -VE 966.6 23.46 908.7 46	201.4 181.9 730 20 -VE 500.7 41.99 532.5 27	1.897 .5221 3.4 1.038 2.755 1.172 2.852 52	.8312 .1806 1.2 .5 .5341 1.128 .5705 1.156 .50			52.43 8.981 76 33 37.66 67.2 39.07 68.36 46	.0076 .0048 .02 .004 -vE .0155 .0025 .0167 10	5.666 3.785 10 3 -VE 11.89 1.734 12.79 3	6.555 3.686 10 <4. .4911 12.62 2.412 13.53 3	3.554 .8466 4.7 2.3 2.162 4.947 2.349 5.088 11
SPT :- 0174808883R		NGR :-														
EAN MAX MIM STILE NORM STILE NORM STILE LOG YSTILE LOG NO.OF OCCURS.	5.485 .5498 6.5 4.6 4.58 6.389 4.629 6.433 40	2.858 . 2.359 . 11 . 40 .	021 0342 105 .01 -VE 0774 0017 0716 8	.4287 .4013 1.39 .09 .VE 1.088 .0849 1.154 .8	.0021 .002 .007 <.001 -VE .0055 .0004 .0058 8	251.4 214.3 780 <20 -VE 604.1 56.73 645.4 36	268 232.3 780 15 -VE 650.2 59.13 693.9 19	2.189 .5951 3.3 1.3 1.21 3.168 1.362 3.278 39	.8532 .1339 1.1 .6 .6329 1.073 .6521 1.089 38			56.39 9.369 76 40 40.97 71.8 42.4 72.97 35	.006 .0013 <.01 <.005 .0038 .0081 .0041 .0083 7	5.5 4.949 9 2 -VE 13.64 1.151 14.51 2	4.444 2.873 7 <2 -VE 9.171 1.411 9.867 3	1.93 .4373 2.5 1.1 1.21 2.649 1.302 2.719 10

37 FLOW INST M3/S	PH ALKAL A INITY I M.O. M	111 117 118 Mmon No3-N No2-N A N Ig/L Mg/L Mg/L N N	ALU AL MIN MONO IUM MERI UG/L UNAC	CAL MAGNES CIUM IUM C	BOD 5 COD ATU Mg/L Mg/L	AT PHOSP 25C MG/L	CHLOR IDE MG/L	SULPHTOTAL ATE HUMIC Mg/LSUBS
SPT :- 0174808885 EAN T43 5 AX T43 6 MIN 5 SXILE NORM 5 SXILE NORM 5 SXILE LOG 6 NO.OF OCCURS.	.011 2.641 . 6216 2.78 . .9 12 . .3 <1 < .988 -VE .033 7.215 . .058 .4393 . .094 7.53 . 40 39	0303 .193 .002 0535 .3317 .0009 18 1.12 .004 .01 <.03 <.002 -VE -VE .0004 1183 .7387 .0035 0021 .0141 .0008 1057 .6678 .0038 10 10 10	312.5 219. 194.4 117. 690 350 25 25 -VE 25.5 632.3 412. 103.5 84.3 679.8 441. 34 17	1 1.83 .8957 6 .4791 .1692 3.1 1.2 .7 .42 3 1.042 .6173 7 2.618 1.174 3 1.159 .6468 8 2.704 1.197 39 37		62.9 .0077 13.6 .0029 81 <.02 30 <.002 40.52 .0029 85.27 .012 43.25 .0036 87.38 .0126 34 9	3 1.414 4 2 .6738 5.326 1.298 5.669 2	5.583 4.384 3.745 1.762 10 7.9 <2 2.3 -VE 1.484 11.74 7.283 1.701 2.151 12.63 7.689 4 25
eAN S.D. NAX NAX SXILE NORM SXILE NORM SXILE NORM SXILE LOG SSXILE LOG SSXILE LOG NO.OF OCCURS.	NGR :- -485 10.3 - 4404 5.506 - 1 19 - -5 2 < -76 1.241 -209 19.35 - -787 3.981 - -233 20.72 - 20 20	NY 17300 00200 0337 .3389 .0019 0737 .2986 .0006 23 .89 <.004 .01 .05 <.002 -ve -ve .0009 155 .8301 .0029 0016 .0731 .0011 1239 .8847 .003 9 9 9	BIRKER BE 70.01 35.8 51.87 28.4 210 100 <10 <10 -ve -v 155.3 82.5 18.95 8.89 167 88.5 17 10	CK AT DALEGAR1 3 4.547 1.341 1.511 .4268 7.9 2.4 2 .7 2 .67 9 7.033 2.043 4 2.533 .7667 9 7.349 2.13 19 18	TH HALL (BO)	LER BECK) 72.42 .0087 12.87 .0053 94 .02 44 <.005 51.24 0.0 93.6 .0175 53.35 .003 95.31 .0188 14 8		6.666 5 2.516 1.804 9 8.5 4 3.2 2.527 2.031 10.8 7.968 3.421 2.645 11.36 8.362 3 11
PT :- 01748088856 MEAN S.D. T45 AX IN SXILE NORM SXILE NORM SXILE LOG SXILE LOG O.OF OCCURS.	NGR :-	NY 17350 00400	EEL BECK	50M U/S RIVER	ESK			
SPT :- 0174808885H EAN T46 7 MIN 5 SXILE NORM 5 SXILE NORM 7 SXILE LOG 5 SXILE LOG 7 NO.OF OCCURS.	NGR :-	NY 16900 00400	WHILLAN B	ECK PTC ESK				
PT :- 0174808885K EAN T47 5 S.D. T47 5 MAX 7 IN 4 SXILE NORM 6 SXILE NORM 6 SXILE LOG 6 NO.OF OCCURS.	NGR :-	NY 15700 00200	TRIB OF R	IVER ESK 1 KM	DIS BLEA TA	RN		
PT :- 01748088866 MEAN T48 6. S.D. T48 7. IAX 7. IIN 5. SXILE NORM 6. SXILE NORM 7. SXILE LOG 6. SXILE LOG 7. 10.0F OCCURS.	NGR :- 1	SD 14350 99500	MERE BECK	D/S OF TRACK	FROM STN			
SPT :- 0174808886M TEAN T49 S.D. T49 MAX 7 MIN 5 STILE NORM 5 STILE NORM 6 STILE LOG 5 STILE LOG 6 NO. OF OCCURS.	NGR :-	SD 14650 98700	FISHER BE	CK U/S OF ROAD	BRIDGE			

37 Flow Inst M3/S	PH	162 111 Alkal Ammon Inity IA N M.O. Mg/L Mg/L Caco3	117 118 N03-N N02-N MG/L MG/L N N	7760 ALU MIN IUM	AL Mono Meric	241 CAL CIUM	237 MAGNES IUM MG/L MG	85 BOD 5 Atu Mg/L	92 COD MG/L	COND	PHOSP MG/L	CHLOR	SULPH ATE NG/L	9968 Total Humic Subs Mg/L
SPT :- 0174808887		NGR :- 50 14	050 98200	LINB	ECK GI	LL D/S	DEVOKE	WATER	é –		•	· ·		
MEAN S.D. T50 MAX SXILE NORM SXILE NORM SXILE LOG SXILE LOG NO.OF OCCURS.	5.734 .5608 7.1 4.9 4.811 6.656 4.86 6.7	<1 <.01 -VE -VE 9.983 .055	-1047 .0004 -53 <.004 -1 <.002 -0024 .0009 -3469 .0023	129.1 480 15 -VE 365.9 35.29	32.62 130 <10 -VE 106.4 17.65	.3855 3.3 1.5 1.826 3.094 1.881	.2167 1.6 .8 .8606 1.573 .8961 1.602	0-0	0.0 <4 2.666 2.666 2.666 2.666	11 86 45 50.22 86.42 51.84	.0207 .08 <.005 -VE .0501 .0019 .0501	5.291 15 5 2.296 19.7 4.68 20.99	17.78	.7911 4.8 2 1.582 4.184 1.785
SPT :- 0174808889M		NGR :- SD 12												
MEAN S.D. T51 MAX MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG NO.OF OCCURS.	6.1 5132 5.2 5.255 6.944 5.294 6.978 19	6.947 .0131 4.313 .0092 17 .03 3 <.01 -VE -VE 14.04 .0281 2.307 .0038 15.09 .0303 19 7	.0986 .002 .0549 .0011 .19 .004 .05 <.002 .0083 .0001 .1889 .0038 .0366 .0007 .2025 .004 7 7	88.11 51.04 200 30 4.142 172 31.46 184.7 15	60 19.68 80 15 27.62 92.37 33.69 96.46 9	3.847 .8896 5.8 2.1 2.383 5.31 2.575 5.455 17	1.651 .4259 2.6 1.02 .9507 2.351 1.053 2.427 16	÷		105.8 74.45 350 58 -VE 228.2 30.48 245.5 13	.0211 .0293 .08 .01 -VE .0694 .0022 .0679 6	11 1.414 12 10 8.673 13.32 8.838 13.46 2	13 3.605 16 9 7.669 18.93 8.605 19.6 3	9.162 2.132 12.6 6.7 5.655 12.66 6.116 13.01 8
SPT :- 0174808897							S OF B							
MEAN S.D. T52 MAX MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG NO.OF OCCURS.	6.3 .3279 6.8 5.9 5.76 6.839 5.775 6.853 9	6.857 .0086 2.609 .0018 12 .01 4 <.01 2.564 .0056 11.14 .0115 3.499 .006 11.73 .0118 7 7	.3714 .0015 .0699 .0003 .45 .002 .25 <.002 .2565 .001 .4863 .0021 .2686 .0011 .4961 .0021 7 7	70.19 42.56 130 <10 .169 140.2 23.9 150.6 7	40.55 36.98 80 <10 -VE 101.3 8.335 107.7 3	3.062 .6391 4.4 2.4 2.011 4.113 2.134 4.21 8	1.121 .1868 1.4 .8 .8142 1.428 .8427 1.452 7			66 7.527 74 57 53.61 78.38 54.39 79.05 4	.0093 .006 .02 <.01 -ve .0191 .003 .0206 5		8 6.082 15 4 -vE 18 2.096 19.34 3	1.933 .8454 3.1 .6 .5428 3.323 .8902 3.524 6
SPT :- 0174808904	F	NGR :- NY 18	8400 07700	LING	MELL BI	ECK 20		OSEDAL	E BEC	ĸ				
MEAN S.D. T53 MAN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG NO.OF OCCURS.	6.158 .2293 6.5 5.8 5.781 6.536 5.789 6.543 17	5.941 .0081 2.749 .0018 12 .01 3 <.01 1.418 .0052 10.46 .011 2.612 .0055 11.12 .0113 17 7	.3771 .0018 .1048 .001 .54 .004 .2 <.002 .2047 .0002 .5496 .0035 .232 .0007 .5692 .0037 7 7	16.66 21.19 90 <10 -VE 51.52 2.052 51.71 15	11 7.036 30 <10 -VE 22.57 3.536 24.28 10	2.312 .4603 3.1 1.3 1.555 3.069 1.64 3.136 16	.654 .0745 .75 .49 .5314 .7766 .5391 .7833 15			41.83 6.017 48.2 29 31.93 51.73 32.72 52.4 11	.01 .0058 .02 <.01 .0005 .0195 .0036 .0209 5		4 44 1.782 4.884 2.032	1.196 3.8 <.3 -VE 2.872 .1042 2.851
SPT :- 0174808904	•	NGR :- NY 18	400 08200	MOSE	DALE BI	ECK 10	0/5 0	F DOWN	-IN-T	HE-DAL	E BRID	GE		
MEAN MAX MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG NO.OF OCCURS.	.2357	1.988 .0052	.6 .002	9.9	4.166	.8617 3.9	.8			3.5	.0063 .0007 <.01 .005 .0051 .0076 .0052 .0076		.4714 <4 2	<.3 -VE 1.96 .2167
SPT :- 0174808906	,	NGR :- NY 16	500 06700	WASTW	ATER A	T BCWD	ERDALE							
MEAN S.D. T55 MAX MIN 5XILE NORM 95XILE NORM 5XILE LOG 95XILE LOG NO.OF OCCURS.	6.233 .3339 6.9 5.7 5.684 6.782 5.699 6.797 12	5.166 .0081 1.85 .0018 8 .01 2 <.01 2.122 .0052 8.21 .011 2.746 .0055 8.613 .0113 12 7	.3186 .0018 .0724 .001 .4 .004 .2 <.002 .1994 .0002 .4377 .0035 .2147 .0007 .4494 .0037 .7 7	48.86 63.54 240 (10 -VE 153.3 5.796 153 12	18.14 12.48 40 -VE 38.68 5.37 41.62	1.966 .5883 2.4 .7 .999 2.934 1.164 3.049 12	.6383 .1622 .77 .2 .3715 .9051 .41 .9336 .12			41.94 7.324 50.5 27 29.89 53.99 31.06 54.94 9	.0083 .0037 .015 .01 .0022 .0145 .0038 .0154 5		2.333 .4714 <4 2. 1.557 3.108 1.645 3.178 2	1.408 4.5 <.3 -VE 3.407 .1313
SPT :- 01748089116		NGR :- NY 14:	300 05600	GREEN	DALE B	ECK AT	GREEND	ALE						
MEAN S.D. T56 MAX MIN 'SXILE NORM SXILE NORM SXILE LOG 95XILE LOG NO.OF OCCURS.	6.3 .359 7.1 5.9 5.709 6.89 5.727 6.907 10	6.9 .0429 2.424 .0786 11 .22 4 <.01 2.912 -VE 10.86 .1722 3.713 .0028 11.41 .1511 10 7	.1971 .0014 .1011 .0003 .3 .002 .05 <.002 .0308 .001 .3635 .0018 .0792 .0011 .3884 .0019 7 7	23.75 15.05 50 <10 -ve 48.52 7.709 52.18 8	12.5 11.66 30 <10 -VE 31.69 2.485 33.59 4	1.711 .3333 2.3 1.2 1.162 2.259 1.222 2.307 9	.975 .1558 1.2 .7 .7187 1.231 .7414 1.25 .8	a.		49.5 2.38 51 46 45.58 53.41 45.68 53.51 4	.0067 .0024 .01 .005 .0028 .0105 .0036 .0111 5		4.333 2.357 6 .4563 8.21 1.647 8.794 2	.92(3 3.1 .4 .462 3.509 .8673

FLOW PH Inst M3/S	162 111 117 118 Alkal Ammon N03-N N02-N INITY IA N M.O. MG/L MG/L MG/L MG/L N N CACO3	ALU AL CAL MAGNES BOD 5 CO MIN MONO CIUM IUM ATU	92 77 180 172 183 9968 D COND ORTHO CHLOR SULPHTOTAL AT PHOSP IDE ATE HUMIC /L 25C MG/L MG/L MG/LSUBS US/CM P CL S04 MG/L
		RIVER BLENG AT BLENGDALE - D/S 61.87 14.16 3.111 1.375 95.91 6.871 .888 .2726 295 20 4.7 1.8 <10 <10 2 1 -VE 2.863 1.65 .9267 219.6 25.47 4.571 1.823 5.433 5.984 1.887 .9765 207 27.14 4.74 1.862 8 4 9 8	of FORESTRY COMMISSION BRIDGE 67.75 .006 4.833 3.685 5.315 .0015 3.064 1.274 74 <.01
PT :- 01748089336	NGR :- NY 06500 09100	RIVER CALDER 20M U/S OF WORM GI	LL 68.5 .0083 11 3.833 3.842 8.386 .0037 0.0 1.649 1.541 80 .015 11 5 6 60 .011 11 .011 .002 11 1.119 1.307 82.29 .0145 11 6.547 6.378 55.63 .0038 11 1.787 1.889 83.09 .0154 11 6.937 6.732 4 5 1 2 7
TOT 017/8080338	NCD NY 06600 00100	HARM STLL 200 HIS OF RIVER CALL	
SPT :- 0174808953F MEAN 5-666 MAX T60 4406	NGR :- NY 19200 12300 3.888 .0095 .25 .0017 2.323 .0049 .0866 .001 9 .02 .4 .004 1	RIVER LIZA 400M D/S OF YHA (10M 56.05 38.78 1.405 .6075 1.9 2.6 44.78 33.56 .4643 .2584 0.0 0. 150 110 2.3 1.27 1.9 44 <10 <10 .7 .35 1.9 44 -ve -ve .6421 .1825 1.9 2.6 129.7 94 2.169 1.032 1.9 2.6	U/S OF FORD) 666 37.91 .0067 9 3.833 1.066 0 6.964 0.0 0.0 1.649 1.156 52 <.01 9 5 3.9 23 <.01 9 <4 .3
SPT :- 0174808953L MEAN 5.923 S.D. T61 5368 MAX 6.6 MIN 4.1 STILE NORM 5.04 95TILE NORM 6.806 STILE LOG 5.083 95TILE LOG 5.0845	NGR :- NY 13050 14250 4.254 .0095 .3833 .0019 5 1.876 .0049 .0408 .001 9 .02 .45 .004 2 <.01 .35 <.002 1.168 .0015 .3162 .0003 5 7.341 .0176 .4505 .0035 5 1.946 .0038 .3201 .0008	RIVER LIZA PTC ENNERDALE WATER 27.7 19.09 1.952 .8329 1.6 2.6 17.4 9.29 .5125 .1984 0.0 0.7 75 40 3.2 1.3 1.6 <4	566 48.33 .0093 8.5 4.888 .6 .0 6.663 .006 2.121 2.775 .3041 60 .02 10 8 1.2 33 <.01
S.D. 102 .3833 MAX 7.4 MIN 5.8 SXILE NORM 5.793 95XILE NORM 7.054 5XILE LOG 5.813	2.294 .0018 .1107 .0013 13 .01 .4 .004 4 .01 .1 .002 3.289 .0052 .1036 0.0 10.83 .011 .4679 .0042 3.989 .0055 .144 .0007 11.3 .0113 .4929 .0046	115 40 4.1 2 .9 <4	
S.O. 0 .2503 MAX 6.6 MIN 5.8 STILE NORM 5.865 STILE NORM 6.665 STILE LOG 5.85	5 2.164 .0063 .0756 .0015 9 .02 .45 .005 1 <.01	<pre><10 <10 1.5 .4 1.5 <4 -ve -ve 1.412 .5281 1.5 2. 92.84 34.33 2.747 1.114 1.5 2. 97.2 36.94 2.805 1.142 1.5 2. </pre>	666 51.51 .0093 8 2.833 1.233 .0 10.57 .006 0.0 .2357 1.333 80 .02 8 <4

l,

INST M3/S	PH ALKAL AMMON INITY IA N M.O. MG/L MG/L CACO3	NO3-N NO2-N ALU Min Mg/l Mg/l Ium N N Ug/l	AL CAL P MONO CIUM MERIC UNAC MG/L UG/L CA	NAGNES BOD 5 COD (IUM ATU / MG/L MG/L 2 MG/L 0 0 L MG	77 180 172 Cond Ortho Chlor NT Phosp Ide 25c Mg/L Mg/L 15/CM P CL	SULPHTOTAL . ATE NUMIC
SPT :- 0174808960 TEAN T642.915 1AX 12.75 8 MIN	.747 8.71 .0262 5569 10.14 .0263 .7 60 .1 .7 3 <.005 .831 -VE -VE .663 25.4 .0694 .872 1.237 .0047 .7 26.02 .073	.4069 .005 30.94 .1304 .0061 38.33 .9 .028 143 .25 <.002 <10 .1924 -vE -vI .6214 .0151 93.99 .2317 .0006 3.971 .6481 .0153 94.99	4 15.18 2.466 3 10.25 .4141 40 3.3 <10 1.9 E -VE 1.785 9 32.05 3.147 8 4.591 1.849 5 34.49 3.2	-8692 1.204 4.987 .1248 .6205 3.588 1.2 2.3 18 .7 .1 <4 .6639 .1843 -VE 1.074 2.225 10.89 .6802 .4824 1.399 1.088 2.5378 11.71	148.8 .0327 10.79 19.44 .0019 4.916 160.1 .034 11.13	9.873 1.863 1.569 .702 10.61 1.942
IPT :- 0175809026H IEAN T65 6 MAX T65 7 MIN 5 SXILE NORM 5 SXILE NORM 5 SXILE LOG 5 95XILE LOG 7. NO.OF OCCURS.	NGR :- NY 23 .37 5.842 .011 4714 3.131 .0085 .4 16 .03 .6 2 <.01 .594 .6909 -VE .145 10.99 .025 .625 2.252 .0028 .173 11.76 .0268 20 19 7	400 12200 RIVE .3043 .0014 38.61 .2341 .0003 79.38 .8 .002 350 .1 <.002 410 -VE .001 -VI .6893 .0018 169.1 .0786 .0011 2.036 .7403 .0019 140 7 7 18	ER DERWENT PTO 1 11.94 1.85 5 .404 .3761 20 2.5 <10 1 1 20.83 2.468 6 5.35 1.302 22.13 2.524 12 18	SOUR MILK GILL, S .5059 .0788 .62 .38 .3762 .6355 .3874 .6449 17	36.55 .0073 9 6.612 .0015 0.0 50 .01 9 24 <.01	2 1.337 .9428 1.047 <4 3.8 <2 .5 .4492 -VE 3.55 3.06 .8659 .3376 3.779 3.284 2 8
SPT :- 0175809027K MEAN T66 5 S.D. T66 6 MAX 5 SXILE NORM 5 SXILE NORM 6 SXILE LOG 6 NO.OF OCCURS.	NGR :- NY 36 .925 5.625 .0214 4713 2.326 .0271 .6 10 .08 .3 3 <.01 .149 1.798 -VE .7 9.451 .0661 .183 2.704 .0027 .73 9.992 .0664 8 8 7	300 30300 RIV .1305 .0023 42.2 .0986 .0025 28.4 .33 .008 80 <.05	ER GLENDERAMA 2 30.41 1.1 9 20.56 .3416 50 1.8 <10 .9 E -VE .5382 9 64.24 1.661 7 9.184 .6378 6 69.13 1.73 4 7	CKIN AT MUNGRISDAL .8857 .0476 .95 .8 .8075 .9639 .9061 .9 .9661 .7	E 34 .0063 4.415 .0007 40 <.01 30 .005 26.73 .0051 41.26 .0076 27.25 .0052 41.71 .0076 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SPT :- 0175809029P MEAN T67 6 S.D. T67 6 MAX 5 SXILE NORM 5 95XILE NORM 6 SXILE LOG 5 95XILE LOG 6 NO.OF OCCURS.	NGR :- NY 32 	100 14900 THI .2143 .0018 49.7 .0244 .001 75.8 .25 .004 220 .2 <.002 <10 .1742 .0002 -v .2544 .0035 174. .1767 .0007 4.49 .2566 .0037 165. 7 7 7	RLMERE - SURF 6 9.583 2.783 8 3.938 .5193 15 3.7 <10 2.2 E 3.105 1.929 5 16.06 3.637 7 4.628 2.018 5 16.97 3.709 4 6	ACE WATER, AT DRAW- .55 .0447 .6 .5 .4764 .6236 .4797 .6265 6	37.5 .0083 3.785 .0037 40 .015 32 .01 31.27 .0022 43.72 .0145 31.61 .0038 44.03 .0154 4 5	3.333 2.328 2.403 .637 6 3.2 <2 1.5 -vE 1.28 7.287 3.376 .9326 1.443 7.838 3.493 3 7
SPT :- 0175809029Y MEAN T68 6 S.D. T68 6 MAX 6 MAX 6 MIN 5 SXILE NORM 5 SXILE NORM 6 SXILE NORM 6 SXILE LOG 6 NO.OF OCCURS.	NGR :- NY 29 .222 8.125 .0095 4147 2.85 .0049 .9 12 .02 .6 5 <.01 .54 3.436 .0015 .904 12.81 .0176 .564 4.377 .0038 .926 13.42 .0188 9 8 7	600 25400 GLEM .1214 .0014 29.04 .0488 .0003 25.65 .2 .002 80 .05 <.002 <10 .0412 .001 -VE .2017 .0018 71.24 .0596 .0011 6.243 .2129 .0019 75.92 7 7 7	NDERATERRA BEG 13.33 1.212 5 11.22 .4016 30 2.1 <10 .9 E -VE .552 31.79 1.873 3.061 .6771 2 33.99 1.956 4 8	CK AT DERWENTFOLDS 1.137 .228 1.6 .9 .7625 1.512 .8047 1.545 .8	44 .01 15.11 .0058 70 .02 33 <.01 19.13 .0005 68.86 .0195 24.02 .0036 72.08 .0209 5 5	3 2.428 1.855 1.314 5 5.2 (2 1.4 -vE .2656 6.052 4.591 1 .9275 6.507 4.917 3 7
MEAN T69 6. MAX T69 5. SXILE NORM 5. SXILE NORM 5. SXILE LOG 5. PSXILE LOG 6. NO.OF DCCURS.	NGR :- NY 23 .34 6.888 .0179 3864 3.1 .0213 .7 13 .065 .6 3 <.01 .704 1.789 -VE .975 11.98 .0529 .725 3.099 .0024 .995 12.73 .0539 10 9 7	.0929 .0015 20 .0535 .0007 14.14 .2 .003 50 .05 .001 <10 .0049 .0004 -VE .1808 .0026 43.26 .0334 .0007 5.729 .194 .0028 46.54 7 7 8	8.333 2.8 4.1.924 .5568 10 3.6 <10 2 5.167 1.884 5.158 1.986 4.1.49 3.715 5.58 1.986 4.9	.7912 .0864 .9 .6 .6491 .9334 .6576 .9409 8	LE TOWN	
SPT :- D175809043M MEAN T70 3 MAX T70 3 MAX 5. STILE NORM 5. STILE NORM 5. STILE LOG 5. STILE LOG 6. NO.OF OCCURS.	NGR :- NY 223	300 19400 KESK	ADALE BECK NE	AR GILLBROW		

. ..

.

	FOR F	ERIOD 01/01/1982 00:01 TO 25/0	9/1986 01:17	
	ALKAL AMMON NO3-N NO2- INITY IA N M.O. MG/L MG/L MG/L	MIN MONO CIUM IUM ATU	5 COD COND ORTHO CHLO AT PHOSP IDE Mg/L 25C Ng/L Mg/	A SULPHTOTAL ATE HUMIC L Mg/LSUBS
PT :- 01758090658	NGR :- NY 22400 13580	GATESGARTHDALE BECK D/S BUT	TERMERE GREEN SLATE QUA	RRY
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
SPT =- 0175809065M	NGR :- NY 19000 15500	BUTTERMERE BELOW LOWER GATES	GARTH	
AN D. T72 ACC AX NIN SXILE NORM SXILE NORM SXILE NORM SXILE LOG SXILE LOG SXILE LOG SXILE LOG CCURS. T72 COMPACT	6 6.285 .0098 .1586 .0019 6 2.36 .0068 .0367 .001 10 .025 .21 .004 3 <.01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7.222 1.2 5.984 1.216 14 3.9 44 .4 -VE -VE 17.06 3.201 1.693 .2114 18.26 3.359 3 7
T :- 01758090668	NGR :- NY 16200 18200	CRUMMOCK WATER AT HAUSE POINT		
AN CONTRACT	5.714 .0107 .1957 .002 1.603 .0051 .0215 .0007 8 .02 .22 .003 3 <.01 .15 <.002 3.076 .0024 .1604 .0008 8.352 .0191 .2311 .0032 3.498 .0046 .1625 .001 8.653 .0203 .2329 .0034 7 7 7 7 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.25 .0143 5.058 .0171 47 .045 35 <.01 32.93 -VE 49.56 .0425 33.49 .002 50.05 .0433	4.222 1.614 1.677 1.046 6 3.9 <4 .8 1.462 - VE 6.981 3.335 2.09 .5114 7.366 3.588 3 7
97T :- 0175809066CD	NGR :- NY 12800 21800	LOWESWATER		
MEAN D. T74 SXILE NORM SXILE NORM SXILE NORM SXILE LOG XILE LOG D. OF OCCURS. 7	11.71 .0094 .39 .0025 2.138 .0049 .0993 .0013 16 .02 .58 .005 9 .009 .25 <.002 8.197 .0014 .2266 .0004 15.23 .0174 .5534 .0046 8.556 .0037 .2502 .001 15.52 .0186 .5708 .005 7 7 7 7 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72 .0113 9.798 .0104 80 .03 60 <.01 55.88 -VE 88.11 .0285 57.09 .0023 89.14 .0303 4 5	6.333 3.271 3.214 .877 10 4.7 4 2.1 1.045 1.828 11.62 4.713 2.569 2.048 12.41 4.873 3 7
SPT :- 01758090660R	NGR :- NY 19200 24500	WHINLATTER GILL 10M U/S OF F.	C.BRIDGE	
AN D- T75 MIN SXILE NORM SXILE NORM SXILE NORM SXILE LOG SXILE LOG SXILE LOG NO.OF OCCURS. 12	9-636 .0642 .3837 .002 3.264 .1599 .1286 .001 15 .46 .5 .004 6 <.01 .17 <.002 4.267 -ve .1722 .0003 15 .3273 .5953 .0036 5.307 .0024 .2127 .0008 15.69 .2412 .6223 .0039 11 8 8 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72.14 .0111 9.191 .0093 87 .03 63 <.01 57.02 -vE 87.26 .0265 58.08 .0026 88.17 .0283 7 6	12 3 4 1.059 16 5 8 2 5.42 1.256 18.57 4.743 6.674 1.609 19.41 4.972 3 7
T :- 01758090660V	NGR :- NY 18900 26250	AIKEN BECK 200M U/S OF DARLIN	G ROW PLANTATION	
EAN T76 3169 MAX 5.9 STILE NORM 5.918 STILE NORM 6.961 STILE LOG 5.932 95TILE LOG 6.974 NO.OF OCCURS. 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.66 10.83 2.225 1.407 10.58 6.309 .3196 .1539 <40	59.33 .01 6.25 .0058 68 .02 50 <.01 49.05 .0005 69.61 .0195 49.64 .0036 70.13 .0209 6 5	7.333 2.616 2.886 1.455 9 5.8 4 1.5 2.584 .2204 12.08 5.008 3.654 .9718 12.73 5.369 3 7
	NOT NY 00500 19500	CONCEA MORE		
MEAN T77 6.071 -D. T77 6.4645 AX 645 STILE NORM 5.307 95XILE NORM 6.835 5XILE LOG 5.338 5XILE LOG 6.864 0.0F OCCURS. 7	6.714 .011 .1167 .0021 4.191 .0063 .0861 .0014 15 .02 .25 .005 3 <.01 <.05 <.002 -vE .0006 -vE -vE 13.6 .0213 .2582 .0044 2.216 .0039 .0317 .0006 14.63 .0229 .2776 .0048 7 7 7 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.75 .0093 2.362 .006 55 .02 50 <.01 47.86 -VE 55.63 .0191 47.95 .003 55.72 .0206 4 5	4 2.657 3.527 .7547 8 3.7 4 2 -VE 1.415 9.802 3.898 .8615 1.616 10.64 4.061 3 7

	37 Flow Inst M3/S	61 PH	INITY	IA N MG/L	117 N03-N Mg/L N	N02-N Mg/L	MIN	AL MONO MERIC	CIUM MG/L	MG/L	ATU MG/L	MG/L	COND	180 ORTHO PHOSP MG/L P	-IDE	183 SULPH ATE 1 Mg/L1 S04	TOTAL NUMIC SUBS
	SPT :- 0175809119	т	NGR :-	NY 2	5400 3	5300	RIVE	R ELLE	N AT O	VERWAT	ER				<u></u>	·	
14 M	AEAN S.D. T78 MAX MIN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG 95XILE LOG NO.OF OCCURS.	7.01 .231 7.3 6.7 6.639 7.39 6.664 7.400 6	6 22.83 7 3.544 29 19 5 17 7 28.66 2 17.5 6 29.08 6	.0117 .0066 .02 <.01 .0008 .0225 .0043 .0241 6	.4044 .2342 .65 <.04 .0192 .7897 .1445 .8477 6	.0047 .0016 .007 .002 .002 .0074 .0025 .0077 6	26.94 17.2 60 10 -VE 55.24 8.678 59.42 6	8.333 2.357 10 <10 4.456 12.21 5.08 12.65 2	7.666 1.22 8.8 5.3 5.658 9.675 5.836 9.822 6	2.8 .429 3.6 2.5 2.094 3.505 2.154 3.555 6			105 7.071 110 93.36 116.6 93.78 117 2	.01 .0058 .02 .01 .0005 .0195 .0036 .0209		9.444 7.042 14 <2 -VE 21.02 2.536 22.6 3	7.12 1.505 9.3 5.6 4.643 9.596 4.938 9.826 5
												-					
	MEAN S.D. T79 4AX 5XILE NORM SXILE NORM SXILE LOG NO.OF OCCURS. SPT := 01768094030 TEAN S.D. T80	6.75 .3536 7 6.5 6.168 7.331 6.184 7.346 2	11.5 7.778 17 6 -VE 24.29 3.47 26.14 2	105 1061 18 03 -VE 2795 0186 2935 2	.475 .1061 .55 .4 .3005 .6495 .3225 .6664 2	.014 .0156 .025 .003 -VE .0396 .0021 .0409 2	68.33 58.92 110 <40 -VE 165.2 15.17 176.4 2		4.55 3.04 6.7 2.4 -VE 9.551 1.392 10.27 2	1.5 .8485 2.1 .9 .1043 2.895 .5488 3.106 2			50 50 50 50 50 50 50	.01 0.0 .01 .01 .01 .01 .01 .01 .01 .01		0.0 12 12 12 12 12 12	8.8 8.8 8.8 8.8 8.8 8.8
	SPT :- 01768094030		NGR :	NY 40	300 09	500	KIRKS	TONE B	ECK AT	KIRKS	TONE P	ASS		•			
	SPT :- 01768094030 IEAN T80 MAX MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG NO.OF OCCURS.	6.871 .4821 7.6 6.2 6.078 7.664 6.108 7.691 7	10.14 4.67 17 5 2.461 17.82 4.478 18.95 7	0157 0202 06 005 -VE 049 0019 049 7	-3386 -1614 -6 -16 -0731 -604 -1452 -6433 7	.0015 .0004 .002 .001 .0009 .0021 .0009 .0022 .7	33.04 23.21 68 <10 -VE 71.23 9.539 76.64 7	7.777 1.924 10 <10 4.612 10.94 5.056 11.27 3	4.328 2.097 7.7 1.8 .8786 7.778 1.83 8.291 7	.7 .1443 .95 .5 .4626 .9374 .4901 .959 7			82 15.87 100 70 55.88 108.1 58.72 110.3 3	.0067 .0021 .01 .005 .0032 .0101 .0038 .0106 6	40.0 44 44 4	8.333 1.527 10 7 5.82 10.84 6.078 11.05 3	2.783 1.26 4.6 .8 .7094 4.857 1.245 5.16 6
	SPT :- 0176809403	ĸ	NGR :-	NY 40	200 13	200	GOLDE	TLL BE	CK AT	BROTHE	RSWATE	R OUT	LET - I	J/S OF	PASTU	RE BECH	(
	MEAN S.D. T81 MAX MIN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG NO.OF OCCURS.	6.971 -4461 7.7 6.4 6.237 7.705 6.262 7.728 7	12 2.516 15 9 7.86 16.13 8.348 16.52 7	0195 0174 05 01 -VE 0481 0042 0512 7	.2586 .1398 .4 .08 .0286 .4885 .0989 .5232 7	.0019 .0006 .003 <.002 .0009 .0029 .001 .003 7	26.19 15.56 50 <10 .5845 51.79 9.11 55.63 7	7.777 1.924 10 <10 4.612 10.94 5.056 11.27 3	4.842 1.411 7.3 2.8 2.52 7.164 2.906 7.437 7	.8357 .1676 1.15 .6 .56 1.111 .5911 1.136 .7			60 60 60 60 60 60 60 60 50	.01 .0099 .03 <.005 -VE .0263 .0018 .0277 6	3 3 3 3 3 3 3 3 3 3 1	11.66 8.144 21 6 -VE 25.06 3.393 26.96 3	1.883 .801 3 .8 .5657 3.201 .8862 3.389 6
	SPT :0176809403	U	NGR :-	NY 47	000 24	400	ULLSI	MATER -	R.EA	MONT AT	B5320	ROAD					
	MEAN S.D. T82 MAX MIN SXILE NORM	8.2	14.42 2.149 16	.05 <.01 -VE	-5 -008 -VE	<.004 <.002 .0011	<40 <10 2.683	<10 <10 6.666	7.3	1.2		-	70 10 60 53.55 86.44 54.84 87.54 3	.0058 .02 <.005 -VE .0185 .0028 .0199	0.0	7.666 4.041 12 4 1.018 14.31 3.003 15.31 3	.6419 3.3 1.6 1.444 3.555 1.598 3.669
	SpT :- 0176809404		NGR :-	NY 37	150 20	750	AIRA	BECK 5	OM 0/1	S OF FO	OTBRID	GE NE		TIANH	EHEAD		
	MEAN S.D. T83 MIN SXILE NORM SXILE NORM SXILE LOG PSXILE LOG NO.OF OCCURS.	.4969	12.55 5.525 21 6 3.467 21.64 5.752 22.95 9	.0054	.034	.0006	14.81	0.0	1.965	.2745			50 9.354 60 35 34.61 65.38 36.22 66.68 5	.0067 .0021 .01 <.005 .0032 .0101 .0038 .0106 6	0.0	5.888 4.476 11 <4 -VE 13.25 1.543 14.23 3	3.028 10.3 2.1 -VE 9.647 1.476

,

WATER QUALITY SAMPLE SUMMARIES For Period 01/01/1982 00:01 to 25/09/1986 01:17

			FOR PERIOR	01/01/1	982 00:01 T	0 25/09/1986	01:17			
37 Flow Inst M3/S	PH ALKAL	AMMON NO3-I IA N Mg/L Ng/L N	NO2-N ALL MIN MG/L IUM	J. AL Mono Meric L UNAC	CAL MAGNES	S BOD 5 COD	AT PHOSP 25C NG/L	IDE MG/L	.183 9968 SULPHTOTAL ATE HUMIC MG/LSUBS S04 MG/L	
SPT :- 0176809404										
AN T84 D. T84 MIN SXILE NORM XILE NORM XILE LOG XILE LOG NO.OF OCCURS.	6.927 15.8 .5424 4.54 7.9 22 6.1 9 6.035 8.33 7.819 23.2 6.072 9.55 7.853 24.1 11 10	.009 .0824 1 .0053 .071 .02 .2 <.005 <.004 .003 -V4 6 .0178 .1996 5 .0032 .0185 5 .0192 .2132 7 7	0021 28. 0007 9.3 003 40 002 15 001 13. 0032 43. 0012 16. 0034 45. 7	52 13.33 52 5.773 20 10 13 3.836 9 22.83 02 6.187 84 24.19 7 3	6.112 1.14 2.455 .334 9.5 1.7 2.9 .6 2.074 .593 10.15 1.69 3.002 .685 10.71 1.75 8 8	5 5 5 5	71.4 .006 9.736 .002 80 .01 60 <.00 55.38 .003 87.41 .010 56:58 :003 88.44 .010 5 6	7 3 1 0.0 5 3 2 3 1 3 8 3 6 3 1	6.333 5.216 1.527 2.627 8 9.5 5 2.1 3.82 .8953 8.846 9.538 4.163 2.131 9.103 10.18 3 6	
T :- 0176809417										
MEAN S.D. T85 IN STILE NORM STILE LOG STILE LOG STILE LOG J.OF OCCURS.	6.228 9.28 .1604 3.14 6.5 14 6.1 6 5.964 4.10 6.492 14.4 5.968 5.11 6.495 15.1 7 7	5 .041 .0666 7 .0376 .038 .12 .1 <.01 <.004 8 -ve .002 6 .1029 .1300 2 .0083 .023 2 .1092 .139 7 7	5 .003 70. .0016 25. .006 109 .0002 <40 .0004 28. .0056 111 .0012 37. 3 .006 117 7	27 20 3 10 30 10 64 3.551 .9 36.44 .23 8.224 .4 38.9 6 3	2.985 .792 .8649 .179 4.3 1 2 .6 1.563 .498 4.408 1.08 1.797 .536 4.574 1.111 7 7	9 5 7 5	91.66 .011 85.19 .013 190 .04 40 <.00 -vE -v 231.8 .034 18.33 .001 245.8 .035 3 6	7 4 9 0.0 5 4 E 4 6 4 6 4 3 4 1	7.555 11.6 4.682 3.678 12 15.5 <4 6.7 -ve 5.55 15.25 17.65 2.514 6.645 16.4 18.39 3 6	
SPT :- 0176809417	NGR	- NY 50750	2350 SW	INDALE B	ECK 20M U/S	OF TRIB FROM	SWINDALE H	EAD FAR		
P. T86 N. T86 N. T86 N. SXILE NORM SXILE LOG SXILE LOG SXILE LOG 	7.03 17.6 .6584 11.4 8 40 6.3 5 5.947 -v 8.112 36.4 6.002 5.61 8.162 39.2 10 9	6 .0157 .0751 .0202 .1000 .06 .3 <.005 <.004 E -VE -VU 5 .049 .2400 7 .0019 .0085 .049 .2381 7 7	0021 42. 001 25. 004 80 005 86 0038 84. 0009 14. 0041 90. 7	61 13.88 38 6.735 20 410 6 2.809 37 24.96 79 5.867 63 26.61 7 3	6.85 1.48 3.714 .7986 14 2.9 2.6 .6 .7395 .1671 12.96 2.79 2.612 .568 13.88 2.999 8 8	2 2	108 .006 89.2 .002 260 .01 45 <.00 -VE .003 254.7 .010 25.42 .003 272.6 .010 5 6	7 3 1 0.0 5 3 2 3 1 3 8 3 6 3 1	3.666 7.866 2.962 3.682 7 13 <2 4 -vE 1.809 8.54 13.92 .8887 3.426 9.152 14.81 3 6	
PT :- 0176809417										
EAN S.D. T87 MAX MAX SXILE NORM SXILE NORM SXILE LOG 95XILE LOG NO.OF OCCURS.	6.771 14.7 .2059 3.25 7.1 19 6.5 10 6.432 9.36 7.11 20-0 6.438 10-0 7.115 20.5 7 7	1 .0167 .2443 1 .028 .031 .08 .3 <.005 .2 6 .0626 .295 3 .0013 .1968 7 .0572 .2984	5 .002 44. .0007 77. .003 220 .002 <10 5 .0008 - 5 .0032 172 5 .001 3.2 6 .0034 155 7	76 7.777 59 1.924 10 410 410 410 4 612 4 10.94 21 5.056 2 11.27 7 3	4.985 .957 .9173 .053 6.6 1 3.5 .9 3.476 .869 6.494 1.04 3.632 .871 6.619 1.04 7 7	1 5 5 8 7	106.6 .011 89.62 .013 210 .04 50 <.00 -ve -v 254 .034 24.54 .001 271.7 .035 3 6	7 4 9 0.0 5 4 6 4 6 4 6 4 6 4 1	7.888 5.6 5.718 1.228 14 7.4 <4 4.3 -vE 3.58 17.29 7.619 2.193 3.829 18.6 7.812 3 6	
PT :- 0176809612	NGR	- NY 32000 3	53000 GF	AINSGILL	BECK U/S C	ARROCK FELL I	INE			
MEAN D- AX IN SXILE NORM SXILE NORM SXILE LOG SXILE LOG 0.0F OCCURS.	6.825 17.3 .372 10.2 7.4 41 6.1 9 6.213 .522 7.437 34.2 6.23 6.09 7 453 36-7	8 .0131 .1666 5 .0176 .067 .07 .3 <.005 .1 2 -VE .0555 4 .042 .278 7 .0015 .0816 7 .0415 .293 13 13	.0009 29. .004 103 <.002 20 .0004 - .0034 87. .0036 87. .0008 9.8	.8 1.924 10 <10 •VE 5.723 55 12.05 574 6.109 01 12.35	1.595 .384 5.5 1.8 -9 .8 -VE .681 5.125 1.94 .8055 .786 5.512 2.02	8 2.329 1.06 6.6 5 .6 4 3 -VE 1.64 7 5.798 5.15 9 .2719 1.96 1 5.919 5.36	13.22 .007 70 .03 45 <.00 33.24 -V 76.76 .022 36.2 .002 578.98 .023	6 .8944 6 5 4 E 3.528 6.471 3 3.675 6 6.59	1.333 1.161 4 5 <2 1.8 .4735 1.29 4.859 5.109 1.096 1.686	
CPT :- 0176809614	NGR :	- NY 32800 3	2600 R1	VER CALDE	W 50M 0/5 G	RAINSGILL BE	ck .			
IAN T89 MAX T89 MIN SXILE NORM SXILE LOG 95XILE LOG NO.OF OCCURS.	6.723 9.615 .4362 3.453 7.4 17 6.1 5 6.005 3.935 7.44 15.29 6.03 5.103	.0113 .1692 .01 .0727 .04 .3 <.005 .08 -vE .0496 .0278 .2889 .0024 .079 .0296 .3061	.0005 25. .003 73 <.002 <10 .0009 - .0026 76. .001 10. .0026 82.	06 4.811 15 <10 VE 1.53 89 17.35 29 3.818 72 18.54	.7934 .2942 2.9 1.6 .6 .8 .452 .6947 3.062 1.662 .7885 .7631 3.252 1.713	.367 10.65 1.4 29 .4 <4 .3297 -VE 1.537 24.8 .4656 .706	2.886 .005 45 .02 40 <.00 38.58 .000 48.08 .018 38.75 .003 48.23 .019	6 4 3.928 6.404 5.404 5.4028 6.489	1.333 1.493 4 4.6 <2 1.3 .4735 .3766 4.859 5.29 1.096 1.11	

.

٠,

11

÷

WATER QUALITY SAMPLE SUMMARIES For Period 01/01/1982 00:01 to 25/09/1986 01:17

37 FLOW INST M3/S		INITY	111 Ammon IA N Mg/L	117 N03-N MG/L N		MIN	9509 AL Mono Meric Unac Unac Ug/L	CIUM MG/L	237 MAGNES IUM MG/L MG	85 BOD 5 Atu Mg/L 0		COND AT 25C	ORTHO PHOSP MG/L	CHLOR	183 9968 Sulphtotal Ate Humic Mg/Lsubs S04 Mg/L
t 7 :- 0175809026HE		NGR :-		3300 12	200	SOUR	-	ILL P	TC RIVE	R DER	ENT				2
S.D. T90 MAX FILE NORM STILE LOG	6.111 .6509 7.4 5.3 5.04 7.181 5.102 7.236	3.666 1.658 7 1.9389 6.394 1.643 6.792 9				71.2 210 10 -VE 182.5	44.94 130 <20 -VE	.5974 2.3 .6 .4395 2.405	.4356 .1412 .75 .3 .2034 .6678 .2464 .6968 .9			35.93 9.462 50 19 20.36 51.49 22.69 53.2		8 0.0 8 8 8 8 8 8	1.4 0.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4
T == 0175809026P		NGR :-	NY 2	5450 13	950		BE GIL	L AT B	5289 P1	C RIVI	R DEF	WENT			
MEAN D. T91 N SXILE NORM SXILE NORM SXILE LOG XILE LOG	6.7 .5558 7.6 5.7 5.785 7.614 5.826 7.651	6.3 2.451		÷		30 46.15 150 <10 -VE 105.9 2.669	13.33 12.17 40 <10 -VE 33.35 2.736	2.71 .788 4.3 1.5 1.413 4.006 1.628	.643 .1791 .95 .37 .3483 .9377 .3951 .9712 10			45.13 9.615 58 30 29.31 60.94 31.21 62.42 10		7 0.0 7 7 7 7 7	1.5 .7071 2 1 .3369 2.663 .6494 2.834 2
SPT :- 0175809026T		NGR :-		7350 13	5050	STON	ETHWAI	TE BEC	K D/S (OF GRE	ENUP (ILL			
MAX MIN XILE NORM XILE NORM XILE LOG	8.1 5.9 5.799 7.76 5.846	8.1 4.931 20 4 -VE 16.21 2.747 17.42				79.17 260 <10 -VE 182.2	40 10 2.432 43.75 8.781	.9629 4 1.1 1.056 4.223 1.386	.2385 1.05 .34 .2947 1.079 .3726			43.8 12.18 63 26 23.76 63.83 26.93 66.11 10		7 0.0 7 7 7 7 7 7	3 0.0 3 3 3 3 3 3 3 1

WATER QUALITY SAMPLE SUMMARIES FOR PERIOD 01/01/1982 00:01 TO 25/09/1986 01:17

				982 00:01 10 2	1.23			and the second
INST	ALKAL AMMON N Inity IA N M.O. Mg/L M	G/L MG/L	ALU AL MIN MONO		TU G/L MG/L	COND ORTH	O CHLOR SUL P IDE AT L MG/L MG	3 9968 Phtotal E humic /Lsubs 4 mg/L
	CAC03		UG/L					
;PT == 0172806479R	NGR :- SD 5660	0 55300	RIVER GRIZE	DALE AT GRIZED	ALE BRIDGE			
MEAN . 6.058	6.937 .0333 .5					92.88 .033		13.5
744 0.0		35 <.D2 2	60 190		<4	120 <.05		21
SXILE NORM 4.956	-VE .0333 .0	657 .0133 1	4.06 -VE	2.149 .7436	2.666	60.57 .033	3 5.673	-VE 30.94
SXILE LOG 5.023	1.4 .0333 .2	2067 .0133 5	7.45 23.99	2.945 .8477	2.666	125.2 .033 64.42 .033 128.1 .033	3 5.903	3.393
	8 3	3 3		9 9	1			33.2
	NGR :- 50 5890	00 55600	TARNBROOK	YRE AT TARNBR	DOK			
MEAN DE 6.383	6.041 .0333 .4			2.977 1.572	7		9 5	13
S.D. P5 ;7541	3.026 0.0 .			.4324 .1915	7 0.0	48.41 .009		11.31
MIN 4.74 5XILE NORM 5.142	2 <.05			2.5 1.25 2.266 1.257	7	48 <.05		5 -VE
95XILE NORM 7.623	11.01 .0333 .	581 .0133 2	80 160	3.689 1.887	7	162.6 .054	7 11.97	31.6
95XILE LOG 7.693	11.76 .0333 .7	174 .0133 3	01.3 172.2	3.737 1.905	7	174.6 .050	4 12.8	2.851 33.72
NO.OF OCCURS. 9	8 3	3 3	8 7	9 9	1	9 3	2	2
SPT :- 0172806567	NGR :- 50 536	50 49150	GRIZEDALE B	ROOK ABOVE GR	IZEDALE RES	ERVOIR		
	28.68 .0389 .4				6 0 0	139.4 .033		15.55
HAA 0.3	50 .05 .4	.04 2	40 75	17 3.8	6	170 <.05	9	24
	7.326 .0231		-VE 10.06	7.9 1.41 9.085 1.358	6	109 <.05		7.1 -VE
	50.04 .0547 1.				6	173.5 .033		35.2
	53.16 .0564 1.				6 1	175.9 .033	3 14.74	37.81
			, ,					•
SPT :- 0171804420	NGR :- SD 702			R ABOVE STOCK				
	14.97 .0486 .	8994 .0035 9						7.32 6.225
MAX 1 8.4 MIN 4.67		.02 3	00 200		.7 44	317 .05 57 <.0	11 .	17.3
STILE NORM 5.28		-VE .0049	-VE -VE	1.264 .8303 .	1654 -VE	-VE .000	3 4.915	-VE
5%1LE LOG 5.425	2.573 .0123 .0	044 .006 4	1.16 21.65	1.453 .946	3671 3.68	25.4 .01	5 5.359	17.56
95XILE LOG 8-87E NO.OF OCCURS. 27	42.26 .1195 1. 27 27	27 27	8 8	8 8	.708 31.28 18 18	13 23	25	18.76
SPT :- 0171804160	NGR :- SD 7935	0 77800	CAM BECK PT	C RIVER RIBBLE	1			41
MEAN DR 7.795	56.96 .0562 .4	922 .0136 6	3.22 33.44	18.38 1.455 .5	6 27	162.1 .039	1 13.38	15 8.854
S.P. P8 :6253	48.59 .0592 .7 184 .25 3. 15 .03 <.	1 .04 1	20 80	40.5 3.4 2	38	320 .1	64	29.8
5%ILE NORM 6.766	-VE -VE	-VE .0007 7	.539 -VE	2.218 .0668	-VE 4.446	29.26 .009	-VE	.4358
5XILE LOG 6.811	136.9 .1535 1.	41 .0049 2	4.4 9.939	7.109 .5192 .3	199 10.94	66.9 .017	2 41.02	29.56 5.255
95%ILE LOG 8.864	146.2 .1603 1.	664 .0283 1	27.2 76.56	36.99 3.053 2.	082 52.93	314.9 .073	6 41.31	31.75

31 Flow Inst M3/S	61 162 111 118 7760 9509 241 237 85 92 77 180 172 PH ALKAL AMMON N03-N N02-N ALU AL CAL MAGNES BOD 5 COD COND ORTHO CHLOR 180 172 PH ALKAL AMMON N03-N N02-N ALU AL CAL MAGNES BOD 5 COD COND ORTHO CHLOR 180 172 INITY IA N MIN MONO CIUM IUM ATU AT PHOSP-IDE M.O. NG/L MG/L IUM MERIC MG/L 25C MG/L MG/L MG/L MG/L MG/L MG/L N UG/L UG/L MG/L 0 US/CM P CL GAC03 UG/L CA MG MG UG/L CA MG	183 9968 SULPHTOTAL ATE HUMIC MG/LSUBS SO4 MG/L
MEAN MEAN D. P7 MAX JIN SXILE NORM SXILE NORM SXILE LOG JSXILE LOG JO.OF OCCURS.	7.018 14.97 .0486 .5501 .0106 140.6 86.87 2.412 1.55 .8833 13.25 93.09 .0262 8.16 1.056 15.43 .0381 .8994 .0035 97.63 68.7 .6978 .4375 .4365 9.623 68.52 .0121 1.972 8.4 67 .2 5 .02 300 200 3.5 2.1 1.7 44 317 .05 11 4.67 2 .01 <.05	7.32 6.225 17.3 2.3 -vE 17.56 1.656 18.76 5
SXILE LOG 95XILE LOG	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 8.854 29.8 8 .4358 29.56 5.255 31.75 6
MEAN S.D. P9 MAX SXILE NORM SXILE NORM SXILE LOG SXILE LOG VO.OF OCCURS.	NGR := SD 67100 22200EARNSDALE RESERVOIR7.238 25.07.68.0147 58.75 16.66 14.37 3.075153.0333 8.75.4473 8.66.0532 .4324 .00319.31 7.817 1.17 .2512.56 0.0 1.57.96 40.151.2.02702515.93.46.74 20<.05	13.83 5.248 18.4 8.1 5.2 22.46 7.075 23.64 3
MEAN D10	NGR :- SD 88800 31500 HURSTWOOD RESERVOIR 5.23 3.277 .0778 .3333 .0133 298 324 4.62 1.3 100.8 .0361 14.8 .84 .1361 .0344 .1169 0.0 164.8 116.9 .2387 .0707 11.95 .0068 5.974 6.84 .5 .1 .5 < .02 510 480 5 1.4	8.95 5.02 12.5 5.4 .6918 17.2 3.301 18.45 2
IEAN S.D. P11 MIN SXILE NORM OSXILE NORM SXILE LOG PSXILE LOG PSXILE LOG	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.55 2.199 15.9 11.3 9.932 17.16 10.25 17.43 4
MEAN S.D. P12 MAX MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.25 4.737 10.6 3.9 -vE 15.04 2.275 16.18 2
SPT :- 0170806002 MEAN S.D. P13 MAX MIN STILE NORM STILE LOG STILE LOG NO.OF OCCURS.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13,02 4.333 18.3 8.1 5.896 20.15 7.252 21.06 4

37 FLOW INST M3/S	61 162 111 117 118 7760 9509 241 237 85 92 77 180 172 PH ALKAL AMMON NO3-N NO2-N ALU AL CAL MAGNES BOD 5 COD COND ORTHO CHLOR INITY IA N MIN MONO CIUM IUM ATU AT PHOSP IDE M.O. MG/L MG/L NG/L IUM MERIC MG/L HG/L 25C NG/L NG/L MG/L N N UG/L UNAC MG/L MG/L O O US/CM P CL CACO3 UG/L CA MG	ATE HUMIC
SPT :- 0169801192 TEAN P14 IAX P14 MIN SXILE NORM SXILE NORM SXILE LOG YSXILE LOG NO.OF OCCURS.	NGR :- SD 83200 15600ASHWORTH MOOR RESERVOIR4.493.333.0833.4357.0133595.7541.63.5621.625109.035710.2932.8909.0408.11070.056.5276.26.7328.291513.8.00631.5815.135.15.6<.02	2.06 1.436 3.5 <.3 -vE 4.422 .6001 4.758 5
Set 0169800995	NGR :- SD 97000 18000BLACKSTONE EDGE RESERVOIR3.988 3.095 .5792 .5625 .0133 422.5 356.2 2.312 .9562179.3 .0375 31.42.2484 .6299 .2693 .1598 0.0 142.1 138.4 .879 .516522.98 .0077 8.584.58 <5 1	
SPT :- 0169801083	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
SPT :- 0169800708	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
SPT :- 0169800695	NGR :- SD 84200 20200COWPE RESERVOIR6.074.666.0646.6775.0217211.694.162.9332.48386.87.03336.5.37462.274.0458.2502.0236104110.11.114.55653.2260.0.54776.3510.151.1.083603003.8390<.05	
3PT :- 0169801055	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
IPT :- 0169801188	NGR :- SD 85150 17150NADEN HIGHER RESERVOIR4.784 4.047 .0619 .4.0133 432.8 2802.178 2.1282.697 .0459 .1384 0.0105.4 172.7336 .40715.35 10.15.6 $<.02$ 570 5202.55 <2.5 <.05	

37 Flow Inst M3/S	61 162 111 117 118 PH ALKAL AMMON NO3-N NO2- INITY IA N M.O. MG/L MG/L MG/L	7760 9509 241 237 85 NALU AL CAL MAGNES BOD 5 C MIN MONO CIUM IUM ATU IUM MERIC MG/L MG/L UG/L UNAC MG/L MG/L O UG/L CA MG	92 77 180 172 183 9968 OD COND ORTHO CHLOR SULPHTOTAL AT PHOSP IDE ATE HUMIC 6/L 25C MG/L NG/L MG/L SUBS
SPT :- 0169810245	NGR :- SD 91600 21400	RAMSDEN CLOUGH RESERVOIR (DUMM)	(H.R.)
PEAN D- SXILE NORM SXILE NORM SXILE LOG XILE LOG . OF OCCURS.	4.776 3.428 2042 .5937 .013 .454 .252 .2045 .1522 0.0 5.1 <5 .55 .75 <.02 3.72 4 <.05 .35 <.02 4.029 3.014 -vE .3434 .013 5.523 3.843 .5405 .8441 .013 4.068 3.03 .0366 .3798 .013 5.557 3.858 .5682 .871 .013 8 7 8 8 8	3 461.2 325 3.287 1.775 141.8 101.2 .9156 .4652 770 440 4.1 2.2 300 150 1.7 1 3 227.8 158.4 1.781 1.009 5 694.6 491.5 4.793 2.54 5 268.8 188 2.02 1.123 5 722.9 511.9 4.964 2.623 8 8 8 8 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SPT :- 0169810247	NGR :- SD 96100 20400	WARLAND RESERVOIR (DUMMY H.R.)	
AN D. P22 MIN STILE NORM TILE NORM TILE LOG ND.OF OCCURS.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	352.8 298.3 1.387 .8062 82.2 41.67 .6424 .2757 490 360 2.8 1.4 230 230 .6 .4 217.6 229.7 .3308 .3527 488 366.8 2.444 1.259 235.4 235 .6099 .4414 501.5 371.3 2.599 1.318 7 6 8 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T :- 0169810248	NGR :- SD 97400 20100	WHITEHOLME RESERVOIR (DUMMY H.R	.)
N XILE NORM SXILE NORM SXILE LOG 95XILE LOG . OF OCCURS.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588.7 452.8 1.487 .7375 259.7 94.11 .4734 .2066 1200 560 2.3 1.1 350 320 1 .4 161.4 298 .7088 .3977 1016 607.6 2.266 1.077 269.1 316.1 .8504 .4519 1077 621.8 2.362 1.116 8 7 8 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T :- 0169801327	NGR :- 50 66800 17700	INFLOW (EAGLEY BROOK) TO BELMON	T RESERVOIR U/S OF A675
MEAN D- X SXILE NORM SXILE NORM SXILE LOG XILE LOG I.OF OCCURS.	6.648 13.02 .0354 .1708 .0143 .713 9.04 .0059 .1408 .0025 7.59 25 .05 .4 .02 5.25 <5 <.05 <.05 <.02 5.476 -vE .0257 -vE .0101 7.821 27.89 .0451 .4024 .0184 5.544 3.811 .0266 .0403 .0105 7.882 30.01 .0458 .4308 .0188 8 8 8 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SPT :- 0169801407	NGR :- SD 70400 18300	INFLOW (CADSHAW BROOK) TO TURTO	N & ENTWISTLE RESERVOIR U/S OF A666
AN D. P25 MIN SXILE NORM SXILE NORM SXILE LOG NO.OF OCCURS.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T :- 0169800009	NGR :- SK 01707 98000	ARNFIELD BROOK U/S OF ARNFIELD	RESERVOIR
MEAN S.D. P26 MAX IN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG 95XILE LOG 0.0F OCCURS.	5.518 3.645 .0542 .6375 .0133 .8208 .8839 .0589 .133 0.0 6.38 5 .2 .75 <.02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
EAN D. P27 AX MIN SXILE NORM SXILE NORM SXILE LOG SXILE LOG HO.OF OCCURS.	5.66 8.809 .0357 .6643 .0143 1.292 13.8 .0063 .1069 .0025 7.55 40 .05 .8 .02 3.97 <2.5 <.05 .5 <.02 3.534 -VE .0254 .4884 .0101 7.785 31.51 .0461 .8401 .0184 3.808 .7593 .0264 .5042 .0105 7.994 29.58 .0469 .8532 .0188 7 7 7 7 7 7	261.6 160.8 3.08 1.8 166.7 133.3 .8672 .4848 510 330 3.7 2.2 100 30 1.9 1.1 -VE -VE 1.653 1.002 536 380.1 4.506 2.597 84.44 37.67 1.882 1.124 576.5 406.9 4.669 2.686 6 6 5 5	ESERVOIR 128.4 .0333 16.28 10.8 79.02 0.0 15.52 10.09 307 $<.05$ 51 25.1 90 $<.05$ 7 2.5 $-vE$ $.0333$ $-vE$ $-vE$ 258.4 $.0333$ 4.181 27.4 43.1 $.0333$ 3.142 2.142 277.8 $.0533$ 44.23 29.05 7 7 7 5

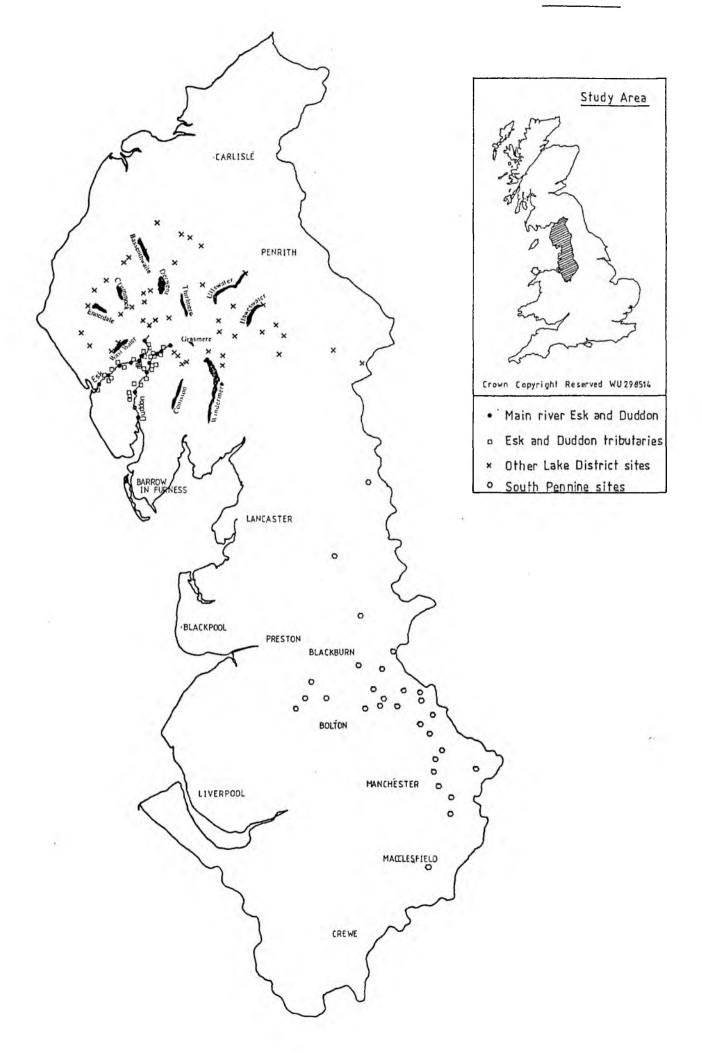
37	61	162 1	1 117			9509		237	25709	92	77	180	172	183 9968
FLOW INST M3/S		ALKAL AMI INITY IA	ION NO3-H	MG/L	MIN IUM	AL	CAL CIUM MG/L	MAGNES	BOD 5 ATU	COD MG/L	COND	PHOSP- MG/L	CHLOR	SULPHTOTAL ATE HUMIC Mg/LSUBS S04 Mg/L
SPT :- 0169800010		NGR :- 54	02000 9	7000	RIVE	R ETHE	ROW BE	LOW BO	TTOMS	RESERV	OIR			
AM P28 -589 MAX P28 -589 MIN	3 7.133 3 .8177 9.02 4.17 E 5.788 2 8.478 8 5.872 3 8.552	5 15.6 .07 8.562 .05 45 .3 5 5.62 .05 45 .3 5 1.518 .07 5 .881 .07 5 .881 .07 5 .881 .07	63 .7966 79 .5727 4.9 5 .29 VE -VE 16 1.738 01 .2237	.0151 .0072 .06 <.02 .0032 .027 .0064	130 82.23 430.2 123.3	10 279.9 12.37 284	2.8 1.67 10.32 2.755	1.065	-VE 4.568 .3312 4.822	5 -VE 35.37 5.749 38.04	82 -VE 448.5 23.23	-ve .0951 .0082	5 .5828 28.75 5.197 30.86	5.5 3.255 12.42 4.188 13.02
T :- 0169800024		NGR :- SK	05500 9	3800	HURS	T RESE	RVOIR					.**		
MEAN S.D. P29 IN SXILE NORM SXILE LOG SXILE LOG 0.0F OCCURS.	5.376 .465 6.3 4.79 4.611 6.141 4.647 6.173 8	4.541 .04 1.622 .02 8 .1 <5 <.0 1.872 .00 7.21 .08 2.418 .01 7.563 .08 8	37 .5937 35 .2367 .95 5 .15 52 .2044 23 .9831 69 .2932 82 1.037 8 8	.0133 0.0 <.02 <.02 <.02 .0133 .0133 .0133 .0133 .0133 .0133	227.1 114 400 80 39.48 414.8 93.03 442.8 7	125 86.94 275 40 -ve 268 36.51 288.3 6	4.241 1.261 5.5 2.4 2.166 6.317 2.518 6.563 6	2.816 .8864 3.5 1.5 1.358 4.274 1.62 4.454 6			139.9 33.56 185 71 84.73 195.1 92.23 200.8 8	.0333 0.0 <.05 <.05 .0333 .0333 .0333 .0333	19.25 7.516 32 8 6.885 31.61 9.649 33.32 8	6.16 4.302 11.1 1.9 -vE 13.23 1.79 14.24
SPT :- 0169800303		NGR :- SD	99500 1	0100	CAST	LESHAW	UPPER	RESERV	OIR					
EAN D. P30 MIN SXILE NORM SXILE LOG SXILE LOG SXILE LOG MO.OF OCCURS.	5.273 .8985 6.24 3.78 3.795 6.751 3.935 6.866 6	3.472 .05 1.335 .03 5 .1 <2.5 <.00 1.276 .00 5.668 .11 1.759 .02 5.969 .12 6	83 .5417 29 .1281 -7 5 .4 42 .3309 25 .7524 14 .3591 06 .7737 6 6	.0133 0.0 <.02 <.02 <.02 .0133 .0133 .0133 .0133 .0133 6	414.1 247.8 810 200 6.429 821.9 143 883 6	217.5 153.8 430 20 -VE 470.6 62.26 506.3 6	3.716 .8773 4.8 2.2 2.273 5.159 2.466 5.305 6	2.45 .5753 3.1 1.4 1.503 3.396 1.629 3.491 6			100 19.04 138 85 68.69 131.3 72.03 134 6	.0333 0.0 <.05 <.05 .0333 .0333 .0333 .0333 .0333	8.166 2.562 12 6 3.951 12.38 4.706 12.89 6	3.26 1.487 5.7 1.8 .813 5.707 1.45 6.065 5
PT :- 0169800348		NGR :- SE	01900 0	3150	CHEW	BROOK	D/S 01			1.00				SERVOIR
STILE NORM STILE NORM STILE NORM STILE LOG STILE LOG NO.OF OCCURS.	5.602 .7052 6.81 4.78 4.442 6.762 4.522 6.831 8	4.833 .09 2.513 .D4 9 .15 <2.5 <.0 .6989 .01 8.967 .17 1.917 .04 9.588 .19 8	79 1.187 91 .4816 2.1 5 .7 71 .3953 88 1.979 01 .5791 09 2.09 8 8	.0133 0.0 <.02 <.02 .0133 .0133 .0133 .0133 .0133 .7	338.5 198.2 590 60 12.42 664.7 119.5 713.7 7	143.5 82.9 270 15 7.207 279.9 51.44 300.4 7	4.321 .9626 5.4 2.738 5.904 2.937 6.057 7	2.571 .8712 3.9 1.2 1.138 4.004 1.416 4.188 7			104.8 11.86 123 85 85.33 724.3 86.54 125.4 8	.0333 0.0 <.05 <.05 .0333 .0333 .0333 .0333 .0333 .0333	10.62 3.113 15 7 5.502 15.76 6.358 16.34 8	8.78 4.325 13.4 2.7 1.665 15.89 3.658 16.95 5
PT :- 0169800342														
MEAN AX IN SXILE NORM SXILE NORM SXILE LOG SXILE LOG IO.OF OCCURS.	4.826 .6786 6.33 4.22 3.71 5.942 3.797 6.016 9	2.963 .14	1 .7833 .1 .9 .65 .65 .65 .65 .65 .65 .65 .65	.0133 0.0 <.02 <.02 .0133 .0133 .0133 .0133 .0133 .0133	342.1 69.27 470 280 228.1 456 241.1 466.3 7	297.5 70.97 420 225 180.7 414.2 196.5 426.1 6	3.318 .9008 4.5 1.7 1.837 4.8 2.065 4.965 8	2.225 .4979 3 1.2 1.406 3.043 1.509 3.123 8			119.3 17.65 151 89 90.29 148.3 92.67 150.3 9	.0333 0.0 <.05 <.05 .0333 .0333 .0333 .0333 .0333	17.66 7.968 36 11 4.559 30.77 7.934 32.68 9	8.14 3.989 13.7 4.1 1.578 14.7 3.407 15.67 5
3PT :- 0169800292		NGR :- SD	98700 12	200	READY	CON DE	AN RES	ERVOIR						
STILE NORM STILE NORM STILE LOG STILE LOG	5.497 .7063 6.61 4.56 4.335 6.659 4.417	9.895 .250 18.23 .21 55 .65	2 .5937 2 .1474 .8 .35 7E .3512 6 .8363 5 .3853 3 .8617	.0133 0.0 <.02 <.02 .0133 .0133 .0133 .0133	300 104.7 440 175 127.6 472.3 162.1 494.8	177.8 110.9 345 40 -VE 360.2 58.79 387.3	3.678 1.242 6 2 1.634 5.723 2.029 5.985	2.385 .521 3.1 1.4 1.528 3.242 1.634 3.324			69.41 111.8 71.07 113.2	.0063 .05 <.05 .0254 .0461 .0264	2.531 12 5 3.96 12.28 4.701 12.79	6.42 2.325 9.2. 4 2.595 10.24 3.388 10.75 5

and the second sec

.

1

÷


.

WATER QUALITY SAMPLE SUMMARIES For Period 01/01/1982 00:01 to 25/09/1986 01:17

37 FLOW INST M3/S	61 162 PH ALKAL INITY M.O. MG/L CACO	AMMON NO3-N IA N Mg/L Mg/L N	MG/L I	LU AL IN MONO UM MERIC	CIUM IUM	ATU MG/L MG/L	AT PH	180 172 THO CHLOR OSP IDE G/L MG/L CL	183 9968 SULPHTOTAL ATE HUMIC Mg/LSUBS S04 Mg/L
PT :- 0169800384	NGR	:- SK 00400 9	9600	HIGHER SWIN	ESHAW RESERV	DIR			*
MEAN S.D. P34 MAX 'IN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG 10.0F OCCURS.	.6271 .771 6.01 <5 4.23 <2.5 3.677 1.64 5.74 4.18 3.752 1.83	7 .0214 .5235 5 .3245 .9265 8 .0671 .5425 4 .3473 .942	0.0 7 <.02 4 <.02 2 .0133 2 .0133 4 .0133 2	5.65 117.8 70 500 20 130 18.4 86.06 67.3 473.9 33.8 132.7	.8937 .6651 4 2.9 1.4 1 1.337 .8345 4.277 3.022 1.604 1.05		10.21 107 < 72 < 77.79 - 111.3 - 78.78 -	0333 6.875 0.0 2.416 .05 11 .05 3 0333 2.9 0333 10.84 0333 3.699 0333 11.37 8 8	11.04 6.213 22 6.9 .82 21.26 4.059 22.8 5
SPT :- 0169800084	NGR	:- SK 01100 7	4400	RIVER GOYT	U/S OF ERRWO	OD RESERVOI	R		
MEAN S. P35 MAX MIN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG NO. OF OCCURS.	7.08 15 5.6 <5 5.536 1.31	7 .0309 .2774 .1 1.1 <.05 .25 8 -VE .1812 9 .1008 1.093 7 .0167 .2947 5 .1083 1.159	0.0 10	00.6 73.8 90 210 25 15 3.74 -VE	14 6 3.3 1.8 1.89 1.282		77.58 . 303 . 110 < 42.4 .	0354 24.62 0059 20.85 05 60 .05 9 0257 -VE 0451 58.93 0266 5.604 0458 62.99 8 8	11.22 7.971 22.1 2 -VE 24.33 3.196 26.17 5
SPT :- 0169800184	NGR	- SK 05600 8	8000 4	KINDER RESE	RVOIR				
MEAN S.D. P36 MAX MIN SXILE NORM SXILE NORM SXILE LOG 95XILE LOG 95XILE LOG NO.OF OCCURS.	.4842 6.711 7.17 26 5.78 5 5.891 2.325 7.484 24.45 5.922 5.478		.0024 22 .02 60 <.02 10 .0103 .018 51 .0106 10	20 236.1 00 600 0 10 -ve -ve 19.5 506.8 6.55 6.59	.7633 .8042 5.6 3.7 3.5 1.4 3.677 1.51 6.188 4.156 3.785 1.724	17 0.0 17 17 17 17 17 17 17	8.298 . 111 . 86 < 85.12 . 112.4 . 85.74 .	0354 7.428 0059 2.299 05 12 .05 5 0257 3.646 0451 11.21 0266 4.315 0458 11.67 8 7	5.46 3.674 11 2.4 -vE 11.5 1.657 12.37 5

ā

Appendix 10

