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INTRODUCTION.  Macrocystis pyrifera is a foundation species of temperate marine 

habitats (Dayton 1985).  Giant kelp supplies food directly and indirectly to the 

surrounding community.  Grazers and browsers eat the living plant itself while detrivores 

and suspension feeders consume particulate detritus produced by degradation of kelp 

tissue (Duggins et al. 1989).  Macrocystis also modifies the physical environment.  Its 

floating fronds add vertical structure to the water column and provide space for sessile 

organisms as well as attracting many fish species that would otherwise be absent.  Thick 

surface canopies also dampen water motion and divert currents, providing a more 

hospitable environment for organisms that might be affected by intense wave action 

(Jackson and Winat 1983).  Because so many subtidal organisms depend on Macrocystis, 

its population status is a good indicator of local biodiversity and overall health of the 

surrounding marine ecosystem.   

Macrocystis plants are very large and have a complex morphology (Figure 1).  

Each plant grows from a conical hapterous holdfast that secures it to rocky substrates.  

Many fronds make up a single plant.  A frond consists of an elongate rope-like stipe with 

many blades attached at intervals along its axis.  Between each blade and the stipe is a 

gas-filled float or pneumatocyst, (Jackson et. al 1987).  These floats keep the fronds 

buoyed up in the water column.  Not all fronds in one plant are of the same length, some 
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are small and others extend past the surface and form a canopy that spreads out on top of 

the water.   

Macrocystis has a complex pattern of growth.  A basal meristem is located at the 

top of the holdfast and is responsible for the production of new fronds.  Within each 

frond, cell division occurs at the apical meristem as the frond grows toward the surface, 

buoyed up by its pneumatocysts.  Frond elongation rates at Hopkins Marine Station can 

be rapid, ranging from 2 - 6% day-1 depending on conditions (Watanabe, unpubl. data).  

Once they reach the surface, fronds continue to grow and extend horizontally along the 

top of the water.  Immature blades are at the tip of the frond with mature blades in the 

center and senescent blades near the bottom.  Fronds eventually stop growing and form a 

terminal blade.  Each frond persists for only ~6 months, but whole plants can live 5-7 

years.  During that time, the basal meristem produces new fronds continuously so a single 

Macrocystis plant is composed of numerous fronds (up to several hundred in the largest 

plants) of many different sizes.   

Growth of Macrocystis is seasonal with peak growth occurring in the spring and 

summer when irradiance is at a maximum.  In the winter, rate of frond addition slows and 

plants often have net loss of fronds as storms remove most of the surface canopy.  Thus 

standing crop biomass is greatest in summer and lowest in winter.   

Population estimates of Macrocystis usually consist of holdfast densities (number 

per unit area) and basal frond counts.  The large size and rapid turnover of tissue of 

Macrocystis make it difficult to estimate its biomass. Yet biomass estimates are necessary 

to evaluate general ecosystem function and for management of kelp forests.  The 
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objective of our study was to devise a method for estimating standing crop biomass of 

Macrocystis based on holdfast density and basal frond counts.    

 

MATERIALS AND METHODS.   

Two quantities are required to estimate the biomass of Macrocystis: the typical 

distribution of frond lengths on an average plant and the relationship between frond 

length and frond mass.   We counted fronds at fixed heights above the holdfast up to the 

surface and measured lengths of the floating portions of canopy fronds to establish 

length-frequency distributions.   To obtain a length-biomass regression we harvested 

fronds of varying lengths and returned them to shore for length and mass measurements.  

Sampling was conducted in the Hopkins Marine Life Refuge (36°37'N 121°54'W) 

between depths of 6 and 12 meters.  Plants ranged in size from 2 to 44 fronds.  

Macrocystis harvesting and counting occurred during the summer season in Monterey 

Bay between July 23rd and August 24th 2007.  Water temperature was an average of 11.1° 

C.  

Plants were chosen by random compass bearings and number of fin kicks from an 

arbitrary starting point.  The Macrocystis plant closest to the random point was then 

sampled.  After the depth of the holdfast was recorded, the fronds were counted just 

above the sporophylls bundles at the base of the plant.  Additional frond counts were 

taken every 1.5 meters from the holdfast to the surface.  Since fronds from adjacent 

plants often become intermingled near the surface canopy, we looped a piece of line 

around the bundle of stipes of the target plant and slid it up the plant as we ascended.  

This ensured that only fronds from the target plant were counted. 
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To determine the relationship between frond length and biomass, we collected 

fronds of varying lengths and returned to shore to measure the plants.  Macrocystis plants 

were chosen at random using the technique described above.  Divers collected four to six 

fronds from each plant by pulling the stipe down to the seafloor from the surface.  Frond 

length ranged from 0.5 m to 17 m and included both subsurface and canopy fronds.  Each 

frond was placed into a separate mesh bag so that any broken portion would not be lost or 

confused with other fronds.  Once back on shore, the total mass and length of each frond 

was recorded.  Measurements of internode distances were also taken starting at the first 

unattached blade from the apical blade and taken at every fifth node to the base of the 

frond.  The length and width of the selected blades was also recorded.  Larger fronds 

were weighed to the nearest 100 g using a hanging spring scale.  A top loading scale was 

used for smaller fronds. 

 

RESULTS.   

For each of the 21 plants we sampled, frond lengths were converted to a fraction of the 

holdfast depth and then sorted in five categories: <0.25, 0.25-0.50, 0.50-0.75, 0.75-1.0 

and finally canopy.  (Fig. 2).  For the 21 plants that we sampled, approximately 20% of 

fronds lie in the bottom .25 of the plant's depth, 15% of the fronds are between .25-.50 of 

the holdfast depth, 10% are between .50-.75, 15% are between .75-1.0 and 40% are in the 

floating surface canopy. 

We used a similar procedure to partition the lengths of the surface canopy fronds.  

The total length of each of the 19 canopy fronds was converted to a fraction of the 

holdfast depth of the plant from which it was sampled (values exceed 1.0 times that 
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depth).  We found that 50% of canopy fronds were between 1.0-1.5 of the holdfast depth,  

35% of the canopy fronds were between 1.5-2.0 of the holdfast depth, 10% were between 

2.0-2.5, and 5% were >2.5 times the holdfast depth (Fig. 3).  

The relationship between the natural log of the length (in cm) and natural log of 

the wet mass (in grams) was not completely linear (Fig. 4).  Biomass accumulated at a 

slower rate between ln(lengths) of  ~4.5 and ~5.5 (90 & 245cm) compared to fronds 

shorter or longer than this range.  However, fitting separate regressions to each portion of 

the length range yielded substantially smaller r2 values than fitting a single regression to 

the entire data set.  So despite this non-linearity and in the absence of a clearly justifiable 

alternative model, as a first approximation we fit a linear regression to the entire length 

range. 

The length to biomass regression equation is: 

ln(mass) = 1.291(±0.40) ln(length) – 1.438(±0.23) 

(r² = 0.927,  P < 0.001) where ln is natural logarithm, mass is in grams and length 

is in centimeters.  As expected, the Durbin-Watson D value of 1.286 indicates a 

significant autocorrelation of residuals with ln(length) (Neter & Wasserman 1974, Table 

A-6).  The general alternation of positive residuals at high & low values of ln(length) and 

negative residuals in between is clearly visible in the residuals plot (Appendix). 

Number of nodes and frond length exhibited a somewhat more linear relationship, 

but with a hint of a sigmoid shape (Fig. 5).  The linear regression equation is:  

No. Nodes = 0.078(±.002) Length (cm) -8.307(±1.78)     (r2 = .93 P <.001).    

Blades (nodes) are not evenly distributed along the length of a frond, being much 

closer together near the apex.  To compare fronds of differing lengths, we expressed node 
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number and distance from tip as fractions of the totals for each measure (Fig. 6).  

Roughly half the blades (and therefore biomass) are concentrated in the distal or terminal 

15% of the frond's length.    

 Blade length is roughly proportional to blade area, which is itself proportional to 

photosynthetic capacity.  If blade length is expressed as a fraction of maximum blade 

length for each frond and plotted against fractional distance from the apex, the 

relationship is parabolic, indicating that blade size (and therefore photosynthetic 

capacity) reaches a maximum near the center of the frond (Fig. 6).   

 

DISCUSSION.   

The biomass model requires counting fronds at the base of the Macrocystis plant and 

measuring holdfast depth.  The average length of all fronds is obtained by summing over  

each size category and multiplying by holdfast depth.     
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Using the observed size distribution of fronds of the 21 plants we sampled and 

starting with the shortest fronds, the above can be simplified to: 

holdfast depth (cm)  [ (.2)(.125)+(.15)(.375)+(.10)(.625)+(.15)(.875)+(.4)(.5)(1.25)+ 

(.4)(.35)(1.75)+(.4)(.1)(2.25)+(.4)(.05)(2.75) ] = holdfast depth (cm)  0.915   

The length biomass regression is then applied to this average and multiplied by 

the number of basal fronds to provide an estimate of total plant biomass: 

total biomass (g) = total fronds  exp(1.291 ln[(holdfast depth, cm)(.915)] – 1.438) 
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A final adjustment must be made for the systematic bias introduced by 

backtransforming an estimated length value obtained from the linear regression of log - 

log transformed data (see Sprugel 1982 and Baskerville 1972 for details).  Each predicted 

biomass value must be multiplied by exp(MSresidual2) to remove this bias.  In the present 

case this value is exp(0.1472) =  1.076 (see regression results in Appendix). 

The accuracy of this estimate will vary with plant size.  For small plants with 

fewer than ~10 fronds, biomass will probably be overestimated, since few fronds on 

plants this small reach the canopy yet.  This shortcoming can be remedied by sampling 

more small plants and treating them separately from larger plants. 

A more serious shortcoming is the assumption that the size distribution of fronds 

remains constant from season to season and from site to site.  Clearly this is unrealistic.  

Our estimate of [.915  holdfast depth] for the average frond length applies only to the 

Hopkins kelp forest in Aug. 2007, but should be applicable for summer and early autumn 

at that site when growth and/or canopy development is at its peak.  During winter and 

early spring there are many fewer canopy fronds, so biomass estimates based on basal 

frond counts and our model would tend to be too large. 

Likewise a cautionary note must be added when applying this model to different 

sites.  Blade size and morphology varies from site to site.  Kelp plants at HMLR  possess 

fronds with broader and longer blades at its apical end and thinner lance shaped blades 

near its base.  A location that is more wave exposed probably has different blade 

morphology and therefore different relationships between frond length and biomass.  

Fronds growing in deeper water may follow a different length biomass regression.  So 
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this model should be applied to plants that are not extremely wave exposed and exist is 

water depths that average between about six to twelve meters.       
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FIGURE 1. 

Diagram of the morphology of Macrocystis pyrifera. 

A. Holdfast, B. Primary stipe, C. Basal Meristem, D. Sporophyll clusters,  

E. juvenile frond, F. Senescent frond, G. Stipe bundle, H. apical blade 
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FIGURE 2. Length distribution of subsurface fronds as a percentage of holdfast depth. n 

= 21 plants with basal frond numbers ranging from 2 to 42. 
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FIGURE 3. Length distribution of canopy fronds as a percentage of holdfast depth.  n = 

19 canopy-length fronds, randomly selected from  
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FIGURE 4.  Natural Log-Log plot of total mass (g) versus total length (cm) 
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FIGURE  5. Number of nodes versus frond length. 
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FIGURE 6. Distribution of nodes along a frond measured as fractional node number from 

tip vs. fractional distance from tip.  Roughly half the nodes (blades) lie within the 

terminal 15% of a frond's length. 
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FIGURE 7. Blade lengths (measured as a fraction of longest blade on frond) as a function 

of fractional distance from tip. 
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APPENDIX  1.  Tabulation of frond lengths (as a proportion of holdfast depth) vs. plant 

size (no. of basal frond).  n = 21 plants ranging in size from 2 to 42 fronds.  Holdfast 

depths ranged from 4.2 to 10.5 meters. 

 

Case frequencies determined by value of variable FRCOUNT. 
  
Row percents 
 FRTOTAL (rows) by SIZEXDPTH$ (columns) 
  
 Length (Fraction of holdfast depth) 
             <.25 .25-.50 .50-.75  .75- 1  canopy      Total   
No.fronds 
         +-----------------------------------------+ 
       2 |    100       0       0       0       0  |     100       2 
       4 |     33      17      42       8       0  |     100      12 
       6 |     33       0      17      33      17  |     100       6 
       7 |     43      29       0       0      29  |     100       7 
       8 |      0      25      25      25      25  |     100       8 
       9 |     78      11       0      11       0  |     100       9 
      10 |     17      30       7      17      30  |     100      30 
      17 |     12       6      12      18      53  |     100      17 
      19 |     26      11       5      16      42  |     100      19 
      27 |     19      22       7      15      37  |     100      27 
      28 |     14      14       0      29      43  |     100      28 
      33 |     19      17      13       5      45  |     100      99 
      36 |      0       8      14      17      61  |     100      36 
      39 |     15      21       5      15      44  |     100      39 
      42 |     19       5      17      24      36  |     100      42 
         +-----------------------------------------+ 
 Total %       19      15      11      15      40        100 
 Total Fronds  72      59      42      56     152                381 
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APPENDIX 2.   Regression results for LN(wet weight) vs LN(length).  Wet weight in 

grams and length in centimeters. 

 

Dep Var: LOGWT   N: 98   Multiple R: 0.963   Squared multiple R: 0.927 
Adjusted squared multiple R: 0.926   Standard error of estimate: 0.384 
  
Effect   Coefficient    Std Error  Std Coef Tolerance     t   P(2 Tail) 
CONSTANT   -1.438        0.229        0.000      .      -6.287    0.000 
LOGLNGTH    1.291        0.037        0.963     1.000   34.979    0.000 
 
                         Analysis of Variance 
Source         Sum-of-Squares   df  Mean-Square     F-ratio       P 
                                                                                                                 
Regression           180.140     1      180.140    1223.536       0.000 
Residual              14.134    96        0.147 
 
-------------------------------------------------------------- 
  
Durbin-Watson D Statistic          1.286 
First Order Autocorrelation        0.331 
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APPENDIX 3.  Cystoseira osmundacea regression of biomass (grams) vs length (cm) of 
reproductive fronds. n = 51 fronds ranging in length from 61 to 1280 cm. 
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Dep Var: LOGWT   N: 51   Multiple R: 0.722   Squared multiple R: 0.521 
Adjusted squared multiple R: 0.511   Standard error of estimate: 0.718 
  
Effect     Coefficient  Std Error   Std Coef Tolerance    t   P(2 Tail) 
 
CONSTANT     -2.193      0.998        0.000      .      -2.197    0.033 
LOGLNGTH      1.232      0.169        0.722     1.000    7.301    0.000 
 
                            Analysis of Variance 
Source           Sum-of-Squares   df  Mean-Square     F-ratio       P 
Regression           27.457     1       27.457      53.301       0.000 
Residual             25.241    49        0.515 
 
--------------------------------------------------------------------- 
Durbin-Watson D Statistic          1.074 
First Order Autocorrelation        0.419 


