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A comparison ofMycobacterium tuberculosis complex isolates from seals (pinnipeds) in Australia,

Argentina, Uruguay, Great Britain and New Zealand was undertaken to determine their

relationships to each other and their taxonomic position within the complex. Isolates from 30

cases of tuberculosis in six species of pinniped and seven related isolates were compared to

representative and standard strains of the M. tuberculosis complex. The seal isolates could be

distinguished from other members of the M. tuberculosis complex, including the recently defined

‘Mycobacterium canettii ’ and ‘Mycobacterium caprae’, on the basis of host preference and

phenotypic and genetic tests. Pinnipeds appear to be the natural host for this ‘seal bacillus’,

although the organism is also pathogenic in guinea pigs, rabbits, humans, Brazilian tapir

(Tapirus terrestris) and, possibly, cattle. Infection caused by the seal bacillus is predominantly

associated with granulomatous lesions in the peripheral lymph nodes, lungs, pleura, spleen and

peritoneum. Cases of disseminated disease have been found. As with other members of the

M. tuberculosis complex, aerosols are the most likely route of transmission. The name

Mycobacterium pinnipedii sp. nov. is proposed for this novel member of the M. tuberculosis

complex (the type strain is 6482T=ATCC BAA-688T=NCTC 13288T).

Abbreviations: BCG, Bacille Calmette–Guérin; FAFLP, fluorescent amplified fragment length polymorphism; PZA, pyrazinamide; SS, seal spoligotype;
TCH, thiophen-2-carboxylic acid hydrazide.
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The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain 6482T is AF502574.
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INTRODUCTION

The Mycobacterium tuberculosis complex has traditionally
consisted of four members: M. tuberculosis (sensu stricto),
which primarily infects human and primates; Mycobacter-
ium bovis, which predominantly causes tuberculosis in
cattle (Karlson & Lessel, 1970), but can also cause disease
in a wide variety of other animals, including man; M. bovis
Bacille Calmette–Guérin (BCG), an attenuated strain
that is used for vaccination; Mycobacterium africanum, a
heterogeneous group of isolates responsible for human
tuberculosis in Africa, which appears to be intermediate
between M. tuberculosis and M. bovis (Castets et al., 1969);
and Mycobacterium microti, a less frequently isolated
pathogen that traditionally causes tuberculosis in voles
(Wells & Oxen, 1937; Wells & Robb-Smith, 1946), but
has been identified more recently as a cause of disease in
immunocompromised humans (van Soolingen et al., 1998).
Each member of the M. tuberculosis complex is associated
with a specific primary host, although infection is known
to occur in various alternative hosts. Although all of these
strains effectively share the same 16S rRNA gene sequence
(Rogall et al., 1990b) and high DNA–DNA homology (from
hybridization studies), they can be separated by some
phenotypic characteristics (Grange & Yates, 1994) and, as
they have different primary hosts, they have been regarded
as separate species (Collins et al., 1982). More recently, two
novel strains have been described: ‘Mycobacterium canettii ’,
a novel smooth variant of M. tuberculosis that was first
isolated from a Somali-born patient (van Soolingen et al.,
1997) and subsequently from a Swiss patient exposed in
Africa (Pfyffer et al., 1998); and ‘Mycobacterium caprae’
(basonym: M. tuberculosis subsp. caprae), a strain that
occurs primarily in Spanish goats and has recently been
elevated to species level (Aranaz et al., 1999; Niemann et al.,
2002; Aranaz et al., 2003). M. tuberculosis, M. africanum,
M. microti and M. bovis were accepted as separate species
by using a combination of phenotypic characteristics and
apparent host specificity. ‘M. canettii ’ and ‘M. caprae’ were
accepted by virtue of host preference and phenotypic and
genetic characteristics.

Previous logical arguments have suggested that all
members of the M. tuberculosis complex are sufficiently
similar to belong to the species M. tuberculosis (Wayne,
1984; Tsukamura et al., 1985; van Soolingen et al., 1997).
Acceptance of such an approach would cause currently
accepted species (M. bovis, M. microti and M. africanum) to
warrant classification at the subspecies level.

Between 1986 and 1995, M. tuberculosis complex organisms
were isolated from cases of tuberculosis in captive or
wild Australian sea lions (Neophoca cinerea), New Zealand
fur seals (Arctocephalus forsteri), an Australian fur seal
(Arctocephalus pusillus doriferus) and a seal trainer who
worked with the affected colony in Australia (Forshaw &
Phelps, 1991; Thompson et al., 1993; Cousins, 1995; Woods
et al., 1995). Similar organisms were recovered from captive
Southern sea lions (Otaria flavescens), wild South American

fur seals (Arctocephalus australis) and a wild Subantarctic
fur seal (Arctocephalus tropicalis) in Uruguay or Argentina
during the period 1989–2000 (Bernardelli et al., 1994, 1996;
Castro Ramos et al., 1998; Bastida et al., 1999). Between
1996 and 1998, M. tuberculosis complex organisms were
recovered from two South American fur seals in a zoological
collection in Great Britain and a Brazilian tapir (Tapirus
terrestris) housed in an adjacent enclosure, and from two
New Zealand fur seals in New Zealand in 1997 and 1998
(Hunter et al., 1998).

Many of the isolates obtained from cases of tuberculosis
in Australia, Uruguay and Argentina have been well-
characterized (Cousins et al., 1993; Bernardelli et al.,
1996; Cousins, 1996; Alito et al., 1999; Zumárraga et al.,
1999) and this information, together with preliminary
tests on the seal isolates from Great Britain and New
Zealand, suggested that the seal bacillus (Cousins et al.,
1993), isolated from pinnipeds from all four continents,
may be a unique member of the M. tuberculosis complex.
A recent study of four Australian and six Argentinian seal
isolates by fluorescent amplified fragment length poly-
morphism (FAFLP) has further substantiated the hypo-
thesis that the seal bacillus occupies a unique taxonomic
position within the M. tuberculosis complex (Ahmed et al.,
2003). This report consolidates the results of tests performed
previously and provides additional information, resulting
in a comprehensive comparison of isolates available from
pinniped-related cases of tuberculosis, and indicates that
the seal bacillus should be considered as a novel species of
the M. tuberculosis complex.

METHODS

Bacterial strains. M. tuberculosis complex isolates recovered from
30 pinnipeds and a seal trainer from 1985 to 2000 were available for
study (Table 1). Isolates recovered from two guinea pigs and two
rabbits after pathogenicity experiments in Australia, a bovine in
New Zealand (this isolate had a restriction endonuclease analysis
pattern similar to those of the Australian seal isolates) and a
Brazilian tapir were also included. Where appropriate, isolates were
compared to representative (and reference) strains of M. tuberculosis
(H37Rv or Mt14323), M. africanum (TMC3), ‘M. caprae’ (CIP
105776T), M. microti (NCTC 8710T), M. bovis (AN5) and M. bovis
BCG (P3) (Table 2).

Phenotypic characteristics. Isolates were examined for growth
and phenotypic characteristics according to standard procedures
(Vestal, 1975). In vitro susceptibility patterns to isoniazid, rifampi-
cin, streptomycin and ethambutol were determined for three isolates
from Australia, three from Argentina, one from Uruguay, two
from Great Britain and two from New Zealand by using the
Mycobacterial Growth Indicator Tube (MGIT; Becton Dickinson)
system (Bernardelli et al., 1999; Morcillo et al., 2000).

Pathogenicity studies in guinea pigs and rabbits. Isolates
from two Australian seals (Au-1 and Au-2) were each injected into a
guinea pig and a rabbit, and three isolates from Argentina (Ar-1,
Ar-2 and Ar-3) and the isolate from Uruguay (U-1) were inoculated
into guinea pigs, to examine the pathogenicity of the seal isolates.

1306 International Journal of Systematic and Evolutionary Microbiology 53

D. V. Cousins and others



Mycolic acid analysis. Mycolic acid profiles of two representative
isolates (Au-1 and Au-2) were examined by HPLC, according to
previously published procedures (Butler et al., 1996, 1999).

Tests for MPB70. All isolates were tested for the presence of the
MPB70 antigen either by using the immunoperoxidase test (Corner
et al., 1988; Veerman et al., 1990; Liébana et al., 1996) and/or by
performing SDS-PAGE on antigen preparations (Cousins et al.,
1993; Alito et al., 1999).

16S rDNA sequence determination and PCR-based tests for
genetic markers. PCR-mediated amplification of 16S rDNA was

performed by using procedures described previously (Edwards et al.,

1989; Kirschner et al., 1993). The nucleotide sequences obtained

were compared to all known 16S rDNA mycobacterial sequences in

GenBank and the M. bovis sequence (available at the Sanger website,

http://www.sanger.ac.uk/Projects/M_bovis/) by using the FastA

application. Sequences were aligned with the program PILEUP from

the Genetics Computer Group (GCG) version 9 UNIX software

Table 1. M. tuberculosis complex isolates recovered from pinnipeds or related cases from various countries, 1985–2000

Isolate (reference no.) Source Year

Australia

Au-1 (6481) Captive Neophoca cinerea (Australian sea lion) 1985

(4823F) Guinea pig LN ex 6481

(4524D) Rabbit lung ex 6481

Au-2 (6482T) Captive Arctocephalus forsteri (New Zealand fur seal) 1986

(4821D) Guinea pig LN ex 6482

(1676) Rabbit lung ex 6482

Au-3 (6510) Captive Neophoca cinerea 1986

Au-4 (6954) Captive Neophoca cinerea 1986

Au-5 (6866) Captive Arctocephalus forsteri 1986

Au-6 (6884) Captive Neophoca cinerea 1986

Au-7 (146-D) Human (seal trainer) 1988

Au-8 (14109) Wild Neophoca cinerea 1 1991

Au-9 (14126) Wild Neophoca cinerea 2 1992

Au-10 (92/1161T) Wild Arctocephalus pusillus doriferus (Australian fur seal) 1992

Au 11 (A95-127) Wild Arctocephalus forsteri 1995

Uruguay

U-1 (1337) Captive Otaria flavescens (Southern sea lion) 1987

Argentina

Ar-1 (1203-5) Wild Arctocephalus australis (South American fur seal) 1989

Ar-2 (M-17-92, 1489-50) Wild Arctocephalus australis 1992

Ar-3 (M-31-92, 1855-8) Wild Arctocephalus australis 1992

Ar-4 (M-38-92, 1862-4) Wild Arctocephalus australis 1992

Ar-5 (M-47-92, 1866-7) Wild Otaria flavescens 1992

Ar-6 (M-11-91, 1868-9) Wild Arctocephalus australis 1995

Ar-7 (M-05-95, 1920-1) Wild Arctocephalus australis 1995

Ar-8 (M-35-95, 1981-2) Wild Arctocephalus australis 1995

Ar-9 (M-08-96, 2003 & 5) Wild Arctocephalus australis 1996

Ar-10 (M-55-95, 2007-9) Wild Arctocephalus tropicalis (Subantarctic fur seal) 1996

Ar-11 (M-10-96, 2027 & 9) Wild Arctocephalus australis 1996

Ar-12 (M-33-96, 2050-3) Wild Arctocephalus australis 1996

Ar-13 (M-02-99, 2186) Wild Arctocephalus australis 1999

Ar-14 (M-30-00, 2192) Wild Arctocephalus australis 2000*

Ar-15 (M-33-00, 2225-6 & 9) Wild Arctocephalus australis 2000*

United Kingdom

UK-1 (623/971757) Captive Arctocephalus australis 1996

UK-2 (624/97) Captive Tapirus terrestris (Brazilian tapir) 1996*

UK-3 (2281) Captive Arctocephalus australis 1998

New Zealand

NZ-1 Bovine 1991*

NZ-1 Wild Arctocephalus forsteri 1997

NZ-2 Wild Arctocephalus forsteri 1998

*Unpublished.
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Table 2. M. tuberculosis complex isolates that were tested by spoligotyping and used to prepare the dendrogram (Fig. 2)

AFS, Australian fur seal; ASL, Australian sea lion; Bj, Beijing strain; COB, country of birth; NZFS, New Zealand fur seal; SAFS, South

American fur seal; TMC, Trudeau Mycobacterium Collection.

Species/strain Source of isolate Country of origin/provided by

M. africanum

1. TMC 3 Reference strain, human origin

2. TMC 12 Reference strain, human origin

3. TMC 54 Reference strain, human origin

4. 19884 (4163/69) Clinical isolate, human origin Australia

5. 19887 (5166/88) Clinical isolate, human origin Australia

6. 19890 (486/93) Clinical isolate, human origin Australia

7. 22054 Clinical isolate, human origin Australia

M. bovis/M. bovis BCG

8. BCG Japanese Vaccine strain Richard Wallace, USA

9. BCG Russian Vaccine strain Richard Wallace, USA

10. BCG Pasteur Vaccine strain RIVM, Netherlands

11. AN5 Reference strain, cattle origin CSIRO, Australia

12. 3958 Cattle Australia (Western Australia)

13. 6205 Cattle Australia (Western Australia)

14. 11487 Cattle Australia (Western Australia)

15. 14457 Cattle Australia (Western Australia)

16. 14899 Cattle Australia (Western Australia)

17. 15145 Cattle Australia (Western Australia)

18. 17319 Cattle Australia (Queensland)

19. 17898 Cattle Australia (Queensland)

20. 20007 Red deer Canada

21. 22950 Goat Spain

M. microti

22. NCTC 8710T Reference strain, vole origin

23. 3377 Vole T. Jenkins, UK

24. 3381 Vole T. Jenkins, UK

M. tuberculosis

25. H37Rv Reference strain, human origin RIVM

26. 14323 Reference strain, human origin RIVM

27. 26079 Clinical isolate, human origin Diagnosed in Australia, COB Indonesia

28. 26141 Clinical isolate, human origin Diagnosed in Australia, COB Indonesia

29. 26142 Clinical isolate, human origin Diagnosed in Australia, COB Vietnam

30. 26152 Clinical isolate, human origin Diagnosed in Australia, COB Vietnam

31. 27204 Clinical isolate, human origin, Bj Diagnosed in Australia, COB India

32. 27206 Clinical isolate, human origin Diagnosed in Australia, COB Yugoslavia

33. 27214 Clinical isolate, human origin, Bj Diagnosed in Australia, COB Vietnam

34. 27222 Clinical isolate, human origin Diagnosed in Australia, COB Australia

35. 27230 Clinical isolate, human origin Diagnosed in Australia, COB Afghanistan

‘M. canettii’

36. So93 Clinical isolate, human origin D. van Soolingen, Netherlands

‘M. caprae’

37. CIP 105776T Goat Spain

38. 4/21 Goat Spain

39. CB27 Goat Spain

Seal bacilli

40. SS-1, 146-D Clinical isolate, seal trainer Australia

41. SS-1, 6482T Captive NZFS Australia

42. SS-1, 92/1162/T Wild AFS Australia

43. SS-2 Wild SAFS Argentina

44. SS-3, 24890 Captive SAFS Great Britain

45. SS-4, 25878 Wild NZFS New Zealand
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package. Phylogenetic analyses of the sequence data were done with
programs from the Phylogeny Inference Package (PHYLIP) as
described previously (Floyd et al., 1996). The pairwise comparison
program GAP, also from the GCG package, was used to determine
the position of consensus strand nucleotides, relative to those of
Escherichia coli (GenBank number J01859). The 16S rDNA sequence
of strain 6482T was deposited in GenBank under accession number
AF502574.

PCR-based tests for known genetic markers. All isolates were
tested by PCR for the presence of mycobacterial 16S rDNA, the
gene that encodes the MPB70 antigen, the IS6110, IS1081 and mtp40
sequences (Del Portillo et al., 1991) and the PAN promoter region
that is present in pathogenic mycobacteria (Gormley et al., 1997) by
using previously published methods (Liébana et al., 1996; Zumárraga
et al., 1999). Representative isolates were tested for katG and gyrA
gene sequence polymorphisms at codons 463 and 95, respectively, by
using methods described previously (Zumárraga et al., 1999). Allele-
specific polymorphisms were examined at nt 285 of the oxyR
gene (Sreevatsan et al., 1996), which differentiates M. bovis and
‘M. caprae’ (adenine) from other members of the M. tuberculosis
complex (guanidine), and in codon 57 (nt 169) of the pncA gene,
which is responsible for pyrazinamide (PZA) resistance (Espinosa de
los Monteros et al., 1998), which is consistent with M. bovis.

Spoligotyping. All but two isolates were tested for known spacers
between direct repeats in the DR allele by using the spoligotyping
method developed by Kamerbeek et al. (1997) and performed as
described previously (Aranaz et al., 1996; Zumárraga et al., 1999).
Spoligotyping results were analysed by electronic scanning of images
and converting and analysing them by using GelCompar version 1.3,
as described previously (Romano et al., 1995; Cousins et al., 1998a,
b). The patterns obtained from the South American isolates were
compared to a database that consisted mostly of M. bovis isolates
from Argentina. In addition, the patterns obtained from all seal
isolates were compared with a large database of patterns that con-
tained approximately 700 M. tuberculosis complex isolates, including
approximately 500 M. bovis isolates from cattle, buffalo, deer, wild
animals and humans from Australia and other countries (Cousins
et al., 1998a); they were also compared to the CDC database (Jack

Crawford, personal communication). The seal isolates and represen-
tative and reference strains of the M. tuberculosis complex (Table 2)
were included in a dendrogram of spoligotype patterns that were
generated by using Dice UPGMA analysis (GelCompar, version 3.1;
Applied Maths) to examine the clonal relationships between them.

FAFLP. Heat-killed cells of isolates from three Australian sea lions,
one Australian fur seal and six South American fur seals were
digested by using EcoRI/MseI and analysed by FAFLP, using
methods described previously (Ahmed et al., 2002, 2003). Analyses
were based on the differential amplification of 131 genomic loci.
Standard genomic DNA from M. tuberculosis H37Rv, M. bovis AN5,
M. africanum and M. microti (NCTC 8710T) was used for compara-
tive FAFLP analysis.

RESULTS AND DISCUSSION

Morphology, growth and phenotypic
characteristics of seal isolates

A description of the physiological characteristics of the
taxon can be found in the formal description. Biochemical
testing clearly confirmed that the seal isolates belonged
to the M. tuberculosis complex. The negative reactions in
the nitrate reduction and niacin accumulation tests were
consistent with M. bovis (Grange & Yates, 1994) (Table 3),
a fact that led to their initial identification as such in
Australia (Forshaw & Phelps, 1991), Argentina (Bernardelli
et al., 1996) and Great Britain. In some cases, varying
amounts of niacin were produced, which is similar to results
reported for M. africanum (Grange & Yates, 1994). In most
cases, the seal isolates grew preferentially on media that
contained sodium pyruvate, although some (including NZ-
2 and NZ-3) also grew on Löwenstein–Jensen medium that
contained glycerol. Slight differences from typical M. bovis
isolates were noted in Australia and Argentina, in that the

Table 3. Phenotypic properties of the seal bacillus, compared to other members of the M. tuberculosis complex

Species: 1, M. tuberculosis (classic); 2, M. tuberculosis (Asian); 3, M. africanum (type I); 4, M. africanum (type II); 5, M. microti; 6, seal

bacillus; 7, M. bovis; 8, ‘M. caprae’; 9, M. bovis BCG. Data were taken from references cited in the text. Abbreviations: +, positive;

2, negative; V, variable; NA, not applicable.

Characteristic 1 2 3 4 5 6 7 8 9

Nitrate reduction + + 2 + 2 2 2 2 2

Niacin accumulation + + V V + 2* 2 2 2

Pyruvate preference 2 2 2 2 2 + + + +

Stimulated by glycerol + 2 2 2 2 2 2 +

MPB70 antigen 2 2 2 2 2 2 + ? +

Resistance to:

TCH + 2 2 + 2 2D 2 2d 2

PZA 2 2 2 2 2 2 + 2 +

Pathogenicity in:

Guinea pig ++ ++ 2 ++ ++ NA 2

Rabbit 2 +/2 2 +++ ++ NA 2

*Occasional strains, including the isolates from New Zealand, gave weak or positive reactions in the niacin accumulation test.

DNew Zealand strains were resistant to 1 mg TCH ml21, but sensitive to 10 mg TCH ml21.

dResistant to 1 and 2 mg TCH ml21, but sensitive to 5 and 10 mg TCH ml21.
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cord formation observed after Ziehl–Neelsen staining
was loose; further investigations uncovered differences
between the seal isolates and M. bovis, including its
susceptibility to PZA.

Pathogenicity and potential host range

Isolates inoculated into guinea pigs produced significant
lesions or death within 6 weeks and those inoculated into
rabbits caused death within 6 weeks, confirming that the
isolates were fully virulent in both laboratory animals. The
finding of a bovine isolate in New Zealand with character-
istics indistinguishable from those of isolates from fur
seals in New Zealand waters suggests that the seal bacillus
is also capable of infecting cattle. This fact, combined
with knowledge of its ability to cause disease in humans
(Thompson et al., 1993) and tapirs, suggests that the seal
bacillus has the potential for a host range that extends
beyond those of M. tuberculosis, M. africanum and
M. microti.

Mycolic acid analysis

HPLC chromatograms of isolates Au-1 and Au-2 demon-
strated a single cluster pattern that was consistent with
species of the M. tuberculosis complex (data not shown) as
reported previously (Butler et al., 1991), providing addi-
tional evidence that these organisms belonged to the
M. tuberculosis complex.

Tests for the MPB70 antigen

All seal isolates were negative when tested for the MPB70
antigen, despite containing the mpb70 gene. The MPB70
antigen is considered to be characteristic of M. bovis
(Corner et al., 1988; Liébana et al., 1996) and can be
demonstrated by dot-blot immunoperoxidase (Liébana

et al., 1996) or SDS-PAGE (Cousins, 1996; Alito et al.,
1999). In a previous study, >97 % of M. tuberculosis
isolates, 100 % of M. microti isolates and 90 % of
M. africanum isolates were negative for the MPB70 antigen,
whereas >99 % of M. bovis isolates were positive (Liébana
et al., 1996). In this regard, the seal bacillus was more
like other members of the M. tuberculosis complex than
M. bovis. The reported presence of the MPB70 antigen in
a single isolate of M. microti from an alpaca (Alito et al.,
1999) was contrary to the findings of Liébana et al. (1996),
who tested seven isolates of M. microti (including the
reference strain).

16S rDNA sequence determination

16S rDNA sequencing is an accepted method of con-
firming the species designation of mycobacterial isolates
(Böddinghaus et al., 1990; Rogall et al., 1990a, b). The 16S
rDNA consensus strand (1400 nt) from the seal isolates
demonstrated 99?9 % similarity to those of M. tuberculosis
(GenBank number X58890) and M. bovis (available from
the Sanger website at http://www.sanger.ac.uk/Projects/
M_bovis/). A single nucleotide substitution (CRT) in the
consensus strand occurred at E. coli position 1256 (data
not shown). Phylogenetic analysis demonstrated that the
consensus sequence was on the same branch as that of
M. tuberculosis. The 16S rDNA regions of the isolates
that were sequenced (1030 bp) were consistent with the
sequence of the M. tuberculosis complex.

PCR-based testing of genetic markers

The gyrA and katG gene sequences of all seal isolates
were identical (Table 4). These genetic markers are
accepted methods of confirming that isolates belong to
the M. tuberculosis complex (Thierry et al., 1990, 1993;

Table 4. Genetic properties of the seal bacillus, compared to other members of the M. tuberculosis complex

Species: 1, M. tuberculosis (classic); 2, M. tuberculosis (Asian); 3, M. africanum (type I); 4, M. africanum (type II); 5, M. microti; 6, seal

bacillus; 7, M. bovis; 8, ‘M. caprae’; 9, M. bovis BCG. All species contain IS6110 and IS1081, although some Asian strains of M. tuberculosis

lack IS6110. Present (1–5), between one and five of the 39 spacers (39–43) are present; NIL, none of the five 39 spacers (39–43) are present.

Locus 1 2 3 4 5 6 7 8 9

mtp40 +* + +* +* 2D + 2 2 2

pncA C57 CAC (His) CAC CAC CAC CAC CAC GAC

(Asp)

CAC GAC

katG C463 CTG (Leu),

CGG (Arg)

CTG/

CGG

CTG CTG CTG CTG CTG CTG CTG

oxyR nt 285 G G G G G G A A A

gyrA C95 AGC (Ser),

ACC (Thr)

2 ACC ACC ACC ACC ACC ACC ACC

Spoligotyping: spacers 39–43 Present (1–5) Present

(1–5)

NIL NIL NIL NIL NIL

*Very occasionally, members of these species lack the mtp40 gene (Liébana et al., 1996).

DSeven of seven isolates (100 %) were negative for mtp40 (Liébana et al., 1996), whereas one isolate tested by Bernardelli et al. (1996) was

reported as positive.
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Collins & Stephens, 1991; Cousins et al., 1991; Groenen
et al., 1993; Liébana et al., 1996; Gormley et al., 1997;
Sreevatsan et al., 1997). Results from sequencing of the
mtp40, pncA and oxyR genes clearly demonstrated that
the seal isolates were genetically more consistent with
M. tuberculosis and M. africanum than with M. bovis.

DNA spoligotyping

Four different spoligotypes were identified in the seal
isolates; all lacked the spacers 39–43, which are known to
be characteristic of M. bovis (Fig. 1). All of the isolates
from Australia and all but one of the Argentinian isolates
had a unique but identical pattern, designated seal spoli-
gotype 1 (SS-1). The remaining Argentinian isolate was
designated SS-2. The three isolates from Great Britain
had identical spoligotypes (SS-3) that differed by one
spacer from the other seal spoligotypes. The seal isolates
from New Zealand and the isolate from a New Zealand
bovine had identical spoligotypes (SS-4) that lacked six
spacers that were present in all other seal isolates. When
compared to reference (and representative) strains of
M. tuberculosis, M. africanum, M. microti, M. bovis,
‘M. canettii ’ and ‘M. caprae’, the seal isolates formed a
distinct cluster within the M. tuberculosis complex (Fig. 2).
Spoligotyping confirmed that the seal isolates from
Australia, Argentina, Uruguay and Great Britain were
closely related. The finding of three spoligotypes with only
minor differences from 29 isolates that originated from
these diverse geographical regions indicated a clonal
relationship between these isolates, which in turn suggests
that the infection may have originated from a single source
as a relatively recent event. Considering that these cases
were diagnosed over a period of more than 15 years and that
many of these populations inhabit geographically separate
territories, a more likely explanation is that the DR locus
exhibits considerable genetic stability in the seal bacillus.
The spoligotype identified in the New Zealand isolates
clustered with those of the other seal isolates but was
genetically further removed, confirming a closer relation-
ship to the other seal isolates than to other members of
the M. tuberculosis complex. Similar small differences in

spoligotype were evident among a group of ‘M. caprae’
isolates (Aranaz et al., 1999). Spoligotyping has previously
been used to define clonal relationships of the Beijing
family of M. tuberculosis (van Soolingen et al., 1995; Qian

Fig. 1. Results of spoligotyping of seal-related isolates from Australia, Uruguay, Argentina, Great Britain and New Zealand,
compared to reference strains of the M. tuberculosis complex. &, Hybridization with spacer; %, no hybridization with spacer.
NCTC, National Collection of Type Cultures; TMC, Trudeau Mycobacterium Collection.

Fig. 2. Dendrogram showing the relationship of established
members of the M. tuberculosis complex and the seal bacillus,
as revealed by spoligotyping. Strain designations are given in
Table 2.
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et al., 1999; Anh et al., 2000) and has been used to trace
the global spread of this strain. It has also been proved
to be useful in defining populations of M. microti (van
Soolingen et al., 1998) and, in this study, demonstrated its
usefulness in defining the limited genetic diversity of the
seal bacillus.

Dendrograms constructed by using GelCompar indicated
there was a close relationship between all seal-related
isolates. Other methods of typing these isolates, including
RFLP analysis with IS1081, IS6110, DR, PGRS and pUCD
and VNTR (variable number of tandem repeats) typing,
confirmed these findings (data not shown). Many investi-
gators accept that members of the M. tuberculosis complex
may be represented along a continuum with major peaks
that correspond to each of the designated species. It is
probable that the seal bacillus has evolved from another
M. tuberculosis complex organism and has found a unique
niche in this marine host. A study by Behr & Small (1999)
that identified deletion events in M. bovis BCG has elicited
information on the evolution of BCG strains. Similar
evolutionary insights into the origin of the seal bacillus have
been gained by using comparative genomic technologies
that were described previously (Brosch et al., 2002; Mostowy
et al., 2002). In both studies, the seal strain was separated
from classical M. bovis by at least six deletions. The seal
bacillus has a similar number of deletions to M. microti and
Brosch et al. (2002) suggest that, along with M. microti and
‘M. canettii ’, the seal bacillus contains a unique deletion.
These deletion studies provide further evidence that the
seal bacillus should be designated as a separate species
within the M. tuberculosis complex.

FAFLP

All 10 seal isolates produced indistinguishable results. When
compared to the published sequences of M. tuberculosis
strains CDC1551 and H37Rv and M. bovis strain AN5, up
to 18 highly polymorphic FAFLP markers for the rapid
identification of the seal bacillus were identified. In these
studies, three loci appeared to be unique to the seal bacillus,
12 were shared with M. bovis and three were shared with
M. tuberculosis. Further studies that include some of these
loci may result in the identification of species-specific
markers that are potentially useful for the development of
PCR-based diagnostics for the seal bacillus. The identical
genotype of all seal isolates that were tested by FAFLP
confirmed their close clonal relationship, which had been
identified by spoligotyping. It also substantiated previous
studies that used FAFLP, which suggested that this tech-
nique may play a role in discriminating between myco-
bacterial species, including members of the M. tuberculosis
complex (Goulding et al., 2000; Huys et al., 2000).

Description of Mycobacterium pinnipedii
sp. nov.

Mycobacterium pinnipedii (pin.ni.pe9di.i. N.L. gen. neut. n.
pinnipedii of a pinniped, referring to the host animal from
which the organism was first isolated).

Isolates can be recovered from the lung and associated
lymph nodes of tuberculous pinnipeds, and occasionally
from mesenteric lymph nodes and organs such as the liver.
Acid/alcohol-fast, non-spore-forming, non-motile bacilli
with loose cord formation. Growth is generally enhanced
by sodium pyruvate and usually occurs within 3–6 weeks
of incubation on egg-based media at 36–37 uC. Colonies are
dysgonic, rough, flat and non-photochromogenic. Isolates
are negative for nitrate reduction and generally negative
for niacin accumulation; some isolates demonstrate low-to-
medium reactions for niacin. Susceptible to 50 mg PZA ml21

and 1 mg thiophen-2-carboxylic acid hydrazide (TCH) ml21

(isolates have occasionally demonstrated resistance to 1 mg
TCH ml21, but are susceptible to 10 mg ml21). Pathogenic
in guinea pigs and rabbits; the apparent incidental infec-
tion of a human, bovine and tapir indicates that they may
have a wide host range. All isolates contain the sequences
IS6110, IS1081, mpb70 and mtp40, yet fail to produce
detectable MPB70 antigen. The pncA gene contains CAC
(His) at codon 57 and the oxyR gene shows G at nt 285,
similar to M. tuberculosis, M. microti and M. africanum.
The seal isolate spoligotypes form a cluster that is clearly
different from those of all other members of the
M. tuberculosis complex. The isolates are susceptible to
isoniazid, rifampicin, streptomycin, ethambutol and
paraminosalicylic acid.

The type strain is 6482T (=ATCC BAA-688T=NCTC
13288T).
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(1990). Detection and identification of mycobacteria by amplifica-

tion of rRNA. J Clin Microbiol 28, 1751–1759.

Brosch, R., Gordon, S. V., Marmiesse, M. & 12 other authors
(2002). A new evolutionary scenario for the Mycobacterium

tuberculosis complex. Proc Natl Acad Sci U S A 99, 3684–3689.

Butler, W. R., Jost, K. C., Jr & Kilburn, J. O. (1991). Identification of

mycobacteria by high-performance liquid chromatography. J Clin
Microbiol 29, 2468–2472.

Butler, W. R., Floyd, M. M., Silcox, V. & 9 other editors (1996).
Standardized Method for HPLC Identification of Mycobacteria,
pp. 3–22. Atlanta, GA: Centers for Disease Control and Prevention.

Butler, W. R., Floyd, M. M., Silcox, V. & 9 other editors (1999).
Mycolic Acid Pattern Standards for HPLC Identification of Myco-

bacteria, pp. 3–10. Atlanta, GA: Centers for Disease Control and

Prevention.

Castets, M., Rist, N. & Boisvert, H. (1969). La variété africaine du
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Zumárraga, M. J., Bernardelli, A., Bastida, R. & 10 other authors

(1999). Molecular characterization of mycobacteria isolated from

seals. Microbiology 145, 2519–2526.

1314 International Journal of Systematic and Evolutionary Microbiology 53

D. V. Cousins and others


