CORE

Growth, mortality and recruitment of Nile perch Lates niloticus (L. Centropomidae) in the Nyanza Gulf of Lake Victoria: an evaluation update

C.O. Rabour, J. Gichuki and J.Moreau

Abstract

A reassessment of the estimates of growth, mortality and recruitment patterns of Nile Perch, Lates niloticus was made based on data from commercial landings collected during the Catch Assessment Survey Programme. Two sets of length frequency data, one each from beach seining and hook and line fisheries, were analyzed. Values of $\mathrm{L}_{\infty}=169$ and $230(\mathrm{~cm} \mathrm{TL})$ and $\mathrm{K}=0.18 \mathrm{yr}^{1}$ and $0.195 \mathrm{yr}^{1}$ were obtained. The total mortality estimates from the catch curve analysis were $\mathrm{Z}=0.72 \mathrm{yr}^{1}$ and $0.94 \mathrm{yr}^{1}$, respectively, with a natural mortality M of about 0.35 for a mean environmental temperature of $27^{\circ} \mathrm{C}$. The highest peak for recruitment was in November, December and January with a minor one in June, indicating recruitment of two cohorts per year. These results are discussed and compared to previously available information on L. niloticus in Lake Victoria.

Introduction

The Kenyan portion of Lake Victoria is a narrow and shallow gulf, known by several names:Victoria N yanza (G raham 1929), K avirondo Gulf (C opley 1953; Muller and Benda 1981), N yanza Gulf (Rinne and W anjala 1982; 0 gari and D adzie 1988) and W inam Gulf (0 kach 1982) (Fig. 1). It comprises only 6 per cent ($4100 \mathrm{~km}^{2}$) of the entire lake ($68000 \mathrm{~km}^{2}$). The gulf has an average depth of 6 to 8 m and an elevation of a 1136 m above sea level. The maximum depth is about 43 m and the shoreline is about 500 km with flat sandy and muddy beaches, the latter found mostly in sheltered bays (0 kach and Dadzie 1988).

The fishery of the N yanza Gulf is multi-species and is dominated by the N ile perch, Lates niloticus (60 per cent), Rastrineobola argentea (30 per cent), and Tilapiines (5.5 per cent) (0 gari 1985; C IFA 1987; Asila and O gari 1988; Rabuor 1991).

Length-frequency analyses on N ile perch specimens from Lake Victoria have been done by Acere (1985) in the U ganda sector. In the N yanza Gulf,
growth parameters and mortality rates have been estimated only by Asila and 0 gari (1988) from samples obtained between 0 ctober 1978 and February 1984. The aim of this study is to update
our knowledge of the demographic situation of the stock of N ile perch in the N yanza Gulf and re-estimate its growth parameters, mortality rates and recruitment patterns.

Fig. 3. Evaluation of the growth of Lates niloticus in N yanza G ulf, Lake Victoria, using ELEFAN 1 on length-frequency data ($\mathrm{L}_{\infty}=228 \mathrm{~cm}, \mathrm{~K}=0.185$)

Materials and methods

Sampling methodology

Length-frequency data for the N ile perch was obtained through the routine C atch A ssessment Survey Programme conducted on a monthly basis at 22 fish landing beaches. Two sets of data, both obtained in 1991, were used: one from
littoral beach seining and the other one from hook and line fisheries. These were analyzed separately.The purpose of using the two different sets of data was to point out possible differences in the dynamics of L. niloticus according to the range of sizes and location in the lake.The samples were grouped into 5 cm length groups, ranging from 3 to 168 cm , based on total length (TL) measurements.

Data analysis

The "CO MPLEAT ELEFAN" (Electronic Length Frequency A nalysis) software developed by Gayanilo et al. (1991) for IBM/PC compatible microcomputers was used for the analysis of the length frequency data in the following way:
i. ELEFAN 0 was used to create and modify the length frequency data for use with the remaining parts of the program.
ii. ELEFAN I was used to estimate the growth parameters based on the Von Bertalanffy Growth Formula (VBGF) expressed in the form (Pauly and Gaschutz 1979):
$L_{t}=\left(L_{\infty}\left[1-e^{-k\left(t-t_{0}\right)}\right]\right)$
where:
L_{t} is the predicted length at age t.
L_{∞} is the asymptotic length or mean length the fish of a given stock would reach if they were to grow forever.
K is a growth constant, also called "stress factor" by Pauly (1980).
t_{0} is the "age" the fish would have been at zero length.

Given the data and the ecological conditions of the lake, no seaso nality could be taken into account.
iii. ELEFAN II was used to estimate the instantaneous total mortality coefficient Z via a "length-converted catch-curve" analysis as described by Pauly (1984). To compute the natural mortality coefficient M, Pauly (1980) developed an empirical formula using the multiple regression indicated below:
$\log _{10} \mathrm{M}=-0.0152-0.279 \log _{10} L_{\infty}+$
$0.65431 \log _{10} \mathrm{~K}+0.463 \log _{10}{ }^{\top}{ }^{\circ} \mathrm{C}$
This formula was used to obtain the estimate of M, given L_{∞} (total length in cm), K (the growth constant), and T (the mean environmental temperature ${ }^{\circ} \mathrm{C}$). O nce Z and M were obtained, then fishing mortality (F) was derived from the relationship:
$F=Z-M$

And the exploitation rate (E) was obtained by the relationship:
$E=F / Z=F /(F+M)$
iv. ELEFAN II was further used to obtain expressions of the seasonal changes in recruitment patterns displayed in a graphical form. It was subdivided into normally distributed recruitment pulses, suggestive of the recruitment seasons for an arbitrary year. Growth parameter estimates L_{∞} and K were used as inputs in this analysis in application of the NO RMSEP program in ELEFAN II.
v. ELEFAN II has a routine that was used to get preliminary estimates of L_{∞} and of the ratio Z / K using the method of W etherall (1986) as modified by Pauly (1986).

Results

Preliminary estimates of L_{∞} using the method ofW etherall (1986) gave the following values: 168 cm for beach seine samples and 211 cm for the hook and line samples (Fig. 2).W ith ELEFAN 1, the growth parameter estimates are $L_{\infty}=169 \mathrm{~cm}$ and 223 cm , respectively, and $\mathrm{K}=0.0195 \mathrm{yr}^{1}$ and $0.180 \mathrm{yr}^{1}$, respectively (Fig. 3).

The length-converted catch-curve analysis produced total mortality estimates of $Z=0.724 \mathrm{yr}^{-1}$ and $0.975 \mathrm{yr}^{-1}$, respectively, in the same ranges of age: 2 to 9 (Fig. 4).The natural mortality estimates were $0.372 \mathrm{yr}^{-1}$ and $0.324 \mathrm{yr}^{-1}$, leading to fishing mortality values of 0.352 and 0.633 , respectively.

The recruitment pattern (Fig. 5) for L. niloticus in the N yanza Gulf suggests a major peak recruitment from A ugust to December from beach seine data and from 0 ctober to January from the hook and line data, with a minor one in June in both cases. This suggests two cohorts per year, with one being poorly pronounced.

Discussion

The estimates of the growth parameters are in the range of already available values from the literature (Moreau 1982). Acere (1985) obtained $\mathrm{L}_{\infty}=251 \mathrm{~cm}$ and $\mathrm{K}=0.091 \mathrm{yr}^{-1}$ for N ile perch from the U ganda waters of LakeVictoria using

the probability paper method.Asila and O gari (1988) obtained $\mathrm{L}_{\infty}=205$ and K $=0.19 \mathrm{yr}^{-1}$ for N ile perch in the N yanza Gulf using the Bhattacharya (1967) and Gulland and Holt (1956) plots. Moreover, the data of Acere (1985) allowed a fitting with theVBGF as modified by Soriano et al. (1992) taking into account a two phase growth curve for juveniles and adults as shown on Fig. 6a. This new curve can be assumed to result from two different growth patterns as shown in Fig. 6b. It shows that the combination of L_{∞} and K values obtained in the current study from the beach seining samples are similar to those of juveniles in Fig. 6b. The combination of L_{∞} and K values obtained from the samples from hook and line fishing are similar to the ones for adults shown in Fig. 6b. This indicates that the difference between growth parameters calculated from the two sets of length frequency data are acceptable as they can be assumed to come from two slightly different stocks: one living in the littoral areas and exploited by beach seines and

one living in more open and deep waters and exploited by hook and line.Those two stocks can also be assumed to have different feeding habits as assumed by Soriano et al. (1992) in their model.The large L. niloticus are known to be more piscivo rous that the small ones (0 gari and D adzie 1988) in LakeVictoria.

Concerning total mortality, Acere (1985) provided values of Z that decreased from 2.6 to 0.85 between 1964 and 1977. Similarly, Asila and 0 gari (1988) obtained total mortality estimates of $Z=2.2$ to 1.6 in 1978 and 1984, respectively. In U ganda, the period of the study of A cere (1985) was one of strong development of the population of L. niloticus with a very high initial turnover (e.g. P/B or Z value), which progressively declined after some years. The same situation probably occurred during the study of Asila and 0 gari (1988) between 1978 and 1984 when catches of L. niloticus increased enormously in the N yanza Gulf (O gari 1985; Rabuor 1991). After a similar high turnover ($Z=2.2$.),
Z tends to decrease to the low values observed in this study (0.72 to 0.96). N ote that, even with these low values of Z, the exploitation rate is high: 0.486 in the littoral areas and 0.663 for the hook and lines fishery.This last value is similar to the one estimated by A sila and 0 gari (1988).

The period of the main recruitment pulse lasts from September to January of the following year. A minor pulse takes place in June. This is supportive of Gee (1964, 1965) who suggested that N ile perch in LakeVictoria probably spawn twice a year. Gee (1964) suggests that the spawning periods are mainly in the rainy seasons. This is true for the main pulse, which occurs before and during the short rainy season (O ctober to D ecember).

Conclusion

It is the first time that a length frequency analysis of L. niloticus from LakeVictoria has been made based on two sets of data from two different fisheries.The results suggest different demographic situations for the two sub-stocks concerned. Moreover, low turnover (i.e. low value of Z) means that, after a phase of strong development, this population may now be in some kind of demographic equilibrium. However, further investigations are needed to monitor its demographic evolution and possible over-fishing, as has already been observed in some parts of the U ganda littoral areas of LakeVictoria (A. Kudhogania pers. comm. to Jacques Moreau in 1994).

Acknowledgements

O ur sincere thanks go to Dr E. O kemwa, the Director of KMFRI, Mr J. 0 gari, D eputy Director (Inland W aters), and Mr J. M anyalla, Head of Laboratory in Sangoro for the encouragement and assistance they gave to this study.

References

A cere,T.O. 1985. O bservations on the biology of the N ile perch (L. niloticus) and growth of its fishery in the northern waters of LakeVictoria. FAO Fish. Rep. 335:42-61.
A sila, A.A. and J. 0 gari. 1988. Growth parameters and mortality rates of N ile perch (Lates niloticus) estimated

Fig. 6(a). Mean length at age of N ile perch in Lake Victoria: fitted growth curve using the biphasic model of Soriano, (1992)

Fig. 6(b). O rdinary Von Bertalanffy growth cur ves fitted separately
for juveniles and adults
from length-frequency data in N yanza Gulf (LakeVictoria). FAO Fish. Rep. 389:272-287.
Bhattacharya, C.G.1967.A simple method of resolution of a distribution into Gaussian components. Biometrics 23: 115-135.
CIFA (Committee for Inland Fisheries of Africa). 1988. Report of the fourth session of the sub-committee for the development and management of the fisheries of LakeVictoria, Kisumu,

Kenya, 6-10 A pril 1987. FAO Fish. Rep. 388:112.
Copley, H. 1953.The tilapia fishery of the K avirondo Gulf. J.E.A frican N at. Hist. Soc. 94:1-5.
Gee, J.M. 1964. N ile perch investigations. EAFFRO Annual Report 1962/63: 14-24.
Gee, J.M. 1965. N ile perch investigations. EAFFRO Annual Report 1964:13-27. Gayanilo F., M. Soriano and D. Pauly. 1991. A draft Guide to the Compleate

ELEFAN .ICLARM Software 2,70 p. International C enter for Living A quatic Resources Management, Manila, Philippines.
Graham, M. 1929.The Victoria N yanza and its fisheries. Crown A gents, London.
Gulland,T.A. and S.J. Holt. 1956. Estimation of growth parameters for data at unequal time intervals. J. Cons. Int. Explor. Mer. 25(2):215-222.
Moreau J. 1982. Exposé synoptique de données biologiques sur Lates niloticus L. FAO Fish Synopsis Mer. 132:39 p.

Muller, R.G. and R.S. Benda. 1981. A comparison of bottom trawl stock densities in the inner Kavirondo Gulf of Lake Victoria. J. Fish. Biol. 19: 399-401.
0 gari,T. 1985. Distribution, food and feeding habits of Lates niloticus (L.) in N yanza Gulf of Lake Victoria (Kenya). FAO. Fish. Rep. 335:68-80.
0 gari, J. and S. D adzie. 1988. The food of the N ile perch, Lates niloticus L. after the disappearance of the haplodichromine cichlids in the N yanza Gulf of LakeVictoria (Kenya). J. Fish. Biol. 32:571-577.

O kach, J. I. O. 1982. Reproductive biology and feeding of Siluroid catfish Bagrus docmac Forskal (Pisces: Bagridae) in the W inam Gulf of L.Victoria, East Africa. University of N airobi, MSc Thesis

O kach, J.I.O and S. D adzie. 1988.The food, feeding habits and distribution of a Siluroid catfish, Bagrus docmac (Forskal) in Kenyan waters of Lake Victoria. J. Fish Biol. 32:21-26.
Pauly, D. and G. Gaschutz. 1979.A simple method fitting oscillating length growth data, with a program for pocket calculator. IC ES CM 1979/G: 24 Demersal Fish Ctee, 26 p.
Pauly, D. 1980.A selection of simple methods for the assessment of tropical fish stocks. FAO. Fish. Circ. No. 729.
Pauly, D. 1984. Length converted catchcurves. A powerful tool for fisheries research in the tropics (part 3). ICLARM Fishbyte 2(3):9-10.
Pauly, D. 1986. O n improving operation and use of the ELEFAN programs. Part II. Improving the estimation of L_{∞} Fishbyte 4(1):18-20.
Rabuor, C.O.1991. Catch and effort sampling techniques and their application in freshwater fisheries management: with specific reference to LakeVictoria, Kenya waters, p. 373-381. In I.G. Cowx (ed.) Catch effort sampling strategies. 420 p .
Rinne, J.N . and B.W anjala. 1982. O bservations on movement patterns of Tilapia spp. in N yanza Gulf, Lake Victoria, East A frica. J. Fish. Biol. 20: 317-332.

Soriano M., J. Moreau, J.M. H oenig and D. Pauly. 1992. N ew functions for the analysis of two phase growth of juvenile and adult fishes, with application to N ile perch. Trans.Amer. Fish. Soc. 121:486-493.
W etherall J.A. 1986. A new method for estimating growth and mortality parameters from length frequency data. Fishbyte 4(1):12-14.
C.O. Rabour is a Research O fficer at the Kenya Marine and Fisheries Research Institute, Sangoro Research Centre, PO BOX 136, Pap 0 nditi via A hero, Kenya. Fax 035-21461.
E-mail:kmfkisu@ net2000ke.com Dr.J. Gichuki is a Senior Research Officer at the Kenya Marine and Fisheries Research Institute, Kisumu Research Centre, PO BOX 1881, Kisumu, Kenya. E-mail: gickukij@ yahoo.com Prof J. Moreau is an expert in ecopath modeling and works in the Department of Inland Fisheries, IN P, EN SAT, 145 Avenue de Muret, 31076 Toulouse, France.

