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analysis and training.

Abstract

This contribution illustrates how modemn spreadsheets aid the calculation and visualization of yield models and how the effects
- ofuncertainties may be incorporated using Monte Carlo simulation. Itis argued that analogous approaches can be imple-
" mented for other assessment models of simple to medium complexity—justifying wider use of spreadsheets in fisheries

Introduction

In 1948, Ray Beverton and
Sydney Holt at the Lowestoft Fish-
eries Laboratory, U.K., used one
of the first electro-mechanical cal-
culators to speed their work on
yield-per-recruit analyses. They
also employed a 3-D paper sculp-
ture to help visualize the yield-
per-recruit surface. A photograph
of them using both of these aids
was published as the frontpiece of
the 1993 reprint of the classic book
on the dynamics of exploited fish
populations (Beverton and Holt
1957). Despite such aids, calcula-
tion of the yield equations re-
mained a fatiguing and error prone
task, carried out in Beverton and
Holt's day by “experienced com-
puters”—people who were able to
stand the tedium and concentra-
tion required. In the 1960's, FAO
published booklets of proformas
(Gulland 1969) to help store inter-
mediate values of the multi-part
equations. Even recent guides to
the calculations (Sparre and
Venema 1992) provide associated
pre-programmed software rather
than guiding trainees to do it
themselves, as the latter is poten-
tially error prone (Hilborn 1996).

Since the end of the 1980s, the
use of spreadsheets has facilitated
both training and analysis in fish-
eries by allowing researchers to
tailor models and outputs to each

circumstance. This brief paper
aims not only to show how mod-
ern spreadsheets aid the calcula-
tion and visualization of yield
models (which has been known
for some time), but also how the
effects of uncertainties and risk
may be incorporated through
Monte Carlo simulation with the
rather rapid improvement of pro-
gramming languages like Microsoft
Visual Basic inside Microsoft Ex-
cel spreadsheets (Pitcher and Hart
1981; Restrepo and Fox 1988).
Moreover, despite the advent of
multi-parameter complex models
based on the stock synthesis ap-
proach (Methot 1990), simple equi-
librium yield-per-recruit and
biomass-per-recruit analyses re-
main valuable first steps in fisher-
ies assessment in data sparse
fisheries throughout the world.
Although demonstrated here with
the classic Beverton and Holt equa-
tion, these advantages apply as
much to other forms of yield equa-
tions, such as the length-based
analysis based on the Thompson
and Bell equations (Sparre and
Venema 1992) and also to non-equi-
librium analyses. For example, multi-
species yield-per-recruit and
value-per-recruit analyses
(Murawski 1984) can be pro-
grammed in Microsoft Visual Ba-
sic within a Microsoft Excel
spreadsheet and uncertainties
evaluated in a very flexible way
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compared to pre-programmed
software (Sparre and Willman
1992).

Spreadsheet
Functions and Monte
Carlo Simulations

As an example, Fig. 1 shows
graphs of three of the principal
Beverton and Holt assessment
equations, yield-per-recruit (YPR),
biomass-per-recruit (BPR) and
mean weight (MW) of fish in the
catch calculated using the
Microsoft Visual Basic functions
given in Appendix 1. These are
plotted as 3-dimensional surfaces
against fishing mortality rate (F)
and age of entry (and hence mesh
size) t_.. In addition, the slope of
the yield-per-recruit surface is
plotted to illustrate the position of
the F,, line. F,, was introduced
by Gulland (1968) as an arbitrary
but consistent reference point be-
low Y, .. expressing decreasing
returns with further increase in
effort and calculated as the point
at which the slope of YPR is 0.1
of the slope at the origin, for the
samet,_.

Such pictorial representations
make the consequences of the
surface shapes clear. For example,
in YPR we can clearly see the
promontory of the surface at lower
I, values where Y, , occurs at ever
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Fig. 1. Three-dimensional surface plots of Beverton and Holt fishery assessments.

Clockwise from top left: yield-per-recruit (YPR), mean weight of fish in catch (MW), marginal yield-per-recruit and
reiative biomass-per-recruit (BPR), calculated using the Microsoft Visual Basic functions listed in Appendix 1. YPR:
contours are drawn at 5% of Y__ ; MW: contours are drawn at 5% of maximum in unexploited population. Marginal
YPR: approximate slopes obtained by interpolating adjacent cells of the YPR surface (hence different F axis labels),
zero plane indicted. BPR: contours drawn at 5% intervals; 20% of unexploited biomass plane indicated. Model
parameter values W_ = 3 000; K = 0.25; t, = -0.2; t_=0.75; t =20; M =0.22,
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higher F as t_increases. The peak
of the YPR surface, Y, at t,,
is also seen at high fishing mor-
tality (the peak is actually at in-
finity). For BPR, we can see that
the line of 20% of unexploited
biomass occurs at approximately
the same age of entry (t, = 5 +
year) as the peak of the yield per
recruit surface (Y_,,). The 20%
reference value has been widely
used in fisheries assessment
since Beddington and Cooke
(1983) (Francis 1993). In the mar-
ginal YPR plot, the more conser-
vative F,, line is shown. On the
MW plot, we can see that even
at Fy, fish half the average size
of those in the unexploited
population will be caught.
Estimation uncertainties for
various reference points on the
yield surfaces may be estimated
through a series of Monte Carlo

simulations. Each simulation
comprises an estimate of the out-
put value (say F,,) made by
choosing values randomly from
the error distributions attached
to each input parameter of the
model. After a large number of
simulations are made (often
1 000), the mean and distribu-
tion of the output results may be
analyzed. This method is equiva-
lent to the unconditional para-
metric bootstrap procedure
outlined by Smith et al. (1993).
Simulations were implemented
here using proprietary add-on
software for the Microsoft Excel
spreadsheet (Decisioneering Inc.,
1515 Arapahoe St., Denver, Co.
USA, 80202: www. decisioneering.
com). Although similar proce-
dures could be self-programmed
in Microsoft Visual Basic, the
advantage of the proprietary add-

on, apart from avoiding much de-
bugging of one's own routines,
is that many different error dis-
tributions (such as gamma, log
Normal, uniform or triangular
between upper and lower
bounds, and user-defined) can
be set up independently for each
input parameter. Distributions
can be fitted to data. Moreover,
correlations between parameters,
such as the strong negative corre-
lation between the von Bertalanffy
growth rate and asymptotic size,
can be set up to constrain the
choice of random numbers.
Microsoft Visual Basic calls are
also available for more complex
models that may include optimi-
zation routines, calls to other
external procedures, or employed
in user-written Microsoft Visual
Basic programs. Output options
include analysis of distributions,

o
N\
a.
2500 3000 3500 0.2 0.25 0.3 04 03 0.2 0.1 o 015 0.2 025 03
Wo K t M
012 012
010} 010}
008 1 008 |
>
= t C — ' O {
8 006 0.06 |
L
©
a
0.04 | 004 |
002 | 002
0.00 . . s 0.00 .
0.25 0.30 0.35 0.40 0.45 0.50 45 5.0 5.5 6.0 6.5 7.0
Fo.: tnpt

Fig. 2. Error distributions attached to four yield-per-recruit model input parameters (W,, K, t, and M: top row) and
error distributions on two model output biological reference points (F,, and o bottom row) after 1 000 Monte
Carlo simulations of the bootstrap procedure. Vertical axis for top row is relative probability, for bottom row Is
probability. For outputs, mean and 95% percentiles are indicated by bars.
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Appendix 1. Microsoft Visual Basic functions for use in Microsoft Excel for
the Beverton and Holt equations.

Each function may be called by a spreadsheet cell for values of age of entry (t ) and
fishing mortality (F), given parameters values for W,, = asymptotic weight; K=von
Bertalanffy growth rate; t = von Bertalanffy model start time; M = natural mortality
rate; t_= age of recruitment to fishing grounds; t, = highest age in unfished stock.
Copies of the spreadsheets used may be downloaded from the web site:
hitp:\Wisheries.com

Function ypr(winf, k, 10, m, f, Ir, fc, t))
Dimu(4)

u(1)=1:u(2)=-3: u(3)=3: u{4) =1
Sum=0

Fori=0To 3
asuy(i+1)/{f+m+i*k)

b=Exp(-i *k * (tc - 10))
c=1-Exp(-(f+m+i*k) " (tl-1tc))
Sum=Sum+a*b*c

Nexti

ypr = Sum * winf* f* Exp(-m * (tc - tr))
End Function

Function bpr{winf, k, 10, m, f, tr, tc, tl)
Dim u(4)

u(1)=1:u(2) =-3: u(3) =
Sum=0

Fori=Q0To3
a=ufi+1)*Exp(-i*k*(tr-10)

b=(1-Exp(-((m + (i *k)) * (tc- 1)) / (m + (i * k)

¢ = (Exp(-((m + (i * k) * (tc - 11)))) * (1 - Exp{-((f + m +i* k) * (Ul - tc)})
d=f+m+(i*k)

Sum=Sum+a*(b+(c/d))

Nexti

bpr = Sum * winf

End Function

3:u(d)=-1

Function mwt{winf, k, 10, m, f, tr, tc, tl)
Dim u(4)

u{1)=1:u(2) =-3: u(3) = 3: u{d) = -1
Sum=0

Fori=0To 3
a=u(i+1)/{f+m+i*k)
b=Exp(-i*k*(tc-t0))
c=1-Exp(-(f+m+i*k)* (il-tc))
Sum=Sum+a*b*c

Nexti

v=Exp(-(f + m) * (tl - tc))

mwt = Sum * winf " (f + m) /(1 - v)
End Function

Function mage(winf, k, t0, m, f, tr, tc, ti)
v = Exp(-(f + m) * (1l - tc))
mage=1/(f+m)+{lc-t*v)/(1-v)
End Function
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graphical output and storing of
results of all simulations for
analysis by the user.

Fig. 2 shows the results from
an analysis set up to examine un-
certainty in F, and t_, for the
yield-per- recrult modpel illus-
trated in Fig. 1. Error distribu-
tions on the main four input
parameters for yield-per-recruit,
W.. M, K and t,, are set up to
illustrate the range of options.
Final error distributions on t_,
and F,, resulting from 1 000
Monte Carlo bootstrap simula-
tions are also illustrated. The
error distributions are strongly
platykurtic and, hence, are rep-
resented by the mean and the
95th percentile. F,, was ap-
proximated on the spreadsheet
by setting up a vector of YPR
values with increasing F at the
desired t_, comparing the calcu-
lated slopes on this vector with
the slope at very low F, and ob-
taining F,, by interpolation be-
tween adjacent F values when
the values matched. Smaller in-
tervals between F values in the
spreadsheet vector can increase
the accuracy of this procedure.
A similar procedure was adopted
to estimate t , from a vector of
YPR values with increasing t_at
very high F (i.e., the right side
of the YPR surface in Fig. 1).

Conclusion

Analogous methods can be
easily adapted to many fisheries
assessment models of simple to
medium complexity that can be
implemented on spreadsheets,
e.g., many of the models used in
ICES (1997). Fisheries scientists
easily forget that complexity for
its own sake is not always help-
ful. Simpler models often per-
form stock assessment tasks
better (Walters 1996).
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Length-Weight Relationship
of Fishes from Yemen Waters
(Gulf of Aden and Red Sea)

The data for this study were gath-
ered between 1993 and 1996 on
board commercial trawlers from So-
malia, China and Yemen and also
from the research vessel Ibn Magid
belonging to the Marine Science and
Resources Research Centre, Aden,
Republic of Yemen.

Fish were identified using FAO
species identification literature

H. al Sakaff and M. Esseen

(Fischer and Bianchi 1984). All
fish were measured to the near-
est mm (total length) and weighed
to the nearest g. Sex was deter-
mined by dissection after the
length and weight had been mea-
sured. The length-weight rela-
tionships were calculated using
least-squares regression on log-
transformed data and the param-
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eters of the relationship of the
form of W = aL® are summarized
in Table 1. Maximum and mini-
mum sizes of fish sampled are
also given. Common names and
recent changes in nomenclature
were taken from FishBase (Froese
and Pauly 1996).
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