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CELLULAR RESOLUTIONS OF NONCOMMUTATIVE TORIC ALGEBRAS

FROM SUPERPOTENTIALS

ALASTAIR CRAW AND ALEXANDER QUINTERO VÉLEZ

Abstract. This paper constructs cellular resolutions for classes of noncommutative algebras,

analogous to those introduced by Bayer–Sturmfels [3] in the commutative case. To achieve

this we generalise the dimer model construction of noncommutative crepant resolutions of

three-dimensional toric algebras by associating a superpotential and a notion of consistency

to toric algebras of arbitrary dimension. For abelian skew group algebras and algebraically

consistent dimer model algebras, we introduce a cell complex ∆ in a real torus whose cells

describe uniformly all maps in the minimal projective bimodule resolution of A. We illustrate

the general construction of ∆ for an example in dimension four arising from a tilting bundle

on a smooth toric Fano threefold to highlight the importance of the incidence function on ∆.

1. Introduction

Cellular resolutions were introduced for classes of monomial modules by Bayer–Sturmfels [3],

generalising the simplicial resolutions for monomial ideals by Bayer–Peeva–Sturmfels [2] and

Peeva–Sturmfels [23]. In this paper we develop a noncommutative analogue for certain classes of

noncommutative algebra, including skew group algebras for finite abelian subgroups of SL(n,k)

and superpotential algebras of global dimension three arising from algebraically consistent dimer

models. In each case, the minimal bimodule resolution of the algebra is encoded by a collection

of cells in a real torus that we call the toric cell complex.

We first recall the construction of cellular resolutions of monomial modules over a polynomial

ring from Bayer–Sturmfels [3]. For a field k, set S := k[x1, . . . , xn] and consider a monomial

S-module M with generators m1, . . . ,mr ∈ S. Let ∆ be a regular cell complex of dimension n

with vertex set ∆0 = {1, . . . , r}. Label each face η ∈ ∆ by the least common multiple mη of

the monomials that label its vertices. For any choice of incidence function ε on ∆, the labelled

regular cell complex ∆ defines a complex of free Zn-graded S-modules

0 −→
⊕

η∈∆n

S(−mη)
∂n−−→

⊕

η′∈∆n−1

S(−mη′)
∂n−1
−−−→ · · ·

· · ·
∂2−−→

⊕

e∈∆1

S(−me)
∂1−−→

⊕

j∈∆0

S(−mj)
∂0−−→M −→ 0,

(1.1)

where S(−mη) is the free S-module with generator η in degree deg(mη). The maps satisfy

∂k(η) =
∑

cod(η′,η)=1

ε(η, η′)
mη

mη′
η′

for η ∈ ∆k, where the sum is taken over all codimension-one faces of η. Necessary and sufficient

conditions for the complex (1.1) to be acyclic are given [3, Proposition 1.2], and several classes
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of examples are presented that satisfy the conditions, in which case the complex (1.1) is called

a cellular resolution of M .

Before describing our main results we sketch the notion of consistency for toric algebras. Let

E = (E0, . . . , Er) denote a collection of reflexive sheaves of rank one on a Gorenstein affine toric

variety X of dimension n. Our main object of study is the toric algebra A := End(
⊕r

i=0Ei)

associated to E . Following Craw–Smith [12], we introduce the quiver of sections Q of E , and

present A as the quotient of the path algebra of Q by an ideal of relations JE . We use the

labelling of arrows in Q to define the superpotential W of E as a formal sum of cycles in the

quiver and, on taking certain higher order derivatives of W , we obtain an auxilliary ideal of

relations JW in the path algebra of Q. The toric algebra A is consistent if the ideals JE and JW
coincide. Examples include skew group algebras k[x1, . . . , xn] ∗ G for finite abelian subgroups

G ⊂ SL(n,k) and algebraically consistent dimer model algebras as defined by Broomhead [6] in

his study of quivers and superpotentials in dimension three.

The notion of consistency is enough to provide a link between A and the toric variety X.

Indeed, letMθ denote the fine moduli space of θ-stable A-modules of dimension vector (1, . . . , 1)

for a generic weight θ, and write Yθ for the unique irreducible component ofMθ that is birational

to X. We establish the following result in Theorem 3.15:

Theorem 1.1. For consistent toric algebras A, we present an explicit GIT construction of Yθ
such that the projective birational morphism Yθ → X is obtained by variation of GIT quotient.

Theorem 1.1 unifies and extends results by Craw–Maclagan–Thomas [10] on moduli of McKay

quiver representations, and by Mozgovoy [20] on algebraically consistent dimer models.

We now describe our main result, namely, the construction of the minimal projective bimodule

resolution for classes of consistent toric algebras of global dimension n in terms of the toric cell

complex ∆ in a real n-torus. The key lies in constructing ∆. This is straightforward when A is

the skew group algebra for a finite abelian subgroup of SL(n,k), in which case ∆ is a regular

cell complex. It is considerably more difficult when A is an algebraically consistent dimer model

algebra, and in this case the result is not even a CW-complex. Nevertheless, ∆ shares some key

properties with regular cell complexes; notably, it admits an incidence function ε. In each class

of examples as above, and for any choice of incidence function ε on ∆, the toric cell complex ∆

defines a complex of projective (A,A)-bimodules

0 −→
⊕

η∈∆n

Aeh(η) ⊗ [η]⊗ et(η)A
dn−−→

⊕

η′∈∆n−1

Aeh(η′) ⊗ [η′]⊗ et(η′)
dn−1
−−−→ · · ·

· · ·
d2−−→

⊕

a∈∆1

Aeh(a) ⊗ [a]⊗ et(a)A
d1−−→ A⊗A

µ
−−→ A −→ 0,

(1.2)

where each ei ∈ A is a primitive idempotent, where [η] are symbols indexed by cells that encode

a semigroup grading, and where µ : A⊗A→ A is the multiplication map. The maps satisfy

dk(1⊗ [η]⊗ 1) =
∑

cod(η′,η)=1

ε(η, η′)
←−
∂ η′η ⊗ [η′]⊗

−→
∂ η′η.

Here
←−
∂ η′η and

−→
∂ η′η are elements of A obtained by right- and left-differentiation of cells; these

elements measure the difference between η and η′, and provide the noncommutative analogue

of the monomial mη/mη′ from (1.1). The following result combines Theorems 4.9 and 5.20.
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Theorem 1.2. Let ∆ denote the toric cell complex of a consistent toric algebra A that is either

(i) an abelian skew group algebra; or

(ii) an algebraically consistent dimer model algebra.

Then the complex (1.2) is the minimal projective (A,A)-bimodule resolution of A.

In each case we refer to (1.2) as the cellular resolution of A. For the skew group algebra, we

recover the Koszul resolution of A for a suitable choice of ε, and our presentation is reminiscent

of that from Tate–Van den Bergh [25, §3]. For an algebraically consistent dimer model algebra,

we exhibit an incidence function ε for which (1.2) is the resolution from the literature [6, 14, 21].

To conclude, we conjecture that the toric cell complex can be constructed for any consistent

toric algebra A whose global dimension n is equal to the dimension of X and, moreover, that the

resulting complex (1.2) is an (A,A)-bimodule resolution of A. We provide further evidence for

this conjecture by examining a representative example arising from a tilting bundle on a smooth

toric Fano threefold. More generally, we anticipate a link between the toric cell complex and the

coamoeba from Futaki–Ueda [16] that would describe concretely the mirror Landau-Ginzburg

models for smooth toric Fano n-folds in the context of Homological Mirror Symmetry.

A direct application of the construction presented here can be made in the study of quiver

gauge theories with AdS/CFT gravity duals. As explained by Davey et. al. [13], dimer models

can be used to describe the gauge theories duals of a class of AdS/CFT backgrounds arising from

M2-branes placed at a conical Calabi-Yau fourfold. However, the real meaning of dimers in this

context is not yet clear. Developing the relationship between the quivers with superpotentials

obtained from our construction in dimension four and those arising from the dimer model will

hopefully lead to a deeper understanding of this problem.

We now describe the structure of the paper. Section 2 defines toric algebras and investigates

the geometry arising from labelled quivers of sections. The superpotential W and the notion of

consistency are presented in Section 3, leading to a proof of Theorem 1.1. Section 4 constructs

the toric cell complex ∆ and the resolution (1.2) in the motivating example of an abelian skew

group algebra. We prove in Section 5 that our superpotential coincides up to sign with the

superpotential for an algebraically consistent dimer model algebra, and we use this result to

construct ∆ and the resolution (1.2) in this case. This completes the proof of Theorem 1.2. We

present in Section 6 the fourfold example which explains why our superpotentials do not involve

signs and we conclude with the statement of the main conjecture.

Conventions Write k for an algebraically closed field, k× for the one-dimensional algebraic

torus over k, and N for the semigroup of nonnegative integers. We do not assume that toric

varieties are normal. We often write p± as shorthand for ‘p+ and p−’. Our pictures of cyclic

quivers are drawn ‘unwrapped’ to simplify the illustration, and we label each vertex to indicate

those vertices that must be identified to reproduce the cyclic quiver from the picture.

Acknowledgements. The first author benefited greatly from many conversations with Greg

Smith, particular during the MSRI programme in algebraic geometry in 2009. Thanks also to

Christian Haase, Akira Ishii, Alastair King, Sergey Mozgovoy, Jan Stienstra, Balázs Szendrői

and Michael Wemyss for useful comments and questions. Both authors are supported by EPSRC

grant EP/G004048.
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2. Toric algebras from a quiver of sections

This section introduces the noncommutative toric algebra associated to any collection of rank

one reflexive sheaves on a normal affine toric variety X. The labelled quivers that encode these

algebras also encode the action of an algebraic torus on an auxilliary toric variety, and variation

of the resulting GIT quotient produces partial resolutions of X. Our toric algebras generalise

slightly those from Broomhead [6] (compare also the notion of toric R-order from Bocklandt [4]).

2.1. Toric geometry. Let X = SpecR be a normal affine toric variety of dimension n with a

torus-invariant point. Let M denote the character lattice of the dense torus TM := Speck[M ]

in X, and write N := HomZ(M,Z) for the dual lattice. There is a strongly convex rational

polyhedral cone σ ⊂ N⊗ZR such that R = k[σ∨∩M ]. Write σ(1) for the set of one-dimensional

faces of σ, set d := |σ(1)|, and let vρ ∈ N denote the primitive lattice point on ρ ∈ σ(1). Each

ρ ∈ σ(1) determines an irreducible TM -invariant Weil divisor Dρ in X. These divisors generate

the lattice Zd of TM -invariant Weil divisors and the semigroup Nd of effective TM -invariant Weil

divisors. The map deg : Zd → Cl(X) sending D to the rank one reflexive sheaf OX(D) fits in

to the short exact sequence of abelian groups

(2.1) 0 −−−−→ M −−−−→ Zd
deg
−−−−→ Cl(X) −−−−→ 0,

where the injective map sends u to
∑

ρ∈σ(1)〈u, vρ〉Dρ. The Cox ring of X is the polynomial ring

k[xρ : ρ ∈ σ(1)] obtained as the semigroup algebra of Nd, and we have R ∼= k[Nd ∩ ker(deg)].

Since X is normal, every rank one reflexive sheaf on X is of the form OX(D) for some Weil

divisor D, and conversely. It follows that we may identify the Class group Cl(X) with the group

of rank one reflexive R-modules under tensor product.

2.2. Quivers of sections. Let Q be a finite connected quiver with vertex set Q0, arrow set Q1,

and maps h, t : Q1 → Q0 indicating the vertices at the head and tail of each arrow. A nontrivial

path in Q is a sequence of arrows p = ak · · · a1 with h(aj) = t(aj+1) for 1 ≤ j < k. We set

t(p) = t(a1), h(p) = h(ak) and supp(p) = {a1, . . . , ak}. A cycle is a path p with t(p) = h(p).

Each i ∈ Q0 gives a trivial path ei where t(ei) = h(ei) = i. The path algebra kQ is the k-algebra

whose underlying k-vector space has a basis of paths in Q, where the product of basis elements

is the basis element defined by concatenation of the paths if possible, or zero otherwise. Let

[kQ,kQ] denote the k-vector space spanned by all commutators in kQ, so kQcyc := kQ/[kQ,kQ]

has a basis of elements corresponding to cyclic paths in the quiver.

For r ≥ 0, consider a collection E := (E0, E1, . . . , Er) of distinct rank one reflexive sheaves

on the affine toric variety X. A TM -invariant section s ∈ H0(X,Ej ⊗ E
−1
i ) = Hom(Ei, Ej) is

irreducible if it does not factor through some Ek with k 6= i, j.

Definition 2.1. The quiver of sections of E is the finite quiver Q in which the vertex set

Q0 = {0, . . . , r} corresponds to the sheaves in E , and where the arrows from i to j correspond

to the irreducible sections in H0(X,Ej ⊗E
−1
i ).

For a ∈ Q1, write div(a) := div(s) ∈ Nd for the divisor of zeroes of the defining section

s ∈ H0(X,Ej⊗E
−1
i ) and, more generally, for any path p in Q we call div(p) :=

∑
a∈supp(p) div(a)

the label of p. The labelling monomial is xdiv(p) :=
∏
a∈supp(p) x

div(a) ∈ k[xρ : ρ ∈ σ(1)].
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Remark 2.2. (1) The quiverQ depends only on products of the form Ej⊗E
−1
i . In particular,

for any E′ ∈ Cl(X), the quiver of sections of E coincides with the quiver of sections of

E ′ = (E0 ⊗ E
′, . . . , Er ⊗ E

′). To eliminate this redundancy we assume E0 := OX .

(2) To construct Q in practice, compute for each pair i, j ∈ Q0 the vertices of the polyhedron

conv(Nd ∩ deg−1(Ej ⊗ E
−1
i )). These determine the TM -invariant R-module generators

of H0(X,Ej ⊗ E
−1
i ), and one obtains the arrow set of Q by computing the generators

that correspond to irreducible sections.

Definition 2.3. Consider the two-sided ideal

JE :=
(
p+ − p− ∈ kQ | h(p+) = h(p−), t(p+) = t(p−),div(p+) = div(p−)

)

in the path algebra kQ. The quotient AE := kQ/JE is the toric algebra of the collection E , and

the pair (Q,JE ) is the bound quiver of sections of the collection E . The phrase ‘bound quiver’

is a synonym for ‘quiver with relations’.

Lemma 2.4. For r ≥ 0 and for E = (E0, E1, . . . , Er), the quiver of sections Q of E is strongly

connected and AE
∼= EndR

(⊕
i∈Q0

Ei
)
. In particular, the centre Z(AE ) is isomorphic to R.

Proof. The top-dimensional cone σ∨ ⊂M ⊗ZR is obtained by slicing the cone Rd≥0 by ker(deg),

so there exists u ∈ σ∨∩M such that the lattice point
∑

ρ〈u, vρ〉Dρ lies in the interior of Rd≥0. For

each ρ ∈ σ(1), set µρ := 〈u, vρ〉 > 0. For i ∈ Q0, write Ei = OX(D) where D =
∑

ρ∈σ(1) λρDρ

and choose k, l ∈ Z satisfying kµρ ≤ λρ ≤ lµρ for all ρ ∈ σ(1). Then
∑

ρ∈σ(1)(lµρ − λρ)Dρ and∑
ρ(λρ−kµρ)Dρ are effective divisors, so both HomR(E0, Ei) and HomR(Ei, E0) are nonempty.

It follows that Q is strongly connected. The stated isomorphism of k-algebras follows as in the

proof of [12, Proposition 3.3]. To compute the centre, consider the k-linear map kQcyc → R

determined by sending a cycle p to the section xdiv(p). This map is surjective by construction of

Q. Since the centre of AE is generated by JE -equivalence classes of cycles in Q, the isomorphism

Z(AE )→ R follows after taking equivalence classes modulo JE . �

Example 2.5. For any X = Spec(R), the quiver of sections Q of the trivial collection E = (OX)

has one vertex. If X = Spec(k) then Q1 = ∅ and A ∼= k. Otherwise, Q has m loops where the

labelling divisors div(a1), . . . ,div(am) are the elements in the Hilbert basis of the semigroup

σ∨ ∩M . The k-algebra epimorphism kQ → R sending ai 7→ xdiv(ai) for 1 ≤ i ≤ m has kernel

JE , so the toric algebra AE is isomorphic to the coordinate ring R. In particular, coordinate

rings of normal affine toric varieties are toric algebras.

Example 2.6. Let σ be the cone in R3 generated by v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (−1, 1, 1),

v4 = (0,−1, 1), so σ is the cone over the lattice polygon shown in Figure 1(a). For 1 ≤ ρ ≤ 4,

write Dρ for the Weil divisor in X = Speck[σ∨ ∩ Z3] corresponding to the ray of σ generated

by vρ. The group Cl(X) is the quotient of the free abelian group generated by OX(D1) and

OX(D4), by the subgroup generated by OX(D1 + 2D4). The quiver of sections Q of E =(
OX ,OX (D1),OX(D4),OX (D1+D4)

)
is the cyclic quiver from Figure 1(b); the quiver is shown

in Z2, but OX ∼ OX(D1 + 2D4). For a ∈ Q1 we have xdiv(a) ∈ k[x1, x2, x3, x4], and

JE =

(
a6a3 − a5a1, a7a3 − a5a2, a7a4a1 − a6a4a2, a3a9 − a4a1a8, a3a10 − a4a2a8
a2a9 − a1a10, a1a8a7 − a2a8a6, a9a7 − a10a6, a8a6a4 − a9a5, a10a5 − a8a7a4

)
.

defines the noncommutative toric algebra AE = kQ/JE .
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Figure 1. A quiver of sections for a collection

2.3. Polyhedral geometry. The characteristic functions χi : Q0 → Z and χa : Q1 → Z for

i ∈ Q0 and a ∈ Q1 form the standard integral bases of the vertex space ZQ0 and the arrow space

ZQ1 respectively. The incidence map inc: ZQ1 → ZQ0 defined by setting inc(χa) = χh(a) − χt(a)

has image equal to the sublattice Wt(Q) ⊂ ZQ0 of functions θ : Q0 → Z satisfying
∑

i∈Q0
θi = 0.

Generalising [10, Definition 3.2] (compare also [12]), we define

π := (inc,div) : ZQ1 →Wt(Q)⊕ Zd

to be the Z-linear map sending χa to
(
χh(a)−χt(a),div(a)

)
for a ∈ Q1. Let Z(Q) and N(Q) denote

the image under π of the lattice ZQ1 and the subsemigroup NQ1 respectively, and write k[Z(Q)]

and k[N(Q)] for the semigroup algebras. Let π1 : Z(Q)→Wt(Q) and π2 : Z(Q)→ Zd denote the

first and second projections respectively, and define a group homomorphism ν : Wt(Q)→ Cl(X)

by setting ν(χi) = Ei for all i ∈ Q0.

Lemma 2.7. There is a commutative diagram of abelian groups

(2.2)

0 −−−−→ M −−−−→ Z(Q)
π1−−−−→ Wt(Q) −−−−→ 0

∥∥∥ π2

y ν

y

0 −−−−→ M −−−−→ Zd
deg
−−−−→ Cl(X) −−−−→ 0

where π2 identifies the subsemigroup N(Q)∩ker(π1) with σ
∨∩M = Nd∩ker(deg). In particular,

the rank of the lattice Z(Q) is n+ r.

Proof. The right-hand square commutes and the bottom row is exact, so it enough to prove that

π2 yields a Z-linear isomorphism ker(π1) ∼=M which restricts to an isomorphism of semigroups

N(Q)∩ker(π1) ∼= Nd∩ker(deg). The proof of [10, Proposition 4.1] generalises to our setting. �

Remark 2.8. The semigroup N(Q) need not be saturated, see Remark 4.3.

Consider the commutative diagram

(2.3)

0 ←−−−− N
ψ∗

←−−−− Z(Q)∨ ←−−−− Wt(Q)∨ ←−−−− 0
∥∥∥ π∗

2

x
x

0 ←−−−− N
ι∗

←−−−− Zd ←−−−− Cl(X)∨ ←−−−− 0
6



dual to (2.2). Let {χρ | ρ ∈ σ(1)} the standard basis of Zd. For each ρ ∈ σ(1), the image of

χρ under the map ι∗ : Zd → N is the primitive generator vρ ∈ ρ, so the image of the positive

orthant {
∑

ρ cρχρ | cρ ≥ 0} under the linear map ι∗ ⊗Z R : Rd → N ⊗Z R is the cone σ. To

establish a similar statement for the top row of (2.3), consider the convex polyhedral cone

C :=
{
v ∈ Z(Q)∨ ⊗Z R | 〈u, v〉 ≥ 0 for all u ∈ N(Q)

}
.

Lemma 2.9. The image of C under ψ∗ : Z(Q)∨ ⊗Z R→ N ⊗Z R is the cone σ.

Proof. Lemma 2.7 shows that π2 identifies the semigroup N(Q) ∩ ker(π1) with σ
∨ ∩M , so the

R-linear extension of π2 identifies the slice C ∩ ker(π1) with the cone σ∨. The result is now

immediate from Craw–Maclagan [9, Corollary 2.10]. �

The semigroup N(Q) is generated by the vectors π(χa) ∈ Z(Q) arising from arrows a ∈ Q1,

so C = {v ∈ Z(Q)∨ ⊗Z R | 〈v, π(χa)〉 ≥ 0 for all a ∈ Q1}. For any face Π of C, let relint(Π)

denote that relative interior of Π and define the support of Π to be

supp(Π) :=
{
a ∈ Q1 | 〈v, π(χa)〉 > 0 for all v ∈ relint(Π)

}
.

To explain the geometric significance of the support, note that the toric variety Speck[C∨∩Z(Q)]

is the normalisation of Speck[N(Q)] because C∨∩Z(Q) is the saturation of N(Q). As is standard

in toric geometry, a face Π of C defines the torus-orbit closure in Speck[N(Q)] parametrising

points (wa) ∈ Speck[N(Q)] ⊆ A
Q1

k whose coordinates satisfy wa = 0 if and only if a ∈ supp(Π).

Definition 2.10. A perfect matching Π of Q is the primitive lattice point on a one-dimensional

face of the cone C. We also refer to the face itself, or even to the set of arrows supp(Π), as the

perfect matching. A perfect matching Π is extremal if ψ∗(Π) = vρ for some ρ ∈ σ(1).

The terminology ‘perfect matching’ is taken from the special case where the algebra A arises

from a dimer model as described in Section 5.

Proposition 2.11. For ρ ∈ σ(1), the vector Πρ := π∗2(χρ) is an extremal perfect matching of

Q. In addition, for every a ∈ Q1 we have

(2.4) a ∈ supp(Πρ) ⇐⇒ xρ divides xdiv(a).

Proof. We begin by proving the second statement. An arrow a in Q lies in supp(Πρ) if and only

if 〈Πρ, π(χa)〉 > 0. Since Πρ := π∗2(χρ), we have

(2.5)
〈
Πρ, π(χa)

〉
=
〈
χρ, π2(π(χa))

〉
=
〈
χρ,div(a)

〉
,

and this is positive if and only if xρ divides xdiv(a).

For the first statement, note that div(a) ∈ Nd for all a ∈ Q1 and hence
〈
Πρ, π(χa)

〉
≥ 0 by

(2.5). It follows that Πρ ∈ C. Commutativity of diagram (2.3) shows that ψ∗(Πρ) is equal to

the primitive lattice point vρ in ρ, so Πρ is a primitive lattice point in some face of C that we

also denote Πρ. To deduce that Πρ is an extremal perfect matching it remains to show that the

face Πρ has dimension one or, equivalently, that the dual face F in C∨ has dimension n+ r− 1.

The identification of N(Q)∩ker(π1) with σ
∨∩M from Lemma 2.7 and saturatedness of σ∨∩M

enables us to identify C∨ ∩ ker(π1) with σ∨ ∩M . The face Fρ of σ∨ dual to the cone ρ has

dimension n− 1, and hence [9, Lemma 2.5] gives Fρ = F ∩ ker(π1). We claim that F intersects

ker(π1) transversely, so F has dimension n−1+ r as required. To prove the claim, it suffices by
7



Thaddeus [27, Lemma 3.3] to show that F is 0-stable or, equivalently, that the quiver Q′ with

vertex set Q0 and arrow set Q1 \ supp(Πρ) is strongly connected. In light of (2.4), this quiver is

obtained from Q by deleting each a ∈ Q1 for which xρ divides xdiv(a). It follows that Q′ is the

quiver of sections on the affine toric variety Dρ defined by the collection E ′ = (Ei|Dρ : i ∈ Q0).

Lemma 2.4 implies that Q′ is strongly connected. �

Remark 2.12. Together with the multiplicities from (2.5), Proposition 2.11 records the fact that

extremal perfect matchings encode the labels in a quiver of sections.

2.4. Variation of GIT quotient. The incidence map of Q determines a Wt(Q)-grading of

the polynomial ring k[ya : a ∈ Q1] obtained as the semigroup algebra of NQ1. The algebraic

torus T := Hom(Wt(Q),k×) of rank r then acts on the affine space A
Q1

k := Speck[NQ1], where

for (ti) ∈ T and (wa) ∈ A
Q1

k we have

(2.6) (t · w)a = t
h(a)wat

−1
t(a).

For any weight θ ∈ Wt(Q), let k[NQ1]θ denote the θ-graded piece of the coordinate ring of

A
Q1

k . The GIT quotient AQ1

k //θT = Proj(
⊕

j≥0 k[N
Q1 ]jθ) is the categorical quotient of the open

subscheme of θ-semistable points in A
Q1

k by the action of T . We say that a weight θ ∈Wt(Q)

is generic if every θ-semistable point of AQ1

k is θ-stable, in which case, AQ1

k //θT is the geometric

quotient of the open subscheme of θ-stable points in A
Q1

k by T .

The map π induces a surjective map of semigroup algebras π∗ : k[N
Q1]→ k[N(Q)] with kernel

(2.7) IE :=
(
yu − yv ∈ k[NQ1] | u− v ∈ ker(π)

)

that cuts out the affine toric subvariety V(IE ) of A
Q1

k . The incidence map factors through N(Q)

to define a Wt(Q)-grading on k[N(Q)], so the T -action on A
Q1

k restricts to an action on V(IE ).

For θ ∈Wt(Q), let k[N(Q)]θ denote the θ-graded piece and write

Yθ := V(IE )//θT = Proj
(⊕

j≥0

k[N(Q)]jθ

)

for the categorical quotient of the open subset of θ-semistable points in V(IE ).

Proposition 2.13. For any θ ∈ Wt(Q), the toric variety Yθ = V(IE )//θT admits a projective

birational morphism τθ : Yθ −→ X = SpecR obtained by variation of GIT quotient.

Proof. Lemma 2.7 implies that R = k[Nd ∩ ker(deg)] ∼= k[N(Q) ∩ ker(π1)] = k[N(Q)]T , so the

variety X is isomorphic to Y0 = Speck[N(Q)]T . Variation of GIT quotient gives the projective

morphism τθ : Yθ → Y0, and it remains to show that τθ is birational. Each θ-semiinvariant

monomial in k[NQ1 ] is nowhere zero on the dense torus Speck[Z(Q)] of V(IE ) because the

coordinate entries of every such point are all nonzero under the embedding of Spec(k[Z(Q)]) in

the dense torus of AQ1

k . It follows that every point of Speck[Z(Q)] is θ-semistable. Since every

point of Speck[Z(Q)] is also 0-semistable, we deduce that the dense torus Speck[Z(Q)]//θT of

Yθ is isomorphic to the dense torus Speck[Z(Q)]T of Y0. �

The morphism τθ : Yθ → X provides a resolution of singularities precisely when Yθ is smooth.

Note however that Yθ need not even be normal, see Remark 4.3.
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3. Consistency for superpotential algebras

This section introduces the superpotential W and the superpotential algebra AW of a quiver

of sections Q on X. This algebra need not be isomorphic to the toric algebra, but when it is

we say that the toric algebra is consistent. This implies in particular that the toric variety Yθ
for generic θ is the coherent component of a fine moduli spaceMθ of θ-stable AW -modules.

3.1. Superpotential from anticanonical cycles. Assume from now on that X is Gorenstein,

so (1, . . . , 1) ∈ Zd lies in the sublattice M and hence
∑

ρ∈σ(1)Dρ is linearly equivalent to zero,

giving ωX ∼= OX . The primitive lattice point vρ ∈ N on each ray in σ lies in an affine hyperplane

in N ⊗Z R, and σ is the cone over the convex polytope P = conv(vρ | ρ ∈ σ(1)). For r ≥ 0, let

E := (OX , E1, . . . , Er) be a collection of distinct rank one reflexive sheaves on X with quiver of

sections Q. The anticanonical divisor
∑

ρ∈σ(1)Dρ, or equivalently the monomial
∏
ρ∈σ(1) xρ in

the Cox ring of X, singles out a preferred set of cycles in Q as follows.

Definition 3.1. A cycle p in Q is an anticanonical cycle if xdiv(p) =
∏
ρ∈σ(1) xρ. Let Cac(Q)

denote the set of anticanonical cycles. The superpotential of the collection E is the formal sum

of cycles W :=
∑

p∈Cac(Q) p ∈ kQcyc.

Given paths p, q in Q, the partial (left) derivative of q with respect to p is

∂qp :=

{
r if p = rq;

0 otherwise.

Extending by k-linearity enables us to take the partial derivative of any element of kQ. Define

the partial derivative of the superpotential by setting ∂qW := ∂q(eh(q)Weh(q)) for any path q.

The expression ∂qW is simply the sum of all paths p in Q with tail at vertex h(q), head at

vertex t(q) and labelling monomial xdiv(p) = x1x2 · · · xd/x
div(q). For example, ∂eiW is the sum

of all anticanonical cycles that pass through vertex i ∈ Q0. Consider now the set of paths

P :=

{
q in Q

∣∣∣∣
∂qW is the sum of precisely two paths

that share neither initial nor final arrow

}
.

The condition that both summands of ∂qW share neither initial nor final arrow ensures that

neither ∂aqW nor ∂qaW is the sum of precisely two paths for a ∈ Q1.

Definition 3.2. The ideal of superpotential relations is the two-sided ideal in kQ given by

JW :=
(
p+ − p− ∈ kQ | ∃ q ∈P such that ∂qW = p+ + p−

)
.

The superpotential algebra of E is AW := kQ/JW . Two paths p± in Q are F-term equivalent if

there is a finite sequence of paths p+ = p0, p1, . . . , pk+1 = p− in Q such that for every 0 ≤ j ≤ k

we have pj − pj+1 = q1(p
+ − p−)q2 for paths q1, q2 in Q and some relation p+ − p− ∈ JW .

Remark 3.3. (1) It is sometimes possible to introduce signs inW so that the relevant partial

derivatives of W reproduce precisely the generators of JW . Indeed, this is part of the

defining data for dimer model algebras, and it is demonstrated for skew group algebras

by Bocklandt–Schedler–Wemyss [5]. However, we present in Section 6 a relatively simple

example in dimension four for which this cannot be done.

(2) The F-term equivalence classes of paths form a k-vector space basis for AW .
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For each generator p+− p− of JW , the paths p± share the same head, tail and label so JW is

contained in the ideal JE . If this inclusion is equality then the toric algebra AE is isomorphic

to the superpotential algebra AW . However, this need not be the case as we now illustrate.

Example 3.4. We consider three collections on the threefold X from Example 2.6:

(i) For the collection E from Example 2.6, the quiver of sections from Figure 1(b), contains

six cycles p with div(p) = x1x2x3x4, giving

W = a8a7a4a1 + a8a6a4a2 + a9a5a2 + a9a7a3 + a10a6a3 + a10a5a1.

It is easy to check that JW equals the ideal JE from Example 2.6, so AW ∼= AE .

(ii) The quiver of sections of E ′ =
(
OX ,OX(D1),OX (D4)

)
and the list of arrows are both

shown in Figure 2(a). We have W = a9a3+a7a4a1+a6a4a2, but in this case AW 6∼= AE ′

because a6a3 − a5a1 ∈ JE ′ \ JW .
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x24
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(a) Quiver of sections for E
′
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(b) Quiver of sections for E
′′

Figure 2

(iii) The quiver of sections of E ′′ =
(
OX ,OX(D1),OX (D4),OX (D1 + D4),OX(2D4)

)
and

the list of arrows are both shown in Figure 2(b). The superpotential is

W = a10a7a4a1 + a10a6a4a2 + a11a8a4a2 + a11a9a5a2

+ a11a9a7a3 + a12a8a4a1 + a12a9a6a3 + a12a9a5a1,

and the superpotential algebra AW is isomorphic to the toric algebra AE ′′ since

JW =

(
a5a1 − a6a3, a7a4a1 − a6a4a2, a5a2 − a7a3, a10a6 − a11a8

a12a9a6 − a11a9a7, a10a7 − a12a8, a8a4 − a9a5

)
= JE ′′ .

3.2. Consistency. The following notion is adapted from that of algebraic consistency given by

Broomhead [6] for algebras that arise from superpotentials in a dimer model (see Section 5).

Definition 3.5. A collection E of rank one reflexive sheaves that encodes a superpotentialW is

consistent if the algebras AE and AW are isomorphic. In this case, we say that AE is consistent,

and write A for brevity if the collection E is clear from the context.

We begin our study of consistent toric algebras by establishing an important property of the

labels on arrows.

Proposition 3.6. If A is consistent then xdiv(a) divides
∏
ρ∈σ(1) xρ for every a ∈ Q1.
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Proof. For a ∈ Q1, Lemma 2.4 implies that et(a)Aet(a) ∼= R. We consider two cases. Suppose

first that there exists b ∈ Q1 \ {a} with t(b) = t(a). Since Q is strongly connected, there exist

paths p, q in Q so that the compositions pa and qb are cycles in Q beginning at vertex t(a).

Composing in two ways defines cycles paqb and qbpa with the same head, tail and divisor, so

paqb− qbpa ∈ JE . Consistency forces JE = JW , so paqb and qbpa are F-term equivalent. Since

b 6= a, there must be a relation p+ − p− ∈ JW with t(p±) = t(a) for which a lies in the support

of one of p±. Every such relation is obtained as a partial derivative of W , so xdiv(a) divides∏
ρ∈σ(1) xρ as required. Suppose otherwise, so there does not exist b ∈ Q1 \{a} with t(b) = t(a).

Then every cycle in Q from t(a) traverses arrow a and hence for every element u in the Hilbert

basis of σ∨ ∩M , the corresponding monomial xu ∈ R is divisible by xdiv(a). The monomial∏
ρ∈σ(1) xρ is a product of such monomials, so xdiv(a) divides

∏
ρ∈σ(1) xρ as required. �

Corollary 3.7. If A is consistent then every arrow in Q arises in an anticanonical cycle and

hence in a term of the superpotential W .

We reinterpret this result by lifting Q to anM -periodic quiver in Rd using the sequence (2.1).

The covering quiver Q̃ is the quiver with vertex set Q̃0 =
⊕

i∈Q0
deg−1(Ei), and with arrow set

comprising an arrow ã from each u ∈ deg−1(Ei) to u + div(a) ∈ deg−1(Ej) for every a ∈ Q1

from i to j. The label of ã in Q̃1 is the vector div(ã) := h(ã)− t(ã) = div(a) ∈ Nd.

Remark 3.8. The quiver Q can be recovered from Q̃ by taking the quotient by the action of M .

The given embedding of Q̃ in Rd = Zd ⊗Z R induces an embedding of Q in Rd/M .

We now lift the anticanonical cycles from Q ⊂ Rd/M to Q̃ ⊂ Rd. For each u ∈ Q̃0, let p

be an anticanonical cycle in Q that passes through vertex i := deg(u) ∈ Q0. An anticanonical

path from u covering p is any path p̃u in Q̃ from u to u + (1, . . . , 1) ∈ deg−1(Ei) whose image

in Rd/M is the cycle p in Q. For u, u′ ∈ deg−1(Ei), the anticanonical paths from u differ only

by translation from the anticanonical paths from u′, so we need only study paths from one such

vertex. For this, pick a fundamental region in Rd for the action of M by choosing a spanning

tree in Q, and lift to a connected tree in Q̃. Each i ∈ Q0 then has a preferred lift ui ∈ deg−1(Ei).

Definition 3.9. For i ∈ Q0, let Q̃(i) be the quiver in Rd with vertex set

Q̃0(i) :=
{
v ∈ Q̃0 | ∃ anticanonical path p̃ui that touches v

}

and arrow set

Q̃1(i) :=
{
a ∈ Q̃1 | ∃ anticanonical path p̃ui that traverses a

}
.

Remark 3.10. (1) An anticanonical cycle that passes through a vertex more than once gives

rise to more than one anticanonical path in a given quiver Q̃(i), see Examples 3.11-3.12.

(2) Since we lift only anticanonical cycles, the vertex set Q̃0(i) is a subset of the set of vertices

of the unit hypercube C(ui) := {ui + (λ1, . . . , λd) ∈ Rd | 0 ≤ λj ≤ 1 for 1 ≤ j ≤ d}.

Example 3.11. The quiver of sections Q for the trivial collection E = (OX ) on X = Ank has

one vertex and n loops labelled x1, . . . , xn. There are (n − 1)! anticanonical cycles, and each

lifts to n anticanonical paths that emanate from each vertex u ∈ Zn. The support of the quiver

Q̃(i) in Rn is precisely the support of the set of edges of the unit cube C(u0).
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Example 3.12. For the conifold X = Speck[x1, x2, x3, x4]/(x1x2−x3x4), the quiver of sections

Q from Figure 3(a) defines the consistent toric algebra A studied by Szendrői [24, Figure 1].

The edges of the unit 4-cube C(u0) are shown in grey in Figure 3(b), where the vertices u0
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Figure 3. (a) Quiver of sections; (b) unit 4-cube C(u0) in R4 containing Q̃(0).

and u0 + (1, 1, 1, 1) are labelled 0 at the bottom and top of the figure respectively. The four

anticanonical paths from u0 which cover the pair of anticanonical cycles in Q define the quiver

Q̃(0) whose vertices and arrows are shown in black in Figure 3(b). The quiver Q̃(1) is similar.

Corollary 3.13. If A is consistent then the vertex set and arrow set of Q̃ ⊂ Rd coincides with

the M -translates in Rd of the vertex set and arrow set of
⋃
i∈Q0

Q̃(i).

Proof. This is little more than a restatement of Corollary 3.7. �

3.3. Moduli of quiver representations. A walk γ in Q is an alternating sequence ilal · · · a1i1
of vertices i1, . . . , il and arrows a1, . . . , al where ak is an arrow between ik and ik+1. A walk γ

is closed if i1 = il. If t(ak) = ik and h(ak) = ik+1 then ak is a forward arrow in γ; otherwise

t(ak) = ik+1, h(ak) = ik and ak is a backward arrow. If p is a path in Q then p−1 denotes the walk

from h(p) to t(p) that traverses backwards each arrow from the support of p. For a walk γ in Q

and for a ∈ Q1, let multγ(a) ∈ Z be the number of times a appears as a forward arrow in γ minus

the number of times it appears as a backwards arrow. Set v(γ) :=
∑

a∈Q1
multγ(a)χa ∈ ZQ1.

Consider the abelian group

Λ = ZQ1/
(
v(p+)− v(p−) ∈ ZQ1 | ∃ q ∈P such that ∂qW = p+ + p−

)

and the quotient map wt: ZQ1 → Λ. Define the semigroup Λ+ := wt(NQ1).

Lemma 3.14. If A is consistent then the maps π : ZQ1 → Z(Q) and wt: ZQ1 → Λ coincide. In

particular, A is graded by the semigroup Λ+ = N(Q).

Proof. It suffices to prove that ker(π) = L :=
(
v(p+) − v(p−) ∈ ZQ1 : p+ − p− ∈ JW

)
. For

p+ − p− ∈ JW , the paths p± share the same head, tail and divisor, so v(p+) − v(p−) ∈ ker(π).

For the opposite inclusion, consider v ∈ ker(π). Since π = (inc,div) there is a closed walk γ in

Q with v(γ) ∈ ker(div). We now use an ‘elongation’ operation to replace γ by a more convenient

closed walk γ′ satisfying v(γ′) ∈ ker(div). First, write γ as a sequence α1α
−1
2 α3 · · ·α2ℓ−1α

−1
2ℓ

that alternates between paths α2i−1 (1 ≤ i ≤ ℓ) comprising forward arrows, and walks α−12i
12



(1 ≤ i ≤ ℓ) comprising backward arrows. For 1 ≤ i ≤ ℓ, choose a path β2i−1 from h(α2i−1) to

0 ∈ Q0 and a path β2i from 0 ∈ Q0 to t(α2i). For β0 = β2ℓ, consider

β0α1β1β
−1
1 α−12 β−12 β2α3β3β

−1
3 · · ·α

−1
2ℓ β

−1
2ℓ .

Each composition p2i+1 := β2iα2i+1β2i+1 is a cycle from 0, while each p−12i := β−12i−1α
−1
2i β

−1
2i

is a closed walk from 0 comprising backwards arrows. Set γ′ = p1p3 · · · p2ℓ−1p
−1
2ℓ p
−1
2ℓ−2 . . . p

−1
2 .

Since v(γ′) = v(γ) = v ∈ ker(π), the cycles γ′+ := p1p3 · · · p2ℓ−1 and γ′− := p2p4 . . . p2ℓ share

the same divisor and hence determine the same element in AE . Since AE is consistent, the

cycles γ′± determine the same element in AW so they are F-term equivalent. Thus, there exists

a finite sequence of cycles γ′+ = γ0, γ1, · · · , γk+1 = γ′− such that for each 0 ≤ j ≤ k, we have

γj − γj+1 = q1(p
+ − p−)q2 for some relation p+ − p− ∈ JW and paths q1, q2 in Q. Expand

v = v(γ′) = v(γ′+)− v(γ
′
−) =

∑

0≤j≤k

(
v(γj)− v(γj+1)

)
.

The first statement follows as v(γj)− v(γj+1) ∈ L for 0 ≤ j ≤ k. The second statement follows

immediately from the first by setting deg(p) = π(v(p)) ∈ N(Q) for any path p in Q. �

To uncover the geometry encoded in a consistent toric algebra we construct fine moduli spaces

of quiver representations. For a path p in Q define yp :=
∏
a∈supp(p) ya ∈ k[NQ1 ] and

IW :=
(
yp+ − yp− ∈ k[NQ1 ] | p+ − p− ∈ JW

)
.

This ideal is homogeneous in the Wt(Q)-grading, so the subscheme V(IW ) ⊆ A
Q1

k cut out by

IW is invariant under the T -action from (2.6). For generic θ ∈Wt(Q), the GIT quotient

Mθ := V(IW )//θT = Proj
(⊕

j≥0

(
k[NQ1 ]/IW )jθ

)

is the geometric quotient of the open subscheme of θ-stable points of V(IW ) by the action

of T . Following King [19], Mθ is the fine moduli space of isomorphism classes of θ-stable

representations of Q with dimension vector (1, 1, . . . , 1) ∈ NQ0 that satisfy the relations JW .

If a strictly θ-semistable representation does exist, the resulting categorical quotient Mθ :=

V(IW )//θT is merely the coarse moduli space parametrising S-equivalence classes of θ-semistable

representations with dimension vector (1, 1, . . . , 1) that satisfy JW .

Theorem 3.15. Let A be consistent. For generic θ ∈Wt(Q) there is a commutative diagram

Yθ −−−−→ Mθ

τθ

y
y

X −−−−→ M0

where the horizontal maps are closed immersions and the vertical maps are projective morphisms

arising from variation of GIT quotient. Moreover, the toric variety Yθ is the unique irreducible

component of Mθ containing the T -orbit closures of points of V(IW ) ∩ (k×)Q1 .

Remark 3.16. For generic θ ∈Wt(Q), we call Yθ the coherent component ofMθ.

Proof. To construct the diagram, note that for each p+−p− ∈ JW , the paths p± share head, tail

and divisor, so IW ⊆ IE . Therefore Yθ ⊆Mθ for all θ ∈Wt(Q) which gives the lower horizontal

map, and the top map follows sinceMθ =Mθ for θ generic. The vertical maps of the diagram
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are well known. Lemma 3.14 shows that the vectors {v(p+)− v(p−) ∈ ZQ1} generate the lattice

ker(π). The proof of [10, Theorem 3.10] applies verbatim to show that V(IE ) is the unique

irreducible component of V(IW ) that does not lie in any coordinate hyperplane of AQ1

k . The

proof of the final statement now follows precisely as in [10, Theorem 4.3(ii)]. �

Remark 3.17. The category of finite dimensional representations satisfying the relations JW is

equivalent to the category mod(AW ) of finite dimensional left AW -modules. For V =
⊕

i∈Q0
kei,

this equivalence takes representations of dimension vector (1, 1, . . . , 1) ∈ NQ0 to AW -modules

that are isomorphic as a V -module to V . For a consistent algebra A and for generic θ ∈Wt(Q),

Lemma 2.4 then implies thatMθ is the fine moduli space of θ-stable EndR
(⊕

i∈Q0
Ei
)
-modules

that are isomorphic as a V -module to V (see King [19] for the notion of θ-stability for modules).

4. Cellular resolution for abelian skew group algebras

This section realises the skew group algebra arising from a finite abelian subgroup of GL(n,k)

as a consistent toric algebra. The geometry encoded by this toric algebra specialises to geometry

that arises in the study of the McKay correspondence. The main result introduces the toric cell

complex for the skew group algebra and constructs the cellular resolution in this case.

4.1. The McKay quiver of sections. Let G be a finite abelian group of GL(n,k) containing

no quasireflections, where k is a field of characteristic not dividing the order of G. We may

assume that G is contained in the subgroup (k×)n of diagonal matrices with nonzero entries

in GL(n,k). Setting ρi(g) to be the ith diagonal element of the matrix g defines n elements

ρ1, . . . , ρn of the character group G∗ = Hom(G,k×). The McKay quiver of G ⊂ GL(n,k) is the

quiver Q with vertex set G∗, and an arrow aρi from ρρi to ρ for each ρ ∈ G∗ and 1 ≤ i ≤ n.

The dual action of G on the coordinate ring k[x1, . . . , xn] of A
n
k defines a G∗-grading with

deg(xi) = ρi, and the G-invariant subalgebra R = k[x1, . . . , xn]
G defines the normal affine toric

variety X = SpecR = Ank/G. Since G contains no quasireflections, the map assigning to each

ρ ∈ G∗ the reflexive R-module Eρ spanned over k by semi-invariant polynomials of degree ρ

defines an isomorphism Cl(X) ∼= G∗. The quiver of sections of the collection

(4.1) E = (Eρ | ρ ∈ G
∗).

on X coincides with the McKay quiver of G ⊂ GL(n,k), and the labelling monomial of each

arrow aρi is xdiv(a
ρ
i ) = xi. It follows that the ideal of relations JE is generated by elements of

the form a
ρρj
i aρj − a

ρρi
j aρi with ρ ∈ G∗ and 1 ≤ i, j ≤ n. Apply [11, Proposition 2.8] to obtain:

Lemma 4.1. The toric algebra AE is isomorphic to the skew group algebra k[x1, . . . , xn] ∗G.

Assume now that G ⊂ SL(n,k), so X is Gorenstein. Every anticanonical cycle in Q traverses

precisely n arrows, one with each labelling monomial xi for 1 ≤ i ≤ n, and without loss of

generality we choose the final arrow of any such cycle to have labelling monomial xn and head

at vertex ρ ∈ G∗. Thus, every anticanonical cycle can be written uniquely in the form

aρna
ρρσ(n−1)

σ(n−1) · · · a
ρρσ(2)···ρσ(n−1)

σ(2) a
ρρσ(1)···ρσ(n−1)

σ(1)

for some ρ ∈ G∗ and some permutation σ on n− 1 letters, so the superpotential for E is

(4.2) W =
∑

ρ∈G∗

∑

σ∈Sn−1

aρna
ρρσ(n−1)

σ(n−1) · · · a
ρρσ(2)···ρσ(n−1)

σ(2) a
ρρσ(1)···ρσ(n−1)

σ(1) ∈ kQcyc,
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where Sn−1 is the set of permutations on n− 1 letters. It is straightforward to verify that the

ideal of superpotential relations JW coincides with JE , so we obtain the following result.

Proposition 4.2. The toric algebra AE is consistent.

Remark 4.3. (1) The superpotential Φ for the McKay quiver of G ⊂ SL(n,k) introduced by

Bocklandt–Schedler–Wemyss [5, §4] counts every anticanonical cycle precisely n times.

Thus, ignoring the sign of each term, the superpotential W from (4.2) equals 1
n
Φ.

(2) Craw–Maclagan–Thomas [10] introduce the coherent component Yθ of the fine moduli

space Mθ of θ-stable McKay quiver representations. For Mθ = G -Hilb, this recovers

Nakamura’s irreducible version Yθ = HilbG. Thus, for the subgroup G ⊂ GL(6,k) of

order 625 from [11, Example 5.7], the coherent component HilbG and the variety V(IQ)

are not normal. In particular, the semigroup N(Q) defining V(IQ) need not be saturated.

4.2. The toric cell complex. A cell in a topological space is a subspace that is homeomorphic

to the closed k-dimensional ball Bk = {x ∈ Rk | ‖x‖ ≤ 1} for some k ∈ N. We use the term

k-cell when we wish to make explicit the dimension of the cell. A finite regular cell complex ∆

is a finite collection of cells in a Hausdorff topological space |∆| :=
⋃
η∈∆ η such that we have

each of the following: (i) ∅ ∈ ∆; (ii) the interiors of the nonempty cells partition |∆|; and (iii)

the boundary of any cell in ∆ is a union of cells in ∆. Denote by ∆k the set of k-cells in ∆.

The faces of a cell η ∈ ∆ are the cells η′ satisfying η′ ⊂ η, and facets of a cell are faces of

codimension-one. The prototypical example of a finite regular cell complex is the set of faces

of a convex polytope. Note that our cells are the closures of the open cells in the regular cell

complexes described in Bruns–Herzog [7, §6.2].

The most important property of a regular cell complex for this article is the existence of an

incidence function ε : ∆×∆→ {0,±1}. To state the definition, recall from [7, §6.2] that regular

cell complexes satisfy the following property:

(4.3)

{
If η ∈ ∆k and η′′ ∈ ∆k−2 is a face of η, there exist precisely two cells

η′1, η
′
2 ∈ ∆k−1 such that η′j is a face of η and η′′ is a face of η′j for j = 1, 2.

An incidence function on ∆ is a function ε : ∆×∆ −→ {0,±1} such that ε(η, η′) = 0 unless η′

is a facet of η, that ε(η, ∅) = 1 for all 0-cells η and, moreover, that if η ∈ ∆k and η′′ ∈ ∆k−2 is

a face of η, then for the cells η′1, η
′
2 ∈ ∆k−1 from (4.3) we have

(4.4) ε(η, η′1)ε(η
′
1, η
′′) + ε(η, η′2)ε(η

′
2, η
′′) = 0.

Every regular cell complex ∆ admits an incidence function, and any two such differ by the

choice of orientation of each cell, see Bruns–Herzog [7, Lemma 6.2.1, Theorem 6.2.2].

We now associate a regular cell complex ∆ to the consistent collection E from (4.1) on the

Gorenstein quotient X = Ank/G for a finite abelian subgroup G ⊂ SL(n,k) of order r + 1. Let

{χi | 1 ≤ i ≤ n} denote the standard basis of Zn. The short exact sequence (2.1) for X is

(4.5) 0 −−−−→ M −−−−→ Zn
deg
−−−−→ G∗ −−−−→ 0,

where deg(χi) = ρi. The covering quiver Q̃ ⊂ Rn of the McKay quiver Q has vertex set Q̃0 = Zn,

and for each u ∈ Zn there is an arrow from u to u + χi for 1 ≤ i ≤ n. Each arrow in Q̃ is

supported on an edge of a unit hypercube C(u) ⊂ Rn. Remark 3.8 shows that the image of Q̃
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under the natural projection to the real n-torus Rn → Tn := Rn/M defines an embedding of

the McKay quiver Q in Tn, so each arrow of Q with tail at vertex ρ ∈ G∗ is supported on an

edge of the image of an n-cell C(u) in Tn for some u ∈ deg−1(ρ). We let ∆(ρ) denote the set

of all cells in Tn obtained as the image of a face of the hypercube C(u) for some u ∈ deg−1(ρ).

The union ∆ :=
⋃
ρ∈G∗ ∆(ρ) is a regular cell complex in Tn comprising all cells obtained as the

projection to Tn of the faces of the r + 1 hypercubes ∆(ρ) ⊂ Rn for ρ ∈ G∗.

Definition 4.4. The toric cell complex for the McKay quiver Q is the finite regular cell complex

∆ in Tn. We also refer to ∆ as the toric cell complex of the subgroup G ⊂ SL(n,k) or,

equivalently, of the collection E from (4.1).

Lemma 4.5. There are canonical bijections between ∆0 and Q0, between ∆1 and Q1, and

between ∆2 and the set {a
ρρj
i aρj − a

ρρi
j aρi | ρ ∈ G

∗, 1 ≤ i < j ≤ n} of minimal generators of JE .

Proof. The bijections for ∆0 and ∆1 are described in the construction of ∆ above. As for the

final bijection, the closed walk in Q obtained by first traversing the path a
ρρj
i aρj with orientation

and then traversing the path aρρij aρi against orientation lifts to a closed walk in Q̃ that traverses

the boundary of a 2-dimensional face F of the cube C(u) for each u ∈ deg−1(ρ′) with ρ′ = ρρiρj.

The arrows in the boundary of the resulting 2-cell η ∈ ∆ are precisely the arrows in the relation

a
ρρj
i aρj − a

ρρi
j aρi . Conversely, every 2-cell arises from a unique relation in this way. �

Every cell η ∈ ∆ is the image in Tn of a face F ⊂ C(u) where u ∈ Zn. Write uh and ut for

the vertices of F that intersect the family of affine hyperplanes Hλ := {u ∈ Rn |
∑

i ui = λ}

at the maximum and minimum value of λ respectively. The vertices uh and ut depend on the

choice of F , but their images h(η) ∈ ∆0 and t(η) ∈ ∆0 in Tn do not, and we call these the head

and tail vertices of η. The divisor of η is the element div(η) := uh − ut ∈ Nn. The following

duality property of the toric cell complex is evident from the construction.

Proposition 4.6. The map τ : ∆ → ∆ that assigns to each η ∈ ∆k the unique cell η′ ∈ ∆n−k

with t(η′) = h(η), h(η′) = t(η) and xdiv(η
′) =

∏
ρ∈σ(1) xρ/x

div(η) is an involution.

To introduce the notion of right- and left-differentiation of cells with respect to faces, let

η ∈ ∆ and note that for any face η′ ⊂ η there is a path in Q̃ from h(η′) to h(η). While this path

need not be unique, its image in Q is a well-defined F-equivalence class of paths. The resulting

element
←−
∂ η′η ∈ A is the left-derivative of η with respect to η′. Similarly, there is a path in Q̃

from t(η) to t(η′) that defines an F-equivalence class of paths in Q, and the resulting element
−→
∂ η′η ∈ A is the right-derivative of η with respect to η′.

Example 4.7. For group action of type 1
6(1, 2, 3), Figure 4 illustrates a fundamental region for ∆

in R3 (some k-cells are repeated for k < 3). Observe that |∆0| = |∆3| = 6 and |∆1| = |∆2| = 18.

Let η ∈ ∆3 denote the 3-cell on the far left of Figure 4 and η′ ∈ ∆2 the facet (drawn horizontally)

that contains the 0-cells 0, 1, 2, 3. Then h(η′) = 3 and t(η′) = t(η) = h(η) = 0. The right

derivative is
−→
∂ η′η = e0 ∈ A and the left derivative is the vertical arrow

←−
∂ η′η = a03 ∈ A.

4.3. The cellular resolution. For 0 ≤ k ≤ n, consider the k-vector space Uk =
⊕

η∈∆k
k · [η],

where [η] is a formal symbol. Lemma 3.14 shows that the skew group algebra A admits a natural

Λ+-grading, and since each cell η ∈ ∆k is homogeneous we obtain a Λ+-grading on Uk. Identify
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0 1 2 3 4 5 0

3 4 5 0 1 2 3
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Figure 4. The McKay cell complex ∆ in T3 for the action of type 1
6(1, 2, 3)

the semisimple algebra U0 with the subalgebra of kQ generated by the trivial paths. Note that

Uk is a (U0, U0)-bimodule, and consider the induced (A,A)-bimodule

Pk = A⊗U0 Uk ⊗U0 A =
⊕

η∈∆k

Aeh(η) ⊗ [η]⊗ et(η)A.

Note that Pk inherits a Λ+-grading, called the total Λ+-grading, in which the degree of a product

of homogeneous elements is given by the sum of the degrees in each of the three positions. For

0 ≤ k ≤ n, define a morphism dk : Pk → Pk−1 of Λ+-graded graded (A,A)-bimodules by setting

dk(1⊗ [η]⊗ 1) =
∑

cod(η′,η)=1

ε(η, η′)
←−
∂ η′η ⊗ [η′]⊗

−→
∂ η′η,

where ε is an incidence function on ∆. It is convenient to choose ε to be compatible with the

orientation of arrows in Q as follows. Identify each η ∈ ∆1 with an arrow a ∈ Q1 according to

Lemma 4.5, so the 1-cell contains precisely two 0-cells h(a), t(a) ∈ ∆0. Choosing ε(a, h(a)) = 1

forces ε(a, t(a)) = −1 by (4.4) and hence

d1(1⊗ [a]⊗ 1) = 1⊗ [h(a)]⊗ a− a⊗ [t(a)]⊗ 1.

Let µ : P0 = A⊗U0 A→ A denote the multiplication map.

Proposition 4.8. For any choice of incidence function ε, the sequence

(4.6) 0 −→ Pn
dn−−→ · · ·

d2−−→ P1
d1−−→ P0

µ
−−→ A −→ 0,

is a complex of Λ+-graded (A,A)-bimodules. Moreover, an alternative incidence function deter-

mines a new complex that is naturally isomorphic to that from (4.6).

Proof. Note that, by our preceding remark, the cokernel of d1 at P0 is just the multiplication

map µ. Let us assume k ≥ 2 and take η ∈ ∆k. Then

dk−1(dk(1⊗ [η]⊗ 1)) =
∑

cod(η′,η)=1

ε(η, η′)
∑

cod(η′′,η′)=1

ε(η′, η′′)
←−
∂ η′η
←−
∂ η′′η

′ ⊗ [η′′]⊗
−→
∂ η′′η

′−→∂ η′η

=
∑

cod(η′,η)=1

∑

cod(η′′,η′)=1

ε(η, η′)ε(η′, η′′)
←−
∂ η′′η ⊗ [η′′]⊗

−→
∂ η′′η.

If η′′ ∈ ∆k−2 is a face of η then the only contributions in the double sum come from terms

involving the facets η′1, η
′
2 ⊂ η from (4.3) containing η′′. The above sum is therefore

dk−1(dk(1⊗ [η]⊗ 1)) =
∑

cod(η′′,η)=2

(
ε(η, η′1)ε(η

′
1, η
′′) + ε(η, η′2)ε(η

′
2, η
′′)
)←−
∂ η′′η ⊗ [η′′]⊗

−→
∂ η′′η,
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taken as a sum over codimension-two faces of η. This sum is zero by equation (4.4). For the

second statement, let ε′ be another incidence function and consider the complex

0 −→ Pn
d′n−−→ · · ·

d′2−−→ P1
d′1−−→ P0

µ
−−→ A −→ 0

determined by ε′. As [7, Theorem 6.2.2] records, there exists a global sign function δ : ∆→ {±1}

such that ε′(η, η′) = δ(η′)ε(η, η′)δ(η) for all η ∈ ∆k, η
′ ∈ ∆k−1, 0 ≤ k ≤ n. This implies that the

bimodule homomorphisms φk : Pk → Pk given by φk(1⊗ [η]⊗ 1) = δ(η)⊗ [η]⊗ 1 define a chain

map of complexes φ• : (P•, d•)→ (P•, d′•). Since each φk is an isomorphism of (A,A)-bimodules,

the chain map φ• is an isomorphism of complexes. This completes the proof. �

To demonstrate that the complex (4.6) is a minimal projective (A,A)-bimodule resolution of

A we choose a suitable incidence function ε on ∆. For η ∈ ∆k, let η
′ ⊂ η be a facet. We may

write xdiv(η) = xi1 · · · xik and xdiv(η
′) = xi1 · · · x̂iν · · · xik for i1 < · · · < ik, where x̂iν means that

the factor xiν is removed. We determine an incidence function on ∆ by setting

ε(η, η′) =

{
(−1)ν if h(η) = h(η′) and xdiv(

←−
∂η′η) = xiν ;

(−1)ν+1 if t(η) = t(η′) and xdiv(
−→
∂η′η) = xiν .

For a fixed η ∈ ∆k with head at ρ := h(η), let η′1, . . . , η
′
k denote the facets of η with head at ρ;

similarly, let η′1, . . . , η
′
k denote the facets of η with tail at t(η). For the above choice of ε, the

differential dk : Pk → Pk−1 is given by

(4.7) dk(1⊗ [η]⊗ 1) =
k∑

ν=1

(−1)νaρiν ⊗ [η′ν ]⊗ 1 +
k∑

ν=1

(−1)ν+1 ⊗ [η′ν ]⊗ a
ρρi1 ···ρ̂iν ···ρik
iν

.

Theorem 4.9. The complex (4.6) is a minimal projective (A,A)-bimodule resolution of A; this

is the cellular resolution of A.

Proof. Lemma 4.1 implies that A is Koszul, and Proposition 4.8 ensures that we need only show

that the complex with differentials given by (4.7) coincides with the bimodule Koszul complex.

One approach is to write down explicitly the isomorphism between (4.6) and the bimodule

Koszul complex as presented, for example, in Bocklandt–Schedler–Wemyss [5, Lemma 6.1].

More directly, by extending the ground category from vector spaces to (U0, U0)-bimodules, the

bimodule Koszul complex constructed by Taylor [26, Equation (4.4)] provides the bimodule

Koszul complex of A. For the basis χ1, . . . , χn of V := kn and for a cell η ∈ ∆k with xdiv(η) =

xi1 · · · xik , the assignment [η] 7→ χi1 ∧ · · · ∧ χik determines an isomorphism from Uk to
∧k V . It

follows that the projective (A,A)-bimodules Pk are those from the bimodule Koszul complex

presented in [26, Equation (4.4)]. In addition, our choice of signs in the differentials from (4.7)

recovers those in Equations (4.1) and (4.4) from [26]. This completes the proof. �

5. Algebraically consistent dimer models

This section interprets algebraically consistent dimer models as consistent toric algebras.

The main result reproduces the (A,A)-bimodule resolution of A from [6, 14, 21] as a cellular

resolution, and reconstructs the subdivision of the real two-torus determined by the dimer model

in terms of anticanonical cycles in the quiver. The key step associates a label to each arrow

in the quiver of the dimer model. The first appearance of this technique in the dimer model

literature seems to be Eager [15, §6].
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5.1. On dimer models. A dimer model Γ on a torus is a polygonal cell decomposition of the

surface of a real two-torus whose vertices and edges form a bipartite graph. Each vertex may be

coloured either black or white so that each edge joins a black vertex to a white vertex. The dual

cell decomposition of the torus has a vertex dual to every face, an edge dual to every edge, and

face dual to every vertex of Γ. In addition, we orient the edges of this dual decomposition so that

a white vertex of the dimer lies on the left as the arrow crosses the dual edge of the dimer. The

vertices and edges of this dual decomposition therefore define a quiver Q = (Q0, Q1) embedded

in the two-torus, with the additional property that the set of faces decomposes as the union

Q2 = Q+
2 ∪Q

−
2 of white faces (oriented anticlockwise) and black faces (oriented clockwise).

To each face F ∈ Q2 we associate the cycle wF ∈ kQcyc obtained by tracing all arrows around

the boundary of F . The superpotential of the dimer model Γ is defined to be

WΓ :=
∑

F∈Q+
2

wF −
∑

F∈Q−

2

wF .

For any face F ∈ Q2 and arrow a ∈ supp(wF ), choose h(a) ∈ Q0 as the starting point of wF
and write eh(a)wF eh(a) = aal · · · a1. The partial derivative of the cycle wF with respect to a is

the path ∂awF = al · · · a1 in Q. Extending k-linearly gives ∂aWΓ ∈ kQ for each a ∈ Q1, and

consider the two-sided ideal JΓ := (∂aWΓ | a ∈ Q1) in kQ. The superpotential algebra of Γ is

AΓ := kQ/JΓ.

A perfect matching Π of the dimer model is a subset of the edges in Γ such that every vertex is

the endpoint of precisely one edge. Let supp(Π) denote the subset of Q1 dual to the edges in Π.

Since the arrows arising in any given term ±wF of WΓ are dual to the set of edges emanating

from the corresponding vertex of Γ, one can rewrite the superpotential in terms of any perfect

matching Π as WΓ =
∑

a∈supp(Π) a ·∂aW . Every arrow a ∈ Q1 occurs in precisely two oppositely

oriented faces, so every relation can be written as a path difference ∂aWΓ = p+a − p
−
a , where

p±a are paths with tail at h(a) and head at t(a). The binomials {p+a − p
−
a ∈ kQ | a ∈ Q1} are

the F-term relations of Γ, and two paths p± in Q are said to be F-term equivalent if there is a

finite sequence of paths p+ = p0, p1, . . . , pk+1 = p− in Q such that for each 0 ≤ j ≤ k we have

pj − pj+1 = q1(p
+
a − p

−
a )q2 for some paths q1, q2 in Q and for some arrow a ∈ Q1. The F-term

equivalence classes of paths form a k-vector space basis for AΓ.

Several notions of consistency for dimer models have been introduced in the literature, and

here we consider that of algebraic consistency due to Broomhead [6]. Put simply, a dimer model

is algebraically consistent if AΓ is isomorphic to an auxilliary algebra constructed from toric

data encoded by Γ. We choose not to reconstruct this toric data here (though see the proof of

Proposition 5.3), but we do recall results of Broomhead [6] showing that for each algebraically

consistent dimer model Γ the centre of A is a Gorenstein semigroup algebra R = k[σ∨ ∩M ] of

dimension three and, moreover, that there exists a collection of rank one reflexive R-modules

(Bi | i ∈ Q0) such that AΓ
∼= EndR(

⊕
i∈Q0
Bi). To obtain our preferred normalisation, choose

a vertex 0 ∈ Q0 and consider instead the R-modules Ei := Bi ⊗ B
−1
0 for i ∈ Q0. Thus, every

algebraically consistent dimer model Γ defines a collection of rank one reflexive sheaves

(5.1) E := (Ei | i ∈ Q0)

on the Gorenstein toric variety X := SpecR such that AΓ
∼= EndR(

⊕
i∈Q0

Ei).
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Lemma 5.1. The quiver Q arising from an algebraically consistent dimer model Γ is the quiver

of sections of the collection E from (5.1). In particular, AΓ
∼= AE .

Proof. Let Q′ denote the quiver of sections of E , so Q0 = Q′0 by construction. For any i, j ∈ Q0,

the isomorphism AΓ
∼= EndR(

⊕
i∈Q0

Ei) implies ejAΓei ∼= HomR(Ei, Ej). The set of arrows in

Q from i to j provides a basis for the space spanned by irreducible elements of ejAΓei, while the

set of arrows in Q′ from i to j does likewise for HomR(Ei, Ej). This gives Q
′
1 = Q1 as required.

The final statement follows from Lemma 2.4. �

5.2. Labels on arrows in a dimer model. We may not deduce from Lemma 5.1 that E is

consistent because the dimer model algebra AΓ is not a priori isomorphic to the superpotential

algebra AW determined by the collection E . To establish the link between AΓ and AW we

investigate the labelling of arrows in Q. To begin we present an example that illustrates how

our labelling of arrows in Q ties in with the traditional approach to a dimer model Γ.

Example 5.2. Consider the dimer model Γ on the real two-torus shown in Figure 5(a) and the

quiver Q embedded in the dual cell decomposition from Figure 5(b). Notice that Q coincides

(a)

0

1

2

3

1

2

3

4

5

6

7

8 9

10

(b)

Figure 5. (a) a dimer model Γ; (b) the quiver Q in the dual cell decomposition

with the quiver from Figure 1(c), and we list the arrows a1, . . . , a10 in the same way. It is well

known that the semigroup algebra R = k[σ∨ ∩M ] arising from Γ is determined by the cone

σ over the lattice polygon P from Figure 1(a). The extremal perfect matchings Π1,Π2,Π3,Π4

that correspond to the vertices v1, v2, v3, v4 ∈ P respectively are shown in Figure 6. To compute

(a) (b) (c) (d)

Figure 6. Perfect matchings: (a) Π1; (b) Π2; (c) Π3; (d) Π4.

the labels, note from Figure 5(b) that supp(Π1) = {a1, a6, a9}. Since Π1 is the only extremal

perfect matching containing either a1 or a6, Proposition 2.11 implies that both xdiv(a1) and
20



xdiv(a6) are pure powers of x1, whereas a9 ∈ supp(Π1) ∩ supp(Π2), so x1x2 divides xdiv(a9).

Lemma 5.4 below shows that the labelling monomial on each arrow in a dimer model is reduced,

so xdiv(a1) = xdiv(a6) = x1 and x
div(a9) = x1x2. It is now easy to see that the labelling monomials

on the arrows of Q are precisely those from Figure 1(b). The superpotential

WΓ = −a8a7a4a1 + a8a6a4a2 − a9a5a2 + a9a7a3 − a10a6a3 + a10a5a1

coincides, up to the sign of each term, with that from Example 2.6 and hence AΓ
∼= AW .

Proposition 5.3. Let Q denote the quiver arising from an algebraically consistent dimer model

Γ, and let E be the collection from (5.1). Then each a ∈ Q1 satisfies

(5.2) xdiv(a) =
∏

{ρ∈σ(1)|a∈supp(Πρ)}

xρ,

where Πρ is the unique perfect matching of Γ corresponding to the vertex ρ ∈ σ(1).

Proof. The quiver of sections Q of E encodes the commutative diagram from Lemma 2.7. For

each a ∈ Q1, the F-term relation p+a − p
−
a is a binomial contained in the defining ideal of AΓ.

Lemma 5.1 gives AΓ
∼= AE , so p

+
a − p

−
a ∈ JE and we deduce that p±a share not only the same

head and tail but also the same labelling divisor. This implies that v(p+a )−v(p
−
a ) ∈ ker(π). The

proof of Lemma 3.14 applies verbatim to show that π : ZQ1 → Z(Q) coincides with the map

wt: ZQ1 → ΛΓ := ZQ1/
(
v(p+a )− v(p

−
a ) ∈ ZQ1 | a ∈ Q1

)

from Mozgovoy–Reineke [21, §3]. Then N(Q) coincides with the semigroup Λ+
Γ := wt(NQ1)

that was introduced by Broomhead [6, Example 5.5] in defining algebraic consistency (compare

Mozgovoy [20, Remark 3.8]). It follows that our cone C coincides with the cone dual to Λ+
Γ

from [6], so the perfect matchings from Definition 2.10 agree with those from [6, Lemma 2.11].

Each primitive lattice generator vρ ∈ ρ on an extremal ray of the cone σ defining R = k[σ∨∩M ]

supports only one extremal perfect matching on a dimer model (see [18, Proposition 6.5]),

so Proposition 2.11 implies that this perfect matching is Πρ = π∗2(χρ) and, moreover, that

a ∈ supp(Πρ) if and only if xρ divides xdiv(a). If mρ(a) denotes the multiplicity of xρ in xdiv(a),

we obtain xdiv(a) =
∏
{ρ∈σ(1)|a∈supp(Πρ)}

x
mρ(a)
ρ . Lemma 5.4 to follow establishes that each mρ(a)

is either 0 or 1. This completes the proof. �

Lemma 5.4. For any algebraically consistent dimer model Γ with associated quiver Q, and for

any arrow a ∈ Q1, the monomial xdiv(a) divides
∏
ρ∈σ(1) xρ.

Proof. In light of (2.5), we need only show that 〈Πρ, π(χa)〉 ∈ {0, 1}. As Broomhead [6, §2.3]

remarks, we may regard each perfect matching Π in Q as a 1-cochain π∗(Π) ∈ (ZQ1)∨ with

values in {0, 1}, where π∗ : Z(Q)∨ → (ZQ1)∨ is the natural inclusion. In particular, for any

arrow a ∈ Q1, the dual pairing is simply 〈Πρ, π(χa)〉 = 〈π
∗(Πρ), χa〉 ∈ {0, 1} as required. �

Remark 5.5. If we knew at this stage that AE was consistent then Lemma 3.14 could be applied

directly in the proof of Proposition 5.3 and Proposition 3.6 would make Lemma 5.4 superfluous.

However, we do not establish this fact until Theorem 5.6 below.

We are now in a position to show that algebraically consistent dimer models define consistent

toric algebras. It is convenient to introduce temporarily the unsigned version of the dimer model

superpotential, namely, the element WΓ :=
∑

F∈Q2
wF .
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Theorem 5.6. For an algebraically consistent dimer model Γ, the unsigned version of the dimer

model superpotential coincides with the superpotential W associated to E , namely

WΓ =
∑

p∈Cac(Q)

p.

In particular, the toric algebra AE is consistent.

Proof. For any face F in the cell decomposition Γ, Proposition 5.3 implies that

(5.3) xdiv(wF ) =
∏

a∈supp(wF )

∏

{ρ∈σ(1)|a∈supp(Πρ)}

xρ.

Since each Πρ is a perfect matching and since wF is a term in WΓ, the set supp(wF )∩ supp(Πρ)

consists of precisely one arrow. This gives xdiv(wF ) =
∏
ρ∈σ(1) xρ, so every term of WΓ is an

anticanonical cycle. Conversely, let p be an anticanonical cycle in Q. Fix ρ ∈ σ(1) and write

(5.4) WΓ =
∑

a∈supp(Πρ)

a · ∂aWΓ =
∑

a∈supp(Πρ)

a(p+a − p
−
a ).

Proposition 2.11 provides an arrow a′ ∈ supp(p)∩ supp(Πρ) which gives one summand in (5.4),

so after choosing a new starting point of p if necessary, we may write p = a′q for some path q

in Q. Since each term wF in WΓ satisfies xdiv(wF ) =
∏
ρ∈σ(1) xρ, this holds true for the terms

a′p+a′ and a′p−a′ . But now, each of q, p+a′ , p
−
a′ is a path in Q from h(a′) to t(a′) with labelling

monomial (
∏
ρ∈σ(1) xρ)/x

div(a′). Since Q is a quiver of sections and since AΓ is algebraically

consistent, the ideal (∂aWΓ | a ∈ Q1) must contain each of ±(q−p−a′) and ±(p
+
a′ − q) in addition

to ±(p+a′ − p
−
a′). However, a′ ∈ Q1 is the only arrow from t(a′) to h(a′) with label div(a′), and

since this arrow appears in precisely two terms of WΓ, it follows that q must equal one of p±a .

This gives p = wF , so the anticanonical cycle p is a term of WΓ and hence WΓ =
∑

p∈Cac(Q) p.

To show that AE is consistent it suffices by Lemma 5.1 to show that AΓ
∼= AW . Since the

terms of the superpotentials WΓ and W coincide up to sign we have P = Q1, so the inclusion

JW ⊆ JE = (∂aWΓ | a ∈ Q1) is equality as required. �

Remark 5.7. For generic θ ∈Wt(Q), Theorem 3.15 implies that the crepant resolutionMθ → X

from Ishii–Ueda [17] coincides with the morphism τθ : Yθ → Y0 obtained by variation of GIT

quotient. This strengthens slightly an observation of Mozgovoy [20, Proposition 4.4].

5.3. Reconstructing the dimer. For an algebraically consistent dimer model Γ, let Q denote

the quiver of sections of the collection E from (5.1). Before introducing the toric cell complex

for Q, we pause to show how Γ can be reconstructed from the covering quiver Q̃ ⊂ Rd.

List the standard basis of Zd to be compatible with a cyclic order v1, . . . , vd on the vertices

of the polygon P ⊂ N ⊗Z R, and choose coordinates N = Z〈e1, e2, e3〉 so that P lies in the

affine plane at height one. WriteM = Z〈x, y, z〉 for the dual basis and B for the matrix defining

ι : M →֒ Zd from (2.2). Extend scalars on the map ι∗ defined by Bt to obtain ι∗R : R
d → N⊗ZR.

For the standard inner product on Rd, orthogonal projection f : Rd → M ⊗Z R is defined by

(BtB)−1Bt, so f is simply the composition of ι∗R with the change of basis (BtB)−1 from N⊗ZR

to M ⊗Z R. For the sublattice M ′ = Z〈x, y〉 →֒ M , consider the (not-necessarily-orthogonal)

projection M →M ′ down the z-axis. After extending scalars and composing with f , we obtain
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a map f ′ : Rd → R2 :=M ′ ⊗Z R whose restriction to Zd fits in to the diagram

(5.5)

0 −−−−→ M −−−−→ Zd
deg
−−−−→ Cl(X) −−−−→ 0

y
yf ′|Zd

0 −−−−→ M ′ −−−−→ R2 −−−−→ T2 −−−−→ 0

where T2 := R2/M ′ is a real two-torus. To study the image f ′(Q̃), lift a spanning tree from Q to

Rd to obtain a preferred lift ui ∈ deg−1(Ei) for i ∈ Q0 as in Definition 3.9. Set u′i := f ′(ui) ∈ R2

for each i ∈ Q0, and let Q′0 ⊂ R2 denote the set of all M ′-translates of such points. Similarly,

lift a ∈ Q1 with tail at i ∈ Q0 to the unique arrow ã ∈ Q̃1 with tail at ui and set v′a := f ′(ã).

Note that v′a is the translation of the vector f ′(div(a)) =
∑
{ρ∈σ(1)|a∈supp(Πρ}

f ′(χρ) to the point

u′i. Write Q′1 ⊂ R2 for the set of all M ′-translates of such vectors.

Definition 5.8. Let Q′ denote the quiver in T2 defined by the M ′-periodic quiver in R2 with

vertex set Q′0 and arrow set Q′1.

Every vertex from Q̃0 is anM -translate of some ui and every arrow from Q̃1 is anM -translate

of an arrow ã with tail at some ui, so commutativity of (5.5) gives Q′0 = f ′(Q̃0) and Q
′
1 = f ′(Q̃1).

Vertices and arrows in Q′ may a priori overlap, so it is not obvious that Q′0 and Q′1 form the

0-skeleton and the 1-skeleton of a cell decomposition of T2. Nevertheless, the following result

confirms that this is indeed the case:

Theorem 5.9. Every algebraically consistency dimer model Γ is homotopy equivalent to the

cell decomposition of T2 dual to that induced by the subquiver Q′ ⊂ T2.

Proof. The first step is to show that the images f ′(χ1), . . . , f
′(χd) of the standard basis vectors

are cyclically ordered in R2. For this, let N → N ′ denote the map dual to the inclusion

M ′ →֒ M . Explicitly, N ′ = N/Z〈ez〉 where the vector ez =
∑

ρ∈σ(1) ι
∗(χρ) is the image of z

under the change of basis BtB from M ⊗Z R to N ⊗Z R. Since ez is the sum of the generators

of the cone σ, the vector ez lies in the interior of σ and hence the cyclic order of the vertices

of the slice P ⊂ σ is maintained under the projection to N ′ ⊗Z R. It remains to note that the

vectors f ′(χ1), . . . , f
′(χd) are obtained from these cyclically ordered vectors in N ′ ⊗Z R by the

change of basis from N ′ ⊗Z R to M ′ ⊗Z R.

We now associate a convex polygon inM ′⊗ZR to every face F ∈ Q2 in the cell decomposition

of T2 dual to Γ. Theorem 5.6 implies that each F ∈ Q2 determines an anticanonical cycle pF in

Q. The lift of pF is an anticanonical path in Q̃ whose image under f ′ is a closed piecewise-linear

curve in M ′⊗ZR that traverses arrows in Q′1 arising from the arrows a ∈ supp(pF ). To see that

this curve is the boundary of a convex polygon, consider a pair of complete fans in M ′ ⊗Z R

introduced by Broomhead [6, §4.4-4.5], namely, the global zig-zag fan Ξ and the local zig-zag

fan ξ(F ). The two-dimensional cones σρ in Ξ are indexed by extremal perfect matchings Πρ,

the two-dimensional cones σa in ξ(F ) are indexed by arrows a ∈ supp(pF ), and σρ ⊆ σa if and

only if a ∈ supp(Πρ). In particular, equation (5.2) can be written as

(5.6) xdiv(a) =
∏

{ρ∈σ(1)|σa⊇σρ}

xρ.

Since Ξ is the common refinement of the fans ξ(F ) for each F ∈ Q2, [6, Remark 4.16] implies

that the cyclic order of the cones σρ in Ξ is the same as the cyclic order of the vertices of the
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polygon P . We deduce from (5.6) that labels on a given arrow are consecutive and, furthermore,

that the boundary of each face F consists of arrows with consecutive labels; these increase

around black faces and decrease around white. Every arrow in Q′ is an M ′-translate of a

vector v′a =
∑
{ρ∈σ(1)|a∈supp(Πρ)}

f ′(χρ), and the first step above establishes that the vectors

f ′(χ1), . . . , f
′(χd) are cyclically ordered in R2, so the set of edges {v′a | a ∈ supp(pF )} of the

closed piecewise-linear curve is cyclically ordered, clockwise for black faces and anticlockwise

for white. It follows that this curve is the boundary of a convex polygon P(F ) in M ′ ⊗Z R.

It suffices to see that these convex polygons are the 2-cells in a decomposition of T2 that is

homotopy equivalent to that induced by Q. For this, fix i ∈ Q0 and list cyclically all arrows

a1, b1, a2, b2, . . . ak, bk ∈ Q1 with t(aν) = i and h(bν) = i for 1 ≤ ν ≤ k. Let F−ν ∈ Q2 denote

the unique black face containing aν , bν in its boundary, and similarly, F+
ν ∈ Q2 the white face

containing bν , aν+1, with ak+1 := a1. Since the boundaries of P(F−ν ) and P(F+
ν ) are oriented

clockwise and anticlockwise respectively, the polygons P(F−1 ),P(F+
1 ), . . . ,P(F−k ),P(F+

k ) glue

cyclically around vertex i. Note that these polygons do not cycle more than once around i,

because otherwise the edges dual to the outward-pointing arrows a1, . . . , ak cycle more than

once around the face dual to i ∈ Q0 which is absurd. In this way, each vertex i ∈ Q0 gives

rise to a tile obtained as union of convex polygons T (i) :=
⋃

1≤ν≤k(P(F
−
ν ) ∪P(F+

ν )). For each

incoming arrow bν , the tile T (i) glues to T (t(bν)) along P(F−ν ) ∪ P(F+
ν ) and, similarly, for

each outgoing arrow aν , the tile T (i) glues to T (h(aν)) along P(F
−
ν )∪P(F+

ν−1). It follows that

the convex polygons P(F ) arising from faces F ∈ Q2 tesselate the plane and, moreover, the

0-skeleton and 1-skeleton coincide with Q′0 and Q′1 respectively. The assignment F 7→ P(F )

shows that this cell decomposition coincides with that arising from Q up to homotopy. �

Example 5.10. For the dimer model Γ and quiver Q from Example 5.2, the quivers Q̃(i) for

i = 0, 1 are drawn in black in Figure 7, each superimposed on a 4-cube C(ui) drawn in grey. To

0

3

2 2 3 3

1 1 2

0

x
1

x
3

x4

x
2 x

2 x
4

x
3

x
3

x
1

x
1
x
2

x4

x
2
x
3

x4

x
1

(a)

1

0 0

3 3

32

1

x
2 x4

x
1

x
3

x
4 x4

x
2
x
3

x
3

x
1

x
1
x
2

(b)

Figure 7. Unit 4-cubes in R4 containing the quivers: (a) Q̃(0); and (b) Q̃(1).

construct the quiver Q′ as in Theorem 5.9, note that σ is the cone from Example 2.6, so the map

ι : M → Z4 is defined by the matrix B with columns div(x) = (1, 0,−1, 0), div(y) = (0, 1, 1,−1)

and div(z) = (1, 1, 1, 1). Orthogonal projection f ′ : R4 →M ′⊗ZR with respect to the standard

inner product on R4 is defined by the first two rows of (BtB)−1Bt, namely
(

5
9

1
6 −4

9 − 5
18

1
9

1
3

1
9 −5

9

)
.
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A black face F determines the anticanonical path from Figure 7(a) that traverses arrows labelled

x1, x2, x3, x4, and this projects via f ′ to define the anticlockwise boundary of the convex polygon

with vertices u′0 = (0, 0), u′1 = (59 ,
1
9), u

′
2 = (1318 ,

4
9) and u′3 = ( 5

18 ,
5
9) in the quiver Q′ from

Figure 8(a). A white face determines the adjacent anticanonical path that traverses arrows

labelled x3, x2, x1, x4, and this projects to the clockwise boundary of an adjacent polygon in

Figure 8(a). Each of the six anticanonical paths from Figure 7(a) defines one of the six convex

polygons in Figure 8(a) with u′0 as a vertex, and these polygons define T (0). The paths in

Q̃(1) from Figure 7(b) define the convex polygons that make up T (1), and vertices i = 2, 3 are

similar. The resulting cell decomposition of T2 is homotopy equivalent to that from Figure 5(b).
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Figure 8. (a) Tesselation induced by Q′1 from 5.10; (b) the quiver f ′(Q̃) for 5.11

Remark 5.11. It is not sufficient for Theorem 5.9 that Q arises from a consistent toric algebra in

dimension three. For example, for the collection E ′′ from Example 3.4(iii), the vertex labelled

4 in Figure 2(b) determines u′4 = (49 ,
8
9) in Figure 8(b), and a pair of arrows (drawn as curves)

labelled x4 from vertices 1 and 2 cross other arrows at points that are not vertices. In this case,

the toric algebra is consistent but it does not arise from an algebraically consistent dimer model

(AE ′′ is not Calabi–Yau) and we do not obtain a subdivision of T2.

5.4. The toric cell complex. Let f : Rd → R3 := M ⊗Z R denote the orthogonal projection

onto the subspace spanned by M ⊆ Zd as in the previous subsection. Then by construction the

diagram (5.5) factors through the commutative diagram

(5.7)

0 −−−−→ M −−−−→ Zd
deg
−−−−→ Cl(X) −−−−→ 0

∥∥∥
yf |Zd

0 −−−−→ M −−−−→ R3 −−−−→ T3 −−−−→ 0

where T3 := R3/M is a real three-torus. For each i ∈ Q0, our chosen vertex ui ∈ Q̃0 determines

a point ui := f(ui) ∈ R3. Set vz := f(div(z)), and consider the family of affine planes

Hλ(i) :=
{
u+ ui + λvz ∈ R3 =M ⊗Z R | u ∈M ′ ⊗Z R

}
for 0 ≤ λ ≤ 1

Note that Hλ(i) is the translation by λvz of the affine plane through ui parallel to M
′ ⊗Z R.

These planes slice the image f(C(ui)) of the unit box and hence the image f(Q̃(i)) of the quiver.

Proposition 5.12. For i ∈ Q0, let ni be the number of arrows a ∈ Q1 with t(a) = i. Either:
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(i) ni > 2, when f(Q̃(i)) ∩Hλ(i) is the vertex set of a polygon Pλ(i) for all 0 < λ < 1, and

it is a singleton Pλ(i) for λ = 0, 1; or

(ii) ni = 2, when there exists λt(i) < λh(i) such that f(Q̃(i)) ∩Hλ(i) is the vertex set of

(a) a polygon Pλ(i) in Hλ(i) for λt(i) < λ < λh(i);

(b) a line segment Pλ(i) in Hλ(i) for 0 < λ ≤ λt(i) and λh(i) ≤ λ < 1;

(c) a singleton Pλ(i) for λ = 0, 1.

Proof. For 0 ≤ λ ≤ 1, the image under f of any anticanonical path in Q̃(i) touches Hλ(i) once

because the projection of any such path onto the real line spanned by vz is bijective onto its

image. We proceed by reconstructing the information of the slice f(Q̃(i)) ∩Hλ(i) in R3 using

our knowledge of the projection to R2 from Theorem 5.9.

Fix a ∈ Q1 with t(a) = i and write q±a for the anticanonical paths from ui covering p±a a

that begin by traversing the unique lift ã ∈ Q̃1(i) of a. Let γ±a : [0, 1] → R3 denote the curves

with images f(q±a ) in f(Q̃(i)) such that γ±a (λ) ∈ Hλ(i) for 0 ≤ λ ≤ 1. Composing with the

projection to R2 gives piecewise-linear curves γ±a : [0, 1] → R2 satisfying γ±a (0) = γ±a (1) = u′i
that traverse the paths Q′ corresponding to p±a a. In the notation of the previous proof, list the

arrows a1, . . . , ak ∈ Q1 with tail at vertex i. Then as 0 ≤ λ ≤ 1 increases, the set of points

Ωλ(i) := {γ+a1(λ), γ
−
a1
(λ) . . . , γ+ak(λ), γ

−
a1
(λ)} in R2 flow from u′i out along v′a1 , . . . ,v

′
ak

before

splitting and returning to u′i along the paths in Q′ corresponding to p+a1 , p
−
a1
, . . . , p+ak , p

−
ak
. If

ni > 2 then Ωλ(i) comprises three or more points in cyclic order around u′i ∈ R2 for 0 < λ < 1,

and hence forms the vertex set of a (nondegenerate) polygon. For ni = 2, let v′a1 ,v
′
a2
∈ Q′1

denote the arrows with tail at u′i and v′b1 ,v
′
b2
∈ Q′1 the arrows with head at u′i. Set λt(i) :=

1
d
min{deg(xdiv(a1)),deg(xdiv(a2))} and λh(i) := 1 − 1

d
min{deg(xdiv(b1)),deg(xdiv(b2))}. The set

Ωλ(i) comprises two points for λ ≤ λt(i) and λ ≥ λh(i), but otherwise forms the vertex set

of a polygon as above. The result follows since translation by ui + λvz canonically identifies

Ωλ(i) ⊂M
′ ⊗Z R with the slice f(Q̃) ∩Hλ(i) for each 0 ≤ λ ≤ 1. �

Corollary 5.13. For a ∈ Q1, set i := t(a) ∈ Q0 and λa := 1
d
deg(xdiv(a)) ∈ Q. Let q±a be the

anticanonical paths in Q̃(i) that cover the cycles ap±a in Q. The slice f(q±a )∩Hλ(i) is the vertex

set of a line segment ℓλ(a) in Hλ(i) for λa < λ < 1, and it is a singleton ℓλ(a) for λ = λa, 1.

Proof. One need only focus attention on a single arrow in the course of the proof above. �

Proposition 5.12 and its corollary are introduced to facilitate the following key definition. We

provide a topological interpretation of cells from ∆ in Remark 5.16 below.

Definition 5.14. We associate to the collection E on X a set ∆ of closed cells in T3. We

describe the construction in each dimension separately (compare Remark 5.16):

∆0: Each i ∈ Q0 defines a point ui = f(ui) ∈ R3, and we let ∆0 denote the set of M -

translates of all such points.

∆1: Each a ∈ Q1 with t(a) = i lifts uniquely to an arrow ã ∈ Q̃1 with tail at ui, and each

a ∈ Q1 with h(a) = i lifts uniquely to an arrow ã ∈ Q̃1 with head at ui. Let ∆1 denote

the set of M -translates of the supports supp(ã) ⊂ R3 of all such arrows.

∆2: For a ∈ Q1, set i := t(a) ∈ Q0 and λa :=
1
d
deg(xdiv(a)) ∈ Q. Define η :=

⋃
λa≤λ≤1

ℓλ(a)

to be the union of the sets from Lemma 5.13. Let ∆2 denote the set of M -translates of

all such 2-cells η defined by arrows in Q.
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∆3: For i ∈ Q0, define η :=
⋃

0≤λ≤1 Pλ(i) to be the union of all subsets introduced in

Proposition 5.12. Let ∆3 denote the set of M -translates of such 3-cells corresponding

to all vertices in Q.

Let ∆ denote the collection of closed cells in T3 determined by these M -periodic cells in R3.

This is the toric cell complex of the algebraically consistent dimer model Γ or, equivalently, of

the collection E from (5.1). As before, for η ∈ ∆k we write ‘cod(η′, η) = 1’ as shorthand for the

set of cells η′ ∈ ∆k−1 satisfying η′ ⊂ η.

Example 5.15. Returning to Example 5.10, the cells of ∆ determined by arrows from Q̃(0) as

shown in Figure 7(a) are theM -translates of the faces of the three-dimensional convex polytope

obtained as the convex hull of the vertex set f(Q̃(0)). Figure 7(a) represents this polytope in R3

(though labels on arrows should be f(xρ) rather than xρ, because the picture is drawn in R4):

it contains one 3-cell, six 2-cells, fourteen 1-cells and ten 0-cells, and the labels illustrate that

the image in T3 has one 3-cell, six 2-cells, ten 1-cells and four 0-cells. Similarly, Figure 7(b)

represents the picture of f(Q̃(1)) in R3, giving one 3-cell, four 2-cells, nine 1-cells and four

0-cells in T3. One computes similarly the cells determined by arrows from Q̃(2), Q̃(3) to see

that ∆ satisfies |∆0| = |∆3| = 4 and |∆1| = |∆2| = 10.

Remark 5.16. Example 5.15 illustrates that 3-cells in ∆ need not be equidimensional and that

2-cells may intersect along their interiors, so ∆ is not a regular cell complex. Nevertheless, one

can construct ∆ using a mild variant of the classical attaching maps from topology. Indeed,

for each cell η ∈ ∆k there is a (not necessarily surjective) continuous map ϕη : B
k → η ⊂ T3

from the closed k-ball such that the boundary satisfies ϕη(S
k−1) =

⋃
cod(η′,η)=1 ϕη(B

k) ∩ η′. In

addition, Lemma 5.19 below shows that ∆ shares key properties with regular cell complexes.

Lemma 5.17. There are canonical bijections between ∆0 and Q0, between ∆1 and Q1, and

between ∆2 and the set {p+a − p
−
a ∈ kQ | a ∈ Q1} of minimal generators of the ideal JE .

Proof. This is similar to the proof of Lemma 4.5. �

For k ≤ 2 and η ∈ ∆k, the head, tail and label of η are defined to be the head, tail and

label respectively of the element of kQ that is associated to η by Lemma 5.17. Each η ∈ ∆3 is

constructed from some quiver Q̃(i), and we define both the head and tail of η to be the vertex

i ∈ Q0, while the label of η is (1, . . . , 1) ∈ Zn. The notions of right- and left-differentiation of

cells with respect to faces are defined precisely as in Section 4. Again, the cells of ∆ satisfy a

duality property (compare Proposition 4.6):

Proposition 5.18. The map τ : ∆→ ∆ that assigns to each η ∈ ∆k the unique cell η′ ∈ ∆3−k

with t(η′) = h(η), h(η′) = t(η) and xdiv(η
′) =

∏
ρ∈σ(1) xρ/x

div(η) is an involution.

Proof. This is evident from the construction. �

5.5. The cellular resolution. The minimal projective resolution of a dimer model algebra A

as an (A,A)-bimodule has been studied extensively in the literature [6, 14, 21] under various

assumptions on the dimer model. Here we assume algebraic consistency and describe in a

uniform way the maps in the resolution using the toric cell complex ∆. As a first step we show

that ∆ shares some key properties with regular cell complexes.
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Lemma 5.19. The toric cell complex ∆ of an algebaically consistent dimer model satisfies (4.3).

In addition, ∆ admits an incidence function, that is, a function ε : ∆×∆→ {0,±1} such that:

(i) ε(η, η′) = 0 unless η′ is a facet of η;

(ii) ε(η, ∅) = 1 for all 0-cells η; and

(iii) if η ∈ ∆k and η′′ ∈ ∆k−2 is a face of η, then for η′1, η
′
2 ∈ ∆k−1 from (4.3) we have

(5.8) ε(η, η′1)ε(η
′
1, η
′′) + ε(η, η′2)ε(η

′
2, η
′′) = 0.

Proof. Statement (4.3) is immediate for k = 2. As for k = 3, fix a codimension-two face η′′ ∈ ∆1

of a 3-cell η ∈ ∆3. Consider three cases: either the tails coincide t(η) = t(η′′); the heads coincide

h(η) = h(η′′); or neither heads nor tails coincide. In the first two cases the arrow a ∈ Q1 whose

support is η′′ is contained in precisely two anticanonical cycles, say p1, p2, each of which traverses

only arrows supported on 1-cells in η. In the first case, if aj ∈ supp(pj) denotes the arrow with

head at h(η) for j = 1, 2, then the 2-cells η′1, η
′
2 ⊂ η dual to the arrows a1, a2 are the unique

2-cells in η containing η′′. In the second case, if aj ∈ supp(pj) denotes the arrow with tail t(η)

for j = 1, 2, then the cells η′1, η
′
2 ⊂ η dual to a1, a2 are the unique 2-cells in η containing η′′.

In the third case, the arrow a ∈ Q1 whose support is η′′ is contained in a unique anticanonical

cycle p that traverses only arrows supported on 1-cells in η. If we let a1, a2 ∈ supp(p) denote

the unique arrows satisfying h(a1) = h(p) and t(a2) = t(p), then the 2-cells η′1, η
′
2 ⊂ η dual to

the arrows a1, a2 are the unique 2-cells in η containing η′′. This establishes (4.3).

To construct an incidence function we may assume properties (i) and (ii). Each cell η ∈ ∆1 is

supported on a unique arrow a ∈ Q1 and contains precisely two 0-cells h(a), t(a) ∈ ∆0. Choosing

ε(η, h(a)) = 1 forces ε(η, t(a)) = −1 by (5.8). Similarly, every 2-cell η ∈ ∆2 corresponds uniquely

to a minimal generator of JE and we use the signs from WΓ (see Remark 5.21 below) to write

this generator as p+a − p
−
a = a+l · · · a

+
1 − a

−
m · · · a

−
1 where the boundary of η is supported on the

arrows {a+1 , . . . , a
+
l , a

−
1 , . . . a

−
m}. Identify each 1-cell with the corresponding arrow and choose

ε(η, a+j ) = 1 for 1 ≤ j ≤ l, in which case (5.8) forces ε(η, a−j ) = −1 for 1 ≤ j ≤ m. Finally, each

3-cell η ∈ ∆3 is such that every facet η′ ⊂ η satisfies either h(η′) = h(η) or t(η′) = t(η). Choose

ε(η, η′) = 1 if h(η′) = h(η) in which case (5.8) forces ε(η, η′) = −1 for t(η′) = t(η).

It remains to show that equation (5.8) holds for any η ∈ ∆k and codimension-two face η′′ ⊂ η.

There are three cases, where either the tails coincide t(η) = t(η′′), the heads coincide h(η) =

h(η′′), or neither heads nor tails coincide. For k = 2, the proof in each case is straightforward

because η′′ is a 0-cell. For k = 3, consider the case t(η) = t(η′′) where ε(η, η′1) = ε(η, η′2) = −1.

The cell η′′ ∈ ∆1 is supported on an arrow a ∈ Q1, and the signs ε(η′1, η
′′), ε(η′2, η

′′) differ as

required because the pair of anticanonical paths that traverse arrow a have opposite signs in

WΓ. The case with h(η) = h(η′′) is similar. In the final case, the arrow corresponding to η′′

lies in a unique anticanonical path and hence ε(η′1, η
′′) = ε(η′2, η

′′), but then one of η′1, η
′
2 shares

head with η while the other shares tail. Thus, the signs ε(η, η′1), ε(η, η
′
2) differ as required. �

Theorem 5.20. Let Γ be an algebraically consistent dimer model with toric algebra A and let

ε : ∆×∆→ {0,±1} be any incidence function on ∆. The minimal bimodule resolution of A is

the cellular resolution

0 −→ P3
d3−→ P2

d2−→ P1
d1−→ P0

µ
−→ A −→ 0
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where for 0 ≤ k ≤ 3 we have

Pk :=
⊕

η∈∆k

Aeh(η) ⊗ [η]⊗ et(η)A,

where µ : P0 → A is the multiplication map and where dk : Pk −→ Pk−1 satisfies

dk
(
1⊗ [η]⊗ 1

)
=

∑

cod(η′,η)=1

ε(η, η′)
←−
∂η′η ⊗ [η′]⊗

−→
∂η′η.

Proof. This result can be proved directly by modifying the proofs from [6, 14, 21]. However, we

choose instead to consider a particular incidence function that realises precisely the maps from

the resolution of Broomhead [6]. Then, just as in the proof of Proposition 4.8, choosing any

alternative incidence function merely provides an isomorphic resolution of A.

Let ε : ∆×∆→ {0,±1} denote the incidence function constructed in the proof of Lemma 5.19.

To compute the differentials for this choice of incidence function, note first that

d1
(
1⊗ [a]⊗ 1

)
= 1⊗ [h(a)]⊗ a− a⊗ [t(a)]⊗ 1.

For the 2-cell η ∈ ∆ corresponding to the relation p+a − p
−
a = a+l · · · a

+
1 − a

−
m · · · a

−
1 , we have

d2
(
1⊗ [η]⊗ 1

)
=

l∑

j=1

a+l · · · a
+
j+1 ⊗ [a+j ]⊗ a

+
j−1 · · · a

+
1 −

m∑

j=1

a−m · · · a
−
j+1 ⊗ [a−j ]⊗ a

−
j−1 · · · a

−
1 .

Finally, consider η ∈ ∆3 with i := t(η) = h(η) ∈ Q0. The facets η′ ⊂ η that satisfy h(η′) = h(η)

have left-derivative
←−
∂ η′η = ei and right-derivative

−→
∂ η′η = a for an arrow a ∈ Q1 with t(a) = i.

Similarly, the facets η′ ⊂ η that satisfy t(η′) = t(η) have left-derivative
←−
∂ η′η = a for an arrow

a ∈ Q1 with h(a) = i and right-derivative
−→
∂ η′η = ei. In each case relabel the facet as η′a := η′

for the corresponding arrow a ∈ Q1. Then

d3
(
1⊗ [η]⊗ 1

)
=

∑

cod(η′a,η)=1, h(η′a)=i

1⊗ [η′a]⊗ a−
∑

cod(η′a,η)=1, t(η′a)=i

a⊗ [η′a]⊗ 1

=
∑

{a∈Q1|t(a)=i}

1⊗ [η′a]⊗ a−
∑

{a∈Q1|h(a)=i}

a⊗ [η′a]⊗ 1.

Our differentials are seen to coincide with those from [6, Theorem 7.3], though note that our

convention for composing arrows (where a′a means ‘a′ follows a’) differs from that in [6]. �

Remark 5.21. In the course of the proof we use the signs in the dimer superpotential WΓ to

write p+a − p
−
a , and hence to choose the incidence function ε. However, we chose this incidence

function only to reproduce precisely Broomhead’s resolution. Since any incidence function on

∆ suffices for Theorem 5.20, knowledge of the signs of WΓ is unnecessary in general.

6. The cellular resolution conjecture

We conclude by formulating a conjecture on the existence of toric cell complexes and cellular

resolutions for consistent toric algebras in arbitrary dimension. As a first step we illustrate two

key ingredients by presenting an example of a four-dimensional consistent toric algebra. A nice

class of such algebras arises from tilting bundles on smooth toric Fano threefolds, and we study

here a representative example of this class.
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6.1. A consistent fourfold example. LetX = Speck[σ∨∩M ] be the Gorenstein toric fourfold

determined by the cone σ generated by the vectors v1 = (1, 0, 0, 1), v2 = (0, 1, 0, 1), v3 =

(0, 0, 1, 1), v4 = (−1,−1, 2, 1), v5 = (−1,−1, 1, 1) and v6 = (0, 0,−1, 1). For 1 ≤ ρ ≤ 6, write Dρ

for the toric divisor in X defined by the ray of σ generated by vρ. Then Cl(X) is the quotient of

the free abelian group generated by OX(D1), OX(D5+D6), OX(D6), by the subgroup generated

by OX(D1+D5+2D6). The singularity X admits several crepant resolutions τ : Y → X, one of

which is given by the total space tot(ωZ) of the canonical bundle of the smooth Fano threefold

Z listed as number 11 by Oda [22, Figure 2.7]. Consider the collection

E =

(
OX ,OX (D1),OX(2D1),OX(D6),OX (D5 +D6),

OX(D1 +D6),OX (D1 +D5 +D6),OX (2D1 +D6)

)

on X. This collection is obtained from a tilting bundle1 on Z by pulling back each summand

via tot(ωZ)→ Z and then pushing forward via the crepant resolution tot(ωZ)→ X.

The quiver of sections Q from Figure 9 is depicted in Z3, but we work in the class group of
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Figure 9. A cyclic quivers of sections on the Gorenstein toric fourfold X

X and hence take OX ∼ OX(D1 +D5 + 2D6). If we order the arrows as in Figure 9(b), then

the superpotential is the sum

W = a22a17a10a5a3 + a22a16a10a6a3 + a22a18a15a10a6a1 + a22a18a15a10a5a2 + a22a18a13a8a2

+ a22a17a10a7a1 + a22a17a12a8a1 + a22a18a14a8a1 + a22a16a10a7a2 + a22a16a12a8a2

+ a23a21a18a9a2 + a23a20a15a12a4 + a23a21a17a12a4 + a23a21a18a14a4 + a23a11a7a2

+ a23a11a6a3 + a23a20a9a3 + a24a11a7a1 + a24a11a5a3 + a24a21a18a13a4 + a24a21a16a12a4

+ a24a19a9a3 + a24a21a18a9a1 + a24a19a15a12a4 + a25a19a14a4 + a25a11a6a1 + a25a20a9a1

+ a25a11a5a2 + a25a19a9a2 + a25a20a13a4 + a26a21a17a10a5 + a26a19a14a8

+ a26a19a15a10a6 + a26a21a16a10a6 + a26a20a13a8 + a26a20a15a10a5

1Our chosen Fano Z provides an interesting starting point since the construction of tilting bundles by Bondal [1]

does not apply. The tilting bundle here was constructed originally by Greg Smith [1, report by Craw].
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of all anticanonical cycles in Q. By taking partial derivatives, we compute that

JW =




a6a1 − a5a2, a25a11 − a22a18a15a10, a9a1 − a13a4, a24a21a18 − a25a20
a14a4 − a9a2, a23a21a18 − a25a19, a5a3 − a7a1, a22a17a10 − a24a11
a9a3 − a15a12a4, a24a19 − a23a20, a11a6 − a20a9, a1a25 − a3a23

a11a5 − a19a9, a2a25 − a3a24, a20a13 − a19a14, a4a25 − a8a26
a11a7 − a21a18a9, a1a24 − a2a23, a19a15 − a21a16, a12a4a24 − a10a6a26

a16a12 − a18a13, a8a2a22 − a4a24a21, a7a2 − a6a3, a22a16a10 − a23a11
a17a12 − a18a14, a8a1a22 − a4a23a21, a20a15 − a21a17, a4a23a12 − a10a5a26
a17a10a5 − a16a10a6, a3a22 − a26a21, a10a7 − a12a8, a1a22a17 − a2a22a16
a14a8 − a15a10a6, a1a22a18 − a26a19, a15a10a5 − a13a8, a2a22a18 − a26a20




.

This ideal is equal to JE , so the toric algebra A := AE is consistent.

Remark 6.1. For each minimal generator p+−p− of JW there exists another minimal generator

q+ − q− with the property that t(q±) = h(p±), h(q±) = t(p±) and xdiv(q
±) =

∏6
ρ=1 xρ/x

div(p±).

We list two such pairs on each line in JW above. This phenomenon is one aspect of the duality

property of ∆ described in Proposition 6.2 below.

6.2. The cellular resolution for the fourfold example. We now sketch the construction

of the toric cell complex ∆ ⊂ T4 for this example. The analogue of diagram (5.7) is

(6.1)

0 −−−−→ M −−−−→ Z6 deg
−−−−→ Cl(X) −−−−→ 0

∥∥∥
yf |Z6

0 −−−−→ M −−−−→ R4 −−−−→ T4 −−−−→ 0

where f : R6 → R4 :=M⊗ZR is orthogonal projection on to the subspace spanned byM . Since

A is consistent, Corollary 3.13 shows that the covering quiver Q̃ ⊂ R6 is the union of all M -

translates of the quivers Q̃(i) for i ∈ Q0. Explicit computation of the image f(Q̃(i)) for i ∈ Q0

shows that
⋃
i∈Q0

f(Q̃(i)) is an embedded quiver in R4. Define ∆0 and ∆1 to be the union of all

M -translates of the vertex set and arrow set respectively of this quiver. The resulting subsets

of T4 define the collections ∆0 of 0-cells and ∆1 of 1-cells and, just as in Lemma 4.5, there are

canonical bijections between Q0 and ∆0, and between Q1 and ∆1. Moreover, a lengthy and

tedious calculation shows that we may define collections ∆k of M -periodic subsets in R4 for

k = 2, 3, 4, where the canonical bijection for ∆2 from Lemma 4.5 also holds. The corresponding

closed subsets in T4 define the toric cell complex ∆ ⊂ T4. As before, each cell η in ∆ has a

well-defined head h(η) ∈ ∆0, tail t(η) ∈ ∆0 and label div(η) ∈ N6.

In this case, we have |∆0| = |∆4| = 8, that |∆1| = |∆3| = 26, and that |∆2| = 36. Explicit

computation and inspection shows that ∆ satisfies the following duality property:

Proposition 6.2. The map τ : ∆ → ∆ that assigns to each η ∈ ∆k the unique cell η′ ∈ ∆4−k

with t(η′) = h(η), h(η′) = t(η) and xdiv(η
′) =

∏6
ρ=1 xρ/x

div(η) is an involution.

Figure 10 depicts several cells of ∆. Figure 10(a) shows arrow a23 and the dual 3-cell, where

paths from vertex 0 at the bottom to vertex 0 at the top traverse anticanonical cycles in Q ⊂ T4.

Figure 10(b) shows the 3-cells dual to arrows a1 and a24 intersect along a given shaded 2-cell,

illustrating that ∆ satisfies property (4.3). Note that both 3-cells from Figure 10(b) lie in the
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4-cell dual to vertex 0, though we do not draw every edge in the 4-cell for the sake of clarity.

Figures 10(c) is similar, and shows for example that the 3-cell dual to a5 is not equidimensional.
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Figure 10. Cells of ∆: (a) the 3-cell dual to a23; (b) the 3-cells in ∆(0) dual

to arrows a1 and a24; (c) the 3-cells in ∆(2) dual to arrows a11 and a5.

We verify by an exhaustive examination that ∆ that satisfies property (4.3) and, in addition,

that ∆ admits an incidence function ε : ∆ ×∆ → {0,±1}. As a result, the minimal projective

(A,A)-bimodule resolution of the consistent toric algebra A = AE can be constructed as a

cellular resolution. Indeed, it can be shown directly, by adapting the proof in [6], that the

minimal projective resolution of A as a (A,A)-bimodule is

(6.2) 0 −→ P4
d4−−→ P3

d3−−→ P2
d2−−→ P1

d1−−→ P0
µ
−−→ A −→ 0,

with terms Pk =
⊕

η∈∆k

Aeh(η) ⊗ [η] ⊗Aet(η) and differentials

dk(1⊗ [η]⊗ 1) =
∑

cod(η′,η)=1

ε(η, η′)
←−
∂ η′η ⊗ [η′]⊗

−→
∂ η′η,

where µ : P0 =
⊕

i∈∆0
Aei ⊗Aei → A is the multiplication map.

6.3. On signs and syzygies. Before stating the main conjecture we make a key observation

which explains and justifies our decision to introduce no signs in the superpotentials throughout

this paper, namely, that it is impossible to introduce signs in the superpotential W above so that

the generators of JW can be recovered directly by taking partial derivatives.

Indeed, consider only terms of W that involve a23 ∈ Q1, namely, those arising in a23∂a23W .

Figure 10(a) illustrates all seven of the corresponding anticanonical cycles in Q ⊂ T4: the 3-cell

η23 dual to arrow a23 is drawn as a convex 3-polytope with arrow a23 sticking out of the top.

The facets of η23 correspond to those generators of JW arising from partials of W with respect

to paths involving a23, e.g., relation a14a4 − a9a2 arises from ∂a23a21a18W . We now attempt to

introduce signs inW so that the generators of JW are recovered directly from partial derivatives

of W . If, say, we fix the sign of a23a21a18a9a2 to be +1, then the relation a14a4 − a9a2 forces
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the sign of a23a21a18a14a4 to be −1, but then a17a12 − a18a14 forces the sign of a23a21a17a12a4
to be +1, and so on. By repeating, we hop from one anticanonical cycle to another around

the surface of the polytope η23. There are an odd number of paths, so we obtain sign −1 for

the original path a23a21a18a9a2 after passing once around η23. This contradiction shows that

introducing signs in W cannot produce the necessary signs in JW .

Remark 6.3. Comparing the third term P3 in the cellular resolution (1.2) with the third term

in the resolution as described by Butler–King [8, (1.1)] shows that the set of 3-cells ∆3 provides

a minimal set of bimodule generators for the space of syzygies

A⊗ TorA3 (U0, U0)⊗A ∼= A⊗
JI ∩ IJ

I2 + JIJ
⊗A,

where I := JE and J is the ideal in kQ generated by the set of arrows. As Alastair King remarks,

the syzygy corresponding to the cell η23 ∈ ∆3 from Figure 10(a) provides an equation with signs

that includes all seven terms of W involving a23. This is indeed the case, but this does not

contradict the assertion above. To see this, list all seven relations defined by codimension-one

faces of η23 as r1 := a14a4−a9a2, r2 := a9a3−a15a12a4, r3 := a7a2−a6a3, r4 := a11a7−a21a18a9,

r5 := a20a9 − a11a6, r6 := a21a17 − a20a15 and r7 := a17a12 − a18a14. The equation

(6.3) a21a18r1 + a20r2 + a11r3 − r4a2 − r5a3 − r6a12a4 = a21r7a4 ∈ JIJ

shows how to pass between two presentations of the syzygy corresponding to η23 ∈ ∆3:

s23 = [a21a18r1 + a20r2 + a11r3] = [r4a2 + r5a3 + r6a12a4] ∈ TorA3 (U0, U0)

Multiplying (6.3) on the left by a23 and expanding provides an equation with signs linking the

seven terms of W involving a23, but each term appears twice with opposite signs.

6.4. The main conjecture. To formulate the cellular resolution conjecture, assume that A is

the consistent toric algebra associated to a collection E on a Gorenstein affine toric variety X

of dimension n. Let Q̃ ⊂ Rd denote the covering quiver of the quiver of sections Q of E . Write

f : Rd → Rn := M ⊗Z R for the orthogonal projection. A priori, the vertices and arrows in the

image f(Q̃) may collide and intersect. Nevertheless, in every case considered in this paper, the

toric cell complex ∆ ⊂ Tn is constructed from an M -periodic quiver in Rn whose 0-cells and

1-cells are supported in the image f(Q̃) ⊂ Rn, and we suggest that this can always be done if

the global dimension of A is equal to n. More precisely, we formulate the following conjecture.

Conjecture 6.4. If the global dimension of a consistent toric algebra A equals the dimension

of X, then the toric cell complex ∆ ⊂ Tn exists and is constructed as above. Moreover, (1.2) is

the minimal projective (A,A)-bimodule resolution of A as in Theorem 1.2.

As Remark 5.11 shows, consistent toric algebras of global dimension n need not be Calabi–

Yau in general. Nevertheless, assuming the conjecture, a sufficient condition for such algebras

to be Calabi–Yau can be read off directly from ∆:

Corollary 6.5. Let A be a consistent toric algebra of global dimension n with toric cell complex

∆. If ∆ satisfies the duality property as stated in Proposition 4.6, then A is Calabi–Yau.

Those algebras that satisfy the conditions of the corollary generalise to arbitrary dimension

the three-dimensional algebras constructed from algebraically consistent dimer models.
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basis techniques. J. Algebra, 316(2):514–535, 2007.

[12] Alastair Craw and Gregory G. Smith. Projective toric varieties as fine moduli spaces of quiver representations.

Amer. J. Math., 130(6):1509–1534, 2008.

[13] John Davey, Amihay Hanany, Noppadol Mekareeya, and Giuseppe Torri. Brane tilings, M2-branes and

Chern–Simons theories, 2009. Preprint, arXiv:0910.4962.

[14] Ben Davison. Consistency conditions for brane tilings, 2008. Preprint, arXiv:0812.4185.

[15] Richard Eager. Brane tiltings and noncommutative geometry, 2010. Preprint, arXiv:1003.2862.

[16] Masahiro Futaki and Kazushi Ueda. Tropical coamoeba and torus-equivariant homological mirror symmetry

for the projective space, 2010. Preprint, arXiv:1001.4858.

[17] Akira Ishii and Kazushi Ueda. On moduli spaces of quiver representations associated with dimer models. In

Higher dimensional algebraic varieties and vector bundles, RIMS Kôkyûroku Bessatsu, p127–141, 2008.
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