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Minimizing bycatch of seabirds is 
a major goal of the U.S. National 
Marine Fisheries Service. In Alaska 
waters, the bycatch (i.e., inadvertent 
catches) of seabirds has been an inci-
dental result of demersal groundfish 
longline fishery operations. Notably, 
the endangered short-tailed albatross 
(Phoebastria albatrus) has been taken 
in this groundfish fishery. Bycatch 
rates of seabirds from individual 
vessels may be of particular interest 
because vessels with high bycatch 
rates may not be functioning effec-
tively with seabird avoidance gears, 
and there may be a need for sugges-
tions on how to use these avoidance 
gears more effectively. Therefore, 
bycatch estimates are usually made 
on an individual vessel basis and then 
summed to obtain the total estimate 
for the entire fleet.

The empirical Bayes (EB) (Efron 
and Morris, 1975; Casella, 1985) 
method offers the possibility of im-
proving within-vessel bycatch es-
timates, with the assumption that 
the individual vessel bycatch rate 
of seabirds has a gamma prior dis-
tribution. With the resulting Pois-
son-gamma EB model, it is assumed 
that each vessel’s bycatch of seabirds 
has a Poisson distribution condi-
tioned on the realized “true” bycatch 
rate. The basic principle of the EB 
method comes from the realization 
that the parameters for the gamma 
distribution can be estimated from 
individual vessel bycatches, and that 
the resulting EB estimators of indi-
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vidual vessel bycatch rates should 
provide estimates of individual by-
catch rates that have smaller total 
mean squared error (TMSE) than 
the individual vessel bycatch rates 
estimated independently. The inde-
pendently estimated individual vessel 
bycatch rate is simply the bycatch 
per thousand hooks fished for each 
vessel. A more complete introduction 
to the empirical Bayes method as it 
has been applied to different types 
of problems is provided by Ver Hoef 
(1996).

The goal of this note is to clearly 
describe empirical Bayes estimation 
and provide a detailed example of its 
application to the problem of estimat-
ing seabird bycatch. It is to be hoped 
that a better understanding of the 
theory underlying empirical Bayes 
methods will lead to more applica-
tions in the area of fisheries man-
agement.

Materials and methods

General theory

Mathematically, the empirical Bayes 
(EB) method can be described as a 
statistical procedure that has clearly 
def ined steps (Carlin and Louis, 
2000). Let the prior distribution 
of a parameter θ (the parameter of 
greatest interest) be g(θ|η), where 
the η are unknown parameters, and 
the sampling distribution for each 
stratum observation y is f (y|θ) . 

From the joint distribution defined 
by h(y,θ|η)= f(y|θ)g(θ|η), the mar-
ginal distribution of the observed y 
can be derived by integrating out θ: 
m(y|η)= ∫h(y,θ|η)dθ. The empirical 
Bayes method arises from the recog-
nition that η can be estimated from 
m(y|η) by using the marginal maxi-
mum likelihood (MML) estimators 
or related methods. Once η̂ is esti-
mated, the posterior distribution of 
θ can be obtained by using the Bayes 
rule, p(θ|y,η̂)=f(y|θ)g(θ|η̂)/m(y|η̂), 
and an EB estimate of θ can be made 
from this posterior distribution.

The Poisson-gamma empirical  
Bayes model

The Poisson-gamma model is ideal 
for illustrating how to calculate EB 
estimators from the general theory 
because the all the required integrals 
result in a gamma function. For this 
model, denote the gamma prior for 
the seabird bycatch rate of vessel i as 
g(λi|α, β), and the Poisson sampling 
distribution as f(yi|λi, τi), where yi is 
the number of seabirds observed, and 
τi are the number of hooks observed. 
The joint distribution of yi and λi is 
then
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The marginal distribution is calcu-
lated by integrating out λi:
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The probability for all vessels (i.e., strata) can then be 
written as
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The parameters of the gamma prior, g(λi|α, β), can then 
be estimated by maximizing the marginal likelihood 
given above and arriving at MML estimates ( ˆ, ˆα β). Initial 
estimates for the gamma distribution can be provided 
by moment estimators (Carlin and Louis, 2000) where: 
ri=mi/τi, and r and s2

r and the sample mean and vari-
ance of the{ri}, and

ˆ / ( ( / ) / ) ˆ / ˆ.α τ β α0
2 2

1
01= − =

=
∑r s r n rr i
i

n

and

The gamma prior is the conjugate distribution (Patrick, 
1972; Carlin and Louis, 2000) for the Poisson sampling 
distribution, which means that the posterior distribution 
is in the same family as the prior distribution for each 
stratum. The posterior distribution is p(λi|yi, ˆ , ˆα β, τi)= 
f(yi, λi| ˆ, ˆα β,ˆ , ˆα β ,τi)/g(yi| ˆ, ˆα β,ˆ , ˆα β,τi), which can be verified to have 
the gamma distribution g(λi|αʹ=yi+α,βʹ=1/(τi+1/β)). The 
mean of this posterior distribution, providing estimators 
for the λi, can be calculated from
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or more simply can be recognized as the product of the 
parameters of the posterior distribution.

The conventional maximum likelihood (ML) estimator 
of λi for the Poisson strata is λ̂i=yi/τi. The EB estimator 
of λi based on the mean of the posterior distribution 
can be seen as the weighted average of the ML stratum 
estimator and the mean of the gamma prior ˆ ˆαβ and will 
lie between these two values.

Simulation methods

Simulation was performed on the Poisson-gamma EB 
model described above. Each replication simulated the 
seabird bycatch of 50 vessels, and was repeated 1000 
times. Each replication assumed that the “true” bycatch 
rate for each vessel (λi) was distributed as an observation 
from the gamma distribution g(λi|α=0.603, β=0.030); 
whose parameters were estimated in the EB analysis 
which follows. The number of hooks that were “observed,” 

in thousands, was distributed uniformly as U(0, τmax), 
with τmax = {200, 500, 1000, 2000, 5000}. For each of 
these simulations then, τave = {100, 250, 500, 1000, 2500}. 
Finally, the number of “observed” seabirds (yi) was 
simulated using the Poisson distribution with λ́i=λiτi, 
where λi and τi were previously randomly generated as 
described.

For each replication, the simulated (yi, τi) were ana-
lyzed by using the empirical Bayes method, by first esti-
mating ( ˆ, ˆα β) using the MML, and then using these pa-
rameters to calculate the EB estimate λ̂i=(yi+ ˆ ˆαβ)/(τi+1/̂ ˆαβ ).  
The ML estimator for each stratum was λ̂i=yi /τi, and 
the global unstratified (GU) estimator was λ̂=Σyi /Στi. 
The performance of these estimators was measured by 
using
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where Xi could be any of λ̂i, 
λi, or λ̂. The simulation 

was repeated 1000 times, and the TMSE values were 
averaged to measure the overall performance of these 
estimators.

Analysis of bycatch data

In 2002, The North Pacific Longline Association, which 
has many longline vessel operators as members, vol-
untarily followed proposed regulations that required 
the use of effective seabird avoidance gear during fish-
ing operations. These voluntary guidelines were imple-
mented into formal regulations in February 2004.

EB analysis was performed on the bycatch of seabirds 
from individual longline vessels fishing in the eastern 
Bering Sea. The data were the annual observed by-
catches of seabirds (yi) and the total number of observed 
hooks in thousands (τi) of individual fishing vessels for 
2002 and 2003. The 2002 data were used to fit the EB 
model, and resulting λi estimates were used to predict 
the λi for 2003. As a comparison, a similar analysis 
was performed on data collected from 1997 and 1998, 
a time when many vessels did not use bird-avoidance 
gear and when the bycatch rate of seabirds was much 
higher than in 2002 and 2003.

Results

Simulation results

All simulations consisted of 1000 replications as 
described above. When measured by TMSE, the EB 
estimator was clearly superior to both the maximum 
likelihood (ML) and global unstratified (GU) estimators 
(Table 1). This was true regardless of whatever value of 
τmax was used in the simulations. The ratio R=TMSE(λ̂i)/ 
TMSE( λi) increased as τmax increased, but the values of 
TMSE for GU remained constant. Note that the ( ˆ, ˆα β) 
appeared biased when τmax = 5000 (Table 1).
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Results from fitting the Poisson-gamma model

The bycatch per thousand hooks in 1997−98, when bird 
avoidance gear was not as common, was 0.085 birds, 
compared with 0.013 birds in 2002–03 when seabird 
avoidance gear was voluntarily employed. Thus, the 
bycatch rate for all seabirds was reduced in 2002−03 to 
15% of the 1997−98 value.

For the 2002 bycatch data, initial parameter esti-
mates for the gamma distribution were made with the 
moment estimators described earlier. These initial es-
timates were refined by using the maximum of the 
marginal likelihood also described earlier. The final 
MML estimates were ˆ ˆαβ=0.603 and ̂ ˆαβ=0.030.

For 2002, the resulting EB bycatch rate estimates per 
vessel, λ i (Table 2), differed little from conventional ML 
estimates per vessel. A similar result occurred in the 
1997−98 analysis. However, vessel 28 (Table 2), showed 
a large adjustment between the ML and EB estimates. 
It is apparent from Table 2 that this vessel had unusu-
ally low effort (τ28=34) and a relatively large seabird 
bycatch (y28=8). This adjustment towards the aggregate 
mean is a predictable EB adjustment for situations 
where individual stratum data are weak. For vessel 28, 
the predicted EB estimate of seabird bycatch rate per 
thousand hooks was 4.4, whereas the actual observed 
bycatch rate was 8 (Table 2).

When the 2002 seabird bycatch rates were used to 
predict the 2003 seabird bycatch rates for individual 
vessels, neither the ML or EB estimates provided a sig-
nificant correlation (ρ=0.036, n=38). In contrast, when 
the 1997 bycatch rates were used to predict the 1998 
bycatch rates, there was a significant correlation for the 
one-tailed test ρ=0.324, n=33, P=0.033).

Discussion and conclusion

Empirical Bayes estimators are superior to Bayes esti-
mators in the sense that prior distributions can be 
estimated rather than assumed. If one prefers the Bayes 

method, one would counter that noninformative priors 
make the assumption of priors relatively benign, whereas 
for the empirical Bayes model, the assumption of the 
family of priors may be quite critical.

The empirical Bayes method can be applied even when 
the marginal distribution is analytically intractable, by 
substituting numerical integration for analytical inte-
grals. However, the computational intensity required by 
using numerical integration can appear daunting even 
with the current speed of desktop computers (Laslett 
et al., 2002).

Nevertheless, if the prior family is properly selected, 
the empirical Bayes method can provide very precise 
estimates. For our Poisson-gamma simulation, the 
empirical Bayes method provided uniformly superior 
estimates of the Poisson λi for a wide range of τmax 
values. Although the ratio values in Table 1 indicate 
that the EB estimator is most useful when τmax is large, 
the greatest benefit of the EB method is probably on 
the opposite end of the scale when individual stratum 
sampling is relatively weak. Note that the bias in ( ˆ, ˆα β)  
when τmax = 5000 (Table 1) may be simply bias in mar-
ginal maximum likelihood estimates because maximum 
likelihood estimators are not generally unbiased. Anoth-
er possibility is that bias was caused by computational 
error in calculating the marginal likelihood when the 
τi’s were large, even though the marginal likelihood was 
calculated on the log-scale.

In the seabird bycatch analysis, results show that 
in almost all cases estimates of bycatch rates at the 
individual vessel level were not significantly affected 
by using the EB method. These results may indicate 
that individual vessel sampling levels (i.e., τi) are at a 
sufficiently high level that ML estimates are already 
precise estimates of seabird bycatch rates. For the pre-
diction of the 2003 bycatch rate of seabirds from the 
2002 analysis, the TMSE of the ML estimator of λi was 
reduced a minor amount from 0.0007904 to 0.0007339 
by using the EB estimator of λi. However, the important 
issue is that neither the ML nor EB estimates for 2002 
significantly correlated with the observed 2003 bycatch 

Table 1
Simulation results from the Poisson-gamma empirical Bayes (EB) model with the assumption of 50 vessels (strata), and with 
random sample sizes (observed number of 1000 hooks) distributed as U(0, τmax) and replicated 1000 times. The gamma distri-
bution prior was assumed to have parameters α=0.603, β=0.030 , as were estimated from the seabird bycatch analysis, and 
the average ˆ ˆαβ and ̂ ˆαβ  were calculated from the 1000 replications. The seabird bycatch rate for vessel i, λi, was estimated by the 
maximum likelihood (ML) estimator λ̂i, the empirical Bayes (EB) estimator λi, and the global unstratified (GU) estimator λ̂. Per-
formance of these estimators was measured by the total mean squared error (TMSE) averaged over the 1000 replications, and R 
was defined as the ratio of TMSE values calculated for ML and EB estimates.

Sample size τmax TMSE(λ̂i) ML TMSE( λi) EB TMSE(λ̂i) GU R
TMSE

TMSE
i

i

=
( ˆ )

( )

λ
λ  Average ˆ ˆαβ Average ̂ ˆαβ

 200 0.001390 0.000189 0.000542 7.4 0.712 0.029
 500 0.001440 0.000103 0.000531 14.0 0.655 0.029
1000 0.001000 0.000063 0.000541 15.9 0.638 0.030
2000 0.000935 0.000038 0.000532 24.6 0.621 0.031
5000 0.000906 0.000018 0.000537 50.3 0.473 0.041
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Table 2
Bycatch of seabirds from the 2002 longline groundfish fishery in the eastern Bering Sea, where τi refers to the number of hooks 
observed, yi is the observed number of birds caught, λ̂i is the maximum likelihood (ML) estimate of the seabird bycatch rate, λi  
is the empirical Bayes (EB) estimate of the seabird bycatch rate, and λi τi is the EB estimate of the expected observed number of 
birds caught.

Vessel  Hooks Birds caught ML vessel EB estimate EB estimate of
number (1000’s) τi (numbers) yi estimate λ̂i 

λi birds caught λi τi

 1 1042 11 0.0106 0.0108 11.2
 2 3895 22 0.0057 0.0058 22.4
 3 917 16 0.0175 0.0175 16.0
 4 1487 5 0.0034 0.0037 5.5
 5 1272 12 0.0094 0.0097 12.3
 6 2446 93 0.0380 0.0378 92.3
 7 1477 0 0.0000 0.0004 0.6
 8 1016 4 0.0039 0.0044 4.5
 9 1758 6 0.0034 0.0037 6.5
10 253 0 0.0000 0.0021 0.5
11 1380 39 0.0283 0.0280 38.7
12 199 0 0.0000 0.0026 0.5
13 233 0 0.0000 0.0023 0.5
14 1212 13 0.0107 0.0109 13.2
15 2304 162 0.0703 0.0696 160.3
16 1408 30 0.0213 0.0212 29.9
17 2292 5 0.0022 0.0024 5.5
18 559 2 0.0036 0.0044 2.5
19 1332 26 0.0195 0.0195 26.0
20 753 17 0.0226 0.0224 16.9
21 2255 37 0.0164 0.0164 37.1
22 699 0 0.0000 0.0008 0.6
23 2907 5 0.0017 0.0019 5.5
24 3308 8 0.0024 0.0026 8.5
25 2221 10 0.0045 0.0047 10.4
26 1797 15 0.0084 0.0085 15.3
27 1413 13 0.0092 0.0094 13.3
28 34 8 0.2334 0.1271 4.4
29 659 101 0.1533 0.1468 96.7
30 1738 16 0.0092 0.0094 16.3
31 1527 4 0.0026 0.0030 4.5
32 2278 49 0.0215 0.0215 48.9
33 1332 19 0.0143 0.0144 19.1
34 2059 17 0.0083 0.0084 17.3
35 3089 2 0.0007 0.0008 2.6
36 1435 7 0.0049 0.0052 7.4
37 625 11 0.0176 0.0176 11.0
38 5447 14 0.0026 0.0027 14.5
39 1598 8 0.0050 0.0053 8.4
40 757 29 0.0383 0.0375 28.4

rates of seabirds. From the point of view of the EB 
method, this lack of correlation indicates that the Pois-
son catch rate, λi, was not a characteristic of individual 
fishing vessels, but is largely due to chance in any one 
year. Vessels 28 and 36 did not fish in 2003 and were 
excluded in the comparison. More detailed studies with 
current data should be carried out to determine if this 
is a valid conclusion.

As in 2002, the EB estimates for 1997 did not improve 
on stratum ML estimates for estimating seabird bycatch 
rates per vessel. However, ML and EB estimates of in-
dividual vessel bycatch rates in 1997 were found to be 
significantly positively correlated with observed bycatch 
rates for 1998. In this era of high bycatch rates of sea-
birds, bycatch rates were found to be more dependent 
on the practices of individual vessels.
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The empirical Bayes method indicates that sampling 
levels aboard individual vessels are sufficient to support 
individual vessel estimates of seabird bycatch rates. 
This seabird bycatch study was more an observational 
rather than a controlled study. It was not known which 
vessels used bird avoidance gear, or how this gear was 
deployed, or what other relevant onboard practices were 
taking place. Nevertheless, this seabird bycatch study 
illustrates how EB methods can provide alternative 
estimators and evaluation methods for a variety of sam-
pling problems.
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