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Tagging experiments are becom-
ing increasingly important in large 
pelagic fisheries as a means of pro-
viding estimates of stock abundance 
and fishing mortality rates that are 
independent of catch-rate data (Pola-
check and Hearn, 2003). In Polacheck 
et al. (2006), we developed a maxi-
mum likelihood model that combines 
two traditional, but fundamentally 
different, approaches for analyzing 
tagging data with a single, terminal 
recapture (note that we refer to this 
as “tag-recapture” data, but the term 
“tag-recovery” data is often used in 
the literature). The first approach, 
generally referred to as a Brownie 
model (Brownie et al., 1985), uses tag-
recapture data from multiple years of 
tagging to provide annual estimates of 
mortality rates by comparing return 
rates over time from the releases in 
consecutive years. Only the numbers 
of tag releases and returns by year 
are required, not the number of ani-
mals examined for tags. The standard 
Brownie model is formulated in terms 
of rates of survival and tag recovery, 
but can also be expressed in terms of 
instantaneous rates of natural mor-
tality and exploitation (Pollock et al., 
1991; Hoenig et al., 1998a). This latter 
formulation is particularly useful in 
fishery applications (e.g., Hampton, 

2000; Frusher and Hoenig, 2001; 
Polacheck et al., 2006). The second 
approach, known as a Petersen model 
(e.g., Seber, 1982), uses data from a 
single release event to provide an 
estimate of population size at the 
time of tagging based on the ratio of 
the number of tags returned from a 
sample of the population to the total 
number of tags in the population. In 
fishery applications, commercial catch 
data usually constitute the sample 
from which tags are returned. 

The model developed by Polacheck 
et al. (2006) integrates catch data 
with data from a multiyear tagging 
experiment and, in essence, incor-
porates a Petersen estimator into a 
Brownie model; we will refer to it as 
the Brownie-Petersen (BP) model. 
The BP model involves a likelihood 
for the tag-recapture data and a like-
lihood for the catch data, which can 
be jointly maximized to provide esti-
mates of natural mortality rates, fish-
ing mortality rates, and abundance. 
The addition of catch data to the 
traditional Brownie model not only 
allows for the population size at the 
time of first tagging to be estimated 
but also improves the precision of the 
mortality-rate estimates (Polacheck et 
al., 2006). For readers familiar with 
multiple-recapture tagging models, 
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Abstract—Tagging experiments are 
a useful tool in fisheries for estimat-
ing mortality rates and abundance 
of fish. Unfortunately, nonreporting 
of recovered tags is a common prob-
lem in commercial fisheries which, 
if unaccounted for, can render these 
estimates meaningless. Observers are 
often employed to monitor a portion 
of the catches as a means of estimat-
ing reporting rates. In our study, 
observer data were incorporated into 
an integrated model for multiyear 
tagging and catch data to provide 
joint estimates of mortality rates 
(natural and fishing), abundance, 
and reporting rates. Simulations were 
used to explore model performance 
under a range of scenarios (e.g., dif-
ferent parameter values, parameter 
constraints, and numbers of release 
and recapture years). Overall, results 
indicated that all parameters can be 
estimated with reasonable accuracy, 
but that fishing mortality, reporting 
rates, and abundance can be esti-
mated with much higher precision 
than natural mortality. An example of 
how the model can be applied to pro-
vide guidance on experimental design 
for a large-scale tagging study is pre-
sented. Such guidance can contribute 
to the successful and cost-effective 
management of tagging programs for 
commercial fisheries.
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the BP model has similarities with an age-structured 
Jolly-Seber (JS) model (Jolly, 1965; Seber, 1965; Pollock, 
1981). Both the BP and JS models have a likelihood 
component for the recapture data, from which survival 
rates can be estimated. For the BP model, this compo-
nent equates to a Brownie model, and for the JS model, 
it equates to a Cormack-Jolly-Seber (CJS) model (Cor-
mack, 1964). Additionally, they both have a likelihood 
component involving the total number of animals sam-
pled, from which abundance can be estimated (i.e., the 
Petersen component). However, for the JS model there 
is an unresolved problem with the Petersen component 
regarding how the information from unmarked animals 
should be integrated into the likelihood, and a variety 
of approaches have been developed to address this prob-
lem (see section 4.3 of Schwarz and Seber, 1999, and 
references therein). The Petersen component of the BP 
model (i.e., the catch component) is more general and 
integration into the likelihood is more straightforward. 

A recognized problem with applying tagging exper-
iments in fishery situations is that of nonreporting. 
When recapture information comes from commercial 
fisheries, it is unlikely that all recaptured tags will be 
reported, or that the rate of reporting will be known. 
Although Brownie models can provide estimates of to-
tal mortality rates when reporting rates are unknown 
(Brownie et al., 1985), the separation of natural mor-
tality from fishing mortality generally requires that 
reporting rates are either known or estimable (Pollock 
et al., 1991; Hoenig et al., 1998a). Petersen models 
also require reporting rates to determine abundance 
estimates. 

A number of methods exist for estimating reporting 
rates (see Pollock et al., 2001). For some methods, such 
as planted (also called “seeded”) tag experiments, the 
data are independent of the tag-recapture and related 
catch data from the primary tagging study. In develop-
ing the BP model, we assumed that independent re-
porting rate data were available; therefore a likelihood 
could be constructed for these data and simply multi-
plied to the likelihoods for the tag-recapture and catch 
data. Another common method for estimating report-
ing rates is to have observers monitor a portion of the 
catches. Under the assumption that 100% of tags will 
be returned (i.e., reported) from the observed catches, 
the reporting rate for the unobserved catches can be 
estimated by using the relative return rate of tags from 
the unobserved versus observed catches (Hearn et al., 
1999). In the case of longline fisheries, where fish are 
not brought into port for processing, the use of observers 
to estimate reporting rates is probably the most viable 
approach. Unlike data from a planted tag experiment, 
observer data cannot be considered independent of the 
tagging or related catch data and therefore incorporat-
ing the estimation of reporting rates into the BP model 
is more complicated. 

Pollock et al. (2002) showed how a standard Brownie 
model can be modified to include the estimation of re-
porting rates when one component of a multicomponent 
fishery has 100% reporting rates (e.g., one component 

has observers). This modification required that supple-
mentary catch data be brought into the model to assist 
in the estimation of reporting rates. Pollock et al. (2002) 
acknowledged that uncertainty in the catch data was 
not accounted for in their model, and also that it would 
be resourceful to take advantage of the extra informa-
tion provided by the catch data to estimate population 
size. As a topic of future research, they advocated the 
development of an integrated analysis that estimates 
all parameters (fishing mortality, natural mortality, 
population size, and reporting rates) within a single 
likelihood. 

In this article, the BP model is extended to include 
the estimation of reporting rates by using observer data. 
We will refer to this extended model as the BPO model, 
short for the Brownie-Petersen model with observers. 
The BPO model fulfills the goal of Pollock et al. (2002) 
for an integrated likelihood that can provide joint es-
timates of mortality rates, abundance, and reporting 
rates, and it also directly incorporates uncertainty in 
the catch data. Results from applying the model to simu-
lated data are presented which demonstrate the accura-
cy and precision that can be achieved in the parameter 
estimates under various scenarios (e.g., different param-
eter values, different numbers of release and recapture 
years, different parameter constraints). Tag-recapture 
data and catch data from most field studies will exhibit 
more variability than the model predicts (i.e., will be 
overdispersed). Thus, extra variability was included in 
the simulated data sets to investigate the consequences 
of applying the model to overdispersed data. Finally, a 
practical illustration is given of how the model can be 
used to evaluate the trade-off between releasing more 
tags and increasing the level of observer coverage in 
terms of the accuracy and precision of the parameter 
estimates. Polacheck and Hearn (2003) investigated 
this issue using a much simpler model (e.g., only one 
release event; only fishing mortality rates estimated) 
and making many simplifying assumptions (e.g., natural 
mortality known; no uncertainty in the catch data; no 
overdispersion in the data). The BPO model provides 
a much more comprehensive framework for evaluating 
such trade-offs and can thereby make an important 
contribution to the successful and cost-effective manage-
ment of tagging programs for commercial fisheries. 

Materials and methods

Model description

Consider a multiyear tagging study in which a single 
cohort of fish is tagged in A consecutive years starting at 
age 1 (i.e., at age 1 in year 1, age 2 in year 2, up to age A 
in year A). Fish from this cohort are subsequently caught 
in a fishery over years, or ages, 1 to I (I ≥ A), and a per-
centage of the tags that are recaptured each year are 
reported. Observers monitor a portion of the catches, and 
100% of recaptured tags are reported from the observed 
component of the fishery. Furthermore, all fish caught 
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in the observed component of the fishery are sampled 
for length or age, but no fish from the unobserved com-
ponent are sampled. The catch monitored by observers 
is assumed to be representative of the total catch (i.e., 
catches from the observed and unobserved components 
have the same expected age distribution). If the expected 
catch-at-age distribution differed between the two com-
ponents, then separate age information would need to 
be available for each component and the catch likelihood 
presented below would need to be modified.

The basic assumptions common to all multiyear tag-
ging models, as summarized in Pollock et al. (1991), are 
also required for the BPO model. The most important of 
these are: 1) tagged and untagged fish are thoroughly 
mixed throughout the population of interest, 2) the fate 
of each fish is independent of the fate of other fish, 3) 
all fish of a given age class have the same survival and 
capture probabilities, and 4) there is no tag shedding 
or tag-induced mortality. If tag shedding or tag-induced 
mortality, or both, exist at non-trivial levels (i.e., as-
sumption 4 is not met), then additional parameters 
and potentially additional data need to be introduced 
to account for them. Failing to do so will lead to biased 
parameter estimates and overly optimistic estimates of 
their precision. If any of assumptions 1 to 3 is violated, 
then the variance of the tag return counts will be un-
derestimated by the model. Similarly, if assumption 2 
or 3 is violated, the variance of the catch numbers will 
be underestimated. Extra variability, or overdispersion, 
in the tag return and catch data is discussed in the 
next section. 

Assumption 1 implies that newly tagged fish are mixed 
throughout the population immediately after tagging. 
This mixing can be difficult to achieve in practice, espe-
cially when the population has a widespread geographi-
cal distribution or tagging occurs in a limited area of its 
distribution. Hoenig et al. (1998b) showed how delayed 
mixing of newly tagged fish can be incorporated into a 
Brownie model by allowing these fish to have a different 
fishing mortality rate in the year of tagging than that 
of previously tagged fish. In our application of the BP 
model to southern bluefin tuna (SBT, Thunnus maccoyii) 
data in Polacheck et al. (2006), we allowed for initial 
nonmixing with this approach. Only the tag-recapture 
component of the model needed to be modified. It would 
be straightforward to modify the tag-recapture compo-
nent of the BPO model in an analogous manner in situ-
ations where modification was considered necessary. 

Before proceeding, we introduce the notation that 
will be used throughout this study. The data required 
by the model are

 Na = the number of tag releases of age a fish from a 
particular cohort;

 Ro
a,i  = the number of tag returns from fish that were 

tagged at age a and recaptured at age i in the 
observed (o) component of the fishery;

 Ru
a, i = the number of tag returns from fish that were 

tagged at age a and recaptured at age i in the 
unobserved (u) component of the fishery; and

 Co
i = the estimated number of age i fish from the 

cohort of interest caught in the observed (o) com-
ponent of the fishery.

The model parameters assumed to be known are

 δi = the proportion of fish from the cohort of interest 
caught in the observed component of the fishery in 
year i;

 η2
i = the variance of the aging error for Co

i.

The model parameters to be estimated from the data 
are

 Mi = the instantaneous natural mortality rate for age i 
fish; 

 Fi = the instantaneous fishing mortality rate for age i 
fish;

 P1 = the population size of the tagged cohort at the age 
of first tagging (assumed to be age 1 for conve-
nience); and

 λi = the tag reporting rate for fish captured at age i in 
the unobserved component of the fishery.

In addition, the annual survival rate (Si) and exploita-
tion rate (ui), respectively, of an age i fish, are defined 
to be 

S F Mi i i= − +( )( )exp ;

u
F

F M
Si

i

i i
i=

+
−( )1 .

Note that because only a single cohort of fish is being 
considered, age and year can be used interchangeably 
in the above definitions. If more cohorts were added to 
the model, it would then be important to distinguish 
whether the parameters vary by year, by age, or both. 
For example, λ may vary by year, M by age, and F by 
both. Because the age distribution of the catch is as-
sumed to be the same for the observed and unobserved 
components, δ would vary with year, not age, when 
there is more than one cohort (i.e., the probability of 
a fish being caught in the observed component of the 
fishery in year i would be the same for all ages within 
the year). If the age distribution of the catch was al-
lowed to differ between the observed and unobserved 
components, then δ would need to vary with both year 
and age, but it would not be estimable unless informa-
tion was available about the age distribution of the 
unobserved catches. 

First consider the tag-recapture component of the 
model. The probability of a fish, tagged at age a, being 
caught in the observed component of the fishery at age 
i, and having its tag returned, is

 p
u i a

S S u i aa i
o i i

i a i i
, .=

=
>



 −

δ
δ  1

 (1)
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Similarly, the probability of a fish, tagged at age a, 
being caught in the unobserved component of the fishery 
at age i, and having its tag returned, is

 p
u i a

S S u i aa i
u i i i

i a i i i
, =

−( ) =

−( ) >





 −

1

1 1

δ λ

δ λ
.  (2)

Thus, the probability of a fish, tagged at age a, not 
being recaptured by age I from either component is pá =  
1– po

a,i – pu
a,i. Here, and below, a dot in the subscript 

denotes summation over the index it replaces.
For tags released at age a, the numbers of returns at 

ages a to I from the observed component (Ro
a,i, i=a, . . . , 

I) and unobserved component (Ru
a,i, i = a, . . . , I), plus the 

number not returned by age I from either component 
(Rá=Na – Ro

a,i – Ru
a,i), are multinomial with probabilities 

given by Equations 1, 2 and pá, respectively. Thus, the 
likelihood equation for the returns from tags released 
at all ages is the product of multinomials, given by 

 L p p pR a
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Note that γ is a constant that can be left out when maxi-
mizing the liklehood. 

Next, consider the catch component of the model. 
Recall that no age information is obtained for the un-
observed catches; therefore only catch-at-age data from 
the observed component are available for inclusion in 
the model. The probability of an age-1 fish from the 
cohort of interest subsequently being caught at age i in 
the observed component of the fishery is

 π
δ

δi
o i i

i i i

u i

S S u i
=

=
>



 −

1

11 1
.  (4)

If the numbers of fish from the cohort of interest that 
are caught at ages 1 to I in the observed component of 
the fishery (Co

i, i=1, . . . , I) are known accurately, then 
these numbers, along with the number of fish from the 
cohort not caught by age I, are multinomial and have 
probabilities given by Equation 4. Usually, however, 
the numbers of fish caught at each age are not known 
precisely because the ages are estimated either from 
lengths or from annuli in hard parts (the estimates 
will be more accurate in the latter case, but will still 
contain uncertainty). We assume the aging error of the 
age i catch has a Gaussian distribution with mean 0 
(i.e., no bias) and a variance η2

i. 
Rather than modeling the catch data with both mul-

tinomial process error and Gaussian aging error, which 

would require a fairly complex approach, we approxi-
mated the distribution of the catch of age i fish in the 
observed component, Co

i, as Gaussian with overall vari-
ance σ2

i=η2
i+τ2

i, where τ2
i=P1π

o
i(1–πo

i), is the multinomial 
variance component. The aging error, unless negligible, 
will tend to dominate the process error when the cohort 
size is reasonably large (≥ 100,000 individuals), as would 
be expected in most commercial fishery situations. For 
example, if the coefficient of variation (CV) of the aging 
error is 0.10, the cohort size is 100,000 and the prob-
ability of catching an age i fish (in either the observed 
or unobserved component of the fishery) is 0.10, then the 
ratio of the aging error variance to the process error 
variance is ~10 when the proportion of the catch in the 
observer component is 0.10, and it is ~50 when the pro-
portion of the catch in the observer component is 0.50. 

Thus, assuming that the Co
i ’s are independent be-

tween ages, the likelihood for the observer catch data 
is

 L C E CC

i i
i
o

i
o

i

I

= − −( )




=
∏ 1

2

1
22 2

2

1 πσ σ
exp ( ) ,  (5)

where E(Co
i)=P1π o

i. 

When only a single cohort of fish is being modeled, 
the assumption that the catch data are independent 
between ages (i.e., years) should be reasonable in most 
situations. First, the correlation in the multinomial 
errors will be close to zero when the size of the cohort 
is much larger than the size of the catch (as would be 
expected in most fisheries). Second, the aging errors 
should be uncorrelated between years provided sam-
pling and aging data are collected each year. However, 
in some situations, particularly where age is being esti-
mated from a growth curve, covariance in the estimates 
between years may exist and should be accounted for. 
Furthermore, if more than one cohort is being modeled, 
then catch data from multiple ages within the same 
year will enter the model, and aging errors within a 
year will be correlated across ages. The level of corre-
lation, and thus the degree to which the independence 
assumption is violated, will depend on the specifics of 
the situation, such as how many age classes are pres-
ent in the year’s catch. When the correlation is strong, 
a more sophisticated approach for modeling the catch 
data may be required.

The overall likelihood for the combined recapture and 
catch data can be obtained by multiplying likelihoods 
(Eqs. 3 and 5) together:

 L L LR C= × .  (6)

In a tagging experiment with A consecutive release 
years, estimates can be obtained, at most, for A–1 natu-
ral mortality-rate parameters (regardless of the number 
of recapture years) because information for estimating Mi 
comes from the differential between the expected returns 
at age i+1 of fish released at age i and those released at 
age i+1. One option is to assume that Mi=MA–1 for i ≥ A, 
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but other options, such as assuming M is constant or 
linear with age, are also possible. Furthermore, there 
is not enough information in the current formulation 
to estimate the proportion of fish caught each year in 
the observed component of the fishery (i.e., the δi’s). To 
estimate this proportion would require knowing the 
total observer catch in each year, as well as the total 
overall catch in each year. Rather than bringing these 
data into the model, we assumed that the total catches 
are known well enough that the δi’s can be treated as 
known without error. Lastly, the aging error variance 
parameters for the observer catches (i.e., the η2

i’s) cannot 
be estimated reliably and therefore they are assumed to 
be known without error. In Polacheck et al. (2006), we 
gave a detailed explanation of why the catch variance 
cannot be estimated reliably in the BP model, and the 
same argument applies here. We found, however, that the 
model results were fairly insensitive to the value used for 
the catch variance so long as it was in the right ballpark 
(e.g., within ~40% of the true value). The parameters 
that can be estimated by maximizing Equation 6 are Fi 
and λi for i = 1 to I, Mi for i = 1 to A–1, and P1. 

As is true when combining any sources of informa-
tion, it is important to check that the tag-recapture data 
and the catch data are consistent. This can be done by 
maximizing the tag-recapture likelihood (Eq. 3) alone 
and comparing the mortality-rate estimates with those 
obtained from the joint likelihood (Eq. 6) (note that the 
catch likelihood alone is insufficient to yield parameter 
estimates). If the estimates are significantly different, 
this result would indicate that the tag-recapture and 
catch data are inconsistent and should not be combined; 
doing so would yield average values with little biologi-
cal meaning. Instead, the source of the inconsistency 
should be investigated (i.e., does it stem from problems 
with the data or with the applicability of the assump-
tions in the model?). 

Overdispersion in the recapture and catch data

In the model a multinomial distribution is assumed 
for the tag-recapture data. If one (or more) of model 
assumptions 1 to 3 is violated, then the observed return 
counts are expected to be more variable than predicted 
by a multinomial distribution; i.e., to be overdispersed 
in relation to multinomial data. Polacheck et al. (2006) 
provided a thorough discussion of possible sources of 
overdispersion and ways in which it can be accounted 
for. When overdispersion exists in the return counts, the 
parameter estimates obtained by using a multinomial 
likelihood should still be unbiased, but their standard 
errors, as estimated from traditional likelihood methods 
(i.e., from the inverse Hessian matrix), would be too 
small. A number of possible methods for obtaining more 
realistic standard errors are discussed in Polacheck et 
al. (2006) and Pollock et al. (2001), one of which is to 
use bootstrap procedures. 

If overdispersion exists in the recapture data as a 
result of model assumptions 2 or 3 being violated, then 
it will also exist in the catch data. That is, the compo-

nent of the variance in the catch-at-age numbers due to 
process error will be underestimated by a multinomial 
distribution. As asserted previously, aging error will 
generally dominate the multinomial process error in 
the catch data. This will often still be true when the 
process error is overdispersed. For example, assume 
that the process error variance is ϕ times that of mul-
tinomial variance; i.e., τ2

i=ϕP1π o
i(1–π o

i). Then, in the 
example that was given above for multinomial process 
error, if ϕ=3, the ratio of the aging error variance to 
the process error variance would still be 3.3 (=10/3) and 
17 (=50/3) when the proportion of catch in the observer 
component is 0.10 and 0.50, respectively. In situations 
where the aging error dominates, not accounting for 
overdispersion in the catch data should have little ef-
fect on the standard error estimates of the parameter 
estimates. 

The degree to which the likelihood-based estimates 
of the standard errors are underestimated by not ac-
counting for overdispersion in the tag-recapture data 
and catch data was investigated through simulations, 
as described below.

Simulation methods

Model performance To evaluate how the model performs 
in terms of the accuracy and precision of the parameter 
estimates, a series of Monte-Carlo simulations were con-
ducted. The first scenario considered, which we will refer 
to as scenario 1, involved a single cohort of fish being 
tagged in five consecutive years starting at age 1 (i.e., 
at age i in year i for i=1, . . . , 5), and recaptured over 
the same five years. The number of tag releases was set 
to be 1000 at each age. Corresponding to the releases at 
each age, tag returns were generated from the observed 
and unobserved fishery components by using a Dirich-
let-multinomial (D-M) distribution (Mosimann, 1962). 
The D-M distribution allows for overdispersion in the 
return counts by modeling the return probabilities as 
random Dirichlet variables (see Appendix A of Polacheck 
et al., 2006). It can be parameterized in terms of the 
return probabilities and an overdispersion factor, ϕ, 
that specifies the amount of extra variation in relation 
to multinomial data. For scenario 1, ϕ was set to be 3 
(i.e., three times greater variance than a multinomial 
distribution). Other parameters were set as follows: 
Fi=0.15, Mi=0.2, λi=0.75, and δi =0.10, for i=1, . . . , 5. 
Catch-at-age numbers (ages 1 to 5) for the observer 
component of the fishery were generated by using, first, 
a D-M distribution with P1 = 100,000 and the same ϕ, 
δi, Mi, and Fi values as for the tag-recapture data. To 
these catch-at-age numbers, additional Gaussian aging 
error was added by using a constant CV of ν = 0.10 for 
all ages (i.e., ηi=νE(Co

i)). 
The BPO model was fitted to the simulated tag-re-

capture and catch data by maximizing Equation 6. 
For this process, ϕ and ν were assumed to be known 
without error, and natural mortality was constrained 
to be the same at ages 4 and above (i.e., M4=M5; re-
call that only four natural mortality parameters can 
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be estimated with five release years). The unobserved 
tag reporting rate was also constrained to be constant 
over all recapture years (i.e., λi=λ for i=1, . . . , 5). It 
seems reasonable that the tag reporting rate would be 
constant, or at least similar, over the course of the ex-
periment. Exceptions would occur if there was a signifi-
cant change in the fishery or in tag-return promotional 
activities during this time, or if the fishery involves 
multiple fleets with different reporting rates so that the 
overall reporting rate would change if the distribution 
of catches among fleets changed. To account for such 
situations, year-specific reporting rates were allowed for 
in a later scenario (see next paragraph). The only other 
constraints imposed were simple bound constraints to 
keep all parameters positive and to keep the reporting 
rate from exceeding one. Thus, the parameters esti-
mated were Fi (i=1, . . . , 5), Mi (i=1, . . . , 4), P1, and λ.

Model performance will be affected by a large number 
of factors, including the following: 1) the parameter val-
ues used for the mortality rates, cohort size, reporting 
rates, catch aging error, and overdispersion factor; 2) 
model parameterization (i.e., whether parameters are 
assumed to vary with age, year, or both, or to have a 
particular functional form); and 3) the design of the tag-
ging experiment (e.g., number of release and recapture 
years; number of releases per year; level of observer 
coverage). There are endless possibilities with regard 
to these factors; therefore we have chosen a number of 
scenarios that we feel are most illustrative for which 
to present results (Table 1). All of these scenarios use 

 
Table 1

Description of simulation scenarios. In all scenarios, data were generated for a single cohort of fish tagged at ages 1 to A and 
recaptured at ages 1 to I, by using an age 1 cohort size of P1, a constant natural mortality rate of M, a constant fishing mortality 
rate of F, a constant reporting rate in the unobserved fishery component of λ, a constant coefficient of variation for the catch aging 
error of ν, and an overdispersion factor of ϕ (values specified in table). Unless otherwise stated, data were generated by using 
N=1000 releases per year and a constant proportion of observer coverage of δ=0.20. In fitting the model, ϕ and ν were assumed 
to be known, and natural mortality was constrained to be the same for ages A–1 to I. Additional parameter constraints for each 
scenario are specified in the table. Bold text for a given scenario indicates a difference from scenario 1.

 Parameter values used to generate data Parameter constraints 
         imposed for
Scenario A I P1 M F λ υ ϕ model fitting

 1 5 5 100,000 0.20 0.15 0.75 0.10 3 λ constant
 2 5 5 100,000 0.40 0.15 0.75 0.10 3 λ constant
 3 5 5 100,000 0.20 0.30 0.75 0.10 3 λ constant
 4 5 5 100,000 0.20 0.15 0.50 0.10 3 λ constant
 5 5 5 100,000 0.20 0.15 0.90 0.10 3 λ constant
 6 5 5 100,000 0.20 0.15 0.75 0.10 1 λ constant
 7 5 5 100,000 0.20 0.15 0.75 0.10 9 λ constant
 8 5 5 100,000 0.20 0.15 0.75 0.10 3 λ constant; M constant
 9 5 5 100,000 0.20 0.15 0.75 0.10 3 λ constant; F linear1

10 5 5 100,000 0.20 0.15 0.75 0.10 3 none
11 3 3 100,000 0.20 0.15 0.75 0.10 3 λ constant
12 3 5 100,000 0.20 0.15 0.75 0.10 3 λ constant

1 The line is parameterized in terms of F1 and F5; i.e., Fi = F1 +(i–1)×(F5–F1)/4 for i = 1,…,5.

scenario 1 as a base but include a variation on one of 
the factors. 

Scenarios 2 through 7 investigate changes to the 
parameter values (factor 1). In particular, scenario 2 in-
creases the natural mortality rate, scenario 3 increases 
the fishing mortality rate, scenarios 4 and 5 decrease 
and increase the reporting rate, respectively, and sce-
narios 6 and 7 decrease and increase the overdispersion 
factor, respectively. Changes to the cohort size and vari-
ance of the catch aging error had less impact on the 
results and are therefore not included here. 

Model parameterization (factor 2) can have a large 
effect on how well parameters can be estimated. For 
example, if natural mortality can be assumed to be 
constant across ages (this is a fairly common assumption 
in fishery models, at least over a limited range of age 
classes), then the precision and accuracy of the natural 
mortality-rate estimate should improve, which in turn 
may lead to improvements in other parameter estimates. 
Scenario 8 explores the benefits of having a constant 
natural mortality rate. Another standard way of reduc-
ing the number of parameters in fishery models is to 
model fishing mortality as a function of age by using an 
appropriate selectivity curve. Scenario 9 considers the 
situation where fishing mortality is constrained to be a 
linear function of age. Note that we parameterized the 
line in terms of F1 and F5 (i.e., Fi=F1+(i–1)*(F5–F1)/4), 
because this made it easy to constrain the fishing mor-
tality rates to be positive. Instead of imposing additional 
constraints, scenario 10 relaxes the assumption of a con-
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stant reporting rate and allows reporting rates to differ 
across years. This scenario has the maximum number 
of parameters that can be estimated by the model (i.e., 
the model is saturated). 

In terms of experimental design (factor 3), the effect 
of varying the number of tag releases and the propor-
tion of observer coverage is investigated in detail in the 
next section; therefore only variations to the numbers 
of release and recapture years are considered here. In 
particular, scenario 11 reduces the number of release 
and recapture years from five to three, whereas sce-
nario 12 still has five recapture years but only three 
release years. For both scenarios, natural mortality was 
constrained to be equal at ages 2 and above, because 
only two natural mortality parameters can be estimated 
with three release years. For scenario 12, this meant 
constraining natural mortality to be equal at ages 2 to 
5. In such a case, alternative constraints may be pref-
erable, such as assuming natural mortality is a linear 
function of age. This was the approach taken in our 
application of the BP model to SBT data in Polacheck 
et al. (2006). 

For each scenario in Table 1, 1000 sets of data were 
generated, as described above for scenario 1, and fitted 
by using the BPO model. For each parameter estimated, 
the percent median bias and the CV of the 1000 esti-
mates were calculated, where percent median bias is 
defined as (median−true)/true×100% and CV is defined 
as SD/true (where SD denotes standard deviation). The 
median was used instead of the mean in calculating the 
bias because many of the parameter estimates had a 
skewed distribution, making the median a better mea-
sure of centrality (see “Results” section). The SDs of the 
parameter estimates obtained from the 1000 simulation 
runs (which approximate the true standard errors of 
the estimates) were compared with the standard error 
estimates obtained from the inverse Hessian matrix 
(these are obtained for every run; therefore we averaged 
the standard errors over the 1000 runs). The purpose 
was to see how much the Hessian-based standard errors 
were underestimated by applying a model that does not 
account for overdispersion in the data.

Trade-off between number of releases and observer 
coverage Of the factors that affect model performance, 
only the experimental design can be directly controlled 
by the researcher in a real application. Although model 
parameterization is superficially in the researcher’s 
control, it is the true parameter values that will deter-
mine whether any parameter constraints are advanta-
geous (i.e., imposing constraints on parameters that 
do not represent the true situation will lead to poorer 
model performance, not improved performance). Thus, in 
designing a tagging experiment and deciding how best 
to distribute resources, it would be very useful for the 
researcher to know the level of performance that can 
be achieved under different designs, as well as which 
design elements have the most influence on the results. 
Here, we illustrate how the BPO model can be used to 
provide such information. In particular, simulations are 

used to evaluate how well the parameters are estimated 
with different numbers of tag releases and different 
proportions of observer coverage, and to evaluate the 
trade-off between releasing more tags versus increas-
ing observer coverage (i.e., to evaluate which leads to 
larger improvements in accuracy and precision of the 
parameter estimates). 

Initially, simulations were carried out under scenario 
1. For simplicity, the number of releases was kept the 
same for all release ages (i.e., Na=N for all a) and the 
proportion of observer coverage was the same over all 
recapture years (i.e., δi=δ for all i). N was varied from 
250 to 2500, and δ from 0.05 to 0.50. For each combina-
tion of N and δ, 1000 tag-recapture and corresponding 
catch data sets were generated, as described in the pre-
vious section, and fitted by using the BPO model. The 
results were used to evaluate how the percent median 
bias and CV of the parameter estimates changed as 
the number of releases and level of observer coverage 
changed. 

For a true field study, the researcher would need to 
carry out such simulations using parameter values and 
model constraints that roughly represent the population 
and fishery dynamics for their situation. Our purpose 
was not to provide guidance on appropriate numbers of 
releases and observer coverage for any specific situation, 
but to illustrate how the model could be used to this 
end. Nevertheless, it is of interest to know whether the 
general findings using scenario 1 are likely to remain 
similar under other scenarios. The absolute levels of 
accuracy and precision that can be achieved will clearly 
depend on the scenario, but it is less clear whether the 
relative changes in these measures from increasing 
tag releases or increasing observer coverage will be 
highly scenario dependent. To investigate, we repeated 
the trade-off simulations using a subset of the other 
scenarios (4, 6, 8, 10, 11, and 12). 

Results

Model performance

The biases in the medians of the parameter estimates 
were small for almost all parameters and scenarios 
(Table 2). A few of the natural mortality estimates had 
negative biases of greater than 5%, but this result more 
likely reflects the large variability and non-normality of 
these estimates (see next paragraph) than true biases. 

Histograms of the parameter estimates revealed 
features that are important for evaluating biases. In 
particular, the natural mortality estimates often hit the 
lower bound of zero, and the proportion that did so was 
highest when the variability was largest (e.g., scenario 
7, which has a high amount of overdispersion; Fig. 1). 
This feature makes it difficult to assess bias for these 
parameters and explains why the median biases seen 
in some of the natural mortality-rate estimates, such as 
scenario 7, are not likely to be meaningful. In scenarios 
5, 7, and 10, the reporting-rate estimates often hit their 
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Table 2
Percent median bias (i.e., (median−true)/true×100%) of the parameter estimates for each scenario listed in Table 1. Results were 
based on 1000 simulation runs per scenario. Mi= natural mortality rate for age i fish; Fi= fishing mortality rate for age i fish; 
P1= population size of tagged cohort at age 1; λi= tag reporting rate for fish captured at age i in the unobserved component of the 
fishery.

Scenario M1 M2 M3 M4 F1 F2 F3 F4 F5 P1 λ1 λ2 λ3 λ4 λ5

 1 –1.0 –3.0 –1.5 –2.0 –1.3 –1.3 –0.7 –0.7 0.7 1.0 0.5 — — — —
 2 0.3 –1.3 –1.8 0.0 –0.7 –1.3 –0.7 0.0 0.7 1.0 0.0 — — — —
 3 0.0 –2.0 –1.5 0.5 –0.7 0.0 –0.7 –1.0 0.3 0.0 –0.1 — — — —
 4 1.5 –9.5 –4.0 –3.0 0.0 0.0 –0.7 1.3 1.3 0.0 –0.8 — — — —
 5 –2.0 –5.5 1.5 –0.5 0.0 –0.7 0.0 0.7 0.0 0.0 0.6 — — — —
 6 3.5 –1.5 –2.0 1.5 0.0 0.0 –1.3 –0.7 0.0 –1.0 0.4 — — — —
 7 –0.5 –13.0 –5.0 –16.0 –4.0 –2.0 –2.0 0.0 2.7 6.0 1.7 — — — —
 8 0.5 — — — –2.0 –0.7 –0.7 –1.3 –0.7 1.0 0.4 — — — —
 9 1.5 –0.5 3.5 –0.5 –1.3 — — — –0.7 1.0 0.5 — — — —
10 –2.5 –3.0 –2.5 1.0 0.0 –1.3 –0.7 –0.7 1.3 0.0 –2.3 1.2 0.1 0.3 0.4
11 –5.5 –6.5 — — –0.7 –1.3 –3.3 — — 1.0 1.6 — — — —
12 1.5 –3.0 — — –0.7 –1.3 –0.7 –2.0 –2.0 1.0 0.4 — — — —

Figure 1
Histograms of the 1000 estimates obtained for each parameter under sce-
nario 7 (see Table 1). The true parameter value, median, and mean of the 
estimates are indicated by vertical lines. Mi = natural mortality rate for 
age i fish; Fi= fishing mortality rate for age i fish; P1 = population size of 
tagged cohort at age 1 (in 100,000s); λ = tag reporting rate for the unob-
served component of the fishery (assumed to be constant for scenario 7).

upper bound of 1.0, and the frequency 
was greatest in scenario 5 where the 
true value was 0.90. Nevertheless, the 
median biases were still small. The 
fishing mortality estimates generally 
had distributions that were right 
skewed, and the degree of skewness 
became more pronounced at older 
ages. The skewness was usually small 
enough that the mean and median were 
still similar (e.g., scenario 1; Fig. 2).  
However, this was not always true. 
For example, in scenario 7 (Fig. 1), the 
median bias for F5 was 2.7%, whereas 
the mean bias was 13.3%. 

In Polacheck et al. (2006), we used 
mean bias to summarize simulation 
results obtained with the BP model. 
This meant that positive biases in 
the fishing mortality estimates that 
increased with age were reported, as 
well as positive biases in the natural 
mortality estimates. Had median bias 
been used instead, the bias results 
would have been similar to those 
presented here (i.e., negative biases in 
the natural mortality estimates, and 
only small biases in any of the fishing 
mortality estimates). In retrospect, 
we believe that the median provides 
a more reliable measure of bias. This 
is especially true in cases where the 
estimates have a skewed distribution, 
but should also be true in cases where 
a large proportion of the estimates 
fall on a bound. 
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Figure 2
Histograms of the 1000 estimates obtained for each parameter under scenario 1 (see 
Table 1). The true parameter value, median, and mean of the estimates are indicated 
by vertical lines. Mi= natural mortality rate for age i fish; Fi = fishing mortality rate 
for age i fish; P1 = population size of tagged cohort at age 1 (in 100,000s); λ= tag 
reporting rate for the unobserved component of the fishery (assumed to be constant 
for scenario 1).

In regard to precision, we estimated fishing mortality 
rates, cohort size, and reporting rates with much 
greater precision (CVs generally in the range of 0.10 
to 0.20) than that for the natural mortality estimates 
(CVs often exceeding 0.50) across all scenarios (Table 
3). Only when natural mortality was constrained to 
be constant across ages (scenario 8) was reasonable 
precision achieved for this parameter (CV of 0.22). Of 
the fishing mortality parameters, the estimates for the 
oldest age of recapture (i.e., F3 in scenario 11, F5 in all 
other scenarios) always had the highest CV, and usually 
notably so. 

Comparing the CVs for a specific scenario with those 
for scenario 1, we found that the results were generally 
predictable, at least in terms of direction (Table 3). 
For example, increasing the value used for the fishing 
mortality rate (scenario 3) or for the reporting rate 
(scenario 5) resulted in greater precision (i.e., lower 

CVs) for all parameters, because these changes lead 
to more tag returns. The results for scenario 2 were 
not instantly as intuitive. We would expect increasing 
natural mortality to give higher CVs because more 
fish would die naturally, leaving fewer tagged fish to 
be caught. Although small increases were observed 
in the CVs for the other parameters, large decreases 
were observed for the natural mortality estimates. 
This serves as a reminder that the CV is calculated 
in relation to the true parameter value, and therefore 
direct comparisons for parameters whose true values 
have been changed are more complicated. When the 
SDs of the natural mortality estimates from scenario 
2 were compared with those from scenario 1 instead of 
the CVs, they did in fact increase (although this may 
in part be due to the fact that fewer estimates are 
truncated at their lower bound of zero when the value 
used for natural mortality is higher). 
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Table 3
Coefficient of variation (CV) of the parameter estimates for each scenario listed in Table 1. Results were based on 1000 simula-
tion runs per scenario. Mi= natural mortality rate for age i fish; Fi= fishing mortality rate for age i fish; P1= population size of 
tagged cohort at age 1; λi= tag reporting rate for fish captured at age i in the unobserved component of the fishery.

Scenario M1 M2 M3 M4 F1 F2 F3 F4 F5 P1 λ1 λ2 λ3 λ4 λ5

 1 0.62 0.62 0.72 0.87 0.15 0.14 0.15 0.16 0.27 0.14 0.13 — — — —
 2 0.40 0.43 0.47 0.55 0.17 0.17 0.17 0.19 0.30 0.16 0.14 — — — —
 3 0.46 0.51 0.55 0.69 0.12 0.11 0.12 0.12 0.21 0.11 0.10 — — — —
 4 0.72 0.74 0.79 0.98 0.15 0.15 0.15 0.17 0.32 0.15 0.13 — — — —
 5 0.56 0.59 0.66 0.82 0.14 0.13 0.13 0.15 0.25 0.12 0.10 — — — —
 6 0.39 0.42 0.46 0.58 0.09 0.09 0.09 0.10 0.15 0.09 0.07 — — — —
 7 0.94 0.90 0.99 1.28 0.25 0.24 0.25 0.27 0.47 0.23 0.19 — — — —
 8 0.22 — — — 0.15 0.14 0.15 0.15 0.17 0.13 0.13 — — — —
 9 0.62 0.59 0.64 0.56 0.13 — — — 0.19 0.14 0.13 — — — —
10 0.66 0.64 0.73 0.88 0.15 0.15 0.16 0.17 0.29 0.13 0.22 0.20 0.18 0.18 0.18
11 0.72 0.85 — — 0.18 0.19 0.27 — — 0.18 0.17 — — — —
12 0.61 0.63 — — 0.16 0.16 0.21 0.37 0.75 0.15 0.14 — — — —

Several other points are worth noting. Changing the 
level of overdispersion in the data (scenarios 6 and 
7) had the greatest inf luence on the CVs across all 
parameters. The only exception was that constraining 
natural mortality to be constant (scenario 8) had a 
greater effect on the CV of the natural mortality-
rate estimation. Constraining natural mortality to be 
constant (scenario 8) not only reduced the CV of the 
M estimate substantially, but also the CV of the F5 
estimate. Similarly, constraining fishing mortality to 
be linear (scenario 9) substantially reduced the CV 
of the F5 estimate, but also the M4 estimate, and to a 
lesser degree the M3 estimate. Interestingly, however, 
neither of these constraints affected the CVs of the 
P1 and λ estimates. Also of interest is that allowing 
reporting rates to vary across years (scenario 10) had 
only a small effect on the precision of the mortality rate 
and abundance estimates. The reporting-rate estimates 
themselves were less precise and had a high tendency to 
hit the upper bound of one, but usually these parameters 
are not the ones of primary interest. Lastly, we note 
that having five recapture years but only three release 
years (scenario 12) resulted in much higher CVs for the 
F3, F4, and F5 estimates, and increasingly so with age 
(with a CV of 0.75 for F5). Thus, having more recapture 
years allows for more years of fishing mortality rates 
to be estimated, but these estimates quickly become 
uninformative unless the number of release years is 
also increased. 

High correlations were present between many of 
the parameter estimates (Table 4; results are shown 
for scenario 1, but the patterns are very similar 
for all scenarios). Given the nature of the model, 
high correlations were expected, and have already 
been documented and discussed for the BP model in 
Polacheck et al. (2006). For example, to yield the same 
number of tag returns in a particular year, a higher 

estimate of fishing mortality for that year could be 
compensated by a higher estimate of natural mortality 
for the previous year, so that estimates of Fi and Mi–1 
tend to be positively correlated. Alternatively, it could 
be compensated by a higher estimate of the reporting 
rate; hence estimates of Fi and λ tend to be negatively 
correlated. When two parameters have highly correlated 
estimates, a large CV for one of these parameters will 
tend to mean a large CV for the other parameter. 
This may explain some of the results observed above. 
For example, in scenarios 1–7, 9, and 10, estimates 
of F5 and M4 were highly correlated; therefore the 
high uncertainty in F5 is likely due to the very high 
uncertainty in M4. An analogous statement can be made 
about F3 and M2 in scenario 11. The high correlation 
between estimates of F5 and M4 also explains why, 
in scenarios 8 and 9, constraints that improved the 
precision of one of these parameters also improved the 
precision of the other. 

The Hessian-based standard error estimates in 
relation to the standard errors derived from the 
simulations are presented in Table 5. In all of the 
scenarios with ϕ=3, the Hessian-based standard errors 
were underestimated by a factor close to √3 = 1.73, and 
had a mean across all parameters and scenarios of 
1.67 (ranging from 1.45 to 1.91). In the scenario with 
ϕ=1 (i.e., multinomial data), the Hessian-based and 
simulation-based standard errors were very similar, as 
expected. In the scenario with ϕ=9, the Hessian-based 
estimates were underestimated by a factor reasonably 
close to √9=3.0—the largest exception being a factor of 
2.49 for P1. Nevertheless, these results indicate that if 
ϕ can be estimated after fitting the model (e.g., from 
the residuals), then multiplying the Hessian-based 
standard error estimates by √ϕ can provide improved, 
and perhaps adequate, estimates of the true standard 
errors. Further investigation of additional scenarios 
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Table 5
Simulation-based standard error divided by Hessian-based standard error of the parameter estimates for each scenario listed in 
Table 1. Results were based on 1000 simulation runs per scenario. Recall that an overdispersion factor of ϕ = 3 was used in all 
scenarios except scenario 6, for which ϕ = 1, and scenario 7, for which ϕ = 9. Mi = natural mortality rate for age i fish; Fi= fishing 
mortality rate for age i fish; P1= population size of tagged cohort at age 1; λi = tag reporting rate for fish captured at age i in the 
unobserved component of the fishery.

Scenario M1 M2 M3 M4 F1 F2 F3 F4 F5 P1 λ1 λ2 λ3 λ4 λ5

 1 1.71 1.64 1.76 1.75 1.60 1.60 1.69 1.70 1.73 1.54 1.76 — — — —
 2 1.65 1.74 1.74 1.70 1.62 1.66 1.67 1.74 1.75 1.54 1.69 — — — —
 3 1.68 1.74 1.71 1.78 1.61 1.64 1.73 1.65 1.77 1.47 1.68 — — — —
 4 1.73 1.77 1.72 1.74 1.56 1.59 1.62 1.66 1.78 1.55 1.75 — — — —
 5 1.65 1.68 1.69 1.70 1.54 1.61 1.64 1.66 1.73 1.48 1.82 — — — —
 6 1.01 1.02 0.99 0.99 0.99 0.99 0.97 1.03 0.98 1.00 0.97 — — — —
 7 3.07 2.97 3.00 3.20 2.67 2.73 2.86 2.86 3.05 2.49 3.08 — — — —
 8 1.72 — — — 1.62 1.63 1.73 1.71 1.76 1.53 1.76 — — — —
 9 1.70 1.64 1.72 1.58 1.62 — — — 1.71 1.53 1.76 — — — —
10 1.74 1.66 1.77 1.76 1.45 1.47 1.57 1.58 1.68 1.50 1.62 1.65 1.59 1.62 1.68
11 1.69 1.70 — — 1.64 1.64 1.70 — — 1.56 1.70 — — — —
12 1.69 1.65 — — 1.61 1.66 1.70 1.73 1.91 1.56 1.73 — — — —

Table 4
Correlation matrix for the parameter estimates obtained using scenario 1 (see Table 1). Results were based on 1000 simulation 
runs. Mi= natural mortality rate for age i fish; Fi= fishing mortality rate for age i fish; P1= population size of tagged cohort at age 
1; λ = tag reporting rate for the unobserved component of the fishery (assumed to be constant for scenario 1).

 M1 M2 M3 M4 F1 F2 F3 F4 F5 P1 λ

M1 1.00 –0.40 0.00 0.01 0.01 0.10 –0.07 –0.06 –0.03 0.55 0.14
M2  1.00 –0.38 –0.06 –0.27 0.03 0.14 –0.06 –0.07 0.12 0.11
M3   1.00 –0.35 –0.10 –0.25 0.08 0.26 –0.12 0.12 0.06
M4    1.00 0.00 –0.04 –0.19 0.19 0.77 –0.01 0.06
F1     1.00 0.47 0.40 0.37 0.27 –0.56 –0.61
F2      1.00 0.49 0.38 0.27 –0.41 –0.63
F3       1.00 0.52 0.25 –0.39 –0.63
F4        1.00 0.59 –0.37 –0.59
F5         1.00 –0.27 –0.39
P1          1.00 0.67
λ           1.00

may allow for more accurate correction factors to be 
developed. 

Trade-off between number of tag releases and  
observer coverage

We first concentrated on the results for scenario 1, 
and how changes in N and δ affected the accuracy of 
the parameter estimates. For all parameters, biases 
in the median of the estimates decreased rapidly as N 
increased, especially between 250 and 1000 releases 
(Fig. 3). Biases also tended to decrease as δ increased, 
especially for P1, λ, and F1 to F3. In any case, only the 
biases in natural mortality estimates at the lowest 

release numbers (N≤500) were large enough to be of 
concern, and further investigation showed they were the 
result of a large proportion of the estimates falling on 
the lower bound of zero. 

As seen in the previous section, evaluating biases 
could be complicated in some scenarios because of 
natural mortality estimates hitting a lower bound of 
zero, reporting-rate estimates hitting an upper bound of 
one, and fishing morality estimates having right-skewed 
distributions, especially at older ages. These problems 
became more pronounced as N and δ decreased, such 
that with N=250 and δ=0.05 the median and mean 
differed significantly for many parameters (e.g., M4 
had a median bias of −23% but a mean bias of +23%; 
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Figure 3
Effect of changing the number of releases at various proportions of observer 
coverage (δ) on the percent median bias (i.e., (median−true)/true×100%) 
of the parameter estimates. Results are shown for scenario 1 (see Table 
1) and are based on 1000 simulation runs per combination of tag releases 
and observer coverage. Mi= natural mortality rate for age i fish; Fi= fish-
ing mortality rate for age i fish; P1= population size of tagged cohort at 
age 1; λ = tag reporting rate for the unobserved component of the fishery 
(assumed to be constant for scenario 1).
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F5 had a median bias of only −3% but a mean bias of 
+16%). Thus, with small N and δ, the real issue was not 
with biases, but with the non-normality and very high 
variability (as seen next) of the estimates. 

We now consider how changes in N and δ affected the 
precision of parameter estimates. For a given value of 
δ, increasing N reduced the CVs of all estimates in an 
exponential fashion (Fig. 4). For the fishing mortality 
estimates, the rate of decline became greater with 
age, and was particularly notable for F5. The CVs of 
the fishing mortality, abundance, and reporting rate 
estimates all decreased as δ increased; however, the 
natural mortality estimates did not change much. 
Overall, larger gains were achieved in the precision of 
the fishing mortality, abundance, and reporting rate 
estimates by increasing δ from 0.05 to 0.50 than by 
increasing N from 500 to 2500 (note that going from 
250 to 500 releases led to significant decreases in the 
CVs of most parameter estimates). On the contrary, 
much larger gains were achieved in the precision of 

the natural mortality estimates by increasing N than 
by increasing δ. 

As a specific example of using such simulation re-
sults to aid in the design of a tagging study, suppose a 
researcher’s goal was to achieve a CV of 0.20 or lower in 
the estimate of abundance. This could be accomplished 
under scenario 1 with the following: N=250 and δ= 
0.50; N=500 and δ=0.20; N=1000 and δ=0.10; or, N= 
2000 and δ=0.05. If, in addition, the researcher’s goal 
was to achieve a CV of 0.30 or lower in all of the fishing 
mortality estimates, then only the latter two of these 
options would still be acceptable. 

Although the magnitude of the CVs varied sig-
nificantly between scenarios (as seen in Table 3), the 
relative changes that resulted from increasing N or δ 
were very similar to those seen for scenario 1. The most 
significant difference came from constraining natural 
mortality to be constant (scenario 8), in which case the 
precision of the natural mortality parameter became 
influenced by changes in δ (Fig. 5). 
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Figure 4
Effect of changing the number of tag releases at various proportions of 
observer coverage (δ) on the coefficient of variation (CV) of the parameter 
estimates. Results are shown for scenario 1 (see Table 1) and are based 
on 1000 simulation runs per combination of tag releases and observer 
coverage. Mi = natural mortality rate for age i fish; Fi = fishing mortality 
rate for age i fish; P1= population size of tagged cohort at age 1; λ = tag 
reporting rate for the unobserved component of the fishery (assumed to 
be constant for scenario 1).
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Discussion

The current article extends the integrated BP model 
for tag-recapture and catch data developed in Polacheck 
et al. (2006) to incorporate the estimation of reporting 
rates through observer data, which we refer to as the 
BPO model. This is an important and practical exten-
sion because nonreporting of tags is a serious problem in 
many commercial fisheries that needs to be accounted for 
in the model to obtain meaningful results, and observer 
data often provide the most viable means of doing so. 

In the way the BPO model was formulated, increasing 
the level of observer coverage improves the parameter 
estimates not only by improving the reporting rate 
estimates, but also by improving the precision of the 
catch-at-age data. If all fish caught in the observer 
component were not sampled, then the improvements 
would not be expected to be as great. As an extreme 
case, the precision of the catch-at-age data could be 
assumed to be independent of the level of observer cov-

erage, in which case increasing the level of observer 
coverage would only improve the parameter estimates 
through the reporting-rate estimates. However, it is 
difficult to envisage a situation where observers would 
not take age or length samples from at least a portion 
of the catches. 

In the study by Pollock et al. (2002), where a 
standard Brownie model was modified to include the 
estimation of reporting rates when one component of 
a multicomponent fishery has observers (i.e., 100% 
reporting rates), the authors show how the overall 
likelihood for their model can be partitioned into two 
conditionally independent components. They argue that 
the reporting rates can be estimated by maximizing the 
second likelihood component, and then plugged into the 
first component to estimate the mortality rates, and that 
doing so provides the maximum likelihood estimates of 
the reporting rates and mortality rates for the joint 
likelihood. Although a similar partitioning could be 
done for the BPO model, the estimates obtained from 
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maximizing the separate components would not be the 
overall maximum likelihood estimates because there 
is information in the catch data about the mortality 
rates. Furthermore, we assert that even in the model 
by Pollock et al. (2002), the estimates obtained from the 
two-step likelihood procedure are only the maximum 
likelihood estimates of the overall likelihood when the 
reporting rates are allowed to vary by year and age, 
and not, as the study would indicate, when there are 
any constraints on these parameters.

The BPO model allows for simultaneous estimation of 
age-specific fishing mortality rates, natural mortality 
rates, and reporting rates, as well as cohort size 
at first tagging, for a cohort tagged in consecutive 
years. All parameters appear to be estimated with 
reasonable accuracy, but the level of precision that can 
be achieved varies greatly, depending on the specifics 
of the population, the fishery, and the experimental 
design, and also on the parameter. Nevertheless, 
some general observations can be made based on our 
simulations. Cohort size appears to be estimated well in 
all situations (with a CV between 0.10 and 0.20 in the 
majority of scenarios considered). With the exception of 
the oldest age of fish at recapture, the fishing mortality 
rates also tend to be estimated with good precision 
(CVs of less than 0.20 achievable in many situations). 

In general, natural mortality is estimated poorly in 
comparison to the other parameters, with CVs above 
0.60 in many cases. If, however, natural mortality can 
be assumed constant over enough release years (or 
otherwise constrained), then it too can be estimated 
with reasonable precision (e.g., CV on the order of 0.20 
for our scenario 8 with 1000 releases per year). 

Reducing the number of parameters that need to 
be estimated through imposing parameter constraints 
can greatly improve the accuracy and precision of the 
estimates. However, this is only true if the constraints 
imposed approximate reality; for example, modeling 
natural mortality as a constant will not lead to better 
parameter estimates if in fact natural mortality changes 
significantly with age. In practice, standard model 
selection techniques, such as Akaike’s information 
criterion (AIC; Akaike, 1974) and its many variations 
(e.g., AICc for small sample sizes, QAIC for overdispersed 
data; see Burnham and Anderson, 1998, and references 
therein), can be used to determine which parameter 
constraints are most supported by the data. 

For ease of presentation, the model was developed for, 
and applied to, one cohort of tagged fish. In practice, it 
is likely that several cohorts (i.e., age classes) would 
be tagged in each year of tagging. If all parameters 
being estimated are both year- and age-dependent, then 
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Figure 5
Effect of changing the number of tag releases at various proportions of 
observer coverage (δ) on the coefficient of variation (CV) of the parameter 
estimates. Results are shown for scenario 8 (see Table 1) and are based 
on 1000 simulation runs per combination of tag releases and observer 
coverage. M = natural mortality rate (assumed to be constant for scenario 
8); Fi= fishing mortality rate for age i fish; P1= population size of tagged 
cohort at age 1; λ = tag reporting rate for the unobserved component of 
the fishery (assumed to be constant for scenario 8).



507Eveson et al.: Incorporating fishery observer data into an integrated catch-at-age and multiyear tagging model

modeling multiple cohorts simultaneously will give very 
similar results to modeling each cohort individually. The 
results would be identical if the catch-at-age data for all 
cohorts were modeled as independent, but there is likely 
to be correlation between catch estimates for different 
cohorts in the same year that should be accounted for. 
If some constraints can be put on the parameters, such 
as natural mortality varying only with age or fishing 
mortality following an age selectivity curve, then 
precision in the parameter estimates should improve. 
For example, we re-ran the simulations for scenario 1 
as described in the model performance section, but with 
data generated for three cohorts instead of one. In fitting 
the model, both natural mortality and fishing mortality 
were allowed to vary only with age. In comparison to 
the CVs obtained for scenario 1 with one cohort (Table 
3), the CVs obtained with three cohorts were roughly 
35−40% less for all parameters. Again, to determine 
which parameter constraints are most appropriate in 
a real situation, standard model selection procedures 
such as AIC can be used. 

As was illustrated, the BPO model can be used 
to evaluate the effect of releasing more tags versus 
increasing observer coverage on the precision and bias 
of the parameter estimates. Because these programs 
can be costly to run and resources are usually 
limited, it is useful to have a statistical framework for 
comparing how alternate allocations of resources affect 
the results that can be achieved. Our results confirm 
the general conclusion of Polacheck and Hearn (2003) 
that it is important to ensure both adequate numbers 
of tag releases and adequate observer coverage (the 
latter for robust estimation of reporting rates, as well 
as for improved estimation of catch-at-age numbers 
in our model). However, while Polacheck and Hearn 
(2003) found a relatively direct trade-off between the 
level of observer coverage and number of tag releases 
with their approximate model, we found with our 
more comprehensive model that the trade-off depends 
on the parameters of interest. In particular, greater 
improvements could generally be achieved in the preci-
sion of the fishing mortality and cohort size estimates 
by increasing the proportion of observer coverage than 
by increasing the number of releases. On the contrary, 
much larger gains were achieved in the precision of the 
natural mortality-rate estimates by increasing the num-
ber of tag releases than by increasing the proportion of 
observer coverage. Although the results will be highly 
case-specific, these general observations were true in 
all of the scenarios we considered, and we expect they 
will hold true in a fairly wide range of scenarios. That 
being said, the purpose of the simulations was not to 
draw any specific conclusions, but to illustrate how the 
model can be used to provide practical guidance about 
the experimental design of a tagging study. 

A version of the BPO model has been used to 
provide advice to the Commission for the Conservation 
of Southern Bluefin Tuna (CCSBT) on the levels of 
observer coverage and tag releases necessary to achieve 
their objectives for a long-term tagging program 

conducted on SBT. To make the model more closely 
resemble the situation for SBT it was necessary to 
extend the model to a two-fishery situation with a 
purse-seine fishery and a longline fishery, where tag 
reporting rates were estimated from planted tags in 
the purse-seine fishery and from observer data in the 
longline fishery. Simulations, similar to those presented 
here, were conducted with input parameter values that 
best simulate the situation for SBT. The results showed 
that the numbers of tags that were being released 
each year were adequate, but that an increase in the 
CCSBT’s target level of observer coverage from 10% 
to about 30% was required to meet the objectives of 
the program regarding precision of the mortality-rate 
estimates. 

In summary, the model presented here provides a 
robust statistical framework for obtaining joint estimates 
of mortality rates and abundance from tagging data in 
situations where observers are present in the fishery. 
The model can be used to provide insight into design 
issues for those starting up new, or modifying current, 
tagging and observer programs for the purposes of 
estimating mortality rates and abundance. 
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