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Abstract —A new description of 
growth in blacklip abalone (Haliotis 
rubra) with the use of an inverse-
logistic model is introduced. The 
inverse-logistic model avoids the dis-
advantageous assumptions of either 
rapid or slow growth for small and 
juvenile individuals implied by the 
von Bertalanffy and Gompertz growth 
models, respectively, and allows for 
indeterminate growth where neces-
sary. An inverse-logistic model was 
used to estimate the expected mean 
growth increment for different black-
lip abalone populations around south-
ern Tasmania, Australia. Estimates 
of the time needed for abalone to 
grow from settlement until recruit-
ment (at 138 mm shell length) into 
the fishery varied from eight to nine 
years. The variability of the residu-
als about the predicted mean growth 
increments was described with either 
a second inverse-logistic relationship 
(standard deviation vs. initial length) 
or by a power relationship (standard 
deviation vs. predicted growth incre-
ment). The inverse-logistic model 
can describe linear growth of small 
and juvenile abalone (as observed in 
Tasmania), as well as a spectrum of 
growth possibilities, from determinate 
to indeterminate growth (a spectrum 
that would lead to a spread of maxi-
mum lengths). 
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Blacklip abalone (Haliotis rubra) 
constitute the most valuable fishery 
in Tasmania, Australia, yielding 
approximately 30% (2500 tonnes) 
of the resource captured in the wild 
worldwide, worth more than AU$100 
million per year. There are signifi-
cant difficulties in determining the 
age of blacklip abalone (McShane 
and Smith, 1992), making them good 
candidates for size-structured assess-
ment modeling (Sullivan et al, 1990; 
Punt and Kennedy, 1997). Although 
used informally in the Tasmanian 
fishery, size-structured models are 
used formally to assess blacklip aba-
lone stocks elsewhere in Australia 
(Worthington et al., 1998; Gorfine 
et al., 2005) and to assess Paua (H. 
iris) in New Zealand (Breen et al., 
2003). With size-structured models 
it is important to generate a precise 
and unbiased mathematical descrip-
tion of growth because the adoption of 
an inappropriate growth model could 
have significant effects on the outcome 
of an assessment. 
Day and Fleming (1992) reviewed 

a range of models previously used to 
describe abalone growth. In total, 59 
growth studies have been undertak-
en on different abalone species. The 
von Bertalanffy growth curve (von 
Bertalanffy, 1938) has been used in 
42 (71%) of these studies and the 
Gompertz model (Gompertz, 1825). 
has been used in four studies (6.78%). 
The dominance of the von Bertalanffy 
growth model reflects its almost uni-
versal adoption in abalone fisheries 

assessments and the relative ease 
with which it can be fitted to growth 
data taken from tagging experiments 
(Fabens, 1965; Francis, 1988; Had-
don, 2001). In nine studies (15.25%), 
linear growth was proposed, but the 
focus of these nine studies was on 
juvenile and small abalone and that 
focus could imply that growth alters 
its character above a particular size, 
at least in some species. A f lexible 
growth description has also been giv-
en by Francis (1995) who generated a 
size-based analogue to the age-based 
growth description by Schnute (1981). 
Francis’s model has been used in New 
South Wales, Australia (Worthington 
et al., 1998), and New Zealand as-
sessments of abalone (Breen et al., 
2003). 
Sainsbury (1982a, 1982b) f itted 
von Bertalanffy growth curves to 
abalone tagging data from New Zea-
land (H. iris). Instead of assuming 
that the familiar parameters (L∞, 
the asymptotic maximum size, and 
K, the growth coefficient in the von 
Bertalanffy equation) were averages 
for the population, Sainsbury (1982a) 
inferred the growth dynamics implied 
when each individual had its own set 
of von Bertalanffy parameters. Es-
sentially, the growth characteristics 
of individuals were assumed to be 
variable and were described by using 
probability density functions to repre-
sent the model parameters. Similarly, 
a probability density function form of 
the Gompertz growth model was used 
in Victoria, Australia (Troynikov and 
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Table 1 
Data by sites and regional groupings of sites (Fig. 1) in southern Tasmania where blacklip abalone (Haliotis rubra) were collected 
to compare growth rates. Time step relates to whether the analysis was for annual or seasonal growth, count is the number of 
tags recovered, and Min–Max Init. L (in mm) are the minimum and maximum initial length of blacklip abalone at tagging for 
each site. 

Longitude Latitude Regional Count Min–Max Init. 
Time step (East) (South) grouping Site name n L 

Annual 145.492 −42.969 Southwest Black Island 116 57−171 

Annual 145.667 −43.075 Southwest Giblin River 84 83−173 

Annual 145.781 –43.226 Southwest Hobbs Island 57 57–181 

Annual 146.900 –43.566 Actaeon Gagens Point 154 50–142 

Annual 146.972 –43.549 Actaeon Middle Ground 353 47–146 

Annual 147.381 –43.366 Bruny Island Fluted Cape 135 83–154 

Annual 147.385 –43.111 Bruny Island One Tree Point 162 52–153 

Seasonal 146.996 –43.534 Actaeon Actaeon Island 390 61–176 

Seasonal 146.990 –43.550 Actaeon Sterile Island 373 48–146 

Gorfine, 1998; Troynikov et al., 1998; Bardos, 2005). 
Like the von Bertalanffy model, the Gompertz equation 
is deterministic in predicting an asymptotic maximum 
length. The probabilistic forms of these two models pre-
dict a more plausible range of final maximum lengths 
and some configurations of Francis’s (1995) model can 
also exhibit a spread of final sizes. However, like the 
von Bertalanffy and Gompertz models, Francis’s (1995) 
model fails to exhibit the linear-like early growth of 
small abalone that has been observed in Tasmania. 
An important characteristic of growth models is an 

ability to accurately model growth across a broad size 
range. Nine of the studies cited in Day and Fleming 
(1992) indicate that early growth in abalone is effec-
tively linear. This linearity contrasts strongly with both 
the von Bertalanffy curve (which predicts faster early 
growth) and the Gompertz growth curve (which predicts 
slower early growth). Neither the von Bertalanffy nor 
the Gompertz growth models are consistent with ob-
servations of effectively linear growth in small blacklip 
abalone in Tasmania, Australia (Prince et al., 1988; 
Gurney et al., 2005). Such early linear-like growth 
would imply constant growth increments in small ani-
mals and would require a different structural model to 
represent such growth dynamics. 
Given the wide variation in maximum sizes found in 
natural abalone populations, an alternative approach to 
using deterministic models (with a known or even prob-
abilistic asymptotic length) would be to model growth 
as indeterminate. Indeterminate growth would imply 
no specific upper limit and animals would be expected 
to continue growing, even if very slowly, until they die. 
This indeterminacy would have the disadvantage in that 
there would be no simple analytical solution for length-
at-age, but nevertheless this strategy could provide for 
intuitively simple empirical descriptions of growth that 
avoid the complexities of fitting probabilistic models as 
proposed by Sainsbury (1982a) and Bardos (2005). 

Here we present a new empirical description of black-
lip abalone growth using an inverse-logistic model for 
both the mean growth increment and the predicted 
variation about the mean increment for a given shell 
length. In contrast to both the von Bertalanffy and 
Gompertz growth curves, the growth description given 
here allows for both linear growth of small and juve-
nile abalone as well as the option of either determinate 
growth (with a maximum shell length) or indeterminate 
growth (with a spread of maximum lengths). 

Materials and methods 

Examination of growth patterns 

To provide an initial empirical indication of growth 
patterns, the size of abalone at tagging were grouped 
into 10-mm classes and the mean growth increment in 
each class was then plotted on top of the raw data from 
the southwest area of Tasmania (a combination of three 
sites, Fig. 1; Table 1). 

Tagging methods and locations 

Two sets of data were used in the description of the 
inverse-logistic model. Firstly, to examine annual growth 
increments, we used tagging data from seven sites 
around the south of Tasmania (Fig. 1). Data from those 
sites were limited to tagged-and-recaptured abalone 
and the data were collected approximately one year 
apart (between 0.96 and 1.05 years apart). Abalone 
from some groups of sites were found to exhibit very 
similar growth patterns and the data from these sites 
were combined to generate three larger regions (namely, 
southwest, Actaeon, and Bruny Island) (Fig. 1; Table 1). 
Secondly, tagging data from two sites were used to 
examine seasonal growth (Table 1), and for this analysis, 
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Figure 1 
A map of Tasmania indicating the locations (black dots) from which the data on blacklip 
abalone (Haliotis rubra) growth increment patterns were collected. Left panel represents 
the southwest region comprising three sites: BI=Black Island, GR =Giblin River, and 
HI=Hobbs Island. Right panel represents the Actaeon region (comprising two sites: the 
GP= Gagens Point and MG =Middle Ground sites) and the Bruny Island region (com-
prising two sites: FC=Fluted Cape and OTP= One Tree Point sites). Seasonal data are 
identified by a combination of a circle and cross for both the Actaeon Island (AI) and 
Sterile Island (SI) sites (Table 1). 

tagging and recaptures were scattered throughout the 
year and the recapture intervals ranged from 0.06 to 
1.99 years. 
We tagged blacklip abalone by inserting a plastic 
rivet into the open exhalent hole furthest from the shell 
lip. The rate of tag fouling, and the increased risk of 
the tag not being found, increased dramatically after 
two years; therefore, only tags at liberty for less than 
two years were used in the analyses of seasonal growth. 
Across all sites, tagged abalone ranged in size from 47 
mm to 181 mm shell length, but ranges varied at each 
site (Table 1). Measurements of maximum shell length 
were taken to the nearest 1.0 mm. 
There is some evidence that tagging can negatively 

affect the growth of tagged animals, producing a tagging 
shock in affected individuals (Prince et al., 1988). It 
seems plausible that at least some of the variability 
in growth observed in abalone tagging experiments 
derived from different responses to the tagging process. 
In an attempt to minimize such effects in this study, 
tagging methods were standardized; animals were 

kept damp and cool during the tagging process before 
being returned to their reefs by divers. Blacklip abalone 
<50 mm shell length were not sampled because they 
tend to be highly cryptic in Tasmania, initial capture 
below this size is difficult, and adhesives rather than 
rivets, must be used to attach tags to young abalone. 

Growth model 

The units of growth used here are the growth increments 
(ΔL) produced by animals of known starting lengths (Lt) 
that have been at liberty for varying lengths of time (Δt). 
The model structure includes seasonality by default, and 
the seasonality terms are set to have zero influence to 
form an annual model. The form of the inverse-logistic 
curve used is a typical logistic selectivity curve described 
by Haddon (2001). 
Growth of blacklip abalone does not differ between 

the sexes. An inverse-logistic model was used to de-
scribe the expected length increment ΔL for a known 
initial size Lt: 
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	  
∆t + Csin(2π (tR − p))− 

Max∆L ×   
  
Csin 2π t − p ∆L =  ( ( T ))  + εLt , (1) Lt−Lm  

	 50 Ln(19)	 Lm −Lm 
 95 501+ e 

where MaxΔL =	 the hypothetical asymptotic maximum 
growth increment at some initial size 
of abalone that sets the exponential 
term to zero; 

Δt = the interval between tagging and 
recapture (as a fraction of a year); 

Lt = the size when first tagged; 
Lm 
50 =	 the initial length at which the mid-

way point between the MaxΔL and 
lowest growth increment is reached; 

Lm 
95 =	 the initial length at which 95% of the 

difference between the smallest and 
maximum increment is reached; 

C =	 the amplitude of the seasonality effect 
for ΔL; 

tR and tT =	 the dates of recapture and tagging, 
respectively (as fractions of a year, 
e.g., June 30th = 0.5; tR = tT + Δt); 
and 

p =	 the date of maximum growth rate (as 
a fraction of a year). 

The error term εLt is additive and normal, and is assumed 
to have a mean of zero and standard deviation σLt that 
can be defined either as a function of initial length, Lt, 
or as a function of the predicted length increment ∆L̂t . 
If the expected length increments ever attain zero, or go 
negative, then the standard deviation of the residuals σLt 
can be defined in terms of the initial length Lt: 

∆t + C	 sin 2π t − p −  σ ( ( R ))  
Maxσ × 	 L Cσ sin(2π (tT − p)))  

σ =   (2),
Lt Lt−Ls
 Ln(19)
 50 

Ls −Ls 95 501+ e 

where MaxσL =	 the hypothetical asymptotic maximum 
standard deviation of the residual 
values at some initial size of abalone 
that sets the exponential term to 
zero; 

LS 
50 and LS = the parameters describing the inverse-95 

logistic for how the variability of resid-
uals reduces with increasing Lt; and 

Cσ = the amplitude of the seasonality effect 
for the σLt term. 

The fact that Ln(19) is used instead of –Ln(19) implies 
that the logistic is inverse and that the L95 parameters 
relates to the 95% point (Ln(15) would equate to the 
75% point). The inverse-logistic description of variation 
is general; however, if the expected length increments 
always remain greater than zero then the standard 
deviation of the residuals σLt can be defined as the 
simpler 

β σ =α ∆L̂ t ,	 (3)Lt   

where α and β are parameters of a power relationship 
with the expected length increment ∆L̂t and the season-
ality is achieved from Equation 1. 

When seasonality is ignored (when estimating annual 
growth increments), the C and Cσ parameters are set 
to zero leaving the simple Δt so that any slight devia-
tions from a Δt of one year are assumed to alter the 
predicted growth in a linear fashion. Thus, 0.95 of a 
year permits 95% of the growth increment of that year. 
With the use of Δt alone, there is the assumption that a 
simple linear scaling of growth increment with respect 
to time elapsed will provide sufficient adjustment for 
small deviations of Δt from one year. 
Using a normal distribution to describe the residuals, 
we found that there was an excellent match of this dis-
tribution to available data. However, if some probability 
density function other than the normal distribution 
provided a better fit for some other species or popula-
tion, then the equivalent measure of spread about the 
expectation would need to be implemented. 
Where the tagging interval is greater than one year, 
the expected growth increment is estimated in two 
steps. First, the expected growth increment and stan-
dard deviation that would be expected during a year of 
growth are estimated, and then the growth increment 
for the fraction of the year remaining from the date 
of tagging to the date of recapture (after subtracting 
one year) is estimated by using the initial size plus 
the estimated yearly growth increment as the starting 
length for the second installment of growth. Thus, ΔL 
is first estimated with Equation 1 with the C and Cσ 
parameters set to zero, and Δt set to 1.0, and then the 
fraction of a year remaining from the date of tagging 
to the date of recapture (after subtracting one year) is 
used in the full version of Equation 1 and the Lt is set 
to the original Lt plus the ΔL predicted from one year 
of growth. The two sequential ΔL estimates are added 
together to obtain the total predicted growth incre-
ment. Using Equation 2 to define the variation about 
the curve, we applied a similar sequential process to 
the estimation of the standard deviation of the respec-
tive residual errors. In this case, the expectation was 
that the variability would reduce with increasing size 
so the Cσ parameter was expected to be negative rather 
than positive as was expected for the C parameter. 
The use of Equation 3 requires that it be applied to 
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the predicted ΔL. Given that the first year of growth is 
always assumed to equal the average increment, there 
is an increased chance that the overall variability of the 
residuals will be underestimated. However, in practice, 
bias appears to be small as long as the data available 
from greater than a single year overlap the available 
data from durations less than a year in terms of the 
initial shell lengths. 

Alternative growth models 

To provide a comparison with the inverse-logistic model 
both the von Bertalanffy (Fabens, 1965) and Gompertz 
curves (Troynikov et al., 1998) were fitted to the tagging 
increment data from southwest Tasmania: 

− K∆t∆L = (L∞− Lt )(1− e ), (4) 

where L∞ = the asymptotic maximum size; and 
K = the von Bertalanffy growth rate coefficient; 

and 

with 

exp(− g∆t) Lt ∆L = L∞  − Lt, (5)
 L∞

where g = the growth rate parameter in the Gompertz 
equation. 

Likelihoods 

At each geographical site, normal likelihoods with non-
constant variances (Eqs. 2 or 3), were used to fit the 
inverse-logistic model to the n available data points. The 
negative log-likelihood was minimized to determine the 
optimum parameter estimates: 

  2  
 ∆ ̂    − ∆L− L 
      

 n 2σ 2  1 Ltt −veLL = − Ln e  . (6) 
L
∑ 
t=1  

2πσ Lt  

The nonlinear solver in Excel 2003™ (Microsoft, Seattle, 
WA) was used to fit all models. 

Alternative model arrangements 

The full seasonal model has nine parameters, but alter-
native model structures are possible that use fewer 
parameters. The alternative model structures suggested 
relate to the description of the variability about the 
expected curve. With the seasonal growth description, 
instead of using Equation 2 to describe the expected 
residual structure with the Tasmanian data, an accept-
able alternative was to ignore the denominator and focus 

only on the seasonal changes in variability, thus reduc-
ing the number of parameters to seven: 

∆ + C sin(2π (t − p)) − σ = Maxσ L ×  . (7)Lt Cσ sin(2π (tT − p)))  
t σ R 

  

An alternative approach to implementing this structural 
change would be to set the LS 

50 and LS 
95 parameters in 

the denominator of Equation 2 to values much larger 
than the maximum observed initial size. This change in 
the denominator leads to the exponential term becoming 
insignificant so that the denominator contracts to one, 
the division thus has no noticeable effect, and Equation 
2 becomes equivalent to Equation 7. 
When only annual data are available, the seasonality 
terms could be ignored and thus a six-parameter model 
could be used. After the six-parameter model was fitted 
to real data, it became clear that the LS 

95 value was 
often close to the maximum size of abalone found in 
Tasmania; therefore it was possible to generate a five-
parameter model by replacing the LS 

95 parameter with a 
constant 210 mm (the size of an abalone that was never 
tagged but sometimes found in nature). In addition, the 
LS 
50 value was often close to the Lm 

95 value. By replacing 
the former with the latter it was possible to generate a 
four-parameter model: 

Maxσ ×∆tσ = L . (8)Lt Lt−Lm 
Ln(19) 95 

210−Lm 
951+ e 

The three alternative annual models (4, 5, and 6-
parameter models) were fitted to the available data 
from the three regional groups of sites from around 
southern Tasmania. A comparison of the relative fit of 
each model was made by using Akaike’s information 
criterion, AIC = −2LL + 2k, where LL is the log-likeli-
hood and k is the number of parameters. In addition, 
the Bayesian Information Criterion BIC = −2LL + 
kLn(n) was also used, where n is the total number of 
observations (Burnham and Anderson, 2002). For each 
of these statistics, the model with the smallest value 
is to be preferred (Quinn and Deriso, 1999). The AIC 
only includes the log-likelihood and the number of 
parameters, whereas the BIC also includes the natural 
log of the sample size. Where the sample size is greater 
than 7 [Ln(7.389)=2], the BIC penalizes the addition 
of extra parameters more than the AIC. Thus, with 
the sample sizes observed in the tagging data (Table 
1) the BIC would be expected to recommend more par-
simonious models (those with fewer parameters) than 
would the AIC. 
In addition to comparing the AIC and BIC values for 
the different models, likelihood ratio tests were con-
ducted to compare the alternative model fits by using 
different numbers of parameters (Quinn and Deriso, 
1999; Haddon, 2001). Given the log-likelihood for each 
model fit, the likelihood ratio test is 
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2χdf = −2(
LLR − LLF ), (9) 

Figure 2 
Plot of growth increment (mm) after approximately one year against ini-
tial length (mm) for blacklip abalone (Haliotis rubra) from the southwest 
region of Tasmania. The vertical dashed lines represent the boundaries of 
the 10-mm size classes and the curved line and black squares represent 
the trend and mean growth increments, respectively, for each class of 
initial sizes. Mean values are only shown for initial size classes repre-
senting more than one observation. Negative increments were included 
in the mean estimates. 
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where LLR = the log-likelihood for 
the model with fewest 
parameters; and 

LLF = the log-likelihood of the 
model with most param-
eters. 

In the chi-squared statistic, χ2 df , df is 
the difference in number of parameters 
(in this case comparing 4 with 6 and 
5 with 6 means df takes the value of 
either 2 or 1, respectively). 

Defining the growth transition matrix 

The data from all sites includes 
instances of negative increments (Fig. 2) 
and hence it is not surprising when the 
predicted increments also feature nega-
tive values. This implies that abalone 
can decrease in size during a time step. 
However, abalone tend not to exhibit 
negative growth; instead these negative 
increments are assumed to be the result 
of measurement error. The transition 
probabilities are simply the cumulative 
normal distribution to the upper size limit of each size σ jLi = the standard deviation of the normal distri-
class minus the cumulative normal distribution to the bution of growth increments for the initial 
lower size limit of each size class in turn: size class j. 

= the expected average final size for initial sizeLi,j 
class j, which equals Lj + ∆L̂ i j , where ∆L̂ i j, , 
is the average expected growth increment 

 2 for initial size class j. 

Summing the smallest size class to −∞ and the largest 

 

 

 
 



 

 

 
 



 − 

2
 

Li Li j, 



− 2LW  Li+ j 

Li 
σ2 

1 size class to +∞ effectively makes both of these size∫
G dL Li L= e = Minj2πσi j, classes plus-groups that ensure that the transition prob-Li−∞ 
abilities for all n size classes sum to one. 2 

 

 

 
 
 

 
 

 

 
 


 − 

2
 

Li Li j, 



− Length at age2+LW 

2 
 Li j 
Li 
σ 

1∫
 Because of the potentially indeterminate nature of theGi dL L < LMMax ,, (10)Li<= e , jj Minj2πσ growth description, there is no analytical version of theLiLW−Li 2 growth equation that can provide a length for a given 
 2 age. Instead, growth needs to be simulated to estimate 

length at age. That is, an initial length is assumed and 
then the predicted growth increment in a given time 

 
 

 

 



 
 

 

 



 − 

2
 

Li Li j, 



− 2 j 

Li 
+∞ σ 

1 interval (seasonally short or annual) is estimated; this 
is then added to the initial length and the process is∫
G dL Li = LMax = ej2πσi j, 

LiLW−Li repeated to generate a predicted length at age. The2 

where Gi,j = the transition probability of an abalone 
growing from size class j into size class 
i; 

Li = the mid-size of size class i; 
LW = the size class width; and 

simulated growth increments may include stochasticity 
(guided by the non-constant variance with initial length) 
and lead to a scatter of predicted sizes. Alternatively, 
growth can be simulated by using the growth transi-
tion matrix from the model fit. For annual growth only 
one transition matrix is required, however, to describe 
seasonal growth there would need to be an array of 
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growth transition matrices describing the 
expected growth for different parts of the 40 
year. 

35 

Comparison of productivity between areas 30 

With the inverse-logistic description of 25 

growth the parameter combinations do not 
20

provide an intuitively obvious indication of 
the productivity of different areas. A large 15 
MaxΔL does not necessarily mean an area 

10has high productivity if the large growth 
increments occur only for relatively small 5 
animals. An index of relative productivity 

0can be obtained by applying the growth 
transition matrix derived for an area to a -5 
standard initial vector of numbers at size. 
The areas considered here were compared 
by generating an annual transition matrix 
for each area with 31 five-mm size classes 
from 60 mm up to 210 mm. This transi-
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von Bertalanffy 

Gompertz 

Inverse-logistic 

0 25 50 75 100 125 150 175 

Initial size Lt (mm) 

Figure 3 
Visual comparison of the von Bertalanffy, Gompertz, and inverse-logistic 

tion matrix was multiplied with an initial curves fitted to the annual data from the southwest region of Tasmania. 
numbers-at-size vector containing 1000 The expected growth increments for smaller blacklip abalone (Haliotis 
individuals in the smallest size class. This rubra) for each curve are also illustrated as extensions of the lines (to 
multiplication was then repeated itera- the left) and these demonstrate major differences between the curves. 
tively for 10 years of growth (i.e., without The horizontal line at zero represents the point of no growth. 

mortality). The final numbers at size were 
converted to mass by using the standard 
Weight = aLengthb where, in southern 
Tasmania, a = 5.669E−05 and b = 3.1792, to provide a 
comparable index of relative productivity between areas 
in kilograms. 

Results 

Initial summary of growth patterns 

The general growth pattern apparent in the southwest 
Tasmania (Fig. 2) was also found at other sites around 
Tasmania, although its full expression was sometimes 
obscured because the range of available data was lim-
ited or truncated by intense size-selective fishing on 
the larger abalone or because of difficulty in finding 
cryptic smaller abalone. The growth pattern begins 
with a relatively constant growth increment (implying 
linear-like growth) in the smaller-size abalone. This 
early linear-like growth is followed by a steady decline 
in growth increment, possibly approaching some mini-
mum annual increment in what would be an asymptotic 
fashion. Not only do the growth increments follow this 
decreasing pattern, but a similar pattern is exhibited 
by the variability of the observed growth increments 
around the mean trend, although the decrease in varia-
tion only occurs at larger sizes (Fig. 2). This pattern of 
growth differed markedly from the expectation of both 
the von Bertalanffy and the Gompertz growth models, 
even when these models were implemented with prob-
ability density functions instead of constant parameters 
(Sainsbury, 1982a; Troynikov et al., 1998; Bardos, 2005). 

Instead of these standard curves, the growth pattern 
observed indicated that some kind of inverse-logistic 
curve might describe the observations well across the 
range of available data. If the minimum predicted mean 
growth increment was greater than zero, it would indi-
cate indeterminate growth in which the dynamics would 
permit growth to continue (possibly very slowly) until 
each animal died. An alternative way of looking at 
indeterminate growth is to note that there may be an 
upper size limit, at which the growth increment becomes 
zero, but it is so high that individuals never reach it 
before death. 

Comparison of the inverse-logistic, von Bertalanffy, 
and Gompertz models 

For the southwest region, the three different growth 
curves all predicted or described the expected growth of 
blacklip abalone reasonably well . The overlap between 
the von Bertalanffy and Gompertz curves was especially 
close over this range (Fig. 3). However, at smaller and 
larger sizes all three curves diverged significantly. The 
von Bertalanffy and Gompertz curves both predicted 
negative growth increments beyond the L∞ (although 
using a probabilistic version of these curves could pre-
vent this problem). The major difference between the 
three curves was therefore found in what was predicted 
for smaller abalone. The von Bertalanffy curve predicted 
linearly decreasing growth increments (Fig. 3) as initial 
size increased. The Gompertz curve predicted initial 
exponential growth, starting from very small increments 
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Figure 4 
Optimum curves fitted to the three regional groups of sites (southwest, Bruny 
Island, and Actaeon). Illustrated in each case is the 4-parameter model. Although 
not illustrated at the given scale, almost no difference would be discernible between 
the 5- and 6-parameter models. The horizontal lines at zero represent the point of 
no growth. 

for the smallest abalone and reaching a maximum and Annual growth descriptions 
tailing off as initial length increases. Finally, the inverse-
logistic curve predicted constant increments for smaller Within each of the three regional groups of sites, the 
abalone (initial linear growth) until the growth incre- predicted mean growth increment for given initial shell 
ments began to decrease with increasing initial length. lengths for the 4-, 5-, and 6-parameter models was very 
The minimum AIC and BIC were produced by the similar (Fig. 4). In the case of the southwest and Actaeon 
4-parameter inverse-logistic curve and not by the 3- regions, the predicted lines were visually coincident, 
parameter von Bertalanffy and Gompertz curves. The whereas for Bruny Island there were only very slight 
log-likelihoods were −726.1 for the von Bertalanffy, differences in the three curves (Table 2). 
−712.2 for the Gompertz, and −681.1 for the inverse- For both the southwest and the Actaeon regions, the 
logistic model. With only one more parameter than the 4-parameter model was deemed the optimum model 
other two models, a likelihood ratio test implies that configuration by both the AIC and BIC. For the Bruny 
the inverse-logistic curve was a significant improvement Island region, the BIC indicated that the 4-parameter 
over the other two curves. model was optimal and the AIC indicated the 6-param-
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Table 2 
Alternative annual model structures, with their parameters, for the three regional groups of collection sites. The number after 
each regional name denotes the number of free parameters fitted to the available data. For site locations see Figure 1 and Table 1. 
MaxΔL is the hypothetical asymptotic maximum growth increment, Lm 

50 is the initial length at which the midway point between 
the MaxΔL and lowest growth increment is reached, and Lm 

95 denotes the initial length at which 95% of the difference between 
the smallest and maximum increment is reached. MaxσL is the hypothetical asymptotic maximum standard deviation, L

S 
50 and 

LS 
95 are the inverse-logistic parameters describing how the variability of residuals decreases with increasing Lt, and Prod Kg is 
the relative productivity in kilograms derived from the respective transition matrix. See Equations 1 and 2. 

Model MaxΔL Lm 
50 Lm 

95 MaxσL LS 
50 LS 

95 Prod Kg 

Southwest 6 20.393 130.648 164.824 4.461 163.736 214.934 473.5 

Southwest 5 20.381 130.669 164.768 4.396 163.735 210 473.1 

Southwest 4 20.364 130.688 164.551 4.346 Lm 
95 210 472.1 

Actaeons 6 23.922 106.084 144.431 4.311 138.679 175.809 308.4 

Actaeons 5 23.889 106.136 144.243 4.623 142.934 210 308.6 

Actaeons 4 23.873 106.165 144.152 4.551 Lm 
95 210 308.1 

Bruny Island 6 28.612 119.736 160.142 4.267 151.438 160.876 459.2 

Bruny Island 5 28.386 119.893 159.105 4.297 173.763 210 453.3 

Bruny Island 4 28.916 119.421 161.336 4.603 Lm 
95 210 467.2 

Table 3 
For each model and parameter combination, the Bayesian information criterion (BIC), Akaike information criterion (AIC), nega-
tive log-likelihood (−veLL), and total number of observations n are given. The italicized cells denote the minimum for each 
criterion and region. The columns labeled “Model 5” and “Model 4” denote the likelihood ratio test values compared to the models 
in the Model column. The comparisons in Model 5 column had one degree of freedom and for the 5-parameter model to be better 
than the 4-parameter, it had to be greater than χ21 =3.84, and the comparisons in the Model 4 column had two degrees of free-
dom and had to be greater than χ2 =5.99 for the models with more parameters to be significantly better than the 4-parameter 2 
model. 

Model BIC AIC -veLL n Model 5 Model 4 

Southwest 6 1395.1 1373.9 680.96 252 0.14 0.18 

Southwest 5 1389.7 1372.1 681.03 252 0.04 

Southwest 4 1384.2 1370.1 681.05 252 

Actaeons 6 2716.3 2690.9 1339.5 500 3.6 3.8 

Actaeons 5 2713.7 2692.7 1341.3 500 0.2 

Actaeons 4 2707.6 2690.7 1341.4 500 

Bruny Island 6 1747.6 1725.5 856.7 295 2.4 4.8 

Bruny Island 5 1744.2 1725.8 857.9 295 2.4 

Bruny Island 4 1740.9 1726.2 859.1 295 

eter model was optimal (Table 3). At the same time, 
the likelihood ratio test indicated in all cases that the 
4-parameter model was not significantly worse than any 
other model (Table 3; Fig. 3). 
The key differences that occur between the fitted 
models relate to how well they describe the trends in 
variation along the curves. The data for the southwest 
had the widest size range and the similarity of the 
fitted LS 

50 parameter to the L
m 
95 parameter was clear. 

At the same time, the LS 
95 parameter was only slightly 

bigger than 210 mm (Table 2). Thus, the substitutions 
to create the 4-parameter model had little effect on the 

outcome if this model was used to predict the likely 
distribution of growth increments (Fig. 5). The main 
effect of reducing the number of parameters used was 
to slightly reduce the variation beyond about 170 mm 
initial shell length. 
The 6-parameter model has sufficient flexibility in 
that it can accurately describe both the mean growth 
trend and the pattern of variation around the expected 
mean growth increments. This was not necessarily an 
advantage when the high level of fishing mortality ap-
plied to legal-size abalone means that the availability 
of larger size abalone in the tag return data can be 
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Figure 5 
Plots of the mean predicted growth increments (solid black line), and a set of simulated data 
derived from the optimum model in each case (fine dots). The left hand panel represents the 
4-parameter model; the right hand panel represents the 6-parameter models. All predicted nega-
tive increments were omitted. For each area the curves were fitted to the same data as those 
illustrated in Figure 4. 

limited and only provided a biased perception of the 
growth of larger abalone. With the southwest data the 
difference between the 4- and 6-parameter models was 
slight; however, larger differences were found when the 
4- and 6-parameter models were applied to the other 
two regions, which were less well represented in the 
larger initial sizes (Fig. 4). Most obviously, at Bruny 
Island (Fig. 5), the 6-parameter model so closely de-
scribed the available data that beyond about 160 mm, 
the model predicted essentially no variation around 
the predicted mean growth increments. Although the 
6-parameter model accurately described the available 

data, the 4-parameter model provided a more realistic 
representation of the spread of predicted growth incre-
ments for initial sizes for which there were few or no 
observed data (Fig. 5). 
Of the three regions considered, the southwest and 
Bruny Island were similar in terms of relative produc-
tivity and the Actaeon regional sites were the least 
productive (Table 2). The parameter combinations for 
the southwest and Bruny Island regions were rather 
different, but although the MaxΔL was 8 mm larger at 
Bruny Island than in the southwest, it was offset in the 
southwest by the higher value for Lm 

50. The two sites 
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constituting the Actaeon region samples were within 
relatively low productivity areas that may be consid-
ered to be atypically low for the Actaeon area (see the 
seasonal analysis). 

Table 4 
Seasonal growth-description parameter estimates. All 
parameter definitions are given with Equation 1 under 
the heading “Growth model” in the Materials and meth-
ods section. In the Actaeon Island estimates LS 

50 and L
S 
95 

reached the limits placed on the parameters. At Sterile 
Island, the parameter estimates obtained did not change 
when the LS 

50 and L
S 
95 estimates were replaced with 209 

and 210, respectively. In all cases the logistic reduction 
in the variance was negligible. The −veLL is the nega-
tive log-likelihood. Productivity, in kilograms, is the rela-
tive productivity derived from the respective transition 
matrix. 

Parameter Actaeon Island Sterile Island 

MaxΔL 21.8464 20.0111 

Lm 
50 129.9702 121.7953 

Lm 
95 162.1723 161.4016 

MaxσL 6.7129 6.8766 

LS 
50 209 186.9362 

LS 
95 210 192.3000 

C 0.1123 0.0907 

p 0.1263 0.1561 

Cσ –0.0821 –0.0489 

Productivity Kg 484.2 419.4 

-veLL 1249.673 944.564 

Figure 6 
A comparison of the implied seasonal growth curves at 
the Actaeon and Sterile Islands in southern Tasmania. 
The fine horizontal dashed line at 138 mm is the current 
legal minimum length. The curves remain approximately 
linear until about 100 mm shell length. The slowest growth 
periods line up approximately with October each year. 
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Seasonal growth descriptions 

Seasonal growth descriptions were fitted to data from 
two sites in southeast Tasmania: Actaeon Island and 
Sterile Island (Table 1; Fig. 2). In each case, when the 
inverse-logistic curve describing the standard deviation 
of the residual errors was fitted, the estimates of LS 

50 
and LS 

95 were both much larger than the maximum size 
observed. In effect, this result implied that the vari-
ability was best described with Equation 7 rather than 
Equation 3. For this reason, the 7-parameter model was 
preferred to the 9-parameter model, even though the 
optimum fit in each case lead to the same results in 
terms of parameter estimates and log-likelihood. The 
two sites are very close together geographically (~2 km 
apart) and, in this case, the parameter estimates were 
similar between the two sites (Table 4). 
By assuming a starting size of 0.25 mm on the 
25th November (a typical size and date of settle-
ment for a newly settled blacklip abalone) in an 
arbitrary year, and by calculating the expected 
size increment in a series of 8-day steps forward 
in time, adding those increments to the initial size 
and then repeating the process, it was possible to 
visualize the seasonal growth of animals (Fig. 6). 
The main difference in the parameters is in the Lm 

50, 
which was 8.0 mm larger at Actaeon Island (Table 4). 
This difference led to the abalone at Actaeon Island 
reaching the current minimum legal length of 138 mm 
in approximately eight years, whereas the difference led 
to the current minimum legal length in nine years, on 
average, at Sterile Island (Fig. 6). 
The Actaeon Island site was far more productive than 
Gagens Point and the Middle Ground, both in the Ac-
taeon region and, in fact, was as productive as both 
the Bruny Island and southwest regions (Tables 2 
and 4). The Sterile Island site had a productivity 
that was only 89% of that of the Actaeon Island site 
(431 kg vs. 485 kg; Table 4), this was also reflected 
in a one year difference in time to legal minimum 
size (Fig. 6). 
The pattern of seasonality was very similar be-

tween the two sampled sites; linear-like initial 
growth proceeded at least until 100 mm shell length. 
The phase parameter, p, value of 0.118 implies that 
the fastest period of growth occurred on 11th Febru-
ary at the Actaeon Islands, whereas at Sterile Island 
the estimate of 0.156 indicates the fastest growth 
occurred two weeks later on 25th February. 

Discussion 

Comparison of inverse-logistic, von Bertalanffy,
 
and Gompertz models
 

The major difference between the inverse-logistic 
growth description, the von Bertalanffy growth curve, 
and the Gompertz growth curve is seen in the model 
fit at the extremes of the growth trajectory. Without 
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a probabilistic interpretation of the parameters, the 
von Bertalanffy and Gompertz curves predict negative 
growth increments at initial lengths greater than L∞, 
and the inverse-logistic predicts ever decreasing growth 
increments as the initial length at tagging increases. 
Thus, a realistic representation of the final size distribu-
tion of larger abalone is provided by the inverse-logistic 
model without the complexity of a probabilistic inter-
pretation of the parameters. In Tasmania, the growth 
of small abalone, at least above 10 mm, appears to be 
linear-like and to increase in relatively constant growth 
increments through time (Prince et al., 1988; Gurney 
et al., 2005). Although the von Bertalanffy and Gomp-
ertz equations can approximate linear-like growth over 
these small sizes, linear growth limits their capacity to 
describe accurately the growth of larger animals at the 
same time. The von Bertalanffy curve predicts a linear 
relationship between growth increment and initial shell 
length. The Gompertz equation, on the other hand, pre-
dicts that small abalone would have very small growth 
increments that initially increase with initial length 
and then decline again. Neither of these alternatives is 
consistent with observations in Tasmania of linear-like 
early growth. 

Growth pattern 

The tagging data on growth increments of blacklip aba-
lone from various sites around the south of Tasmania 
were able to be grouped according to similarity of growth 
pattern. All regions exhibited a similar pattern of mean 
growth increments that were well described by a sym-
metric inverse-logistic curve. 
Negative growth increments observed in the tagging 

data were not taken to be evidence of negative growth, 
but were rather taken to be a reflection of measurement 
or recording errors, a possible chipping of shell edges 
during collection, or an increased chance of shell ero-
sion in disturbed animals (or a combination of these 
possibilities). Because of this, when simulating growth, 
negative increments were not included. 
The tagging data were, in some cases, truncated ei-

ther in the smaller or the larger sizes. The fishing mor-
tality rate on legal-size abalone is high and numbers of 
animals much larger than the minimum legal length 
are significantly reduced. In addition, the cryptic nature 
of undersize abalone means that obtaining representa-
tive data across the whole size range can be difficult. It 
is also possible that the tagging process could influence 
the subsequent rate of growth. Intuitively, if there were 
an impact, it would probably be a negative bias on the 
growth increments that would increase the variation ob-
served (by extending growth into smaller increments). 
Despite the limitations of the data, the proposed sys-

tem of two linked inverse-logistic curves proved capable 
of fitting and simulating data from three sites in south-
ern Tasmania. The inverse-logistic model was fully 
capable of producing transition matrices with predicted 
values across the full range of size classes required 
(60 mm to 210 mm). The truncation of the available 

data by high levels of fishing pressure did have effects, 
however. Surprisingly, the more complex 6-parameter 
model did not always provide the most workable de-
scription of growth because the fit with six parameters 
could over-emphasize missing data; that is, the absence 
of data could influence the fitted curve, especially when 
the flexibility of the 6-parameter curve was used. It can 
be argued that the simpler 4-parameter model provides 
a more useful description of growth because it is less 
likely to be influenced by peculiarities or limitations of 
the available data. For example, at the legal minimum 
size limit (136 mm shell length at the time of data 
collection), abalone from the Bruny Island region were 
growing an average of 8 mm per annum (with a range 
from 2 mm to 15 mm). However, fishing mortality rates 
at Bruny Island were very high and few legal-size ani-
mals remained for long at this site with the result that 
the tagging growth increment data were sparse above 
140 mm. The 6-parameter model describes the specific 
pattern of growth in the data from Bruny Island, trun-
cating any growth beyond the maximum size available, 
whereas the 4-parameter model extrapolates the growth 
pattern beyond the maximum size available in the data 
and, in this case, provides a much more plausible solu-
tion. For stock assessment purposes, the 4-parameter 
model would be more useful in practice. The symmetry 
of the inverse-logistic curve enables the 4-parameter 
model to project the growth dynamics into size classes 
for which there are few or no samples. 

Seasonal growth 

The independent samples from Actaeon Island and 
Sterile Island, which are close together geographically, 
generated very similar estimates of the timing of the 
seasonal changes in growth rates. These samples were 
so similar that the mean curves remained close until the 
abalone reached about 80 mm shell length. The abalone 
at Actaeon Island, however, continued growing rapidly 
for longer than the animals at Sterile Island; therefore 
these curves diverged. An implication of this difference 
in productivity is that instead of taking about 8 years to 
reach the legal minimum length, as at Actaeon Island, 
it takes 9 years at Sterile Island. 
The blacklip abalone at the Middle Ground and Ga-
gens Point sites were selected by local abalone divers as 
having notoriously slow growth. Compared to Actaeon 
Island, these two sites in the Actaeon Island region did 
indeed have relatively low productivity compared to the 
seasonal sample from Actaeon Island (only about 308 
kg relative to 484 kg); and this occurred despite the 
MaxΔL being about 23 mm for the Middle Ground and 
Gagens Point sites but only 21 mm at Actaeon Island. 
Productivity was strongly and positively correlated with 
the Lm 

50 and the Lm 
95 parameter values, which relate to 

how long the linear-like growth phase continues. 
The different sites in the Actaeon region are all rela-
tively close together geographically and yet variation in 
the parameter estimates and consequent productivity 
among sites were high. This result is consistent with 
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the idea that abalone growth is likely to be determined 
by local site-specific influences in addition to regional 
scale influences (McShane and Naylor, 1995; Naylor 
et al., 2006). Thus, although sites within the Actaeon 
region were variable, similarities were evident between 
sites located in distant regions (e.g., in the southwest 
and Bruny Island). This variability in growth has ob-
vious implications for the confidence with which it is 
possible to conduct stock assessments for abalone over 
large areas. The description of growth in size-structured 
models is so influential that the interpretation of any 
model outputs would need to be made with great atten-
tion paid to any potential biases brought about by us-
ing an under- or over-productive description of growth. 
Estimates of productivity derived from the inverse-
logistic description of growth would be expected to lie 
somewhere between that predicted by the von Berta-
lanffy curve and the Gompertz curve. The von Berta-
lanffy curve predicts very rapid early growth and so, 
all other things being equal, would predict the highest 
productivity levels, whereas the Gompertz curve pre-
dicts very slow early growth and thus would predict 
the lowest productivity. These differences are why the 
selection of the most appropriate model of growth is 
critical for stock assessments. For blacklip abalone in 
Tasmania the inverse-logistic model provides the most 
realistic representation of the dynamics of growth. 
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