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Knowledge of an animal’s diet is 
important for understanding its for-
aging behavior, habitat use, and popu-
lation dynamics, and this knowledge 
is of particular importance when con-
sidering threatened and endangered 
species. Steller sea lions (Eumetopias 
jubatus) are a case in point. Rang-
ing throughout the North Pacific Rim 
from California to Japan (Loughlin 
et al., 1984; Pitcher et al., 2007), 
Steller sea lion populations in western 
Alaska underwent dramatic declines 
from the late 1970s to early 1990s 
(Braham et al., 1980; Merrick et al., 
1987; Loughlin et al., 1992; Trites 
and Larkin, 1996). This population 
was listed as “threatened” under 
the Endangered Species Act (ESA) 
in 1990, and later the western stock 
was listed as “endangered” (Lough-
lin, 1997; NMFS, 2008). The primary 
hypothesis for the decline has been 
chronic nutritional stress related to 
changes in diet (Springer, 1992; Mer-
rick and Loughlin, 1997; Trites and 
Donnelly, 2003; NMFS, 2008). 

With the nutritional stress hypoth-
esis (Springer, 1992; Merrick et al., 
1997; Trites and Donnelly, 2003), 
and its successor, the ocean climate 
hypothesis (Trites et al., 2007a), de-
clines in the Steller sea lion western 
distinct population segment (WDPS) 
were proposed to be the result of 
changes in the quantity, quality, and 
availability of prey, brought about 
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Abstract—We described the diet of 
the eastern stock of Steller sea lions 
(Eumetopias jubatus) from 1416 scat 
samples collected from f ive sites 
in Oregon and northern California 
from 1986 through 2007. A total of 
47 prey types from 30 families were 
identified. The most common prey was 
Pacific hake (Merluccius productus), 
followed by salmonids (Oncorhynchus 
spp.), skates (Rajidae), Pacific lam-
prey (Lampetra tridentata), herrings 
(Clupeidae), rockfish (Sebastes spp.), 
and northern anchovy (Engraulis 
mordax). Steller sea lion diet composi-
tion varied seasonally, annually, and 
spatially. Hake and salmonids were 
the most commonly identified prey 
in scats collected during the summer 
(breeding season), whereas hake and 
skate were most common in the non-
breeding season. Continued research 
on Steller sea lion diet and foraging 
behavior in the southern extent of 
their range is necessary to address 
issues such as climate change, inter-
action with competing California sea 
lions, and predation impacts on valu-
able or sensitive fish stocks. 

by an ocean climate regime shift in 
1976–77 (but see Fritz and Hinckley, 
[2005]). This shift is hypothesized 
to have forced Steller sea lions to 
change their diet and to have re-
sulted in chronic nutritional stress 
manifested by reductions in body 
size, productivity, and juvenile and 
pup survival (York, 1994; Trites and 
Donnelly, 2003). Other explanations 
for the decline of the WDPS that 
were considered but rejected included 
population redistribution, commercial 
and subsistence harvest, predation, 
pollution, and entanglement in ma-
rine debris (Merrick et al., 1987). 

A lthough the Stel ler sea l ion 
WDPS experienced annual declines 
in abundance ranging between 1.6% 
and 5.2% (Merrick et al., 1987), the 
abundance in the eastern distinct 
population segment (EDPS) increased 
at 3.1% per year from 1977 through 
2002 (Pitcher et al., 2007; NMFS, 
2008). The hypothesized role of poor 
diet in the decline of the WDPS, con-
trasted with the increasing EDPS, 
begs the question as to what type of 
prey the Steller sea lion EDPS con-
sumes and how does it compare with 
that of the WDPS. The majority of 
information on Steller sea lion diet, 
however, has come from Alaska (e.g., 
Pitcher, 1981; Merrick et al., 1997; 
Sinclair and Zeppelin, 2002; Womble 
and Sigler, 2006; Trites et al., 2007b; 
McKenzie and Wynne, 2008). In this 
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study, we provide data on Steller sea lion diet from 
the southern extent of the EDPS range based on 1416 
scat (fecal samples) collected from five sites in Oregon 
and northern California from 1986 through 2007. We 
tested for seasonal, annual, and spatial differences in 
diet composition and discuss our results in relation to 
findings from Alaska.

Materials and methods

Field and laboratory

We collected scat from four locations off Oregon and one 
location off northern California from 1986 through 2007 
(Fig. 1; Table 1). Three of the five locations were occu-
pied seasonally as rookeries (Orford Reef, Rogue Reef, 
St. George Reef), whereas the other two were strictly 
nonbreeding haul-outs (Columbia River South Jetty, Cas-
cade Head). Scats collected from May through August 
were classified samples from the “breeding season” and 
scats from the remainder of the year, as samples from 
the “nonbreeding season.” Scats were collected opportu-
nistically as part of other research activities or during 
dedicated food habit collection trips. 

Scat samples were collected and processed accord-
ing to the method described in Lance et al.1 Collec-
tions made after 2003 were processed with a standard 
washing machine according to collection and processing 
procedures described in Orr et al. (2003). Recovered 
hard parts were examined with a dissecting micro-
scope and identified to the lowest possible taxonomic 
level by comparing all identifiable prey remains (e.g., 
bones, otoliths, cartilaginous parts, lenses, teeth, and 
cephalopod beaks) with a comparative reference collec-
tion of fish from the northeastern Pacific Ocean and 
Oregon estuaries. Individual samples that contained 
both identified prey and remains too eroded to be iden-
tified (unidentified fish) were included in this analysis, 
whereas samples with only unidentified remains (n=11) 
or no remains (n=22) were not.

Data analysis

We summarized the relative importance of prey in sea 
lion diet by calculating the frequency of occurrence 
(FO) of each prey type. Frequency of occurrence was 
defined as the number of scat containing a given prey 
type divided by the number of scat with identifiable 
prey. Although other summary statistics are possible, 
FO is a simple calculation, widely used, and probably 
least affected by differences in prey recovery (Tollit et 
al., 2010). We calculated exact 95% confidence intervals 

1	Lance, M. M., A. J. Orr, S. D. Riemer, M. J. Weise, and J. 
L. Laake.  2001.  Pinniped food habits and prey identifica
tion techniques protocol. AFSC (Alaska Fisheries Science 
Center) Proc. Rep. 2001-04, 36 p.  Alaska Fisheries Science 
Center, NMFS, NOAA, 7600 Sand Point Way NE, Seattle, 
WA 98115.

for FO by assuming that the number of scat in a collec-
tion containing a given prey was binomially distributed. 

In addition to univariate summaries, we were also 
interested in testing whether multivariate diet compo-
sition differed between collections. Wright (2010) and 
Lemons et al. (2010) noted that the common practice 
of using chi-square tests to compare diets violates the 
assumption of independence for that test by ignoring 
the nesting of multiple prey items within a scat. Vio-
lation of the assumption of independence results in 
psuedoreplication and biased chi-square statistics. More 
appropriate alternatives for comparing multivariate diet 
composition between groups include distance-based per-
mutation methods (e.g., Luo and Fox, 1996; Anderson, 
2001; Berry and Mielke, 2003); multiple-response cat-
egorical variable methods (e.g., Agresti and Liu, 1999; 
Bilder and Loughlin, 2009; Nandram et al., 2009); and 
mark-recapture methods (Lemons et al., 2010). We chose 
the distance-based Mantel test (Mantel, 1967; Luo and 
Fox, 1996) because it could be formulated to address our 
questions of interest, was easy to implement in exist-
ing software, and has been used by other researchers 
studying animal diets (e.g., Hudon and Lamarche, 1989; 
Green and Burton, 1993; Jones and Barmuta, 1998).

We implemented Mantel tests, using package “vegan” 
(Oksanen et al., 2009) in R (R Development Core Team, 
2009). We tested whether diet composition differed by 
month (after controlling for year and site), year (after 
controlling for month and site), or site (after controlling 
for month and year). Distances among scat samples 
were computed using the Jaccard coefficient which is 
an asymmetrical binary coefficient commonly used to 
compare sampling units using species presence-absence 

Figure 1
Locations (solid circles=rookeries, solid triangles= 
haul-outs) where Steller sea lion (Eumetopias jubatus) 
scat was collected off Oregon and northern Califor-
nia, 1986–2007. See Table 2 for detailed information 
on sampling locations and effort. 
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Table 1
Total number of Steller sea lion (Eumetopias jubatus) scat collected by site, month, and year from haul-outs and rookeries in 
northern California and Oregon, 1986–2007.

	 Breeding season month	 Nonbreeding season month

Location	 Year	 May	 Jun	 Jul	 Aug	 Sep	 Oct	 Nov	 Dec	 Jan	 Feb	 Mar	 Apr	 Total

Columbia River 1	 2004		  55		  38	 45							       51	 189
	 2006				    48									         48
	 2007			   20	 61	 3								        84
Cascade Head 2	 2003							       13		  11				    24
Orford Reef 3	 1990			   41										          41
	 2002			   15										          15
Rogue Reef 4	 1986		  18											           18
	 1987		  40											           40
	 1988		  20											           20
	 1990			   47										          47
	 1993		  36											           36
	 1994		  33											           33
	 1995		  12											           12
	 1996	 60												            60
	 2001		  70		  48								        46	 164
	 2002			   33	 37							       42	 78	 190
	 2003			   12				    54					     57	 123
	 2004			   33										          33
	 2005	 2		  13									         20	 35
	 2006			   25										          25
St. George Reef 5	 1990			   4										          4
	 1994		  37											           37
	 2002			   35										          35
	 2003			   29									         7	 36
	 2004			   34										          34
	 2006			   33										          33
Total		  62	 321	 374	 232	 48	 67	 0	 0	 11	 0	 42	 259	 1416

1	 South Jetty (46.233 lat. N, 124.070 long. W).
2	 Sea Lion Cove (45.067 lat. N, 124.013 long. W).
3	 Long Brown Rock (42.791 lat. N, 124.605 long. W).
4	 Primarily Pyramid Rock (42.444 lat. N, 124.469 long. W), but also surrounding sites including Needle Rock (42.448 lat. N, 124.483 long. W), 

Double Rock (42.449 lat. N, 124.490 long. W), and South Seal Rock (42.436 lat. N, 124.465 long. W).
5	 South Seal Rock (41.813 lat. N, 124.351 long. W).

data (Legendre and Legendre, 1998). A Jaccard dis-
tance of zero indicates that two scat shared all of the 
same prey items, whereas a distance of one indicates 
that they had no prey items in common. We paired the 
Jaccard distance matrix with a design matrix consist-
ing of zeros for between-population distances and 1/
(ni–1) for within-population distances (where i indicates 
population membership; see Manly, 1997). When used 
with a design matrix the Mantel test is equivalent to a 
nonparametric multivariate analysis of variance (Sokal 
and Rohlf, 1995). 

We compared diets based on prey identified to the 
lowest possible taxon in order to limit the potential for 
spurious differences arising from an arbitrary categori-
zation of prey types, although this procedure resulted in 
some comparisons where data were not at an equivalent 

taxonomic level. Analysis based on additional categori-
zation of prey—such as size, ecology, or abundance—al-
though potentially useful, was beyond the limits of what 
the data could support. We restricted statistical com-
parisons to selected unpooled collections with at least 
30 samples. For each test, 9999 randomizations were 
used to obtain the distribution for the Mantel test sta-
tistic (rM) and to calculate probability (P) values. A sig-
nificance level of a=0.002 was used based on a Bonfer-
roni adjustment of a=0.05 for 26 multiple comparisons.

Results

We collected 1416 Steller sea lion scat samples during 
42 collection trips from 1986 through 2007. The number 



372	 Fishery Bulletin 109(4)

of scat collected per trip ranged from 2 to 78 (mean of 
34) (Table 1). Of the 1416 scat, 22 were discarded from 
analysis because they had no prey and 11 were discarded 
because they contained only unidentified prey, resulting 
in a working data set of 1383 scat. The majority of sam-
ples came from Rogue Reef during the breeding (n=526) 
and nonbreeding (n=290) seasons, followed by collec-
tions at the Columbia River South Jetty (n=219) and St. 
George Reef (n=165) during the breeding season. Only 
minor collections were made at Orford Reef during the 
breeding season (n=56), and Cascade Head (n=24) and 
St. George Reef (n=7) during the nonbreeding season 
(Table 1).

A total of 47 Steller sea lion prey taxa from 30 families 
were identified (33 to species) (Table 2). Overall percent 
frequency of occurrence for the most common (FO>10%) 
prey in decreasing order were Pacific hake (Merluccius 
productus, FO=78.6%), salmonids (Oncorhynchus spp.; 
FO=28.6%), skates (Rajidae; FO=23.4%), Pacific lam-
prey (Lampetra tridentata; FO=20.8%), clupeids (Clu-
peidae; FO=18.7%), rockfish (Sebastes spp.; FO=17.4%), 
northern anchovy (Engraulis mordax; FO=13.2%), and 
unidentified teleost fishes (FO=10.8%) (Table 2, Fig. 
2). Scat during the breeding season were dominated 
by hake (87.1%), followed by salmonids (27.1%) and 
Pacific lamprey at 20.1%. Hake, with an FO of 59%, 
was also a primary prey in samples collected during 
the nonbreeding season and skate species increased in 
frequency to 40.3%, followed by salmonids (32.1%), and 
rockfish (29.7%) (Table 2). Prey diversity within scat 
samples ranged from one to 25 types, although 64% of 
all samples had ≤3 prey types. Of the 222 scat collected 
during the breeding season that contained a single prey 
item, 85.1% contained Pacific hake and 4.1% contained 
rockfish. Scat collected during the nonbreeding season 
that contained a single prey species (n=63), 49.2% con-
tained hake and 22.2% rockfish. 

By site and season (Fig. 2), Pacific hake occurred in 
more scats than any other prey taxa among all sites 
and seasons except at Cascade Head and St. George 
Reef during the nonbreeding season. For example, Pa-
cific hake was the dominant prey in scats collected at 
Rogue Reef, the largest rookery in the study area, both 
during breeding (87.3%) and nonbreeding (62.1%) sea-
sons. Although salmonids occurred with high frequency 
at all sites and seasons, except at Cascade Head, the 
highest frequency was found at Rogue Reef during the 
nonbreeding season. Skates, although consumed at all 
sites and seasons, occurred most frequently in scats 
collected during the nonbreeding season. For example, 
skate FO increased at Rogue Reef from 16.2% to 45.5% 
during the breeding and nonbreeding seasons, respec-
tively. Pacific staghorn sculpin (Leptocottus armatus) 
was common only at the northern sites (i.e., Colum-
bia River and Cascade Head), whereas rockfish were 
common only at the southern sites (particularly Rogue 
Reef). 

In general, diet composition varied seasonally, annu-
ally, and spatially. After controlling for site and year 
(10 of 11 comparisons; Table 3), we found that diet dif-

fered by month; after controlling for site and month, we 
found that diet differed by year (10 of 12 comparisons; 
Table 4); and after controlling for year and month (2 of 
3 comparisons; Table 5), we found that diet differed by 
site. Average Jaccard distance within collections ranged 
from 0.206 to 0.807 (median of 0.724), whereas average 
Jaccard distance between collections ranged from 0.425 
to 0.911 (median of 0.771).

Discussion

Like other researchers (e.g., Pitcher, 1981; Merrick et al., 
1997; Sinclair and Zeppelin, 2002; Womble and Sigler, 
2006; Trites et al., 2007b; McKenzie and Wynne, 2008), 
we found that Steller sea lion diet was diverse yet domi-
nated by only one or two species (Fig. 3). In Oregon and 
northern California the diet was dominated by Pacific 
hake, whereas in Alaska diet was dominated by walleye 
pollock (Theragra chalcogramma) in the Bering Sea and 
Gulf of Alaska, and Atka mackerel (Pleurogrammus 
monopterygius) in the Aleutians Islands. Prey types 
shared between Alaskan and Oregon–northern Califor-
nia collections included salmonids, clupeids (e.g., Pacific 
herring [Clupea pallasii]), rockfish, and skate.

The dominance of Pacific hake in Steller sea lion 
diets in Oregon and northern California is probably 
related to the widespread abundance of this species 
in the California current (as is the case with the 
widespread distribution of walleye pollock in Alas-
kan waters). Dorn et al.2 reported that Pacific hake, 
ranging from southern California to the Queen Char-
lotte Sound, British Columbia, was the most abundant 
groundfish in the California Current system. During 
summer months adult Pacific hake move north along 
the Oregon coast while juveniles stay further south 
off central California (Bailey et al., 1982). From 1966 
to 2007 the Pacific Coast (U.S, and Canadian waters) 
Pacific hake fishery landings averaged 219,000 metric 
tons (t), with a low of 90,000 t in 1980 and a peak har-
vest of 364,000 t in 2006 (Helser et al., 2008). Pacific 
hake are similar in caloric density to cod and pollock, 
which are prominent in the diet of Steller sea lions in 
the WDPS. This gadid diet has been hypothesized to 
result in chronic nutritional stress and ultimately pop-
ulation declines (Trites and Donnelly, 2003, Trites et 
al., 2007a). However, despite the dominance of Pacific 
hake in the diet from Oregon and northern California, 
Steller sea lions in the EDPS have been increasing at 
approximately 3% per year since the 1970s (Pitcher et 
al., 2007). This fact was cited by Fritz and Hinckley 
(2005) as evidence that was inconsistent with the nu-
tritional stress hypothesis.

2	Dorn, M. W., M. W. Saunders, C. D. Wilson, M. A. Guttormsen, 
K. Cooke, R. Kieser, and M. E. Wilkins.  1999.  Status of 
the coastal Pacific hake/whiting stock in U.S. and Canada 
in 1998, 102 p.  [Available at Pacific Fishery Management 
Council, 7700 NE Ambassador Place, Suite 101, Portland, 
OR. 97220 1384.]



373Riemer et al.: Food habits of Eumetopias jubatus off Oregon and northern California, 1986–2007

Ta
bl

e 
2

S
am

pl
e 

in
fo

rm
at

io
n

 a
n

d 
fr

eq
u

en
cy

 o
f o

cc
u

rr
en

ce
 (

F
O

) o
f p

re
y 

id
en

ti
fi

ed
 f

ro
m

 S
te

ll
er

 s
ea

 li
on

 (
E

um
et

op
ia

s 
ju

ba
tu

s)
 s

ca
t 

co
ll

ec
te

d 
in

 O
re

go
n

 a
n

d 
n

or
th

er
n

 C
al

if
or

n
ia

 f
ro

m
 

19
86

 t
h

ro
u

gh
 2

00
7.

 F
O

 is
 p

re
se

nt
ed

 b
y 

co
ll

ec
ti

on
 s

it
e 

(C
R

=
C

ol
u

m
bi

a 
R

iv
er

, O
R

=
O

rf
or

d 
R

ee
f,

 R
R

=
R

og
u

e 
R

ee
f,

 a
n

d 
S

G
R

=
S

t.
 G

eo
rg

e 
R

ee
f;

 C
H

=
C

as
ca

de
 H

ea
d,

 s
ee

 F
ig

. 1
 

an
d 

T
ab

le
 1

) 
an

d 
se

as
on

 (
br

ee
di

n
g=

M
ay

–A
u

gu
st

, n
on

br
ee

di
n

g=
S

ep
te

m
be

r–
A

pr
il

).
 P

re
y 

ar
e 

so
rt

ed
 b

y 
fa

m
il

y 
in

 d
ec

re
as

in
g 

or
de

r 
of

 t
ot

al
 F

O
.

	
S

ea
so

n
	

B
re

ed
in

g 
se

as
on

	
N

on
br

ee
di

n
g 

se
as

on

	
T

ot
al

	
B

re
ed

in
g	

N
on

br
ee

di
n

g	
C

R
	

O
R

	
R

R
	

S
G

R
	 

C
R

	
C

H
	

R
R

	
S

G
R

S
am

pl
es

 
T

ot
al

 s
ca

t 
co

ll
ec

te
d	

14
16

	
98

9	
42

7	
22

2	
56

	
53

9	
17

2	
99

	
24

	
29

7	
7

 
S

ca
t 

co
nt

ai
n

in
g 

≥1
 id

en
ti

fi
ab

le
 p

re
y	

13
83

	
96

6	
41

7	
21

9	
56

	
52

6	
16

5	
96

	
24

	
29

0	
7

 
S

ca
t 

co
nt

ai
n

in
g 

n
o 

id
en

ti
fi

ab
le

 p
re

y	
11

	
6	

5	
0	

0	
4	

2	
0	

0	
5	

0
 

E
m

pt
y 

sc
at

	
22

	
17

	
5	

3	
0	

9	
5	

3	
0	

2	
0

P
re

y 
it

em
 

H
ak

es
: f

am
il

y 
M

er
lu

cc
ii

da
e

  


P
ac

ifi
c 

h
ak

e 
(M

er
lu

cc
iu

s 
pr

od
u

ct
u

s)
	

78
.6

	
87

.1
	

59
.0

	
80

.8
	

98
.2

	
87

.3
	

90
.9

	
64

.6
	

4.
2	

62
.1

	
42

.9
 

S
al

m
on

: f
am

il
y 

S
al

m
on

id
ae

  


P
ac

ifi
c 

sa
lm

on
 (

O
n

co
rh

yn
ch

u
s 

sp
p.

)	
28

.6
	

27
.1

	
32

.1
	

27
.9

	
21

.4
	

27
.6

	
26

.7
	

22
.9

	
4.

2	
37

.9
	

14
.3

 
S

k
at

e:
 f

am
il

y 
R

aj
id

ae
  


S

k
at

e,
 u

n
id

en
ti

fi
ed

	
23

.4
	

16
.1

	
40

.3
	

21
.5

	
8.

9	
16

.2
	

11
.5

	
26

.0
	

25
.0

	
45

.5
	

71
.4

 
L

am
pr

ey
: f

am
il

y 
P

et
ro

m
yz

on
ti

da
e

  


P
ac

ifi
c 

la
m

pr
ey

 (
L

am
pe

tr
a 

tr
id

en
ta

ta
)	

20
.8

	
20

.1
	

22
.3

	
12

.3
	

3.
6	

28
.5

	
9.

1	
19

.8
	

0.
0	

25
.2

	
14

.3
 

H
er

ri
n

g,
 s

h
ad

, s
ar

di
n

e:
 f

am
il

y 
C

lu
pe

id
ae

  


U
n

id
en

ti
fi

ed
 c

lu
pe

id
	

18
.7

	
17

.7
	

20
.9

	
27

.4
	

7.
1	

14
.8

	
17

.6
	

18
.8

	
37

.5
	

20
.3

	
14

.3
  


P

ac
ifi

c 
h

er
ri

n
g 

(C
lu

pe
a 

pa
ll

as
ii

 )
	

9.
9	

12
.4

	
4.

1	
6.

8	
5.

4	
18

.1
	

4.
2	

2.
1	

4.
2	

4.
8	

0.
0

  


P
ac

ifi
c 

sa
rd

in
e 

(S
ar

d
in

op
s 

sa
ga

x)
	

9.
2	

10
.5

	
6.

2	
10

.5
	

19
.6

	
6.

7	
19

.4
	

16
.7

	
8.

3	
2.

8	
0.

0
  


A

m
er

ic
an

 s
h

ad
 (

A
lo

sa
 s

ap
id

is
si

m
a)

	
2.

2	
1.

9	
3.

1	
4.

6	
1.

8	
1.

1	
0.

6	
5.

2	
8.

3	
2.

1	
0.

0
 

R
oc

k
fi

sh
: f

am
il

y 
S

eb
as

ti
da

e
  


R

oc
k

fi
sh

 (
S

eb
as

te
s 

sp
p.

)	
17

.4
	

12
.1

	
29

.7
	

3.
2	

5.
4	

14
.8

	
17

.6
	

6.
3	

0.
0	

40
.3

	
14

.3
 

A
n

ch
ov

ie
s:

 f
am

il
y 

E
n

gr
au

li
da

e
  


N

or
th

er
n

 a
n

ch
ov

y 
(E

n
gr

au
li

s 
m

or
d

ax
)	

13
.2

	
11

.9
	

16
.1

	
33

.8
	

8.
9	

4.
2	

8.
5	

24
.0

	
33

.3
	

11
.4

	
42

.9
 

C
la

ss
 O

st
ei

ch
th

ye
s

  


T
el

eo
st

 fi
sh

es
, u

n
id

en
ti

fi
ed

	
10

.8
	

10
.1

	
12

.5
	

5.
9	

5.
4	

11
.6

	
12

.7
	

13
.5

	
4.

2	
12

.8
	

14
.3

 
S

cu
lp

in
s:

 f
am

il
y 

C
ot

ti
da

e
  


P

ac
ifi

c 
st

ag
h

or
n

 s
cu

lp
in

 	
9.

4	
7.

2	
14

.4
	

26
.5

	
1.

8	
1.

7	
1.

2	
35

.4
	

54
.2

	
4.

5	
0.

0 
   




(L
ep

to
co

tt
u

s 
ar

m
at

u
s)

  


S
cu

lp
in

s,
 u

n
id

en
ti

fi
ed

	
5.

5	
5.

8	
4.

8	
8.

7	
5.

4	
5.

7	
2.

4	
1.

0	
4.

2	
6.

2	
0.

0
  


Ir

is
h

 lo
rd

 (
H

em
il

ep
id

ot
u

s 
sp

p.
)	

1.
6	

2.
0	

0.
7	

0.
0	

1.
8	

1.
1	

7.
3	

0.
0	

0.
0	

1.
0	

0.
0

  


B
u

ff
al

o 
sc

u
lp

in
 (

E
n

op
h

ry
s 

bi
so

n)
	

0.
2	

0.
1	

0.
5	

0.
0	

0.
0	

0.
0	

0.
6	

0.
0	

0.
0	

0.
7	

0.
0

 
S

an
d 

la
n

ce
s:

 f
am

il
y 

A
m

m
od

yt
id

ae
  


P

ac
ifi

c 
sa

n
d 

la
n

ce
 	

9.
0	

5.
6	

16
.8

	
1.

4	
17

.9
	

6.
5	

4.
2	

4.
2	

8.
3	

20
.7

	
57

.1
 

   



(A

m
m

od
yt

es
 h

ex
ap

te
ru

s)
co

n
ti

n
u

ed



374	 Fishery Bulletin 109(4)

Ta
bl

e 
2

 (
co

n
ti

nu
ed

)

	
S

ea
so

n
	

B
re

ed
in

g 
se

as
on

	
N

on
br

ee
di

n
g 

se
as

on

	
T

ot
al

	
B

re
ed

in
g	

N
on

br
ee

di
n

g	
C

R
	

O
R

	
R

R
	

S
G

R
	 

C
R

	
C

H
	

R
R

	
S

G
R

 
S

m
el

ts
: f

am
il

y 
O

sm
er

id
ae

  


S
m

el
ts

, u
n

id
en

ti
fi

ed
	

6.
8	

6.
3	

7.
9	

3.
7	

0.
0	

8.
2	

6.
1	

6.
3	

8.
3	

8.
3	

14
.3

  


E
u

la
ch

on
 (T

h
al

ei
ch

th
ys

 p
ac

ifi
cu

s)
	

0.
1	

0.
0	

0.
2	

0.
0	

0.
0	

0.
0	

0.
0	

1.
0	

0.
0	

0.
0	

0.
0

  


S
u

rf
 s

m
el

t 
(H

yp
om

es
u

s 
pr

et
io

su
s)

	
0.

1	
0.

0	
0.

2	
0.

0	
0.

0	
0.

0	
0.

0	
0.

0	
0.

0	
0.

3	
0.

0
 

S
ti

ck
le

ba
ck

: f
am

il
y 

G
as

te
ro

st
ei

da
e

  


T
h

re
es

pi
n

e 
st

ic
k

le
ba

ck
 	

6.
1	

5.
5	

7.
4	

0.
0	

7.
1	

4.
6	

15
.2

	
0.

0	
0.

0	
9.

7	
42

.9
 

   



(G

as
te

ro
st

eu
s 

ac
u

le
at

u
s)

	
 

S
qu

id
s 

an
d 

oc
to

pu
s:

 c
la

ss
 C

ep
h

al
op

od
a

  


S
qu

id
 a

n
d 

oc
to

pu
s,

 u
n

id
en

ti
fi

ed
	

5.
7	

5.
6	

6.
0	

0.
5	

3.
6	

6.
8	

9.
1	

3.
1	

0.
0	

7.
6	

0.
0

  


S
qu

id
s,

 u
n

id
en

ti
fi

ed
	

4.
3	

3.
9	

5.
0	

0.
0	

5.
4	

5.
9	

2.
4	

0.
0	

0.
0	

7.
2	

0.
0

  


O
ct

op
u

s,
 u

n
id

en
ti

fi
ed

	
2.

8	
2.

6	
3.

4	
0.

0	
0.

0	
4.

0	
2.

4	
1.

0	
8.

3	
3.

8	
0.

0
  


Ja

ck
 m

ac
ke

re
ls

: f
am

il
y 

C
ar

an
gi

da
e

  


P
ac

ifi
c 

ja
ck

 m
ac

ke
re

l	
5.

4	
7.

1	
1.

2	
2.

3	
14

.3
	

5.
9	

15
.2

	
1.

0	
0.

0	
1.

4	
0.

0 
   




(T
ra

ch
ur

u
s 

sy
m

m
et

ri
cu

s)
	

 
C

od
fi

sh
es

: f
am

il
y 

G
ad

id
ae

  


P
ac

ifi
c 

to
m

co
d 

(M
ic

ro
ga

d
u

s 
pr

ox
im

u
s)

	
4.

3	
3.

0	
7.

4	
0.

5	
1.

8	
4.

2	
3.

0	
6.

3	
12

.5
	

7.
6	

0.
0

  


C
od

fi
sh

es
, u

n
id

en
ti

fi
ed

	
1.

5	
1.

2	
2.

2	
0.

0	
0.

0	
1.

3	
3.

0	
1.

0	
0.

0	
2.

8	
0.

0
  


P

ac
ifi

c 
co

d 
(G

ad
u

s 
m

ac
ro

ce
ph

al
u

s)
	

0.
1	

0.
0	

0.
2	

0.
0	

0.
0	

0.
0	

0.
0	

0.
0	

0.
0	

0.
3	

0.
0

 
R

ig
ht

ey
e 

fl
ou

n
de

rs
: f

am
il

y 
P

le
u

ro
n

ec
ti

da
e

  


S
ta

rr
y 

fl
ou

n
de

r 
(P

la
ti

ch
th

ys
 s

te
ll

at
u

s)
	

4.
3	

3.
3	

6.
7	

12
.8

	
0.

0	
0.

6	
0.

6	
18

.8
	

4.
2	

3.
1	

0.
0

  


D
ov

er
 s

ol
e 

(M
ic

ro
st

om
u

s 
pa

ci
fi

cu
s)

	
2.

1	
2.

1	
2.

2	
3.

2	
0.

0	
1.

7	
2.

4	
0.

0	
0.

0	
3.

1	
0.

0
  


R

ig
ht

ey
e 

fl
ou

n
de

r,
 u

n
id

en
ti

fi
ed

	
1.

9	
1.

6	
2.

6	
3.

7	
0.

0	
1.

0	
1.

2	
1.

0	
8.

3	
2.

8	
0.

0
  


R

ex
 s

ol
e 

(G
ly

pt
oc

ep
h

al
u

s 
za

ch
ir

u
s)

	
1.

2	
1.

1	
1.

4	
0.

9	
0.

0	
1.

1	
1.

8	
0.

0	
0.

0	
2.

1	
0.

0
  


S

an
d 

so
le

 (
P

se
tt

ic
h

th
ys

 m
el

an
os

ti
ct

u
s)

	
1.

2	
0.

8	
2.

2	
0.

5	
0.

0	
1.

0	
1.

2	
2.

1	
0.

0	
2.

4	
0.

0
  


S

le
n

de
r 

so
le

 (
L

yo
ps

et
ta

 e
xi

li
s)

	
1.

2	
1.

0	
1.

7	
0.

0	
0.

0	
0.

8	
3.

6	
0.

0	
0.

0	
2.

4	
0.

0
  


B

ut
te

r 
so

le
 (

Is
op

se
tt

a 
is

ol
ep

is
)	

1.
2	

0.
6	

2.
4	

0.
5	

0.
0	

0.
8	

0.
6	

4.
2	

4.
2	

1.
4	

14
.3

  


E
n

gl
is

h
 s

ol
e 

(P
ar

op
h

ry
s 

ve
tu

lu
s)

	
0.

7	
0.

8	
0.

5	
0.

9	
0.

0	
1.

0	
0.

6	
1.

0	
0.

0	
0.

3	
0.

0
  


A

rr
ow

to
ot

h
 fl

ou
n

de
r	

0.
1	

0.
1	

0.
2	

0.
0	

0.
0	

0.
0	

0.
6	

1.
0	

0.
0	

0.
0	

0.
0 

   



(A

th
er

es
th

es
 s

to
m

ia
s)

	
  


R

oc
k 

so
le

 (
L

ep
id

op
se

tt
a 

bi
li

n
ea

ta
)	

0.
1	

0.
1	

0.
0	

0.
0	

0.
0	

0.
2	

0.
0	

0.
0	

0.
0	

0.
0	

0.
0

 
F

la
tfi

sh
es

: o
rd

er
 P

le
u

ro
n

ec
ti

fo
rm

es
  


F

la
tfi

sh
es

, u
n

id
en

ti
fi

ed
	

3.
1	

2.
6	

4.
3	

2.
3	

1.
8	

3.
2	

1.
2	

5.
2	

4.
2	

3.
8	

14
.3

 
D

og
fi

sh
 s

h
ar

k
s:

 f
am

il
y 

S
qu

al
id

ae
  


S

pi
ny

 d
og

fi
sh

 (
S

qu
al

u
s 

ac
an

th
ia

s)
	

2.
7	

2.
8	

2.
4	

5.
0	

0.
0	

2.
5	

1.
8	

2.
1	

0.
0	

2.
8	

0.
0

 
S

an
dd

ab
s:

 f
am

il
y 

P
ar

al
ic

ht
hy

id
ae

  


S
an

dd
ab

s 
(C

it
h

ar
ic

h
th

ys
 s

pp
.)

	
2.

7	
2.

2	
4.

1	
2.

3	
0.

0	
1.

7	
4.

2	
5.

2	
20

.8
	

2.
1	

14
.3

 
H

ag
fi

sh
es

: f
am

il
y 

M
yx

in
id

ae
  


P

ac
ifi

c 
h

ag
fi

sh
 (

E
pt

at
re

tu
s 

st
ou

ti
i)

	
1.

6	
2.

1	
0.

5	
0.

0	
0.

0	
2.

9	
3.

0	
0.

0	
0.

0	
0.

7	
0.

0
co

n
ti

n
u

ed



375Riemer et al.: Food habits of Eumetopias jubatus off Oregon and northern California, 1986–2007

Ta
bl

e 
2

 (
co

n
ti

nu
ed

)

	
S

ea
so

n
	

B
re

ed
in

g 
se

as
on

	
N

on
br

ee
di

n
g 

se
as

on

	
T

ot
al

	
B

re
ed

in
g	

N
on

br
ee

di
n

g	
C

R
	

O
R

	
R

R
	

S
G

R
	 

C
R

	
C

H
	

R
R

	
S

G
R

 
M

ac
ke

re
l a

n
d 

tu
n

a:
 f

am
il

y 
S

co
m

br
id

ae
  


P

ac
ifi

c 
ch

u
b 

m
ac

ke
re

l 	
1.

4	
2.

1	
0.

0	
0.

0	
0.

0	
3.

4	
1.

2	
0.

0	
0.

0	
0.

0	
0.

0 
   




(S
co

m
be

r 
ja

po
n

ic
u

s)
	

 
G

re
en

li
n

gs
: f

am
il

y 
H

ex
ag

ra
m

m
id

ae
  


G

re
en

li
n

g/
li

n
gc

od
, u

n
id

en
ti

fi
ed

	
0.

7	
0.

8	
0.

2	
0.

0	
1.

8	
0.

6	
2.

4	
0.

0	
0.

0	
0.

0	
14

.3
  


L

in
gc

od
 (

O
ph

io
d

on
 e

lo
n

ga
tu

s)
	

1.
3	

0.
6	

2.
9	

0.
0	

0.
0	

1.
0	

0.
6	

1.
0	

4.
2	

3.
4	

0.
0

  


G
re

en
li

n
g 

(H
ex

ag
ra

m
m

os
 s

pp
.)

	
0.

3	
0.

2	
0.

5	
0.

0	
0.

0	
0.

0	
1.

2	
1.

0	
0.

0	
0.

3	
0.

0
 

P
oa

ch
er

s:
 f

am
il

y 
A

go
n

id
ae

  


P
oa

ch
er

s,
 u

n
id

en
ti

fi
ed

	
1.

3	
1.

6	
0.

7	
3.

7	
0.

0	
0.

4	
3.

0	
1.

0	
0.

0	
0.

7	
0.

0
  


S

tu
rg

eo
n

 p
oa

ch
er

 	
0.

1	
0.

1	
0.

0	
0.

5	
0.

0	
0.

0	
0.

0	
0.

0	
0.

0	
0.

0	
0.

0 
   




(P
od

ot
h

ec
u

s 
ac

ci
pe

n
se

ri
n

u
s)

	
 

S
u

bc
la

ss
 E

la
sm

ob
ra

n
ch

ii
  


S

h
ar

k
s 

an
d 

ra
ys

, u
n

id
en

ti
fi

ed
	

1.
2	

1.
3	

1.
0	

3.
7	

0.
0	

0.
8	

0.
6	

1.
0	

0.
0	

1.
0	

0.
0

  


S
h

ar
k

s,
 u

n
id

en
ti

fi
ed

	
0.

3	
0.

1	
0.

7	
0.

0	
0.

0	
0.

2	
0.

0	
0.

0	
0.

0	
1.

0	
0.

0
 

S
u

rf
pe

rc
h

: f
am

il
y 

E
m

bi
ot

oc
id

ae
  


S

u
rf

pe
rc

h
, u

n
id

en
ti

fi
ed

	
1.

1	
0.

7	
1.

9	
0.

0	
0.

0	
1.

1	
0.

6	
3.

1	
0.

0	
1.

7	
0.

0
 

G
u

n
n

el
: f

am
il

y 
P

h
ol

id
ae

  


G
u

n
n

el
, u

n
id

en
ti

fi
ed

	
1.

0	
0.

9	
1.

2	
0.

5	
0.

0	
0.

8	
2.

4	
0.

0	
0.

0	
1.

7	
0.

0
 

W
ol

ffi
sh

es
: f

am
il

y 
A

n
ar

h
ic

h
ad

id
ae

  


W
ol

f 
ee

l (
A

n
ar

rh
ic

h
th

ys
 o

ce
ll

at
u

s)
	

0.
8	

1.
1	

0.
0	

0.
0	

1.
8	

1.
3	

1.
8	

0.
0	

0.
0	

0.
0	

0.
0

 
S

n
ai

lfi
sh

: f
am

il
y 

L
ip

ar
id

ae
  


S

n
ai

lfi
sh

 a
n

d 
lu

m
pfi

sh
, u

n
id

en
ti

fi
ed

	
0.

7	
0.

9	
0.

2	
1.

4	
1.

8	
1.

0	
0.

0	
0.

0	
0.

0	
0.

3	
0.

0
 

C
u

sk
-e

el
s:

 f
am

il
y 

O
ph

id
ii

da
e

  


S
po

tt
ed

 c
u

sk
-e

el
 (

C
h

il
ar

a 
ta

yl
or

i)
	

0.
3	

0.
3	

0.
2	

0.
0	

0.
0	

0.
2	

1.
2	

0.
0	

0.
0	

0.
3	

0.
0

 
P

ri
ck

le
ba

ck
: f

am
il

y 
S

ti
ch

ae
id

ae
  


P

ri
ck

le
ba

ck
s,

 u
n

id
en

ti
fi

ed
	

0.
3	

0.
4	

0.
0	

0.
0	

0.
0	

0.
8	

0.
0	

0.
0	

0.
0	

0.
0	

0.
0

 
C

la
ss

 A
gn

at
h

a
  


Ja

w
le

ss
 fi

sh
es

, u
n

id
en

ti
fi

ed
	

0.
1	

0.
1	

0.
0	

0.
0	

0.
0	

0.
2	

0.
0	

0.
0	

0.
0	

0.
0	

0.
0

 
C

li
n

gfi
sh

: f
am

il
y 

G
ob

ie
so

ci
da

e
  


C

li
n

gfi
sh

es
, u

n
id

en
ti

fi
ed

	
0.

1	
0.

2	
0.

0	
0.

0	
0.

0	
0.

4	
0.

0	
0.

0	
0.

0	
0.

0	
0.

0
  


N

or
th

er
n

 c
li

n
gfi

sh
 0

.1
	

0.
1	

0.
0	

0.
0	

0.
0	

0.
2	

0.
0	

0.
0	

0.
0	

0.
0	

0.
0 

   



(G

ob
ie

so
x 

m
ae

an
d

ri
cu

s)
	

 
E

el
po

ut
: f

am
il

y 
Z

oa
rc

id
ae

  


E
el

po
ut

s,
 u

n
id

en
ti

fi
ed

	
0.

1	
0.

1	
0.

2	
0.

0	
0.

0	
0.

0	
0.

6	
0.

0	
0.

0	
0.

3	
0.

0
 

P
ip

efi
sh

: f
am

il
y 

S
yn

gn
at

h
id

ae
  


B

ay
 p

ip
efi

sh
 	

0.
1	

0.
1	

0.
0	

0.
0	

0.
0	

0.
0	

0.
6	

0.
0	

0.
0	

0.
0	

0.
0 

  


(S
yn

gn
at

h
u

s 
le

pt
or

hy
n

ch
u

s)
	

 
S

an
dfi

sh
: f

am
il

y 
T

ri
ch

od
on

ti
da

e
  


P

ac
ifi

c 
sa

n
dfi

sh
 (T

ri
ch

od
on

 t
ri

ch
od

on
)	

0.
1	

0.
1	

0.
0	

0.
0	

0.
0	

0.
2	

0.
0	

0.
0	

0.
0	

0.
0	

0.
0

  


S
an

dfi
sh

es
, u

n
id

en
ti

fi
ed

	
0.

1	
0.

0	
0.

2	
0.

0	
0.

0	
0.

0	
0.

0	 
0

.0
	

0.
0	

0.
3	

0.
0



376	 Fishery Bulletin 109(4)

How important a specific type of prey is to the sur-
vival of an opportunistic marine pinniped predator is 
unknown. Abundance of prey may have more impact 
on survival when a predator feeds on schooling fish 
rather than on more solitary types of prey, such as 
flatfish and sculpin. Furthermore, a diversity of prey 
types may be important in sustaining populations and 
help buffer the effects of ocean climate changes. For 
example, analyses by Merrick et al. (1997) and Trites 
et al. (2007b) showed a strong positive correlation be-
tween diet diversity and rate of population change. 
Our data are consistent with this finding; we identified 

17 primary (≥5%) prey types (Fig. 3) and the popula-
tion has been growing at approximately 3% per year 
(Pitcher et al., 2007).

Perhaps as a reflection of their diverse diet, we found 
a surprisingly high number of statistical differences in 
diet composition between months (Table 3), years (Table 
4), and sites (Table 5). Although simulation exercises 
(not presented) indicated that the Mantel test was not 
overly sensitive (e.g., it did not reject a null hypothesis 
simply due to a large difference in a single prey type), 
the procedure is only a hypothesis test and does not 
lend itself to estimation of effect sizes or biologically 
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Columbia River, OR

Orford Reef, OR
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Rogue Reef, OR

St. George Reef, CA

Figure 2
Frequency of occurrence (FO) of primary prey (prey with total FO values≥0.05) identified from Steller sea 
lion (Eumetopias jubatus) scat collected in Oregon and northern California from 1986 through 2007. FO is 
presented by collection site and season (breeding season=May–August, nonbreeding season=September–
April) in descending order of overall pooled FO. Error bars indicate exact 95% binomial confidence intervals. 
Scientific names for prey types can be found in Table 1. P=Pacific; N=northern; s=staghorn; T=threespine.
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Table 3
Comparison of Steller sea lion (Eumetopias jubatus) diet composition by month, after controlling for collection site and year. 
Sample size (n=number of scat analyzed) and individual number of prey types (D) are given for each diet; pooled number of unique 
prey types (Dp), correlation coefficient (RM), and permutation-based P-value (based on 9999 replications) are given for each com-
parison. * indicates significance at the a=0.002 level (based on Bonferroni adjustment of a=0.05 for 26 multiple comparisons).

	 Diet 1	 Diet 2	 Mantel test

Site	 Year	 Month	 n	 D	 Month	 n	 D	  Dp	 RM	 P value

Columbia R.	 2004	 June	 53	 25	 August	 37	 13	 27	 0.061	 0.0017*
		  June	 53	 25	 September	 43	 17	 28	 0.145	 0.0001*
		  August	 37	 13	 September	 43	 17	 19	 0.047	 0.0105
Rogue Reef	 2001	 April	 45	 32	 August	 48	 32	 44	 0.089	 0.0001*
	 2002	 March	 39	 27	 April	 49	 30	 36	 0.264	 0.0001*
		  March	 39	 27	 July	 33	 27	 35	 0.409	 0.0001*
		  March	 39	 27	 August	 37	 35	 38	 0.251	 0.0001*
		  April	 49	 30	 July	 33	 27	 36	 0.173	 0.0001*
		  April	 49	 30	 August	 37	 35	 39	 0.147	 0.0001*
		  July	 33	 27	 August	 37	 35	 40	 0.117	 0.0002*
	 2003	 April	 57	 29	 October	 53	 31	 42	 0.101	 0.0001*

Table 4
Comparison of Steller sea lion (Eumetopias jubatus) diet composition by year, after controlling for collection site and month. 
Sample size (n) and individual number of prey types (D) are given for each diet; pooled number of unique prey types(Dp), cor-
relation coefficient (RM), and permutation-based P-value (based on 9999 replications) are given for each comparison. * indicates 
significance at the a=0.002 level (based on Bonferroni adjustment of a=0.05 for 26 multiple comparisons).

	 Diet 1	 Diet 2	 Mantel test

Site	 Month	 Year	 n	 D	 Year	 n	 D	  Dp	 RM	 P value

Columbia R.	 August	 2004	 37	 13	 2007	 31	 16	 20	 0.105	 0.0004*
Rogue Reef	 April	 2001	 45	 32	 2002	 49	 30	 40	 0.109	 0.0001*
		  2001	 45	 32	 2003	 57	 29	 40	 0.018	 0.0682
		  2002	 49	 30	 2003	 57	 29	 38	 0.126	 0.0001*
	 June	 1987	 34	 14	 1993	 36	 29	 32	 0.222	 0.0001*
	 July	 1990	 43	 16	 2002	 33	 27	 29	 0.199	 0.0001*
		  1990	 43	 16	 2004	 33	 20	 26	 0.216	 0.0001*
		  2002	 33	 27	 2004	 33	 20	 29	 0.097	 0.0001*
	 August	 2001	 48	 32	 2002	 37	 35	 41	 0.123	 0.0001*
St. George Reef	 July	 2002	 33	 13	 2004	 33	 21	 22	 0.008	 0.2515
		  2002	 33	 13	 2006	 33	 21	 25	 0.122	 0.0001*
		  2004	 33	 21	 2006	 33	 21	 29	 0.203	 0.0001*

interpretable parameters. Nonetheless, it does indicate 
that researchers should be cautious about pooling sam-
ples across space and time before investigating whether 
those samples differ.

Athough analysis of pinniped fecal matter is a stan-
dard technique for studying diet (e.g., Pitcher, 1980; 
Beach et al.3; Olesiuk et al., 1990; Orr et al., 2004), 
there are some limitations. For example, the use of oto-
liths to identify prey can lead to biased diet composition 
estimates (Jobling and Breiby, 1986). We minimized 
this problem by including all bony skeletal structures 

(vertebrae, gillrakers, etc.) to identify prey. Another 
potential bias can occur when drawing inference to a 
particular population from opportunistically collected 

3	Beach, R. J., A.C. Greiger, S. J. Jeffries, S. D. Treacy, and 
B. L. Troutman.  1985.  Marine mammals and their inter-
actions with fisheries of the Columbia River and adjacent 
waters, 1980–1982: third annual report, March 1, 1980 to 
October 31, 1982.  National Marine Mammal Laboratory, 
Northwest and Alaska Fisheries Center, NMFS, NOAA Proc. 
Rep. 85-03, 316 p. [Available at www.lib.noaa.gov, accessed 
May 2011.]
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Table 5
Comparison of Steller sea lion (Eumetopias jubatus) diet composition by site, after controlling for collection year and month. 
Sample size (n) and individual number of prey types (D) are given for each diet; pooled number of unique prey types(Dp), cor-
relation coefficient (rM), and permutation-based P-value (based on 9999 replications) are given for each comparison. * Indicates 
significance at the a=0.002 level (based on Bonferroni adjustment of a=0.05 for 26 multiple comparisons).

	 Diet 1	 Diet 2	 Mantel test

Year	 Month	 Site 	 n	 D	 Site	 n	 D	  Dp	 rM	 P value

1990	 July	 Orford Reef	 41	   6	 Rogue Reef	 43	 16	 17	 0.079	 0.0002*
2002	 July	 Rogue Reef	 33	 27	 St. George Reef	 33	 13	 28	 0.075	 0.0023
2004	 July	 Rogue Reef	 33	 20	 St. George Reef	 33	 21	 25	 0.096	 0.0008*

samples. For example, scat that we collected on rook-
eries (i.e., Rogue Reef, Orford Reef, St. George Reef) 
during the summer breeding season primarily reflect 
adult female diet because males often fast during the 
breeding season and juveniles are not generally present 
at rookery sites.

The Steller sea lion recovery plan (NMFS, 2008) 
notes that although several factors affecting the endan-
gered WDPS also affect the threatened EDPS, those 
threats do not appear to be affecting the sustained 
growth or recovery of the EDPS. It is noted in the 
plan, however, that concerns regarding climate change, 
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Figure 3
Percent frequency of occurrence (FO) of primary prey reported for Steller sea lions (Eumetopias juba-
tus) in Alaska (n=6 studies) and northern California and Oregon (this study). FO summary for Trites 
et al. (2007b) and Merrick et al. (1997) was calculated by the authors of the present study. Scientific 
names for prey types can be found in Table 1. 
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particularly on the southern part of the species range, 
warranted continued research and monitoring. Popu-
lation growth in California sea lions (Carretta et al., 
2010) may also be a concern for the EDPS because 
these sympatric ottariids potentially compete for prey 
resources and habitat. Steller sea lions in the Channel 
Island rookeries in California experienced a similar 
situation in the late 1950s as California sea lion popu-
lations increased and potentially out-competed Steller 
sea lions for food and habitat (Bartholomew and Booloo-
tian, 1960). Additionally, as the Steller sea lion EDPS 
increases, its real and perceived impacts on sport and 
commercial fish harvests; as well as threatened and 
endangered fish populations, will likely increase. For 
example, Steller sea lion abundance at Bonneville Dam 
on the Columbia River (Fig. 1), 235 km from the ocean, 
increased from zero individuals in 2002 to at least 53 
in 2010 and these sea lions have consumed hundreds of 
threatened and endangered salmonids and thousands 
of white sturgeon (Acipenser transmontanus) (Stansell 
et al.4). Ongoing uncertainties over the role of diet in 
the decline of the WDPS, impacts of climate change 
on the EDPS, and emerging management concerns all 
argue for continued and refined research on Steller sea 
lion diet and foraging behavior in the southern extent 
of their range.

Conclusions

Identification of prey from 1383 Steller sea lions scats 
collected in Oregon and northern California during 
1986–2007 resulted in a list of 47 prey taxa consumed. 
Primary prey items included Pacific hake, Pacific salmon, 
skate, Pacific lamprey, rockfish and clupeid species. Prey 
identified from scat during the breeding and nonbreed-
ing seasons were fairly similar but rockfish and skate 
species had a higher frequency of occurrence during the 
nonbreeding season. Data analysis showed that, in gen-
eral, diet composition varied seasonally, annually, and 
spatially. When compared to previous diet studies for 
Steller sea lions in Alaska, this population was shown 
to depend on hake as the primary prey rather than on 
the gadid and hexagrammid species identified in the 
northern populations studied. Salmonids were impor-
tant prey in all the studies compared. Continued study 
of Steller sea lion food habits is necessary to evaluate 
their interactions with important fish populations (such 
as salmonids and rockfish), to assess the increasing pres-
sure from migrating California sea lions for limited prey 
resources, and to begin to address the effects of climate 
change on population abundance. 

4	Stansell, R. J, K. M. Gibbons, and W. T. Nagy.  2010.  Evalu-
ation of pinniped predation on adult salmonids and other fish 
in the Bonneville Dam tailrace, 2008–2010. U.S. Army Corps 
of Engineers, Cascade Locks, OR.  [Available online at http://
www.nwd-wc.usace.army.mil/tmt/documents/fish/2010/2008-
2010_Pinniped_Report.pdf, accessed 2 March 2011.]
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