Ruble salmon
 Tracking protect
 report
 (ABERDEEN UNIV.

Scientific Investigations Database - NFTT
Unique Document No: 5160
UDC Class No: $639.2 \cdot 053.3$
Keywords: SAcmoNid micantlow, TGeMETRY, TRACKiNg

Contact details:
Post:
Ecological Appraisal Team Leader Name
Liz Locke
Address:
Environment Agency, Lutra House, Dod Way, Off Seedlee Road, Walton Summit, Camber Bridge, Preston, Lancs, PR5 8BX

UNIVERSITY OF ABERDEEN

G.M. DUNNET

Regius Professor of Natural History
W. MORDUE

DEPARTMENT OF ZOOLOGY
Tillydrone Avenue Aberdeen, AB9 2TN

Professor of Zoology
Tel.: 0224-40241
272000
$0224 / 272873$

A report submitted to the WRC Environment under the terms of Contract No. CEM 4345

Dr. I.G. Priede.

ANFODUCTION

This is a prediminary meport or a wtudy of oxygen reguimemente of

 to fish uepre tested to determine exposure of individuads to differemt olimedved oxygen concentrations as they moved in from
 subyect to extreme variations in dissodved oxygen concentration.

 involved in mo examinetion of the oxygen reguipements of migratory salmonds which pesulted in date compijed by Ajebaster
 woincided with the ofevelopment of a sadinty sensing transmitter at the University of Abercemen which enabled the madinitiex experimnced by fich as they move through wstueries to be monitored direetly (Friede 19B2). The Ealinity tramemitter used an electrochemical sensor and wro commiseioned a study by the University of Aberdem for determine whether an oxygen wensing transmitter would be posmiblen the stuciy comeluded thet a transmitter small encugh for smolts was probably not feasible in the foreseeable futhre and recommended thet work begin with tracking of returning aduttrishn This ied directiy to the present: project. The ri. Fibole was chosen from a number of possible estuaries anct the North West water Authority became actively imvolved in the reseafeha

The NWW had already purmbaged acoustic fish tracking Equipment and hed experimented with tracking of selmon in the estuary of the Fibbie using simple pinger (lociation only) tranemittersa The first tritats using oxygen sensing trancmitterg were attempted by
 ambmplished at that time but since then there hat been a gradumb elaboration of the tracking techniquesy eorrect capture and hmoling of fish together with logistics being as important ag technical development of the oxygen telemetry system. work has besh compjed out duming one or two week periods each summer when low dissolved oxygen comoentrations are expected in June, futy and August: In total 31 ifish heve been fracked:

1982	4 fish
1982	$6+i s h$
1984	drought no trawsing
1985	$8+i s h$
1986	$13+i=h$

Fexponsibility for the project has been mpportioned approximatedy as foll ow:

WRC OVerall strategy and provimion of momnand meateing boat and personel.

Nblat Logisticts. fishing equipment, tuacting equipment* grounc bace: per eonel! trackimg toat ! =wfety boats: fish holding facilities.
 Servicimg of pquament: tracking personed. coldetion a predimimary amelyois of detan

The three atganisexions have whemed together in the field as an integyated teat and themermemoncibilitiew do not represent rigit
 working in shitte round the wlocks and it cammot be overemphatised that the men-managememt accomplimhment in sustainimg
 work possible.

Date is etomed on audio topes which are decoded and tremscribed i.n Aberdema This f"eport is based on the detewt trentcription
 atalysis will be umderfeben durimg the next finencial year with more man-hour at ocated to that mepect as opposed to field data collection.

The dim of thi meport is to give an overview of the work dome and conclusioms winimh are apparent at this stage. Fult tremsoripts of all data contained in a file for eeth fish have already been delivered to WFO in partiel fulfiolment of the current: wontract.

THE R MGELE ESTLAFY.
The chemiced sensimg transmitump attached to the fish measures directuy the instantaneous bat IEvele experienced by an individual fiem. Friede (1982) Mas alyedy showed how an sad mity gensimg trancmitwer "ary be umed to trace the tedinities wxperienced by salimon migrotimg through an estuary Estuariat fue highly heterogemeous krviromments varying both in time and specen The wester quality enperienced by the fiyt greatly depends on its jndividual behaviour im terme of depthy direction and speed of wwintifig. The estuary chosen for this wtudy with oxygen sensing

The Fiver Ribate draime into the Irisminea on the west coast of
 J. onge funmel shapeds twperimg from a iog widtm at fremton domb to Jkm at Lytham where it enters the sean figume 1) In common
 of the tide with typical amplitudes of rime min fal of g metrex or" moren The tidel flow is weymetricul with a very fast fiood filijmg the estumy in 4 hours followed by the wbb which laste about 8 houren The flood at gipring tictes takesthe form of a ticlal wave or bore. At low water the river whamel is often lem
 the size of the estuary, Mevigation for tracking purposes is confined to use of tmall whaliow-dratt eraft whim cian be manhamdied over sandbanks in order topermit tracking at aly statess of the tide, The port of Freston is no lomger used by ships but the navigation marks which are numbered in statute miles distemes from the dock head remain and are a convenient reterence mode for data collection. Infigure 1 all distances mo expressed in miles or kilometers upstrean and downstrean of the doek head in mecordance with this nomencelaturex

The grpphs jof figure 1 show Do levels measured in the estuary in a North West Wetter Authority survey on 14 July 1.977 in conditions of low river distherge. The main soumee of deoxygenation is Biological Owygen Demand (BOD) generated by Emage outfad. from Clifton Marm which ondy receives primary treetmenta At low tide the oxyogn siag extende to 10 mm downstrean of the treatnent works. $\quad 00$ is 1 ower at night tham during the dey and in the upper reaches of the estuary above Frestom Dock durimg the day superseturation occurs as a pestilt of photosynthesis by alqae. A fish progreseing through the estuary could thum experience a change in oxygen partial preseme of 200 m m Hgy a variation
 At. high tite ingh DO sea water waters the estuary and the Do sag is diluted and pushed ur to above the dock entraneen the bo profile thus show considerdble variations actording to time of day, mtate of tide arad river djecharge.
 seler L) and sea trout (Gedme trutte L) which migrate through the estuary and form the besis of a madi commercial net fiehory
 Lytham and the contluence with the Fi. Ouhgles Fishing is oniy

 per bott per tide mot the fishery mo longer provides a viable wage for the ficenermen.

Gbove Freston the Fiver foown whocugh open coutryside with mo servous polutuon problems except for oceasional agricultural

The transmituer is mimilem an concept to the salinity senming
 Elements：a sensory ar amplifiern a voltage controlded oscillator

The semsor mawd is a Glark wype polarographic owygen electrode
 fom diametwr pietimumedectrode is polariaed to a voltage of gab megetive with referemeeto a siaver mectrode．The anode is a ring of miver wire in an matular groove on the face of the swnemr（Fig 2（a）＂Seturated kij solution acts as an electrolyte comtained beneath a 10 micron thick tefton membreme coverimg the elembraden The membrane is held in place by an ${ }^{3} \mathrm{a}^{*}$ Fing and $\dot{x}=$ protected by a flextole fuc shroud pleced over the
 proportiomal to oxygen tension．zero curment flows in zero oxygen but in air saturated water typical wuremte are 59 manompsen The vodtage gemerated by this current acmoss a resietor is fed into a DL amplifiern Fecent VEreions of the trancmitter heve inclucled a temperature compenseting thermistor whicth ensures the sersor networt：has a uniform output from o－ 20 C （Figure 4）．
 Fecorter from a sensor being transferred between water of 160% and b\％DO seaturation．The response time is typical less than 30 seconds．The ampifised DC sigmal is fed inte a voltage controlled oscillator．In the blki design the whole transmitter circuit is based on a mingle integrated circuit pamkege with a operationa amplifief as used in the malinity gensing trantmitter（Friede loge），Two of theme were umed as mmpifier stages，a thire as a woltage mensitive multivibrator and the fourth as abuffer feeding the resulting pulses to the output stage．Typically pulse rate variation between 2 and 1 Hz is usedn At slower pudse fates the fieh might be overiooked during a sweep seareh of the river but faster puiseretes would drain the transmitter battery too guickly．The tag is designed to pulse fastest in low dissolved oxygen so during mormal use battery wrergy is conserved fritil the fish enters an interesting area of how dissolved oxygen．
 component courst sufters from several ditedvanteges．The reletionship betwesn pules rate and oxygen temaion is nom－1inear anc output pulse 1 ength aro frequency were difticult to control． A Mke teg mow uses s integrated wirwutts aseenbled using the surfate moumting miniature primted cifouit technology and is no bigger than the ilkt model．This now has a linear calibretion curver Fut＝es Iengthy frequency and senmitivity of the transmitter are al．adjustate makimg manuracture much easier．Calibratiom curves of the two versions of the trammetter are shown in figure を況。

The output stage uses a traneformer to ganerate an output voltage af 1.20 to drive a cermaic ping transducer at its resonant

Two vorsions of the transmituery in terme of overall.

 A dual pact version with a Eepartate battery pact on the opposite Eide of the fish (Figure Sb) enathes botteries to be carmied. The fish $i=$ weil bialaned with this configumetom. The framenitter casings are polypropytene moulded tubes and are filied with silicone ojl to protect the eircuituy and provide acoustic wouplimg to the outside water.

Duting the coures of the study there mas been a continuous prowess of development of the trancmitter which will be fully described elembere For 1996 mew low power amplifier modules were used whith riequired less battery power and design reverted to a single Eylindricampaekage for simplisity and meliabilityn The tranmmiter eimtuitry is also mow implememted on a singie double sided mini printed eircuit bogrd with miniature surface mountec compomentis. fFig 5) \quad infe of wine transmitterm is now 10 days in fontrast to the s dey life of early designs using the Eame battery.

F"ish are maptured wejmg the local mommercial gill netting tembrichue. Werking from mmad boats about win lorg the net is set acrose the mbe tide. The met and bote are allowed to draft down with the tide ancifism waugtouring such a passive drift tyoucaly from the zomilemers to the \bar{b} mile marke we have evabuted all other metinade of tishimg, seime metwing fiked
 drift nettimatectmidut. The research netting is often cearied out curn my the weakly eloces seman fwith mpecial dispensetion to
 Ere used whach is mot permitted on the commercial boets. This enebles ut to underake eeveral swemp"ot the estuary om an ebt tide wherems the commercial bomta have to weit tor the end of the ebb before thay man get back wp the estuary fothe fish is removed from the met very auiekly foften only edught by the

 fiem are unlikely tu survive but with the meta we mow bete this is very rarew

In the early stages of this work (1982, 1983) it wew thought that tagging a fien yery quickly and then pelemsing it within mirumes of copture was the best technique. This has now been rejected in favour of allowing fish to recover fully in a tank of oxygenated water. Fi an were kept in a tank on boarc a boet for up to several days if not immediately required. For the 1% ge season we introduced whore based holding tanks with an oxycen supply to hold tish to be used for tracking. The transmitter is Ealibrated in the field by immersion in water of known dissolved oxygen concentration and a zero referemce solution. For the tagaing procedure the fish $\dot{s}=$ aneesthetised with benzocajne. The transmitter is attamed by mearis of surgicat nylon sutures in the region of the dor"mi fin (Figure 2). At least ane hour is allowed, following kaging to recover from the anamethetice before release.

The tish is tracked using two boats each equipped with a conventional hydrophome and portable receiver (stasko \& Fincock 1977, Friecte 197\%) The signad from the tag i.s recorded on one track of a thered eassette tipe retorder and a commentary with times is recorded on the other krack. The boetw are able to commumitate with one another and a thore bage station using UHF portable radios or in more fecent work the yff marine band. Normelly as the fiem progressess up ancl down the estuary one boat stays ahead and the other behimd the fish. ore boat always recorde the tramsmitter gicnel whilwt the other carries out any manoeuvring that may be necessary boats are equipped with oxygens temperature and \#alinity probes mo that water quality can be dogaed to chect on variatiomw in the estuary and aleo to provide occasional recelibration of the fish trarmmitwer.

ACOUETTE TELEMETFA

 mow widely used in field studies on animals. For fien either redio or acoustic trambintters cem be used. Fadio waves however will mot propogate through seawater or brackish waters so in

The signal from an acoustio tramsmiter is detected by a hydraphone immeresed in the water" The migned level detected by the hydrophone is deternined by the power output of the transmitter and trancinission lose through the intervenimg wettern The trantintter output power is uswally measured im ferme of acoustic pressurm 1 evel at 1 meter from the transmiterer expresemed in decibeds relative to areference pressurk geg dis ref lufe at 1mn (Figute 6) " For precticel. Figh tranemitters a maximumpower output is ebout 1 wett or hode ref duFa at ion Expressing sournd hevels in dexjbels means that wigmal 10 oses and getme em be sadexated by simple arithmetic subtraction or adcition. Different reference pressures are monetimes used so mation is required when comparing data from different sourtes* For work in the Ribble it hes been recestary to wes high poer tegs
 length of wins at $75+\mathrm{Hz}$ is used. Lomoper pulse lengthe man be used at lower power levels \{with narrower bancuidth but probability of detection remains proportioned to the acoustio energy tremsmitted.

Th open sea water this sort of transmitter can be detected with a good gumaty receiver and directionad hydrophone at a range of

 well within the maximum rangen Acifele of radius logom is mhown to scale in figure 1 to give an indication of the probability of deterting a fish in the estuary. To cover the whole estumy 10 to 15 itetming stations would be necessary. Figure 7 shows how trancmiseton loss increasem with range from the transmitwer* Spherical spreading predicts a 1 oss of 2ocb per decade increase in ramge. This is a useful tule of thumb but at longer "ranges frequency dependent absorption losses become
 the transmitter would have to be locm diameter instead of the
 this work.

An go dB transmission lose at extreme range is a reasonable practical 1 init for the system. In open water this gives a range of about 1.00 m but in the estuary with high tumbidity and momples miximg layers of weters of different galinities transmiseiden Iossess can be muth highern In extreme cesess at a selinity interface there can be total reflection of the signal with ro tramsmi带sion to m peceiver paaced in the wrond mass of water.

Within the estuary the ability to detect the signal does not
 by the ability to detect the signal above the ambient noisen Figure θ shows the level of amoient moise in opem eeawater at different frequencies (Dley ${ }_{6}$ medwin 1977). Waves. currente, and
fices produce noise menny at low frequenciesy the graph shows a general decressew wh increase in frequency up to mbout Eo khz
 Fiblus study \quad as theretore a compromise between avoiding high
 GEom coy conditions increase the noise level ase indicated, Gale force winds gemerete sea noise mode above the base lime deveri.

The high tidad velocities in the Fibale gemerate noise equivalent to stormy monditions at mest particularly curing a flood tide
 tranman wion losen Bodb of moise will redues the permitted
 figure 7 gives a wombing ramge of only 2 ofm in the Fibble when

 indictata how easy it may be to loose track of a fish umder much monditions.

Any noite from the boat hud or the motors al. कo serves to mast the sigmal and peduce r emgen Certain kinde of outboard motor are mome moisy tharm others and careful attention to detail of mounting of hydrophomes and 1 ayout of the boats can do more to enhame tracking performance than ary breaktmpoughe in acoustie transmitter design" The boats amd their equipment ame an integrel part of the telemetry system and deserve close attention.

OAFA ANAKYらS.

All data $i s$ recorded on audio cassette tapes together with incidental motes in variouspecofots kept by irfividuele on differemt boats at different times. All tapes are transtribed. collated and tracke of whe fish plotted out in terms of distamce up and down the estuary.

A1. gocd mequences of transmituer pulaes are then replayed through a system which doge the intervals betwemm putses. Guitable filtering is applied and pulse imtervale loaded inta a computer for further arblyeds. Calibrewion curver are prepared
 Gpot recelibretions are as aso exrried out bamed on oxygen and temperature readings taten by the boat when choge to the fish in well mixed conditions. The calitration of the twa may drjat over a perioc of days amd mplicetion of morpertions may be mectessary.

TAELEE 1. . Summary of Fish tramed

Salmon may.

Yeerm	Totel No. No.ct		No gaima	No going Dimection	
	of Fish	Eajmon		downctuean not ridera	
1982	4	4	1	$\therefore \quad 1$	
196.	6	+	-	21	
1.985	8	5	1	22	
1986	8	5	1	¢ 2	\cdots
Total	3	21	3	$12 \quad 6$	

* 1 fi कh was recovered dead.

FESUT T.
 mad jgeb. hn the drought of 1704 insufficient fish entered the estuary durimg the summer montho to justify a fiel a programmen Teble 1 mumerises the deta obtained. The total of zu fiwh

 trembed.

Figure 7 gives aplote of ald the oxygen reedjnge taken from attive fish both from the boat and from the tramemitter. The
 seturation. The extrene volues were obeserved high up the estumy towiarms Freston dock. The lower jomit on fimh attivity secms wo Бe between 46 and go\% saturation although the expernmental work was 1 imited by the fact that when ou concenttations are very 1 ow it wes difficut to when gill metted in the moyst water oomditions die very quitely, fishermen deseribing them as "whokers". There was little evidence that fish were able to avoid low DO eonditionst once embarked upon up-iver movement through the estuary the fish would be duposed to whatever happened to be the prevailing comdj.ticms.
of the $x+$ fish tracked $2 l$ were selmon and the mest were sea trout. The see trout particuleriyy if meleased well up the estuary sincowed a strong ability to escope up into fremhwater fven swimming against a strong ebb tide on octasionsn This is Well Exemplified by fish 4 (Ge) (Figume 16) , The DO readimgs from the tyamemither and the adjacemt tracking boates are mompared and show a clome corrempondance. The fish seemed to remain in higher bo valueg at mounct milem by swimming olose to the south bank wherese the boats were in the middle of the chanmel. fris fish also showed reactions to inflow from a pipe at this point on the north bank and erossed over the fiver.

Figume -11 showe a Salmom Fimh o(Bb) escaping to sea from similar Low DO concentirmions. This fien wes very interesting in that it was tracked into mhallow water and was ohserved to have hauled partially out of the water ath this was reflected by high do readifigs from the tramsmitter al though the prevaiding DO in the majn chanmel waw mome zo towner. This behaviour might have begn dismissect as eberrent if it were not for 2 other fish (without tags on) doing the same thing in the mame area, This indicates the possibility of a behevioural mechanism for overmonimg 1 ow Du 1evels.

Of the 21 Eelmon tracked only 3 wemt upstream into fremhwatern
 two were uitimately recaptured and tags returned from North Wales. This suggests thet over bot of the fish in the estuary were mor-wiable fish.

Most of the fiem showed a strong eyclical movement up and down the ewtuay tied to the tidal Eycle. The fowh would movie up with
the fiowt tide and down with the mb. Figure is shows all the data for walmon giving distance fromprewton dock mommained to the time frame of the tidal mele with o and zob degrees being Migh water. Figure 13 mhows the mean fish position from all

 fist leaving the wetuary are removect from the analysis of tidal movement a clearer sinusoid where emerges deemribing the dverage movements of a fish wiwhin the estuary bata was jombued if the fish was mtill ing or presumed to be wtild ins the estuary at fhe mbewequent high water.

 Table 2 gives bricef details for al the fish that were tracked. A. \quad this date has bewn delivered to the whe in the form of a archive of mi. mew date and obespations together with preliminery graphacad armalysis.

Gemerg pettern ge movement

 onewemprested the view that any stury on fish migration requires about 10 years foom conception to final wompletwon His team at
 plate iEleurgnewtes pletess in the North bes using acoustic tracking end dimcovered thet thesefish alternate pertods of detive Ewimming nest the surtace with periode of rest on the sea
 were utimg a syotem which they named Selective Tidal Strean Trempport（5TST）whereby the fisin only leave the bottom to gwim
 stages of theif work this ample model was obscured by the varia tions in individuel behevicour．

Studies on trameimg of metuming adult salmom at sea show that satmon do not wete grst．They swim at a uniform velomity in the chosen diection and any fluctumtigns irt the tidal flow produce口scillations in the tomek as measured over the grounc（Smith et
 second and thus often move backwards with an adveriee tide in contrast to the plasce whim would rest om the bottom．The然婎价ming speed used cortemponds to optimum speed as defined by
 coast oftem in very shallow water less than d metre deep in the strf zone of the beaches where they are weught by coastal nets （Tesch 1989，Hawhinset at 1979）＂As they pass estuaries during this coastal following betraviour they are likely to enter non－ matal ewtumeres betore eventually findimg the appropriate estury M Majinin et al（1974）deseribe trexts of salmon emcourntering nonmatal in－whots and found that they rapidly move on after a brief excursion into the mouth of the stream．Barbour
 require less than 30 Eeconds exposure to a freshwater inflow to reject it and move on to an appropri，ate home stream．

The Fibole is a very deroe extuary with a very strong food tide． Fi．min wimming along the coetet encountering the estuary are very Likely to be carried in the flood tide well up the estuary before interceptimg significant quantities of fremhwater＂which may indume non－resiclemt to fish to move off to another estuary． The estuary should be reqarded as an inlet of the sea into whith fien bewome entraned by the tiden The entrained fistiowill comprise a mixture of both Ribble and Non－Fibole \ddagger ish．Our
 fishn $1 t i s$ not unumual for net fímerise in estuaries to catch a majority of fien not destimed to enter the fiver monemmed ac the Fibole would not be exteptiomel in this respect．cometal． sewrenimg being an important aspect of the semmon homing memhenism＊1973）＂
 oscilidatiom with the tide asexpresseci by the curves in ficure
 this pattern before either escaping to sea or passing up jnto frestowetern This curve now enablesus to predict with a high degree of certainty the lowntion of figh ate different states of the tide. Thdeecthe fishery withim the estury is based on this Highly prediotatale bemaviour of the fism with best catches betma mate at around the es mide mare on the tast of the ebt tide when
 mbt tide. There was mo evidence that whis wyci itad pattern was dismupteid by chenges in DO. This opens up the possibidity that if the locatiom of fish is highy predictable then their semposure wo discherges wifhim the estumy with be highty predictable. ft
 to low DO the Fisbole.

It thould be mompasiset that whe movenent of the fi:th is notu pestive drifti the rate of movement of the tits does not corferpond wimply to the rate ot mbb and tiood tidal fiow an Legget mad Trump (2977) and Trump * Legget (1989) distuse in
屯idel estudries.

In en el mgant 5erjes of experiments Westerberg (1984) hes ehown that Eamon in fiords make vertital excumsione in the water column to sample the vertically stratitiod layers and then swith withim the layer which contaime the appropriate home stream odour. The Fibble has strong curpents and is well mixed mo the
 might nave been meatomable to suppase that tish would geek out dayers with higher Du levels. Our only indication of such
 shallown well onygenated, water", In suct shajlow waters acoustit tfacking is difticult since the sigmad can beblocked by send banks and if the tranemiturer, on the back of the fighy emerges from the water no signai will be heard. in fact it. was not unusual for us to lose trach of fioh in shalows where boats could mot follow. Thus the "heuling out" behaviour to avoid 1 ow DOE may be more common them wout d be wupposed from oum results. Apamt from this powsibiuity it seems fich have little control. over their exposure to low ols in the estury

The movements of fhe mea trout have not yet been statisticelay
 the salmon but we camot we ceertain regarding their pattern of migration. Sex trout are li bely to move in and out of the egtuary both inte frembater and sea water and we do not know if ifi every caste we are studying a fish that is attempting to miorate up an aporopriate river from the gea (Nall 19\%o)"

There are two aqpectu to this question
(a) Do low ou monditions jmhibit fish migration and if so at wat threshod does this effect occur?
 imereased and at what thremold would that effect be wignificanto

The trackimg deta provides detadied informetion on exposure of
 the esthary = We wherefore did not obtain information on whetter Tish mere detwred from entering the metuaty ws simply studied the behaviour of thome whem whimh hed entemed. gettimg aside that monsideration there seems to be ro inhibition af migration
 *tit existimg minimum ievels as tentatively recommended by

FiFAL has reviewed the 1 iternture on the dissolved okygen requirements of freshmeter fisin ancluding migratory mamonids
 types: laboratory data anc field observations. Slavonic literature reviewed by ElFAC gives lethal levels of DO for
 Maldet (1979) found that the median lethal thresthold concentration

 at DO 1 evels of about $4 \mathrm{mg} / \mathrm{m}$ (at $18-2 \mathrm{C}$) and in the River Wye. Engtand on a tecrease in DD from 5 to il mg/t (temperatures up to 27.5 C) $i n$ both instances at high temperatures for Atlentic
 jt the found thet fish kills attributable to low Do levels are
 adult migratory selmonids themefore EtFAC tentaidvely recommend that the 56 and 5 permentiles of Do in an estuary in sumer at

 temperaturess would requipe standards to be raised and higher standards would be meeded to protect migratory smolts*

EIFAC coneidered thet to alow juvenile and adult fish to whevive for 24 th the DO should not be $1 e s$ then 3 mg/l. The rewommendatiors for migratory fish were very tentativen
 कhat rish ofere active at all in the estuary in low Do comditions, Fishermery could still catmb fish.in low bos and one working hypothesis at the time was thet the fish could find pockets of high ou whim enthbleg them to murvive the otherwise adverse conditions. The tracking etudy hes mbown byory ald doubt that +ish are active in waters of DO eoncentrations down to Be\% seturatiom, The only beheviour coneistent with the high do pocket mypothesis is the "hauling out" behevi our shown by some fishe lnedementily much behaviour would make fieh more
susceptable to prodetion Edrdswere recorded as active in the

 the DO sag in the Fibble, is there any evidence of adverse
 of 5s\% saturetion is not awutely lethal but salmonas show
 7on, Duthie (umputhsthed) mes shown thet es Do dewfeases the

 in the 1 aboratory but at the whpente of 3 arge onygen detatan The

 reached. Applyime thet theory to Fibuie fich jt chould be possible to model the expected imorease in mortality pexe ascociated with the exposure to lou DG. Dur semple of tish is toc small to measure any mortality effect diremtiy although momtaitites were observed. $t \mathrm{t}$ was difficut to weparate these from the stress of tagging" There is littie doubt thet when in

 are also likely to lead to za delayed death possibly after the tish leaves the estuaryn wood et al (1.98\%) have investigated the postwexercise death symdrome in sedmonids infich occums when fim are exercised to exhaustiomn Apparently heathy fish man die for no apparent reason some time arter exercise. during recovery in fully oxygenated water. Thus although fith may survive dumbathe course of our trackimg observetione there may be a delayed mortality which we ar"e unable to monitor"

The study has mow placed us in a posjtion where we can precieely predict the exposure to difererent ou concentrations in fish entering the estuaryn This provides the basis for modelling the physiological effects and mortality probabilities resulting from that exposuren

CONCLUETONS

1. There isemo apparemt inhibition of fisth migration down to DO concentrations of $40-50 \%$ saturationn
Z. There is no effect on the pattern of movememtur the fish within the estuary over the range of ou velues observed.
※ッ There je mome eviderice thet fish may try to avoid low ou conditions by "haulimg out" into very mbaldow matere but overall opportumities for ohoice and avoidance of low DO conditions are dimited.
2. A magority of the fish (
 fich these may manitest atwe themselves in poputations other than the Fitable selmom amo troutn
3. Fis st adopt a mtereotypod behaviour pattern in the estuary moving to and fro with the pbb and flow of the tide for one or nore sea or to move up into freshwater.
 fisma Eurgpean Inland Fisheries Advisory Commiseiom. Butterwortheypp 27\%

 gradicmatin estharies. FhO Thesis. Univermity of Aberdeman
 and fpplications. Wiley. New York.

 Fish. Rew. Fep. 14 dFpp.
 small veswel techmiquefortracking pelegic fish. Mar. Fish. Review.

HUETAN S.J. G'DONNELL A.F." 啇 MANCE O. (1904) A SUKVEy of estuarine oxygen concentrations in relation to the passage of migratory malmonids. Water Research Centren Fieport $74 \mathrm{~m}_{\mathrm{m}} \mathrm{m}$. M, May 1984. sepp.

LEEGETT' W. American anad In, K. Schmidt- Koenig et ag (Eds) Animel migrationn navigation and homingn Eerling Springer. 46zpp.
 of selmon (Sglmg selar L) in the coumse of spawnimg migration

 Co.

FFIEDE K , O (1977) Natural selection for emergetic efficiency and
 Lomd, 267n616-611.

FRLEDE I. Ca (1979) An amalysis of otajetives in telemetric
 Amlaner \& D.W. Mambonala (Eds\% "A Handbook on Eiotelemetry \&

Fiadio Trackimg" Fergamorn OxFord,
 For uman fism in extuaries. Biotelenetry \& Fatignt Monitoring

 by : wtelitite together with minultaneaous remote sencing.

 Helm. Lamelon.
 Orientation and energewic: efficiemcy in the offshore moevemente
 Rep. 2t 22pp.

SOLOMON D.J. (L973) Evidence for pheromone intiuenced homing by

SOLOMON D. 3.8 ETOFETON-WEST Tu $\%$ (8989) Fadio tracking of mamonids in rivers: devedopment of an effective system,

 bibtelemetry, with emphasiss on uitrasonic tewhmiguren I.fish. Reser Ed Can. Zivil4g-1 550

TESCH F. WH (1989) Migratory performance and environmemtal
 "Environmental Fhysiology of Fishes" Flenumprows. New York"
 the probleme of murfente. Cam. J. Fitha Aquatic. Sci. Syulogo1692.
 of the movements of athantic selmon smolts (Ealmosedar in the

WESTEREERG $H_{n}(1.9 G 4)$ The orientetion of fish and the verticat stratification at finem and microstructurad sesjes. ppl79-2g3. In Eds J.D. Moleever G.F. Arnold y Jni. Dodson and W. H. Neili. "Mechentimes of migretion in Fishes" Fienum Fress. New York*

The fish movement is given as the number at tidal ryoles the fish take to escopen A one eyolefigh is one which leaves the estuary an the tidal eyche within which it was peleeseed counting from Hith Liverpool. " tup" d"motem movement into frestwater or the track
 movement to wed or hexding in a seatard diremtion when tracking แas abendoned.
$\begin{array}{rlrl}F j=1 \text { No Species } & \text { Date Track } \\ \text { Dusation }\end{array} \quad$ Gommente
Mover

\qquad

$3(82)$	Eax 1 mon	15/7 2.10n	Fedeesed	
1 cycle			on mbb.	
down			at 10.25	

1. (83)	seatrout	16/7 27,2h	Feleased by 6 mile marks Lost
3 cyele		\cdots	gaing to gee at 11.5 mile .
down		1.7.77	

TAGLE 2 CONTIMUED

4（\％）	Exincm	21／7	9.88	Fejeened at \％us mile ment
2 Eyma		－		to sea and recovered from N ．
dowr		$22 / 7$		Weles．

$6(5 x)$
$?$
237
玉ット
Feleased 109 below old
Femtorthem bridige．Fiecover－ ed dead at remeastertat．

5 (e5) - wele up'	sadmon	$29 / 7$	7.67%	Feleased at 4.3 mide at ※ッ 7 miles (di uncertain	Last ection
$\begin{aligned} & 6(\mathrm{gE}) \\ & 1 \quad 6 y=1 e \\ & 10 \mathrm{yn} \end{aligned}$	selm mon	297%	1. 76 n	Fel eamed at 4 milem matugt et 5.75 mis es 	Fi. going

1. ${ }^{\text {(}}$ 6)	Een trout	2 Ca	4. \% \%	Dead	fimh		rec		
Dead				rele	cse	si	te.		
				swam	into		utfa		

6 6 86 ）	sal mom	$21 / 7$
2 bycle 401447		

G． 3 in Feleased at 7 miles．Left gasing cut to sea ett 18 milem Fis minauleci out＂ with severnc otherr ヶism．

 down＇

11（86）	Ealmon	$26 / 7$	9.92 h	Fel．eased	at ${ }^{\text {a }}$	Lest
2 cycle				at 1才．5	mi． 1. ex	¢せa－
down				Warct．		

 down

Notesun

In Fish tracked each year are giver a werial mumber follomed by the year in brackete to give t umi que identity coden

2n Dates are the dey and month when the fish was released followed by day and month when tracking eeased ifthe track wer spremad over more thar one day.
T. Track durations are giveninhours and decimal fractions themeof ine. $2.5 h$ is 2 mours and 30 minutes.

FIGuFE $1 . \quad$ The Fiver Fibole estuary, In the map the shaded areas indicate sand and mudflats exposed at low tide. The mile scale $i s$ in statute miles and correwponds to the nomemalature of navigation mambs situated along the main chanmeln The wimctes of different redis indicate the working range of the acoustic. tranmotitere under different conditioms. The graph shows
 \#tates of the tide. Dotwed line - High water at iL. GStn Solid
 18. 3oh. Note the effect of photosymthesis compared with the early morning low water.

FIGUFE 2. The oxygen sensing trancmitter (a) single package comfiguration" The protector fits over the sensorn (b) Dual pannier arrangement.
(a) DO transmitter single package

(b) DO transmitter dual package

 voltage output (meesured acmoss a series resistor) from the sensor when transfered from 199% oxyoen saturated water into o\% and then back agajn. (c) Transmitter calibration curves for the

(a)

(b)

FIGURE 4. Variation in voltage output and response time of a batch of 10 sensors. This variation has to be allowed for in building transmitters

DO sensor Variation

FIOURE 5. Layout of ininj printed cirmuit boards for disablved oxygen sensing trememitters. (a) 1 ayout of eircuits on astrip. (b) Copper tracks on the wo sictes of the boerd* The edge Eonnector pads allow tetting of twancmituers when the circuits are asmembled on the stock board before separation and assembiy into inolvidual transmitters.
(a)

(b)

FICUFE G. Source Ievels of acoustic transmitteren Conversions between Decibels sound pressure and power (Watts) " The devel is comventionally measurecl at im from the sourcen

Power Watts

FIGURE 7* Transmission $10 \leq 5$ in sea waterm with range at ctiffergnt frequencies. 75Fthz was chosen for work on the Ribble.

FIGUFE B. Ambient noise spectra at sean Noise levels are higher in coastal pegions particularly in estuaries, Note that 75khz coincides with minimum noise m wels fof moderate seas.

 and sea trout in the Ribole as a function distance from the doct headn The solid dines indicate the extremes encountred by fish in the ectuaty.

Distance from Preston dock
 feadings of DO and meadinge from the transmitter, The maximum reacing possible from the transmiterer is 160% saturationg the reading therefore remains constent as the fish wwims up into Eupermeatureted mornditions.

FIGUFE 110 Track of Gajmong Fish $\sigma(86)$, This fimh after oeciliating to a fro rexpidiy moved out to sea on an mbt tide. The high Do readings at approximately ge, gho is wheme the fish moved out ef the channel into very shallow water where it was observed to heve "haulled out" in the compary of other fish apparemtly to avoid low DO cortemerations,

FICUFE Lz A plot of all salmon tracks muperimposed on a unitorm

 ostillation associated with the tide is immediately apparent.

Distance from Preston dock
miles

FIGURE 13. Analysis of malnon tracks. Flot of position of fish during the tidel eycle.

Solid line - mean of all daka in Figure 11.
Dashed line - mean of all data of fish whith remained within the estuary on the subsequent high water: ife ald tracks of fish leaving the estuary were excluded from this. This can be taken to reprewent the normal pattern of movenent of fish within the estuary.

Dash a Dot line - mean of all fich leaving the estuary to go to Eea. This shows that fish beave the estuary with the ebb flow.

FIGuFE 15 . Tracks of ml sea trout together with Do readingé

