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ABSTRACT   
Growth is one of the most important characteristics of cultured species. The objective of this study was 
to determine the fitness of linear, log linear, polynomial, exponential and Logistic functions to the 
growth curves of Macrobrachium rosenbergii obtained by using weekly records of live weight, total 
length, head length, claw length, and last segment length from 20 to 192 days of age. The models were 
evaluated according to the coefficient of determination (R2), and error sum off square (ESS) and helps 
in formulating breeders in selective breeding programs. Twenty full-sib families consisting 400 PLs 
each were stocked in 20 different hapas and reared till 8 weeks after which a total of 1200 animals were 
transferred to earthen ponds and reared up to 192 days. The R2 values of the models ranged from 56 – 
96 in case of overall body weight with logistic model being the highest. The R2 value for total length 
ranged from 62 to 90 with logistic model being the highest. In case of head length, the R2 value ranged 
between 55 and 95 with logistic model being the highest. The R2 value for claw length ranged from 44 
to 94 with logistic model being the highest. For last segment length, R2 value ranged from 55 – 80 with 
polynomial model being the highest. However, the log linear model registered low ESS value followed 
by linear model for overall body weight while exponential model showed low ESS value followed by 
log linear model in case of head length. For total length the low ESS value was given by log linear 
model followed by logistic model and for claw length exponential model showed low ESS value 
followed by log linear model. In case of last segment length, linear model showed lowest ESS value 
followed by log linear model. Since, the model that shows highest R2 value with low ESS value is 
generally considered as the best fit model. Among the five models tested, logistic model, log linear 
model and linear models were found to be the best models for overall body weight, total length and 
head length respectively. For claw length and last segment length, log linear model was found to be the 
best model. These models can be used to predict growth rates in M. rosenbergii. However, further 
studies need to be conducted with more growth traits taken into consideration. 
 
KEYWORDS: linear, log linear, polynomial, exponential, Logistic models, Macrobrachium 
rosenbergii. 

 

INTRODUCTION 
Freshwater prawns are of large and growing importance in India and are of the major contributors to aquaculture 
production. The pace of development faced an a unprecedented set back because of diseases and water quality 
issues in Giant fresh water prawn farming, which once thought to have been relatively free from diseases and 
other production issues. The peak production of giant freshwater prawns in India (since 1999 as per MPEDA 
records) took place in 2005-2006 which was 42780 tonnes from 43,395 ha of area (NFDB). However, in 2006-
07 the prawn production and farming drastically decreased by 30% to 30,115 tonnes and 30,042 ha of area 
respectively. The Giant fresh water prawn, Macrobrachium rosenbergii contributed 4.3% by quantity (5.8% by 
value) of the total frozen shrimp export from the country during 2005 to 2006, but its contribution declines in 
2007, despite the global production showing a steady progress over the past few years, thanks to surging 
production from China. The initial failures were earlier than anticipated, but there are many lessons to learn 
from the rise and fall of M. rosenbergii farming in India, if it needs to be sustainable (NFDB). Growths being a 
parameter of obvious importance, numerous studies have been conducted on various aspects of growth, but yet 
to be understood completely no previous studies have been conducted on the growth curve parameters of M. 
rosenbergii. Therefore, the present study was designed with the following objective to develop growth models 
and to estimate the factors affecting the growth curves. 
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MATERIALS AND METHODS 
The animals were procured from the river Narmada, India. Twenty full-sib families of M. rosenbergii consisting 
400 PLs each were stocked in 20 different hapas and reared till 8 weeks after which a total of 1200 animals were 
randomly selected and transferred to earthen ponds and reared for another 16 weeks. Feeding was done with 
Tiger I commercial pelleted feed (CP Company) at the rate of 5-8% of the body weight thrice a day. The 
experiment was conducted at freshwater fish farm of CIFE, Powarkheda centre, India. Sampling was performed 
and data recorded for overall body weight, total length, head length, claw length and last segment length at 8 
days interval from hapa phase up to 192 days. The data obtained was analysed using the SAS Version 9.2. In the 
present study, a total of five models comprising three linear models (linear model, log linear model, polynomial 
model) and two non-linear models (exponential model and logistic model) were evaluated for their goodness of 
fit in determining the growth curves of M. rosenbergii. All the models were evaluated according to 
determination coefficient (R²), error sum of square (ESS). 
 
Models used for fitting the growth data 
 

a. Linear model 
Y= a+bx+e 
 
Y= growth (body weight, total length, head length, claw length and last segment length), a= intercept, b= slope, 
x=age, e= random error assumed to have mean zero and variance (σ2). 
 

b. Log linear model 
ln Y= a+bx+e 
 
ln Y= Natural log of growth (weight, total length, head length, claw length and last segment length), a= 
intercept, b= slope, x= age, e= random error assumed to have mean zero and variance (σ

2). 
 

c. Polynomial model 
Y= a+bx+cx2+dx3+fx4 +e 
 
Y= growth (weight, total length, head length, claw length and last segment length) at age x, a= intercept, b= 
growth rate at age x, c, d and f= parameters for multiples of 2nd, 3rd and 4th degree of age x, e= random error 
assumed to have mean zero and variance (σ

2). 
 
 Polynomial was limited to 2nd order as there was no further improvement in R2 by increasing the order of fit. 

d. Exponential model 
Y=a*ebx +e 
 
Y= Growth (weight, total length, head length, claw length and last segment length) at age x, a=Estimated initial 
value for growth traits (body weight/ total length/head length/claw length/last segment length), b=Growth rate at 
estimated exponential rate, x= age, e= random error assumed to have mean zero and variance (σ

2), body traits 
measurement at x+1 age is eb times higher than the same at age x. 
 

e. Logistic model  
Y=a/(1+((a-b)/b)e-rx) + e 

 
Y= Growth (weight, total length, head length, claw length and last segment length) at age x, a= height of the 
horizontal asymptote (the expected value of Y when age approaches infinity), b= expected initial value of Y, r= 
measure of growth rate, e= random error assumed to have mean zero and variance (σ

2), In this model r should be 
a small positive number. 
 

RESULTS 
Analysis of growth pattern 
Overall mean body weight of 20 families during the hapa phase from stocking until 64th day rearing period 
ranged from 0.05 to 5.0 g. Among all the 20 families 3rd family attained the highest growth of 5g followed by 
13th and 18th families with a weight of 4.9g (Table 1). Mean total length during grow-out phase from stocking 
till harvest phase ranged between 2.97 and 18.45 cm while the mean body weight was 14.54g. The head length,  
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claw length and last segment lengths were ranged from 1.24 to 9.12 cm, 1.24 to 10.24 cm and 0.32 to 3.9 cm 
respectively. Significant difference was observed in all the traits tested among all age groups (Table 2). 
 
Goodness of fit 
Coefficients of determination for different growth traits computed using linear, log linear, polynomial, 
exponential and logistic models for overall as well as for different sex of M. rosenbergii were used to evaluate 
the models for goodness of fit.  For overall data on body weight, the coefficient of determination R2 (%) was 78, 
64, 93 for linear, log linear and 2nd degree polynomial models respectively, while it was 56% and 98% for no 
intercept models like exponential and logistic models respectively. The ESS (Error sum of squares) was 
recorded minimum for log linear model followed by linear model, while the highest ESS was obtained by 
exponential model (Table 3). The lowest R2 values of 19% and 10% for males and females respectively were 
obtained in case of exponential model while the same for logistic model were for both male and female are 89% 
and 86% respectively. Among the models tested exponential model had lowest ESS for both the sexes (Table 6, 
7 .8, 9, 10). The R2 (%) values of different models for total length, head length, claw length and last segment 
length were ranged from 62-90%, 54-90%, 44-94% and 62-80% respectively. The lowest ESS was recorded by 
log linear model followed by exponential model for total length, log linear model followed by exponential 
model for head length, log linear and exponential model for claw length and linear and exponential model for 
last segment length (Table 3, 4 and 5). 
 
Table 1.  Average body weight (g) of different families during hapa phase rearing at different time intervals 

Family 8 day 16 day 24 day 32 day 40 day 48 day 56 day 64 day 

01 0.1±  0.01 0.2±0.021 0.2±0.01 0.8±0.07 1.0±0.08 1.8±0.11 3.4±0.1 4.2±0.1 
02 0.3±0.03 0.6±0.06 0.7±0.06 1.3±0.09 2.0±0.05 2.2±0.12 3.3±0.14 4.7±0.1 

03 0.05±0.005 0.1±0.01 0.2±0.01 0.7±0.07 1.±0.03 1.2±0.10 3.2± 0.1 5.0± 0.1 
04 0.06±0.004 0.1±0.01 0.2±0.01 0.7±0.06 0.9±0.06 1.1±0.1 3.4±0.1 4.2±0.1 
05 0.06±0.005 0.1±0.01 0.2±0.01 0.7±0.07 1.1±0.07 1.4±0.1 3.2±0.13 4.4±0.1 
06 0.07±0.005 0.1±0.01 0.1±0.01 0.9±0.08 1.0±0.09 1.2±0.1 3.3±0.15 4.2±0.1 
07 0.06±0.004 0.1±0.01 0.2±0.01 0.9±0.09 1.2±0.06 1.6±0.1 3.4±0.1 4.2±0.1 

08 0.07±0.005 0.1±0.01 0.2±0.01 0.7±0.07 1.0±0.07 1.4±0.1 3.3±0.1 4.2±0.1 
09 0.06±0.005 0.1±0.01 0.2±0.01 0.7±0.07 1.0±0.05 2.1±0.08 3.2±0.1 4.01±0.1 
10 0.07±0.004 0.1±0.01 0.2±0.01 0.5±0.04 0.8±0.05 1.9±0.05 3.3±0.1 4.3±0.2 
11 0.06±0.004 0.1±0.006 0.1±0.01 0.7±0.06 0.9±0.06 1.6±0.09 3.4±0.1 4.0±0.13 
12 0.07±0.005 0.1±0.01 0.2±0.01 0.9±0.06 1.1±0.05 2.0±0.07 3.4±0.1 4.8±0.1 

13 0.07±0.005 0.1±0.01 0.2±0.01 1.0±0.07 1.4±0.06 2.0±0.1 3.2±0.1 4.9± 0.1 

14 0.07±0.005 0.1±0.008 0.2±0.01 0.4±0.03 1.0±0.09 2.1±0.1 3.4±0.1 4.3±0.1 

15 0.08±0.005 0.1±0.01 0.2±0.01 0.8±0.09 1.6±0.04 1.8±0.1 3.4±0.1 4.3±0.1 

16 0.08±0.004 0.1±0.01 0.2±0.01 0.4±0.02 0.6±0.04 2.0±0.1 3.1±0.1 4.3±0.2 
17 0.1±0.01 0.2±0.02 0.2±0.01 0.6±0.06 0.8±0.07 2.2±0.09 3.4±0.1 4.0±0.1 

18 0.1±0.02 0.2±0.04 0.2±0.01 0.6±0.13 1.4±0.08 2.1±0.1 3.4±0.1 4.9±0.1 

19 0.2±0.02 0.3±0.03 0.3±0.01 0.5±0.05 0.8±0.08 2.1±0.1 3.2±0.1 4.0±0.1 
20 0.2±0.02 0.2±0.04 0.3±0.01 0.6±0.06 1.1±0.1 2.5±0.1 3.4±0.1 4.5±0.1 
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Table 2. Overall mean of total length, body weight, head length, claw length and last segment length at different 

time intervals  

Age in days 
Total length 
(cm) 

Body 
Weight (gm) 

Head 
Length (cm) 

Claw 
Length (cm) 

Last segment 
Length (cm) 

8 2.97 0.20 - - - 
16 3.02 0.26 - - - 
24 3.27 0.76 - - - 
32 3.59 1.01 - - - 
40 4.65 1.73 - - - 
48 5.26 2.37 - - - 
56 5.79 3.02 1.24 1.24 0.32 
64 6.24 4.36 2.46 2.45 0.39 
72 7.16 4.99 2.99 3.33 0.75 
80 7.69 5.56 3.11 3.60 0.49 
88 7.81 6.35 3.75 3.80 0.64 
96 8.19 7.08 3.99 4.08 0.70 
104 8.69 7.54 4.25 4.34 0.75 
112 9.31 8.17 4.52 4.67 0.78 
120 10.05 8.81 4.91 5.04 0.81 
128 10.71 9.68 5.29 5.56 0.84 
136 11.261 10.26 5.56 5.87 0.92 
144 11.794 10.64 5.81 6.15 1.07 
152 12.386 10.99 6.10 6.49 1.17 
160 12.847 11.59 6.34 6.72 1.39 
168 13.882 11.97 6.85 7.32 2.92 
176 14.67 12.67 7.42 8.14 3.3 
184 16.79 13.56 8.30 9.43 3.7 
192 18.456 14.54 9.12 10.32 3.9 
 
 Sex wise comparisons of models   
The R2 (%) values for overall body weight of males and females was between 19% and 89%, 10% and 86% 
respectively. ESS values were low for exponential model followed by log linear model for both sexes (Table 7). 
The  R2 (%) values for total length, head length, claw length and last segment length were ranged from 16% to 
93%, 61% to 95%, 37% to 95% and 64% to 95% respectively for both sexes. ESS values were low for the 
exponential model followed by the log linear model for all the traits in both sexes (Table 6, 8, 9, 10). 
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Table 3. Estimated parameters and standard errors of different models for body weight and total length  

 
Table 4. Estimated parameters and standard errors of different models for head length and claw length 

Models Equations for overall data a ± SE b ± SE c ± SE ESS R2% 
Body weight 
Linear Bw=4.4+0.15pond age 4.4 ± 0.09 0.15 ± 0.001  2525 78 
Log linear Bw=3.6+.153pond age 3.6±0.006 0.15±0.001  677 64 
Polynomial Bw=0.16+.004pond age+.0004 pond age² 0.16±0.04 0.004±0.001 0.0004 ±0.000006 3326 93 
Exponential Bw=0.10*e (3.9 *pond age) 0.10±-30.5 3.9±77.5  69229 56 
Logistic  Bw=16/(1+((16-1.5)/1.5)*e(-0.0202*pond age)) 16.0±0.003 1.5±0.001 0.020±0.0023 2563 98 
Total length 
Linear Tl=1.06+.08pondage 1.0 ± 0.05 0.08± 0.0007  31654 66 
Log linear Tl=0.8+.012/pond age 0.8± 0.008 0.01± 0.0001  859 63 
Polynomial Tl=.06+.09pond age+.00006pondage² 0.6±0.09 0.09± 0.002 0.00006±0.000014 31553 66 
Exponential Tl=0.7*e (29 *pond age) 0.7±0.006 29±0.005  3124 62 
Logistic  Tl=20/(1+((20-2)/2)*e(-0.017*pond age)) 20.6± 0.5 2.4±0.04 0.01±  0.0004 34167 90 

Models Equations for overall data a ± SE b ± SE c ± SE ESS R2% 
Head length 
Linear Hl=0.14+0.44pond age 0.14 ± 0.04 0.04 ± 0.0004  1325 73 
Log linear Hl=0.282+.0105pond age 0.2±0.01 0.01±0.0001  202 69 
Polynomial Hl=1.57+.0063pond age+0.00017pond age² 1.5± 0.1 0.006± 0.002 0.0001± 0.00001 2726 75 
Exponential Hl

 
= 0.02*e (23.4 *pond age) 0.02±0.005 23.4±0.3  29 55 

Logistic  Hl=161/(1+((1.4-.01)/1.4)*e(-0.0102*pond age)) 161.5±213.9 1.4±0.0356 0.01±.0004 2705 95 
Claw length 
Linear Cl=0.32+.04pond age 0.3± 0.05 0.04±0.0005  3468 72 
Log linear Cl=3.8+0.15pond age 3.8±0.008 0.15±0.001  237 66 
Polynomial Cl=1.43+.008pond age+0.00018pond age² 1.4± 0.1 0.008± 0.002 0.0001± 0.00001 3234 74 
Exponential Cl=0.009*e (24 *pond age) 0.009±0.006 24.1±0.4  49 44 

Logistic  
Cl=54/(1+((1.38-0.011)/1.38)*e(-0.011*pond 
age)) 

54.3±9.9 1.3±0.03 0.01±0.0004 3222 94 
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Table 5. Estimated parameters and standard errors using of different models for last segment length 
 

 
 
 
 
 
 
 
 
 

Models Equations for overall data a ± SE b ± SE c ± SE ESS R2% 
Linear Lsl=0.38+0.01pond age 0.38 ± 0.01 0.01 ± 0.0001  108 67 
Log linear Lsl=1.8+.013pond age 1.8±0.01 0.01±0.0001  193 75 
Polynomial Lsl=0.82+.014pond age+0.00012pond age² 0.8 ± 0.02 0.01± 0.0006 0.0001± 0.000002 3047 80 
Exponential Lsl=0.3*e (183*pond age) 0.3±0.03 183.3 ±2.2  995 69 
Logistic  Lsl=3.45/(1+((2.45-0.002)/0.002)*e(-0.001*pond age)) 3.45±0.002 0.002±0.001 0.0001±0.000004 3562 62 
 
Table 6. Estimated parameters and standard errors of different models for total length for different sexes 
 

Model Sex wise equations a ± SE b ± SE c ± SE ESS R2% 
         Male 

Linear Tl=3.6+0.06pond age 3.6±0.23       0.06±0.002        9295 39 
Log linear Log Tl=1.6+.005pond age 1.6± 0.02       0.005±0.0002        95 33 
Polynomial Tl=14.7+0.16pond age-.0010pon²nd age² 14.7±0.58       0.16± 0.01      0.001± 0.00005       6898 55 
Exponential Tl=0.05*e (4.8 *pond age) 0.05±0.003 4.8±0.27        1 29 
Logistic  Tl=24/(1+((24-5.)/5)*e(-0.006*pond age)) 24±0.0024           5.0± 0.11       0.006±0.00018      8309 93 

Female 
Linear Tl=3.16+.05pond age 3.1 ± 0.1       0.05 ± 0.001        12744 41 
Log linear LogTl=1.4+.006pond age 1.4± 0.01       0.006±0.0002        219 31 
Polynomial Tl=11.3+.11pond age+.0008pon²d age 11.3± 0.4      0.11 ± 0.008      0.0008 ±0.00003       10550 51 
Exponential Tl=0.06*e (5.9 *pond age) 0.06± 0.003       5.9± 0.2        5 16 
Logistic  Tl=20/(1+((20-5.)/5)*e(-0.004*pond 20±0.002 5.0±0.005 0.004±0.0003 573 74 
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Table 7. Estimated parameters and standard errors of different models for body weight for different sexes 

Models Sex wise equations a ± SE b ± SE c ± SE ESS R2% 
                                                                                                       Male 
Linear Bw=2.3+.08pond age 2.2± 0.2       0.08 ± 0.002        7959 54 
Log linear LogBw=0.27+0.013pond age 0.2± 0.05        0.01± 0.0005        456 36 
Polynomial Bw=8.5+0.12pond age+.0009po 

nd age² 
8.5± 0.5      0.1 ± 0.01      0.0009 ± 0.00004       5918 66 

Exponential Bw=0.1*e (36 *pond age) 0.1±0.02   36.8±2.1        95 19 
Logistic  Bw=14.6/(1+((14.6-1.7)/1.7)*e(-0.012*pond 

age)) 
14.6± 031            1.7 ±0.05      0.01 ± 0.0002       6313 89 

                                                                                                    Female 
Linear Bw=2.0+0.07pond age 2.0± 0.13     0.07 ± 0.001        10792 56 
Log linear Log Bw=1.3+0.04 pond age 1.3±0.18 0.04±0.02  3124 61 
Polynomial Bw=6.0+.09pond age+.00078pondn 

Nd age² 
6.0± 0.3       0.09± 0.007      0.0007± 0.00003       8676 65 

Exponential Bw=0.2*e (62.5 *pond age) 0.2±0.05 62.5±3.9        1052 10 
Logistic  Bw=13.7/(1+((13.7-1.2)/1.2)*e(-0..0136*pond age)) 13.7±2.1      1.2±0.06      0.01 ± 0.0007       9097 86 
 
Table  8. Estimated parameters and standard errors of different models for head length for different sexes 

 
 

Models Sex wise equations a ± SE b ± SE c ± SE ESS R2% 
Male 

Linear Hl=0.51+.04pond age 0.5 ± 0.1       0.04± 0.001        1219 66 
Log linear Log Hl=0.51+.009pond age 0.5±0.02       0.009±0.0002        40 66 

Polynomial 
Hl=3.46+.022pond age+.00 
030pond age² 

3.4± 0.3       0.02± 0.005       0.0003± 0.00002       1045 71 

Exponential Hl=0.01*e (21.2 *pond age) 0.01±0.006       21.2±0.5        3 61 

Logistic  
Hl=8.8/(1+((8.8-1.7)/1.7)*e(-0.009*pond 
 age)) 

8.8±0.06            1.7±0.0401       0.009±0.0001      2345 95 

                                                                                          Female 
Linear Hl=0.45+.04pond age 0.4 ± 0.06      0.04± 0.0006        1325 74 
Log linear LogHl=.21+.010pond age 0.2±0.01       0.01±0.0001        105 67 

Polynomial 
Hl=1.36+0.008pond age+.000 
016pond age² 

1.3± 0.2        0.008± 0.003       0.0001±0.00001        1252 75 

Exponential Hl=0.01*e (20 *pond age) 0.01±0.006        20.0±0.5        2 62 
Logistic  Hl=7.8/(1+((8.8-1.5)/1.5)*e(-0.009*pond age)) 7.8±0.008 1.5±0.003 0.009±0.0003 4576 78 
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Table 9. Estimated parameters and standard errors of different models for claw length for different sexes 

Models Sex wise equations a ± SE b ± SE c ± SE ESS R2% 
                                                                                                   Male 
Linear Cl=0.8+.05pond age 0.8±0.1       0.05± 0.001        1404 65 
Log linear Log Cl=3.9+0.11pond age 3.9±0.01      0.11±0.003        47 59 

Polynomial 
Cl=3.6+0.02pond age+.0003 
Pond age² 

3.6± 0.3       0.02±  0.006       0.0003± 0.00002       1210 70 

Exponential Cl=0.01*e (20 *pond age) 0.01±0.006        20.0±0.5        34 62 

Logistic  
Cl=10..4/(1+((10.4-1.8)/1.8)*e(-0.009*pond 
 age)) 

10.4±0.003            1.8±0.04       0.009±0.0001      1202 95 

                                                                                             Female 
Linear Cl=0.74+.04 pond age 0.7± 0.07      0.04± 0.0007       1532 74 
Log linear LogCl=3.9+0.14pond age 3.9± 0.01      0.14±0.002        127 69 

Polynomial 
Cl=1.03+0.012pond age+0 
.00015pond age² 

1.0 ±0.2        0.0 ± 0.004       0.0001±0.000012        1462 75 

Exponential Cl=0.04*e (31.4*pond age) 0.042±0.01       31.4±1.03       34 37 

Logistic  
Cl=9.8/(1+((9.8-1.14)/1.14)*e(-0.013*pond 
age)) 

9.8±3.6      1.14±0.051       0.013± 0.0007       1466 95 

 
Table 10. Estimated parameters and standard errors of different models for last segment length for different sexes 

Models Sex wise equations a± SE b±SE c ± SE ESS R2% 
Male 

Linear Lsl=0.62+0.015pond age 0.6±0.03     0.01±0.0003        126 65 
Log linear Loglsl=1.5+.013pond age 1.5±0.02      0.01±0.0002        50 78 
Polynomial Lsl=1.62+.028pond age+.00019pond age² 1.6± 0.07       0.02± 0.001      0.00019± 0.000005       58 84 
Exponential Lsl=0.19*e (150.5*pond age) 0.19±0.03       150.5±3.16        102 71 
Logistic  Lsl=4.0/(1+((4-0.05)/0.05)*e(-0.0136*pond age 4.0±0.01 0.05±0.03 0.013±0.01 245 64 
                                                                                               Female 
Linear Lsl=0.44+.011pond age 0.44 ± 0.01      0.01 ± 0.0001        108 71 
Log linear Loglsl=1.8+.013pond age 1.8±0.01     0.01±0.0001        77 81 
Polynomial Lsl=1.02+.017pond age+0.00012pond age² 1.0± 0.04       0.01± 0.0008      0.0001±0.000003       60 83 
Exponential Lsl=0.3*e (194.9 *pond age) 0.3±0.04       194.9±3.4  393 66 
Logistic  Lsl=3.3/(1+((4-0.03)/0.03)*e(-0.0136*pond age 3.3±0.05 0.03±0.09 0.013±0.05 2345 67 
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Comparison of model parameters 
The best fitting model for overall body weight having highest R2 value and lowest ESS was logistic model 
and the equation was BW=16/(1+((16-1.5)/1.5)*e (0.0202*pond age)), where the parameters include a 
horizontal asymptote (a) of 16, an initial value (b) of 1.5 and the growth rate per pond age (c=0.0202) (Table 
3). But the initial value (b) was 1.7 and 1.2, horizontal asymptote (a) was 14.6 and 13.7 and the rate of growth 
was 0.01 and 0.01 respectively for males and females (Table 7). Other models fitted were having slope (rate 
of growth) value of 0.08-0.07. Similar slope value (linear rate of growth b) was estimated for both linear and 
2nd degree polynomial models with values of 0.08 and 0.07 for males respectively and was higher than that 
obtained for females (linear, 0.08 and polynomial, 0.1) (Table 7).  The estimated parameters for exponential 
models obtained values for initial body weight (a =0.1) and rate of growth was 36.8 (b=36.8) (Table 7).  
 
For total length, the intercept (Initial value-a) of linear and polynomial model was higher for males (3.6 and 
14.7 respectively) in comparison to females with intercepts 3.1 and 11.3 respectively. Estimated slope value 
obtained for linear and 2nd degree polynomial models were 0.06 and 0.16 for males and were higher than the 
slope obtained for females with values 0.05 and 0.11 respectively. The log linear model obtained intercept for 
males 1.6 and females (1.4) and the slope was 0.005 for males, which was slightly lower than that of females 
(0.006) (Table 6). The ESS was considerably reduced by fitting 2nd degree polynomial and linear models for 
males, but the R2 value was very low (33 for females and 55 for males) for 2nd degree polynomial model.  
The R2 value obtained for logistic model and exponential models was in the range of 98% and 29% for both 
the sexes indicating logistic model as best fit model (Table 6).  
 
Estimated slope value for head length of male was 0.5 for linear model, while it was higher for males (0.5) in 
comparison to that of females (0.4). For log linear and polynomial models estimated slope values were 0.5 
and 3.4 respectively for males, which are higher than females (0.2 and 1.3 respectively) (Table 8). Estimated 
initial value for head length (0.01) for exponential model was similar for both male and female. In males 
higher slope value was obtained (0.21) followed by females with growth rate 0.2. For logistic model the slope 
(growth rate parameter c) of males and females was similar (0.009) (Table 8). 
 
For claw length the intercept value of log linear and polynomial model was higher for males (3.9 and 3.6) in 
comparison to intercept value of females (3.9 and 1.0) respectively. For the linear model the intercept value of 
male (0.8) was higher than female (0.7). In case of exponential and logistic models the initial value (a) was 
higher for male (0.01 and 10.4 respectively) compared to initial value (a) of female (0.042 and 9.8 
respectively). ESS was minimum estimated in log linear model and exponential model compared to the other 
models in both the sexes (Table 9). 
 
The estimated intercept values of linear and log linear models were higher in male (0.6 and 1.5) compared to 
females (0.44 and 1.8) respectively for last segment length. Polynomial model showed the highest intercept 
value for males (1.6) than the intercept value of females (1.0). The initial values of exponential and logistic 
models were high in males (0.04 and 0.05) compared to females (0.02 and 0.03) respectively. The ESS value 
was lowest for the log linear model and polynomial model for both the sexes (Table 10). 
 
DISCUSSION 
Five models viz., linear, log linear, polynomial, exponential and logistic models were tested for their 
goodness of fit to develop a best suitable growth model for M. rosenbergii. Based on analysis of R2 values 
from linear, log linear, polynomial, exponential and logistic models were found to be explaining 78, 64, 93, 
56 and 98% of variation in body weight of M. rosenbergii for overall values in response to pond age. Apart 
from R2 value, ESS values were also considered to identify the model that is best fitting. The model that 
shows highest R2 value with low ESS was regarded as the best fit model. Among the models tested logistic 
model showed lowest ESS with high R2 value making it the best model for overall and sex-wise body weights 
of M. rosenbergii. In the experiment conducted by Katsanevakis (2006) revealed that the Gompertz model  
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was found to be the best among all the candidate models for the yellowfin tuna. The logistic model was also 
supported to some extent by the data, while all the other models had considerably less support. 
 
In case of total length linear, log linear, polynomial, exponential and logistic models showed R2 values of 66, 
63, 66, 62 and 90%. Among the models log linear model was considered as the best fit model as it had lowest 
ESS value even though the highest R2 value was registered by the logistic model. For head length linear 
model with R2 value of 73% with minimum ESS value was considered as best fit model. Claw length was 
explained by the logistic model with R2 value of 94% with minimum ESS value while last segment length 
was explained by the log linear model with R2 value of 75% and low ESS. 
 
Sarmento et al. (2006) studied Brody, Von Bertalanffy, Logistic, Gompertz and Richards’ models to identify 
a model that best explains the average growth curve of Santa Ines sheep. The results show that the growth 
curve was well fitted by all models but larger residual variation was obtained by the Brody and Logistic 
models. According to the absolute average residual error, the Gompertz model showed a better fit than the 
models Von Bertalanffy and Richards. Growth curves differed for males and females, born from single and 
twin lambing. Contemporary group, type of birth and sex significantly affected the estimation of parameters A 
and K. 
 
Tsukahara et al. (2008) investigated growth patterns of goats utilizing data from a crossbreeding program 
involving the exotic German Fawn (GF) and the indigenous Kambing Katjang (KK) goats using four growth 
curve models (Brody, Bertalanffy, Gompertz and Logistic). By comparing the R2 values among genotypes it 
was reported that the goodness of fit is highest in the Brody model in most cases. Sousa et al. (2010) 
suggested that polynomial functions are efficient tools for modeling growth curve and polynomials of at least 
fourth order should be used for modeling the average growth curve of goat in random regression models. 
Malhadoa et al. (2009) analyzed Brody, Von Bertalanffy, Richards, Logistic and Gompertz functions in order 
to describe the growth in crossbred sheep Dorper×Morada Nova (DMN), Dorper×Rabo Largo (DRL) and 
Dorper×Santa Inês (DSI) and reported that both Gompertz and Logistic functions presented the best 
adjustment, being the latter slightly superior. All these reports including the present findings suggest that 
growth models can have immense application in predicting the growth as a function of time. 
 
In conclusion, among the five models tested, logistic model was found to be the best model for overall body 
weight with an R2 value of 96% and low ESS value that can better describe the growth pattern in M. 
rosenbergii reared in the conditions used in the present study. Among the both sexes males showed high R2 
value of 89% while females showed 86%. For last segment length, the best model was found to be the log 
linear model with a R2 value of 75 and low ESS value. These models can be used to predict growth rates in M. 
rosenbergii. However, further studies need to be conducted with even more growth traits taken into 
consideration to arrive at a better growth curve model that can potentially predict the growth patterns in M. 
rosenbergii. 
 

CONCLUSION 
The present study concludes the models that were found to be best fit for different growth traits could be used 
to predict growth patterns in M. rosenbergii when cultured in the same environmental conditions. However, 
several factors like age, sex and environmental factors greatly affect these growth models. Therefore care 
should be taken in employing such growth models for selective breeding programs. Further studies need to be 
conducted with even more growth traits and different age groups taken into consideration to arrive at a better 
growth curve model that can potentially predict the growth patterns in M. rosenbergii. 
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