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Organic contaminants are readily bioaccumulated by aquatic organisms. Exposure to and toxic 
effects of contaminants can be measured in terms of the biochemical responses of the 
organisms (i.e. molecular biomarkers). The hepatic biotransformation enzyme cytochrome 
P4501A (CYP1A) in vertebrates is specifically induced by organic contaminants such as 
aromatic hydrocarbons, PCBs and dioxins, and is involved in chemical carcinogenesis via 
catalysis of the covalent binding of organic contaminants to DNA (DNA-adducts). Hepatic 
CYP1A induction has been used extensively and successfully as a biomarker of organic 
contaminant exposure in fish. Fewer but equally encouraging studies in fish have used hepatic 
bulky, hydrophobic DNA-adducts as biomarkers of organic contaminant damage. Much less is 
known of the situation in marine invertebrates, but a CYPlA-like enzyme with limited 
inducibility and some potential for biomarker application is indicated. Stimulation of reactive 
oxygen species (ROS) production is another potential mechanism of organic contaminant-
mediated DNA and other damage in aquatic organisms. A combination of antioxidant 
(enzymes, scavengers) and pro-oxidant (oxidised DNA bases, lipid peroxidation) 
measurements may have potential as a biomarker of organic contaminant exposure 
(particularly those chemicals which do not induce CYP1A) and/or oxidative stress, but more 
studies are required. Both CYP1A- and ROS-mediated toxicity are indicated to result in higher 
order deleterious effects, including cancer and other aspects of animal fitness. 

Introduction 

A wide variety of potentially toxic organic contaminants enters marine and other aquatic 
environments, and is readily taken up into the tissues of resident organisms (Walker & 
Livingstone 1992). Such chemicals include aliphatic hydrocarbons, polynuclear aromatic 
hydrocarbons (PAHs), polychlorobiphenyls (PCBs), polychlorinated dibenzo-p-dioxins and 
dibenzofurans, tributyl tins, nitroaromatics, phthalate esters and organochlorines. Uptake of 
organic contaminants can take place from the sediment, water-column and food, and increases 
with increasing bioavailability, lipophilicity/hydrophobicity and external concentration of the 
chemical. Bioaccumulation of contaminants depends on the balance between their rate of 
uptake and rate of metabolism and/or elimination from the organism. Thus, readily 
metabolizable contaminants, such as PAHs, tend to bioaccumulate to highest tissue 
concentrations at the bottom of food chains in invertebrates, where rates of uptake exceed 
metabolism, rather than at the top of the chains in vertebrates, where rates of metabolism are 
comparable to uptake (Table 1). In contrast, relatively poorly metabolized compounds, such as 
many PCBs, bioaccumulate along food chains, reaching highest concentrations in the tissues of 
top predators (Table 1). 
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Table 1. Different patterns of bioaccumulation of readily metabolizable (polynuclear aromatic hydrocarbons) and 
poorly metabolizable (polychlorobiphenyls) organic contaminants along food chains. 

Amounts of contaminants (range of values) are given in micrograms per gram wet weight for various whole tissues and 
individual tissues, e.g. liver, eggs (birds) and blubber (whales). 

Dry weight concentration was converted to wet weight by a factor of x 0.2. 
PAHs = polynuclear aromatic hydrocarbons; 

PCBs = polychlorobiphenyls. 

Data compiled from Neff 1979, Walker & Livingstone 1992, Widdows & Donkin 1992 and 
Livingstone et al. 1994. 

- , indicates no information. 

The toxicity of foreign compounds (xenobiotics), such as organic contaminants, can be 
effected by the parent compound, by metabolism (biotransformation) to free radicals or 
electrophilic metabolites, and by stimulation of reactive oxygen species (ROS) production 
(Livingstone 1991a; Sahu 1991; Kehrer 1993). Induction of biotransformation enzymes, 
alterations in endogenous metabolism (e.g. steroids, redox balance), genotoxicity and damage 
to other key molecules can all play a part in toxicity, with potential consequences for 
reproduction, diseases such as carcinogenesis, and other aspects of animal fitness (Walker & 
Livingstone 1992). 

The need to detect and assess the impact of pollution, particularly low concentrations of 
increasingly complex mixtures of contaminants, on environmental quality has led to the 
development of molecular indicators (biomarkers) of exposure to, and effects of, contaminants 
on organisms (Haux & Förlin 1988; McCarthy & Shugart 1990; Livingstone 1993). Exact 
definitions of biomarkers vary but include "measurements which indicate in molecular terms 
the presence of contaminants, and/or their deleterious effects, and/or the magnitude of the host 
response" (modified from McCarthy & Shugart 1990). Such diagnostic and prognostic early-
warning tests offer the potential of specificity (e.g. induction of cytochrome P4501A1 and 
metallothioneins to detect impact by respectively organic and metal contaminants), sensitivity 
and application to a wide range of organisms. The advantages, limitations and applications of 
molecular biomarkers in pollution monitoring have been discussed extensively elsewhere 
(McCarthy & Shugart 1990; Stegeman et al. 1992; Livingstone 1993). Whereas earlier 
definitions of biomarkers (variously called "stress indices" or something similar) linked the 
contaminant-caused biological response of the organism with a necessary decrease in animal 
health as a result of that response (Bayne et al. 1985), these two aspects have now tended to 
become separated, leading to the identification of biomarkers of organic contaminant exposure 
(e.g. induction of cytochrome P4501A) and organic contaminant damage (e.g. bulky, 
hydrophobic DNA-adducts). 

The aims of this paper are to (1) briefly describe certain established and potential biomarkers 
of organic contaminant exposure and damage, and (2) explore the links between the molecular 
mechanisms of toxicity which the biomarkers reflect and the higher order deleterious effects in 
organisms. Thus the paper focuses on two major mechanistic areas of molecular toxicity, viz. 
(i) cytochrome P450-mediated mutagen production, and (ii) stimulation of ROS production 
leading to oxidative damage. 



Figure 1. Kinetics of the response of the rainbow trout (Oncorhynchus mykiss) liver CYP1A1 system to a 
single injection of the classical inducer β-naphthoflavone (BNF). Fish were injected intraperitoneally with 
50 mg kg-1 BNF, sacrificed at intervals, and livers were assayed for CYP1A mRNA with a trout CYP1A 
cDNA probe, CYP1A protein with anti-perch (Perca fluviatilis) antiserum, and 7-ethoxyresorufin 
(EROD) activity. (Redrawn from Celander et al. 1993). 
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Biomarkers of organic contaminant exposure 

Cytochrome P4501A 
Cytochrome P4501A1 (CYP1A1) is the terminal component of the mixed-function oxygenase 
(MFO) system and an oxidative enzyme of central importance in the metabolism of many 
PAHs and certain PCB congeners. [CYP1 Al is the enzyme product of the CYP1A1 gene of the 
P450 multi-gene family - see Nebert et al. 1991 for nomenclature convention which is based 
on sequence homology of the different genes/isoenzymes]. Induction of the enzyme by organic 
contaminants, such as PAHs, certain PCBs, dioxins and many other chemicals, forms the basis 
of its use as a biomarker of organic pollution. 

Induction of hepatic CYP1A has been used extensively and successfully worldwide in many 
field studies with over 25 species of fish (N.B. the use of the more general term CYP1A is 
recommended for the fish enzyme unless the "CYP1A1 sequence" has been established -
Stegeman 1992). Thus, subject to characterization of aspects of variability in new species, 
application of CYP1A as a biomarker in teleost fish can be considered routine (Goks0yr & 
Förlin 1992; Livingstone 1993). 

Biochemical, toxicological and other functional and regulatory aspects of the MFO system 
in fish have been the subject of a number of recent reviews (Andersson & Förlin 1992; 
Goksøyr & Förlin 1992; Stegeman 1993; Stegeman & Hahn 1994). In addition, attention has 
focused on the practical aspects of using CYP1A induction in fish as a biomarker in pollution 
monitoring (Goksøyr & Förlin 1992; Förlin et al. 1994a). A single gene/protein with properties 
related to the CYP1A subfamily in mammals has been identified (Heilmann et al. 1988; Leaver 
et al. 1993). Characteristically, the CYP1A enzyme is inducible, via an Ah (aromatic 
hydrocarbon) regulatory element in the 5'-upstream regulatory region of the CYP1A gene (see 
later), by a variety of aromatic compounds, including PAHs, PCBs, dioxins and benzofurans. 
This induction can be analysed with suitable probes at the levels of mRNA, protein or enzyme 
activity (see Stegeman et al. 1992), although the response kinetics can differ for each method 
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of analysis. This is illustrated in Figure 1 for liver of rainbow trout (Oncorhynchus mykiss) 
exposed to the classical CYPlA-inducer, β-naphthoflavone. Aryl hydrocarbon hydroxylase 
(e.g. benzo[a]pyrene hydroxylase - BPH) and 7-ethoxyresorufin O-deethylase (EROD) 
activities are the most commonly used measurements of CYP1A induction in fish because they 
are rapid and no specific probes (antibodies or gene probes) are required for the assays. 
However, the measurement of CYP1A protein or mRNA is also recommended for routine field 
monitoring because CYP1A catalytic activity can be inhibited in certain situations, e.g. very 
high levels of pollutants, or the presence of particular contaminants such as certain PCB 
congeners, metals and hepatotoxins (see Livingstone 1993). For example, in a recent study in 
which flounders Platichthys flesus, held in mesocosms, were exposed to dredged sediments 
from Rotterdam harbour, elevations of hepatic CYP1A mRNA and CYP1A protein, but not 
EROD activity, were detected, indicating induction of the enzyme but inhibition of its catalytic 
properties (Eggens et al. 1994). Co-ordinated use of the different methods can also provide 
more detailed information on the sequelae of toxic events occurring in a tissue. For example, 
induction of CYP1A in an organ can be measured using enzyme activity assays, and the 
response within particular cell types studied with immunocytochemistry (Smolowitz et al. 
1991; Husøy et al. 1993). 

Table 2. Microsomal EROD activity and CYP1A protein cytochrome concentrations in liver, and TCDD equivalents 
in muscle of female pike (Esox lucius) from three sites in Lake Vänern, Sweden. 

CYP1A = cytochrome P4501A, in A410 absorbance units. 
EROD = 7-ethoxyresorufin O-deethylase, in nmol min-1 mg-1 protein. 

TCDD = 2,3,7,8-tetrachlorodibenzo-p-dioxin, in pg g-1 wet weight, 
calculated according to the Nordic model (Ahlborg 1989). 

All values are means and standard errors (n = 5 (TCDD) or 10). 
*P < 0.05 compared to reference site (site 3). Data from Förlin et al. 1992. 

Nearly twenty years ago, it was proposed that the induction response of MFO (CYP1A) 
activity could be used as a biomarker for monitoring environmental organic pollution (Payne & 
Penrose 1975). Subsequently, the kinetics and dose-responses for induction of CYP1A in 
(principally) liver, but also in other tissues (e.g. kidney, intestines) of fish, have been 
characterised in numerous laboratory studies (e.g. George & Young 1986; Leaver et al. 1988, 
1994; Celander et al. 1993), and the response has been validated by many field studies showing 
elevated CYPlA-dependent (EROD and AHH) activities in fish from waters contaminated 
with petroleum products, industrial and municipal effluents (e.g. Stegeman et al. 1988; 
Goks0yr et al. 1991). Detailed examples of the field application of hepatic CYPlA induction in 
fish include the correlation of EROD activity and CYP1A protein level with 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) equivalents in pike Esox lucius from Lake Vänern, 
Sweden (Table 2), and two studies of hydrocarbon pollution in Scottish waters, namely the 
operation of the Grangemouth petrochemical complex in the Forth estuary, and the recent MV 
Braer oil-tanker incident in the Shetlands. A measurable impact of the refinery discharges from 
Grangemouth on P. flesus, consistent with the known hydrography of the region, was 
demonstrated by maximal hepatic microsomal EROD activities in fish occurring in the area of 



Figure 2. Monitoring the impact of the Grangemouth petrochemical complex on flounder (Platichthys 
flesus) in the Forth estuary using hepatic CYP1A measurements. Flounder were caught from the stations 
shown and analysed for 7-ethoxyresorufin O-deethylase (EROD) activity; values shown are means and 
percentiles. (Data from Sulaiman et al. 1991). 
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turbidity maximum of the Forth estuary, between Kincardine and Grangemouth (Fig. 2). In the 
MV Braer incident, the tanker ran aground at Garth's Ness, southern Shetland, releasing 
85,000 tonnes of Gulfaks crude oil, and contaminated a large area of the coastline (Fig. 3a). 
Although, due to severe weather and other factors, the coastline appeared to be clean again 10 
days later, hepatic EROD activity in rockling (Ciliata sp.), a small subtidal gadoid fish, was 
still up to xl8-fold higher at St Ninian (10 km from the wreck) and Burra Isle (northern limit of 
reported slicks) than at two reference sites (Lunna and Voe) 3 months after the incident (Fig. 
3b), demonstrating that biological impact had occurred and persisted. EROD activities returned 
to reference levels 8 months after the incident. Levels of CYP1A protein also showed direct 
proportionality with EROD activities, indicating that the high levels of hydrocarbons were not 
inhibitory to CYP1A. 

In contrast to fish, much less is known of the existence, fundamental properties and gene 
regulation of CYP1A in marine invertebrates, and few studies have been carried out 
(Livingstone 1991b). The evidence of a CYPlA-like enzyme, or isoform, which is readily 
inducible by organic pollutants such as particular PCBs and PAHs, is as yet unclear 
(Livingstone 1991a). EROD activity is catalysed solely by CYP1A in vertebrates, but is either 
not detectable or only present in low activity in invertebrates (Livingstone 1991a), although 
microsomal EROD activities of 24 to 60 pmol min-1 mg-1 were recently reported in digestive 
gland of the bivalves Donax trunculus and Brachidontes variabilis, and the gastropods Patella 
caerulea and Avicularia gibbosula (Yawetz et al. 1992), using the spectrophotometric assay of 
Klotz et al. (1984), rather than the more commonly used fluorometric assay (see references to 
work on fish, above). BPH activity is mainly catalysed by CYP1A, plus some other CYP 
isoenzymes, in vertebrates (Åstrom & DePierre 1986; Goksøyr & Förlin 1992) and in contrast 
to EROD activity is widely detectable in marine invertebrates (Livingstone 1991a). Apparent 
induction of the MFO system with exposure to PAHs or PCBs has been indicated for some 
marine invertebrate species, e.g. spiny crab Maja crispata (Batel et al. 1988), but not for 
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Figure 3. Wreck of the oil-tanker MV Braer in Shetland, in January 1993, and impact on hepatic CYP1A 
of a representative inshore fish species (rockling, Ciliata sp.). Fish were caught by trapping at the sites 
shown and analysed for 7-ethoxyresorufin O-deethylase (EROD) activity by standard procedures. (a) 
Sampling sites and extent of surface oil contamination; (b) EROD activities in rockling from the different 
sites in April 1993. (Unpublished data from S. G. George and co-workers). 

others, e.g. spiny lobster Panuliris argus (James & Little 1984). Overall, responses are variable 
and to an extent absent (Livingstone 1991b), and certainly much lower than for fish, e.g. 3-fold 
increases in BPH activity in pyloric caeca of the starfish Asterias rubens (Den Besten et al. 
1993) compared with up to several hundred-fold increases for hepatic EROD activity in fish. 
This limited response could reflect a less sophisticated mechanism of induction than in 
vertebrates, which can be dampened down by interactions with other environmental variables, 
such as season and reproductive state. In field studies with mussels (Mytilus sp.) and other 
molluscs, correlation of putative induction of the digestive gland MFO system with exposure to 
organic contaminants has been seen for BPH activity (Narbonne et al. 1991), total cytochrome 
P450 (Yawetz et al. 1992) and the "418-peak" (putative denatured cytochrome P450) 
(Livingstone 1988), but as yet no single parameter has emerged as a widely used biomarker for 
exposure to organic pollution in molluscs, and a multi-parameter approach has been suggested 
(Livingstone 1991b). Thus, for example, in the case of D. trunculus exposed to an oil-spill, an 
increase in total cytochrome P450 content was accompanied by a drastic decrease in EROD 
activity (Yawetz et al. 1992). Deleterious interactions by other contaminants have also been 
indicated; e.g. levels of cytochrome P450, cytochrome b5 and NADPH-cytochrome c (P450) 
reductase activity in digestive gland microsomes of the marine gastropod Monodonta turbinata 
were reduced with exposure to cadmium, mercury or chromium (Manelis et al. 1993). 

More recently, additional evidence has been obtained for the existence of a CYPlA-like 
enzyme in digestive gland of molluscs. Immunoquantitation (Western blotting) with polyclonal 
antibodies to CYP1A of O. gairdneri indicated the presence of a hydrocarbon-inducible 
CYPlA-like enzyme in the digestive gland of the chiton Cryptochiton stelleri (Schlenk & 
Buhler 1989). Similarly, Western blotting of partially purified cytochrome P450 from digestive 
gland of mussel (Mytilus edulis) with polyclonal antibody to perch (Perca fluviatilis) CYP1A, 
gave a single band of 54 kD (Porte et al. 1994); Northern blotting with O. gairdneri CYP1A1 
cDNA probe gave a single mRNA band (Wootton et al. 1994). These measurements of a 
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CYP1A-like protein and CYP1A-like mRNA, plus in vitro metabolism of benzo[a]pyrene to 
free metabolites, have been applied to a field study of mussels (Mytilus galloprovincialis) in 
the Venice area (Table 3). All three parameters were higher, or indicated to be higher, at an 
industrial site (Canale Vitorio Emanuele) in the Venice Lagoon, compared to a cleaner site in 
the Adriatic Sea, correlating with x 2.4 to x 7.9 higher levels of hydrocarbons and PCBs in 
mussels at the former site. Thus, the results argue for further study to investigate the biomarker 
potential of this enzyme in marine invertebrates. 

Table 3. Amounts of some chemical contaminants and biomarkers in digestive gland of mussels (Mytilus 
galloprovincialis) from the Venice Lagoon and the Adriatic Sea. 

aUnresolved complex mixture (UCM) of aliphatic hydrocarbons, in μg g-1 dry weight. 
bTotal polynuclear aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs), in ng g-1 dry weight. 

cArbitrary units. 
dFree polar metabolites (sum of dihydrodiols, diones and phenols), in pmol min-1 mg-1 protein. 

*P < 0.05 comparing sites. 
All values are means and standard errors (n = 3-6). Data from Livingstone et al. 1994. 

Antioxidant enzymes 
Reactive oxygen species (ROS) such as the superoxide anion radical (O2

-), hydrogen peroxide 
(H2O2) and hydroxyl radical (. OH) are continually produced in biological systems as toxic by-
products of normal oxidative metabolism. ROS production can be increased by interactions 
with organic xenobiotics by various mechanisms (see later). Detoxication and removal of ROS 
and other oxidants is effected by antioxidant defence systems, including specific antioxidant 
enzymes such as superoxide dismutase (SOD; converts O2

- to H2O2; EC 1.15.1.1), catalase 
(converts H2O2 to H2O; EC 1.1.1.6), glutathione peroxidase (GPX; converts H2O2 to H2O 
utilizing reduced glutathione; EC 1.11.1.9), aldehyde dehydrogenase (ALDH; converts 
aldehydes to acids; EC 1.2.1.3) and DT-diaphorase (DTD; prevents quinone-mediated O2

-

production; EC 1.6.99.2). Elevation of antioxidant enzymes in response to increased ROS 
production offers the potential of a biomarker of contaminant-mediated oxidative stress (Di 
Giulio 1991; Stegeman et al. 1992), although such changes are indicated to be much less 
marked (i.e. basal activities are already high to cope with endogenous ROS production), more 
variable and less specific (ROS production can be increased by metals and oxygen tension) 
than for CYP1A (Livingstone et al. 1990; Winston & Di Giulio 1991). However, much yet 
remains to be elucidated of these processes in marine organisms and it could be that biomarker 
specificity will be increased by a combination of antioxidant (enzymes, scavengers, stress 
proteins) and pro-oxidant (ROS production, oxidative damage) measurements (Di Giulio 1991; 
Stegeman et al. 1992; Sanders 1993; Lemaire & Livingstone 1994a). Also, both antioxidant 
enzyme activities and oxidative damage have the advantage that they may be increased by 
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organic contaminants which do act via induction of CYP1A and/or metabolism to bulky DNA-
adducts (see later). 

Pro-oxidant and antioxidant processes in fish and marine invertebrates have been the subject 
of several reviews (Di Giulio et al. 1989; Livingstone et al. 1990; Di Giulio 1991; Winston 
1991; Winston & Di Giulio 1991; Lemaire & Livingstone 1994a). Antioxidant enzyme 
activities are widely distributed in the tissues of marine organisms, and are generally highest in 
liver of fish or digestive gland or equivalent in marine invertebrates. In addition to SOD, 
catalase and GPX, recent studies have also indicated the widespread presence of hepatic ALDH 
and DTD in fish (Förlin et al. 1994b). These two enzymes are of particular interest because in 
mammals they are part of the same gene battery as CYP1A (so-called [Ah] gene battery) and 
may be coinduced with exposure to organic xenobiotics (Nebert et al. 1990). Increases in 
hepatic antioxidant enzyme activities have been seen or indicated with experimental exposure 
to contaminants, but the changes can be transient. Thus, with exposure to sediments 
contaminated with PAHs, PCBs and other chemicals, increases in hepatic SOD and catalase 
activities were seen in channel catfish Ictalurus punctatus after 2 to 28 days (Di Giulio et al. 
1993), and in dab Limanda limanda after 80 but not 140 days (Livingstone et al. 1993), but not 
in P. flesus after 6 months (Bergman et al. 1994). In contrast, increased DTD and ALDH 
(benzaldehyde dehydrogenase) activities were seen in liver of O. mykiss after 12 months 
exposure to the carcinogen aflatoxin B1 (Parker et al. 1993). Higher hepatic antioxidant 
enzyme activities in fish from polluted field sites were seen for SOD and catalase in L. limanda 
from the North Sea (Livingstone et al. 1992), and on occasions for catalase and putative DT-
diaphorase in male goby Zosterisessor ophiocephalus from the Venice Lagoon (Livingstone et 
al. 1994), but seasonal or other environmental interactions were also indicated. In Mytilus sp., 
slight increases have been variously seen in digestive gland SOD, catalase, GPX and putative 
DT-diaphorase activities with experimental (Livingstone et al. 1990) and field (Porte et al. 
1991) exposure to PAHs and PCBs. 

Biomarkers of organic contaminant damage 

DNA-adducts 

Many organic xenobiotics such as PAHs and PCBs are metabolically activated to electrophilic 
metabolites which bind to nucleic acids and other macromolecules, forming covalent adducts. 
DNA-adduct formation integrates contaminant uptake, metabolism and macromolecular repair, 
and is the initial event in chemical carcinogenesis. Thus, it is currently being used in humans as 
a biomarker for exposure to environmental and occupational carcinogens (Santella 1991), and a 
similar role as a biomarker of contaminant exposure and damage is proposed for aquatic 
organisms (McCarthy & Shugart 1990; Dunn 1991; Jones & Parry 1992). Experimental studies 
in fish have shown that hepatic DNA-adducts are persistent, sometimes lasting for months, and 
in the case of PAHs are retained longer than parent compounds or unbound metabolites 
(Varanasi et al. 1992). The 32P-postlabelling method (which can detect 1 adduct in 109 normal 
bases - see Jones & Parry 1992) has been used for the few field studies carried out so far on 
marine organisms, and the majority of these have shown increased formation of bulky, 
hydrophobic aromatic adducts with higher levels of contaminant exposure (Livingstone 1993). 
The studies include fish species from contaminated waters of New York and Michigan 
(Maccubbin et al. 1990), Boston and Long Island Sound (Varanasi et al. 1992) and Puget 
Sound (Stein et al. 1991) (all USA), and the Damsui river, Taiwan (Liu et al. 1991). DNA-
adducts were also observed in juvenile mussels (M. galloprovincialis) from near an oil 
refinery, but not from a clean site (Kurelec et al. 1990). An aspect of some concern, however, 
has been the observation of DNA-adducts of apparently natural (non-pollutant) or endogenous 
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origin, present in both fish (Kurelec et al. 1989) and marine invertebrates (Garg et al. 1992). 
Such adducts are indicated to be species-specific, endogenously regulated (i.e. change with 
season/reproduction) and independent of contaminant exposure. However, overall, 
measurement of DNA-adducts is considered to have great potential for application in pollution 
monitoring (Livingstone 1993). 

Oxidative damage 

Somewhat fewer studies, particularly in the field, have been carried out on oxidative damage, 
compared to genotoxicity, in marine organisms. Oxidative damage has the disadvantage that it 
may be caused by certain non-organic as well as organic contaminants, but has the advantage 
that the wide range of toxic pro-oxidant contaminants includes those which may not be 
detected by CYP1A induction or bulky DNA-adduct formation. The contaminants include 
oxidizing air pollutants (such as ozone, sulphur dioxide and various nitrogen oxides) and other 
direct acting oxidants (such as H2O2, organic peroxides, and waterborne nitrite and chlorine), 
plus stimulators of ROS production (including quinones, nitroaromatics, azo dyes, hydrazines, 
bipyridyl herbicides and transition metals) (Di Giulio 1991). 

Studies on marine organisms have focused principally on oxidative damage to lipid (i.e. 
lipid peroxidation producing malonaldehyde-like breakdown products) and DNA (Di Giulio 
1991; Lemaire & Livingstone 1994a). For example, increases in lipid peroxidation were seen 
in digestive gland of mussel (Mytilus sp.) exposed to benzo[a]pyrene (Livingstone et al. 1990) 
or copper sulphate (Viarengo et al. 1990), and in the liver of catfish Heteropneustes fossilis 
exposed to mercuric chloride (Bano & Hasan 1989), and of L. limanda (Livingstone et al. 
1993) and I. punctatus (Di Giulio et al. 1993) exposed to sediments containing, principally, 
PAHs and PCBs. The oxidised base 8-hydroxy-deoxyguanosine was present in DNA of 
digestive gland of M. edulis and liver of L. limanda, but was not increased respectively with 
exposure to pro-oxidant chemicals (menadione, nitrofurantoin) (Marsh et al. 1993), or along a 
pollution gradient in the North Sea (Chipman et al. 1992). In contrast, levels of hepatic 8-
hydroxy-deoxyguanosine increased in English sole Parophrys vetulus exposed to 
nitrofurantoin (Nishimoto et al. 1991), and in 0. mykiss exposed to hydrogen peroxide with the 
hepatocarcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) (Kelly et al. 1992). The 
oxidised base 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) was present in 
neoplastic livers of P. vetulus from a polluted environment (Malins et al. 1990). 

Molecular mechanisms of toxicity and links with higher order effects 

CYP1A-catalysed metabolism, DNA-adduct formation, chemically-caused cancer 
and other higher order effects 

Hepatic neopasms and other pathologies in fish have been correlated with both experimental 
(Fabacher et al. 1991; Schiewe et al. 1991) and field (Myers et al. 1991) exposure to organic 
contaminants such as PAHs, PCBs and dioxins. Induction of CYP1A by such compounds 
occurs via their binding to a soluble protein known as the Ah receptor, the resulting complex of 
which interacts with the regulatory region of the CYP1A gene (see before). This protein has 
been found in the liver of seven species of teleost and elasmobranch fish (Hahn et al. 1991). 
Although many organic xenobiotics are detoxified by CYP1 A, other are activated to more toxic 
and possibly mutagenic species. Induction of CYP1A by PAHs, PCBs and dioxins, metabolism 
of PAHs to mutagenic species, and formation of DNA-adducts have been implicated in the 
etiology of chemically caused carcinogenesis in fish (Stein et al. 1990; Stegeman & Lech 
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1991). Considerable mechanistic evidence therefore exists linking CYP1A with higher order 
(carcinogenic) effects. 

Links between CYP1A (and other P450s) and other higher order effects in fish, such as 
reproduction and other aspects of animal fitness, are far more tenuous and generally 
correlative rather than mechanistic (McCarthy & Shugart 1990). A battery of physiological and 
biochemical responses, including CYP1A induction, were investigated in studies on the 
environmental impact of bleached kraft mill effluents (BKME) (Andersson et al. 1988; 
Södergren 1989; Förlin et al. 1991). These co-ordinated field and laboratory exposure studies 
in various fish species showed that the animals were markedly affected by BKME, producing 
altered plasma ion levels and blood cell counts, reduced gonad size, and induced hepatic 
EROD activity as the strongest signal. In these and other field studies in Scandinavia and North 
America, it is apparent that CYP1A induction was indicative of areas where the health of fish 
was adversely affected by BKME (Lindström-Seppä & Oikari 1990; Hodson et al. 1991; 
Munkittrick et al. 1991). This conclusion is supported by the simultaneous occurrence of 
elevated EROD activity and adverse biological effects, including effects at the population 
level, viz. reduced survival rates of both larvae and adults, and altered patterns of growth (see 
Södergren 1989). Thus, although no mechanistic links are established between CYP1A 
induction and higher order effects, such as reproduction and growth, the extensive correlative 
data-set produced from the fish BKME studies indicate that CYP1A induction can be used as 
an early warning biomarker of pollutant impact at higher levels of biological organisation. 

Much less is known of the situation in marine invertebrates. Many organic contaminants, 
including chlorinated paraffins, PAHs, PCBs, aromatic amines, nitroaromatics, chlorophenols 
and phthalate esters, are metabolized to macromolecular adducts by the MFO system and other 
biotransformation enzymes in a wide range of marine invertebrates (Livingstone 1991a; Marsh 
et al. 1992, 1993; Walker & Livingstone 1992). A CYPlA-like enzyme is indicated, with 
limited inducibility (see before) and the ability to metabolize PAHs such as BaP to bacterial 
mutagens (Michel et al. 1993) and DNA-adducts (Livingstone 1991a; Marsh et al. 1992). 
Regulation of CYPlA-like mRNA levels is indicated in Mytilus sp. (Wootton et al. 1994), but 
the Ah-receptor protein was not detected in a wide range of marine invertebrates (Hahn et al. 
1992), indicating either that levels of the protein were below the level of detection of the assay 
procedure, or there is possibly an alternative (maybe more primitive) mechanism of induction 
as, for example, is indicated for induction of EROD activity by N-benzylimidazole in Ah-
nonresponsive strains of mice (Manning & Franklin 1992). 

Our understanding of the relationship between contaminant exposure and cancer in marine 
invertebrates is similarly limited. Previous surveys of the literature found that there was little 
evidence to associate neoplastic diseases in bivalve molluscs with environmental pollution 
(Mix 1986). However, experimental studies have demonstrated chemical induction of tumours 
in the gastropod Ampullarius australis by 3-methylcholanthrene (Krieg 1972), in the oyster 
Crassostrea virginica by a mixture of PAHs, PCBs, amines and metals (Gardner et al. 1992), 
and in planarians by a range of mammalian carcinogens, including BaP (Schaeffer 1993). Thus, 
combined with the molecular studies described above, an involvement of enzyme-mediated 
bioactivation of organic contaminants to carcinogens in chemically-caused cancer is indicated. 
The bioactivation of organic contaminants and/or the occurrence of cancer is also indicated to 
have an effect on animal fitness. Thus, exposure of the snail Lymnaea stagnalis to 2,2'- or 
4,4'-PCBs affected the latency of oviposition and the number of egg masses and eggs 
(Wilbrink et al. 1987), and field experiments on the clam Mya arenaria demonstrated that 
under natural conditions mortality was higher in animals with hematopoietic neoplasia than 
those without neoplasia (Brousseau & Baglivo 1991). 
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ROS generation, oxidative damage, cancer and other diseases 

Much evidence exists for mechanisms of xenobiotic-stimulated ROS production and ROS-
mediated oncogene activation and anti-oncogene inactivation in mammals. However, what is 
uncertain is the extent to which such processes contribute to chemically-caused carcinogenesis 
and other diseases in vivo, although the evidence for a significant role is compelling (Sahu 
1991; Kehrer 1993). Mechanisms of xenobiotic-stimulated ROS production include disruption 
of electron-transfer systems, enzyme induction, redox cycling and organic radical production, 
plus secondary processes such as lipid peroxidation producing more oxidants (Borg & Schaich 
1984; Livingstone 1991a). ROS can activate oncogenes by point mutation (via direct oxidation, 
gene amplification, and chromosomal translocation), DNA cross-link formation and DNA 
strand breakage; and influence oncogene activation by altering membrane function (via lipid 
peroxidation and protein degradation) which in turn can change signal transduction, protein 
kinase activation and growth factors and their receptors (Sahu 1991; Kehrer 1993). 

Little is known of the role of disruption of electron-transfer systems by xenobiotics in 
marine organisms, although many highly lipophilic contaminants such as PAHs and PCBs will 
readily penetrate membrane systems (Livingstone 1991a; Walker & Livingstone 1992). 
Enzyme loci for ROS generation include proteins involved in electron-transfer (e.g. 
flavoprotein reductases) and oxygen metabolism (e.g. cytochrome P450s, amino oxidases). 
Induction of total cytochrome P450 content (rather than specific forms, i.e. CYP1A), or 
cytochrome P450 reductase and cytochrome b5 reductase activities, with contaminant 
exposure, rarely occurs in fish (Goks0yr & Förlin 1992) but has been seen in bivalve and 
gastropod molluscs (Livingstone 1991a; Yawetz et al. 1992). Redox cycling of xenobiotics 
such as quinones, nitroaromatics and aromatic amines involves their univalent reduction to 
anion radicals, followed by autoxidation to produce O2

-, which in turn can give rise to H2O2 and 
the highly reactive . OH (Borg & Schaich 1984). Redox cycling of model and pollutant 
xenobiotics, including quinones derived from PAHs (BaP) and present in pulp mill effluents, 
has been demonstrated variously for liver or digestive gland microsomes of several fish species 
(Winston & Di Giulio 1991; Lemaire et al. 1994) and Mytilus edulis (Livingstone et al. 1990; 
Garcia Martinez et al. 1992; Garcia Martinez & Livingstone 1994). Studies on hepatic 
microsomes of P. flesus have shown the involvement of cytochrome P450 reductase in redox 
cycling by the nitroaromatic nitrofurantoin (Lemaire & Livingstone 1994b), and minimal 
stimulation of ROS production by the non-redox-cycling pesticide, lindane, presumably by free 
radical interactions (Lemaire et al. 1994). 

Redox cycling and other contaminants capable of stimulating ROS-production may be taken 
up from the environment, or produced by biotransformation. Given the observations with 
lindane, the range of these contaminants, and therefore their cumulative effects on ROS 
production, may be considerable. Normal metabolism of PAHs, such as BaP, to redox-cycling 
quinones is indicated to be low in fish, crustaceans and echinoderms (major metabolites are 
phenols and dihydrodiols), but higher in molluscs (Stegeman 1989; Livingstone 1991a; Den 
Besten et al. 1992). Much higher levels of quinones are produced in microsomes of fish (P. 
flesus), crustaceans (crab Carcinus maenas) and echinoderms (A. rubens) by hydroperoxide-
dependent metabolism of BaP (i.e. peroxidase activity of cytochrome P450) (Den Besten et al. 
1992; Lemaire & Livingstone 1994c; Lemaire et al. 1993). Combined with the observations of 
contaminant-stimulated lipid peroxidation (see before), this indicates the possibility of a 
toxicity cycle of lipid peroxidation leading to enhanced quinone formation and ROS 
production, leading to more oxidative damage, including lipid peroxidation. The oxidative 
damage may also include oxidation of DNA bases, as has been described earlier for the effects 
of the pro-oxidants H2O2 and nitrofurantoin on hepatic 8-hydroxy-deoxyguanosine levels. 
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Very few experimental studies have been carried out in marine organisms on the link 
between ROS generation and chemical-caused cancer; nevertheless a relationship is indicated. 
Thus, in liver of 0. mykiss, activities of the antioxidant enzymes DTD and ALDH were 
elevated in aflatoxin B1-induced tumors (Parker et al. 1993), and levels of 8-hydroxy-
deoxyguanosine were correlated with the tumour-enhancing effect of H2O2 and MNNG-
initiated carcinogenesis (Kelly et al. 1992). Increased ROS generation was indicated in livers 
of L. limanda along a pollution gradient in the North Sea (Moore, 1992) and unique oxidised 
DNA lesions (FapyGua) were present in hepatic tumors of P. vetulus from polluted sites (see 
before). The extent of any oxidative damage will depend upon the degree to which antioxidant 
defences are overwhelmed by ROS production (Halliwell & Aruoma 1991; Kehrer 1993). The 
former may be particularly high in organisms which regularly experience other forms of 
oxidative stress, such as changing oxygen availability, e.g. many molluscs (Livingstone et al. 
1990). 

Conclusions 

Although induction of CYP1A need not necessarily lead to toxic consequences because, for 
example, reactive metabolites can be detoxified by phase II conjugases (see Livingstone 1991a; 
George 1994), considerable evidence exists in fish to link CYP1A function and DNA-adduct 
formation with higher order deleterious effects, principally contaminant-caused cancer. 
Alterations in these biomarkers therefore signals a cause for concern for the individual 
organisms and the population. Much less is known, in fish, about contaminant-stimulated ROS 
production and the contribution of oxidative stress to higher order deleterious effects, but the 
evidence for a significant role is growing. Similarly, less is known about a CYPlA-like 
enzyme and ROS production in marine invertebrates, but roles for both in contaminant-
mediated toxicity seem likely. 
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