# BILATERAL STUDY OF METHODS - NOTTINGHAM 1977.-. 1 

# DESCRIPTION OF SAMPLING STATIONS, METHODS OF BENTHIC SAMPLING AND BIOLOGICAL WATER OUALITY ASSESSNENT; WITH SOME CONSIDERATION OF THE INFLUENCE OF SAMPLE VARIATION ON THE ASSESSMENT VALUES OBTAINED 

by<br>FS Woodiwiss<br>(Severn Trent Water Authority, Nottingham)

## INTRODUCTION

The first bilateral study of methods of biological sampling and biological methods of water quality assessment took place during June 1977 on selected sampling sites in the catchment of the River Trent (UK).

The study was arranged in accordance with the protocol established by the joint working group responsible for the Anglo-Soviet Environmental Agreement. The programme was organised by the Nottingham Regional Laboratory of the Severn-Trent Water Authority in collaboration with the Department of the Environment and the Central Office of Information.

The main purpose of the bilateral study in Nottingham was for some of the methods of sampling and biological assessment used by UK biologists to be demonstrated to their Soviet counterparts and for the Soviet biologists to have the opportunity to test these methods at first hand in order to judge the potential of any of these methods for use within the Soviet Union.

Although the programme of work was not designed as a scientific experiment per se, but only as a general demonstration, the results obtained are interesting and provide a basis for discussion and some tentative conclusions.

## THE SELECTION AND CHARACTERISTICS OF THE SAMPLING SITES

Six river sampling sites were originally selected and agreed upon for joint examination by the Anglo-Soviet tearn of experts, namely:

1. River Derwent at Baslow
2. River Dove at Mayfield
3. River Trent at Gunthorpe
4. River Soar at Normanton
5. River Derwent at Draycott
6. River Erewash at Toton.

During the course of the study it became apparent that the inclusion of one or two additional sampling stations would add considerably to the value of the exercise. Accordingly, at the request of the Soviet side, three additional river sites and two lake/reservoir sites were added to the programme as follows:
7. Mother Drain at Rossington
8. River Poulter at Crookford
9. River Idle at Bawtry
10. Blithfield Reservoir
11. Kingsmill Reservoir.

This paper is concerned with the nine river stations, the locations of which are shown in Map 1.

There are about 700 routine observation points in the Trent catchment and the limited duration of the bilateral study was a severe constraint on the choice of sampling sites. The nine stations were eventually selected to cover, as far as possible, a wide range of river types with differing water quality.

It should be mentioned that these sampling stations had been included with 15 others in connection with a similar exercise carried out during September/October 1976. This study was organised by the Nottingham Regional Laboratory of the Severn-Trent Water Authority on behalf of the Health Protection Directorate of the Directorate General for Social Affairs, in collaboration with the Environment and Consumer Protection Service, of the Commission of European Countries.

Biologists from each of the nine member countries of the EEC gathered in Nottingham to sample and make biological water quality assessments of the 24 river sites by their own methods. In a comprehensive report to members of the working party of experts ${ }^{1}$ the methods of sampling and of biological water quality assessment currently in use in western Europe were reviewed and compared and some progress towards their harmonization was attempted by means of tables of comparability. A summary report on the Collaborative Study is in preparation ${ }^{2}$ and may be available in 1979/80.

Some physical characteristics of the river sampling stations are given in Table 1 whilst Table 2 shows the range and mean values recorded in 1977 for a selection of chemical water quality parameters.

## METHODS

## Sampling

For the purpose of this demonstration the following methods of sampling were employed, when practicable, at each site.
a. Handnet Sampling

Handnet samples were taken by the standard technique normally used by Severn-Trent Water Authority biologists based at the Nottingham Regional Laboratory. The method is similar to that recently recommended by the Standing Committee of Analysts which is one of the joint technical committees of the Department of the Environment and the National Water Council ${ }^{3}$.
b. Box Sampling

The box sampler is a development of the Surber sampler in which the sides of the box circumlineate an area of one sixteenth sq $m$. Material from the river bed is dislodged, removed from this standard area and transferred to a net which is attached to the rear (ie downstream side) of the framework.

This type of sampler can only be used satisfactorily in relatively shallow water to a depth of about 30 cm .

c. Grab Samples

A standard Eckmann Grab was used at two river sites and for sampling the two reservoirs.

This is apparently the method of sampling most frequently employed in the Soviet Union owing to the great depth of rivers and lakes in that country.
d. Artificial Substrates

Experiments on the use of artificial substrates for macroinvertebrate sampling have been taking place for sometime at the Nottingham Regional Laboratory. A number of different artificial substrates have been described, eg Scott ${ }^{4}$, Besch and Hofmann ${ }^{5}$, Hester and Dendy ${ }^{6}$, Bull ${ }^{7}$, and Anderson and Mason ${ }^{8}$. Similar substrates were tested in the Trent area but these were generaliy unsuccessful due to high losses and cost of construction.

The method developed by the Regional Laboratory, Nottingham, uses an inexpensive artificial substrate consisting of 20 pieces of clinker, each approximately 5.8 cm diameter, contained in a plastic netting bag. Each bag is placed on the river bottom and anchored by nylon cord where necessary. Three bags are placed in various habitats and colonization is allowed for the optimum period which has been found to be four weeks.

Some advantages of artificial substrates are:
i. they offer similar surface area to the colonizing organisms;
ii. they may be used in situations where other methods are impracticable, eg deep rivers;
iii. they may be used for qualitative or quantitative work;
iv. they may be planted and removed by non-biologists.

Some disadvantages are:
i. a relatively small area of the river is actually sampled;
ii. they may suffer from interference from the public;
iii. they may be lost due to abnormal environmental conditions, eg floods;
iv. there may be some loss of organisms during their removal from deep rivers.

## Biological Water Quality Assessment

For this practical demonstration the following biological methods of assessment were calculated at the time of sampling:

1. Trent Biotic Index (Woodiwiss) ${ }^{9}$ )
2. Extended Biotic Index (Woodiwiss) ${ }^{9}$ )
3. Biotic Score (Chandler) ${ }^{10}$ ) see Table. 4
4. Diversity Index (Margalef) ${ }^{11}$
5. Diversity Index (Shannon Weaver) ${ }^{12}$
see Table 5
6. Diversity Index (Wilhm and Dorris) ${ }^{13}$

## RESULTS

The results of sampling at each river station by the methods previously described and the biological assessments derived therefrom are given in Tables 6-16.

## DISCUSSION

## Methods of Sampling

A comparison between the samples taken at each site has been made using Sbrensen's Quotient of Similarity.

$$
I=\frac{2 J}{a+b}
$$

where $\mathrm{J}=$ Number of Groups (Taxa) common to both samples.

$$
a=\text { Number of Taxa in Sample A. }
$$

$b=$ Number of Taxa in Sample B.
Several such comparative indices are available for the consideration of qualitative data (14 $\boldsymbol{\rightarrow} 19$ ) whilst others, which take account of the relative abundance of taxa in the calculation, require quantitative data. The methods have been reviewed by Southwood ${ }^{20}$.

The Sфrensen Quotient is the most appropriate for the present comparison of essentially qualitative samples.

At each station, samples are compared with each other and with the background data, ie the taxa recorded for the whole years 1975 and 1976 by biologists of the Severn-Trent Water Authority. The results are tabulated in Tables 17-25A. Values of 65 and over (which indicate a reasonable degree of association) are shaded on the right hand side of each table in order to highlight similarities.

At sites where a number of handnet samples were taken there is usually fairly close similarity between them just as there is between pairs of artificial substrates. Close similarity between any handnet sample and any individual artificial substrate sample is, however, rare. An improved correlation between handnet samples and artificial substrates is often found when the three artificial substrates are combined. (The combination of three artificial substrates which have been placed in different habitats at the sampling station is normal practice in the Severn-Trent Water Authorityl.

At Station 8 (River Poulter at Crookford) the 4 box samples taken were individually poorly correlated with either handnet samples or artificial substrate samples. Even when the box sample results were combined they still showed a low coefficient of similarity to artificial substrate samples with but a small increase in similarity to handnet samples.

Grab samples were taken at Stations 4 and 6 and in both cases the similarity to other types of sample was very low.

The failure of these various methods of sampling to produce samples showing significant similarity to each other or with other types of sample arises mainly from the limited number of taxa found in artificial substrate, box and grab samples compared with handnet samples.

This is not really surprising since the technique of handnet sampling is deliberately designed to maximize the number of taxa found at a sampling station whereas with the other methods the area sampled in each case is relatively small.

The Tables 17-25B indicate the number of taxa recorded in each type of sample together with the percentage that this number represents of the total number of taxa found in all the samples taken at each station on that day.

This data may be summarized as follows:

| ABLE 26 |  | Number of Samples/ Combinations | \% of Total taxafound (all samples) |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Sample |  |  |  |  |
|  |  | Mean | Range |
| Handnet Samples | Individual |  | 17 | 68.3\% | 39-89\% |
|  | Combined 60) | 6 | 84.0\% | 67-100\% |
| Artificial <br> Substrates | Individual | 24 | 53.7\% | 36-71\% |
|  | Combined (3) | 8 | 71.4\% | 61-86\% |
| Box Samples | Individual | 5 | 36.0\% | 21.51\% |
|  | Combined (4) | 1 | 64.3\% | 18-33\% |
| Grab Samples | Individual. | 2 | 25.8\% | 18-33\% |

Again it is demonstrated that different methods of sampling vary in their effectiveness in terms of collecting representatives of all the taxa present at a sampling site. It is also the case that the relative abundance of organisms recorded in samples of different types and even in samples of the same type can show great variability. This is evident from an examination of the data in Tables 6-16.

These differences and variations can be understood by a consideration of the factors governing the distribution of organisms over an area of stream bed. These broadly fall into two categories.

## Environmental Factors

Figure 1A is a plan of a stretch of a typical shallow stream and Figure 1B a transect across it. It is not drawn to scale but is based on one of the sampling stations examined in the bilateral study - the River Dove at Mayfield - which is typical of many such rivers in the

Trent catchment. The site is characterized by scattered large rocks $\mathbf{3 0 - 1 0 0} \mathbf{~ c m}$ in diameter embedded in a matrix of stones, gravel and sand of infinitely variable dimensions and proportions. The distribution of these variably sized particles is determined by:

1. the flow pattern of the water over and through the river bed is in turn affected by;
2. changes in the depth of water, and
3. changes in the gradient of the river bed (Figure 1B).

In a river of this type it is virtually impossible to locate a quadrat sampler, either in a single position which would be truly representative of the stream bed as a whole or in a series of positions which would be identical in all physical respects. Thus, even if organisms were distributed homogenously over the area of benthos encompassed by the quadrat, the numbers of organisms found would vary from quadrat to quadrat because colonisation in each case would differ. However, the distribution of organisms is not homogenous but is influenced by biological factors.

## Biological Factors

Each benthic invertebrate organism is adapted to a greater or lesser extent for the occupation of a particular niche or type of habitat. The distribution or the organism is orientated around those favoured niches but not necessarily confined to them. The niche attracts the greatest concentration of the organism(s) most suited to it but from this focus the organism extends outwards being influenced by the combined pressure of territorial expansion and the search for supplies of food. Impetus for this expansion is gained by the growth of the population within the niche. The expansion of a species from the niche may be in all directions and although it has been shown that organisms generally show a tendency to move in an upstream direction, most of the spread of a species will be in a sideways and downstream direction under the influence of the prevailing flow. Thus the orientation of various taxa on the stream bed may be regarded - for the purpose of this discussion, as a series of concentric elipses of decreasing numerical abundance radiating from an epicentre which is the ideal microhabitat for the particular organism, ie the niche.

This is shown diagrammatically in Figure 2 in relation to the occupants of five habitat types.
A. Large Rock
B. Silted Area
C. Weed Bed (Ranunculus)
D. Tree Roots/Mud
E.e. Moss covered Stones (Fontinalis).

The relative abundance of organisms within each of the areas enclosed by the irtersecting eliptical lines will be significantly different. In certain areas some of the organisms may not occur at all whilst the same organisms may be quite common only a short distance away.

This point is illustrated in Figure 3 where the hypothetical distribution of ten different organisms indicated by the numbers $0-9$ is shown. Again, it can be seen, that it is impossible to locate a quadrat sampler in either a single position which would be truly representative of the stream bed as a whole or in a series of positions that would necessarily reveal the same, or even remotely similar, relative abundances for the organisms present in each of the samples.

A handnet sample taken in such a way as to remove material at intervals along the transect A-B will capture a high proportion of the taxa present at the site as a whole (See Figure 4) but without any relative abundance significance.

A "quantitative" method of sampling only provides useful quantitative data when a sufficient number of replicate samples are taken at a site in order to establish that the combined data adequately represents the relative abundance of organisms at the station.

Hellawell ${ }^{33}$ has concluded that it is apparently necessary to collect about 50 sample replicates in order to attain even an estimate of population abundance within $20 \%$ error, but for estimating the abundance of the components of a population the number of samples necessary is sometimes considerably greater.

In circumstances where the biological sampling is being undertaken for the purpose of making an investigation into a particular problem, for example to study the polluting effects of a particular discharge and its impact on the abundance of food organisms for the fish population, it might be quite reasonable to take several replicate samples.

For routine biological surveillance, however, such replication is out of the question on the grounds of cost. With a large number of sites to be examined at regular. intervals and with limited manpower under pressure for other work to be carried out very significant increases in staffing levels would be required to deal with a large increase in the number of samples to be processed. It could be argued that such additional sampling effort would be more profitably applied to the more frequent, albeit qualitative, examination of the sites in order to increase the likelihood of detecting significant biological changes at an early stage.

In practice, biologists have usually had little alternative but to base their biological surveillance programmes on single handnet samples - a practice endorsed by employing authorities concerned with minimizing costs. Experience has taught those biologists the most effective ways of sampling, the limitations of their data and the types of biological assessment methods which may be applied to such data with confidence.

The danger is that others, anxious to enhance the image of biology in the field of water pollution management, will attempt to apply more and more sophisticated methods of biological assessment to this same data, without due regard to its limitations. Examples are to be found in the Saprobien System (eg methods of Pantle and Buck; Zelinka and Marvin); Diversity Indices (Shannon-Weaver; Wilhm and Dorris); and Biotic Score (Chandler). These are methods which take account of relative abundance and therefore demand strictly quantitative data but which have frequently been applied to data which is in reality only qualitative.

In the Anglo-Soviet bilateral study the biologists involved did not consider any of the samples to be quantitative. The demonstration showed that the handnet is the most versatile piece of equipment for qualitative biological sampling and can be used satisfactorily in rivers of many different types. It can be used on river beds which cannot be sampled by any other means. It must be recognised, however, that the handnet has its limitations and there are circumstances when other methods of sampling have to be employed. From the results given in Table 26 it can be seen that if artificial substate, box or grab samples are used then more than one sample is needed, in each case, for the result to be comparable with a handnet sample.

From the results obtained during the bilateral study, and bearing in mind the limitations of this data, can the number of samples of each type necessary for a reasonable comparison be estimated?

In Table 27 the cumulative number of taxa recorded by each of the methods of sampling at each sampling station is given together with the \% this number represents of the total number of taxa recorded at each site in all the samples on the day. These values are plotted in Figure 5. By extrapolation it may be concluded that to equate artificial substrate, box or grab samples with the average performance of a handnet sample (in terms of the number of taxa collected) it is necessary for the following numbers of the alternative types of sample to be taken:

1 Handnet Sample
2-3 Artificial Substrates
4-5 Box or Grab Samples
It must be realised, however, that this degree of replication is required merely to provide an equally representative list of taxa by each of the alternative methods of sampling for the sampling site under investigation. For the reasons given earlier, the samples so obtained are not to be regarded individually, or in combination, as a quantitative expression of the relative abundance of organisms at the site, or in the case of quadrat samples, within any one habitat, eg riffle.

In the EEC Collaborative Study the intensity of sampling (approximately 10 hours), at each site was such that the combined list of taxa recorded in all the participants samples could reasonably be assumed to represent the complete list of macroinvertebrate taxa present at each sampling station on the day. Each biologist used his own handnet and sampling technique and the results indicated that a 'typical' method of sampling gives a mean of only $40 \%$ (within the range $14-80 \%$ ) of the taxa present at the sampling station.

The intensity of sampling in the Anglo/Soviet bilateral study was not sufficient for the same assumption to be made with confidence but, treated in the same way, the results show that a single handnet sample captures between $39-89 \%$ of the total taxa found in all the samples ( $68.3 \%$ mean value). In this case a number of different biologists were using the same handnet and sampling technique.

In order to ensure that the sample obtained will be at the higher end of these ranges it can be shown, by extrapolation (Figure 5) that it would be necessary to take, at each sampling station, on each sampling occasion, at least:

3-4 handnet samples, OR
5-6 artificial substrate samples, OR
$8-9$ box. Surber or grab samples.
Even this number of replicates, however, would not give a complete taxa list but merely minimize sample variability at an acceptable, optimal level.

Fortunately, it is not necessary for every taxon present at a site to be recorded for an adequate biological assessment of water quality to be made. Taxa are not present at a sampling station in equal numbers, for example, there are fewer predators than prey. The population of a river reach may be shown diagrammatically as adjacent.

It can be seen that a sample containing $60 \%$ of the total taxa present at the station would most likely include Taxa 1-12 whist a sample containing $30 \%$ of the taxa present would be most likely to include Taxa 1-7. In other words those two samples will show considerable similarity in respect of the taxa which are dominant. The differences between them will be largely in respect of the less commonly occurring taxa including perhaps a number of drift organisms. All that is necessary is for a method of biological assessment to be chosen, which, when applied to the two samples will give the same assessment value.


It is clear that the time taken in sampling as well as the ability of the person taking the sample can be principal causes of sample variation. Sampling for longer periods of time will generally produce longer lists of taxa which in turn will tend to increase biological water quality assessment values to varying degrees according to the particular rationale of each method.

For this reason a maximum time for sampling is recommended, say, 5 or 10 minutes in order to minimize this variable at an optimal level.

The third EEC Collaborative Study was carried out in Italy (9-13 October, 1978) on the Torrente Palma and Torrente Stirone which are tributaries of the River Po. One of the objectives of this study was to compare the results obtained when biologists use their own equipment and their own technique of sampling with the results obtained when all the biologists use the same type of handnet and a standard technique. The report on this study should be published in 1979.

If the standardisation of apparatus and sampling technique does lead to greater uniformity in handnet samples, it is interesting to speculate if further improvernent would result from sampling being carried out by one person only. Mr Fretwell will later be describing work he has recently carried out to investigate this.

## Sampling in Deep Rivers

It is not always possible to sample a transect across the river (Figure 6A) because of the limitations of water depth or dangerous flows. An equivalent sampling effort can be achieved by changing the angle of the line of sampling (AC). In very deep rivers satisfactory samples can often be obtained by sampling along the bank for an equivalent distance. Such a sample is a truer reflection of water quality than would be obtained from the deep central part of the river which frequently has a limited fauna:
a. in eroding rivers because of the unstable nature of the bed;
b. in depositing rivers because of the restricting nature of the deposits.

The organisms in such a situation reflect the quality of the deposits rather than the water passing over them (see Figures 6B and C).

## Biological Methods of Water Quality Assessment

Before a biological method of water quality classification is selected careful consideration should be given to:

1. the validity of the data which is available;
2. the validity of the method;
3. the purpose for which the method is to be used.

## Validity of the Data

The discussion of methods of sampling in the previous section is of fundamental significance in relation to the choice of suitable methods for the biological assessment of water quafity.

The limitations of the biological data available, including variations arising from natural causes and sampling differences, must be recognised.

The theoretical advantages of a sophisticated method of assessment are lost when such a method is applied to data which is not reliable in the ways demanded by such a method of assessment. It is better to underestimate the validity of such data than to over-estimate it and thereby draw false conclusions.

Whilst it may be true that generalisation can be a dangerous practice in scientific work, nevertheless, it is preferable to false precision and a broad classification, which is based on a few general principles and is only a function of the dominant characteristics of the data, may ultimately be more reliable than a supposedly "precise" classification which displays imprecision.

These remarks may be illustrated by reference to the results from the Anglo-Soviet study.
In Table 28 the maximum and minimum assessment values recorded for each assessment method at each sampling station are shown. The difference between these values $(M-m)$ is then given as a percentage of the maximum value.


The samples were taken at the same time so that the spread of values at each station indicated by the percentage figure, is not related to water quality but is a direct result of the normal variation between samples as discussed earlier. The range of values $M-m .100$

M
obtained for the 9 sampling stations is summarised in Table 29 and shown diagrammatically in Figure 7, with the results obtained for each type of sample shown separately. It is clear, that regardless of the method of sampling, the biotic index is less influenced by normal variations in sampling efficiency than any of the other methods tested. Indeed, the biotic index shows less variation resulting from sampling differences than the data itself ( - number of taxa) whereas other methods actually accentuate the differences between samples.

These findings have been confirmed by other studies including the results of the EEC Collaborative Study.

Since the biotic index was the only method of assessment among those tested which was specifically designed for use in connection with random handnet sampling these results are not surprising.

What is particularly interesting is the very poor performance of the other methods of assessment in relation to quadrat samples. On the limited data available from the Anglo-Soviet results it is evident that the Diversity Index and Biotic Score values for so-called "quantitative" quadrat samples taken at the same site at the same time show very considerable variation. This was explained in the previous section and it supports the case made there for multi-replicate sampling when such methods are employed.

## VALIDITY AND APPLICATION OF THE METHODS OF ASSESSMENT

## Community Diversity Index

Being a function of species abundance and equitability this method may give an approximation of the community structure and since the kind of species present are not considered it may have applications on a broad geographical basis. However, the index:
a. is very sensitive to small differences between samples which must therefore be obtained by a rigorous multi-replicate quantitative sampling method;
b. requires the determination of the numbers of individuals;
c. has high taxonomic demand, and
d. requires lengthy computation.

A particular criticism of the method is that it takes no account of the kinds of species present (ie indicator species).

The method of assessment is essentially statistical and is not a biological method of water quality assessment.

## Biotic Score (Chandler)

The disadvantages of the Biotic Score include:
a. the very wide range of score value steps which individually bear little or no relation to water quality differences;
b. the apparent sensitivity of the score to water quality is overshadowed by its ultra-sensitivity to ordinary differences between samples - it therefore demands a rigorous multi-replicate quantitative sampling technique to overcome this weakness;
c. the system does not reduce data to a convenient numerical scale of values which can be interpreted easily by the non-biologist;
d. the system lacks range in moderately to heavily poliuted waters;
e. the tolerance list of species and the allocation of score values is, for the most part, scientifically unfounded. For example;
i. each species of cased caddis (Trichoptera) scores 75 points, each genus of Hydracarina scores 32 points.
What scientific argument can be put forward to support these values?
ii. Tubifex (Oligochaeta) scores 22 points. | 3 points Asellus aquaticus (Crustacea) scores 25 points ) difference

Asellus aquaticus (Crustacea) scores 25 points ) 54 points
Each species of Ephemeroptera scores 79 points ) difference
In the process of natural recovery from organic pollution does the transition Asellus $\rightarrow$ Ephemeroptera represent $18 \times$ the water quality improvement that is represented by the transition Tubife $x \rightarrow$ Asellus? Since the variety of organisms increases with recovery this imbalance is accentuated by the addition of high score values for more and more organisms as the river recovers so that the total score increases out of all proportion to any real alteration in water quality. The effect of this
process is for the 'sensitivity' of the score to be low at the polluted end of the range in relation to the score range as a whole. This is inconsistent with the fact that changes in water quality, as measured by chemical parameters, tend to be greater in polluted zones than in clean zones. The pronounced fluctuations found in the scores for clean zones actually tend to result mainly from influences other than water quality, eg sampling differences and physical changes.
iii. the points allocation clearly favours those organisms adapted to life in conditions of fast flow. Organisms more suited to low current velocities and depositing substrate conditions receive fewer points.

It is usual for the pollution load of a water course to increase as it passes from source (highland, fast flowing, eroding stream) to mouth (lowland, slow-flowing, depositing river). Organisms which live in the latter conditions do so primarily because they are better adapted to the physical characteristics of that type of environment and not necessarily because they are more tolerant to higher levels of pollution. Thus it may be argued that the score for Amphinemura (47) is too low compared with, say, Isoperla (90) and that for Planorbis (30) too low compared with Ancylus (70).
f. It is claimed that the great advantage of the Biotic Score over other methods is that it takes account of the relative abundance of organisms. The effect of the abundance categories on the score values is, in reality, imaginary rather than real since they can be so easily masked by the presence of another taxa, for example:
which is of greater biological significance?

## Increase in Score Value

1. Stoneflies $\langle\mathbf{1 0} \rightarrow$ Stoneflies $\rangle 100$ Nais-/ occurrence
2. Mayflies $\langle 10 \rightarrow$ Mayflies $\rangle \mathbf{1 0 0}$ A Leech -/ occurrence
3. Gammarus $\langle\mathbf{1 0} \rightarrow$ Gammarus $\rangle 100$
C. riparius -/ occurrence

6 points
20 points
13 points
26 points
0 points
21 points

In other words the abundance factor can be completely overshadowed by differences in species lists resulting from variations in sampling and/or organism sorting efficiency.

It is significant that in the new Biological Monitoring Working Party Score system relative abundance categories have been dropped.

Despite the weaknesses in detail indicated above the biotic score is based on reasonable biological presumptions and performs the functions of a biological method of assessment provided that differences in score values are interpreted with care.

## Biotic Index

According to Balloch et al ${ }^{21}$ in a paper summarizing a project carried out by students at Aston University, the Biotic Index has the following advantages:
a. classifies the main characteristics of polluted waters;
b. does not make rigorous demands on sampling technique;
c. reduces the effort involved in identification of species by the selection of key organisms;
d. possesses a simple linear scale of index values;
e. has an index value easily understood by non-biologists.

The same authors have suggested the following disadvantages:
a. the fixed-level index values render the system inflexible to moderate changes in water quality.

What this really means is that the index is relatively unaffected by minor differences in the data which might be due to water quality differences but which, as has been demonstrated, are more likely to be the result of sampling differences.
b. Narrow range of fixed-level index values.
c. lacks. range in the assessment of cleanto mildly polluted waters.

The objective of pollution control organisations is to minimize the effect of pollution. When a watercourse has a biotic index of 8 or higher, pollution is reasonably under control or absent. The range $0-7$ is the most important since it indicates areas in which pollution control meașures are inadequate or ineffective.

Further differentiation of clean waters can be achieved; if necessary, by the use of the extended biotic index.
d. does not accord "key" status to molluscs, an important group in slower moving rivers.

Molluscs are not a key group in relation to water quallty.
e. takes no account of numbers of individuals.

It has been explained why this is a principal source of error in systems which take account of the numbers of individuals obtained in single qualitative samples. Hence, it is an advantage not to depend on such mislaading data.
f. requires adaptation, when used outside the River Trent watershed.

The flexibility of the biotic index in thls respect has permitted its adaptation for use in North America and Asia (India), Adaptabillty is not a disadvantage.
g. a ccidental presence of organisms (drift organisms) may radically alter the index value for the station.

This is equally true of other systems of classification.
h. the use of taxonomic grouping does not permit a proper analysis of the community present in relation to water quality.

Such analysis should be carried out, separately, on the biological data, not on the biological classification.
i. littie recognition is made of the diversity of forms within any one grouping.

On the quality of data available this is not a fault nor is it the function of the Biotic Index to make such recognition. If this information is required, and the data is reliable, it should be obtained by the simultaneous calculation of diversity index on the same data.
j. generally not responsive to inorganic pollution by heavy metals.

All biological systems of classification are ultimately based on the classical work of Kohlkwitz and Marsson (see Figure 8) and are therefore primarily related to the effects of organic pollution. Toxic pollution, such as that due to heavy metals, is detectable when such methods are used by experienced biologists.

## Validity of Methods of Assessment

A number of papers ${ }^{21}, 28-33$ have recently been published which either review methods of biological assessment on largely theoretical grounds or give accounts of the performance of methods in relation to short-term biological investigations into the condition of particular rivers. The conclusion is often reached in these papers that the Biotic Score is the preferred method of water quality assessment because it is very sensitive to water quality changes and takes account of the abundance of organisms.

The validity of this conclusion may generally be criticised, however, on the following grounds:

1. in many of the studies methods of assessment have been applied to samples obtained in ways which are different from those for which the method of assessment was devised. For example, it is not correct to apply a biotic index to a shovel ${ }^{32}$ or cylinder ${ }^{21}$ sample. The biotic index should be applied to random, qualitative handnet samples ${ }^{9}$. Only after a satisfactory validation experiment should the Biotic Index be used on the combined results of the appropriate number of samples taken by some other method.
2. the effect of normal sample variation on the methods has not been considered adequately. This arises because the work being done, by the same team of biologists on a particular watercourse, often lends itself to a reasonable degree of standardisation. This degree of standardisation cannot be achieved on a nationwide basis when large numbers of individuals are involved in the taking of samples from a wide variety of river types.
3. the claim is made that biotic score methods are sensitive to water quality change. This is an assumption frequently made, but usually not substantiated by comparison of the score values with an adequate array of water quality data, ie chemical water quality parameters.
4. the effect of seasonality on score values, although often admitted, is frequently dismissed or ignored. In the context of an isolated biological investigation of a particular river the effects of seasonality may be irrelevant since it can be argued that on the particular day of sampling all the samples taken in a longitudinal profile of that river would be affected in the same way. The effects of seasonal variation could, however, be a very serious obstacle to the interpretation of results obtained for different rivers, possibly in different geographical regions and taken at different times of the year. It may also be an obstacle to the interpretation of results on the same river where sampling is done on an all year round basis for biological surveillance purposes.
5. no guidetines are given in any of these papers regarding the criteria used in judging the significance of change as indicated by the differences in score values and making allowance for sampling and seasonal variation.
6. the specific purposes for which a biological method of assessment may be required are either not considered or are different from the purposes underlying the Anglo-Soviet bilateral study. The success of a method in relation to one purpose does not necessarily mean that the method will automatically be successful in relation to another purpose.
7. Research groups in general tend to ignore or underestimate the importance of economic and cost-benefit considerations in the selection of methods for day to day routine use by water management organisations funded by revenue and not by government grants.

## PURPOSE OF BIOLOGICAL ASSESSMENT

Biological classification systems are not generally considered (by biologists) to be suitable for the detailed investigation of particular biological problems (such as the effects of specific polluting discharges) because all such systems have a tendancy to oversimplification. In addition, the manipulation of derived values, a characteristic of many systems, has obvious drawbacks compared with the direct examination of the biological data.

Biological systems of classification have been created to serve the following needs:

1. to assist in communication between biologists and non-biologists;
2. to facilitate the routine monitoring of natural waters for the detection of short term change in biological quality which are significant in relation to water use, fisheries development and nature conservation;
3. to provide administrators with a broad indication of long-term biological changes in natural waters in relation to the effectiveness of pollution control measures taken;
4. to reduce complex biological data to a form which allows comparison with other data including water quality analyses, and fish distribution, particularly in order to identify problem areas not revealed by the limited chemical surveillance which is normally achieved.

Given that the biological classification is to be used for one or more of these requirements what range of values is to be preferred? This is to some extent a matter of individual choice and the question is perhaps best answered by reference to the methods of assessment most widely used already, say, in western Europe. A survey of methods currently used by the EEC countries is summarised in Table 30.

Most countries utilise a 4 or 5 part system as a means of monitoring in the long term, the effectiveness of a pollution control policy, and a $10-20$ part system for the other needs. The broader classification is often derived from the 10-20 part classification or, in the case of two countries, from 100 part classifications. The 100 part classifications can also be used as 10 part classifications.

Open-ended numerical assessment systems (Biotic Scores) are not favoured in any country outside the UK. It may be concluded that, in practice, systems with a range of values between 0 and 20 have proven to be the most acceptable to administrators and biologists in all these countries.

## THE SELECTION OF A BIOLOGICAL ASSESSMENT METHOD

No system of biological assessment can be regarded as perfect and it may be, in part, the imperfection of existing systems which stimulates the search for new ones. However, of the systems considered by the Anglo-Soviet Group the Biotic Index is the first choice for the purposes listed in Section 5.2.3.

For other purposes, such as in the more precise investigation of the biological condition of a particular watercourse in relation to flood alleviation schemes, land drainage work and the regulation of discharges from storage reservoirs the Biotic Score system may be the most appropriate choice provided that it is applied to the results of replicate quantitative samples along the river profile. It is of less value for intercomparison between rivers owing to the very large number of ways in which any final score value can be computed.

That is not to imply that there is no place for other systems in routine biological surveillance. On the contrary, a biologist should not rely solely on one system of biological assessment any more than a chemist would rely on only one chemical parameter to consider water quality. The biologists should, in fact, choose a number of assessments appropriate to the quality of data available. He should consider the normal relationships in particular instances. For example, a low biotic index combined with a high Diversity Index or vice versa. Frequently, such deviations can be explained in terms of sampling difficulties or other factors not associated with water quality. Occasionally the deviations can highlight water quality problems not necessarily noticed by the use of only one method of assessment, whichever method that happened to be. The selection of suitable methods of biological assessment need not be confined to those dealt with in the Anglo-Soviet study but could be extended to include methods used in other countries. For example, the following methods have particular merits and are worthy of consideration:

1. $K_{12345}$ (Moller Pillot) ${ }^{23}$ Netherlands.
2. Biotic Index (Verneaux and Tuffery) ${ }^{24}$ France.
3. Quality Q (Flanagan and Toner) ${ }^{25}$ Ireland.
4. Relative Load (Knopp) ${ }^{26}$ West Germany.

The system of Moiler Pillot is a score-type of assessment method with the following particular advantages:

1. the system was devised primarily for use in the deep, slow, rivers found in the Netherlands;
2. only organisms which have known water quality significance are included in the assessment calculations;
3. the score range 100 (heavily polluted) to 500 (not polluted) can be adapted to give a 5 or 10 class system by banding;
4. the score allocations to organisms are less controversial than those of the Biotic Score (Chandler).

## PRACTICAL APPLICATION OF METHODS IN BIOLOGICAL SURVEILLANCE

At the 1st Anglo-Soviet Seminar on "The Elaboration of the Scientific Bases for Monitoring the Quality of Surface Water by Hydrobiological indicators", held at Valdai, USSR, in 1976 I attempted to demonstrate the practical application of the Trent Biotic Index in day to day biological surveillance ${ }^{27}$. Examples were given of the biological record cards for a number of sampling stations in the Trent catchment. I would like to conclude this paper by showing examples of such records in terms of the Biotic Index and Biotic Score (Chandler). The examples, Tables 31/32, 33/34, 35/36, are for the River Derwent at Draycott and Baslow and the River Erewash at Toton, three of the sampling stations examined in the Anglo-Soviet bilateral study. These long term records are also shown diagrammatically in Figures 9, 10 and 11.

These examples show that the two assessment methods vary in parallel to give a similar indication of water quality change both in the short term and long term. It is equally clear that the simpler Biotic Index values are more easily interpreted than the high Biotic Score values particularly since the latter show a greater relative standard deviation.

The usefulness of the Biotic Score as a day to day management tool can be improved by utilising the square root of the actual score, thereby transforming them to the more convenient scale of $0-50$ and at the same time halving the relative standard deviation.

All the values given for the three sampling stations on these record cards have been used to show the relationship between the Extended Biotic Index and Biotic Score (Chandler). It can be seen (Figure 12) that this relationship is of exponential character. The product/ moment correlation coefficient is 0.981 . When the Extended Biotic Index is compared with the square root of the Biotic Score the relationship is linear (Figure 13) and the correlation coefficient is 0.975 .

It is suggested that this variation of the Biotic Score may enhance its general usefulness.

## CONCLUSIONS

Having regard to:

1. the uses to which a system of biological assessment may be put in relation to river water quality monitoring programmes.
2. the validity of biological data normally available - as influenced by the following considerations:
a. the variability of river types and geographical regions;
b. the variability in methods of sampling which have to be adopted for practical reasons in local circumstances;
c. the variability in sampling effectiveness and level of expertise of available staff;
d. the general variability normally found between samples.
3. the validity and scientific basis of the methods of assessment under consideration.
4. Economic constraints.

It was decided by the joint Angio-Soviet team of experts that the Trent Biotic Index has evident advantages over the other methods tested.

In particular it was felt ${ }^{34}$ that the Trent Biotic Index:
"1. provides an adequate assessment of water quality.
2. requires a minimum of effort and is consequently most cost-effective.
3. does not require highly qualified staff.
4. gives the highest level of reproducibility of results of all the methods considered".

## REFERENCES

1. Woodiwiss, F S (1978). Technical Seminar: Biological Water Assessment Methods. Nottingham - 26 September to 1 October 1976. Report to the Working Group. (Not for general circulation).
2. Woodiwiss, F S. Commission of the European Communities, Health Protection Directorate: Comparability Study of Biological-Ecological Assessment Methods Technical Seminar, Nottingham 26 September to 1 October 1976. Summary Report (in preparation).
3. Department of the Environment - Standing Committee of Analysts (in preparation).
4. Scott, D 1966. The substrate cover-fraction concept. Pymatuning Lab. Ecol. Univ. Pittsburg Spec. Pub. No 4, 75--78.
5. Besch, W. Hofmann, W. (1968). Le macrobenthos sur des substrats de polethylene dans les eaux courants. 2. La Steinach, une riviere de la zone a truite. Annls. Limnol. 4: 235-263.
6. Hester, F E. Dendy J S. 1962. A multiple plate sampler for aquatic macroinvertebrates. Trans. Am. Fish. Soc. 91, 420-421.
7. Hull; C J. (1968). A bottom fauna sampler for use in stony streams. Progue Fish. Cult. 30: 119-120.
8. Anderson, J B. Mason, W T. 1968. A comparison of benthic macroinvertebrate invertebrates collected by dredge and basket sampler. J. Wat. Pollution Control Fed. 40, 252-258.
9. Woodiwiss, F S. 1964. The Biological System of Stream Classification used by the Trent River Board. Chemistry and Industry, 11, 443-447.
10. Chandler, J R. (1970). A Biological Approach to Water Quality Management. Wat. Pollut. Control, Lond. 69: 415-422.
11. Nargalef, R. 1951. Diversidad de especies en las comunidades naturales. P. Inst. Biol. Apl. 9: 5-27.
12. Shannon, C E. Weaver, W. 1963. The mathematical theory of Communication. Univ. of Illinois Press, Urbana: 117.
13. Wilhm, J L and Dorris, T C. 1965. Species Diversity of Benthic Macroinvertebrates in a stream receiving domestic and oil refinery effluents. WHO/EBL/47.65: 1-46.
14. Jaccard, P. 1912. The distribution of the flora in the Alpine Zone. New Phytol. 11, 37-50.
15. Kulezynski, S. 1928. Die Pflanzenassociationen der Pieninen. Bull. int. Acad. Pol. Sci. Lett. B. Suppl. 2, 57-203.
16. Sorensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish Commons. Biol. Skr (K. danske. vidensk. Selsk. N.S.) 5, 1-34.
17. Mountford, M D. 1962. An index of Similarity and its application to classificatory problems. In: Progress in soil zoology (ed PW Murphy). Butterworths: London.
18. Csekanowski, J. 1913. Zarys metod Statystyeznych. Warsaw.
19. Raabe, E W. 1952. Uber den 'Affinitatswert' in der Pflanzenzoziologie. Vegatis, Haage 4, 53-68.
20. Southwood, TRE. 1966. Ecological Methods. Methuen.
21. Balloch, D. Davies, C E. Jones F H. (1976). Biological assessment of Water Quality in three British Rivers: North Esk (Scotland), the Iver (England) and the Taf (Wales). Wat. Pollut. Control, London. 75: 92-110.
22. Kolkwitz, R and Marsson, M: Okologie der pflazlichen Saprobien. Report of the German Botanical Society. 26a, 50 (1908). Okologie der tierischen Saprobien. Int. Rev. Hydrobiol. 2, 126-152 (1909).
23. Moller Pillot, H K M. 1971. Faunistische becardeling van de verontreiniging in laaglandbeken. Thesis pp. 286.
24. Verneaux, J. Tuffery, G. 1967. Une Methode zoologique practique de determination de la qualite biologique des eaux courantes. Indices Biotiques. Amn. Sci. Univ. Besancon Zool. 3: 79-90.
25. Flanagan, P J and Toner, P F, 1972. Notes on the Chemical and Biological Analysis of Irish River Waters. An. Foras. Forbartha, Water Resources Division, St Martin's House, Waterloo Road, Dublin, Ireland.
26. Knopp, H. Grundzatzliches zur Frage biologischer Vorfluteruntersuchungen, erlautert an einem Gutelangsschnitt des Mains. Arch. f. Hydrobiol./Suppl. Bd. 22, 1955, S. 353-368, Stoffwechseldynamische Untersuchungen fur die Wasseranalyse. Int. Revue ges. Hydrobiol. Bd. 53, 1968, H. 3, S.409~441.
27. Woodiwiss, F S. 1976. The Trent Biotic Index - Macro-Invertebrates in Biological Surveillance. In: Elaboration of the Scientific Bases for Monitoring the Quality of Surface Water by Hydrobiological Indicators. Department of the Environment - Central Unit on Environmental Pollution Report of the first UK/USSR Seminar held at Valdai, USSR, 12-14 July, 1976.
28. Marstrand, PK. 1973. Using Biotic Indices as a criterion of in-river water quality. Ass. River Author. Year Book and Directory, 182-188.
29. Jorgensen, G F. 1977: The Use of Biotic Indices as a tool for water quality analysis in rivers. Verh. Internat. Ver. Limnol. 20.
30. Nuttall, P M and Purves, J B. 1974. Numerical Indices applied to the results of a survey of the macroinvertebrate fauna of the Tamar Catchment (south west England). Freshwater Biol. 4, 213-222.
31. Cook, S E K. 1976. Quest for an index of community structure sensitive to water pollution. Environment, pollution, (11) 269-288.
32. Bryce D, et al 1978. Macroinvertebrates and the bioassay of Water Quality: A report based on a survey of the River Lee. North East London Polytechnic. Science Series.
33. Hellawell J. 1977. Change in natural and managed ecosystems: detection, measurement and assessment. Proc. R. Soc. Lond. B. 197, 31-57.
34. Abakumov, VA. 1979. Personal Communication.

| Name of River | Nare of Station | $\frac{\text { Sitio }}{\text { Number }}$ | $\begin{aligned} & \frac{\text { Pistance }}{\text { from }} \\ & \text { Source } \end{aligned}$ | Gradient | $\frac{\frac{\text { Tidth }}{\frac{\text { dit }}{}}}{\text { Strean }}$ | $\frac{\text { Cross- }}{\frac{\text { Soctional }}{\text { area }}}$ | Normal <br> Dry <br> Flow | $\frac{\text { Depth }}{\frac{\text { normal }}{(n)}} \frac{\text { mne }}{}$ | Type of Bottom |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rijer Derwent | Baslam | 1(2*) | $\begin{aligned} & (\mathrm{Km}) \\ & 37 \end{aligned}$ | 1:550 | $\begin{aligned} & (m) \\ & 20(E) \end{aligned}$ | $\begin{aligned} & \text { (Sq. m) } \\ & 13 \text { (E) } \end{aligned}$ | (curecs) $2.0$ | $\begin{aligned} & (c \pi s) \\ & 15-30 \end{aligned}$ | Rocks. |
| River Dove | Kayrieid | 2(2*) | 38.6 | 1:550 | 18(e) | 8 (E) | 1.7 | 15-60 | Stones, Gravel. |
| River Trent | Gunthorpe | 3(13*) | 183.4 | 1:3550 | Not known | Not kniown | 17.0 | 10-60 | Stores, Gravel. |
| River Soar | Nomanton | 4(15*) | 56.3 | 1:1770 | Not known | Not knom | 2.0 | 1 m. | Mud, Silt, Gravel. |
| River Derment | Draycott Ferry | 5(16*) | 101.4 | 1:1480 | 22.0(E) | 9.0 (8) | 5.0 | 30-60 | Stones, Gravel. |
| River Erewash | Toten | 6(17*) | 37.0 | 1:2110 | 8.0(E) | 1.6(E) | Not knom | 30-60 | Stones, Gravel. |
| Mother Drain | Rossington Briage | 7(18*) | 8.0 | - | Not <br> known | Not known | Not known | 30-60 | Mid, Silt, Stones. |
| River Poulter | Gruoicfori | 8 (23*) | 23.3 | 2:510 | 6.0 | 1.7 | 0.36 | 10-60 | Stones, Gravel, Sand. |
| River Ida | Bawtry | 9(24*) | 45.1 | - | Not krown | Not known | Not known | 20-1m. | Sanc, Silt, Mud. |

TABIE 1. THE SAMPLING STATIONS: Some Physical Characteristics

| $\frac{\text { Stasion }}{\text { ainez }}$ | River | Station | (S.O.D. | $\begin{aligned} & \text { Suspended } \\ & \text { Solids } \end{aligned}$ | $\frac{\text { Arunoniacal }}{\text { N1trogen }}$ | $\frac{\text { Dissolved }}{\frac{\text { Oxygen }}{\text { (Cone. }}}$ | pH | $\frac{\text { Temperature }}{{ }^{\circ} \mathrm{C}}$ | $\begin{aligned} & \text { ortho- } \\ & \text { phosphate } \end{aligned}$ | $\frac{\text { Water }}{\text { Cuatiky }} \frac{\text { Class }}{}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | DERTENT | $\begin{aligned} & \text { Bhsios - Mean } \\ & \text { Range } \\ & \text { No. of observ'ns. } \end{aligned}$ | $\begin{aligned} & 2.7 \\ & 0.9-2.8 \\ & 13 \end{aligned}$ | $\begin{aligned} & 5 \\ & 1-20 \end{aligned}$ $13$ | $\begin{aligned} & 0.1 \\ & <0.1-0.3 \\ & 13 \end{aligned}$ | $\begin{aligned} & 11.2 \\ & 9.5-13.2 \\ & \text { i1 } \end{aligned}$ | $\begin{aligned} & 7.7 \\ & 7.6-8.0 \\ & 13 \end{aligned}$ | $\begin{aligned} & 10.0 \\ & 3.5-16.5 \\ & 11 \end{aligned}$ |  | 1A |
| 2 | DOVE | Mrifiejd - Mean Range <br> No, of Observ'ris. | $\begin{aligned} & 1.6 \\ & 0.8-2.8 \\ & 21 \end{aligned}$ | $\begin{aligned} & 12 \\ & 1-102 \\ & 22 \end{aligned}$ | $\begin{aligned} & 0.1 \star \\ & <0.1-0.2 \\ & 21 \end{aligned}$ | $\begin{aligned} & 11.7 \\ & 10.8-13.0 \\ & 19 \end{aligned}$ | $\begin{aligned} & 9.0 \\ & 7.6-9.4 \\ & 21 \end{aligned}$ | $\begin{aligned} & 9.4 \\ & 5-15.5 \\ & 21 \end{aligned}$ |  | 2A |
| 3 | TRENE | GUNTHORPE - Mean Range <br> :to. of observ'ns. | $\begin{aligned} & 6.4 \\ & 3.8-15.8 \\ & 13 \end{aligned}$ | $\begin{aligned} & 26 \\ & 8-74 \\ & 14 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 0.3-1.5 \\ & 24 \end{aligned}$ | $\begin{aligned} & 9.0 \\ & 7.3-10.6 \\ & 22 \end{aligned}$ | $\begin{aligned} & 7.6 \\ & 7.1-8.0 \\ & 14 \end{aligned}$ | $\begin{aligned} & 12.0 \\ & 4.2-19.2 \\ & 14 \end{aligned}$ |  | 2 |
| 4 | SOAR | ```ZOUCH - Mean Range No. of Observ'ns.``` | $\begin{aligned} & 4.5 \\ & 3.1-8.8 \\ & 24 \end{aligned}$ | $\begin{aligned} & 16 \\ & 5-59 \\ & 24 \end{aligned}$ | $\begin{aligned} & 0.5^{*} \\ & <0.1-1.2 \\ & 24 \end{aligned}$ | $\begin{aligned} & 10.0 \\ & 6.7-12.2 \\ & 24 \end{aligned}$ | $\begin{aligned} & 7.3 \\ & 7.3-8.1 \\ & 24 \end{aligned}$ | $\begin{aligned} & 10.9 \\ & 2.0-23.5 \\ & 24 \end{aligned}$ |  | 2 |
| 5 | DERWENS | DPAYCOTT - Mean Range <br> No. of Observ'ns. | $\begin{aligned} & 4.0 \\ & 0.6-7.5 \\ & 23 \\ & \hline \end{aligned}$ | $\begin{aligned} & 13 \\ & 6-31 \\ & 23 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.4 \\ & <0.1-1.4 \\ & 23 \end{aligned}$ | $\begin{aligned} & 9.0 \\ & 5.1-12 \\ & 19 \end{aligned}$ | $\begin{aligned} & 7.7 \\ & 7.2-8.0 \\ & 23 \end{aligned}$ | $\begin{aligned} & 13.4 \\ & 5-22.2 \\ & 18 \end{aligned}$ |  | 2 |
| 6 | EREWASH | $\begin{aligned} & \text { TOTON - Mean } \\ & \text { Range } \\ & \text { No. of Observ'ns. } \end{aligned}$ | $\begin{aligned} & 9.5 \\ & 3.8-16.2 \\ & 12 \end{aligned}$ | $\begin{aligned} & 24 \\ & 6-48 \\ & 12 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 0.4-3.4 \\ & 12 \\ & \hline \end{aligned}$ | $\begin{aligned} & 6.6 \\ & 3.3-9.8 \\ & 12 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7.4 \\ & 7.2-7.6 \\ & 12 \\ & \hline \end{aligned}$ | $\begin{aligned} & 11.0 \\ & 4.5-19.5 \\ & 12 \end{aligned}$ |  | 3 |
| 7 | moterer drann | $\begin{aligned} & \text { Rossmaton - Mean } \\ & \text { Range } \\ & \text { No. of Observ'ns. } \end{aligned}$ | $\begin{aligned} & 3.4 \\ & 1.2-5.6 \\ & 9 \end{aligned}$ | $\begin{aligned} & 19 \\ & 6-43 \\ & 9 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.2^{\star} \\ & <0.1-0.5 \\ & 9 \end{aligned}$ | $\begin{aligned} & 10.1 \\ & 6.6-14.4 \\ & 9 \end{aligned}$ | $\begin{aligned} & 7.6 \\ & 7.3-7.9 \\ & 9 \\ & \hline \end{aligned}$ | $\begin{aligned} & 10.3 \\ & 4.2-18.1 \\ & 9 \end{aligned}$ |  | 3 |
| S | POULTER - | CRCORFOFD - Mean Range <br> No. of Observ'ns. | $\begin{aligned} & 3.5 \\ & 1.2-5.6 \\ & 12 \end{aligned}$ | $\begin{aligned} & 13 \\ & 3-29 \\ & 12 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.1 * \\ & <0.1-0.7 \\ & 12 \end{aligned}$ | $\begin{aligned} & 13.3 \\ & 6.3-17.7 \\ & 12 \end{aligned}$ | $\begin{aligned} & 8.5 \\ & 7.8-9.2 \\ & 12 \end{aligned}$ | $\begin{aligned} & 11.5 \\ & 3.6-19.2 \\ & 12 \end{aligned}$ |  | 18 |
| 9 | IDEE | BAhIRY - Mean |  | . |  | $\begin{aligned} & 10.1 \\ & 5.8-14.1 \\ & 47 \end{aligned}$ | $\begin{aligned} & 7.9 \\ & 7.2-9.6 \\ & 49 \end{aligned}$ | $\begin{aligned} & 10.3 \\ & 1.8-18.2 \\ & 47 \end{aligned}$ |  | 2 |

TABLE 2. THE SAMPLING STATIONS: Some Cnemical Water Quality Parameters, 1977
(All values in $\mathrm{mg} / 1$ - except pH, Temperature.)

TABIE 3. MBTHODS OF ASSESSMENI - TRENT BIOTIC INDEX AND EXTENDED BIOTIC INDEX (WOODIWISS 1962, 1964

| EXTENDED BIORIC IMDEX |  | Total number of groups present |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0-1 | 2-5 | $6-10$ | 11-15 | 10-20 | 21-25 | 26-30 | 34-35 | 36-40 | $41-45$ | $\cdots$ |
| TRENT BIOIIC INDEX |  | TOTAL MIMBER OF GROUPS PRESENP |  |  |  |  |  |  |  |  |  |  |
|  |  | 0-7 | 2-5 | 6-10 | 11-15 | $1.6+$ |  |  |  |  |  |  |
|  |  | BIORIC INDICES |  |  |  |  |  |  |  |  |  |  |
| Plecopters nymphs present | More than one species. | - | $?$ | - 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | - |
|  | One species only. | - | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |
| Ephemeroptera nymphs | More than one species." | $\bullet$ | 6 | 7 | 8 | 9 | 10 | 11 | 42 | 13 | 14 |  |
|  | One species only** | - | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 73 |  |
| Trichoptera <br> larvae present | More than one species.t | - | 5 | 6 | 7 | 8 | 9 | 10 | 17 | 12 | 13 |  |
|  | One species onlyot | 4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| Gamarus present | All above species absent. | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 32 |  |
| Asellus present | All above species absent. | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |
| Oligochaeta/Chironomus | All above species absent. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| All above absent | May be organisms requiring no DO. | 0 | 1 | 2 | - | - | - - | - | - | - | - |  |

* Baetis rhodani excluded.
\& Baetis rhodeni (Ephem.) iFcounted in this section for the purpose of classification.

TABLE 4. MERTIODS OF ASSESSMENT - BIORIC SCORE (CHANDLER, 1970)

|  | Increasing abundance |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Present | Few | Common | Abundent | very abundant |
|  | 1 to 2 | 3 to 10 | 11 to 50 | 51 to 100 | More than 100 |
|  | Points scored |  |  |  |  |
| Each species of PLANARIA ALPLLA $\qquad$ <br> TADNOTEGYGJDE <br> PWRLIDAE, FERLODIDAE $\qquad$ <br> ISOFERLIDAE, CHLOROPEDIDAE | 90 | 94 | 98 | 99 | 100 |
| Each species of <br> IEUCTRIDAE, CAPNIIDAE $\qquad$ <br> NEMOURIDAE (exd. AMPHINEMURA) | 84 | 89 | 94 | 97 | 08 |
| Cach species of EFTEMEROPTORA (exd. BAETIS) ............................ | 79 | 84 | 90 | 94 | 97 |
| Each species of GASED CADDIS, REGALOPLERA .+............................. | 75 | 80 | 86 | 91 | 94 |
| Each species of AMCYIUS ..................................................... | 70 | 75 | 82 | 87 | 97 |
| - RRYACOFHILA (IRICHOPTORA) .............................. | 65 | 70 | 77 | 83 | 88 |
| Genera of DICRANOTA, LINHOFHERA .... ............................. | 60 | 65 | 72 | 78 | 84 |
| Genera of SIMTLIDK ......... | 56 | 61 | 67 | 73 | 75. |
| Genera of COLEOPTERA, NEMATODA...................................... | 51 | 55 | 61 | 66 | $72^{\circ}$ |
| - AMPLAMEMURA (PLECOPTERA) . ................................ | 4 ? | 50 | 54 | 58 | 63 |
| BAEITS (EFHETSROPTERA) | 44 | 46 | 48 | 50 | 52 |
| GAMMARUS .............. | 40 | 40 | 40 | 40 | 40 |
| Each species of TPEASED CADIIA (exd. RİYaCOFHILA) | 38 | 36 | 35 | 35 | 31 |
| Each species of TRICEADIDA (exit P. ALPINO) ...... | 35 | 33 | 31 | 29 | 25 |
|  | $3{ }^{3}$ | 30 | 28 | 25 | 21 |
| Each species of hailitach (exd, nicriosj ................................. | 30 | 28 | 25 | 22 | 18 |
| Each species of CLIRONOMIDS (exd. C. RIPARIUS) ........................... | 28 | 25 | 21 | 18 | 15 |
|  | 26 | 23 | 20 | 16 | 13 |
| Each species of ASELLES ................................................... | 25 | $\frac{22}{20}$ | 18 | 14 | 10 |
|  <br> - HAZMOPSTS .............................................................. | 24 23 | 20 19 | 16 | 12 10 | 8 |
|  | 22 | 18 | 13 | 12 | 9 |
| CHIRONOMUS RIFARIUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 21 | i7 | 12 | 7 | 4 |
| - NaIS ...... | 20 | 16 | 10 | 6 | 2 |
| Each species of AIR BREATHING SPECIES ..................................... | 19 | 15 | 9 | 5 | 1 |
|  | 0 |  |  |  |  |

TABIE 5. DIVERSITY INDICES (FORMULAE)

| METHOD | FORMULA | NOTES |
| :---: | :---: | :---: |
| Margalef (1951) | $\pi=\frac{(s-1)}{\log _{e} N}$ | $\begin{aligned} & \bar{\alpha}=\text { diversity index } \\ & s=\begin{array}{l} \text { number of species or } \\ \text { Taxa } \end{array} \end{aligned}$ |
| Shannon Weaver (1963) | $\overline{\mathrm{d}}=-\underline{\Sigma}\left({ }^{n i} / \mathrm{N}\right) \log _{\mathrm{e}}(\underline{n i} /)$ | $N=$ Total number of individuals in the sample |
| Wilhm \& Dorris (1968) | $\bar{d}=-\left({ }^{n i} / N\right) \log _{2}\left({ }^{n i} / N\right)$ | $\mathrm{n}_{\mathrm{i}}=$ number of individuals in the ith species or taxa. |


| GROUPS QF <br> ORGANISMS |  | $\frac{\text { EACKGHOUMD }}{\text { DATA }}$ |  | $\frac{\text { FANDNET }}{\text { SAMPLE }}$ |  | ARTIFICIAL，SUBSTRATES |  |  |  | $\frac{\mathrm{BOX}}{\mathrm{SAMPL} E}$ | $\frac{\text { CRAE }}{\text { SAMPLE }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | S．R． | J．H． | 1 | 2 | ${ }^{3}+$ | TOTAL $1-3$ |  |  |
|  |  |  |  |  |  | ט．K． | U．K． | U．K． | U．א． | U．K． | U．K． | U．K． | USSR |
|  |  | 1975 | 2976 | 13450 | 13451 | 13452 | 13453 | 13454 | － | － | － |
| Porifera | 1. | － | － | － | － | － | － | ＊ |  |  |  |
| Polycelis sp． | 5 | － | 7 | － | － | － | － | － | － |  |  |
| Denarocoelum sp． | 8 | － | － | － | － | ＊ | － | － | － |  |  |
| Naldidae | 11. |  | ， | － | － | － | － | ． | － |  |  |
| Tubificidae | 12 | $\checkmark$ | $\checkmark$ | 5 | 4 | 4 | － | － | 4 |  |  |
| Lumbriculsdae | 14 | $\checkmark$ | － | 8 | 2 | － | － | － | － |  |  |
| Lumbricidae | 17 | － | － | － | － | － | － | ． | － |  |  |
| Piscicols geometrica | 20 | 7 | 7 | 1. | 2 | － | － | 1 | 1 |  |  |
| Glossiphona sp． | 23／24 | $\checkmark$ | $\checkmark$ | 1 | － | － | － | － | － |  |  |
| Helobdella stagnalis | 26 | － | $\checkmark$ | 2 | 2 | － | － | － | － |  |  |
| Erpobdella sp． | 29／30 | $\checkmark$ | $\cdots$ | － | － | － | － | － | － |  |  |
| Gammazus pulex | 39 | 7 | 7 | 45 | 16 | 1 | － | － | 1 |  |  |
| Asellus aquaticus | 43 | － | $\checkmark$ | － | ． | － | － | － |  |  |  |
| Taentopteryx sp． | 58 | － | $\checkmark$ | － | $\cdots$ | － |  |  | － |  |  |
| Protonemura sp． | 61／63 | － | $\checkmark$ | － | － | － | － | － | － |  |  |
| Amphinemura sp． | 64／66 | － | $\checkmark$ | － | － | － | － | － | － |  |  |
| Nemoura sp． | 67／70 | $\cdots$ | $\checkmark$ | － | － | － | － | － | － |  |  |
| Leuctra．sp． | 71／76 | $\checkmark$ | 1 | － | － | － | － | － | $\bar{\square}$ | 9 |  |
| Isoperla sp． | B1／82 | $\checkmark$ | $\checkmark$ | 32 | 4 | 1 | － | － | 1 | 0 | 曷 |
| Chloroperla sp． | 87／88 | － | $\checkmark$ | － | － | － | － | $\cdots$ | － | ¢ | 呙 |
| Ephemera sp． | 89 | ， | 7 | 2 | 1 | － | 1 | 1 | 2 | 2 | 節 |
| Ctanis sp． | 90 | $\checkmark$ | $\checkmark$ | 52 | 70 | 8 | 1.2 | 1 | 21 | d | E |
| Ephemerella p ， | 91 | － | 1 | 162 | 86 | 55 | 38 | 52 | 1.45 | H | $\stackrel{\sim}{\infty}$ |
| Ecdyonurus sp． | 92 | 7 | $\checkmark$ | － | － | － | － | － | － | \％ | \％ |
| Rithrogena sp． | 93 | $\checkmark$ | $\checkmark$ | 15 | 5 | － | － | － | － | ${ }^{\sim}$ | O |
| Heptagena sp． | 94 | － | 7 | 7 | － | － | － | － | － | $t$ | \％ |
| Faralegtophloebia sp． | 97 | － | $\sim$ | － | － | － | － | － | － |  | 1 |
| Chloen sp． | 100 | － | 7 |  | $\cdots$ | － | － | － | － | 9 | 易 |
| Baetis rhodant | 101 | $\checkmark$ | $\checkmark$ | 64 | 53 | 12 | 15 | 10 | 37 | \％ | 8 |
| Baetis spp． | 102 | 1 | － | － | － | 6 | － | － | 6 |  | ${ }^{\text {H }}$ |
| Sialis lutaria | 103 | － | 7 | － | － | $=$ | － | － | － | $\cdots$ | $\sim$ |
| Limmephilidae | 105 | $\checkmark$ | $\checkmark$ | 2 | 1 | 1 | － | － | 1 | 8 | 5 |
| Sericostomatidae | 106 | $\checkmark$ | 7 | 14 | 5 | － | － | － | － | 㙇 | 䂞 |
| Lepidostcmatinae | 107 | － | $\checkmark$ | － | － | － | 2 | － | 2 | S | 3 |
| Beraeidae | 108 | － | $-$ | － | 1 | － | $\cdots$ | － | － |  | ， |
| Leptoceridae | 11.1 | $\gamma$ | $\checkmark$ | 2 B | 45 | 18 | 16 | $\bar{\square}$ | 34 | \％ | 9 |
| Hyaropsychidas | 112 | $\checkmark$ | $\checkmark$ | 25 | 20 | 1 | 3 | 6 | 10 | 包 |  |
| Polycentropidae | 113 | $\checkmark$ | $\checkmark$ | 9 | 2 | － | － | － | － | \％ | \％ |
| Psychcayidae | 114 | － | 1 | － | － | － | － | － | － |  |  |
| Rhyacophilldae | 11.6 | $\checkmark$ | $\checkmark$ | 42 | 27 | 9 | 12 | 18 | 39 |  |  |
| Glossoscmatidae | 117 | ， | 1 | － | 1 | 6 | － | 1 | 7 |  |  |
| Hydroptilidae． | 118. | $\checkmark$ | $\gamma$ | 39 | 38 | 12 | 10 | 7 | 29 |  |  |
| Dytiscidae | 119 | － | $\checkmark$ | － | － | － | － | － | － |  |  |
| Hydxogorus | 120 | － | $\cdots$ | － | － | － | － | － | － |  |  |
| Elrats sp． | 130 | $\checkmark$ | 7 | 16 | － | － | － | － | － |  |  |
| Esolus sp． | 131 | 7 | ， | － | － | － | － | － | － |  |  |
| Limnius sp． | 132 | $\checkmark$ | $\checkmark$ | 18 | 22 | 5 | 4 | 16 | 25 |  |  |
| Oulimius sp． | 233 | － | $\downarrow$ | － | － | － | － | － | － |  |  |
| Riolus ap． | 134 | － | － | $\underline{-}$ | － | － | $\sim$ | － | － |  |  |
| Simulldae | 135 | $\checkmark$ | $\checkmark$ | 24 | 18 | 6 | 16 | 12 | 34 |  |  |
| Chironcmidae | 136 | $\checkmark$ | $\checkmark$ | 40 | 75 | 38 | 148 | 46 | 232 |  |  |
| Psychodidae | 140 | $\checkmark$ | $\checkmark$ | － | － | － | － | － | － |  |  |
| Ceratopogonidae | 141 | － | $\checkmark$ | $\sim$ | － | － | － | － | － |  |  |
| Tipulidae | 142 | $\checkmark$ | － | － | － | － | － | － | － |  |  |
| Stratiomyidae | 146 | － | － | 1 | 1 | － | － | － | － |  |  |
| Rhagionidiae | 147 | － | $\checkmark$ | － | － | － | － | － | － |  |  |
| tabanidae | 148 | － | $\checkmark$ | 1 | － | － | ＂ | 1 | 1 |  |  |
| Emptaidae | 149 | － | $\checkmark$ | － | － | － | － | － | － |  |  |
| Muscidae | 150 | $\sim$ | $\cdots$ | － | － | － | － | － | － |  |  |
| Hydacarina | 152. | 7 | 7 | 56 | 44 | 48 | 25 | 36 | 109 |  |  |
| Potamopyrgus sp． | 161 | 7 | 7 | 2 | － | 8 | － | － | 8 |  |  |
| Hydrobia ulvae | 160 | － | － | － | － | $\sim$ | － | － | － |  |  |
| Ancylus fluviatilis | 164 | $\checkmark$ | $\checkmark$ | 3 | － | － | － | － | － |  |  |
| Limnaea pereger． | 172 | $\checkmark$ | $\checkmark$ | 3 | 1 | 1 | － | $\cdots$ | 1 |  |  |
| Sphaerium | 180 | $-$ | － | 15 | $\cdots$ | － | － | － | － |  |  |
| Plsidium | 1.91 | $\checkmark$ | － | 1 | － | $\cdots$ | $\cdots$ | － | － |  |  |
| TOTAL GROUPS | TOTAL | 31 | 44 | 32 | 26. | 19 | 13 | 14 | 23 |  |  |
| TOTAL OAGANISMS |  |  |  | 735 | 535 | 240 | 302 | 208 | 750 |  | ， |
| TREAT BIOTIC ENDEX |  |  |  | 9 | 9 | 9 | 8 | 0 | 9 |  |  |
| EXTENDED BIOTIC INOEX |  |  |  | 12 | 11 | 9 | 8 | 8 | 10 |  |  |
| Bronic Score |  |  |  | 1628 | 1432 | 1078 | 826 | 730 | 1297 |  |  |
|  |  |  |  | 4.22 | 3.98 | 3.28 | 2.10 | 2.44 | 3.32 |  |  |
| DIVERSITX YNDEX（MARGALEF）Calcialated（1） |  |  |  | 2.72 | 2.55 | 2.31 | 1． HO | 2.05 | 2.18 |  |  |
| DIVERSTTY IMLEX（WIL |  |  |  | 3．93 | 3.69 | 3， 37 | ？ 2.40 | 2.95 | 3， 15 |  |  |
| DIVERSI＇TY INDEX（WILHM E DORFIS）from Tablea |  |  |  | 4.03 | 2.92 | 3． 21. | 2.10 | 2.96 | 3.51 |  |  |
|  |  |  |  | 0.5 | 0.5 | 0.3 | 0.5 | 0.5 | 0．S |  |  |


| GROUPS OF ORGANISNS |  | RACKGROUNDDATA |  | HANDTNTT SAMPLEES |  |  | ARTIFICIAL SGBGTFATIE： |  |  |  | $\stackrel{\text { POX }}{\text { SAMPLE }}$ | $\frac{G R A B}{S A M D E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | ${\underset{N}{\mathrm{NSCR}}}^{3}$ | 1 | 2 | $\xrightarrow{3}$ | $\begin{aligned} & \text { TOTAL } \\ & 1-3 \\ & \text { A/B } \\ & \text { U.K. } \end{aligned}$ | $\begin{aligned} & \text { F.W. } \\ & \text { U.K. } \end{aligned}$ | USER |
|  |  | 1975 | 1976 | 13429 | 134.3 | USSR 1 | 13432 | 13433 | 13434 |  | 13431 | － |
| Coclenterata－fydra | 2 | － | － | － | － | － | － | － | － | － | － | $\begin{aligned} & \text { 岁 } \\ & \text { 荡 } \\ & \text { 荡 } \end{aligned}$ |
| Pranaria／Pugesia sp． Polycelis sp． | 4／6 | － | － | － | － | － | － | － | 1 | 1 | － |  |
| गaiduae | 11 | － | ＊ | － | － | － | － | － | － | － |  |  |
| Tubificidae | 12 | $\checkmark$ | $\checkmark$ | 6 | 35 | 5 | 38 | 32 | 32 | 102 | 54 |  |
| Lumbriculidae | 14 | － | － | 1 | － | － | － | － | － | － | － |  |
| Lumbricidas | 1.7 | － | － | $-$ | $\cdots$ | － | － | － | － | － | － |  |
| piscicola sp． | 20 | $\checkmark$ | 7 | 1 |  | － | － | － | － | － | ＂ |  |
| Glossiphona sp． | 23／4 | $\checkmark$ | $\gamma$ | － | 2 | 1 | 1 | － | 1 | 2 | － |  |
| Helobdella sp． | 26 | 1 | $\downarrow$ | － | － | － | 1 | － | － | 1 | － |  |
| Erpobdella sp． | 39／30 | $\checkmark$ | $\because$ | 1 | － | － | － | － | － | － | － |  |
| Crantjonyx sp． | 37 | － | $\checkmark$ | ＊ | $\cdots$ | － |  | － | － | － | － | $\begin{gathered} \text { 邑 } \\ \mathbf{F} \end{gathered}$ |
| Gaumarus pulex | 38 | $\checkmark$ | $\checkmark$ | 18 | 22 | 6 | 20 | 15 | 56 | 91 | 10 |  |
| Asellus aguaticus | 43 | － | $\checkmark$ | － | － | － | 1 | － | － | 1 | － |  |
| Corixiase | 48 | － | － | － | － | － | $\cdots$ |  | － | － | － | 㐌 |
| Taeniopteryx sp． | 58 | － | ， | － | $\stackrel{\rightharpoonup}{ }$ | － |  | － |  | － | － |  |
| Protonemura sp． | 61／63 | － | 7 | － | － | － | － | － | ＊ | － | － |  |
| Amphinemura sp． | 64／66 | － |  | － | － | － | － | － | － | － | － |  |
| Leuctra sp， | 71／76 | 7 | 7 | 7 | 3 | 1 | － | － | 2 | 2 | － |  |
| Isoperla sp． Dinocras sp． | $81 / 82$ 85 | 7 | 7 | 7 5 | 3 | 1 | 1 | － | 2 | 2 | － |  |
| Ephemera sp． | 89 | － | 7 |  | － | － | － | － | － | － | 1 | 毌 |
| Caenis 5p． | 90 | $\checkmark$ | $\checkmark$ | 6 | 19 | 10 | 3 | 6 | 12 | 21 | 20 |  |
| Ephemerella 5 p． | 91 | 7 | $\checkmark$ | 224 | 288 | 264 | 621 | 72 | 75 | 768 | 65 |  |
| Eedyonurus sp． | 92 | － | 1 | － | － | － | － | － | ＊ | － | － | 㻃 |
| R1throgena sp． | 93 | － | － | 5 | 24 | － | 2 | 2 | － | 4 | 3 |  |
| Heptagena sp． | 94 | － | － | － | － | － | － | － | － | － | － |  |
| Paraleptophloebia sp． | 97 | － | $\checkmark$ | － | － | － | － | － | － | － | － |  |
| Centroptilum sp． | 98 | － | － | － | $\cdots$ | － | － | － | － | － | － |  |
| Chloson Sp． | 100 | － | － | － | － | － | － | － | $\sim$ | － | － |  |
| Baetis rhodani． | 101 | $\checkmark$ | $\gamma$ | 21 | 32 | 14 | 7 | 20 | 9 | 36 | 24 |  |
| Baetis 5mp． | 102 | － | － | 13 | 3 | － | － | 12 | － | 12. | － |  |
| Sialis sp． | 103 | － | － | － | － | － | － | － | － | － | － |  |
| Limnephilicioe | 105 | 7 | 7 | 2 | 24 | 1 | － |  | － | － | － |  |
| Sericostamatidae | 106 | － | $\checkmark$ | 32 | 4 | 4 | － | － | － | － | － |  |
| Lepidostcmatinae | 107 | － | $\gamma$ | － | － | － | － | － | － | － | ＊ |  |
| Leptoceridae | 111 | － | － | 3 | 18 | － | 9 | 7 | 3 | 19 | 1 |  |
| Hydropsychidae | 112 | － | $\checkmark$ | 69 | 92 | 18 | $\theta$ | 6 | 4 | 18 | 4 |  |
| Polycentropidae | 113 | $\checkmark$ | $\checkmark$ | 2 | － |  | － | － | 1 | 1 | 1 |  |
| Psychomyilicias | 114 | － | － | － | － | － | － | － | － | － | － |  |
| Rhyacophilidae | 126 | $\checkmark$ | $\checkmark$ | 22 | 14 | 16 | － | 3 | 3 | 6 | 9 |  |
| Glossoscmatidae | 117 | 1 | $\checkmark$ | 18 | 30 | 9 | 10 | － | － | 10 | 38 |  |
| Hydroptilicas | 118 | $\checkmark$ | 1 | 45 | 40 | 122 | 52 | 48 | 36 | 136 | 40 |  |
| Dytiscidae | 119 | － | － |  | 1 |  |  |  |  | － | － |  |
| Platambus 3p． | 121 | $\checkmark$ | $\checkmark$ | － | － | － | － | － | ＊ | － | － |  |
| Hydrobilidae | 122 | － | $\cdots$ | － | － | － | － | － | － | － | － |  |
| Halipitdae | 123 | $\checkmark$ | $\gamma$ | － | － | － | － | － | － | － | － |  |
| Gyrin1dae | 125 | － | － | － | － | － | － | － | － | － | － |  |
| Hydrophiliclae | 129 | 1 | $\stackrel{ }{*}$ | － | － | $\square$ | － | － | 7 | － | $\stackrel{-}{+}$ |  |
| Elmis sp． | 130 | $\checkmark$ | $\gamma$ | 16 | 15 | 24 | 18 | 24 | 17 | 59 | 7 |  |
| Esolus sp． | 131 | － | － | － | － | － | － | － | － | － | － |  |
| Limsius sp． | 132 | 7 | $\checkmark$ | 2 | 8 | － | ＊ | － | － | － | 5 |  |
| Oulimnius sp． | 133 | － | ＂ | － | － | － | － | － | － | － | － |  |
| Riolus Sp． | 134 | $\square$ | － | － | － | － | $\cdots$ |  |  |  |  |  |
| Simulidae | 135 | $\checkmark$ | 7 | 34 | 48 | 57 | 5 | 10 | 17 | 32 | 9 |  |
| Chironomidae | 138 | $\checkmark$ | 1 | 28 | 45 | 368 | 32 | 28 | 65 | 125 | 48 |  |
| c．thummi | 139 | $\checkmark$ | － | － |  | － | － | － | － | － | － |  |
| Psychodicae | 140 | $\downarrow$ | $-$ | － | － | － | $\checkmark$ | － | － | － | － |  |
| Ceratopogonidae | 141 | － | 7 | 9 | 12 | 5 | 6 | $\stackrel{\rightharpoonup}{7}$ | － | 6 | － |  |
| Tipulidae | 142 | － | $\gamma$ | － | － | － | － | 1 | － | 1 | － |  |
| Ephydridse | 145 | 7 | 7 | － | － | － | － | － | － | － | － |  |
| Rhagionidae | 147 | $\checkmark$ | 7 | 14 | 1 | 3 | － | － | 1 | 1 | 1 |  |
| Tabanidae | 148 | $\checkmark$ | － | － | － | － | － | － | － | － | － |  |
| Empldidae | 149 | － | $\checkmark$ | － | － | － | 1 | － | － | 1 | 1 |  |
| Muscriman／D1cranota | 150 | － | － | － | － | － | － | 1 | － | 1 | 1 |  |
| Hydracarina | 152 | $\checkmark$ | 7 | 72 | 96 | 52 | 15 | 73 | 30 | 72 | 26 |  |
| Hydrobia sp． | 160 | ， |  | － | － | － | － | － | － | － | － |  |
| Potamopyrgus sp． | 161 | $\checkmark$ |  | 3 | 2 | 2 | 25 | 21 | 5 | 51 | 6 |  |
| Ancylus sp． | 164 | $\checkmark$ | $\checkmark$ | 5 | 3 | 3 | 1 | － | 2 | 3 | 3 |  |
| Limmaea pereger | 172 | $\checkmark$ | $\checkmark$ | － | 1 | 2 | － | － | － | － | － |  |
| Planorbls sp． | 173 | $\cdots$ | － | － | － | － | － | － | ＊ | － | － |  |
| Sphatium sp． | 280 | $\checkmark$ | － | － | － | － | － | $\sim$ | $=$ | － | － |  |
| Pisidium sp． | 181. | $-$ | － | － | － | － | － | － | － | － | － |  |
| TOTAL GROUPS | ICTAL | 30 | 40 | 29 | 2 E | 23. | 22 | 18 | 20 | 30 | 23 |  |
| TOTAL Ol／ $\mathrm{c}_{\text {minis }}$ |  |  |  | 584 | a， 5 | $9 \%$ | 877 | 325 | 372 | 1594 | 378 |  |
| TREAT BIOTIC INOEX |  |  |  | 10 | 10 | 9 | 9 | 9 | 9 | 10 | 9 |  |
| EXT．BIONTC RITEX |  |  |  | 17. | 12 | 10 | 10 | 9 | 7 | 12 | 10 |  |
| BIOTIC ECOK |  |  |  | 1544 | 1572 | 1189 | 1077 | \％ 6 | 1015 | 1439 | 1221 |  |
| 0．1．（MARTialita Calc． |  |  |  | 4.4 | 3.97 | 3.19 | 3.1 | 2.45 | 3.21 | 3.94 | 3，71 |  |
|  | Cnlc． |  |  | 2.72 | 2 | 1．691 | 1.33 | 2.410 | 2.14 | 2.0 | 2.52 |  |
|  | Calc． |  |  | 3.42 | ， | 2.71 | 1． 12 | $\frac{3.47}{3}$ | －3．38 | 2 | J．6．7－ |  |
|  | rop int |  |  | － | 2．52 | － 2.74 | $\frac{1.96}{0.5}$ | 3．419 | $\frac{-30}{0.8}$ | $\frac{2.9}{0.5}$ | 3.7 |  |


| OROUPS OF ORGANISMS |  | $\frac{\mathrm{BACKG}}{\mathrm{DA}}$ <br> 1975 | $1976$ | HAND-NET <br> SAMPLEG.F.U.K.13444 | $\begin{gathered} \text { U.K. } \\ 13445 \end{gathered}$ | PICIAL <br> э.K. <br> 13446 | $\begin{gathered} \text { ESTRAXES } \\ + \\ \text { U.K. } \\ 13447 \end{gathered}$ |  | SAMPLE U.K. | GRAB SAMPLE <br> USER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Polycells sp. Dendrocoelum sp. | 5 8 | - | 7 | - | 22 | 24 3 | 35 2 | 81 7 |  |  |
| Naididae Tubificidae | 11 | $\overline{7}$ | 7 | 23 | 16 | 10 | - | 26. |  |  |
| Thercmyzon sp. Glossiphonia spp. Belobdalla sp. Erpobdella sp. | $\begin{gathered} 21 \\ 23 / 4 \\ 26 \\ 30 \end{gathered}$ | 7 7 | 7 | 2 1 2 5 | - 2 12 | $\pm$ $1+5$ $\vdots$ 2 | 1 $1+6$ + 9 | 1 $2+13$ $\sim$ 23 |  |  |
| Cxangonyx sp . <br> Orchestia sp. <br> Gamarus pulex <br> Asellus aquaticus | $\begin{aligned} & 37 \\ & 36 \\ & 38 \\ & 43 \end{aligned}$ | 7 $\checkmark$ 7 7 | 7 - 7 | 4 - 60 | $\begin{array}{r}8 \\ - \\ \hline 86\end{array}$ | 2 - 28 | $\begin{array}{r}8 \\ \hline \\ \hline\end{array}$ | 18 <br>  <br>  <br> 149 | , |  |
| Corlxidae | 49 | - | - | - | $\cdots$ | $\cdots$ | - | - |  |  |
| Odonata | 53/7 | $\checkmark$ | $\checkmark$ | - | - | - | 1 | 1 |  |  |
| Caenis sp. <br> Centroptilum sp. <br> cloeon sp. <br> Baetis sp. | $\begin{gathered} 90 \\ 90 \\ 100 \\ 101 / 2 \end{gathered}$ | 7 7 7 | $\overline{7}$ | 1 - | - | - | -- | - |  | 8 商 |
| Leptoceridae Hydropsychidae Polycentropidae Rhyacophilidae | $\begin{aligned} & 111 \\ & 112 \\ & 113 \\ & 116 \end{aligned}$ | $\overline{7}$ - - | 7 - - | - | - | - | - | - | 害 |  |
| Dytiscidae <br> Haliplidae <br> simulidae <br> chirononidae <br> c. thunm1 <br> Psychodidae <br> Cexatopogonidae <br> Tipulidae <br> Emplaldae <br> Musciadae | 119 123 135 138 139 140 141 142 1.49 150 | 7 7 - 7 7 - - - - | 7 <br> 1 <br> 7 <br> 7 <br> - <br>  <br> 7 | - <br> - <br> 15 <br>  <br>  <br>  | $\begin{array}{r}- \\ - \\ 21 \\ \hline- \\ = \\ \hline-\end{array}$ | - 21 - - - - | - <br> 18 <br> - <br> - <br> - <br> - | - <br>  <br> 60 <br> - <br> - <br> - <br> - |  |  |
| Bydracarinia | 152 | - | - | $\cdots$ | - | - | - |  |  |  |
| Bithynia sp. <br> Potamopyrgus sp. <br> Ancylus sp. <br> Limnaea pereger <br> Planorbis sp. <br> Sphaeridae | $\begin{aligned} & 156 \\ & 161 \\ & 163 \\ & 172 \\ & 173 \\ & 160 \end{aligned}$ | 7 7 7 7 - | 7 7 7 7 7 7 | 3 <br> 1 <br> 1 <br> 1 | 7 1 - 2 1 | 2 4 - - | 2 <br> 8 <br> - <br> - | 4 <br> 13 <br> - <br>  <br> 2 <br> 1 |  |  |
| Valvata | 156 | - | - | - | - | - | 1 | 1 |  |  |
| TOTAL GROUPS | - | - | 23 | 13 | 11 | 12 | 13 | 16 |  |  |
| TOTAL ORGANISMS | - | - | - | 119 | 173 | 103 | 126 | 402 |  |  |
| TREEN BIOTIC INDEX. | - | - | - | 7 | 6 | 6 | 6 | 7 |  |  |
| EXTENDED BIOTIC INDEX | - | - | - | 7 | 6 | 6 | 6 | 7 |  |  |
| BIOTIC SCORE | - | - | - | 419 | 286 | 318 | 302 | 372 |  |  |
| OTVERSITY | - | - | $\cdots$ | 2.51 | 1.94 | 2.37 | 2.48 | 2,50 |  |  |
| DIVERSITY INDEX (SHANNON | WEAVER | - | - | 1.60 | 1.63 | 1.94 | 2.95 | 1.91 |  |  |
| DIVERSITY INDEX (WILHM | DORRIS) | lculated |  | 2.31 | 2.35 | 2.60 | 2.81 | 2.75 |  |  |
| DIVERSITY INDEX (WILIM * D | DORRIS) | an Table | - | 2.3 | 2.35 | 2.84 | 2.77 | 2.73 |  |  |
| LIMNOSAPROBTTY |  |  |  | B.M | B.M | B.M | E.M | B.M |  |  |






| GROHDS Of <br> ORGANIGMS |  | $\frac{\text { BACMGROUND }}{\frac{W^{2}}{}{ }^{2} A}$ |  | HAMDCHYT SAMPLES |  |  | ARTIFICIAL SUASTPATE SAMPLES |  |  |  | BOX SAMPLES |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} 1 \\ \text { P. } \\ \text { U. } . \\ 13500 \end{gathered}$ | $\begin{gathered} 2 \\ \text { v.m. } \\ \text { USSR } \\ - \end{gathered}$ | $\begin{gathered} 3 \\ \text { N.K. } \\ \text { USERR } \\ - \end{gathered}$ | $\begin{gathered} 1 \\ \text { U.K. } \\ 13498 \end{gathered}$ | $\begin{gathered} 2 \\ \hline 13499 \end{gathered}$ | $\xrightarrow[\substack{0 . K . \\ 13497}]{\stackrel{3}{+}}$ | total | $\begin{gathered} \text { I } \\ \text { F. } \mathbf{H .} \\ \text { U.K. } \\ 13496 \end{gathered}$ | $\begin{gathered} \mathbf{2} \\ \mathbf{F}, \mathbf{K} . \\ \mathbf{0 , K} . \\ 13513 \end{gathered}$ | 1 N.K. OSSR - | V. V. USSR - |
| Planaria sp. Polycelis sp. Dagesia ap. | 4 5 6 | 7 | 7 | - | - | - | 5 7 | $\overline{7}$ | 5 1 | 8 15 | $\underline{7}$ | - | 2 | - |
| Hatadana Tubificidase Enchytraeidae sumbziculiciae | 11 12 13 14 | 7 | 7 | 18 | 81 | 135 - | $\stackrel{-}{8}$ | 8 | - | 16 | 260 | - 310 - | 48 | 89 |
| Trieronyzon sp. Heniclapsis sp. Glossiphonia sp. Eelobdella ${ }^{5}$ p. Erpobdezia sp. | $\begin{gathered} 21 \\ 22 \\ 23 / 4 \\ 26 \\ 29 / 30 \end{gathered}$ | - - - | 7 7 7 7 | - | 2 - - | - | 2 - - | 1 - - | - | 3 - - - | 1 <br>  | - <br> - <br> - | - | - <br> 1 |
| Gandarus pulex Asellus aquaticus | 38 43 | 7 | $\checkmark$ | 29 | $20 \bar{B}^{-}$ | $10 \overline{8}$ | 36 | 28 | 28 | 92 | 5 | 16 | $\overline{7}$ | 18 |
| cocixidae | 49 | 1 | $\checkmark$ | - | 3 | 2 | 1 | - | - | 1 | - | - | - | - |
| Odonata | 53/7 | - | * | - | - | - | $\cdots$ | $\cdots$ | - | - | - | - | - | - |
| Caenis gp. <br> mithrogena/Heptagena ctceors sp . thetin sp . | $\begin{gathered} 90 \\ 93 / 4 \\ 100 \\ 101 / 2 \end{gathered}$ | " | 7 - - | 5 | $\stackrel{8}{-}$ | 4 <br> - | - | 1 | 1 | 2 | 1 1 - | 6 <br> - | 2 - - | - |
| SIalis sp. | 103 | $\checkmark$ | $\checkmark$ | - | - | - | - | - | - | - | - | - | $\cdots$ | - |
| Limenehilidae Leptocer:1dae Bydropsychidae Psychomy10ae Hyax optilidae | 105 111 112 114 118 | 7 <br> 7 <br> -1 | 7 7 7 | $\pm$ | $\begin{array}{r}75 \\ \hline \\ \hline\end{array}$ | $\begin{array}{r}-8 \\ \hline- \\ \hline-\end{array}$ | 1 <br>  <br> $i$ | 1 <br>  | - - - | 1 <br> 3 <br>  | - | - | 5 <br> 5 | - <br> - <br> - |
| Dytiscidae Platsmbus sp . Halipildae Gycinidae Eimis sp. Ouliminus sp . | $\begin{aligned} & 119 \\ & 121 \\ & 1.23 \\ & 125 \\ & 130 \\ & 133 \end{aligned}$ | 7 7 7 - | 7 7 7 7 $*$ | . $\begin{aligned} & 6 \\ & 2 \\ & - \\ & -\end{aligned}$ | 2 1 4 $\sim$ - | 2 <br> 1 <br> 2 <br> - <br> 1 | 2 <br> $\overline{-}$ | 3 <br> 2 <br> - | 2 <br> 2 <br> - | 5 <br>  <br> - | $-$ | $\overline{-}$ <br>  | i | 1 <br>  |
| simulidae <br> chironmidae <br> c. thumi <br> Ceratopogonidae <br> Tipuitdae <br> *uscidae/Dicranota | 135 138 139 141 142 143 | 7 7 7 -8 7 | 7 7 7 7 | $\begin{array}{r}2 \\ 47 \\ \hline 1 \\ \hline\end{array}$ | - <br> 108 <br> 2 <br> 5 <br> - | 48 189 - - | 30 | $\begin{array}{r}5 \\ 39 \\ 2 \\ - \\ \hline\end{array}$ | $\begin{array}{r}60 \\ 1 \\ - \\ \hline\end{array}$ | $\begin{array}{r}129 \\ 3 \\ - \\ \hline\end{array}$ | 1 22 - - | 25 <br> - <br>  <br> 2 | $\overline{5}$ <br> - <br> - <br> 2 | $\begin{array}{r}6 \\ 60 \\ - \\ \hline \\ \hline\end{array}$ |
| g\%aracorina | 152 | $\checkmark$ | $\checkmark$ | - | 3 | - | - | - | - | - | - | 2 | - | - |
| Fotanopyrgus 5p. <br> Limnaea pereger <br> planorbissp. <br> sphaerium 5p. <br> Pisialum sp. | $\begin{aligned} & 161 \\ & 172 \\ & 273 \\ & 280 \\ & 162 \end{aligned}$ | 7 7 7 | 7 7 7 7 | 1 <br> 1 <br>  <br> - | 18 <br> 1 <br> 5 <br> 9 | 18 4 1 3 - | - <br>  <br> - | 4 | 4 3 - | $\begin{array}{r}16 \\ 8 \\ \hline\end{array}$ | - | - <br> - <br> - | 1 <br>  <br> 1 <br> 1 | 1 <br> - |
| TOTAL GROXIPS | - | - | 29 | 11 | 18 | 15 | 12 | 11. | 12 | 17 | 9 | 6 | 12 | 9 |
| toral OKgantsms | - | - | - | 113 | 376 | 492 | 104 | 96 | 210 | 310 | 293 | 360 | 86 | 185 |
| trens hiotic index | $\checkmark$ | - | - | 7 | 8 | 7 | 7 | 7 | 7 | $\theta$ | 7 | 6 | 7 | 5 |
| ExTENDEp Hiotic index | * | * | - | 7 | 8 | 7 | 7 | 7 | 7 | 8 | 7 | 6 | 7 | 5 |
| butare score | * | - | - | 302 | 649 | 599 | 423 | 423 | 461 | 658 | 349 | 224 | 526 | 354 |
| DIVERSITX INDEX (MARGM | Ler) Cal | ted | - | 2.12 | 2.06 | 2.26 | 2.37 | 2.19 | 2.34 | 2.79 | 1.41 | 0.85 | 2.47 | 2.53 |
| DIVERSTIY INJEX (SHANM | ON $\triangle$ WFA | calc |  | 2.61 | 1.86 | 2.55 | 1.84 | 1.67 | 1.43 | 1.75 | 0.49 | 0.57 | 2.52 | 1.30 |
| diversity index (wilam | \% pokris | calcula |  | 2.32 | 2.69 | 2.24 | 2.65 | 2.41 | 2.08 | 2.53 | 0.70 | 0.82 | 2.19 | 1.88 |
| bTversity index (wilhe o dorris) from Tables |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EINOSAPROHITY |  |  |  | B. H, |  |  |  |  |  |  |  |  |  |  |



Blithfield Heservoir


TARLE 15. RESUITS: Blithfield Reservoir (Station 10)

| GROUPS OF ORGANXSMS | EACKGROUND $\underline{\text { DATA }}$ 1975 (1976 | $\begin{aligned} & \text { HANDNFT } \\ & \frac{F W}{U . K} \\ & \frac{E N D}{O F} \\ & \text { JETTY } \end{aligned}$ | $\frac{\text { SMMPLES }}{\text { FW }} \begin{gathered} \text { v.K. } \end{gathered}$ <br> MARGIN | $\frac{B O K}{S M M P L E}$ | $\frac{\text { GRAB }}{\text { SAMPLE }}$ <br> USSR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Polycelis tenuis | - - | - | 1 |  | - |
| Tubiticidae 12 | - - | 25 | 7 |  | 220 |
| Glossiphonia \$p. $23 / 4$ <br> Erpobdella sp. 30 | - - | 3 | 1 |  | 1 |
| Asellus aquaticus 43 | - - | - | 380 |  | - |
| Dytiscldae 119 | - - | - | 1 |  | - |
| Chironcuidae 138 <br> C. thummi 379 | - | 149 61 | 30 |  | 63 29 |
| Hyaracarina 152 | - | 35 | 2 |  | - |
|  | - - | - | - |  | 1 |
| TOTAL GROUPS | - - | 5 | 8 |  | 5 |
| TOTAL ORCANISMS | - - | 273 | 430 |  | 313 |
| TRRENT BIOTTIC INDEX | - - | 3 | 4 |  | 2 |
| EXTENDED BIOTIC INDEX | - - | 3 | 4 |  | 2 |
| BIOTIC SCORE | - - | 111 | 213 |  | 63 |
| DIVERSITX INDEX (MARGALEF) Calcul |  | 0.71 | 1.15 |  | 0.70 |
| DTVERSITY INDEX (SHANNON \& WEAVER | Calcudated | 1.2 | 0.50 |  | 0.83 |
| DIVERSITY INDEX (WILHM \& DORRIS) | lculated | 1.73 | 0.73 |  | 1.19 |
| DIVERSITY INDEX (WILHM \& DORRIS) from tables |  | 1.73 | 0.72 |  | 1.19 |
| LIMENOSAPROBITY |  | - | - |  | - |


(Total taxa exuna 31)
TABLE 17. RIVER DERWENT AT BASLOW

(Total taxa found 39)
TABLE 18. RIVER DOVE AT MAYFIELD

(Potal taxa found 19)

TABLE 19. RIVER TRENY AT GUNTHORPE

Key: A. Sorensen Quotients of Similarity
B. Sampling tffectiveness

(Total taxa found 22)
TABLE 20. RIVER SOAR AT NORMAMTON

(Total taxâ found 21)
TABLE 21. RIVER DERTVENT AT DRAYCOTT

(Total taxa found 9)

Key: A. Sorersen Quotients of Sirilarity
A

(Total taxa found 17)
TABLE 23. MOTHER DRAYN AT ROSSINGTON BRIDGE

(20tenl taxa found 28)
TABLE 34. AIVER POULTER AT CROOLFORD

(Total taxa found 21)
TABLE 25. RIVER IDLE AT BAWTRY

| Type of Sample |  | Number of Samples/ Combinations | \% of Total taxa <br> found (all samples) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Nean | Range |
| Handnet Samples | Individual |  | 17 | 68.3\% | 39-89\% |
|  | Combined 60) | 6 | 84.0\% | 67-100\% |
| Artificial Substrates | Individual | 24 | 53.7\% | 36-71\% |
|  | Combined (3) | 8 | 71.4\% | 61-86\% |
| Box Samples | Individual | 5 | 36.0\% | 21.51\% |
|  | Combined (4) | 1 | 64.3\% | 18-33\% |
| Grab Samples | Individual | 2 | 25.8\% | 18-33\% |


| STATION NUM |  |  | 1 | 2 |  | 3 |  | 4 |  | 5 |  | 6 | 7 | 8 | 9 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TOTAL NUMBER OF TAXA IN AL工 SAMPLES: |  | 36 |  | 39 |  | 19 |  | 22 |  | 21 |  | 9 | 17 | 28 | 21 |  |
|  |  | No | \% | No \% | No \% | No. \% | No | \% |
| HANDNET SAMPLES | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | 26 34 - | $\begin{aligned} & 72 \\ & 94 \end{aligned}$ | $\begin{aligned} & 23 \\ & 29 \\ & 32 \end{aligned}$ | $\begin{aligned} & 59 \\ & 74 \\ & 82 \end{aligned}$ | 13 - - | 68 - - | 19 - - | $\begin{gathered} 86 \\ - \\ \hline \end{gathered}$ | 11 14 - | $67$ |  | 10 59 <br> 14 82 <br> -1 - | 11 39 <br> 17 61 <br> 22 79 | $\begin{aligned} & 14 \\ & 19 \\ & 21 \end{aligned}$ |  |
| ARTIFICIAL <br> SUBSITRATE <br> SAMPIES | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 13 \\ & 16 \\ & 23 \end{aligned}$ | $\begin{aligned} & 36 \\ & 44 \\ & 64 \end{aligned}$ | $\begin{aligned} & 18 \\ & 24 \\ & 30 \end{aligned}$ | $46$ $62$ $77$ | 11 15 16 | $\begin{aligned} & 58 \\ & 79 \\ & 84 \end{aligned}$ | 9 12 16 | 41 53 | 15 17 18 | $\begin{aligned} & 71 \\ & 81 \\ & 86 \end{aligned}$ | $\begin{array}{l:l} 4 & 44 \\ 6 & 67 \\ 7 & 78 \end{array}$ |  | 1139 1657 1761 | - | - |
| BOX <br> SAMPLES | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | - | - | 23 - - | 59 - - - | - | - | - | - | - | - | -1 - - - - | - - - - - - | 6 21 <br> 11 39 <br> 14 50 <br> 18 64 | - | - |
| GRAB <br> SAMPLES | 1 | - | - | - | - | - | - | 4 | 18 | - | - | 333 | - - | - ${ }^{-}$ | - | - |

TABLE 27. CUMULATIVE TOTAL OF TAXA RECORDED BY EACH SAMPLING METHOD

The difference between the maximum and minimum is shown ( $M-m$ ) together with the percentage of the maximum $\left(\frac{M-m}{M} \cdot 100\right)$


| －－（Cunnd |  | DIVERSITY INDEX <br> （Wilhm and Dorria） |  |  |  | DIIERSITY INDEX （Margalef） |  |  |  | NOMGER OF TAXA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 日 1 ¢ | $\begin{aligned} & 8 \\ & \stackrel{8}{5} \\ & 1 \\ & 1 \\ & : 1 \end{aligned}$ | $\begin{aligned} & \text { 亚 } \\ & \text { 尝 } \end{aligned}$ | $\begin{aligned} & \text { 完 } \\ & \text { 皆 } \end{aligned}$ | $\begin{aligned} & \text { 白 } \\ & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & 8 \\ & \vdots \\ & \vdots \\ & 1 \end{aligned}$ | 会 | $\begin{aligned} & \text { K } \\ & \underset{y}{\mathbf{K}} \end{aligned}$ | $\begin{aligned} & \mathbf{a} \\ & \mathbf{1} \\ & \mathbf{x} \end{aligned}$ | $\begin{gathered} 8 \\ \vdots \\ \vdots \\ 1 \\ 1 \end{gathered}$ | $\begin{aligned} & \text { 会 } \\ & \text { 年 } \end{aligned}$ | $\begin{aligned} & \text { 空 } \\ & \text { 葆 } \end{aligned}$ | B ¢ | \％ |
| 196 <br> 348 <br> . <br> - | 12 N 32.0 $\vdots$ $\square$ | 3.68 2.60 - | 3.93 5.37 - | 0.25 0.77 - | $6.4 \%$ <br> $2.8 \%$ | 3.98 2.10 - | 4.22 3.28 $=$ | 0.24 1.18 - - | 5.76 <br> $3.6 \%$ | 26 13 - | $\begin{array}{r}32 \\ 19 \\ \hline\end{array}$ | 6 <br> 6 <br> - | $18.8 \%$ $31.6 \%$ $\square$ |
| 383 115 $\square$ | $\begin{gathered} 24.4 x \\ 10.76 \\ - \end{gathered}$ | $\begin{gathered} .2 .71 \\ 1.92 \\ (3.63) \end{gathered}$ | 3.92 <br> 3.47 | 1.21 1.55 - - | $30.9 \%$ $4.9 \%$ $=$ | 3.19 <br> 2.85 <br> $3.71)$ | 4.4 3.21 - | 1.21 0.36 $\square$ | $27.5 \%$ $1.2 \%$ $\vdots$ | 23 18 $(23)$ - | $\begin{array}{r}29 \\ 22 \\ \hline\end{array}$ | 6 4 | $20.7 \%$ $18.2 \%$ $\vdots$ |
| 155 27 - - | $31.9 \%$ $5.3 \%$ - | $\begin{array}{r}2.48 \\ 2.35 \\ \hline .\end{array}$ | 2.58 2.67 . | 0.10 0.32 - - | $3.9 \%$ $12.0 \%$ - | 1.72 2.56 - - | 2.06 <br> 2.65 <br> - | 0.34 0.09 - | $16.5 \%$ $3.4 \%$ - | 11 15 - | 13 <br> 15 <br> - | 2 0 - - | $15.4 \%$ $0 \%$ $=$ |
| 41 - | 36． <br>  <br> - | $\begin{gathered} (1.76) \\ 1.17 \\ (0.67) \end{gathered}$ | 1.66 | 0．49 | 29．5\％ | $\begin{gathered} (0.92) \\ 0.54 \\ (0.5) \end{gathered}$ | 0.89 | 0.35 - | 39\％ | （8） <br> 4 <br> （3） | $\overline{6}$ | 2 | $33.3 \%$ $\square$ |
| 190 - | － <br> $45 \%$ <br> - | $\begin{gathered} (2.78) \\ 2.45 \\ (0.81) \end{gathered}$ | 3.21 | 0.76 | 23．7\％ | $(2.89)$ 1.78 - $(0.52)$ | 3.14 - | 1.35 | $43.3 \%$ | $\begin{gathered} (19) \\ 3 \\ (4) \end{gathered}$ | - | 1 15 - | $\begin{array}{r}40 \% \\ \hline\end{array}$ |
| 32 - | $10.7 \%$ $=$ | $(2.31)$ 2.35 $=$ | 2.81 - | -76 - | $16.4 \%$ - | 2.51 1.94 - - | 2.48 $\vdots$ | 0.54 - | 21．8\％ <br> - | （13） <br> 11 <br> $\vdots$ | 13 | 2 | 15．4\％ |
| $26 ?$ 38 302 - | $\begin{gathered} 41.1 \% \\ 8.2 \% \\ 57.4 \% \end{gathered}$ | 2.24 2.06 0.70 . | 2.69 2.65 2.19 . | 0.45 0.59 1.49 - | $\begin{aligned} & 16.7 \% \\ & 22.3 \% \\ & 68.0 \% \end{aligned}$ | $\begin{gathered} 2.12 \\ 2.19 \\ 0.85 \\ - \end{gathered}$ | $\begin{aligned} & 2.86 \\ & 2.37 \\ & 2.47 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 0.18 \\ & 1.62 \end{aligned}$ | $25.9 \%$ $7.6 \%$ $65.6 \%$ | 11 13 6 - | 18 12 12 | 7 <br> 1 <br> 6 | $\begin{aligned} & 38.9 \% \\ & 8.3 \% \\ & 50 \% \\ & \hline \end{aligned}$ |
| 148 - - | 23.7 - - - | 2.74 - - | 3.44 $=$ $\square$ | 0.7 - | $20.3 \%$ $=$ $=$ | 2.17 $=$ $=$ | 3.02 $=$ $=$ | 0.85 <br> - | 28． $1 \%$ $=$ $=$ | 14 - - | $\begin{array}{r}17 \\ - \\ \hline\end{array}$ | 3 - - | $17.6 \%$ $=$ $=$ |
| 124 146 - - | $\begin{array}{r}38 \% \\ 48 \% \\ - \\ \hline\end{array}$ | 2.16 2.08 - | 2.35 2.40 $=$ | 0.19 0.32 - | $8.1 \%$ $13.3 \%$ - | 1.64 <br> 1.44 <br> - | 1.67 <br> 2.06 | 0.03 <br> 0.62 <br> $\square$ | 1．8\％ $30.1 \%$ - | $\begin{array}{r}10 \\ 7 \\ \hline\end{array}$ | 11 10 - | 1 3 - - | $9.1 \%$ $30 \%$ $\vdots$ |


| BIOLOGICAL ASSESSMINT METHOD | SAMPLING METHODS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Handnet Samples | Artificial Substrates | $\begin{gathered} \text { Box } \\ \text { Samples } \end{gathered}$ | Grab Samplee |
|  | \% | \% | \% | \% |
| BIONIC INDEX (Woodiwiss) | $\begin{gathered} 5.6 \\ (0.0-12.5) \end{gathered}$ | $\begin{aligned} & 10.6 \\ & (0-28.6) \end{aligned}$ | $\underset{(-)}{28.6}$ | - |
| EXTENDED BIOTIC INDEX (Woodiwisis) | $\begin{gathered} 8.1 \\ (0-16.7) \end{gathered}$ | $\begin{aligned} & 11.8 \\ & (0-28.6) \end{aligned}$ | $\begin{array}{r} 28.6 \\ (-) \end{array}$ | - |
| BIOTIC SCORE (Chendler) | $\underset{(12-41.1)}{28.2}$ | $\begin{gathered} 24.6 \\ (5 \cdot 3-48) \end{gathered}$ | $\begin{gathered} 57.4 \\ (-) \end{gathered}$ | - |
| DIVERSITY INDEX (Wilhm \& Dorris) | $\begin{gathered} 14.4 \\ (3.9-30.9) \end{gathered}$ | $\begin{aligned} & 23.1 \\ & (12-44.7) \end{aligned}$ | $\begin{gathered} 68.0 \\ (-) \end{gathered}$ | - |
| DIVERSITY INDEX (Margalef) | $\begin{gathered} 17.6 \\ (1.8-28.1) \end{gathered}$ | $\begin{gathered} 20.0 \\ (3.4-43.3) \end{gathered}$ | $\begin{gathered} 65.6 \\ (-) \end{gathered}$ | - |
| nUMBER OF TAXA | $\begin{gathered} 20.1 \\ (9.1-38.9) \end{gathered}$ | 25.4 | 50.0 $(-)$ | - |

TABLE 29. VARIATIONS IN SCORE AND VARIOUS INDEX VALUES DUE TO SAMPLING DIFFERENCES


- These aytems hate decimal aub-dififions.
METHOD OF ASSESSMENT: BIOTIC SCORT - Chandler

| Montin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ANNUAL | 5 YEAR STATISTICS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Mean Median |  |  |
| 1956 |  |  |  |  |  |  |  |  |  |  |  |  |  | Mean (Median) | Range 1084-1974 |
| 1957 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1958 |  |  |  |  |  |  |  |  |  |  |  | 1974 | -/1974 |  | S.D. 381 |
| 1959 |  |  |  |  | 1491 |  |  |  |  | 1292 |  |  | -/1391 | $\begin{gathered} 1460 \\ (1391) \end{gathered}$ | $\begin{gathered} \text { Relative } \\ 26.1 \% \end{gathered}$ |
| 1960 |  | 1084 |  |  |  |  |  |  |  |  |  |  | -/1084 |  |  |
| 1961 |  |  |  |  |  |  | 902 |  |  |  |  |  | -/902 | Mean (Median) 903 (903) | $\begin{aligned} & \text { Range } 902-11014 \\ & \text { S.D. } 91 \\ & \text { Relative } \\ & \text { S.D. } \% \end{aligned}$ |
| 1952 |  |  |  |  |  |  | 904 |  |  |  |  |  | -/904 |  |  |
| 1963 |  | 1014 |  |  |  |  |  |  |  |  |  |  | -/1014 |  |  |
| 1964 |  | 791 |  |  |  |  |  |  |  |  |  |  | -/791 |  |  |
| 1965 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1966 |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { Méan } \\ \text { (Median) } \\ 970 \\ (1029) \end{gathered}$ | Range 581-1242 <br> S. D. 289 <br> Relative S.D. \% 30\% |
| 1967 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1968 |  | 1242 |  | 1123 |  |  |  |  |  |  |  |  | -/1187 |  |  |
| 1969 |  | 581 |  |  |  |  |  |  |  |  |  |  | -/581 |  |  |
| 1970 |  |  |  |  |  |  |  |  | 935 |  |  |  | -/935 |  |  |
| 1971 |  |  |  |  |  |  |  |  |  |  |  |  |  | Mean (Median)$\begin{gathered} 1038 \\ (1041) \end{gathered}$ | $\begin{aligned} & \text { Range } 531-1348 \\ & \text { S.D. } 265 \end{aligned}$ |
| 1972 |  |  |  |  | 890 |  | 531 |  |  |  |  |  | -/715 |  |  |
| 1973 |  |  |  | 1000 |  |  |  |  |  | 1269 |  |  | $-/ 1135$ |  |  |
| 1974 |  |  |  | 1256 |  |  |  |  |  | 1083 |  |  | -/1169 |  | Relative SD 0 . |
| 1975 |  |  |  | 1348 |  |  |  |  |  | 921 | sa |  | -/1135 |  | $25.5 \%$ |
| 1976 |  |  |  | 1059 |  | 929 |  |  | 1456 | 770 |  |  | 1053/994 | Mean (Median) | Range 770-1632 |
| 1977 |  |  |  |  | 1613 | 1628 |  |  |  | 1232 |  |  | 1491/1613 |  |  |
| 1978 |  |  |  | $\begin{array}{r} 1347 \\ -1412 \end{array}$ |  |  |  |  |  | 1632 |  |  | 1453/1412 | $\begin{gathered} 1305 \\ (1364) \end{gathered}$ | S. D. 304 |
| 1979 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1980 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { Relative S.D. \% } \\ & 23 \% \end{aligned}$ |

RIVER : derwent at basiow


RIVER : DERWENI AT DRAycomi

METHOD OF ASSESSMENT : BIOTIC INDEX

| Month Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ANNUAL Mean Median | 5 YEAR STATISTICS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Jan | Feb | Mar | Apr | May | Jun | Ju! | Aug | Sep | Oct | Nov | Dec |  |  |  |
| 1956 |  |  |  |  |  |  |  |  |  | 2 |  |  | -/2 | Mean (Median) 4.5 (5) | Range 2~7 <br> S.D. 1.6 <br> Relative S.D. \% $36.7 \%$ |
| 1957 |  |  |  |  |  |  |  |  |  | 5 |  |  | -/5 |  |  |
| 1958 |  |  | 2 |  |  |  |  |  | ? | 6 |  |  | 5/6 |  |  |
| 1959 |  |  | $b$ |  |  |  | 5 |  | 5 |  |  | 5 | 5/5 |  |  |
| 1960 |  |  |  |  | 3 |  |  |  |  |  |  |  | -/3 |  |  |
| 1961 |  |  | 5 |  |  | 2 |  |  |  | 5 |  |  | 4/5 | Mean (Median) | Range 2-5 |
| 1962 |  |  | 4 |  |  | 4 |  |  |  |  |  |  | -/4 |  |  |
| 1963 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | S.D. 1.0 |
| 1964 | 4 |  |  |  |  | 3 |  |  |  |  |  |  | $-13.5$ | $\begin{array}{r} 3.8 \\ (4) \\ \hline \end{array}$ | $\begin{gathered} \text { Relative S.D. \% } \\ 25.7 \% \end{gathered}$ |
| 1965 |  |  |  | 3 |  |  |  | 4 |  |  |  |  | -13.5 |  |  |
| 1966 |  |  |  |  |  |  |  |  |  |  |  |  |  | Méan (Median) <br> 5 <br> (5) | Range 4-6 <br> S.D. 1.4 <br> Relative S.D. $\%$ $28.3 \%$ |
| 1967 |  |  |  |  |  |  |  |  | 6 |  |  |  | -16 |  |  |
| 1963 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1969 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1970 |  |  |  |  |  |  |  | 4 |  |  |  |  | -/4 |  |  |
| 1971 | 4 |  |  |  |  |  |  | 4 | 4 | 4 |  |  | 4/4 | Mean (Median) 5.8 <br> (6) | $\begin{aligned} & \text { Range } 4-8 \\ & \text { S.D. } 1.3 \\ & \text { Relative S.D. \% } \\ & \begin{array}{c} 23.0 \% \end{array} \end{aligned}$ |
| 1972 |  | 5 |  | 7 |  | 7 |  |  | 7/6 |  |  |  | 6/7 |  |  |
| 1973 |  |  | 6 | 5 |  |  |  |  | 8 |  |  |  | 6/6 |  |  |
| 1974 |  |  | 6 |  |  |  |  |  |  |  |  | 6 | -16 |  |  |
| 1975 |  |  |  |  | 6 |  | 7 | 5 | 8 | 5 |  |  | 6/6 |  |  |
| 1976 |  | 6 |  |  |  |  | 8 | 7 | 9 |  |  |  | 8/7.5 | Mean (Median)$7.1$(7.5) | Range 6-9 |
| 1977 |  |  | 6 | 6 | 7 | $7 / 7$ | 9 | 8 | 8 | 8 |  |  | $7 / 7$ |  |  |
| 1978 |  |  |  |  |  |  |  |  |  | 8 |  |  | -/8 |  | S.D. 1.2 |
| 1979 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1980 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { ive } \mathrm{s} \\ & 16.8 \% \end{aligned}$ |

METHOD OF ASSESSMENT : BIOTIC SCORE - Chandler





Rocks

| $*$ | Gravel |
| :--- | :--- |
| © | Sand |
| Mud |  |



FIG 1 Environmental characteristics of a typical shallow stream


FIG 2 The influence of environmental niches on the distribution of organisms on the stream bed (c.f. FIG 1)


FIG. 3 The hypothetical distribution of ten different organisms in a typical shallow stony stream (c.f. FIG. 1 and 2)


FIG 4 The effect of handnet sampling atong the transect AB tc.f Figs.3 2 and 3)


FIG. 5 Cumulative total (\%) of taxa recorded by each sampling method. The equivalent of three methods of sampling


FIG 6 The problem of sampling in deep rivers


FIG. 7 The influence of sampling differences on various biological assessment methods (drawn from table 29)


FIG. 8 The Relationships between biological methods of assessment


FIG. 9 Long-term biological record of R.Derwent at Baslow (Station 1)


FIG. 10 Long-term biological reçord of R.Erewash at Toton (Station 6)


FIG. 11 R.Derwent at Draycott (Station 5)


FIG. 12 Relationship between E.B.I. and Biotic Score


FIG. 13 Relationship between E.B.I. and Biotic Score

