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SUMMARY 

The siltation of an experimental gravel bed, with three grades of 

sand moving in suspension and as bedload, was examined. The rate of 

infiltration of sand into the void space of the gravel was determined 

under differing conditions of discharge, water depth, and velocity 

(jointly expressed as variation in the Froude Number) and suspended 

sediment concentration. The downstream reduction in siltation from the 

point source was also examined. The main conclusions were as follows: 

(1) For low suspended sediment concentrations (<300 mg 1-1 ~ typical 

of small Teesdale streams) a mean deposition rate of 6.7% of the 

initial gravel volume filled per hour is comparable to the rate 

reported by Beschta & Jackson (1979), 5.7% hr-1. 

(2) Deposition rates for sands 0.15 mm to 1.4 mm diameter with suspended 

sediment concentrations of 42-263 mg 1-1 and Froude Numbers in the 

range 0.05 to 1.00 were found to be constant, with respect to 

Froude Number, deposition being controlled by an unquantified 

mass-exchange mechanism at the sediment-water interface. 

(3) For high concentrations ( >300 mg 1-1) deposition rate was strongly 

linearly correlated with the suspended sediment concentration. 

(4) A re-examination of data presented by Beschta & Jackson (1979) 

indicates that high concentrations of sediment in suspension close 

to the bed ( ~ 7000 mg 1-1) may damp turbulence and increase sediment 

deposition. 



(5) The downstream decrease in siltation rate from a point source is a 

negative exponential function of distance from that source. Sundborg's 

deterministic equation described the observed data well. 

(6) Mean flow data, especially where derived from velocity profile 

data measured in the outer boundary-layer, are inappropriate for 

siltation investigations concerned with processes occurring very 

close to the bed. 
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INTRODUCTION 

The silting of gravel beds has been of significant concern to 

North American fisheries biologists. Various investigations have shown 

that accumulation of fine inorganic fractions (<1mm) in the interstices 

of gravel beds has a largely detrimental effect on upland stream biota. 

Sediments occlude the surface of fish eggs, and also reduce gravel permeability, 

thereby reducing oxygen supply rate and the removal of toxic metabolic wastes. 

The emergence of newly hatched alevins also may be prevented. The result 

can be increased mortality. In addition, in silted gravel the invertebrate 

population is commonly reduced in variety and absolute numbers, restricting 

the food supply of fishes. Beschta & Jackson (1979) give a useful 

summary of recent key references in relation to the biological impacts 

of siltation. 

The emphasis on fisheries impacts belies the value of siltation 

investigations for other disciplines. The sealing of riverbed gravels 

by fine sediments reduces transmission losses in arid and semi-arid 

water-supply canals and rivers (Renard & Keppel, 1966; Quashu & Buol, 

1967; Woudt & Nicolle, 1978) whilst the mechanisms of erosion, transportation 

and in-channel storage of fine sediments is of interest to the agriculturist 

and geomorphologist (Rendon-Herroro, 1974; Mucher & De Ploey, 1977). 

Sedimentologists are interested in siltation processes, as an aid to 

interpreting the depositional history of sedimentary sequences (Pettijohn, 

1975 - p. 49; Fraser, 1935 - p. 919; Smith, 1974; Blacknell, 1981), as 

are sanitary engineers (Camp, 1943; Dobbins, 1944) concerned with the 

performance of settling tanks (Cordoba-Molina et al., 1978). 
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The hulk of siltation literature refers to the effect of forest 

management in North America, especially clear-felling of large areas of 

catchments by methods which are not conducive to soil conservation (see 

refs. in Beschta & Jackson, 1979). At best, investigations have sought 

to ameliorate problems of sedimentation in streams after identifying 

the multivariate processes involved in fine sediment production (e.g. 

Adams & Beschta, 1980). 

The emphasis on problems of immediate consequence in North America 

does not negate the potential problem in the United Kingdom. Large 

areas of upland Britain afforested in the first half of the this century 

will be cleared and replanted by the turn of the century. Present 

forest management has already been shown to result in sediment problems 

in mid-Wales (Newson, 1980) whilst the extensive practice of deep-ploughing 

for drainage increases sediment production, at least in the short term 

(Robinson, 1979). 

Industrial pollution of natural upland water courses by fine quartz 

sands, mica, coal and clay is an example of a problem which was probably 

more widespread in the past, when disposal of fine mine and quarry waste 

into natural streams was more prevalent than today. However, examples of 

the effect of inert-sediment pollution on river biota (Herbert et al., 

1961; Nuttall, 1972; Turnpenny & Williams, 1980) and upland channel 

morphology (Richards, 1979) emphasise that local serious problems of 

siltation occur in British rivers. 

Preliminary investigations of natural siltation in upland water 

courses have shown a seasonal pattern in the amount and spatial distribution 

of deposition (Smith, 1980), whilst the grain-size of material settling 

onto the gravel surface, from low concentration suspensions during base 

flow periods, has been found to be similar in size distribution to the 

matrix material infilling gravel void space (Carling & Reader, in press). 

However, little is presently known of the mechanisms of interchange of 
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silt from suspension to the interstitial environment (Einstein, 1968; 

Beschta & Jackson, 1979). 

Beschta & Jackson (1979) measured the amount of deposition of 

medium and coarse sand (d 5 0= 0.2 mm and 0.5 mm) in pots (150 mm deep) 

buried at the bed surface in an experimental gravel bed, 300 mm thick. 

They attempted to correlate the degree of siltation to average hydraulic 

parameters including shear stress, but were only successful in the case 

of the Froude Number, F = U /gD. The percentage of gravel volume silted 

by 0.5 mm sand increased as a positive linear function of the Froude 

Number, for values of F in the range 0.5 - 1.5, when sediment concentrations 

in the flow approximated an average of 2400 mg 1-1. In contrast, for the 

same range of Froude Numbers it was argued that percentage siltation 

followed a parabolic function with the minimum close to a Froude Number 

of 1.0, when concentrations were relatively low ~ 600 mg 1-1. The lack 

of correlation with bed shear stress is surprising as observation of 

particle and tracer motion close to the sediment-water interface indicates 

that fluid exchange close to the bed is related to the bed shear stress 

(McCave & Swift, 1976). Nevertheless, Einstein (1968) found experimentally, 

and Lee et al. (1981) concluded from theory, that the deposition rate is 

proportional primarily to the local concentration close to the sediment-

water interface and that hydraulic controls are of secondary importance. 

In this report data for coarse and fine sands at low concentrations 

are given. In the light of these results additional and in some cases 

alternative interpretations are given for Beschta & Jackson's data. 

Conclusions are drawn in respect of the utility of gross flow parameters 

for predicting siltation. 
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METHODS 

The first 16 experimental runs were conducted in an experimental 

fibre-glass flume of rectangular section with smooth side-walls. A range 

of discharges up to 117 litres sec may be passed through the flume. 

The width is 0.98 m and although the overall length is 12 m only a 6 m 

section was used to avoid unsteady flow at the entrance and exit. 

Neither water nor sediment were recirculated. Unfortunately the flume 

is of fixed gradient (0.014). Strictly uniform flow through the test 

section was difficult to achieve, however non-uniformity was minimised 

by keeping the test section short, by retamping the gravel to a required 

gradient and by adjusting the water surface slope using a tail-gate. 

15 cm depth of clean rounded quartz-density (2.65 g cm-3) gravel 

was used in each test run. The surface was tamped to provide a uniform 

bed-surface. Average grain-size statistics are mean grain size (x) 

= 15.57 mm, sorting (σ) = 8.10 mm, skewness (y1) = 0.54 and kurtosis 

(Y2) = 2.22. The grain-size distribution is given in Fig. 1. The void 

ratio of the deposit was typically O.67. 

Three grades of fine quartz-density sediment were fed into the upstream 

end of the test section using a commercially available sediment feed 

hopper. Maximum feed rate increased with increasing grain-size and 

consequently the hopper was calibrated for each sediment size used. 

Deposition rates are expressed in Table 1 as raw deposition rates (Column 12) 

and also as values adjusted to a common feed rate, 300 g min-1 (Columns 

13-15). Sediment transport concentrations at the delivery location were 

42 to 263 mg 1-1 depending on the discharge. Each grade of sand is 

commercially available and has a narrow size range (Fig. 1). Summary 

statistics are: - Sand (1 ) x = 0.19 mm, σ = 0.0399, y1 = 2.84, 

Y2 = 18.34, sand (2) x = 0.15 mm, σ = 0.046, Y1 = -0.72, Y2 = 1.68, 

sand (3) x = 1.40 mm, σ = 0.33, Y1 = 1.44, Y2 = 9.72. 
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Viewing siltation through a perspex window set in the side wall, 

initial exploratory runs indicated that, for sands (l) and (2), sand 

grains moved down through the gravel and deposition occurred from the base 

of the gravel initially and continued at a steady rate until the void 

space was filled. Consequently there was no need to run the experiments 

until the gravel was completely silted (although this was done in some 

cases) in order to calculate siltation rates. Generally runs were made 

over durations of 60 min and 120 min and siltation rates were corrected 

to a 60 min duration. 

Experiments were scaled to give a range of Froude Number from 0.005 

to 1.2. The result of using Proude Numbers in this range was such that 

the downstream change in concentration of suspended sediment, as settling 

occurs, may be expected to be a function of Vs/U* (Camp, 1943). All 

runs were within Owen's (1969) transitional range 0.005 < Vs/U* > 5.0 

(Fig.l0), so that the settling rate might be expected to be dependent 

both on the level of turbulence and the grain-size of the suspended 

sediment. 

For each run water surface slope was measured using a manometer 

with 13 pressure tappings in one side of the channel at 0.5 m intervals. 

Current speed was measured at 0.6 of the depth at 9 cm intervals across the 

width at the upstream end of the test section using an Ott current meter. 

Depth was measured at 9 cm intervals using a point gauge at the entrance 

and exit sections. At midstream 2 m down the section a velocity profile 

was measured at 0.5 or 1.0 cm increments above the bed with the lowest 

measure 2.5 cm above the bed. Depth-integrated suspended sediment samples 

were also taken at representative sections. 
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The distribution of sedimentation through the length of the section 

was measured using a row of gravel-filled pots, volume 355 cm3, buried 

with the tops flush with the gravel surface at 0.5 m intervals down the 

centre of the flume. In addition a row of pots across the flume recorded 

lateral variation in siltation. It was difficult to ensure completely 

uniform dispersion of the sediment fed into the channel so that suspended 

sediment concentrations tended to be highest in the centre of the channel. 

To avoid this problem and the influence of the channel wall drag on 

deposition only the results from the centre of the channel, where flow 

was two dimensional, are reported here. 

All fine sediment transported out of the flume was entrapped in a 

fine mesh bag (0.063 mm aperture). Although this might allow 0.10 to 

2.0 % of the finest sand grade to pass, in practice the mesh became 

rapidly clogged and trapping efficiencies were close to 100%. Siltation 

rates could be calculated from the difference between the input and output 

of sand, as well as from the quantity of sand deposited in the siltation 

pots. 

The shear velocity was calculated from logairithmic velocity profiles 

assuming von Karman's constant of 0.40 is valid for low concentration 

suspensions (Vanoni, 1977). 

In Z = 0.40 U + 1n z0 (1) 
U* 

The local energy slope was calculated from DuBoy's equation 

Se = σ U2* /yR (2) 

To check the flow was quasi-uniform the energy slope for the complete 

test section was estimated using the relationship 

Se = Sw - U 2 
gD (Sw - Sb) (3) 
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corrected for side wall influence using the method of Williams (1970) 

and compared to the bed gradient. These data are not reported here. 

Bed roughness was initially estimated using Nikuradse's equivalent 

sand grain roughness (Schlichting, 1968); 

Ks = 30 zo (4) 

hut these data could not he related satisfactorily to the grain-size of 

the bed material. Meland & Norrman's (1966) equation for flow over 

rhombohedrally-packed glass beads, 

log Z Q = 1.951 logKs - 0.939 (5) 

was found to give equivalent roughness values close to the mean grain 

size of the bed material (Table 1). 

The initial 16 runs were conducted to seek hydraulic controls for 

deposition, consequently suspended sediment concentrations were kept 

low and inversely proportional to discharge. An additional 9 runs were 

conducted in a variable gradient recirculating flume to examine the 

influence of concentration on deposition rates. High sediment feed rates 

were possible in the latter runs with uniform distribution of sediment 

across the flume width. The high concentrations chosen did not correlate 

with discharge. 

The gravel used, packed in a bed 100 mm deep had the summary statistics; 

x = 21.60 mm, Σ = 5.31 mm, skewness = -0.37, kurtosis = 3.00 and void 

ratio = 0.55. 

The sand used was sand (2) (p.4). The overall flume length was 

12.8 m with a central working section of 6 m. The width was 0.81 m. 

6 pots of individual surface area 266 cm2 and depth 100 mm, were spaced 

1 m apart in a downstream row with the first pot 1 m downstream of the 

sediment hopper. In addition two lateral pots were placed either side of 

the third and fifth pots giving ten pots in all. Hot only were pots 
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made larger than in runs 1-16, but they were also permeable, nine 1 cm 

diameter holes having been drilled in each side and the base. Deposited 

sand was prevented from escaping by 0.063 mm mesh glued over the holes. 

Current speed and depth were measured similar to runs 1-16. Water 

surface slope was measured using a point gauge. Ho velocity profiles 

were taken, consequently the shear velocity was calculated from equation 

(2). All sediment moving out of the flume was caught in a 0.063 mm mesh 

bag. Because sediment feed rates were very high experiments were concluded 

rapidly; run times varying between 1.5 and 18 minutes. 

RESULTS 

General Observations 

Up to Proude Numbers of about 0.70 the two fine grades of sand were 

transported in suspension and in traction. The transport of material as 

bedload was distinctly pulsatory, possibly associated with "bursting" 

phenomena close to the bed (Kline et al., 1967; Grass, 1971 ). During 

Run 1, which was typical of runs in the approximate Proude range 0.10 

to 0.70, suspended sediment was observed to be introuduced into the gravel 

void space by turbulent pulses; thereafter grains were advected down 

into the fabric by turbulent intragravel flow. The turbulent nature of 

the intragravel flow was assessed by observing the irregular motion of 

solitary sand grains. 
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For Froude Numbers less than 0.10 fine sand was transported largely 

as bed-load. For example, during Run 2 as soon as the gravel was fully 

silted, the bed-load formed a carapace of rippled sand with ripple 

heights of 260 mm and wavelengths in the range 48-90 mm. 

For flows characterised by suspension load transport and Froude 

Numbers greater than 0.10, fine sand introduced into the framework of the 

bed generally was deposited at the base of the gravel and filled the 

void space leaving only a surface gravel layer, approximately 15 mm 

thick (i .e. one pebble diameter), free of sand. Turbulence resuspended 

material from this layer and effectively prevented siltation at the surface. 

Occasional hanging lenses of sand developed in the gravel where local 

clogging of smaller than average voids occurred, but eventually these 

were surrounded by accreting sand. 

At Froude Numbers greater than 0.70 no bedload transport occurred, 

grains moved in suspension but were continually entrapped in the surface 

void space and deposited in the bed. 

Only three runs used the coarse sand. This material moved solely 

as bedload and infiltrated the gravel bed. Local clogs in the gravel 

void space were more widespread than was the case for the fine sand 

grades. However, there was a tendency for the gravel to fill from the 

base upwards with isolated areas of open void space residual in a 

largely silted bed. Only locally did a surface sand-seal develop. 
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Deposition rate 

The siltation rate in the pots, expressed as a percentage by volume 

hr-1 (Table 1 Column 15), initially was calculated similarly to Beschta 

& Jackson (1979; i.e. volume of sand deposited divided by volume of gravel 

in pot) so that the results of the two investigations could be compared 

(Fig. 2). However it is preferable to express deposition as weight per 

unit area for a given time interval (g min-1 m-2, Table 1, Column 14). 

The mean rate of deposition for the first 16 runs based on the siltation 

pots is 4.1% hr-1 (σ = 2.7%). As will be explained below the efficiency 

of the pots in trapping sediment is low. Consequently the true rate of 

deposition is 6.7% hr for the two fine grades of sand. Both these 

values are comparable to Beschta & Jackson's (1979) mean pot deposition 

rate of 5.7% hr-1 for 0.5 mm sand with relatively low suspended sediment 

concentrations. It is evident that even at low sediment transport 

concentrations natural gravel beds of a similar thickness would rapidly 

become fully silted, regardless of Froude Number or grain-size of fine 

sand. 
-1 -2 

The deposition rate expressed as g min-1 m-2 could be calculated 

accurately by subtracting the weight of sand caught at the end of the 

test section from the weight introduced to the test section (Table 1", 

Column 13). Deposition for runs 1-16 varied insignificantly between 

runs and may be regarded as constant (x = 29.2 g min-1 m-2 , σ = 1.8). 

This contrasts to the deposition rate measured in buried pots where rates 
not only were lower but also showed a tendency to decrease at high 

Froude Numbers (x = 17.9 g min-1 m-2 , σ = 8.9). The average efficiency 

of the pots in runs 1-16 could be calculated as the ratio between columns 

13 and 14 (61.9% efficient, σ = 31.6%). The reduction in efficiency 

was most marked for Froude Numbers greater than 0.10 (Fig. 3) and may be 
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explained by the absence of intragravel flow in the solid-walled pots 

advecting grains down though the void space. The use of permeable pots 

in runs 17 to 25 solved this problem (96.3% efficient, σ = 14.2%). 

In runs 17 to 25 very high suspended' sediment concentrations were 

independent of velocity. The deposition rate was highly correlated with 

concentration (Fig. 4). Considering the data for all the 25 runs an equation 

describing the increase in deposition rate (in the unconfined bed) with 

concentration is; 

A'b = O.5570 C - 56.4929 r2 = 0.95 (6) 

The pot data gave a similar curve (see inset Fig. 6). 

Downstream siltation rate 

The downstream sorting of sediment in rivers is commonly described 

by an exponential function relating the reduction in particle weight or 

diameter with distance from the source (e.g. Church & Kellerhals, 1978} 

Deigaard, 1980). Sternberg (1875) and Lokhtin (1897) originally derived 

the exponential form of the relationship and gave different heuristic 

physical explanations (Scheidegger, 1970). Sundborg (1957) introduced 

a sounder mechanical basis by explaining gradation as a differential 

transport process based on a sedimentation formula. Recently Stow & 

Bowen (1980) have advocated an equation similar to Sundborg's. Sundborg's 

equation is: 

(7) 
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p is one minus the ratio between the number of particles entrained and the 

number deposited at any one location (Scheidegger, 1970) and, expressed 

as the overall probability of deposition, may be written p = (l - To/ T1 )k 

for silt and clay (McCave & Swift, 1978). p needs to be defined experimentally 

or introduced arbitrarily. Values cannot be greater than one and usually 

are in the range 0.4 to 1.0 (McCave & Swift, 1976). Stow & Bowen (1980) 

used a value of 0.5 in an investigation of sorting in turbidity currents, 

whilst Einstein (1968) found that p ~1.0 in an experimental investigation 

of deposition from suspension into a gravel bed. 

The experimental data obtained from siltation pots for the present 

investigation are shown in Figs. 5 & 6. Sand was fed into the channel at 

the water surface. Consequently settling grains were transported through 

a finite distance downstream over the bed before deposition; the distance, 

depending on settling velocity, water depth, stream velocity and turbulence 

was up to 1 m. Deposition rates for the first metre of experimental 

section were low and variable and were not included in the following 

analysis. Despite considerable scatter the data for runs 1-16 fit the 

exponential function; 

(8) 

Data for individual runs indicate a tendency for the exponent to decrease 

at high Froude Numbers (runs 1-16, Fig. 7) or as current speed increased 

(runs 17-25), but data were not conclusive. The reduction in the exponent 

reflects a mope even distribution of siltation from suspension at high 

discharge compared to local deposition close to the source at low discharges: 

a similar result to Einstein's (1968). 
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Equation 7 was fitted to the data assuming in the first instance ' 

that p = 1.0. A consistent over-fit was obtained for the runs characterised 

by suspended sediment transport. The function is not intended to describe 

sorting by bedload transport and a fit could not be obtained for Runs 

3, 14, 15 and 16 which were runs dominated by bedload transport. Values 

calculated from equation 7 for L = 1 m for runs 1-16 were on average 

1.5 times the values obtained using equation 8. Similarly the ratio 

= 1.64 suggests that equation 7 with p = 1.0 should describe 

deposition in an unconfined gravel bed. This indicates that p is 

0.61. In fact p was found to decline exponentially downstream in 9 

of the 12 suspended sediment runs (Table 3). In the remaining three 

runs p increased downstream, reflecting increased scour downstream, 

an unsatisfactory result for a deposition model. Equation 7 is plotted 

in Fig. 5 using a mean value of pp at L = 1 m, derived from the 9 acceptable 

runs, and a settling velocity based on the mean grain size of sands 

1 & 2 (from Table 2, Graf & Acaroglu, 1966). The observed data deviate 

progressively from the theoretical curve in the downstream direction. 

Similar results were obtained for runs 17-25 with the theoretical curve 

over-estimating observed values by a factor of 1.72 and yielding a value 

of pp of 0.58 (Fig. 6). 

Velocity profiles 

Siltation rate is dependent, at least in part, on the turbulent 

exchange rate at the sediment-water interface (Einstein, 1968; McCave, 

1970). The relative roughness may be expected to influence significantly 

the degree of turbulence over a rough boundary, turbulence intensity 

decreasing at low Reynold's numbers and at large values of the relative 

depth (Novell, 1978). 
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Equation 1 can he expressed in a non-dimensional form so that all 

data from each run can conveniently he compared graphically (Fig. 8). 

(9) 

A typical value for the constant C for a rough-turbulent planar sand-

bed is 8.5 (Schlichting, 1968). How ever, C has been found to he a smaller 

value, 2.3 to 4.6, and to increase as a function of D/ks over an experimental 

bed of 23 mm diameter hemispheres (Bayazit, 1976). Data from the present 

experiments confirm a lower value of C may be frequently appropriate for 

boundaries of large elements. An average value for the data is 4.92. 

Similarly to Bayazit's results with artificial roughness, C also was 

found to increase with D/ks (Fig. 9). 

The log-normal profile, equation 9, would seem to be inappropriate 

at values of D/ks less than about 7 when data scatter becomes excessive 

(Fig. 8). Profile data can no longer be considered logarithmic but there 

is no consistent pattern to the data points which would allow the mathematical 

expression of u/u* = f (z/ks ) to be derived. 

DISCUSSION 

Deposition rate 

Although the data from the solid-walled pots may be used to show 

the downstream pattern of deposition (p. 12) they cannot give an accurate 

representation of deposition rates in an unconfined gravel bed. The 

vigorous introduction of suspended sand into the gravel void space at 

high Froude Numbers was enhanced by strong intragravel flove carrying 

particles down into the bed. Consequently, although at high Froude 

Numbers sediment was carried totally in suspension a mass-exchange 
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mechanism at the sediment-water interface controlled deposition, maintaining 

a constant rate. Deposition, for low concentrations of fine and coarse 

sand over a wide range of hydraulic conditions, was therefore independent 

of the Froude Number or for that matter any of the average flow parameters 

in Table 1, the "decision" to deposit being made at or in the gravel 

surface (Einstein, 1968). 

The concentration of suspended sediment at low concentrations < 300 

-1 
mg 1-1 is not related to the deposition rate. Although as discharge 

increased, the weight of suspended sediment lost from each litre of fluid 

2 
to each m2 of the bed decreased; this was owing to dilution of the load. 

The increase in the total volume of water passing over the bed sustained 

the transport rate and hence maintained the constant rate of deposition. 

The conclusion expressed immediately above may not apply for very 

high concentrations of suspended sediment as used in some experiments 

by Beschta & Jackson (1979, Fig. 3), where, with concentrations 1 cm 

above the bed of the order of 12000 mg 1-1, deposition increased with 

Proude Number. A possible explanation for this phenomenon is given below. 

The concentration of suspended particles at which particle interaction 

influences flow dynamics has not been determined precisely. Lumley (1978) 

suggests a value of 3000 mg 1-1. Beschta & Jackson's flows therefore 

were probably of a two phase non-Newtonian character, with the stress 

on the bed a function of both the flow field and the sediment concentration. 

High suspended sediment concentrations, especially near the bed, decrease 

turbulence and reduce the vertical eddy diffusivity coefficient as has 

been documented from laboratory experiments with sediments denser than 

water (Vanoni, 1977; p. 83-87). This process increases the likelihood 

of deposition of particles and may conceivably result in a thickened 

viscous sub-layer on the downstream side of gravel particles in which 

grains may be trapped (Einstein, 1968; McCave, 1970). The modification 
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of boundary-layer properties has been suggested as a mechanism enhancing 

the deposition of particles from flows containing high concentrations of 

washload (Mucher & De Ploey, 1977)-

It is not possible to test this idea rigorously from the data given 

by Beschta & Jackson (1979). Nevertheless, it is possible to obtain 

insight to the problem by reference to the velocity profiles they present 

in their Fig. 5. Increased values of concentration decrease the slope 

of the logarithmic velocity profile and the value of von Karman's coefficient 

(e.g. Vanoni, 1977; Fig. 2.38, p. 86). Inspection of Fig. 5 and Table 1 

in Beschta & Jackson (1979) leads to the conclusion that the slope of 

the velocity profiles was reduced at high suspended sediment concentrations. 

The data for the seven runs used to construct Beschta & Jackson's Fig. 3 

have been abstracted (Table 2). Although the increase in concentration 

with decrease in velocity profile slope is not highly significant, the 

general trend is evident. Suspended sediment concentration also increased 

at high Proude Numbers. The conclusion is that sediment damped turbulence 

at high Proude Numbers and promoted the increase in siltation rates noted 

by Beschta & Jackson (1979). 

Beschta & Jackson's polynomial function for 0.5 mm sand at relatively 

low concentrations rests largely on only two points at about F = 0.50. 

Although scattered the data could be reinterpreted similarly to the data 

in column 12, Table 1 of this report which show a constant infiltration 

rate across a wide range of Proude Numbers. 
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Downstream siltation rate 

No field data for siltation within gravels to support equation 7 

are known to the author. If equation 7 is rewritten and expressed as 

the reduction in suspended sediment concentration as an exponential 

function of distance from the source, supporting data are available 

(Cordoba-Molina et al., 1978). For example, Miner (1968) reported a 

downstream reduction in concentration of total suspended solids from an 

experimental point release in a natural stream which would appear to fit 

a negative exponential function. Einstein (1968), in a flume study, 

found the concentration of particles (3.5 µ - 30 (i in size) decreased 

exponentially downstream as sediment was deposited in an open-work 

gravel. It should be noted however that Krone (1959; 1962) who also 

found an exponential function for silty-clay at low concentrations, 

< 300 mg 1-1, observed a logarithmic function for high concentrations. 

However, neither Miner nor Einstein give sufficient data concerned 

specifically with gravel beds,to enable one to recalculate their 

findings as siltation rates to compare with the present data and equation 7. 

Measured pp changed downstream (Table 3). In uniform flow one can 

expect the probability of deposition (and presumably resuspension) to 

remain constant in a downstream direction (Einstein, 1968). The observed 

change in pp could be interpreted as reflecting non-uniform flow conditions 

through the test section. However this is unlikely because the flow 

was at least quasi-uniform throughout the test reach in all 25 runs. 

The change in pp might therefore subsume changes in the settling velocity 

of the suspended sediment in a downstream direction. Einstein observed 

that coarser grains were deposited in the upstream test section and fines 

were transported further downstream. In effect the settling velocity 

in equation 7 should be recalculated for each increment in L to allow for 

differential sorting downstream. Beschta & Jackson for example found 
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that the mean grain-size of deposited material was 60% of that of the 

suspended load. Unfortunately, the grain size of the deposited sediment 

in this study was not measured following individual runs 1-16 but was 

measured in runs 17-24 and was found to decrease downstream. Incorporation 

of a reduced grain size with distance downstream did not suffice to 

correct the theoretical curve to fit the observed data (Fig. 6). Choice 

of p = 1.0 gives a constant over-estimate of deposition rate. A smaller 

value e.g. p = O.58 would yield a better fit at L = 1.0 m but would 

increasingly over-estimate deposition in the downstream direction. 

Solution of the equation p = (1 - T0/T1)k for pp = 0.60, k = 1 

and for individual values of T0 in each experiment (Column 9, Table l) 

-
yields a substantial value for T1 in each instance e.g., T1 = 2.48 kg m

-2 

(Runs 1-16). McCave & Swift (1978) indicated that T1 should be equivalent 

to Tc for silt and clay and that other factors, subsumed in the value 

k, tend to decrease or increase deposition rates. Values of Tc obtained, 

for the fine and coarse sands used in this investigation, from threshold 

curves presented by Miller et al. (1977) are in the range 0.01 to 0.07 

kg m-2. Arguing from the ratio T0/Tc alone would indicate that little 

deposition should have occurred. The need to identify factors other than 

turbulence is further confirmed by plotting the present data as a function 

of vs/u* and vsD/2e (Fig. 10). Camp (1943) argued that the deposition 

of silt in a natural stream is a function both of vs/u*, which is analogous 

to (1 - T0 / T1 ) and to a turbulence parameter, v D/2e . When turbulence 

is great, the value of vsD/2e is low and the deposition rate is reduced. 
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As an example, if particles were expected to be 100% settled in a non-

turbulent flow (vs/u* = 1.0) then deposition would be reduced to 64% 

if vsD/2E = 0.1. At low deposition rates, vS/u* < 0.40, the effect of 

turbulence in reducing deposition is negligible. The present data fall 

into two groups (Fig. 10, Runs 1-16), p > 0.70 which represents transport 

largely by bedload and p < 0.35 which are all suspended sediment runs. 

The values of p < 0.35 and surprising in view of the measured values 

of p ~ 0.60 - 1.00 for the siltation pots and unconfined gravel bed. 

Clearly turbulence should have a minimal effect, reducing sedimentation. 

However Camp was arguing only for deposition from suspension to a bed 

of similar loosely-deposited material where resuspension could easily 

occur. Of various other factors that should be taken into consideration 

which increase the deposition rate over gravel, the most obvious is that gravel 

is porous and can physically entrap particles and prevent resuspension. 

Other possible factors are: that T O or u*. measured in the outer boundary-

layer are not satisfactory surrogate values for turbulence intensity 

close to the bed; that deposition also occurred from a bedload and finally 

that the possible influence of the ratio d/d has not been considered. 

McCave & Swift (1978) thought that the latter might become important 

when particles were of the order of 1mm in diameter, as in runs 14 to 

16. 

The physical nature of the laminar sub-layer in a surface gravel-

layer is unknown and therefore it is difficult to quantify an effective 

thickness for the layer. This fluid-layer might be better described as 

a "dead" zone entrapping sediment by a presently unidentified mechanism. 

A possible approach to solving for deposition from a turbulent flow to 

the gravel void space might then be found by adopting a logitudinal 

mixing model similar to that described by Thackston & Schnelle (1970). 
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Formation of a surface sand seal 

It is of some consequence whether or not fine sediment will enter 

the void space of a gravel bed. Beschta & Jackson observed that 0.55 mm 

sand formed a seal some 5 cm thick at the surface of their 15 mm gravel 

as sand grains bridged openings to void spaces and prevented further 

penetration of additional material. In contrast, 'in the present experiments 

1.4 mm sand did not universally form a sand seal over 15.57 mm gravel 

(p. 9). A possible explanation for the "patchy" nature of infiltration 

of fine sediment into a graded gravel bed and the contrast between 

Beschta & Jackson's results and the present results is given below. 

If equal diameter spheres are packed systematically to form a bed 

there is a maximum diameter of smaller grain size particles that may 

enter the interstices. The ratio of the two grain-sizes is 0.154 if the 

spheres are tightly packed and 0.414 if loosely packed (Fraser, 1935 

- p. 919). Similarly, grains larger than the critical ratio can only be 

found in the void space if packed simultaneously with the large spheres. 

These observations have been reiterated recently by Pettijohn (1976 -

p. 73). The ratio of the mean grain-size of the silting sands and the 

gravel in this investigation and Beschta & Jackson's falls in the range 

O.OO96 to 0.0899; consequently one would expect infiltration in a bed 

consisting of uniform gravel. In mixtures of particles, porosity varies 

spatially no matter how carefully the proportions are mixed (Praser, 

1935; p. 928 - 932) so that the degree of sand infiltration inevitably 

will be variable. 
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Most natural fluvial silted gravels are believed to have become 

silted after deposition (Fraser, 1935; Dal Cin, 1967; Plumley, 1948); 

this would seem to be confirmed by an analysis of several hundred alluvial 

gravel samples (Conkling et al., 1934) where it was found that the ratio 

of the secondary grain-size mode to the coarse mode was in the range 

0.03 - 0.06 i.e. much less than the critical ratio - 0.154 (Pettijohn, 

1975, P. 48). 

The logarithmic velocity model and siltation 

The logarithmic velocity model, frequently used to obtain mean flow 

data, is not applicable very close to a rough boundary where flow is 

complicated owing to separation behind roughness elements. In particular, 

using outer region observations, the estimation of momentum transfer 

close to the bed is not possible (Nowell, 1978). It follows that if 

sedimentation is controlled by the hydrodynamics close to, or within, 

the surface gravel layer (Einstein, 1968) then hydrodynamic measures 

should also be in this layer. The depth of this region is, from studies 

of depth limited boundary-layers in air and water, of the order of the 

roughness spacing (Mulhearn & Finnigan, 1978) or roughness height (Nowell 

& Church, 1979). In particular, Nowell & Church in an investigation 

intended to represent flow over a gravel substratum, found that a log-

velocity model was not valid closer to the bed than Z/D = 0.35 and that 

turbulence intensity changed character below Z/D = 0.20. In the present 

report the lowest velocity determination was at 2.5 cm above the bed 

which is equal to z/D ~ 0.20. Consequently none of the velocity profile 

data should be expected to correlate with siltation processes if Einstein's 

(1968) hypothesis is correct. 
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Further investigations of the mechanics of siltation in gravel 

beds will require detailed hydrodynamic data very close to the bed or 

within the void spaces of the surface gravels. 

CONCLUSIONS 

Mean deposition rates of 6.7% hr-1 for low suspended sediment 

concentrations of fine sand are comparable to the rates reported by 

Beschta & Jackson (1979) (5.7% for coarse sand). Deposition rates for 

suspended sand concent rations in the range 42-263 mg 1-1 and for Proude 

Numbers 0.05 to 1.2 are effectively constant} deposition being controlled 

by a mass-exchange mechanism at the sediment-water interface. At high 

concentrations of suspended sediment deposition rate increases. Deposition 

may be enhanced further as turbulence is damped. Sedimentation rates 

calculated from solid-walled siltation pot data are not representative 

of deposition in unconfined gravel beds. 

Mean flow data, especially where derived from velocity profile 

data measured in the outer boundary layer, are inappropriate for siltation 

investigations concerned with processes occurring only one roughness 

height away from the bed. Progress in understanding the dynamics of 

fine sediment deposition over rough beds in shallow water is only likely 

to be achieved using sophisticated laboratory apparatus. 

A number of factors which will influence deposition have not been 

included in this investigation. Rendon-Herrero (1976) considered the 

interference effect of mixtures of grain-sizes on the settling velocity. 
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Chow (1964) points out that advection by fluid transmission losses 

will locally affect deposition rates. Bed topographic variations may 

influence deposition (Laursen, 1975) although Einstein (1968) found no 

evidence for this. Finally Yao (1969) and Owen (1969) indicated that 

the surface chemistry of fine clay particles will influence deposition. 

In this respect it is interesting to note that Quashu & Buol (1967) refer 

to a natural sand and gravel layer, having a high clay and water content 

in contrast to other layers in the profile. Microscopic examination 

showed that clay particles accumulated on individual sand and gravel 

particles in an orientated manner; a phenomenon which may be related to 

the surface charge of particles (Einstein, 1970). 
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Table 2. Data extracted from Beschta & Jackson Table 1, 1979 ranked in 

decreasing value of x/U*. X was calculated from 

suspended sediment concentration data using Ippen's (1971) 

equation expressing a reduction in X with high suspended 

sediment loads. U* was calculated using equation (1) and a 

value of log zo = -5.72 for a flat 15 mm gravel bed (Table 

1, this paper). Suspended sediment concentration is 

significantly linearly correlated with the rank order of 

decrease in x/U* in columns 4 and 5. P < 0.05 in each 

case. The near-bed concentration (Column 3) is significantly 

linearly correlated with an increase in Froude Number P < 

0.05 and the reduction in x, P < 0.001. 













Fig. 5. Data for experiments 1, 2 and 4 to 13 showing the exponential 

decrease in deposition rate of fine sands from suspension. 

The observed regression curve (Equation 8 in text) deviates 

progressively with distance from the source (L = 0) from a 

theoretical deterministic equation of Sundhorg. Notwithstanding 

this discrepancy the agreement between observed data and theory 

is good. 



Fig. 6. Curves for experiments 17 to 25 showing the exponential decrease 

in deposition rate with distance from the source. Data points 

are not shown but occur at each 1 m interval. The wide spread 

of curves compared to Fig. 5 is owing to the wide range of 

suspended sediment concentrations in runs 17-25. The mean 

curve for all observed data is compared with the curve calculated 

from equation (7) with p set to 1.0. A calculated example for 

p = 1.0 is also given for run 23. The inset graph shows the 

increase in deposition rate in the pots as concentration in the 

flow increases. 



Fig. 7. Values of B in the regression equation Δ = a e-BL (describing 

the downstream reduction in deposition rate with distance from 

a point source of suspended sediment) decrease in value as 

Froude Number (F) increases; indicating an increasingly even 

spread in deposition from suspension at higher Froude Numbers. 

Data for runs 1-16. 



Fig. 8. Velocity profile data calculated from equation (9). The symbols 

refer to the experimental runs listed in Table 1. Selected 

profiles are drawn to show the general trend of the log-linear 

data sets. Figures above profiles are values of D/Ks showing 

the trend to increased values of D/Ks as U/U* increases. 



Fig. 9. The coefficient C in equation (9) as a function of 

The data indicates that a value less than 8 (commonly used 

for smooth boundaries) may be applicable to rough boundaries 

in shallow depths. 



Fig. 10. Experimental data for runs 1-16 extracted from Table 1 plotted 

on Camp's (1943) graph relating the degree of sedimentation 

(p) to vs/u* and vsD/2e . For small values of vs/U* turbulence 

(€) has a negligible effect in reducing deposition. It is at 

these values that most of the experimental runs were conducted. 

However the possibility that turbulence promoted deposition by 

introducing particles into the gravel void space should not 

be neglected. 




