Title: Waterfowl and their role in lake ecosystems.
Author(s) Kazimierz A. Dobrowolski
Reference: Wiad. Ekol. 19, 355-371.
Original lamguaget polish
Date of publioation of original: 1973
TransIatom: G. Jaworski
Wate of pablication of translation: 1974
Number of pages of translation: 19

FBA Translations are to be constrexed as-"provisional". As a mule they have not been prepared by expert translators, nor have they been edited by the oxighnal authors.

They are quajiable from The Libraxtan, Fresinater Biolagical Associatiort The Ferry House, Far Sawrey, AMGIESSDE; Weatmos? land, England, at the current rate for xerox copying.

DOBROWOLSKI K.A. (1973)
Waterfowl and their role in lake ecosystems Wiad. Ekol, 19, 355-371.

Translated by G.Jaworski.

We know very little about the role of birds in different ecosystems, despite numerous interesting worksof researchers and amateur ornithologists scattered throughout the world. Less attention is paid to freshwater ecosystems because of the difficulties encountered in the experimental methods as well as a lack of interest on behalf of hydrobiologists; for the activities of birds in these ecosystems. As a result research has been limited mainly to faunistic: $;$ lists, the distribution of fish parasites through waterfowl, or opinions on the destructiveness of fish feeding birds. Meanwhile there is a great need for ecological data in order to understand fully the structure and function of a lake ecosystem.

Palmgrena (1936) was first to associate birds with limnology, he established three types of lakes according to the occurrence of birds. He named the first "Colymbus", which referred to oligotrophic lakes where the bird population is small, up to 0.5 pairs/ha and characterised by divers. His second type "Podiceps" consisted of eutrophic lakes with a bird population between $0.5-1$ pairs/ha. The third type "Nyroca!" was made up of ponds where the bird population was more than 1 pair/ha. This classification considering local Finnish conditions and climate is not universal. It would be difficult to include our oligotrophic lakes under "Colymbus" type because in practict this species does not nest. However the idea to show a connection between birds and types of lake is reasonable. In this respect tests were carried out later by Ekman (1943), Dunajewski (1943) and Dobrowolski (1961) among others. Although it would be very difficult to make a proper classification for large regions (the main obstacle being a variation in species dominating the different localities) their works however threw sufficient light on the existence of a
correlation between types of lakes and the numbers and composition of bird species found. Moreover the experiments confirm the understanding that the most numerous and heterogeneous populations are on shallow, strongly overgrown, pond-type lakes or the outflow (inflow) parts of a lake. It can be proved that the stronger the advancenent of a lake towards eutrophication the more diverse will be the representation of bird group and the more substantial will be the influence of biocenosis on the ecosystem. Another type of experiment, which connected bircs with the lake ecosystems, investigated the occurrence of avifauna in the various regions of a lake. An analogue of the first type of experiments links woodland birds with the types of wood, and in a second type of experiments there is similarity to the above data about the territorial distribution. From the rich history of woodland investigations we know more or less which birds occupy definite territories but the research of waterfowl still does not give a clear answer. Several authors were occupied with the problens of regional distribution of birds-on lakes, amongst others Dunajewski (1943), Horvath (1958), Lewandowski (1964), Dobrowolski (1969) and Jablonski (1969). Resuits show that the bird distribution on a lake is randon but specific regions of a lake are qucupied by definite species. Of course, this distribution is not permanent. It differs with the time of year and may even depend on the weather conditions (Szijj 1965). Simple statistical methods show agreement conforming to the morphology and biology of the species. In effect these are dependent on the total body of birds found on our lakes (on an eutrophic lake almost 60 species) being subdivided into groups occupying definite regions of the lake. These species can be arranged into the following types and morphoecological forms (Dobrowolski 1969), underlining the dominant forms.

Type 1 - swimming birds
Form 1 - filtering benthophages
Anas platyrhynchos, Anas strepera, Aythya ferina, Ay. nyroca,
Ay. fuligula, Asas querquedula, A. crecca, A. acuta,
A. clypeata, Bucephala clangula, Cygnus olor, Fulica atra, Gallinula chloropus.

Form 2 Aquatic phytophages
Cygnus olor, Fulica atra, Anser sp.

Gallinula chloropus, Anas platyrhynchos, A. querquedula, A. crecca, A. clypeata, A. acuta, Aythya ferina, Ay. fuligula, Ay. nyroca

Form 3 - aquatic ichthyophages

Podiceps cristatus, Phalacrocorax carbo, Mergus merganser M. serrator, Podiceps griseigena, P. ruficollis, Colymbus sp., Bucephala clangula, Aythya sp.

Type II Semi aquatic wading birds.
Form 1. Beach entomophages
Motacilla alba, M. flava, Charadrius sp., Tringa sp., Calidris sp.,
Actitis hypoleucos, Sturnus vulgaris, Corvus corone, C. frugilegus
Form 2. Shore benthophages
Tringa sp., Charadrius sp., Calidris sp., Actitis hypoleucos Corvus corone Anas sp.

Form 3. Shore ichthiophages
Ardea cinerea, Botaurus stellaris
Ixobrychus minutus, Alcedo atthis; Tringa nebularia, Corvus corone, Ciconia nigra
Form 4. Shore entomophages
Ixobrychus minutus, Botaurus stellaris, Alcedo atthis, Gallinula chloropus, Ardea cinerea, Cinonia cinonia.
Type III Birds feeding in flight
Form 1. Air entomophages
Riparia riparia, Hirundo rustica, Apus apus, Chlidonias nigra,
Larus ridibundus, Delichon urbica, Larus minutus
Form 2. Air ichthyophages
Larus ridibundus, Sterna hirundo, S. albifrons, Chlidonias nigra
Larus minutus, L. canus, L. fuscus, Pandion haliaetus, Haliaetus
albicilla, Milvus milyies; M. migrams, Corvus corone
Form 3. Shore predators
Circus aeruginosas, C. pygargus, Milvus milvus, M. migrans
Accipiter gentilis, A. nisus, Falco subbuteo, Haliaetus albicilla
Buteo sp.
Type IV Birds on trees (shrubs?) and reeds.
Form 1. Reed entomophages
Acrocephalus arundinaceus, A. scirpaceus, A. schoenobaenus,
A. palustris, Locustella sp., Luscinia svecica,

Remiz pendulinus, Parus sp., Emberiza schoeniclus, Sturnus vulgaris Form 2 Reed phytophages

Emberiza schoeniclus, Carpodacus erythrinus.
Form 3 Entomophages and phytophages on shoreline vegetation
Parus sp., Acrocephalus palustris, Remiz pendulinus, Luscinius sp., Chloris chloris, Emberiza citrinella, Fringilla coclebs, Carpodacus erythrinus, Carduelis carduelis, C. spinus, Hippolais icterina, Phylloscopus sp.

Species belonging to one morphoecological form occupy a definite zone of the lake and live more or less on the same food. Differences exist resulting either from a food specialization or the means of collecting food. Szijj (1965) from yesearch of Lake Eodenski, showed an interesting comparison of feeding methods influencing the differentiation of a group of Lamellirostres

Table I

Such a difference within a group assures maximum utilisation of environmental stores, often one species will make available previously
inaccessible food for another species. (Hobbs 1957 observed the feeding of coots, waterhens and grebes). At the same time a study of such a difference (although the region of occurrence is variable in particular seasons of the year and not only dependent on food) informs about the load to a given zone of a lake by a definite morphoecological type, shows the course of energy flow, suggesting also that a characteristic lake for a group of birds does not refer to the limnological type but to littoral and shore areas. The movement of birds is an important feature influencing their place in the lake ecosystem, as well as the fact that many birds nest on the lakeside and feed on the lake. Such birds include herons, cornorants, some ducks, storiss, birds of prey and numerous perching birds. There also exists those birds which collect food from around the lake - on the land; ducks, geese, coots', (exceptional here), black-headed gulls, terns, birds of prey and numerous perching birds. An arrangement of this type causes the removal of organic matter from the lake shore by birds and at the same time provides mineral nutrients in the form of excrement, These are factors opening a chain in the circulation of organic matter in a lake.

As a result, in order to estimate the trophic role of birds, we need to understand the following factors:

1) The species composition of a group as well as its structure and therefore the morphoecological types. In this case we now have an initial distinction. However we need to know the number of separate types and morphoecological forms, of which we know relatively littie.
2) The annual dynamics of particular morphoecological forms or at least dominant species (there is inadequate information on this).
3) Type of food of particular morphoecological forms or dominant species and its seasonal variation. Data from the literature is sufficiently enlightening only for a few species. Moreover it is mainly qualitative data about the type of food with a lack of quantitative data concerning daily food requirements or simply the amount of food consumed. In phytophagousforms or those living on a mixed plant and animal diet as a rule (according to the literature) -there seems
to be a greater consumption of animals in the spring-summer months (Apri1-August) than the rest of the year. In order to confirm what birds gather from a lake we need to know the type as well as the amount of food.
4) Quantity and quality of experiments, along with an indication of how many are carried out on the lake. Data about this is practically non-existent.

Conclusions to enlighten these points are not consoling, as we are still a long way from establishing the role of birds in the lake ecosystem. We should try on a basis of incomplete data (mainly literature) to present this problem at least in part. Comparatively the easiest to settle is the duration of particular periods throughout the seasons of the year, when the numbers of birds as well as their regional distribution and type of food, will be changing. This has great importance in evaluating the role of birds. of course the duration of these periods will be changeable, as it is not possible ${ }^{\text {d }}$ to determine exactly to the day and it can be somewhat variable for different species. With these reservations it is possible from literature and certain data to make the following division.

1. Period before nesting (usually spring) - lasting from mid April or the April/May turning point, more or less 30 days.
2. Nesting period - May-June dasting about 30 days.
3. Period after nesting - June-July lasting nearly 75 days.
4. Autumn period - mid-September until the freezing of the lakes (usually mid January), about 120 days.

Usually the lakes are frozen for 4 months, till the April/May turning point. During this time very few birds inhabit the lakes, but while there is still a little free water the autumn migration will be delayed. By March |a few swans, ducks and herons appear while lakes are still frozen.

The number of individual species changes distinctly during successive periods. Characterising this process generally, it is possible to confirm that birds are most numerous in the third period, after nesting, when on our lakes there are still birds nesting, chicks growing and roving birds appearing from the north east.

At this period the greatest variety in species of birds occurs.
The autum period begins sufficiently rich but quickly loses large numbers of birds foreby a variety of species. Blackheaded gulls, mallard and coots remain longest. Unexpected flocks of species of ducks and grebes appear at this time but after a short stay on the lakes they disappear as suddenty as they have appeared. The period before nesting-is characterized by the number of few established birds as well as little stabilisation of the groups, this stabilisation will occur in the nesting period.

The presentation of analysis of waterfowl numbers is really difficult, in the literature we come across several methods.

There are authors who give simple arbitrary numbers and some who will count the number of birds over 1,10 or 100 ha of the water surface, those who compare the amount with a-length of shoreline, a length of line or observation time. Few authors count the number of birds over an area of water plants. In each of these methods the number of birds in relation to the area they occupy can be positive and negative. of course an arbitrary count is of fundamental importance in analysing the occurrence of birds and dynamics of their numbers on a part of a lake. However when comparing lakes, one needs to collect arbitrary data of numbers in relation either to the surface area or a length of shore.

Such counts have an acute fault - the assumption that birds fully occupy all parts of a lake; of course this is not true. As stated previously, different morphoecological types of birds will occupy and utilise different regions of a lake. Counting over the whole area of a lake it would be possible with a little toil to make a correct estimation for species like grebes, cormorants, terns, gulls and some ducks. For other species (coots and some ducks) it would not be true reflection since these birds rarely venture into open water, they frequent solely the regions of reeds and belt of submerged plants. Remembering these restrictions we need to confirm that the best method at present is a count of the number of birds over one hektare of the lake. A count over $1 \mathrm{~km}^{2}$ seems reasonable to me for obtaining analysis and comparisons of larger regions, however if we want to know the amount on a definite lake we must count this over 1 hektare or more so 10 hektares,

Finally I give here a warning that there is one more difficulty in estimating bird numbers. Many authors, giving the amount of birds in the nesting habitats, will give the numbers of pairs or nests and not the
number of birds. One should be particularly cautious in the case of ducks, where it is generally known that the female will undertake all the trouble of incubation and rearing of chicks, while the male often stays in completely different habitats. A certain number of birds do not breed, as a rule these seem to be male reserves still moulting in the breeding season and generally do not leave the rushes for open water. Effectively they disappear from view.

After these warnings and methodical reservations we should try to make a thorough analysis on the number of waterfowl in our country (alas there is little information). I include here data from other parts of Europe and Asia for a comparison, stipulating that my material is gathered only from randon tests and is not a complete Indication of the waterfowl numbers. I present also, only relative data concerning a few of the most numerous species occurring here. Data which .I have used in tables of composition and comparisons were taken from lakes and ponds shown in figure 1. The number of birds settling on different lakes has an influence on very many factors. Not trying at present to analyse this particular problem, I want to give a warning on the observed fact by Wobus (1964) that the relative number of birds (particularly in nesting habitats) is related to the size of the lake. He showed grebes to be more numerous on ponds up to 10 ha. - in a count over 1 ha, the number was not exact. This-relationship (corroborated by Hanzak 1952) is shown in tab. II.

I have made a similar count for lakes from material gathered from a nesting habitat. Tab. III.

Table II

Powierzchnia stawow w ha-Arca of ponds in 34	>10	10-50	50--1093	10)-1600
hose par na ha - Number of prits per isa	023	0,0\%	0.665	0.034°

Datapelatingltopochard and tufted duck are merely indicators and do not justify conclusions about the small number of lakes analysed. From data for Czechoslovakia and the GDR (Bezzel 1969) it is possible to try to establish a similar relationship for pochard on ponds (tab. IV). This distribution is similar to that acquired for lakes. Perhaps a more detailed analysis of this type would be able to establish for certain fields whether there exist ecological optima for particular species. Every time, material is presented to show the occurrence of different bird species on lakes of different size, no matter how it is arranged the majority of species prefer smaller lakes and their numbers fall with an increase in area. Quoted tables suggest still more eg* mallard have a preference for lakes from 50 to 100 hektares, and pochard very small or large lakes but not average size lakesa Regarding the few lakes analysed this is the only suggested characteristic. However this may have a definite consequence on the composition of bird groups on a particular lake as well as the energy flow through biocenosis.

I have achieved a comparison of the average numbers of waterfowl in Poland with the remainder of Europe and Asia, counting the number of individuals / ha during the nesting period. There is comparatively little difference.

In the after nesting period a population increase follows due to the hatching of chicks. This growth is not very large thanks to a strong reduction in the number of chicks during the early stages of their lives.

Although the birds discussed generally do not lay less than 4 eggs, ducks laying considerably more (in the region of 10 or more), the number of young falling to one pair is much less. Sokolowski (1967) gave the average young/pair for-grebes as 2.05 on different lakes in the locality of Poznan, Wobus (1964) gave a mere 1.15.

Table IV

Material collected from the Mazurian lakes (Sobczyk unpublished) gives anaverage of 2.39 young/pair. Wobus writes that the average young/pair for coots lies between 2.85 and 4.15 . The following data is given for swans: Zajac (1963) for western lakes 4.3 young/pair; Kazmierski (1969) 1.57 young/pair in the Zninski district; and Szijj (1963) 2.55 young/pair on Lake Bodenski. I think that the average for mallard, pochard and tufted duck lies between 3 and 5 young/pair. Therefore in the after nesting period the natural population has an increase of $2-4$ tines. At this same time migrating birds arrive on our lakes while the young individuals are beginning to disperse. This gives little stability but as a rule typifies a rise in numbers compared to the previous period.

Autumn is a poor time, both quantitatively and qualitatively. The amount and type of food consumed by biris will vary with the seasons of the year. Unfortunately few data are available to us related to food requirements of waterfowl, most work on this theme discusses Passeriformes or birds of prey. In spite of this it is possible to make a comparison on the food requirement of waterfowl during the course of a day. It is stated that small birds will eat relatively more than large birds. From the data of Schildmacher (1929), Dementev (1949), Szuman (1951), Dunajewski (1943) and Sokolowski (1967) a list has been compiled. (Table V.) From this list it is noticeable that consumption of food depends not only on the size of the bird but on other factors like the type of food. Quoting authors, a Bombycilla garrulus weighing about 57 gms consumes 170 gms of grain daily, Accipiter gentilis (weighing 1500 gms) - a duck weighing $800-1000 \mathrm{gms}$ and Pandion haliaetus (weighing 1600 gms) - consume up to

2 kgs of fish daily.
According to Lack (1954) small continental birds about $10-90$ gms weight daily consume $10-30 \%$ of their weight, while birds weighing between 100 and 1000 gms consume $5-9 \%$ of their weight. Kendeigh (1934) says that adult seed eaters consume 10% of their weight daily, insectivores 40%. The anount of food consumed can be dependent on the sex of the species, age or external temperature.

Table V

Jordan (1953) stated that Anas platyrhynchos consumes 132 gms of grain daily during early autumn, in winter 150 gms when drakes eat 15% more than ducks, but in spring ducks will consume 16.5% more food than drakes. Young
ducklings, 8 - 9 weeks old, grow rapidly consuming about 44% more than adults. Schildmacher (1929) stated that a 40 gm Ploceus cucullatus consumes 20% of its weight daily at $18^{\circ} \mathrm{C}, 25^{\circ}$ at $9^{\circ} \mathrm{C}$ and 28% at $7^{\circ} \mathrm{C}$.

Quoted data show difficulties in operating synthetic indicators for food requirements and reveal comparatively little knowledge yet in this field. Therefore further counts done by me should be treated very carefully, merely as first approximations.

The sumarized lists of results show the general dynamics of changes in a. number of birds (tab. VI).

The column "sum" is an average of all analysed lakes; in the column "number of lakes" the fisst figure refers to all lakes, the second to Polish lakes. I obtained theoretical values by multiplying the condition of nesting time by the highest given rise in the numbers of young, these values are not always concordant with observations. It is possible to explain these divergences with insufficient material as well as certain incomplete rates which served the counts. Having rates, dynamics and numbers, and knowing the amount and type of food requirement it is possible to calculate the amount of food consumed by birds from a lake. On basis of the data given above, I have accepted that the daily food requirement for a grebe is 200 gms , a coot 100 gms , mallard, pochard and tufted duck 150 gms, and a swan 500gms. In principle the food of a grebe consists 100% of animals for simplification it is possible to assume that this is fish; the food of coots and swans is 90% plants and 10% invertèbrates; the food of mallard is 80% plants and 20% invertebrates and that of pochard and tufted duck is 60% animals and 40% plants.

From adequate counts and assuming that young individuals by 30 days are consuming. 40% more food than adults, we get the following data (tab VII) explaining the consumption of food over one hektare during the vegetative season by the birds discussed here.

The top row in table VII shows the theoretical rise in consumption between the period of nesting and after nesting; the bottom row is results from observation.

I estimate that the species described by me are the main consumers of plants in our lakes, and the value of consumption does not reach $80-90 \%$ of that eaten by all freshwater birds (investigations are still in progress with some ducks, geese and water hens). Further 1 think that the amount of fish consumed by grebes may be $40-50 \%$ of that eaten by all our avifauna (terns, gulls, some lameliirostes, herons, cormorants and birds of prey).

As in the case of fish I would make a similar estimation for the consumption of invertebrates.

There is still comparitively less data about the amount and composition of bird wastes than about food. It is known that the rate of digestion is very great and that many species fill their stomachs $2-5$ times daily. Szuman (1951) gives data which unfortunately concerns domestic birds but nevertheless give some indication. The yearly production of excrement in hens is $5-10 \mathrm{kgs} /$ individual, ducks $8-9 \mathrm{kgs} /$ individual, (Dunajewski 1943 accepts that for a mallard weighing 0.5 kg : the excrement during a vegetative season lasting 200 days will be 3.98 kgs), geese $11-13 \mathrm{kgs} /$ individual and pigeons $2-3 \mathrm{kgs} /$ individual. Obviously the composition of excrement will vary with the bird species, with respect to different food and digestion. For exampke the digestion of hens is 28%, geese 22%, and pigeons 35\% (Szuman 1951).

Table VI

	1	2	3	4	5	6
hydiyc foligula	$\begin{aligned} & \text { sumiz-sun } \\ & \text { total. . } \end{aligned}$	0,36	0,58	$1,68$	0,24	0,26
	Poliske- Polanc:	$\begin{array}{r}\text { \%,34 } \\ \hdashline 0\end{array}$	0,04	0,13	0,28	0,26
	riczba jezion number of sates	$\left\lvert\, \begin{gathered} 3 ; 2 \\ \text { 4y } \\ \hline \end{gathered}\right.$	17;3	' \because	$\because 5 ; 4$ $\because \because \because$	$\begin{array}{r}3 ; 3 \\ \hdashline 3 ; \\ \hdashline 3\end{array}$
Ormas	$\begin{aligned} & \text { stmat-suma } \\ & \text { totat } \end{aligned}$	0,59	0,15	0,41	0,39	0,005
	Polski- Poland	0,32	0,10	0,28	0,46	
	liczla jezio: number of liakes	4;3	$\cdots 36 ; 16$		16:13.	3:1

Table VII

Amonit of food consumed per 1 ha by some species of waterfowl							
Gatunck - Spectics	$\begin{gathered} \text { practe- } \\ \text { gony } \\ \text { pre-nes- } \\ \text { ling } \end{gathered}$	legowy -nesting	polegowy -postnesting	jesienny anutumn	razem -toftal	$\begin{gathered} \text { yokarin } \\ \text { zwierzecy } \\ \text {-animat } \\ \text { foou } \end{gathered}$	potarm rostinns - plant. fodd
Podiceps tristaus	$\begin{aligned} & 0,36 \\ & 0,36 \end{aligned}$	$\begin{aligned} & 3,6 \\ & 3,6 \end{aligned}$	$\begin{array}{r} 19,66 \\ 3,55 \end{array}$	$\begin{aligned} & 0,72 \\ & 0,72 \end{aligned}$	$\begin{array}{r} 24,34 \\ 8,23 \\ \hline \end{array}$	$\begin{array}{r} 24,34 \\ -8,23 \end{array}$	0,0 0,0
Felica atra	$\begin{aligned} & 6,12 \\ & 6,12 \end{aligned}$	1,23 1,27	$\begin{array}{r} 9,14 \\ 11,72 \end{array}$	$\begin{aligned} & 15,00 \\ & 15,00 . \end{aligned}$	$\begin{aligned} & 31,49 \\ & 34,07 \end{aligned}$	$\begin{aligned} & 3,15 \\ & 3,41 \end{aligned}$	23,34 30,56
Anas pletron rinychos	$\begin{aligned} & 2,03 \\ & 2,03 \end{aligned}$	$\begin{aligned} & 1,58 \\ & 1,58 \end{aligned}$	$\begin{array}{r} 13,43 \\ -7,16 \\ \hline \end{array}$	$\begin{array}{r} 8,28 \\ 8,28 \\ \hline \end{array}$	$\begin{gathered} 25,32 \\ 19,04 \end{gathered}$	$\begin{aligned} & 5,05 \\ & 3,81 \end{aligned}$	$1{ }^{2}, 25$ $\cdots 5,23$ 15
Ayrhu /eria	$\begin{aligned} & 0,54 \\ & 0,54 \end{aligned}$	$\begin{aligned} & 0,18 \\ & 0,18 \end{aligned}$	$\begin{aligned} & 1,64 \\ & 8,16 \end{aligned}$	$\begin{aligned} & 6,66 \\ & 6,66 \end{aligned}$	$\begin{gathered} 9,02 \\ 15,54 \end{gathered}$	$\begin{aligned} & 5,41 \\ & 0,32 \end{aligned}$	$\begin{array}{r}3,61 \\ \therefore \quad 6,21 \\ \hline\end{array}$
Aythó fulisula	$\begin{aligned} & 1,53 \\ & 1,53 \end{aligned}$	$\begin{array}{r} 0,18 \\ 0,18 \end{array}$	$\begin{aligned} & 1,64 \\ & 3,84 \end{aligned}$	$\begin{aligned} & 4,68 \\ & 4,68 \\ & \hline \end{aligned}$	$\begin{array}{r} 8,03 \\ 10,23 \end{array}$	$\begin{aligned} & 4,09 \\ & 6,13 \end{aligned}$	3,21 4,82
Cygnes olur	$\begin{aligned} & 4,50 \\ & 4,80 \end{aligned}$	$\begin{array}{r} 1,50 \\ 1,50 \end{array}$	$\begin{aligned} & 11,55 \\ & 21,56 \end{aligned}$	$\begin{aligned} & 0,60 \\ & 0,60 \end{aligned}$	$\begin{aligned} & 18,45 \\ & 33,86 \end{aligned}$	$\begin{aligned} & 1,56 \\ & 1,85 \end{aligned}$	30,48 33,86

The composition of fresh bird droppings is shown in table VIII (Szuman 1951). I have accepted that during the vegetative season the production of excrement by grebes and mallard-is about 3.5 kgs , tufted duck; pochard and coots 2.8 kgs and swans about 7 kgs . From these values and the frequency with which these birds appear on a lake, it is possible to calculate an average
loading in kilograms/hektare (tab. IX) Therefore (accepting certgin discrete principles) these five species will give us about $10 \mathrm{kgs} / \mathrm{ha}$ of excrement in the course of a vegetative season. Finally I should like to underline two points. First, all my enumerations were made from average values taken from summarised data for the whole of Poland. This gives a general picture of the situation. However it does not always explain and sometimes may even obscure the picture which we would get through analysing a definite lake or type of lake.

Table VIII

(mposition of tresh binls-droppings fafter Szuman 1951)										
Gatubic -Specics						$\begin{aligned} & \text { 듬 } \\ & \text { 荷 } \\ & \text { 宮 } \end{aligned}$				
Colepbie - Pigeons	52	31	1,8	1,8	1,0	0, 1	1,6	0,5	0,3	2,0
Kury - Kens	56	26	1,5	1,5	0.9	0,1	2,4	0,7	0,5	3.5
Kaczki - Ducks	57.	26	1,0	1.4	- 0,6	0,1	1,7	0.4	0,4	2,8
Gçsi-Geese	77	13	0,1	0,5	1.0	0,1	0,8'	0.2	0,4	1,4

Table IX

	$\begin{gathered} \text { przedego } \\ \text { vy veren } \\ \text { nesting } \end{gathered}$	legowynesting	T, warto	cralue	jesiemyautuma	wartose-vilue	
			leorelycz:	pbserwo-		teorelycz-	oberyo-
)	Ya
			theoretieal	oblained		theoretical	- obtgined
Podictese cristatus	0,025	0,252	1,281	0,200	0,504	2,062	0,981
Fulica atres	0,673	:0,125	-0,932	1,031	3,100	4,837	4,937
Ainas pikty		-mbis					त ${ }^{5}$
yuchos'		147	1,187	0,536		1,716	1,065
Ay'Ayti ferinà	,	0,013	0,107	0,4	0,458	0.648	020
Aythya futigula	12	0,013	0,10	0,231	:0,343	576	. 700
Cymus ¢en	0,259;	0,084	0,588	0,966	0,034	0,95,	1,342

I underlined the relation between numbers and settling of birds with the size and character of a lake. The influence on food consumption as well as defects for given conditions will be much greater for a small pond-like lake than a large mezotrophic Iake.

The society is not the sole biocenotic function of birds, equally an analysis of the remaining dependent and influencing factors requires more elaboration.

Piśmiennictwo

Beitz W. 1965 - The Vügel des Malliner Sees und seiner Uragebung - Natur tond Maturschutz in Meklenburg Greitswald-Stralsund, 4:7-05.
Buzzaj, i. 1969 - Die Tafelente - Neucs Brehm Bücherei, Ziemsen Verlag, Wittenberg cutherstad : $1-108$.
Bochenski, z. 1950-. Proba analizy populacji ptakow stawow rybnych wolyszu - Ekol, PoI. B, $6: 269-280$.
Bulachuv, V. I., Mjasoedova, O. M. 1968 - Sostojanie zapasov vodoplavajušich ptic Leninskogo i. Duieprodzierzinskogo vodochranilisť - Resursy vodoplavajusčej dić v SSSR, ich vosproizvodstvo i ispolzovanie, I. Moskva: 77-12.

- Catanceki, Z. 1862 - Ptaki jeziora Goplo - Acta ornith. Warszawa, 6:181194,
Cerkasenko, N. J., Srebrodolskaja, N. J. 1972 .. Vodoplavajusce i bolotnyje puticy Volynskogo Polesia i ich ochrana - Kesursy vodoplavajuscich phic SSSR, ich vosproizvodstvo i ispolzovanie, I. Moskva : 66-68,
Danilov, M. N., Abakumov, V. V., Cernych, V. J. 1968 - Cislemost griezdiäščichsia utok v lesostepiom Zaurale - Resursy vodoplavajuşčej diĕ v SSSR, ich vosproisvodsivo i ispolzovanic, II. Moskva: 32-33.
Dementov, P. V. 1949-- Rukovodstwo po zoologit - Pticy. V. Moskva:850 pp.
Dobrowolski, ut. A. 1961 -. Wspotzależriose między typami Jezior Maziarskich a ich awifauna - Ekol. Pol A. 0: 90-112.
Wobrowolski, K. A: 1969 - Structure of the occurrence of waterfowl types and morpho-erclogical forms - Whol. Pol. A, 17: 29-72.
Drobovcev, V. 1. 1972-Učety vodoplavajušとich ptic v severo-kazachstanskoj oblasti - Resursy vodoplavajuscich ptic SSSR, ich vosproizvodstio i ispo:zovanie, II. Moskva: 13-16.
Dubovik, A. D. 1968 - O zapasach vodoplavajusčej diči ∇ basenie sredniey Obi - Resursy vodoplavajuşcej dich y SSE, ich vosproizvodstyo if ispolzovante, Ir. Mosköa: $37-38$.
Dunajewski, A 1943 - Ptaki wodne i ich znaczenie w rybactwie - Warszawa, 58 pp .
Ekmen, S. 1943 - Uber eine -spezifische Vogelfauna des eutrophen Gewässeriypus und jhre schwedische Verbreitung - Arch. Hydrabioi. 40: 743-753.
Gala Resursy vodoplavajutsecej dici v. SSSR, ich vosproinvodstvo i ispokovanie. x. Mosteva: 77-78.
Gavein, V, F, 1968-Ochotnixi vodopiavajušfje pticy Tenizo-Kigalzinstoi sisterny ozer - Resursy vodoplavajuscej dic $\nabla \mathbb{W} S R_{\text {, }}$, ich vosproizvodstvo i ispolzovanie, II. Moskya: 25-27.
Gotzman, J. 1965 - Enviromment preference nn the grebes (P coicipedidae) danis -breeding season - Ekol. DPol, A, 13: 289-302:
G6xsici, W. 1970 - Ptahi recerwatu "Jezioro Makiatowscie" poce Xoszalinem Notatki przyr, Poznañ, 4: 1-9.
Gyngrzov, A, M., Subin, N. G. $1968-\mathbb{K}$ charatitaristipe cistennosti guseobraznych bassena relki Tyma - Hesursy vodoplayajažicej diči v SSSR, ica vesproizvodstvo i ispolzovanie; II. Moskva: 40-s3.
Hanzáct J. 1952 - Rozširenie a ekologie roháe velkého - Poãceps ce cristotich: .. (L). w Cesloskowenska: 7-17:
Hobbs, N. 1957- Teeding associations between Coot and Titite Grebe -asit. Hixccs: 50: 35L.
morvath, In 1953 - Avifaunistic and ecologice conditioxs of the peat bor
region between the Danube and the Tisza - Acta zool. Açuc. Sci. Mutamiae, 3: 233-244.
Xvanter, E. V. 1972 - O vodoplavajusčich pticach Xarelskoi ASSR ... Tiesursy . vodoplavajuš̌ich iptis SSSH, ich vosproizavodistvo is ispolzovanic; l. Mostiva: 32-33.
Jab\}onski, B, 1969 -... Ptaki jeziona Jegocin i jego nadbrzezia (Muztiry pow, Pisz) - Acta Zool, Crecoviensia, Kruliow, 14; 1-19.
Jakubczyk, B. 1972 .- Liczebnote i xazmiesfezenie tyski (Fulica atra (L)) na miektorych jeziorach Pojezlerza Mazurgiciego, masz.
Janewski, K. 1965 - Pald olserwowane ma teremie Gospodarstwa Thbachiego Xrogulno - Acta orti - Materialy do awifaway Polski Mit, Wacsawa, 9: 151-153.
Janowski, K. 1967 - Nieitćre ptaki obserwowane w powiecie niemodińsicim W latach $1964-1965$ - Acta om, - Matertaly do awifauny Poiski V. Warszawa, 10: 243-253.
Jordan, J. S. 1953 - Effects of starvation on wild Maliards - J. Wild. Mgrat., 17: 302-311.
Kozlowski, P, 1967 - Materialy do avitauny powiatu Kartuschego - Acla orn. Worszawa, $10: 1-24$.
Kydyזale \dot{y}. A. 1 ege - Vodaplavajustaja dix na wysokogornych ozerach Són-Kul i Catyr-Kul (Tinn-San) - Fesursy vodoplavajnš̌ej dič v SSGณ̣, jeh vosproizvodstyo i ispolzovanie, II. Moskva: 13-14.
Lewando wski, A. 1904 Ptaki jeriora Manxy Pónocne (Pow Wegorzewo) - Acta orxi, 88 $+39-177$,

Meissnerownkt, $\mathbf{S}, 1066$ - Pfaki wodne jezora Tuczno pow. Meqdaychód woj. Poznafiskie - Roczn. wazzz. Sqkoly. min. Pounan, 32: 273-290.
 WSR Eomañ, 32: 213-238. 4!
Meissaerowsth S. 1966 -- Eqogia ptakow wónych na wyspie jesiora Gorzyńskiego - Foczn, WSR Poznañ, 32: 291-307.
Messnerowoki, S. 186f- Ptaki wodne jeziora Srodkowego pow: Mieqdzychöd, woj. poznanskie - Roczi. WSp, Poznań, 32: 239-255.

 Baryez valley in Poland + Brit. Birds; 55: 245-272.
Nedulnskas, wis. 1972 - Yodoplavazstaja dič ma zapovednom ozere zunintas - Resumy vodoplayajuscich whic SSSR, wh vosproizvodisty i ispolzeyanie, I. Mosko: 30-31.
Natecki, C. 1967 - Ptaki oknlic Chodeza wow. whoclawskim - Acta orn, Materialy do awifauny Polsci V_{n} Warszawa; 10: 268-279.
 zeistva - Resursy yodoplavajused dic Y, SSSR, ich vosproizvodstyo aispolzo-

Nowar, E. 1958 - Obserwacje ilosciowe nad ptakami jezicre Golcapiwo Zool, Pol. Warszawa, 9:161~176.
Nowsk, w. 1966 Der Drizno-See in Volkspolen, ein ideales Wasservogel-Natur-

Onno, S. de70-The number and distribution of the Estonian Waterowl euring the nestig season Waterfowl in Estonia red. Kumari, Tallin: $18-46$.
 2000° Penn: $17{ }^{2}$

Papatov, E. F., Golodusko, B. E. 1008 - Rol ochrannych meromidatij von vyseni bislemnosti nymkovidh utok i lysuchi na oz. Vygonolstom (severo-zapadmee Polese - Resursy vodoplavajušej dich v SSSR, ich vosproizvodstro i inpelquvanie, I, MToskwa: 20 --w. 29 .
Ravitir, su. S. 1968 - W. charakteristikie zapasov vodoplavajus̆cej cixiov jużaj tajge Sibiri -- Resarsy vodoplavajušecj dict y SSSR; ich vosproizvodsivo 1 ispoizovanie, M. Moskvn: 39-40.
Reitz, W. 1906 - Die Vögel des waltiner Sees und seiner Umgebung - Natur . und Thiurschutz in Mectlenburg. Greifswald-Stralsund, 4: 7-85.
Renno, O. Ja, 1972 -. Vodoplavajušte pticy vnutrennych vodojemov y Estonslioj SSR - Hesurgy vodoplavajušich ptic SSSR, ich vosproizvodstvo i jspolzovanie,

1 1. Moskya: 47-50.

Reva, P. P., Samerstcij, S. L. 1972 - Gnozdovane vodoptavajuščich ptic na Kremencugekom vodochranhiš̌e - Resursy vodoplavajuṣ̌ich ptic SSSR, ich vosproizvodstyo is ispolzovarite. I. Moskwa: 72-74.

Schildmacher, H. 1920 - Uber den Warmehaushalt kleiner Körnfreszer:Orm. Monatsber. 37: 102-100.
Skxjabij, N. K. 1972 - Cislemnost vodoplavajuš̌ich ptic na Bajkale - Resiursy vodophavajuš̌ich ptic SSSR, ich vosproizvodstvo i ispolzovanie. II. Moskva: 66-67.
Sobezyk, R. 1972 - Jiczebnosé i rozmieszczensie perkoza dwuczubego (Podicaps cristatus I.) na niektbrych jeziorach Pojezjerza Mazurskiego - masz. ${ }^{*}$
Sokolowski, J. 1967 - Perkoz diwuczuby. - Waszawa, 88 pis.
Solomatin, A. O. 1968 - Značenie Naurzumskich ozer dla yodoplayajusẹej dici - Resursy vodoplavajušej, dǐi v SSSR, jch vosproizvodstvo 1 ispolzovanie, II. Moskva: 21-23.
Strautuan, E. J., Stepanov, Ju. 1568 - Cistemnost lebeiey na vodojemach Kazachstana. Resursy vodoplavajus̆čej dix vossf, ich vosjroizwodsto 1 istrolzovanie, MI. Maskva: 18-a1.
Szijis J. 1963 - Bestand des Höckerschwans (Cyonus olor) am Bodensee - Die Vogelvarte, 22: 34--88.
Sijij, J. 1905 - Okologische Untersuchưngen an Entenvögel (Anatidac) des Frmanger Beckens (Bodensee) - Die Vogelwarte, 23: 24-7i.
Szuman, j, 1951 - Dupbiarstwo - Warszawa: 594 pas.
Vinog adow, V. V., Bondarev, D. V. 1972- Cnezdovanie vodoplevajušicin 1.okolovodnych ptic na.severo-zapadnom pobereze Kaspia - Resursy vodoplavajustich ptic SSSiz, ich vosproizvotstyo i ispoizovanie, \dot{x}.
 $\therefore 1964$ Acta onn - Materialy do awifamy pots dat, Wa-seawa, e: 160-a7a.
Wobss Y 1064 - Zur Biologie von Fablontachar (Podiceps cristatus) and Rothaitaucher (Podiceps ofiseigena) und ihrer Verbreitung ám Kreis tiesici Ober-

Wolk, Efl968-Awifauna jeziora Ostrowo w poswiecie Kamen Pornorski - No: A tatk oxi. Warszawa, 9: 69-77.
Zaject 1965 - tabedz niemy (Cygnus otor) (Gmelin) w polnóno-zachodniej Folsen-Acta orn. Wanszawa, 7: 221-252.

Fig. 1. Rozmieszczenje ombwionych w opracowaniu jezior i stawow
Location of lalres and ponds diseussed

 rymuin (Solomatin 1stas, x - feriora: Bolsoj Kujas, Mialyj Kujas, Tainaust Kabarie,

 43 - Jexioro casawskie (K a

Ostrowo (W oik 1568), 50 Malliner See- (

 choskowacjl i Niermectiel Fepublice Demoiratyezaej (sezzel jags)

 dzerzysscy

 (Sobszyk unpubi, màt, Jabubezyk unpubl. mat.), 35 - lake Sniarđwy (Sobczyk unpubli, mat.,

