

F．BA．盾 F．Spawn， 1965

Experimental research．
a）Material and method．

Newly caught，not too heavily concentrated plankton samples were transported live from the Bodensee（Lake Constance）to Falkau within a few hours and by night during the warm season of the year．Then greater number，several hundred Eudiaptomus gracilis females，which carried no eff sacks，and a similar number of males were isolated and distributed among several bowls containing 50－100 com Bodensee water，each bowl receiving from 50 to 100 pairs．The water in these maternal bowls was renewed daily by about 90% ．At the same time the animals were fed with a few drops of bright green chlorella－or mixed algae culture．Dead individuals were picked out once or twice daily．As soon as females with egg sacks could be spotted under frequent controls of the maternal bowls， they were caught and distributed in special culture bowls，so that the duration of development of the eggs under certain environmental conditions． could be observed．1－4 females，that were found with egg sacks under／in the same control interval were put together in a culture bowl containing 25 to 50 ccm water．Feeding was as for the maternal bowls．

Since the possibility of varying reaction norms had to be taken into account for the different seasons（different generations）；four expert－ mental groups were run at different times（October and November 1950 ， April and August 1951）．In October 1950 similar material from the Schleinsee was examined，a small，moderately eutophic lake about 10Km inland from langenargen．
b）EgG production of the isolated females．
Table 1 ．gives a synopsis of the egg amounts produced by the isolated females．In all experimental series，by far the most eggs were laid in the first four or five days by the isolated females，after that only a few．The maternal bowls were kept，now warm，now cool．On the first three experimental groups，neither a significant influence of temperature nor the influence of day or night，could be observed on the rate of egg production．In August 1951 fewer egg sacks were formed during ex－
nosure to cold ($\left.7-9^{\circ} \mathrm{C}.\right)$, but here one has to take into consideration that the whole life process is slowed down with lower temperatures, so that the relatively few numbers must not lead one to the conclusion that warmth has a stinulating, or cold, an inneding effect.

Within the first 24 hours after isolation, the number of eggs per sacir in Octoher 1950 and August 1951 averaged eight to nine, in November 1950 and April 1951 only about five, which was probably effected by the respective condition of the population in the Bodensee. Where a sufficient nurber of eress was laid several days after isolation, a decroase in the number of epgs per egs sack for these cultures became apparent, especially in August 1951, when the decrease amounted to 50\%. Possibly the reason for the cause might be found in insufficient nourishment of the females, or in the produce of the metabolism, event. it may be a space factor. The percentage of egR laying females in the cultures varied from between 5.5% (Nov. 1950) and 35.3% (August 1951).
c. Dependence of the development duration upon outside factors.

Basis of calculation.
Table 2 shows the results for the separate experiments, ordered according to the average temberature of the cultures. Since, with the, exception of one thermostat which could only be used for the highest tem. perature experiment, no apparatus was available for setting constant temperatures, stapes, or gradjngs of temperature were achieved by the expedient method of locating the experimental bowls in various places. Unfortunately jt was not always possible to avoid relatively strong diurnal amplitudes in the various experimental series. the lowest temperacure, according to the scason of the year, was in the cellar of the sta:ion, or in a cysterm fed by spring water. In both these places the daily range of temperature was small. (in the cellar it varied from 0.1 to $0.5^{\circ} \mathrm{C}$. in the cystern it was practically 0). In the cystern the experimental bowls stood in a flat, enclosed tin, half filled with water, which floated on the water of the cystern. The cystern itself was covered by a heavy cement lid. The experiments in the darkroort were subjected to sinall diumal variations; whilst those which were situated in rooms known as the 'laboratory' were subject to a stronger variation in the course of the daily rhythm; the variations in the attic, especialily in the north-facing double glazed window, were quite considerable. In the cold storace chamber variations were irregular being a succession of slow-warming and rapta cooling periods. The strong variations in the "heating chamber" - boiler house - were also irregular. With the thermostat the temperature remained within a range of $1^{\circ} \mathrm{C}$.

The averape temperatue as given in Pable 2 can have dixferinp interpretations. Therefore the measured minimum and maximum temperatures are given for each single bowl between the time of isolation of the egg carryine females and the appearance of the last nauplius, for each emperiment, also the magnitude of the daily range/amplitude. In the calculations of the average temperatures, the temperature in the maternal bowls between the last but one control and the isolation of the egg
carrying females, was taken into consideration, i.e. the temperature even before the beginning of the actual experiment. Ghis would explain Why the average temperature for cultures subjected to the same temperatures may differ, especially when the experiment temperature constancy is great the averafe temperature may even die outside the minimal and maximal temperatures (e.g. Table 2No.21),

The development duration was calculated as follows: the minimum time was the number of hours between the discovery of the egg sack, i.e. isolation of the erecarrying females, the last control before birth of the first nauplius; the maximum was the number of hours between the last control before the formation of the egs sack- i.e. the last but one control: before isolgtion of the efg carryine female, find the first control at which the last 'experiment' egg was laid. The average is the avernge of both-values, taking into account a strong distribution and the time at which the majority were'barn; hatched. (meaning could be'laid').

The development duration, in hourly stages, was calculated by multi.. plication of the respective average temperatures with the number of hours, from contōol to control, and finally summed up. Minimun and maximum values were calculated hourly but in the same way, but had to be omitted from table 2 owing to lack of space.
b) Results.

In general, all egiss of a female were laid in relatively short time, frequently within a few hours. Also individual females of the same experiment showed little difierentiation in the develomment time of their efrs. The differences between the minimum and maximum values are determined by the varying time intervals between the laying of the egr and hatching, which may be determined by environmental factors, and the time of the following control. The actual distribution is smaller.

Jet us next examine, if, apart from temperature, there are other factors, either in nature or in the experjment, which respectively can vary or chance the duration of development significantly (to our purposel.
The relatively small quantities of water cannot be of any account in the experimental bowls, since in laxger bowls (about 100 cm per female) the times were the sarne as for the smaller bowls containing four to five females in $10 \mathrm{~cm}^{3}$.

Also the health and nourishment-condition of the mother after the formation of the egs sack is without signifjcance since the eggs of females that died in the exneriment or of females that were not too funcified- hatohed simultaneously to those that still had a healthy, actively swimming mother. Similarily there was no difference between fed and un-fed cultures, the egg sack, or sinfle esgs lying on the floor; or on egg sacks carried by their mothers. There could not have been a lack of oxygen in the flat experimentil bowls. Since there is also no oxyren deficiency in the Bodensee Obersee, the subject of development retardation through lack of oxygen was not investigated further.

In general only those eggs, or egg-sacks produced by mothers in the first three days after being caught, were used in the experiments. In
some cases, when material was scarce, eprs laid after the third day in captivity (λ three days) were used, partly, even when the number of eggs per egg sack had begun to decrease- Table 2: No. 1 (7 days), 16 (4 days), 25 (5 days), 26 (4 days) and 59 (5 days). Most of these experiments revealed a somewhat longer development period than those conducted at the saine temperature but which used earlier laid eggs, - even though the variation scales for the copmared experiments do largely coincide. The differences are negligible, almost on the fror margin, and will not need to be considered further. From the physiological development angle, however, this question deserves further investigation of note was, that after a longer period of captivity ($>$ three days) the number of eggs per ferale and egg production in general not only declined considerably, when conditions were unfavourable, but also an increasing percentage of laid eggs died.

The four different experiment series - using material of the different seasons, gave almost identical results. The variation margins of conparable experiments (similar temperature in Table 2), coincided in all cases, - in most cases almost completely. The rajority of the August experiments gave somewhat higher average values than the April experiments, whilst the October and the Noveraber values, at least in the lower or the middle temperature range, were closer to the april values. The difference in the average values are, however, so negligible they will be of no further account to us here. The question of variable reaction norms in the different seasons is still to be s ubject of research. Those few comparison values obtained from material sampled from the Schleinsee coincided likerise to the variation margin given for the Bodensee animals, but on an average are lower. These differences are still within the error amgin of the 'method and are again of no significance to our problem. The question, if the rate of develoment of Copepode ergs is type-specifically the same in all waters; or if the same types/species develop differently in different waters must still be the subject of further research.

As a result of the of necessity differently located cultures, those experiments which had high or low temperatures were in darkness, those having more average temperature were mostly exposed to normal daylight. A glance at table 2 will show that the light- and dark experiments can be ordered clearly into a consistent curve. Some experiments conducted for comparison in the middle temperature range, e.g. table 2 No. 35 and 36 (light) and 39 and 41 (dark), show clearly, that noxmal daylight, i.e., a normal day and night rhythm or total darkness do not significantly affect the rate of development.

Finally the effect of water of varying quality in the experanental bowls was investigated. Bodensee (B) and Schleinsee water (S) had a carbonate hardness varyinf from $6.7 \mathrm{DH}^{\circ}$, and in the experimental bowls had a pH rating from 7.5 to 7.6. Against this - table 2, No. 37, 38 and. 39. 44 Falkauer soring water was used (Q) of only $0.7 \mathrm{DH}^{\circ}$ and $\mathrm{pH} 5.8-5.9$ at the beginning, rising towards the end of the experiment to 6.0 . In addition it was weakly (humos) humic? By addition of HCl to Q, also B , the pH value could be adjusted to 5,6 , or 7 , and through Caj (PO4), to 8 .

Fut it seems that oH and calcium content do not have any effect on the rate of develomment. With a $p H$ of 5 several ecgs died during their develoment, and those hatched died within a few hours or days respectively. In the sprine water and mixed water as with all pH values between 5.8 and 8.0 they lived just as long as in the Bodensee water.

It seems that temperature is a key factor upon which furiter obser.. vations and calculations will have to be based. A comparison of experiments havinar almost constant temperature with those subjected to stronr fluctuations shows, that the determinating factor is the average temperature. Svecial investigations will. have to show how development is affected by ditierent fluctuations of the same average temperature, and whether the differences are narked enoum to be considered in our work. It must be montioned that also in noture adult anmals are subjected to temperature flucturabons, which vary, with the seasons, but wich are rost marked in summer. when there may be a considerable tompersture rance. At the mowent only the averase temseratraves will sutitice to our purwoses.
 noon temweratiore, but becsusa individual values are so dispersed, we took the average devenoprent duration of several individual experiments conducted at the same temperature taking into account the respective number of eges. Unfortumately the graph line between 5.6 and $4.75^{\circ} \mathrm{C}$. is determined omly by a single experiment with 5 eges; this because we did not have the apparatus during the (warm) seasons of the year which could maintain a tomperature which averaged below $4.75^{\circ} \mathrm{C}$. The continuance of the curve had thus to be "extra' polated hypothetically. Unfortunately calculations on eig production in winter do not thus have a very firm basis, and it is hoped to conduct additional experiments to fill the gap. But from the form of the curve it seems unlikely that the eventual correstions will change the present picture much.

In fish-biology it has been customary to calculate development tire in "degrees of $a \cdot d a y$ ", even though more recent investigations by Anmann (1948) and Steinmann (1950/51), have shown that the product of tenperature and developemnt duration is by no means constant. iccording to Amann
 and by an average temperature of $7.3^{\circ} \mathrm{C} .568$ day degrees. Changes in temnerature and daly degrees run parallel to one another. lhings are different, however, with budiaptomus gracilis : Also here the product of temperature derree times hours. is by no means constant for various temperatures, but decreases with increasing temperatures, as shown in table 2 and Fig. TB. Between $4.75^{\circ} \mathrm{C}$. and $23^{\circ} \mathrm{C}$. the number of hourmdesrees decreases by about half, whilst the absolute number of hours decreases to about 1/9. More. information concerning these relationships will be given on the basis of nore extensive research material, when this is available. In futube we will not speak of hour-defrees.

The curve $1 A$ serves as the basis for all subsequent calculations. In order to enable a better comparison with parallel experiments in other waters, table 3 gives development times interpolated for whole degrees.
2. The replacement coefficient of egos in nature.
2. The renewal/roplacement coefficient of eges in nature.

It is more difficult to detemine the absolute figure for eng production in nature. For this we need the absolute ers number/m 2 and the develo ment duration, respectively, the knowledge of when and in What tine the quantities of egss contained in the plankton samples hatch and becone replaced by new erros. In this section we will deal solely with the roplacement coefficient, which was calculated from the development duration of ecess at various depthsfor periods of 10 days. Through multiplication of the known efg quantities with the renewal coefficient it would then be nossible to obtain the absolute egf production over a period of 10 days. We chose the 10 day value for the sake of easy calculation of production over any desireable interval.

The bases for calculation are illustrated again in table 4 using the example from the 22. 8. 1934:

> Table 4: Calculation of the renewal coefficient of the eggs. Catch: 22.8 . 1934 obersee, HUhe, Langenargen. Averages obtained from pump- and net samplings,
> weather: $9 / 10$ cloud varying to $5 / 10$, cumulus, some sunshine, wind SSW $0-1$, time $15.45-18.00$.

From the individual 'closing'(draw?) net and pump sam ples the absolute numer of egrs under. $1 \mathrm{~m}^{2}$ was calculated separately for each Jayer - and from the simultaneous temperature measuremnets, the average temperatures as also the development duration of ecgs for each depth layer was calculated. From the number of erms and from the development duration one is able to find out, for each layer, the absolute increase of nauplia in 10 days. Leg as well as increasemumbers fox all depth layers wexe summed up and the total increase was calculated as a percentage of the egg numbers. The hundredth part of this value gives the develonment coefficient for 10 days for the whole vertical column, under the condition, that the vertical distribution during these ten days has remained constnt. But this assumption cannot hold. Table 4 shows how greatly the rate of develonment of eggs changes with depth. In winter, vertical differences do not exist owing to the absence of significant' temperature stratifications and the diffuse scattering of the egg carrying females; especially after heavy storms, over all depths. During the warm season, and as long as the lake has temperature stratifications, the differences in the vertical distribution of eges must be considered in relationship to their spatial distribution in various parts of the lake, also time, as a factor in the daily rhythm as well as various meteorom logical and hydrographical conditions. Thiss is only possible to a certain degree owing to the continuously changing conditions of the lake. Concerning the vertical distribution of the Bodensee Zoo-plankton, more detailed information will be given sepacately. For our immediate purpose, all (closing) net and pump samples taken from the Obersee from 1932 till 1935 were tabulated, as in table 4, and on this basis average values were formed for the periods under consideration. Lokal differences were partly taken into account, but the great majority of samples were taken from the middle

Obersee, i.e. from the repion between Langenargen, Roschach, Romsnshorn, Sriedrichshafen. The Uberlinger lake often showed deviations in its hydrocraphical and biological stratifications; in relation to the open Obersee, its area, and thereby its influence on general conditions, is small. From the open Obersee a great number of calculations from its central area should be sufficiently representative.

The daily vertical migration of the egr laying females was taken into consideration when several 2^{4} hour investigations showed, when they were analysed, that changes from day to day occured, within a variation band of the vertical distribution, at the same hour, provided that similar weather and hydrographical conditions prevailed. The average values ofvertical series conducted at different times throughout the day and under varying meteorological conditions reflect quite closely, for a given period, the predominant average conditions between morning and evening in the lake. In several cases the egg carrying females were lowest in the morning, and then rose during the day, but especially during the afternoon, a little higher. At about midday the 'average depth' was reached, which corresponded to the daily mean. So, kost samples were taken at this time, when there was an average daily distribution. Moreover, especially with differentiated pump samples, the constant change in the vertical distribution of the females is only slightly reflected in the renewal coefficient (Ek) of the Eudiaptomus ergs, since the sreater part of the mother animals constantly (i.e. day and night), stays in the warmer zone of the lake, resp. in the Enilimnion. From November, even from October onwards till often into the middle of May, there is no difference whatsoever betveen the day and night values of the ek. Then the daily amolitude of the sik increases till the hifh summer daily minimum of plankton, which was ascertained jn most years. When, in autumn, the zooplankton is higher also during the day and the upper layers of the lake begin to cool, the daily amplitude of the Ek, resp. the rate of develonment, decreases. Table 5 gives an examole of the daily amplitude in the high sumer of 1932 and includes a thunderstorm which also gave rise to wind towards evening, which, in the course of a whole night drove a proportion of the mother animals from the surface layers of the lake, ((1) - 5 m.). The few'exhibits' obtained by depth- samplings could have entered the net at the surface which was unavoidable owing to the waves and the darkness. They are of no import to our observations. But even if all mother animals had concentrated in the upper 5 m. , the Ek could not have been significantly higher than in the late afternoon.

In the calculations of the daily avarage values one could assume generally that the greater part of the mother animals were concentrated at might, from sunset to sunrise, in the upper 10 m. , by calm, in the upper 5 m ; of the lake. The daily values, sumrise to sunset, taking into consideration the length of day and the temperature stratification, resp. the daily amplitude of the coefficient, were corrected/adjusted.

Fig. 2 gives the average monthly mean of the fle for the years 1932 1935; the minimum lies in the months from January till Varch, - the maximum in the months July and Aurust. The sharpest increase takes place in May and June; the sharpest decrease in October and November.

In indjvidual years the course of the Ek curve may be quite different,

- as shown by Fir. 3. In order that a fuller understanding of this will assist future calculations and observations, this curve will briefly be analysed:- The winter minimum is the most regular section of the curve. lhe other sections of the curve vary from year to year. The Elc is dependant on the state and thickness of the Eqiljmion (ivind and cool weather) and also esp., on the presence of a surface- "leaping"- layer (?) (still and sunny weather), and also on various vertical distributions of the mother animals in the different years.

In 1932 we found, durins quilet, sunny, weather, above average surface temperatures and belon average (10- and 20-mio. temperatures. Till. September, the surface "leaping" layer maintains itself. The mother animals remain at a very high level even durjng the day. Their life process is hastened by the higher temperatures of the layer inhabited by them, so that we found in theyear 1932 the shortest develomment tire and the highest Ek values of all the years under study, Even in December the Ek curve lay above the mean.
1933. From April till June, considerable exchange in the upper layers was incxeased by strong winds and the surface temperature was lower, however, the 10 and 20 m . levels had a higher temperature than in the preceding year. To this we had to add the diffuse distribution of the mother animals till May. Only at the end of June did the female animals concentrate during the day in the upper layers provided the weather was was calm. The ik values therefore increased strongly at this time. ?lhe renceved decline in June and August was caused by the occurence of an unusually cold spell in the weather. Coolins of the upper water layers and the descent of the female animals to lower depths occured thus simultaneously. Even though the surface temperatures as well as the temperatures of the next depth layer down to a depth of 20 m . sunk a little more by the end of Sentember, it was only then that the Bk values resched their maximum, since, at this time all mother animals were now cancentrated in the top 5 m . ! This distribution was also maintained throughout Octoner, but now a rapid decilne of the 环kalues set in as a result of the rapid cooling odf the lake. Below average surface temperatures in December caused exceptionally low \mathfrak{l} values to be registered.
1934. In spring, temperatures at $0-5 \mathrm{~m}$. denth rose more auickly than $i n 1933$, but in the lower level they were sitnificamtly colder. Since the females, partially and in varying percentages remained in the colder layers, the spring ascent of the curve was flatter. In July the majority of female animals were found in the lower or the middle part of the "leaping" layeri* That explains the lon value' of the July ibl, when kduriv daghme. compared with the other years, even though the surface temoerature was high! Only in August did the female animals remain during the day in the upher layers. She curve reached in this month the yearly maximum, which, however is below the maximum for 1932 and 1933. The cooling of the lake jn September and the markedly diffuse distribution of the female animals. rave rise to an interim minimum, whilst in october, a second maximum is reached as the mother animals concentrate in the upper water layers. The notable decline in the second half of October was again caused by cooling of the lake and more diffuse distribution of the female animals.

In the midale of November 87% of the eprs were found apain in the uwoer 5 m . so that the steap incline of the curve was temporirily interupted.

The year 1935 provided us arain with some very different results: Strons storms caused intensive circulation in imarch so that the plankton (zzo mlankton) was distributed evenly at all depths. Also April was cold and stormy and circulation continued at deep levels in the lake. fis the temperature was very much below avenage the April values of the blk were comparable to those of winter: However, the maximum of the year was attained already at the end of June! The maximum is the lowest of the compared years .- the lake had not reached its maximum warnth and also the female animals were not concentrated in the upper layers to the same extent as in the other years at the time of the maximal jik values. The following decline was effected by the depthm mimration of the mother animals. Only in the Uberlinger see-lake were conditions different: In this like temoerature at depth was considerably higher this year and the mother animals'remained higher up so that the El value was almost, more than double that of Laneenarpen. How long these conditions in the Uberlinger lake were at variance with those of the Obersee, was, unfortunately, no determined. Galculations for the year 1935 were based almomost excluse.ively on samples taken. from the middle obersee. Ho adjustments were thus calculated for the Uberlinger lake. The autumn values of the the were again aproximately normal.

Ahready this short summary shows that the life rhythm of the Eudiaptomus population differs from year to year: sojourn jn higher temperatures does not only cause the eges to develop more rapidly, but also accelerates the life process of the whole population insofar as its members remain in the warmer regions.

Het us now examine how these differences affect propagation or destruction.

II Fundamentals of Population Dymamics.

1. Calculation Basis.

As has already been mentioned, it is only with great reservations that single samples can be used for biolorical production calculations. Thus, from the begirning, samples taken within a short time (within a week or 10 days) were grouped (single "group values" given in Figs. 4 - ?). But also these mean values showed themselves to be partly dissimilar because some of .them were based on too few individual samples. For this reason, monthly averages were calculated; namely from the 15 th to the 15th, so that the mean values would be valid for the first of each month. Unfortunately this results in a considerable flattening of the curves and the disappearance of some individual details. When faced with the diffi.culty, however, of providing plankton data which is representative for the whole lake, it is nevertheless better to ontain averaged values for biom lofical production calculations over a longer period, than to have many individual values which in therselves could deviate considerably from the true average. It might be recommended for future work that a number of samples necessary in the calcualation of the true average value, are. pooled to facilitate the work of counting, so that it will be possible
to obtain the averafe values from the outset, provided naturally, that one can dispense with an analysis of the locational and temporal differences for indivicual samples.

Difficulties also arose in the comparison of the closing net samples taken in steps, with the 0 to bottor sanyles, since the stepped sampes hac a lower clos inm-uo factor. From a number of simultaneous parailel sambinss which vert distributed over the the whole research period, a curve could be constructed to show the strongly variable differences between the $0-$ bottom and the stepped samples, according to which, corm revtion ractors were calculated for the intermediately placed individual closing net samples- without a simultaneous 0 to bottom control. Insofar as values are given in the curves which are based but on a few or single samples only, then they are marked by an *.

It must be stressed again that one must not expect too much from these numerical values. Quite appart from difficulties arising from the apparatus,
the constantly changing, complicated plankton distribution necessitates certain reservations to be made. Individual details in the curves would therefore cause uncertainty, but the assumption might be justified; that they reflect actual conditions, at least generally.
the absolute increase in the population per month was determined by multiplication of the average number of eggs for the resp. month, with the threefold value of the calculated egg reproduction rate (Ek) over a period of 10 days. The calculated increase minus the observed actual difference in the population provided the number of destroyed animals per month (VZ).
2. Annual means.

Table 6 shows the composition of the population under one square meter in averages of monthly means for the years 1933 till 1935, (all monthly means).

The monthly increase and destruction figures (the neglisthle difference between the two is explained by the differences in ponulation at the beginning and at the end of the period of observation) are therefore of the same magnitude as for the average total population, that means, the average length of life of all individuals was about one month, The number of engs is on average about trice as great as that of females. The Elk. (Dcvelopment coefficient) of the eggs averages 3.3/nonth. Each female thus produces on averafe about 6.6 eges per month. The total number of Jauplia which hatched in one year was about 30 times greater than the averace number of females, resp. 40 times greater than the averge number of adult animals of both sexes. If the Ek of the adults were known, we couid calculate from the numerical relationshig of the hatched Nauplia: adults approaching puberty, the avergae destruction figure from one gene.ration to the next.
Table 6. Average values for the year.

If the destruction fifure (VZ) were 0 , resp. if all antimals died as adults at the physiolosically determined age, then the percentare of the development stares would reflect the relative development, resp. the length of life of the group concerned. If, on the other hand we knew the lenoth of the individual stages, then it would be possible for us to detemine from the numerical relationships the $V Z$ of each single development stage. Both ways are recurrently described in literature. It is impossible, however, to deduct from laboratory experiments the skinning intervals in nature, since these, appart from temperature, depend also among other things on nourishment, conditions which could hardly be reproduced or compared (among others, Elster 1936), nor is it possible to deduce from situ observations, i.e. from samples, statistically the rate of development, as will be described below. In general, we can however, assume from experiments with other species of Copepodes, that skinning intervals lengther with increasing age, that under similar environmental oincumstances the Gopepodit- Period is longer than the vau-plius-Period and that the maximal age of the adult animals is again lonser than the Cpepodit-Period. Then the reduction of the average figures for Nauplia- till adult, is a first indication, that the VZ is already quite substantial during the developnent period. Thus the turnover coefficient is highest for the younger stages and sinks considerably as the animals fet older. It is therefore not possible to apply the expectancy of life of a newly hatched Naplius, which was given above to be about one month, without further consideration to the whole biomass of the population. In order to understand these relationships a little more fully, we will have to examine the individual years more fully.

3. Variations in the Population of Adults.

Figs 4-7 (S. 590/1) show the individual monthly means of development stares which could be distinguished duxing counting, more faintly are also included the individual group values for 1932-34, so that appart from the monthly means upon which all calculations are based, it will be possible to consider several deatails.

Our research work was begun with the assumption that all curves would show a clear rhythm in the yearly cycle, so that it would be possible to see propagation periods, the development and the death of individual generations. Then one would have to analyse how the biological rhythm 'fitted' into the hydrographical rhythm. Comparative experiments in other lakes wereto show the plasticity of the biological rhythri of the individual species depending on diffecent environmental conditions.

A first glance at the totality of curves from 1932-35 revealed, however, an unexpectedly different picture. The curves were so different from year to year and apparently were ouite independent from one another, that at first sight it was difficult to any parallels between the years. The most regular curves were for the adult animals. At all times fully grown male and female animals occur in the lake. Two maxima were found in all years: a larger in winter and a smaller one in surmer. 'rable 67 shows not only the time but also the numerical magnitude (individuals within 1 square meter) of the individual maxima for the years of research.

Table 7 Extreme values of adult population.
The tine and marnitude for the first maximum lies fajely constantly in february, the first minimum varies in time between May and July also quantitatively. The figures in table 7 are lower as the minimum is later. One could assume that this is a result of the continuing losses of the winter renerstion and the delayed ascent of the summer generation, the few fimures in hand are not sufficient, however, to allow any conclusion to be based on them. The summer maximum occured in three of the four years in July with an noticeably constant number of individuals of 36000 to 39000. Only the year 1934 deviated entixely, both in time and quantity (25000) in month IX. The delayed and low value of the first minimum indicates that the whole develoment. rhythm was shifted forward this year, and it now seems more likely that the conditions for develorment for the animals during the second summer maximum were abnormal. Also the second minimum in 1934 was somewhat delayed in comoarison with the other years but has; considerably greater numbers than that of 1932 and 1933. Here the cause is without doubt the delayed maximum which had not subsided completely, whilst the winter generation which in 1935 attains the highest maximum for all the compared years is already in coming.

Is this relatively weak, but nevertheless clear and relatively constant rhythm of the adult population variation, to be explained primarily as the biolopical. cycle; or is this rhythm depndant on environmental conditions?' Is the variable hight of the individual maxima a result of the varaible eff production of the preceding generation? In order to be able to answer this question we will have to investigate the individual propagation periods as well as the destiny of individual generations during the time of rescarch.
a
4. Propagation-intensity and Eggmproduction.

Let us first find outhoroduction of a single female in the yearly rhythm. the average number of eggs per evg sack i.e. per"Gelege" is very variable in the individual months, variations occur also from individual to individual and may be considerable. Unfortunately only a small part of the original Countings-lists which contained data on the number of eggs per egf sack, were saved. Some periods do not, have, therefore, sufficient statistical material. Ne vertheless it is possible to read the following general characteristics from the available data:

The number of eggs per egR sack in the Obersee can vary from 1-14, in seldom rare cases to 15. The most frequent number on avecage is 6. Kge sacks with 6 egis or less can be found at any time of the year, even when all cases were exempted, in which part of the "Gelefe" -Total number of efres- had beer laid, which could be seen from the empty envelopment jackets or from the arrangement of the egrs. The greatest egs numbers, especially values above 10 , do not occur when the average values are low.

The yearly cycle begins mostly with a weak January maximum (avergae
5-6). There follows a decrease to a mimmum at the end of the winter
period (average 3-4), mostly in Karch, in the case of 1935-as a result of the strong (lake) circulation, till Anril. After this ninimum the number of eres increases rapidy with the increasing stability of the lake in sumer so that an eariy summer maximum is reached in hay - June, (mostly between, in 1934 7-8, 1932 and 1935 8-10). This j.s again followed by a decine which was variable in the compared years. In surimer we often found strongly varying values within a few weeks having short lived intemed iate maxima of different heights. Quite regularily such an intermediate maximum occurs in September, especially noticeable in 1935. In all years there was a strong decline in egr production/numbers till an autum minimum was reached at the end of October to November Averare 3-4), from which, during December, there is an ascent towards the January maxinum.

If we were to ask for the causes for these fluctuations, we know as yet too little about the effect of wurely physiological factors, e.g. of the individual age, of Eudiantomus gracilis. Snecial finvestigation is here necessary. Some incidental o bservations speak for this, that the "Urimparae" lay at first relatively fewer eggs than the older animals, but we have no indication that the "Gelege" of old females show declining efg numbers.

It is also not possible to define a clear relationship between the rhythms of population density, and the number of erss per "Gelege". The maximal nuber of epers per efeg sack were mostily observed during the period of ascention before the maximum ponulation is reached. The early sumper maximw minimum of females produces the highest egs number's, the autumn minimum of females with the minimum number of eggs (pege 5704 th para.).

Fut it can be said with certainty that envirnmental factors, especially the nourishment factor, have great influence. This is shown not only by the above described culture experiments (Side 555, and table 1), but also by a comparison of the epg number of Eudiaptomus gracilis of the oligotrow Obersee with those of the eutrophic Untersee, in which the values attained are at times almost double those of the former and where maximal numbers of >30 are reached. Yes, under certain limitations it is possible to take the mean number of egrs as an indicator of the trophic-ness of a lake, resp. the faxourable or unfavourable nourjshment conditions of n lale. Also the rhythm of the number of egrs per "Gelege" in tre ubbersee seems to be intimately related to its hydrographical rhythm and its consequences: This is indicated by the minima at the end of the winter circulation and again in himh-summer, at a time, thereiore, when most animals are especially deep and thus swin during the day in layers noor jn nourishment. After the exteaordinarily intense and prolonged circulation of the lake in 1935, also the average numbers remained low for a lone time, and even in April efg sacks containing only one egg were most frequent as a proup! The Noverber minimum which occurs in Novpmber of all years cannot be easily explained, since, for the time-being, we know too little about the nourishment conditions at this time:

The percentage of erg-carryine females can also not be stated accurately, since the lists for this have mostly been lost. From table
from table 8 we can, however, read the quotient, total number of eges: number of females, and by dividing with the average number of epss per egr sack calculate the aprowimate nercentare of efe carrying females. In comonf for all years, the guotient minimum - total number of egms:number of females, Jies in November. There follows (1933 very weak) a winter ascent, a (1935 especially marked) interim minimum in Herch (1935 also in Arril), and relatively hish sumer numbers reachinm their maximum in Sentember. Also in tay (1932 and 1934) resp. in (1932! 1935?) June an early sumner maximum may be distinçuished. 'Ine total egg numbers/females run aproximately parallel to egg numbers/efe sck, this depending more on the propagation intensity of the roe carymig fenales, and less on their proportion to the total female population.

If we divide the total number of egs /total number of females, by the averace number of eggs ner "Gelege", we find that in winter about one half, in January 1935 nearly all females carried one ege sack. In spring and early sumirer the percentage can decrease to about 25% and remain about the same until autumn. In November the provortion of efg carrying females may sink as low as 10 - 20\%. If we are to assume that the pauses between two Gelege are dependent on temperature in the same way as the rate of develoment of eggs, then the percentage of egg carrying females can also be a scale to show the number of 'roe-mature' ferales. Then the percentage of fully mature females would be 'loyest in November. In danuary and february the winter generation of adults consists almost entirely of fully niature animals, whilst in other seasons there is a changing and jn general somewhat higher percentage of young, not yet mature (or too old?) females.

The total numbers of eggs and their variations can be seen in rig. 4-7. If we ;ompare these with the curve of the adults we can see notable differences. The proportion of females to the total population usually anounts to 50% in most months- all months, taking int:o account samoles from all depths and as preat as possible a number. Independantly, resp. not in agrement with the adult curve, varies the nercentage of erg carryinf, females and above all the egg numbers/Gelege. The number of eggs from which the new generation is to grow is thus not entirely dependent on the number of the parents, but from the beginning also on the enviromental conditions encountered in the lake. Certain features of the adult curves are also reflected in the eqg-number curves, above all the two maxima, but even these vary from year to year in both quantity and time. In every year the main maximum in January-rebruary and the minimum in November recurs in the egg number curves. The spring, resp. early summer maximum is asent only in 1935 as it was delayed by two months. A September maximum is not recogniseable in all years. In general the stock of egrs shows a falling tendence between early sumer and late autumn. Since we will have to investigate certain details later, the reader should refer now to Tig. $4-7$ and table 11.

We find a very different picture when, instead of considerins the quantity of eges at any given time we consider the absolute production of eprs. Here the relationship between the winter and the sumer maximurn is completely altered by the shorter develophent times in summer:

1933 and 1934, - in these years the winter maximum appears only as a subsidiary peak, in 1934 as alerely an episode in the general ascent of pronagation intensity till the sumer maximum. At the berinning of our research in July 1932 the propagation intensity reached 366000 eggs per soare meter which was also the absolute highest maximum attained during the period of research. In 1933 the maximum lay in June (226000), in 1934 in Hay (189000). In 1934 we could also distinguish a notable autumn maximum, namely in September, with 150000 . The year 1935 did not quite conform to this pattern: the winter maximum of 156000 is nearly double the winter maximum of the two preceding years. The decline towards the spring minimum in April (61000) is marked, the ascent towards the summer raximum (July 301000) is steep. The considerable decline in esp production which could be observed in all years after the summer maxinum, was interrupted, in 1934, by an intermedijate maximum in September (169000), but this maximum is not'so sharply defined as in the year 1934. thus it can be seen from the outset that the differences in ege production in the course of the year are much greater than the population variations of the adults, and that the t'emporal and quantitative differences are also considerable from year to year.

In table 8 the auotients, erg-production/nuper of females, is miven. Phese figures sifnify the nonthly egr production of the individual ferale in winter, since in this season nearly all females are 'latchreif' carryinf roe (?). In sumer, as has alread been mentioned, there is a freater percentage of hiot in roe (or also, not any more in roe). That is why at this' time the number of eggs for each mature female still increases a little. The egr production of the individual female per unit of time, is, as we can see, determined in the first place by the temperature of the jnhabited layer, and this function is modified by other environmental factors, above all conditions of nourishment. Not only the carrying time of sthe ergs is shortened, but also the intervals between spaming, as is show by dividing the ecm production numbers by the egs numbers/Gelege; In winter there may be as much as four week between two spawnings, in summer the time is $10-14$ days at the most, and these summer numbers are maximal values! Table 8 also shows the variations in fertility of the females in the individual years, especially in summer (1932 July, 1934 July).

5. Increase, Development and Losses.

He know now that egeg are produced in over abundance, but also that this production does not occue evenly, that in the course of the year we can expect certain maxjma and minima. When, at what stage and what causes the reauction of the younger generation? If we knea this, we would have the key towards solving, at least partially, the secret of productivity in the fodensee Obersee with respect to Eudiaptomus gracjilis!
a) Interpretation of graphs/curves and tabies.

Jif we were to try, in order to apmroach this problem, to observe individuaf generations from one propapation maximum, by way of lauplia and Copepodites to the next maximum of the adults, weaare faced with
considerable diffjculties, as can be shown by a flance at pigs. 4-7. In oreder to interpret these curves correctly, we will have to take into account some peneral considerations. Let us make the following simplified assumption: constant number of eors $=100$, i.e. hatched eges are constantly being replaced by newly laid eges; other losses during the whole develovemnt period, also in late" stages, would be impossible. The lonGevjety - the develo:ment times for' the eggs, iss for Nauplia, Copepodites and adults espectively three, six, nine and nine days. 'ihen the population numbers are constant, the magnitude of the numbers being proportional to the development times of the respective stage, i.e. the longevity. of the adults.

Ne now increase the temperature to such an degree that the development time of the epgs is halved, and assume that the develoment and life processes of all otner stages have the same temperature coefficient. The number of egas would remain constant because accelerated hatching is substituted by increased propagation. The same applies also for the other stages: the stocks remain unchanped, only the 'turnover', the "speed of the cycle" of the succession of generationsis increased, just as a certain segment of a circulation system will contain the same amount of water all the time independantly of the speed of the flow.

Should I alter the temperatures for the individual development periods, in various directions, resp., in varying degrees, e.g. higher for Nauplia, lower than for the eges of adults for Coperodites, so that the development tinie is increased for Nauplia and decreased for Copepodites but the propagstion per unit of time remains constant, - the same would occur as if I reduced or increased the diameter of one or the oter sesment of wter in the circulation model: the constant 'stock' of the sepments is correspondingly decreased (Nauplia) or increased (Copepodites).

Should efg production not be constant in time, but would show maxima and :ainima, these relationships would becore more compincated. Instead of long themetical deductions a sinple example is piven in table 9 from which we can interpret the following vital information:

1. If x egrs are laid in y days and the development times for the eefs be z, the times for the Nauplius and Copepodite periods be z_{2} and z_{3} days, then the corresponding stages which originate from the eggs of the fime $y=y+\left(z_{1}-1\right)$ resp. $y+\left(z_{2}-1\right)$ days, etc. \because
2. The height of the maxima of successive development stages are no longer a pure function of the relative development times, but depend on the shape of the curve on each side of the maximum, resp., on the period of obserm vation.
3. Only when successive starges are of the same leneth of time are the differences between the maxima, or any other characteristic curve-nointsequivalent to the development duration of the stares. aith varying development, resp. longevity of the successive stafes, so also the difterences between the maxima is modified according to the form of the number curve of the younger stage.
4. If, in a limited time of monaration (y) a total of x eges is lajd whose doveloment duration jos z days and if we are to undertake daily stock counts, then the sum or all daily stocks would be $\varepsilon E=z . x$. iset us commare two develomment stages F_{1} and B_{2} of the sume brave of provagation", with the develonient times z_{1} and z_{2}, tien $\Sigma B_{1}: E B_{2}=z_{1}: z_{2}$. 5. The average level of stock
```
                                    明
no. of stock counts
```

increases with the duration of the respective stare, however, not simply proportionally to the development duration.

Let us now apply this conception to our Eudjaptomus curves! We musi not comore statistical with dynamical values: not the curve of absolute erg production, but the curve for ece stocks is the determining factor for the shave of the Naupla curve: This becouse ens production is calculated from stock $x^{\prime \prime}$ rate of turnover" resp. renewall coefficient, Whether the temerature coefficient found for the eggs appijes also to the develoment rate and lonfecity of all the other stages and the adulits, is as yet unknown. In the meantime we will assume, that it is of the same mamitude, that the duration of all stapes jis affected similarly by similar temperature changes.

We stjill have to ascertain wether all stages inhabit the same layer, i.e. inhabit the same mean temperature layer. This musi be the case in winter in all years, since either all vertical aifferences in temprature cease in this period (December till March), or the homotherm tpilimaion is so deep that. it must include the layers inhabjited by all stages. Durins the remaining tine the 'habitation' temperature of the eggs and the mother animals must be identical, since the eges are carried by their mothers.

Nauplia greatly prefer to concentrate in the upoer 5 meters, and during their naximum occur in several sumer profiles in $2-4 \mathrm{~m}$, even sometines 1-2m. depth. There is, besides, a greater or lesser vercentare is distributed throughout the whole vertical migratory zone of the mother animals, i.e. within the birth zone, and it anpears that Nampla manly from the middle and older stages prefer the surface layers, resp., to have reached these.

Durine the day the Copevodes remain mostly between the Namisa and the adutits; the younger C. stages are more similar to the rauplia in their vertical distribution, the older ones more similar to the adults. But there are nany exceptions in individual vertical rrofiles, and Tauclia can occur just as decply as the mother animels, Conepodes even deeper.

Acter the winter circulation it is the adults that rise to the upper layers first, whilst the Haulia are diffusely distributed intomuch ereater deyths then the mother animals and the covepodites. One gains the inpression that the unper layers, especially in sprins and after stormy weather, are colonised mainly by newly hatched Nouplia.

On sverafe ivuplia occur sonewhat higher than the mother animals during the day, the Covepodes occur between the two. Adults and Copepodjtes migrate during the njeht to the surface, the Napulio- even those inhabiting deener layers- do not partake in this nocturnal migration. Quite on the contrary, the distribution becomes more diffuse during the nimit, a oroportion sinks by one or more meters, the mean habitation layer js displaced downwards, and at night may be lower then that of the adults. In the whole-day mean, therefore, the differences of the habitation temperatures are still further decreased.
de can thus state the following: Assuming that the temperature coefficient of the develoment and lifemprocessmate is similar for all stares, then the Lik values obtained for the eggs (cono. Fite. 2 anf 3 , S. $563 / 4$) are a relative 'yardstick' also for the accelecation of the rate of develooment of the other stages during the time when in summer there is limnolorical stratification. With Coneoodites acceleration is not sisuificantly sxeater than for adults, but with Nauplia, however, at least nartially, it is notably meater. The stock of ivaplia are relatively somewhatolowed from Anril, or tay till October resp. November in comparison with the other stares, since the Naplins-reriod is relatively much shortened. Jut the differences do not appear to be very large.

In conditions of undisturbed develowent we thus have to expect the following curve: a maximun of the stage x is followed by a maximum of the stage $x+1$, after a mean develoment duration dependent on x but the interval may not be exactly equivalent to this, which is numerically as high above the x naxinum as the period x 中 1 is Long compered to x. Were we to form quotients from the stocks $B x+1$, then the new propagation raximum is preceded by specially low va/neBx /lues, (the minimum occuring mostly with maxinum $B x$), which lead up to the maximum values as soon as the nain body of the younger peneration has developed beyond the stage x to stage $x+7$. In order to facilitate the interpretation of j'igs. $4-7$, the quotients $B r+1$ are given in table 10, and in table 11 the lowest-embthe himhegt/Bx 7 time and the haght of the maxima and ninima of all enumerated stages is given for the research yesre. the two tables diwerentiate themselves in theix inathematical construction: In table 11 the highest and the lowest mean values calculated upon the first of each month i.e. for the first of each month, are given. In table 10 the nean individual numbers for the whole nonth (from the 1 ft till the 30 resp. 31) are taken as a basis.
b) The Nauplius-reriod

Let us next compare the duplius and ege stocks. Not taking into consideration small details, we can see that the Naunlia curves broady repeat the egG-stock curves (9ifs. 4-7). The winter maxirnum lies just one month later than the egs maximum and occurs in the months irebruary or Narch. In 1934^{\prime} it continued until the beginning of iay but the possi. bility here exists that a summit was not reached in April.

Pable 10.

In this year the decline in the numbers of Naupia was delayed by the unusual second ecg maximum at the begiming of fiay. In all years the Fauvia and egr numbers show a falling tendency throughout the year, but in some years both curves are temporarily interruoted or levelled by interim maxina. The maxima of both curves occur in November, resp. in Deceraebr.

Table 11: Jaxima and minima of the developaent of Eudiaptomus gracilis in the Bodensee- Obersee. 1932 (paxima in heavy type, minima in normal tyoe).

Table 11 rives the absolute numbers of the oxtreae values, table 10 gives the quotients of both curves. In the years 1933 and 1935 the N (Mauplius) ouotient attains the expected maximum in barch and then declines strongly to a June mininum. In 1935 the quotient remained alnost constant till November as both:curves run almost comiletely parallel to one another, in 1933 the quotient increases till autumn (IX and X), only then to decline in December to a low minimum; this is maintained also throuphout January 1934. What does the behavioux of the quotients signify? "he winter maximu: is the result of retarded develoment due to lower temperatures so that the Nauplia maximum can only be reached when the ega numbers begin to fall. On the other hand development is so fast in summer that both maxima can occur within the same month. Thus the summer maxima of 1935 had no effect unon the quotients. The low values in summer are notable, hovever, because it seems auite immrobable that the duration of the Nauplius period is of the same order as the carrying time of the eegs, resn. only $1.2-1.5$ times greater $:$ The small variations of the habitation temperature would certainly not suffice to cause this low coefficient. With the flattness of the curves in summer we find that the relationshio of the monthly stock-means corresponds to the relationshiz of the duration of both staces. Thus the mean Jonevity of Naunlia, according to daily calculations, would have the following maenitudes for the individual months:

1933: V=12; VI=5; VII $=5$; VIII $=6-7$; $\mathrm{IX}=7$; $\mathrm{X}=9$; $\mathrm{XI}=18$. Bertore and after this time it is not possible to calculate fauplia times since the efecurves are not sufficiently flat, even the May value could hive been artificially large owing to the presence of "winter remnants" of Nauplia, or the December value could be to small owing to the then renewed increase in eg numbers.

In the case of sumer 1935 our calculations are uncertain since interim maxima occured at this time. But the constency of the guotients in just this year would enable one to calculate roughly the mean longevity of

1935: VI=6; VII $=6$; VIII $=6-7$; $\mathrm{IX}=7$; $\mathrm{X}=8-9 ; \mathrm{XI}=12-13$.
fhese values are almost identical for both summers. But in 5-6 days, as far as can be ascertained from aquanum obsexvations - by a mid sumer average temperature of $20^{\circ} \mathrm{G}$. in the uppermost habitation layer - it is not possible foe a complete succession of VI Naunlius stages up to the I

Gopenodite, to take olace. It snems that during this time only the first
 larce part of the Nauplia dies before reaching the I Copepodite stage. wie will return to this question later.

In the year 1934 ers- and Nauplia curves aro flatter than in 1935. An adjusted calculation for Nauplius-duration should also be possible here. But the quotients show a deviating course (table 10). Correspondingly the inaurlius times are:
 value for November is resultant of especially low lakememperatures, wich. also considerably prolonges the egg carrying times. Also the June value is influenced by below-normal habitation temperatures, but, this was not the case with the enomously high July temperatures. Greater longevity at equal temveratures leads one to expect that a relatively high percenterse of Naunlia reach the Copepodite stage. In actual fact the Copepodite numbers do rise- nore strongly for individual values than in monthly means, (rise. 7) - especially steeply in their ascent in the second half of June! In 1934, from July to Septomber, the $\frac{C}{N}$ Q are the highest of all the cornvared years: This supports the $\overline{\mathcal{N}}$. view that the short average Nambius duration is detemined only through the death of a greater number of Naunlius.

When thus, at, the begioning of July 1932 the strong eff maximum was only faintly reperated in the Nauplius curve, and the N stood at record copth in June and July, then this phenonenon can best be explained - again by a higit mortality rate. Nevertheless one has to consider the fact that the raunlius-neriod which is descended from this eswmaximum gereration occurs at a time of stromgly risinp lake temperatures so that the development rate of Nauplia is accelerated more than that of the eggs.
c) The Copenodite-period.

Tet us now go a sten further and compare the Naurlia with tio Copepodite curves. In the sequence: adults-ergs-ivapplia, the stock curves of successive stages could easily be seoarately deduced. The relationshio of the next stagest Conenodites: Mauplia and adults: Copepodites, can only be distinguished with some djeficulty from the curves as a Elance at figs. 4-7 shows.

In the years 1932 and 1934 it is nossible to distinouish fron the Cowepodite curve 2 annual naxima, of which the first falls in soring or early summer (comp. also with table 11), whilst the second falls in autumn. the relative hejght of both naxima varies for individual years; only in 1033 is the first maximum (end of liay 87000 , resp. monthly mean for i. VI 78000) higher than the second maximum (beginning of Noverber 80000, resp. month rean for 1. $X I=64000$).

In all other vears the autumn maximum of the Coneoodites is notably hioher than the soring maximum; the minimum between the two maxima is only flat and appears to be more of a temporary delay in the ascent of Copepodite numbers from the winter minimum to the autum maximum. This is
esnecially tiue for the year 1935. In this year it is possible to detect fro: individual values in hay, uuly and rovember short-mived interim maxima of incressing height, before the abomally high veak is reached in the 2nd decade of October with alsmost 150000 specimens. But the monthly means do show an almost perfect continuity for the increase from inril to October.

This autumnal jncrease of Conepodites does not in any year aypear to be related to the curve showing the ouantity of daunlia. The increase of Co:enodites occurs when Neuplia numbers are steadily declining, aiso, even when small secondary maxima of itanlia-numbers occur in sumer or autumn there arpears to be no direct correspondence either numerically or temnorally with the increase of Conenodite numbers.

At firsti sight one would think, especially when reflectine on the years 1934 and 1935 (Fjess. 6 and 7) that the Nauntia of the sprine naximum would reach the C (Copepodite) stare only mradualy in the course of the sumer, this resulting in a bulge before further develonment to the adult stare an take place in autum or winter. there are, however, weifinty obfections amainst nuch an intermetation which is based merely on the superficial comnarison of statistical magniyudes. Let us consider further the characteristics of the curves themselves: The atiested 0 . mavimum in the second half of ing 1933 (tife 5) follows the prououncod winter maximu of Nuyha after a yeniod of thre months. The numare waximum of the Covevodites in Novemer would have to desend on either the IN (nuplia) maximum now 8-9 months back, or on the very flat interim maximum of the Nanlia in Sentember, i.e. $6-8$ weeks back. These interpretations seem the more probable.

In 1934 the discrepancy becomes still more obvious (fig. 6). The hich sprine maximum of Naplia is followed after $4-6$ weeks by a relatively flat C maximu, but the very weak Naplia interim maxima occurinc with the 'sumner decline' at the beginning' of August and at the end of September, are folloed by a significantly higher and uniform C. maximum. With findividual aroup mafisum values, simultaneous interiru-maxima of the conepodites and the ivanlia correspond. In the monthly means the difference in tine is 2, resp. 0 months. If one were to assume that the very gentle decline of the c-curve till June, resp. till the middle of July, were to based. on the following - that the Copepodites remained as such till the eutumn and that the second maximun was supportes to a certain extent by/on the first, even so there wo remain a glaring discrepancy between the

In addition it is inexplicable why copepodites of the 2nd maximum shoula live 5 months shorter, reso. should develop more ouickly than those of the 1st maximum, because the Copeyodite numbers decline sharply after reaching the maximum at the end of october.

1935 (Fig. 7) finally we will have to observe with freat care, the short-lived variations of the indiviaual group values since they originated from a rather linited area- from the middle of the Obersee in fron of

Lan onarmen. Observed realistically the interjm maxima of the mamlia and covepodite numbers in July, Jeptember and October occur in the same month. In the monthly means of 1935 , the noticeably high spring maximua of Naplia is not shown at all in the c-curve, and the record maximum of the Copepodites in October is likewise resultant from the small interim sumer maxina, - or one should conclude that the high c-maximum in October is linevise resultant from the ecually unusually high N -maximum in i ebruary and harch, i.e. after $7-8$ months:

In looking retrospectively at the Conevodite periods of the years 1933-35 we seem to be faced with many contradictions: It, as has been shown earliex (table 9 s .575), thet the intervals between the peaks, as the waximun proceeds throurh the develoment stares, does not exactly correspond to the development duration of the younger stages, in fact, is primarily dependant on the duration of the older compared stages, we find, in commaring the years, among them guite dipfemt minimuri lifetimes for Naunlia, which in some cases anount to hall a year and whise varying duration aprears in no wise related to the different habjetation temperatures; this does not have to be demonstrated further in detajl. we obtain the same result when we cornare not just the peaks but the "necks" as they mise to the maxima, as can be seen from fics. $4-7$.

Let us now take the results from the comparison of egs- and N-curves and also avail ourselves to the absolute production ficures, then we have before us a demonstrative example of the errors which can result from a merely superficial comparison of the stock-curves: the average lonevity of Nouplia in summer amounts to only a few days, the stock of Naplia in the time between the maxima of the N - and C-curves is partly renlen: shed/renewed several times, and on tais ground alone it is not nossible to relate the interval between the peaks to the develoment times: : Foreover, at present, whilst we know nothing of the actual development times, the question is open, as from what period those Nauplia oricinated which later form the maxima of the c- curve. The above calculated values on Naugia-iongevity are average values. A great proportion of the Nauplia obviously dies before reaching this age- average age-, a part dies later, and of the total again only a frection reach the c- stafe. The Jarger the numbers of Nauplia, the greater, naturally, the possibility of a larger number reaching the C- stage. But in such a case the course of the $\mathbb{H -}$ and C- curves would have to show regular/recurring relationshios, and the Deaks, resp. the ascents of both curves would have to follow one another in a period of time indopendently of the habitation temoerature. That in many cases i.t is not possible to determine such an equal, even if terporally somewhat varying trend in the curves, may have two reasons:

1. The number of Nauplia reaching the C- stage can vary independently of the already existinp stock of Napplia, and also depend on the beneficial or unbeneficial influence of the environmental conditions.
2. The longevity of conepodites can vary in the course of the year, since at various times, as is the case with Nauplia, differently great percentapes die, i.e. before the last skiming. This percentage of prematurely
dyine Copepodites would have to vary a preat deal more than that for Kauplia, whose stock-curve, as we have seen, runs more or less varalilel to the egs- curve. Also varyiations in the habttation temperature could not explain away the deviations of the c- curve, even if the autumn raximu of the Copepodites may appear a little too high through this, that furtiner develorment within the c- period takes place moro slowly than in the preceding N - period as a result of the coolines of the habitation layers. But since the autumn maximum of the Coperodites is roached in Some years already in Septerber, at a time when the habitation temperature has not dromped much, and since the (- curve annajlid and particulardiy) in Hovember, drops when there is the strongest decline in the hobitation temoeratures, this temperature effect cannot be great and certainly not decisive.

Unfortunately it was not possible for us to calculate the lonfevity of the Coverodites in the same way as for the ivaunlia. That all, or nearly all counted epms hatch at a certain time, has been prouved experimentally. But, wht percentare of toe stock of Naplial reaches the c- stage, tilis is the oven problem! Nevertheless a glace at the $\frac{C}{N} Q$ in table 10 is instructive:
The pronounced winter maximum of Copepodites with the quotient< 1. partly even<0.1, can be found in many years from January to March 1935 (1.iteral translation). Since durine this period, the minimum habitation temperature falls simultaneously, we have to rive to this minimun a special sipnificance. Only 3 months after the ascent of the $\underset{\underset{E}{N} Q}{ }$ the $\frac{C}{N} Q$ begin to rise.
This ascent is manitained throurhout the whole sumer- unimoortant interim maxima occuring only in August 1932 and July 1933- culninating in a high autumn raximum in November. The fall to the witer-minimun is very steep. This behaviou of the $\frac{C}{N} Q$ purports, however, (this the more so since it is not related to the habitation temperatures), that either an increasing percentage of the N - stock reaches the C - stge in the course of the summer, or, that the averare longevity of the Copepodites increases in the course of the summer, briefly, that the develomment in the coursa of the sumer, on averare, carries on into older and older states, the "barrier" in the course of develomment moves backwards : (litoral transhation). Whether this is the case only with Vauplia, or resp. primarily with the conepodes, cannot be ascertained on the basis of our present knowledge:

Originally it was planned, by counting the individual skinning stages, to analyse this problem more accurately, but this intention could not be realised owing to the outhreak of the war, the loss of gathered material, and change in the field of my activity. Similar research is in orogress for Black Forest lakes and further research is also desired for the bodensee.

d) The Adults.

If one recalls the characteristics described above for the development course, especially the changing silhouettes of the Gopepodite guantity curves in the individual years, then one is surprised to find the above-described relatively rerular rhythm for adults in the annual cylce. In many cases it jis impossible to relate directly the adult curves to the Conepodite curves. Neither the dependence of longevity upon temperature, nor the increase and decrease of Gopepode numbers, resp. their replenishment from Naullia, can explain the rhythm of the adults. Let us analyse the individual years:-

In 1.932 Conenodite numbers increase in September and October whilst the number of adul.ts remains constant. In November and December, Cowepodite numbers decrease a little more than adult numbers increase. Here it is completely impossible for the adults to have only a shoxt natural life. ifuch rather, everything seems to indicate, even the egg~numbers that from November onw ards we see the rise of the adult winter generation whose maximum lies in January reso. February with regard to the number of snecinens and efr production, j.e. three months after the Copepodite maximum. The decrease in adult numbers from Februaxy to kiny 1933 would give the impression to their natural mortality iate, resp. rive expression to the total lasses of the adults since replenishment from the copepodes must at tinis time certainly be very small. This all would indicate that the winter generation is uniform, and that the mean longerity of the adults in winter lasts several months, presumably at least a quarter year. ithe ouotient of the maximal monthly means $\frac{A(I-33)}{C(X-32)}$ is 0.73 .

1933: The feeble increase in adult stock from liay till July, rsp. end of June, can be explained by the increased supply from the copepodite stock which itself had increased strongly. Phe interval between the maxima is about one month, the quotient (month middle) $A=0.6$. After the maximum
is transgressed; both curves show a similar course, then the adult curve lanses increasingly behind as the habitation temperature sinks, and reaches its maximum (January 1934) two -in monthly averages-three months after the C- maximum. The quotient of the maximal monthly avarages $\mathrm{A}(I, 34)$ is 1.02 .
C (IX 33)
In 1934 we find at first the relationships to be similar as fin the preceding year. The Copepodite maximum at the beginning qf iky was not able, however, to halt the decline in adulit numbers whick continued until the middle of July. Conepodite and adult numbers decrease torether from the begimninf of May till the midde of July, The number of Copepodites increases considerably more stronfly than the number of adults who have their maximum somethat earliex than the Copepodites. iveither the almost simultaneous and possibly unceal interim maxima of the individual speap maxima group values (Fig. 6), nor the temoorally inverse maxima of the monthly means can be related to one another. Should one assume that the adults of the August and se ptember maximum originate from the first C.
cont. Should one assune, that the adults of the August- September maximum originate from the first C- maximum at the besinning of liay, then the time interval for the maxima of four months is much too long in comparison to the summers of 1932 and 33. Either the interpretation of the summer maximuas for the abovementioned years was woong, or the maximum of 1934 must be given another meaning:

From the end of September onwards there is a strone reduction in the number of Copepodites, whilst adult numbers decrease only slightly and temnorarily. From the middle of October the stock of adults increases only slightly till the end of December, whilst the number of Copepodites continues to decline sharply till the end of the tear. In this period many Conepodites of the last skinning die.

1935: Only in January and at the beginning of Pebruary, i.e. When the Conepodites have reached their minimum, do adult numbers fincrease strongly arain. Here the exnlanation must be found fron prevalent hydrographical conditions and from the position of the sampling station. This narticular case must show agein how careful one has to be when rejatine curves of successive develonment stages. As hés olready been mentioned several times, the full circulation of the lake that winter in 1935 was especially intense. Zoonlankton was distributed in all lake parts, almost uniformly ane in all denthsand one can assume that in the course of the winter there was not only a vertical hut also a considerable horizontal exchinge of water masses. The quantity of flankters underneath one square meter of the lake surface was thus aprosimately proportional to the deoth of the water, near the end of the winter of 1935. In we thus assume a uniform distribution in the upoer layers nrior to the beginning of full circulation, then, after the onset of the horizontal and vertical exchange, the number of individuals in shallower areas is reduced below one souare meter, in areas of below averape depths, however, there is an increase. But most of the samples in the year 1935, esnecially those that were taken in winter, were from areas of below averase depth in the middle of the Obersee, namely From depths ranging from 180 to 250 m . This pojnts out, that the considerable increase of adults and the aforementioned above-average height of the adult winter maximum of 1935 is not only the result of conditions of production, but also the result of local transportation and 'bunching'.

Unfortunately we do not have sufficient lateral and cross sections for 1935 to be able to determine the norizontal arrangement of the locally different adult numbers. In our curves (Fig. 7) the reduction of adult numbers, those taken primarily from the middle Obersee, was a little steeper than in the previous years. But also the number of Copepodites tomans".. minimal till the end of April, so that the increase in adult stock from the Copenodites may have been later than usual this year. However, the time and the magnitude of the adult minimum VI $=19000$ is not unusual. Shile Conepodite numbers varied in detail bot showed a steady increase in their mean monthly values, the adults reach a clear sumer maximum about the loth July, that is, after a short period of scent, tinen to fall again, even though Conepodite numbers continue to increase unchanged. With respect to time and height, the summer maximum (VII = 39000) is com-
nletely normal and shows no traits, neither of previous unusual hydroEraphical conditions, nor of the nreviously deviating form of the Copepodite curve! Also the decine in adult numbers from the midale of July to the midide of Aupust resp. till the middle of October, can be explained neither from the number of Conevodites nor from the lake temperature. Probably there is a relationship between the high number of Copenodites in late summer and autum, and the relatively flat form of the autumn adult minimum (IX-X each 17000). Unfortunately our research was ended in December 1935, so tht it is not possjble to state whether the abnarmally hirh nurbers of Copepodites in autumn 1935 resulted in a correspondinely kigh number of adults in the winter $2 \mathrm{f}^{\prime} 1936$.

Let us now take another look at the $\frac{A}{C}$ a in table 10. Only in winter, from December to harch (1935 till Anril) are the values above 1 , that means, there are more adults than Copepodites. From April, resp. May, the ouotients remanes sinking at times even to $0.1-0.2$. Sven adult sumer maxim hardly show any simificant rise in the quotients, it at all. The values then also remain \mathfrak{d}. Here we are not assisted by the argument, that with increasing C - numbers the A- stocks las behind, so that quotients of sinultaneous monthly means would necessarily show to low a result because the quotient is <1 also for periods of falling C - numbers (VII and VIII 32; VI, VI 34):

Again we are faced with two explanations: Sither the avaerace lonevity of the adults is shorter than that of the Coneoodites, beine only $\frac{1}{3}$ to of the c- time, or, only one part of the conepodites reaches the adult $\frac{4}{4}$ stage! If the first exnlanation wers correct, then te have to take into account the rreat differences in the average longevity of the adults in order to explain the ciscrepancies in the course of the C... and the sdult curves. If wa apriy to efres and to adults the sme namitude of the temnerature coefficient for liferrate, then the "turnover" of adults in mid, sumer is 5-6 tine quicker than in winter. As has already been mentioned the Iongevity of adults in winter is, on avarage, at least three months, if anything longer, perhaps up to six months. Purely physiolorically, three winter months would correspond to about $2-2 \frac{1}{2}$ sumner weeks. Yet we know too little about the actual longevity of grown un dudiaptomus gracilis. Perhaps research on morpholofical or any other age indicators, such as worn randible-chew-chamber(?) etc. can help us further. It must also be mentioned, that even under the most unsuitable life conditions in the small and over ponulated mother bools (comp. S. 5), all Budiaptonus adults cancht from the Obersoe and kept in hucust at a temperature of about $17^{\circ} \mathrm{C}$. Were still ollive after 9 days; in December at $16-18^{\circ} \mathrm{C}$, , that i.s, under sumer temeratures they were for the most part lively and fresh. what ane the animals had when caspht- we do not know. 'i'he natural lon-. sevity resp. physjolofically determined life- axrectancy in nature must be greater than 2-3 weeks even under summer habitation terneratures.

The second possibliity, that from time to time a varying proportion of Coneoodites dies before the last skinning, is the more probable not only because of the irregularity between the A- and C- curves, but also
because of the irremularity betweon the $\mathrm{N}-$ and kw curves, which sunorts this view. de can suppose that both factors - the varying longevity of the Conepodites and adults, as also the varying percentase of copepodjtes which attain the last skimmin? - play a part, thouvh for the tine being we cannot estimate their individual roles.

Total Stock and Kortality Numbers.

If we comprise into one stock all the development stases of daunlia till the adult stare (whout erg- numbers), and relate this to the absolute Nauplia production, then we should be able to note the total mortality rate within the population - in the course oi the year. the rule seems to confirm a winter or soring maximum primarily of vauolia, and a midm summer or autumn maximum orimarily of Copenodites. The deviations of the year 1933 (fig. 5) depend above all on the different courses of the C- curve.

If we compare the monthly arrival of Waundia, with tine differences at the berinning and at the end of the respective month, then the differences between them rives us the mortality rate within that population for the month. In fiss. $4-7$ mortality and production, $=$ the risines seneration, curves are fiven for the whole period of research. At first sight we are struck by the almost completely parallel course of the two curves! fith few exceptions the maximum and minimum of both curves occur at the same time and any exceptions are confined to one or two cases in the winter, months. Thesemalso in their absolute height- agree to such an extent as to be remarkable: The common factor of both curves is only the development and Iife-rate -both depending, on temperature in the yearly rhythm, and which must affect propagation, age, resp. deeth in the same way. Additionally, however, the propagation curve/rising generation curve is denendant on fluctuations in the stock of enss, and the mortality curve -is dependant "a priori" upon the stock of over-aged animais. The fact that birth and death in a population are not merely a function of temo perature, is shown by the winter months of all research years, the summer values of 1934 m and a little less clearly, summer and autam of 1935. Let us just try to deduce the mortality number. (VZ) fror the death of over-aged animals, and we will find that our endeavours are baulked even if we were to regard the total stock of adults as over-a'ged. If only adults die, then the quotient would be $V Z=$ the renewal coefficient of the adults oer month, (EkA) 30 (resp. 31) $=$ the mean longevity of cadults in days. that we thus obtain is shown in table 12 taking the year 1934 as an example:

Table 12
It is quite improbable that in liay and June stocks of adults are respectivoly renemed rore than ten times, resy. that the mean longevity of the adults is not qujte three days. This does also not explain why the $V Z$ curve follows the propagation curve in all jtts details.

If losses were to occur only at the conclusion of the developnent cycle of adults, then the quotient VFE Give the Ek for the total stock
total stoc:, 30 : the duration of the "cycle", i.e. the whole duration of developmek Gis ment from the waulius till death, in days for the "Geschlechttier". "The corresponding values for 1934 are shown in table 13:

Table 3.

Aso these values are not creditable, in their absolute height (way!) as also in their variations, which cannot be made to harmonize with variations in the habitation temperature (comp. e.g. Fig 3). (Table 13: II, III, V, VII, XII):

The assumption that the greatest rortality rate occurs at the end of a generation cycle must be wrong! It would not permit an interpretaion of the individual curves in figs. $4-7$ as we have seen. But arreement between the increase- and loss curves, would indicats that earlief development stages, mainly Naulia, suffer losses. The life snan between birth and death must be very different for single individuals, but it is relatively short for the majority of individuals. Only a fraction reaches the C- stage and only a pert of this, puberty. Whis explanation of the VZ- curves is, at the same time, the key to the understanding of other curves, as has been repeatedly indicated. The agreement between egr- and Nauplia curves can now be explained in the same way as the deviations of the C - and A - curves. Not the develooment time itself determines "the time position" of the maxima; not the absolute erg- production itself determines the strenght of numbers of the rising generation, but the beneficial or detrimental effect of develoment conditions determines selection and destruction. These regulating environmental factors are something which is foreign, changing, "animose" in the biolopical rhythm of the species; they check any wave of increcse of stock which had devaloped "under beneficial conditions - before it is able to reach its goal: a new -generation of 'Geschlechts tiere'; they put uo develoment barriers and oven "Develorment sluices" in a rhythm which can be nodified by many factors. Nutrient conditions certainly play an imortant part. What is meant exactly in detail under the heading 'beneficial' or 'detrimental' environrient, we do not yet know.

6. Losses through the Rhine Effluent at Konstanz

Until now we have not taken into consideration all proups of factors which could h ve a bearing on the calculated losses. Three possibilities must be considered;

1. Mortali.ty in the lake. This loss factor, has been repeatedly mentioned in previous sections. It was to have been investifeted more closely with the help of "Sinktopfen" (sinking pots?) at various depths and by controliafter a short "exposition" time. "The war prevented the carrying out of this research.
2. Lossed due to fish feeding by fish and other enemies. It was planned to determine the magnitude of this factor, and work was begun only to be hindered asain by the war.
3. Losses throuch the effivent khine at Konstanz. To answer this anestion we can avail ourselves to a series of samplines taken from the effluent Rinine at Konstanz between July 1934 and. December 1935. ifetsamulings from the lake hhine were made using the plankton net, which, when the boat was stationary, was held into the current jamediately behind the Rnine bridge at Konstanz- for one minute. The speed of the current was measured and so the amount of fished water could be calculated. The same correction factors were anplied as for the net catches from the lake, although the relative speed of the current passing throumh the net, resp. nassing by the net, was two to three times rreater in the river than in the Jme. Since defects of the net increase as the current increases, we must expect from net catches, values fhich are too low. Te also used a number of pump sampings which were calculated on the same basis as the lake sampmings. Thus, from simultaneous net- and pumo samolines average values were used.

> Fig. 8
> Eudiaptomus quantities (monthly means ner cubic meter) in the lake Rhine (Konstanz).

It might also be mentioned, that contrary to exnectations, the netfactors which wexe determined by control-samplinps, did not differ very much for the lake Rhine.

On a number of samnline journeys comnarntive samnines were taken durine the forenoon and nieht, mostly one or two hours after dark, in some cases at nearly midnight. In these cases the mean from the day and nisht values was used for the calculation, we must, nowever, take into account, that the daily rhythm of plankton transportation in the lake thine does not necessarily reflect the daily rhythr of the lake since some forms which durine the day remajn at lover levels only xise towards evening and thus be transported into the shallower waters of Konstanz bay, and from the entrance to the bay to the linine bridee in. honstanz may need a variable leneth of time from fall to fall (case to case?). In the main the rhyth of plankton transporitation in the lake Rhine is affected by local vertical mirrations of plankton in konstanz bay itself, immediately in front of and wihtin the suction zone.

Let us next compere the stock curves (numbers are for cubic meters) for the lake (comp. fie. 6 and 7), with the plankton numbers (ner com) in the Rine (Fig, 8, dirferent scale :) : fe are inmediately faced with rreat differences in the curvos of the two places. daxima and minima occur partly at a difierent time and in other relative ouantity pronortions. The roader will be asked to contend hiraself with the fipure as we will not describe and analyse differences in individual details, because the causes for these differences an easily be seen (see below), but do constantly change, so that the curves from the lake Rhine revoal more the variation possibilities as hard and fast rules than anythinf else.
planktan trinsportation in the hake Rhine is mrimarily affected by the changinf vertical distribution of the zooplaniston which here Gives nuite different resulth an for the lake-stocks, since only those organishis are cought which areminthe suction area of the Rhine. Chaneing meteorological conditions can in a short time rive rise to great differences. Also horizontal differences in the concentration of plankton as effected by wind and 'tilted' layers, canse a locally different plankton concentration, in front of, and in the bay of konstanz. Finalily the depth of the suction zone of the Rhine varies in the course of the year but its extent/mafnitude and rhythm has not been fully clarified: Hote: Comp. Auerbach 1952.

For the satie reasons the differences between the day- and night samplines vary a sreat deal. Wauplia, whichlodurines the day usually resain ouite hifh - very high, rarely shov daily araplitudes in the lake Rhine which are outside the error sarfin. But Copepodites, and above all adult animels can attain at night ten times their day values, whilst at other times differences are negligible and day values may be sven hioher than the nipht values. It was therefore not possinile to make a correction of the daily values to give a 24 -hour-mean, where night samplos had not been taken. All figures can therefore only give the aoroyimate marnitude.

As an example of the differences between the Obersee and the lake Rhine curves, it may still be mentioned, that the winter maxina of 1935 are shown LT^{2} the lake Rhine only very weakly or not at all. The reason lies with the repeatedly aforemtioned full-circulation intensity which distributed plankton down to rreat depths and thereby reduced its concentration in the upper layers, that is, also in the suction zone.

Let us now calculate the total quantity of Judiaptomus which the Rhine drains from the lake in the individual months. In order to enable comparison with the calculations for the Obersee we will multinly the number of individuals $/ \mathrm{m}^{3}$ with the total quantity of water which the Rhine has taken from the lake, and divide the obtrined numbers by. the surface area of the lake ($476 \times 10^{6} \mathrm{~m}^{2}$). Thus we obtain the 1.0 ss ner souare meter of lake surface, which can be compred directly with the stock and mortality numbers of the lake. Ne could deducs the rate of flow from water gangety the Obersee, as well asthe emirical of tiflow curve for the gauge.

The results fron the calculations are shown in table 14. From it can be seen that in the individunl months, esnecially in sumer, the lake Rhine crains away a considerable nart of the total Buriaptomus-stock from the lake. Thus 28% of the tatal stock wexe drained bway in Sentamber 1934, and 97% of the averape stock of waplia was lost. In other words, even the effluent alone gives a renewal coefficient for faplia of 2 for the respective month. This loss is replaced by the hatching of new ifaplia resn. over-compensated by 8000 specimont. In the minter months the nercentual ratcor-loss throush the Rhine are considerably lower and have no longer ony weighty bearing, nartly because of the low water of these months (corn. fir. 8), partly because of the diffuse distribution of plankton and the resultingly low concentration in the
suction zone of the Rhine.
But the perceptual losses related to the respective stocks have a very different meaning for nomulation-dynomics in summer and winter because of the variable develoment rate, rosin, the higher dovelomient coefficient in summer. In the last two column of tole 14 the total loss of Eudiantomus, including emfs, is related to the mortality insure mich was calculated earlier. Here, however, we have a similar picture: In sumer the calculated total losses for the lake as also the observed losses through the effluent are higher, and the proportion of the total 'Losses passing through the effluent was in summer resp. autumn 1934 about one third; sinking to 10% as the flow of the thine decreases, and remaining bevy low in the winter months. One exception was in January for which the total loss numbers were unusually low since there began in this month a mass -hatching of Nauplia, whose longevity in the cold winter temperatures must extend beyond the end of the month. Also the stock of adult animals is on the increase and mortality as yet small. As a result of this, the absolutely small effluent losses still make un one third of the total losses.

That conditions can change quite considerably and do not allow any general conclustonscan be learned from a comparison of the sumer months of 1934 and 1935. The figures in table 14 show quite clearly that the role of the effluent in population dynamics of the odense plankton, and especially on the forms living near the surface, can be very significant in times when the lake Rhine is in high water, and that the effluent in a single month can claim a quantity equivalent to a mean population density. possible we do not even know some of the extreme values. A constant control of the effluent in research pertaining to population dynamics resp. production biology, is therefore absolutely necessary.

Translators Note:
Please substitute for the appropriate mis-interpretation:within one square meter $=$ underneath one square meter.

1. West tory Arecuve,
 Bury St-solmuvid', west suffolk.

Yours sinewy
EH. Spozim.

Notice

Please note that these translations were produced to assist the scientific staff of the FBA (Freshwater Biological Association) in their research. These translations were done by scientific staff with relevant language skills and not by professional translators.

