

by
80 S. Chaudhayy
Sokoto Rim River Basir Develorment
Authortey. Sosoto
Mrgeria.

MBSERMCI

This report is an exposition of insherieg activithes carried out h mabolori keservoir whin the concest of may and varied functions of Sokoto mima River Besin Devclopment Aithority.

Is order to study the rish faure asu tes trend. experimental ptining was corducted for 55 days in 1979 when the reservois was only one year old and the erercise contimued in 1980 and 1981 also for 85 and 52 days respectively. During the thuee years exercise oniy bottom set gill-nets of $5=10 \mathrm{~cm}$ mesh size were operated at various depthe and the catch per unit efrort ghowed an mereasing trenc with increasing efforts by four times to that of the initial.

The fish harvest was 1.205 lg per cay when 3.6 nets were operated in 1979, this went up to 3.2 kg when the number of nets were increased to 8.37 per day in 1980. . This increasing trend continued in 1981 season also when 16.15 nets caught 5.756 kg Eish per day. A airect relationship has been observed in the tishing exforts and catch. The catch per $1000 \mathrm{~m}^{2}$ net operated also showed a positive trend as it was recorded $4980.4,5865.3$ and 5567.9 gms for three years respectively. ILlapia. Clarias. Labeo, Schilbe and Synodontis spp, were the most predominant fish species in the catch and contributed more than 97 per cent of the total Eish haxvest.

Due to high turbidity and resultant low transparency, the production potentials of the lake are likely to remain lower than many man made lakes of Africa. Large number of trees and rorest areas left uncleared prior to inundation are now partially or fully submerged and pose serious problems and threat to fishing operations. If the proper benefits are to be realised from the fisheries potentials of the reservoir, it should be stocked adequately with fast growing fish seed. The potential fishing grounds should be improved and the underwater trees and bushes should be cleared for smooth economic and efficient fishing. Use of all kinds of nets having less than 8 cm mesh size should be stopped to prevent over exploitation of juvenile fishes for a period of at least two years after the reservoir is stocked:

INTRODUCTION

Bakolori Reservoir is located between latitudes 12.25 N and 12.35 N and longitudes 6.10 Ep 6.17 E . The reservoir comes under the administrative boundry of Talata Mafara Local Government near Bakolosi Village (now submerged) in sokoto state of Nigeria. The project was first identified by the F.A.O. In 1969 as the Iirst phase of Sokoto add, Rima River Basin Development Plan. The feasibility study of this project was completed in 1970 and the contract for its construction was awarded to Messrs Impresit Bakolori (Nigeria) Limued an indiginised Italian company, while the review of detalled design and supervision was entrusted to Messrs M. R.T. Consultants Limited, also an indiginised British Firm. The dem was omplgted in 1978.

This reservoir has approximately 8000 ha water area bt maxinum reservoir level with a dendric shore lime. Approsimately 4000 families 114000 peoplel were afrected by the creation of this water body. They have been resettled in three new villages namely New Maxadun -2700 household units, Gidn Dan Kano - 1200 household units and Ruka Mai Rafu - 100 household unit.

Bakolori xeservoix Like most other reservoizs hathe world wat also construeted for well denined purposes such as 1rrigation.
 and mood control exc.

Gallent Ceatures of Bakolori Reservolv

Remervodx mxa memanimut flood Ievel	0.000 hm
Groess mearage capmadey	$450 \mathrm{man} 11 \mathrm{~m}^{3}$
Formal peol dievation	
Maximum poel elevacton	320 \%.a.3.1.
maximux fiood micvacton	
Length - concret dam	35 metere
Length - earth til dam	5135 metexs
Length of chore line appromimetaly	107 kxa .
Ansual raineall	$699=\% 69$ mom.
Air temperature	12.0-39.96
Hydropower turbines and generation	2 bos. 1.6 My emeh

Irrigation canals

Supply canal $15 \mathrm{~km} 35 \mathrm{~m}^{3} / \mathrm{sec}$ 。
Main canals IL \& IR
Secondary canals
Tertiary canals
2 Nos. 45 km Total

Field channels
200 km

Pumping Scation
Irrigation lift 2 Nos.
Sprinklexs
25 mos.
Drainage
Pumps
Burried pipe line
Mobile Alluminium pipes
300 km
900 km.

It is envasaged from the project that in adaition to 147.821 tonmes of various rood grains, approximately 450 tonnes of fish would also be produced annually from various types of Eisheries resources created by the lake formation and irrigation network.

MATERRIALS AND METHOD
The data collected and analysed in this paper are of a fishing unie consisting of two fishermen, boat and varying number of shore set nylon gill nets of 32 meter length and 2 meter depth. The most common and effective mesh sizes, were 5 m 10 cm , The head.rope was provided with Eloats and foot roge with lead sinkers to keep the net in standing position. To have a comparative idea of catchirg efficiency at times surface gill nets of the same mesh sizes were also operated but found quite ineffective as these nets used to get rolled up due to high spegd hermattan winds and wave action. All the data if otherwse not mentioned are refered to shore set gill nets only.

In starting, usually the nets were operated in mid day and collection of fish catch was done in the following morning. In
neder to minhina she dasage in nets they were allowed to remin set on the some flishing ground untsi cha $\$ 1$ ahing site wan changed. The per day catch thus could het razered necten por 24 houst.

REGUTHE

glanimbe Opexation

 month oif July, Septeaberg Ockober and December and the number of
 was comaucted tox 17 day whila in september. October nud December 1t was conducesd sor 14.16 and 8 daye xespectively rable 3. That oversin mean cacch per fishing cay wes 1.20 kg b but it varied considerably zron sirst two months to that of tast two months iow.

Lite tha number ot tishing days, the mumer ot nets operated lin each Elybiag month also difieced. However when the number of nete were

 in 1980. It genve an indication that the fforts could still be increased without endangerkng the fish population, when the number of nets per day were again doubled in 1981 to 16.15 nets. the catch also Eellowrd the tame trexd with avegage ithh landing of 5756 gms per day. The steady tnerease 1 .in catch per unit affort and stabilised catcis rate pec $1000 \mathrm{gn}^{2}$ net 1.0 . $9980.4,5065.3$ and 5567.2 gms for 1979. 1980 amd 1981 zdihing seasons zegestively. Table i, indicated that marginal profit could ba derived if the fighing efforts are Furthor lntensigied. The cacch per $1000 \mathrm{~m}^{2}$ nes area was quise different from what was obsexved by Ita at al. 1982.1261 gas ger boight for the sane net areat. Jnspite of the fact that the number and axea of the nets operated daily were almost dombled in previout yeams the catch tate also increased according ${ }^{\text {y }}$ y withont advergely
 finhing efforts could be intensified to stare comercial fish explottation.

Wable 1 Vaxious Eishing parametera for the three ishing years

工 $\mathrm{E}^{\text {E }}$	1979	1980	1981
Mo. of cishing days	55	85	52
Wo. of che nets operated	208	718	880
Eish haxvested in ky	64.3	271.8	299.4
Av. No. OE fishing dayg per yozsth	4.6	7.1	4.3
Av. No. of neta perated pez Simhing day	3.8	8.37	16.15
Av. net area ogerated daily in ma	242	535.6	1053.6
av. catch per $7000 \mathrm{~m}^{\text {" }}$ net gas	4980.4	5865.3	5567.8
Av. catch pex fishing day in kg.	1.205	3.144	5.756

 compare the catch per untt effort of a perticular sonth to the coxresponding month ar the following year. However, it has been observed duxing tha aramanation of commercial fieh catches of 1982 that eatches were generally highes in zany meason. te may be due to up-steeam migration of mozt fivhes in thit season for mpaming and. there they are usuady sauhed with one gase type or the other.

Spectes Coypogition

 Duchng the satch analysis of sxpestuental fishing five specien wara

 peasons are compazed tith the commercial catch of 1982. Antasesting
 contributa 22 pate emt of total catch in 1980 , but went dowa.to 20.6

 par ant in 1981 and 1982 biching seamons. gynoclontif ppe. appeased to be Mest afxected as it recorded 36 pez cent 151980 but ghaxply decseared to 9.2 and 8.9 pex gent in 1981 and 1992 fibhing seaśons. Chariag sgy. made up 11.0 per cent of the geseh in 1980 , rut came Aown to 7.9 gar gent in 7981 and agadia weat up to 19.5 pra gent $2 n$
 Though the amemimental righing wat conducted wist a chagbe gear mypo 1.t. Whore set gide nets. the catch compogition eanngt bs sadd co be a good meprementatye femphe of the tigh pogudation of the aenezvotr. Nevartheleas it gives an sien as to mon the gili bet fichery is whapplisg in the regervodx,

Woat species gaucht durisg the pxpertuencal timing wexe less than 100 gwaverage weight except Labed wnd Claxiza gpp whose average weight varded betweer 200 - 300 gms firougizet thres mome specinen of clasias had brean caught waghing s to 6 kg by privates xishermeri, theix

 Cymarchus milotigus ete. Probably they do not entint in ebe reservoix und, mend ca be incrotuend.

DLECUSEROX

 paucity of Eteh speciess in the inhe and the pogition he not; 1 ikely to chasye rorazitable until the economically injportant $4 . \sin$ apeciess axe geoched interifuely in the xeservois. Ae chexe is no peremaial ziven
 recrutment-g new speches other than what already exists in the dais. rable 2 ohow the pattern of the fishory. It appeurs that gilepict th increating in number whie its average exise and welght in decreadmy yoar aftex yeac. yhde specios contributed approzimately fs per cent of tho total landings within the last two years. However, the average Rize and welght has decteased from 19.6 cm co 17.0 cm and veight smom 93.9 gine to $89.4 g r a s$. It ghows that more figh have been gaught per undt wexyks.

The geme trend han agen observed in the came of Labee spp also which appeare to be the gove aftected one. phe averege wine of tabec has reduced monalaexabIy 8 rom 31.4 cm in 1980 to 22.5 cm hn 1981 and avery specimen has gone dowh by 100.3 . gra in weighe. Not omy the average siza in axfected but its percontage concribution has also gone down
 spactes aithough then did not reduce in avernge ssae its comtibibution in the eotal landing has aknificantly gone down zrow 30.3 ger gent to 9.2 and 1.9 per cent tn 1980,1281 and 1982 zeagerctuvely. Host Synodoncha gaught row the reseryoir were of the whiform ajae i.e.
 is probably the direct reeult of findequate natural sood in the zeservolz. Baholory rewervode has vary magh curbidity round the gacx which ham normaliy been observed to be whout 360 pex . The high turbidity causet low transparency and low light availabiliny to

spectes	Av. Rangti kix few				Catch cosposition pex cert bu ve.		
	80	61	80	89	80	81	Q2
P60eo exp	31.4	22.5	297.3	197.0	22.0	29.6	18.8
	89.6	87.0	23.	89.4	18.6	45.6	45.2
c\|ccisum	38.2	29.9	31\%.3	279.6	11.0	7.9	82. 5
Sentilue ympo	$2{ }^{2} 0$	26.9	67.88	92.7	82.3	84. ${ }^{\text {a }}$	9.8
\%ymerometis meo	89.0	19.1	128.0	83.3	36.3	3.2	20.9
Ochers	9 \% ${ }^{\text {g }}$	88.0	95.8	75.3	3.6	2.11	2.8

Table 3 Details of Fishino efforts

Month	1979 Number of			Catch per Net in gms	1980 Number of			Catch per Net in gms	1981 Number of			Catch per Net in gms
	$\begin{gathered} \text { Fishing } \\ \text { Days } \end{gathered}$	Nets Used	$\begin{aligned} & \text { Fish } \\ & \text { Caught } \mathrm{kg} \end{aligned}$		Fishing Days	Nets Used	$\begin{gathered} \text { Fish } \\ \text { Caught kg } \end{gathered}$		$\begin{aligned} & \text { Fishing } \\ & \text { Days } \end{aligned}$	Nets Used	Fish Caught kg	
January	-	-	-	-	-	-	-	-	19	208	62.5	300.4
February	-	-	-	-	-	-	-	-	7	120	51.5	429.1
March	-	-	-	-	13	88	18.7	212.5	6	120	32.8	273.3
April	-	-	-	-	6.	32	6.6	206.2	-	-	-	-
May	-	-	-	-	12	107	44.0	412.2	20	392	152.6	389.2
June	-	-	-	-	19	177	94.5	533.8	-	-	-	-
July	17	51	16.0	313.7	18	164	60.3	367.0	-	-	-	-
August	-	-	-	-	6	48	8.0	166.6	-	-	-	-
September	14	62	15.8	245.8	-	-	-	-	-	-	-	-
October	16	63	231.4	731.2	-	-	-	-	-	-	-	-
November	-	-	-	-	-	-	-	-	-	-	-	-
December	8	32	11.1	346.8	11	.96	39.7	413.5	-	-	-	-
Total	55	208	66.3	318.7	85	712	271.7	381.6	52	840	299.4	356.4

subsurface water layers and subsequently it leads to low photosynchesis and primary productivity in Bakolori than other Nigerian reservoirs, such as Tiga and Kainji Lakes. The low primary productivity results probably in tough competition for food among different plankton and phyto-phagous Eish species and thus the average size of fishes is adversely affected.

Large scale destruction of fully gravid fishes have been noticed in rainy season when mature males and females are migrating upstreams for spawning. The fishermen normally catch these fishes by crude fishing methods and in times to come it may adversely affect the natural recruitment. It is therefore necessary that a complete close fishing season from 15 th of May to 15 of July, is observed every year, and catching of all kind of fishes declared iliegal. For this purpose a suitable legislation should be enacted at National level to provide protection to the natural fisheries resources, which are now being exploited indiscriminately. The law should be supported by vigorous extension exercise among the fishermen community to enlighten them about benefits of not catching any fish during this period. Though it would be difficult to enforce the law at the beginning the fishermen might cooperate with the law enforcement agency after seeing the results.

Commercial Fish Exploitation

When the reservoir was first filled the fishermen living ax und the reservoir started operating different kinds of fishing gears and their catch varied from a few grams to a few kilograms/day. A systematic approach was adopted during 1982 comercial fishing season to collect the various statistical data of fishing operations. Out of 80 fishermen living around the reservoir (Ita 1982) only 43 fishermen on an average were engaged in daily fishing and caught approximately 98.8 kg cf fish per day and 2.3 kg fish per fisherman. Approximately 36.068 metric tonnes of fish were harvested at an average production rate of 4.5 kg of fish per ha per year.

There are three main fish landing centres around the reservoir namely Dam site, New Maradun and Kuka Mai Rafu. The data were recorded normally once a week at every centre. The catches were comparatively lower in the reservoir and the average size of indjvidual fish species was smaller in comparison to other African reservoir. The low catch per unit effort probably does not encourage the fishermen to intensify the fishing efforts.

CONCLUSION

The individual size of different fish species caưght from the reservoir is comperatively smaller and it has been observed that it is decreasing year after year.

The average catch per unit effort is rather low. Probably there are more fishes around submerged trees and bushes because fishermen prefer to operate their nets around bushy areas. The under water trees and bushes pose serious problem in fishing and navigation. At times it has been found that the new nets operated once are damaged badly and: thus making them unservicable. Fishes attaining large sizes such as Lates niloticus and Gymnarchus niloticus are absent in the lake.

The fishermen generally fish with old and traditional fishing gears. The catch is usually sold in fresh condition to the middle men operating around the landing centres who transport it to the local markets in unpreserved and uniced condition.

RECOMMENDATION

The reservoir should be stocked heavily with the fast growing fish species. Plankton feeders should be preferred for stocking. Fishing in the reservoir with less than 8 cm mesh size should be prohibited in
order to prevent over-exploitation of juvenile fishes. Submerged trees and stumps should be cleared off from the potential fishing grounds as and when such areas are exposed due to the draw down of the water.

Proper and modern fishing gears such as, gill nets, cast nets, drag nets and hook and lines should be provided to fishernen for smooth and efficient fishing operations.

A close fishing season should be observed from 15 th of May to 15 th of July every year in order to increase the natural recruitment of fishes through breeding and protection.

ACKNOWL EDGEMENT

The author wishes to thank his professional colleagues for all possible help and assistance. Special mention should be made for the generosity, kind consideration and encouragement given by the management for the cause of fisheries development. Special thanks also go to Mr. H.M. Enecheta, Chief Agriculture Officer - Sokoto Rima River Basin Development Authority for going through the manuscxipt and guidance.

BIBLIOGRAPHY

Adeniji, $\mathrm{H} . A .(1980)$ Preliminary study of the fisheries limnology Bakolori Reservoir Nigeria, Report to S.R.R.B.D.A. Sokoto, Nigeria.

Awachie, J.B.E. (1981) Some general considerations on River Basins in Africa in relation to fisheries. Seminar on River Basin Management and Development. CIFA Tech paper No. 8.
F.A.O. (1969) Soil and water resources survey of the Sokoto Valley Vol. 1-4, FAO/SF:67/NIR 3 UNLP. FAO Rome.
E.A.O. (1980) Comparative study of fresh water Eisheries EAO Fish. Tech. pa 198.

Henderson, H.F. and R.I. Welcomne (1974) The relationship of yield to morphoedaphic index and number of fishermen in African Inland fisheries. CIFA Occas. pap (1) 19p.

Ita. E.O. (1973) Approaches to the evaluation and management of fish stocks in Kainji Lake Nigeria Africa. J. Trop. Hydrobiol. Fish. sp. issue 1.

Ibid (1978) An analysis of fish distribution in Kainji Lake, Nigeria. Hydrobiologia 58, 3: 233-244.

Ibid (1981) African reservoir fisheries synthesis A model frame work for data collection and analysis Consultancy report to F.A.O. Rome.

Ibid (1982) Biological indices of over fishing in Kainji Lake and, the management proposals for the Lake fishery K.I.R.I. Tech. Report Series No. 8.

Ita, E.O., J.K. Balogun and A. Adimulaw (1982) A preliminary report of preimpoundment fisheries survey of Goronyo Reservoir, .Sokoto State, Nigeria. Report to S.R.R.B.D.A., Sokoto, Nigeria...

