A QUANTITATYVE ANALYSIS OF DEMAND FOR

FISE IN NIGERIA

by
Fatunla, G.T., Oladimu, O.L. and
Ladipo, 0.0.
University of Ife, Ile-Ife, Nigeria.

ABSTRACT

The paper discusses the relevant theoretical considerations and specifies a model in an attempt to quantify those variables, the changes of which, affect the internal demand for fish in Nigeria. Regression analyses carried out show that a generally rising trend in per capita income will increase the demand for fish, other things being equal. It is further revealed that even as the price of fish goes on increasing, consumers' demand for fish also tend to wise. The paper concludes by emphasising the need for a fish consumption survey in the country's fish demand.

INTRODUCTION

The study of the economics of fish demand and consumption is worthwhile not only in determining national (and localised) fish requirements but, in the final analysis, in satisfying public demand for tish products. The major objective of the present study is to underine the importance of changes in consumers' choice with respect to fish in Nigeria.

Fish is important not only for its calorific value but also as an important source of animal protein. Moreover, thousands of the Nigerian populace derive their livelihood directly from activities related to fish procurement, distribution and consumption.

The objectives of this study are two-fold. In the first instance, the paper seeks to quantity those vaxiables, the changes in which, affect the internal demand for fish in Nigexia. On the basis of the analysis, this study also points out the implications of changes in the demand for fish particularly highlighting the difference between the amount of fish consumed and the amount demanded.

The paper is divided into four sections. In section II, theoretical considerations germane on the topic under investigation, are discussed while specifying the model Ror analysis. Section III gives the results and the economic interpretation of our analysis. In the last section, the summary and conclusion of the study are presented.

WETHODOLOGY

Theoretical Considerations

In theoretical economics, a demand curve is supposed to be dram under very strict conditions for given tastes, incomes, prices of related goods and a generally fixed environment. Under this formulation, quantity demanded is assumed to depend lineariy on price Pt, consmer income yt, price of related good p't, changes in consumer tastes zt, and the disturbance term ut.

The demand for food in Nigeria is increasing rapidy. rhis is to be expected since economic growth gives rise to a number of forces leading to a rapid increase in demand for consumable items such as food. One such food items is rish.

Thus.
$q^{2}=80+8 p t+88_{2} y t+2_{3} p^{2} t+8_{4} 2 t+u t$.
Tn some cases, the 3 nherert curvature of an economic relationship can be
displayed in a non-linear function which can be transformed into a linear function. Such functions lncluding the logarithmic and exponential are widely used in econometrics because they lend themselves zeadily to transformation tnto anear functions, a conventent property.

Demand punctions of the congtant elastichty type, can be written as

If logarithos axe formed on both sides, the equation is transformed into

$$
+B_{i} \log \frac{y t}{p_{t}}+\log u_{2 t}
$$

If this equation wexe expressed in absolute instead of relative prices and money instead of xeal income, the homogeneity property could be brought out as Klein (1962) has pointed ont. This is done by setting the sum of all the exponential parameters to zero.
$x_{i t}=A_{p l t} 811 p_{2 t} 82 i \quad \cdots p_{n t} p_{t} y_{t}{ }^{8} u_{i t}$
where $\frac{n}{j=1}{ }_{j}+B+\&_{i}=0$
Belleving as he does, that th agricultural markets, exrors enter multiplicatively, Fox (195s) adopts a similar approach. He uses structural models composed of equations limear in the logs of all exogeneous variables. An opproach such as this has the advantage of producing dixect estimates of the elasticity oi demand.

Tr empirical studies of the manlet for various meats in the United States, Tox presents evidence that than geaz, both domestic production and domestic consumption result melniy from prior decisions. In some of his equations, he estimates all coefficiexts from logarithmic first ditrerences of original data, that is he employs:
$q=\log \frac{Q t}{Q_{t-1}}$ mather thax $a=\frac{Q_{t}}{Q}$

A case can be put un for this, stnce in time-sextes regressions, the use of logarithmic tirgt discerence teads to reduce malticollinearity (chrough eliminatimg the effect of comon trends and cyclicel influences). Also, such a tramstometion is moxe likely to keep extra sample expexience within the range of previously obsexved tradition.

In estimathe a demand function for beef in the United States between 1922-1941 using the indinect least squares
$p=B_{1 q}+B_{2 y}+B_{3 m}+y_{d}$

where

```
p = mental market price,
q= quantity demand,
y = consumer disposable income (per caplta),
W = weather,
v = dssturbance terms,
B}\mp@subsup{B}{1,}{}\mp@subsup{B}{2}{}\mathrm{ and }\mp@subsup{B}{3}{}=\mathrm{ coefficients.
```

Fow obtalned results which differed from corresponding single-equation estimates (based on logarithmic first difiexences) by no more than one standard error.

Aay attempt to test these relations of economic theory in developing countries, is fraught with problems. The most pressing and immediate obstacle is a lack of suitable data. There are errors in reporting, compllation and publication of data collected by government agencies. Besides, the data record phenomena of the martet (aggregates of specific kinds of transactions) whereas the theory deals with phenomena of the mind.

While conceding that situations of inadequate and often unreliable data existent In developtag countries make studies on demand analysis a hazaxdous task, efrorts gtill need to be made to mare reasonable guestimates on the basis of rational assumptions as a first basis tox planning.

Model Speciflcation

In the present model, demand is expressed as

where
Qit $=$ per capita demand for fish in Nigeria in time t,
$P R t=$ Retall price of fish in time t,
Pmt $=$ Retail price of meat in time t,
$Y t=p e r$ capita income in Nigeria for year t,
$\mathrm{T}=$ time trend (year $1973=1,1981=9$).
In estimating the value tox the depencent variable, qit, sales figures were used as a proxy. The velues obtained were checked for consistency with figures obtained from the Fedexal Department of Fisheries and the Federal orice of Statistics, Lagos.

As explanatory variables, the prices of fish and meat were obtained and averaged out for major comsumption centres in the country. The figures so obtained, as well as yeariy per capita consumer incomes, were deflated by the consumer price index for food products fox the nime-year period considexed, 1973 - 1981.

Wach of the explanatory varisbles was assumed to be non-stochastic. The disturbance term, used below in equation 2 , was assumed to be nomally distributed.

Data Analysis Procedure:

Multiple zegresston analysts was used to estimate two difierent functional forms: the IInear and the exponential with the Iattex Inearised by the use of a log tsams rommatlom.

The :umethonal sone providing 'best fit' was the exponemtial function (equation s) while the ostimating equation was the transfoxined form (equation 3).

where

$a_{0}=$ Conscant term.
$a_{1}-a_{4}=$ Regresmion coeftichents tor explanatory variable used.
T = Thme trend.
$u_{t}=1 s \log E$ and is assumed log nommal.

EGTMMATTON OF DEMAND

Makimg estimates rom selected equations, our investigation revealed the followings among othem things:-
(1) the inclusion of time as shigificant explanatory variable,
(11) the inclusion of all types of tish in averaging out fish prices improved the 'fit' over the avexage price for three widely sold fish types (Mackerel. Skmbia and Staverda).

In selecting oyw equations, the values of the coerticient of multiple determination, the adjusted R^{2}, were used. The comectness of the foxm of equation was also welghed in practice against the ready understanding of the meantig of the coefricients.

Resultant equations are given in the table below. In interpreting the equations, it ahould be boxne th mind that the model tested ignores a mumber of promising niceties: dispoanble income is taken as exogeneous no distinction is made between different typea of meat; the demand and consumption pattexms of fish and meat in the country as a whole are generalised,

TABLE	Selected Regression Results on the Domand rox Fish in Nigeria							
Equation Number	Commodity	Dependent Vardable	Ccmstant texm	Regression Coetin- cients pi Rxplanatory Variabies				
		$\begin{aligned} & \text { Iog } \\ & Q_{i t} \end{aligned}$		$\underline{\operatorname{cog}} \mathrm{P}_{\mathrm{Pt}}$	$\log \mathrm{m}_{\text {mt }}$	$\mathrm{Log}^{4} \mathrm{t}$	T	
4	All kypes of Tish		21.755	$\begin{aligned} & (6.110 w \\ & (2.843) \end{aligned}$	$\begin{aligned} & -5.490 \\ & (4.948) \end{aligned}$	$\begin{gathered} 5.116 \\ (4.889) \end{gathered}$		0.34
5	Al1 types of kish		-13.783	$\begin{gathered} 6.542 * \\ (2.716) \end{gathered}$	$\begin{aligned} & -13.433 * \\ & (3.620) \end{aligned}$	$\begin{aligned} & 13.1174 \\ & (3.297) \end{aligned}$	$\left(\begin{array}{l} 0.660 * \\ (0.106) \end{array}\right.$	0.83
6	Thare Widely sold types of Fish		-2.420	$\begin{gathered} 4.008 \\ (3.339) \end{gathered}$	$\begin{gathered} -7.232 \% \\ (2.820) \end{gathered}$	$\begin{gathered} 5.485 * \\ (2.744) \end{gathered}$	$\left(\begin{array}{l} 0.506 \% \\ (0.147) \end{array}\right.$	0.79

Notes: -

Figures in parenthesis are standerd errors.
(1i) The coefticeints astericked are significantly different Erom zero (at the 5 percent level of signiticance).

On the basis of our selection criterion equation 5 seems to be the best-fitthas equation. In that equation, the income coefficient, X_{t}, is slenificantly dinteront trom zero. This is to be expected as growth in per captta income tends to increase quantity demanded of non-starchy foods especially in situations where previous consumption has been below saturation level.

Like $Y_{\text {, }}$, the time trend, T, is also significant over the period constdered, 1973 to 198 I $^{\text {. }}$ As time want by, the amount of fish consumed increased due to the efRect of socio-economic and other tactors.

In equation 5, as well as in other equations, the exfect of the quantity of itsh demanded on meat prices, is demonstrated. Even though we have assumed away such influences as consumer substitution between tish and varioum types of meat as the prices of meat vary, it is apparent from the resultant equations that as the quantity of fish demanded or purchased increases, the 'price of meat' declimes. This is especially so in situations where it is more favourable, economically or otherwise, to consume fish.

Finally, our best-fitting equation shows the relationship between the quantity or fish demanded and the price of fish to be positive. This seems contradictory to a priori expectation as one would have expected an inverse relationship between price and quantity demanded. The explanation fox this is that in most developlage countries, quantity supplied often falls short of demand and the common assumption that Q_{c} and P_{c} relate in an inverse manner may not always hold true.

This observation can be explained even by static economic theory as depicted diagramatically below.

Tigure 1 - Diagramatic illustration of the relationship between the quantity of tish sold and fish price

At point A, as on points along the supply cuxve \mathbb{N}, lnverse relationship between pxice and quantity holds, givex thet demand is fully satinfied. Rowever, hn shturtong whexe deman 4 fer from betng antisfied, and supply deficit MB oxiste, as occur th most dewelopins countries, price teeps rising as demand mereases (as long as quantiy supplied is below quantity denanded).

If an obeervation of this sort occurs \ln a developed economy, however, a direerent axplanation of the tundings may be consldered. This is not to say that the explamation given above ts strictiy the corsect explanation fox a developing economy treelf. Thdeed, our thatmg scems not to justify the assumption of uskng sales as a proxy for demamd. Thus, the observation, or prices increasing as quantity tucreases, points to an identification problem. This will only occur if the aupply function is what pe have sather than a demand fumction.

SUMMARY AND CONCLUSTON

The main objective of this paper has been to underike the importance of changes in consumers chotce with respect to gish tin ingerta. The peper quantinies those variables, the changes in which, aftect internal tish demand in the country.

Regression analyses carmed out show that a generally rising trend in per capita income will increase the demand for fish, ceteris paribus. it is further revealed that even as the prtce of Ash goes on lucreasing, conswars' demand for it (Inh) also tends to rige. This ts because prevaling situations in Nigeria with respect to fish supply and demand seem to be such that the comotry is still fax from meeting present (and future) reguitements.

Thexe ts a pressing need toz a fish consumption survey in the country to determine more accurately the country's fish demand with a view to satisfying public fish consumption. Meeting the nation's zequirements has immense contributions to make to the process of national cievelopment.

REPEREMCES

Fox; Kami A. (1975) "Changes in the Structure of Demand for Tam Products", Jour. Earm Econ. Vol. 37, No. 3, pp 41 - 428

Klein, U.R. (1962) An Tatroduction to Econometrics, Englewood Clirfs, N.J.: Prentice-Hall Mnc.

Diagratutic illustration of the relationship between the quantity of fish sold and Eish price.

