FORTH for NOAA/MLML Instruments

Richard E.Reaves and William W. Broenkow

Moss Landing Marine Laboratories Technical Publication 93-2

July 1993
(Rev. Jan 1994)

FORTH for NOAA/MLML Instruments

Richard E. Reaves and William W. Broenkow

Moss Landing Marine Laboratories

Moss Landing Marine Laboratories Technical Publication 93-2
Moss Landing, CA 95039

July 1993
(Rev. January 1994)

FORTH for NOAA/MLML Instruments

Table of Contents

page
L0 3 7 1= 1
FORTH Organizationv vttt tite ittt ean s ennesneennneneennns 2
Features On the T7 ..o ittt ittt ir et ettt eannee ettt oo tnsnsnonnananeeeeeees 2
N4 2 4] 1\ o 7= P 3
Hard Disk DIivettt ittt ittt ittt ettt eiaieaeeeeennnnnns 3
Real Time Clockt i et ittt et e e e i e it 4
Serial EEPROMttt teattennteat et iiaee et raneeeennns 4
TPU Serial Interfacettt et et e enennnnnnan 4
GlOSSATY Of tEIMIS . oo\t ettt e et ettt ettt et e e e e e e 5
= ¢ 1 o= 6
FORTH DiCtiONaryottt v et ittt ttsenete e tatneneee e insnnnaseeneeeenoanan 7
MC68332 CPU Secific FORTH Words ottt ittt ettt it enan 34
TattleTale Model 7 Specific FORTH Words ittt 45
Additional FORTH Words for MLML USEttt tttiittteen e eeeannaaneeeees 55
MC68332 FORTH Assembler v vttt ittt it e e eie e e itannaeteneeneeenenns 59
.TattleTale Flash EPROM BUIDET00ttt tnninteeenennnaeeeeenenenennnonnenns 63
FORTH Commands Specific for the SIS i i 66
FORTH Commands Specific for the MOS i 69
FORTH Quick Reference GUIdeo oottt ittt i e ei e 75
List of Figures
Figure 1. Memory organization of the TT7ttt ittt iiaaeeeeeeeennns 2
Figure 2. Memory organization of the FORTH RAM areaovviiiiunnnneeneeeennnn 3
Figure 3. Serial EEPROM System Area Mapttt iaianeenenennns 4

Figure 4. Structure of a dictionary entryttt i ettt e 5

FORTH for NOAA/MLML Instruments

MLML Tech Pub 93-2

FORTH for NOAA/MLML Instruments

Richard E. Reaves and William W. Broenkow
Moss Landing Marine Laboratories

Overview

This report describes FORTH software written
for several instruments used in the NASA-sponsored
project to design and build Marine Optical Buoy
System (MOBS) and in the NOAA-sponsored project
"EOS MODIS Execution: Oceanographic Profiling,
Data Acquisition and Management for the Marine
Optical Buoy System". In the NOAA project MLML
and NOAA personnel will participate in quarterly
cruises at the MOBS Hawaiian site to validate
performance of SeaWiFS and will participate in
several extended "process" cruises to provide wide
geographic surface truthing investigations similar to
those lead by Dennis Clark (NOAA) following the
launch of CZCS in 1979. In the NASA project we are
designing and building MOBS, a high resolution
spectroradiometer that will operate autonomously in
a buoy moored west of Lanai in the Hawaiian Islands.
That instrument, the "Marine Optical System" (MOS),
will transmit by cellular phone in near real time
observations of upwelled radiance and downwelled
irradiance from three depths.

During the EOS MODIS cruises several
“instruments have hardware and firmware designed and
built at MLML: the MLML CTD-Rosette, MOS, and
the NOAA /MLML "Surface Irradiance Spectrometer"
(SIS). SIS was designed and built at MLML by Mark
Yarbrough. He chose to use the Onset TattleTale
Model 7 because of its low power, superior
performance, built-in real-time clock, large RAM, the
TPU which will control the fiber optics multiplexer,
multiple serial interfaces, disk, and good factory
support, among other factors. For that system the
first author wrote a FORTH core and implemented
data acquisition commands to transmit data under
control of data acquisition computer. Mike Feinholz
wrote a high level (VMS) data acquisition program
(Feinholz and Broenkow, 1993) that archives data in
the MLML DBASE format (Broenkow and Reaves,
1993).

During the past three years, Dennis Clark and
Mark Yarbrough have designed and built a prototype
MOS instrument. Components for this instrument
had been acquired over a several year period and each
was supplied with its own individual controller. Two

July 1993 (Rev. January 1994)

SC spectrographs were used, each having its own
80C85 controller. Research Support Instruments
installed a third 8085 that provided A/D conversion
on temperature, pressure and supply voltages, which
transmitted the analog and spectral data. Those
controllers are no longer supported by the
manufacturer, and their firmware has caused problems
in reading certain pixels in the diode arrays. A fourth
and different controller was supplied with the fiber
optics multiplexer. The multiplexer suffered serial
communication problems, and glitches in its firmware
prohibited smooth multiplexer control.

In building the second generation MOS
instruments, which will be used both in the MOBS
buoy and as a free-standing profiling instrument, we
chose to replace the multitude of controllers by a
single robust CPU, the TattleTale Model 7. Our
experience with OEM software for limited production
devices suggested that we cannot always implement
certain commands we consider essential, and that
OEM support for their firmware is not consistent. To
allow this CPU to be used in all MLML instruments
(including MOS, SIS, CTD/Rosette and the buoy), we
needed to assemble a FORTH vocabulary that is
common in all instruments. Because we anticipate
that our future requirements may change, choice of
the FORTH environment allows us to download new
commands remotely. Thus we will be able to
reprogram MOBS via cellular phone. FORTH
provides a multi-tasking, interactive and flexible
environment in contrast with the commercially
available cross-compilers that requires an external
computer such as the MacIntosh to create and
download programs which is time consuming,
Because we find the need to have online storage of
large data sets we chose to implement the MS-DOS
disk capabilities in FORTH.

Since the instrumentation and its use are rapidly
evolving, this report will require periodic updating.
This project has been time consuming, but will pay off
by allowing us control over all functions.

FORTH for NOAA/MLML Instruments

FORTH Organization

The FORTH dictionary for the Onset TattleTale
Model 7 (TT7), which uses the Motorola 68332 CPU,
was developed from several sources. First the 8085
FORTH provided by Research Support Instruments,
Inc. which was then modified for use on MLML’s
MOS instrument. This is a Fig-FORTH version. The
second source was from FORTH, Inc. Target
Compiler for the 68332. The drawback of the target
compiler is that the 68332 must communicate with an
IBM PC using the Background Debug Mode (BDM)
interface built into the CPU. The goal was to have
FORTH on the TT7 to run independently of any
external machines. Consequently, the entire FORTH
core was rewritten based on the source code from

000000
Static RAM (256K)
040000
(unused)
080000
Flash EPROM
(512K)
100000
Pseudo-static
RAM (1M)
200000
B Pseudo-static
- RAM (1M)
300000
(unused)
| F80000
Hard Disk 1/0
F84000
Parallel 1/0
F88000
Real Time Clock 1/0
F8C000
- A/D Converter 1/0
. F90000
(unused)
‘ | FFFO00
Standby RAM (2K)
- FFF800
(unused)
FFFAOO
CPU Registers
FFFFFF

Figure 1. Memory organization of the TT7.
Hexadecimal addresses are shown on the right.

MLML Tech Pub 93-2

these two sources. Additional words were provided to
make use of the 68332 and TT7 features such as the
Flash EPROM, A/D converter, Time processor unit
(TPU), and Serial EEPROM.

The source code is available from the authors,
and it contains 28 files totalling about 330K which can
be put on a IBM PC 360K floppy disk. The
assembler used in this project came from the
Motorola Freeware Bulletin Board and was modified
for use on the MLML’s VAX. This assembler may
also be obtained from the authors.

The organization of the TT7 contains three
components: RAM, EPROM and 1I/0O. The RAM is
divided into three sections: Static, Pseudo-static and
Standby (Figure 1). These sections and EPROM
placement were governed by the TT7 schematic.
FORTH uses the static RAM for stacks, user area,
buffers, system variables and CPU operations
(Figure 2).

The FORTH language is organized into two
sections: core and RAM. The core section contains
the basic FORTH core that is common to all
instruments developed by MLML. This resides in the
Flash EPROM. The second section, RAM, contains
routines specific to each instrument. Although it also
resides in the Flash EPROM, it is copied to Static
RAM and can be modified there and burned into the
EPROM. This allows us to add words to the TT7
FORTH core dictionary without need of an external
interface. Updating the FORTH core requires use of
an external machine such as a PC interfaced through
the BDM. That requirement can be eliminated by
sending the code via the console port and manually
burning the EPROM, though this is time consuming.

Features on the TT7

The architecture and operation of the Motorola
68332 microprocessor are described in detail in the
Motorola manuals. Motorola (1990a) describes the
CPU registers in more detail as well as the CPU
architecture. =~ Motorola (1990b) describes the
instruction set, exceptions, and the BDM interface on
the CPU. This is mainly used for assembly
programming. Motorola (1990c) describes in detail
the Time Processing Unit that is built into the CPU
chip. Includes description of built-in time functions.
The Motorola manuals may be ordered from the
Motorola Literature Distribution, P.O. Box 20912,
Phoenix, AZ 85036.

July 1993 (Rev. January 1994)

FORTH for NOAA/MLML Instruments

000000
Vector base area
000400
System variables
and buffers
000800
User dictionary
[Il
l ! 1
PAD » | — — — — — — — — — 1
PAD buffer
1 1 T
Is - b - e m o, - - - - =]
Parameter stack
S0 - 03FDO0
Input buffer
! ! 1
T 1 T
RP ~+ | - — - — — — — — — 4
Return stack
STATUS -+ 03FFO0
User variables
040000

Figure 2. Memory organization of the FORTH
RAM area. FORTH words that points to
memory areas are shown on the left with hexa-
decimal addresses on the right.

In addition to the Motorola 68332 CPU, the TT7
contains additional components that enhance its
-usefulness. These include the SDA1812 A/D
converter, ICM7170 real time clock, CAT35C104
serial EEPROM, and Conner CP-2084 disk drive.

A/D Converter

A Siemens SDA1812D 12-bit A/D converter is
also included on the TattleTale Model 7. This chip
can read four channels one at a time and return the
12-bit result. This is accomplished by using the
FORTH word SDA. In case of timeouts, SDA returns
the value given by ADTIMEOUT. All four channels
of the A/D converter may be printed using .SDA.

To make use of the SDA chip from an assembly
routine, the address returned by sdasr points to a
subroutine also used by SDA.

Hard Disk Drive
An 80 megabyte Conner CP-2084 3.5" disk drive
is attached to each of the TattleTale Model 7. A

series of low level FORTH words were created to
make use of this drive to read and write sectors and

July 1993 (Rev. January 1994)

MLML Tech Pub 93-2

obtain information about the drive and registers:

DRIVE Turn on/off drive
.DINFO Print drive information
DSTAT Print drive registers
DREAD Read sector(s)
DWRITE Write sector(s)

Other low level words are used in the above but may
be used for other purposes:

DRIVE.TABLE Returns disk configuration

DINFO Copies disk info to buffer
DREADY Checks drive status
DSECTOR Positions drive for read/write

Using these low level routines, additional FORTH
words are available to setup and access the disk drive
in DOS (IBM PC) format. The DOS disk format and
directory structure was implemented here from
material provided in Angermeyer, et. al. (1989,
pp. 577-618). This allows the drive to be connected to
a PC-compatible computer so files can be transferred
easily between the PC and the drive. This connection
is accomplished using the National Instrument
PC-DIO-24 card and a appropriate driver for the PC.
The following words operates on files:

FOPEN Opens a file for read/write
FSEEK Sets the file position
FREAD Reads data from file
FWRITE Writes data to file

FGETS Reads a string from file
FPUTS Writes a string to file
FEOF Sets the End of File marker
FCLOSE Closes the file

Other words, which emulate their DOS counterparts,
may be used for disk and file handling:

FORMAT Formats disk

CHKDSK Checks contents of disk
FTYPE Displays ASCII contents of file
FDUMP Displays binary contents of file
COPY Copy files

DEL Remove files from disk

REN Rename files

MKDIR or MD Create a sub-directory
CHDIR or CD Set current directory
RMDIR or RD Remove a sub-directory

DIR

Display content of directory

The DOS disk format comprises the disk header
sector, the File Allocation Table (FAT) and the root
directory. The data following the root directory are

3

FORTH for NOAA/MLML Instruments

grouped in clusters. Each cluster contains a number
of sectors (in powers of two) depending on the disk
size. In this case of 80-Mb drive, the cluster size is
4 sectors. These parameters, including the number of
FAT sectors, are calculated in FORMAT.

Real Time Clock

The TattleTale Model 7 provides date and time
from an onboard Real Time Clock using the Harris
‘Semiconductor ICM7170 chip. FORTH words are
‘available to set and retrieve date and time from the
-Real Time Clock:

!DATE Sets the date
@DATE Gets the date
'TIME Sets the time of day
@TIME Gets the time of day

Leap years are also accounted for. Since only the last
two digits of the year are used, the years range from
1980 to 2079. The time of day is based on the
24-hour clock.

The Real Time Clock also provides scheduling by
using its alarm registers. The TT7 was modified so it
can turn itself off and wakes up at a later time set in
the alarm. The following words provides this function:

SETALARM Sets the alarm registers

?ALARM Check alarm interrupt flag

ALARM Print content of alarm registers

?SLEEP Check if can turn off TT7

SLEEP Sets alarm and turn off TT7

SCHED Sets the schedule for alarm
interrupts

SCH Print schedules

SCANSCHED Scan schedule upon alarm

interrupt and execute routines
associated with the interrupt

. Note the scheduling information are stored in the
system area of the Serial EEPROM described below.
The entire contents of the Real Time Clock may be
printed using .RTC.

Serial EEPROM

A 4096-bit serial EEPROM chip is included with
the TattleTale Model 7 for storing permanent data
even when the power is off. This uses the Catalyst
Semiconductor CAT35C104H chip connected to the
CPU’s QSPI interface. The chip is configured for 512
byte addressing range and the data can be written and
read using the FORTH words !SEE, !SEE2, !SEE4,

4

MLML Tech Pub 93-2
0[] System area CRC
2 [] Flash EPROM CRC
4 Length of system area
6 TMCR IARB value
7 :[MC68332 SYPCR value
8 Chip Select 7 values
12 Chip Select 8 values
16 PORT D parameters
19 (11 PORT E parameters
22 _ﬂ PORT F parameters
25 Schedule wakeup flags
26 Schedule #1
38 Schedule #2
50 Schedule #3
62 Schedule #4
74 Schedule #5
86 Schedule #6
98 |. Schedule #7
110 Schedule #8
122 End of system area

Figure 3. Serial EEPROM System Area Map.
The values on the left represent SEEPROM
addresses.

@SEE, @SEE2 and @SEE4. The entire contents of
the serial EEPROM may be printed using .SEE.

Memory organization of the serial EEPROM is
divided in two parts: system area and user area.
These two parts are evenly divided into 256 bytes
each.

The first half (address 000 to OFF) of the
EEPROM is the system area, which contains
parameters for the system upon startup and is
identical in all TattleTale units (Figure 3).

The second half (address 100 to 1FF) of the
EEPROM is the user area. This is used to store
parameters that are specific for each instrument. For
example, the calibrated half-step counts for each
multiplexer positions for the MOS can be stored.

TPU Serial Interface

Onset has provided the Time Processing Unit
(TPU) microcode that allows the TPU to function as
asynchronous serial interfaces.” Up to 7 paired serial
interfaces (one input and the other output) or up to
15 one-way serial interfaces may be used. Each TPU
channel can act as either an input (RXD) or output

July 1993 (Rev. January 1994)

FORTH for NOAA/MLML Instruments

(TXD) channel. The FORTH words that provide this
function are:

TSEROPEN Opens a TPU channel for serial
input or output

TSERBAUD Sets the baud rate

TSERPAIR Link input and output channels
for handshaking

TSERXSHAKE Enable/disable = XON/XOFF
handshaking

TSERFLUSH Empties the serial buffer

TSERTIMEOUT Sets the timeout value

TSERLEN Gets the number of bytes
residing in the buffer

TSERGET Gets a received character

TSERPUT Sends a character

TSERPUTS Send a string of characters

TSERCLOSE Closes the TPU channel

TSEROPEN must be executed first before any other
words can be used. This allocates a portion of the
user dictionary to be reserved for buffering input or
output.

Glossary of terms

BDM
An acronym for Background Debug Mode, which
is part of the 68332 CPU. This allows data
transfers between an external machine (with
appropriate driver) and the CPU. Used for
downloading updated FORTH core.

Cell ,
A memory unit used for general storage. For the
68332 FORTH, this is 4 bytes long.

Colon definition
Creates a new FORTH word to execute a group
of FORTH words. This begins with the FORTH
word : (colon) and ends with ; (semicolon).

Console
An external device that acts as a terminal. All
communications through this port use the SCI.

Link Field Address (LFA)

« . . Name Field Address (NFA)

Code Field Address (CFA)
Parameter Field Address (PFA)

Figure 4. Structure of a dictionary entry.

July 1993 (Rev. January 1994)

MLML Tech Pub 93-2

CRC
An acronym for Cyclic Redundancy Check. This
16-bit checksum is used for checking data
integrity in the Serial EEPROM, data transfers
across serial interface, etc.

Dictionary
Contains all FORTH words in the system. Each
dictionary entry (Figure 4) contains the following:

The LFA is a cell that contains the pointer to the
LFA of the previous word. Used in searching for
matching words until a zero encountered.

The NFA contains the length byte and the word
(up to 31 bytes long) with the last character
having the 7th bit set. A zero may be padded
after the last character to make the entire length
of the NFA an even number (as required by the
68332 bus addressing). The length byte actually
contains a series of bits:

Bit Description

0-4 Length of word (0 to 31)

5 Smudge bit, to hide the word from
searches

6 Immediate flag bit

7 Precedence bit, indicate start of NFA

The CFA is a cell that contains the address of a
routine that determines how to process the PFA.

The PFA is a cell that contains either an address
of the word to be executed or a value.

Exception
A system interrupt caused by internal errors such
as bus errors, invalid address, divide by zero, etc.

FORTH word
A word containing any ASCII characters (except
control characters and space) identifying the
operation to be performed.

Parameter stack (or simply "stack")
A group of cells that the FORTH word uses as
"arguments" for input and output.

Pin
A one bit data I/O line that functions as either an
input or an output. Used mainly for controlling
and check status of external devices.

FORTH for NOAA/MLML Instruments

QSM
An acronym for Queued Serial Module, which is
part of the 68332 CPU. This contains both the
QSPI (synchronous) and SCI (asynchronous)
interfaces.

QSPI]
An acronym for Queued Serial Peripheral
Interface, which is part of the 68332 CPU. This
is a synchronous serial 1/O useful for high speed
communications. :

Return stack
A group of cells used mainly as a return pointer
after a FORTH word is executed. Also used in
loops (see DO) and can be used as place holders
from the parameter stack (see >R and R>).

SCI
An acronym for Serial Communication Interface,
which is part of the 68332 CPU. This is an
asynchronous serial I/O used as the console port
for interactive FORTH.

SIM
An acronym for System Integration Module,
which is part of the 68332 CPU. This controls
the operation of the CPU such as system clock,
timers, etc.

TPU
; An acronym for Time Processing Unit, which is
part of the 68332 CPU. Its 16 channels provide
various time or serial interface functions.

User space)
A portion of the memory set aside for user
variables.

Vocabulary
Contains a set of selected FORTH words.
Several vocabularies may exist and selecting a
vocabulary may combine more than one
vocabulary. Words are searched in the context
vocabulary. New words are created in the
current vocabulary.

MLML Tech Pub 93-2

References

Baker, L. and Derick, M. 1983.
" Pocket Guide to FORTH. Addison-Wesley
Publishing Company. 104 p.

Brodie, Leo 1987.
Starting FORTH, 2nd Ed, FORTH, Inc.
Prentice Hall. 346 p.

Broenkow, W.W. and Reaves, R.E. 1993.
Introduction to MLML DBASE programs. Moss
Landing Marine Laboratories Tech. Pub 93-1.
Moss Landing, CA 95039

Conner Peripherals 1991.
CP2084 Intelligent Disk Drive Product Manual.
Conner Peripherals, Inc. 61 pp.

FORTH Inc. 1986.
polyFORTH ISD-4, Reference Manual and CPU
Supplement. FORTH, Inc.

McCabe, C. Kevin 1983.
FORTH Fundamentals, Vols 1 and 2. dilithium
Press. 365 p.

Motorola, Inc. 1990a.
MC68332 User’s
MC68332UM/AD

Manual. Part numBer

Motorola, Inc. 1990b.
CPU32 Central Processing Unit Reference
Manual. Part number CPU32RM/AD REV 1

Motorola, Inc. 1990c.
TPU Time Processing Unit Reference Manual.
Part number TPURM/AD

Onset Computer Corp. 1991.
Tattletale Model-7 Hardware Reference Manual.
North Falmouth, MA 02556-1030.

The Waite Group 1989.

The Waite Group’s MS-DOS Developer’s Guide,
2nd Ed. Howard W. Sams and Company. 783 p.

July 1993 (Rev. January 1994)

FORTH for NOAA/MLML Instruments

FORTH Dictionary

Details on using the FORTH language is beyond
the scope of this report. Brodie (1981) provides an
excellent treatment of FORTH for beginning and
advanced programmers, while McCabe (1983), Baker
and Derick (1983), FORTH Inc. (1986) are more
technical. The FORTH dictionary is organized in the
following manner:

Word
Description...

Stack Diagram

Word represents the FORTH word used to perform
a specific operation. Note that the FORTH words are
case sensitive -- they must be typed exactly as shown.
Note the delimiters between words are spaces or tabs.
Do not put spaces between the characters in the word.

Stack Diagram shows the input requirements and
output results of the parameter stack which is
separated by the hyphens ("--"). The contents of the
stack diagram are ordered so the last value in the list
is at the top of the stack. The following lists the
symbols found in the stack diagram:

Symbol Stack values Length in bits
a Memory address 32
b Unsigned byte-precision number 8*
¢ ASCII character 8*
d Signed double-precision number 64
f Boolean flag 32
ff Boolean false flag (0) 32
h Signed half-precision number 16*
n Signed single-precision number 32
t Signed triple-precision number 96
tf Boolean true flag (-1) 32
u Unsigned single-precision number 32
ud Unsigned double-precision number 64
uh Unsigned half-precision number 16*
Note: * indicates the numbers are padded with

zeros or sign-extended to 32 bits.

(a-n)

The input required by the word is a memory address
a. The output result is left on stack as a 32-bit
number n.

For example:

A vertical bar | may be used to separate a group of
stack values. The action(s) or the result(s) depends
on the returned boolean flag,

July 1993 (Rev. January 1994)

MLML Tech Pub 93-2

Lastly, Description explains the action of the FORTH
word. Some examples are included to clarify the use
of the FORTH words. With these examples, the
boldface indicates input from the keyboard, and the
italics indicates output to the terminal. FORTH
usually terminates the output with an ok. Related
word(s) are FORTH words that perform similar or
opposite actions.

! (na--)

Store a single-precision number n at the
address a.

Related word: @

ICSP (--)
Stores the current parameter stack pointer in the
user variable CSP. This is used for error
checking during compiling. The stack pointer
should be the same before and after compilation.

Related words: ?CSP CSP

" (quote) (--ab)

" "
“es

Format:

An immediate word that returns the address a
and length b of the string. The " must be
followed by a space, then a string of characters,
and finally terminate with an ending quote (").
The beginning and ending quotes as well as the
space after the beginning quote are not saved in
the string. The string may contain up to 255
characters.

In the colon definition, the string is compiled
inside the definition, and the address and count
will be put on the stack upon execution of the
word.

If not in a colon definition, the string is stored at
HERE +128 and the address and count is put on
stack. Overwriting this string can be easily done,
so this should be used immediately or it may be
lost.

FORTH for NOAA/MLML Instruments

Example:

" This is a string." TYPE This is a string. ok
: HELLO " Hello" TYPE ; ok
HELLOQO Hello ok

Related word: "
’ (udl--ud2)

Format: <# .. #. #>

Takes the least significant digit from the double-
precision number udl, converts to an ASCII
character and puts it in memory for output. The
value of this digit depends on the value in BASE.
The result on stack ud2 is the input udl divided
by the value in BASE and is used for further
processing.

Example:
DECIMAL 123, <# # # #> TYPE 23 ok

<# #S SIGN #ASC HOLD
#>

Related words:

#> (ud--an)

Format: <# .. #>

Terminates the conversion of an unsigned double-
precision number to an ASCII string. The
number ud is dropped from stack and the address
a and length n are placed on the stack.

<# # #S SIGN #ASC
HOLD

Related words:

#S (ud--00)

Format: <# ..#S .. #>

This puts all the digits in the double-precision
value ud into the output buffer defined by <#.
This is similar to repeating # until ud becomes
zero. At least one digit will be converted.
Related words: <# # SIGN #ASC HOLD
#>

MLML Tech Pub 93-2

> (apostrophe) (--a)

Format: * name

Searches the FORTH dictionary for the next
word name using CONTEXT vocabulary. If name
is found, then returns the PFA of the word. In
the colon definition, this address is stored in the
next dictionary location. Error results if name is
not found. ’

Related words: COMPILE [COMPILE]

(—-a)

A user variable containing the PFA of a FORTH
word to be executed by ABORT". By default,
ABORT is used.

’ABORT

'CLEAN (—-a)
A user variable containing the PFA of a routine
to be used in CLEAN. Defaults to (CLEAN).

'CR (-a)

A user variable containing the PFA of a routine
to be used in CR. Defaults to (CR).

'EXPECT (-a)
A user variable containing the PFA of a routine
to be used in EXPECT. Defaults to (EXPECT).

'IDLE (-a)
A user variable containing the PFA of a routine
to be used in ABORT. Defaults to an internal
routine that sets the FORTH system to its default
state and executes QUIT.

'KEY (-a)

A user variable containing the last input

character. Note unlike other user variables which

are stored as longwords, this variable stores as
word only.

'MARK (—a)

A user variable containing the PFA of a routine
to be used in MARK. Defaults to (MARK).

July 1993 (Rev. January 1994)

FORTH for NOAA/MLML Instruments

'PAGE (-a)

A user variable containing the PFA of a routine
to be used in PAGE. Defaults to (PAGE).

s (~a)

Places the current parameter stack pointer on top
of stack.

Related word: SP@.

'TAB (--a)

A user variable containing the PFA of a routine
to be used in TAB. Defaults to (TAB).

’TYPE (--a)

A user variable containing the PFA of a routine
to be used in TYPE. Defaults to (TYPE).

(()

Used to enclose a comment in the source code.
It must terminate with a ending parenthesis ().

Example:

(this is a comment) ok

(CLEAN) (-)

A default routine used by CLEAN for a "dumb"
terminal. It overwrites remainder of line with
spaces and return cursor to beginning of line.

(-)

A default routine used by CR for a "dumb"
terminal. It just sends a carriage return (ASCII
13) and a line feed (ASCII 10).

(CR)

(ECHO) (fc--)
Outputs character ¢ to the terminal and if the flag
f is true, outputs space and backspace characters
to erase (i.e rubout) the last character outputted.
This is used in (EXPECT) to echo input
characters.

Note: PTR and CTR are preserved before
outputting characters and then restored.

July 1993 (Rev. January 1994)

MLML Tech Pub 93-2

(EMIT) (c-)
Outputs character ¢ to the terminal. This is used
in (EXPECT) to send a character if the input
buffer length is negative (see EXPECT).

Note: PTR and CTR arc preserved before

outputting characters and then restored.
(EXPECT) (cl]--c2])
A default routine used by EXPECT. The action
depends on the user variables CTR and SPAN:

1. If CTR is greater than zero, then sends a
character c! from the stack and then negates
CTR. Note that CTR contains the negated
value of the maximum buffer size.
Consequently, this buffer size must be a
negative value before executing EXPECT.

2. If CTR and SPAN are both not zero, then
exccution is performed for STRAIGHT.
Note the XON/XOFF handshaking is
disabled to allow the XON and XOFF
characters to be saved in the buffer.

3. If CTR is zero, then checks to see if a
character was sent from the console. If so,
then returns the character as c2; otherwise
returns zero.

(FIND) (ala2-a3ntf | ff)
A word at al is searched beginning at the LFA 42
of the vocabulary. If found, then puts PFA a3

and word length 7. on stack along with the true
flag. Otherwise, only the false flag is returned.

(an-)

A default routine used by MARK for a "dumb"
terminal. It sends a caret character ("™) and
types the string.

(MARK)

(PAGE) ()
A default routine used by PAGE for a "dumb"
terminal. It clears the screen by executing 25
CR’s.. '

FORTH for NOAA/MLML Instruments

(SAVEKEY)

e

(STRAIGHT)

(TAB)

(TYPE)

10

(cl--f1f2¢2)

Interprets input character ¢l in the following
manner. The flags f1 and f2 are set to false
unless otherwise noted and ¢2 is used for echoing
the input character. This is used in (EXPECT) to
save a stream of characters into an input buffer.

1. If cl is a carriage return character (ASCII
13), set CTR to zero (to terminate EXPECT),
set ¢2 to a space character (ASCII 32) and
set flag fI true.

2. If c1 is a backspace (ASCII 8) or DEL
(ASCII 127) character, set f2 to true and c2
to backspace character (ASCII 8).

3. All other characters are saved in buffer
pointed by PTR. PTR, CTR and SPAN are
each incremented by one. ¢2 is a copy of c1.

(c-1)

Saves character c into a buffer pointed by PTR.
PTR and CTR are cach incremented by one. The
flag f sets to true if CTR becomes zero (i.e. buffer
becomes full). This is used in (EXPECT) to save
characters to an input buffer. Unlike
(SAVEKEY), this routine does not interpret
characters.

(nln2--)

A default routine used by TAB for a "dumb"
terminal. It ignores the line number nl and
column number #2 and executes CR.

(-)

A default routine used by TYPE. It sends a string
from PTR and CTR. If the XON/XOFF
handshaking is enabled, the output stops when an
XOFF character is received. The output is
resumed upon receipt of the XON character.

(nln2--n3)
Multiplies two single-precision numbers, n1 and
n2, and leaves result 13 on the stack. Overflow is

not checked.

Related words: */ / M* T* U*

*/

*/MOD

+ (plus)

+!

MLML Tech Pub 93-2

(nln2n3--n4)

Multiplies the single-precision numbers, nl and
n2, and then divide by n3. The result, truncated
from an integer division, is left on stack as n4.
Overflow is not checked and divide by zero causes
an exception.

Example:

DECIMAL 1258 *,7 ok
Related words: * */MOD /
(nl1n2n3--n4ns5)
Multiplies two single-precision numbers, nl and
n2, and then divide by n3. The remainder n4 and
quotient n5, truncated from an integer division,
are left on stack. Overflow is not checked and
divide by zero causes an exception.

Example:

DECIMAL 12 58 */MOD ..7 4 ok
Related words: * / /MOD MOD U/MOD
(nln2--n3)
Adds the two single-precision numbers, nl and
n2, and the result is left on stack as n3. Overflow

is not checked.

Related words: - D+ M+

(na-)
Adds a single-precision number to the content of

address a. Result is left at a. Overflow is not
checked.

Related words: C+! H+!

July 1993 (Rev. January 1994)

FORTH for NOAA/MLML Instruments

+LOOP

, (comma)

- (minus)

(n-)

Format: :name ... DO ... +LOOP ... ;

Used only in a colon definition. Increments the
loop index by a signed single-precision number »
and then the limit is checked for continuation of
loop. This is useful for loops counting backwards.
1 +LOOP is equivalent to LOOP.

Example:

:DSPNUM 05DOI.-1 +LOOP; ok
DSPNUM 543210 ok

Related words: DO LEAVE LOOP /LOOP

(n-)

Compiles a longword from the stack to the
dictionary and increments its pointer by four.

Related words: C, H,
(nln2--n3)

Subtracts single-precision number n2 from n1 (i.c.
nl - n2). The result is left on stack as n3.

Related words: + D-

-1 (-n)
Puts the value -1 on the stack. Note this also has
all 32 bits set and is identical to the true flag.

-CELL (—-n)
Puts the negative of the cell size (i.e. -4) on the
stack.

-FIND (—-antf|ff)

A copy of the word from the input stream
(delimited by whitespaces) is placed at the top of
the dictionary with the first byte containing the
word length. The word is then searched in both
the context and current vocabularies. If found,
then the PFA g and the word length n are placed
on the stack along with the true flag. Otherwise
just the false flag is placed on stack.

July 1993 (Rev. January 1994)

-MATCH

-TEXT

-TRAILING

. (period)

MLML Tech Pub 93-2

(alnla2n2--a3n3ff| alnltf)

Searches the string @l with length n1 for the
substring @2 with length 2. If found, then the
address of the first non-matching character a3
and the remaining length of the string n3 along
with a false flag is placed on stack. Otherwise, al
and n1 is copied to a3 and n3 and returns a true
flag.

(alua2--n)

Two strings, al and @2, with same length u are
compared and the result is left on stack:

al = a2 returns zero
al > a2 returns a positive number (1)
al < a2 returns a negative number (-1)

Note: The strings are compared on a cell by cell
basis.

(anl--an2)

Ignores trailing whitespaces in the string a with
length n1 by adjusting the length to the last non-
space character.

(n-)

Displays a single-precision number n to the
console according to the value in BASE,
unformatted and followed by a space.

Related words: D. U.

()

"

Format: S

An immediate word that prints the string to the
console. The ." must be followed by a space, then
a string of characters, and finally terminate with
an ending quote ("). The beginning and ending
quotes as well as the space after the beginning
quote are not saved-in the string. The string may
contain up to 255 characters.

Example:

: HELLO ." Hello, how are you?"; ok
HELLO Hello, how are you? ok

Related word: "

11

FORTH for NOAA/MLML Instruments

ABORT

/LOOP

/MOD

0.

12

(a-)

Displays a string to the console. The first byte of
the address must contain a length byte. This is
the default execution for ABORT".

Related words: ABORT ABORT"

(nl1n2--n3)
Divides a single-precision number nl by n2. The

result is put on stack as n3. If n2 is zero, an
exception will occur.

Related words: * */MOD /MOD M/ MOD
T/ U/ U/MOD

(u--)
Format: : name ... DO ... [LOOP ... ;

Used only in a colon definition. Increments the
loop index by an unsigned single-precision number
n and then the limit is checked for continuation of
loop. 1 /LOQP is equivalent to LOOP.

Example:

:DSPNUM 100 DO I.2 /LOOP; ok
DSPNUM 02468 ok

Related words: DO LEAVE LOOP +LOOP

(nl1n2--n3n4)

Returns the remainder n3, which has the same

sign as nl1, and quotient n4 of n1 divided by n2.

If n2 is zero, an exception will occur.

Example:

DECIMAL 47 11 /MOD .. 4 3 ok

Related words: */MOD / MOD U/MOD
(~n)

Puts a single-precision zero (0) on the stack.
(-d)

Puts a double-precision zero (0) on the stack.

This is equivalent to pufting 2 single-precision
zeros on the stack.

0<

MLML Tech Pub 93-2

(n-£)

Test a single-precision number. Returns true if
it’s negative, else returns false.

0= (n--f)
Test a single-precision number. Returns true if
it’s equal to zero, else return false.

Related word: DO=

0> (n--f)
Test a single-precision number. Returns true if
it’s positive, else returns false.

1 (-n)
Puts a single-precision one (1) on the stack.

1+ (nl--n2)
Adds one to the single-precision number on stack.

1- (nl--n2)
Subtract by one the single-precision number on
stack.

1. (-d)
Puts a double-precision one (1) on the stack.
This is equivalent to putting single-precision one
and zero on the stack.

1COM (nl--n2)
Perform a 1’s complement on the single-precision
number on stack.

Example:
HEX 1FF 1COM . FFFFFEQ0 ok

2 (--n)
Puts a single-precision two (2) on the stack.

2! "(da--)

Stores a double-precision number d to the
memory address a. The higher longword goes to
the lower memory address.

July 1993 (Rev. January 1994)

FORTH for NOAA/MLML Instruments

2% | (nl--n2)

Multiplies the single-precision number on stack by
two.

2+ (nl--n2)

Adds two to the single-precision number on stack.

2- (nl--n2)
Subtract by two the single-precision number on
stack.

2/ (nl--n2)
Divides the single-precision number on stack by
two.

2>R (d--)
Saves a double-precision number to the return
stack.

Related word: 2R>
2@ (a--d)

Fetches a double-precision from memory address
a. The higher longword comes from the lower
memory address.

2CONSTANT (d--)

Format: 2CONSTANT name

Creates a dictionary entry name which contains
the double-precision constant specified by d.
Executing name will place the number on stack.

Example:

45. 2CONSTANT 45DEG ok
45DEG D. 45 ok

CONSTANT HCONSTANT
(d--)

Throws away the double-precision number from
the top of stack.

Related words:

2DROP

Related word: DROP

July 1993 (Rev. January 1994)

MLML Tech Pub 93-2

2DUP (d-dd)

Copies a double-precision number on top of the
stack.

Related word: DUP
2H! (h1h2a--)

Stores two half-precision numbers to the memory
address. The lower memory address contains h1.

Related words: 2H@ 2U@
2H@ (a--hl1h2)

Fetches two half-precision numbers from the
memory address. The numbers are sign-extended
from 16-bits to 32-bits. The lower memory
address contained h2.

Related words: 2H! 2U@
20VER (did2--d1d2d1)

Copies double-precision number d1 below the top
of the stack to the top of stack.

Related word: OVER

2R> (-d)

Retrieves a double-precision number from the
return stack.

Related word: 2>R

2ROT (did2d3--d2d3d1)
Rotates the top three double-precision values on
the stack by moving the third value dI to the top
while shifting the upper two values down.
Related word: ROT

2SWAP (d1d2--d2d1)

Exchange two double-precision numbers on top of
the stack.

Related word: SWAP

13

FORTH for NOAA/MLML Instruments

2@

(a--uhluh2)

~ Fetches two . half-precision numbers from the

2VARIABLE

.;‘*

4+

4/

14

memory address.
contained uh2.

The lower memory.address

Related words: 2H! 2H@

(d--)

Format: 2VARIABLE name

Creates a dictionary entry name which provides a
memory space for the double-precision number.
This space is initialized by d. Executing name will
place the address on stack.

Example:

45 2VARIABLE DEG ok
DEG 2@ D. 45 ok

Related words: HVARIABLE VARIABLE

(~n)
Puts a single-precision three (3) on the stack.
(-n)

Puts a single-precision four (4) on the stack.
(nl--n2)

Multiplies the single-precision number on stack by
four.

(nl--n2)

Adds four to the single-precision number on
stack.

(nl--n2)

Subtract by four the single-precision number on
stack.

(nl--n2)

Divides the single-precision number on stack by
four.

MLML Tech Pub 93-2

(-n)

Puts a single-precision six (6) on the stack.

(~n)

Puts a single-precision eight (8) on the stack.
(-)

Format: tname ... ;

This initiates the colon definition. name is
compiled as a dictionary entry (with the smudge
bit set) in the current vocabulary with the CFA
containing the address to a routine to execute the
words starting at PFA. The word(s) between
name and ; are searched and if found, the CFA of
each word is stored in the dictionary.

Example:

:AVG + 2/.; ok

Creates a word "AVG" to average two values
and display the result.

8 15 AVG 11 ok

Related word:

(-)
Format: :name ... ;
This terminates the colon definition by clearing
the smudge bit of narne and store the address of

the routine to exit the word to the dictionary.

Related word:

;CODE ()

Format: : name ... ;CODE ... C;

Terminates the colon definition by clearing the
smudge bit of name and store the address of the
routine to invoke name to the dictionary. This
creates a new defining word. ;CODE sets the
context to ASSEMBLER to compile the
mnemonics of the run-time action of name.

Related words: : C; ASSEMBLER

July 1993 (Rev. January 1994)

FORTH for NOAA/MLML Instruments

< (nln2--f)

Compares two single-precision numbers and
returns a true flag if n1 is less than n2; otherwise,
leaves a false flag.

Related words: D< U<
<# (--)

Format: <#..#>

Initiates the conversion of a double-precision
number to an ASCII string. This creates the
string in reverse order, starting at PAD, and its
final address is stored in the user variable PTR.

Related words: # #S SIGN #ASC HOLD
#>
<BUILDS ()

Format: s name ... <BUILDS ... DOES> ...;

Causes name to define another word and clears
the smudge bit and stores zero (a dummy value)
to the PFA. This is equivalent to 0 CONSTANT.
Related word: DOES >
<CMOVE (ala2u--)
Copies memory from al to a2 with length u one

byte at a time. Memory is copied starting at the
end of the string, working towards lower memory.

Related word: CMOVE
<MOVE (ala2u--)
Copies memory from al to a2 with length u one
cell at a time. Memory is copied starting at the
end of the string, working towards lower memory.
This is more faster than <CMOVE.
Related word: MOVE
= (nln2--f)
Compares two single-precision numbers and
returns a true flag if n1 is equal to n2; otherwise,

leaves a false flag.

Related word: D=

July 1993 (Rev. January 1994)

MLML Tech Pub 93-2

> (nln2--f)
Compares two single-precision numbers and
returns a true flag if nl is greater than n2;
otherwise, leaves a false flag.
Related word: D>

>4< (nl--n2)
Reverses the order of bytes in the longword n1.
Example:

HEX 12345678 >4< . 78563412 ok

Related words: >< >H<

>< (nl--n2)

Reverses the order of bytes in the lower half
of nl.

Example:

HEX 12345678 > < . 12347856 ok
Related words: >4< >H<
>H< (nl1--n2)
Reverses the order of words in the longword nl.

Example:

HEX 12345678 >H< . 56781234 ok

Related words: >4< ><

>IN (--a)
A user variable containing the offset of the input
stream.

>R (n-)

Saves a single-precision number to the return
stack.

Related word: R>

15

FORTH for NOAA/MLML Instruments

-~

(a-)

Fetches a single-precision number from address
a and prints it.

?COMP (-)
Aborts with an error message if not in compiling
mode.

2CSP ()

Aborts with an error message if the current stack
pointer is not the same as in the user variable
CSP. This is used mainly at the end of the colon
definition to check if nothing remains on the

stack.
Related words: !CSP CSP
?DIGIT (al-a2ntf| a2 ff)

Fetches a character at al. If the characters is a
digit according to BASE, returns n the value of
the digit and a true flag on stack. Otherwise
returns a false flag. The address al is
incremented by one in a2 for the next character.
?DUP (n--nn|0)
If n is not zero, then copy n on the stack.
Otherwise leave the zero on the stack. This is
useful to avoid having to remove the top of the

stack for zero values (i.e. DUP IF ... ELSE DROP
THEN is equivalent to ?DUP IF ... THEN).

Related word: DUP
2ERROR (fn-)

If f is true, then aborts with an error message
specified by n.

Related words: ERROR MESS

?EXEC (--)
Aborts with an error message if not in executing
mode.

16

MLML Tech Pub 93-2

PKEY (-c¢)
Determines if a character has been received into
the system buffer. If so, then gets the character
and puts it on stack. Otherwise, leaves a false
flag (zero) on stack.

Related words: KEY EMIT

?PAIRS (nln2--)

Aborts with an error message if nl is not equal to
n2.

?STACK ()

Aborts with an error message if the parameter
stack is out of bounds.

@ (a--n)

Fetches a single precision number from memory
address a.

Related word: !

@EXECUTE (a--)
Fetches the PFA from memory address a and if
it is not zero, executes compiled FORTH words
starting at PFA.

Related word: EXECUTE

ABORT ()
Resets the parameter and return stack pointers
and executes the routine stored in ’IDLE. By
default, this routine sets BASE to 10 and resets
CONTEXT and CURRENT to FORTH
vocabulary while preserving the user dictionary.
This is similar to a "warm" system reset.

Related words: .ABORTA ABORT"

July 1993 (Rev. January 1994)

FORTH for NOAA/MLML Instruments

ABORT" (f--)

Format: ABORT" .."

If f is true, then it executes the routine stored in
’ABORT; otherwise, it does nothing. By default,
this routine is .ABORT, which prints the compiled
string (terminated by an ending quote) and
executes ABORT. The string may contain up to
255 characters.

Related words: ABORT .ABORT

ABS (n-—-u)
Returns the absolute value of n.
Related word: NEGATE

ACTIVATE (a-)

Used only in a colon definition. Starts the task at
PFA a executing the remainder of the definition.
This definition must have ABORT, STOP, QUIT,
or an infinite loop such as BEGIN .. AGAIN
before terminating with ; or the system will crash.

Example:

.+ START TASK1 ACTIVATE BEGIN PAUSE

AGAIN ; ok
Related words: BACKGROUND TERMINAL
AGAIN (-)
Format: : name ... BEGIN ... AGAIN ...;

Used only in a colon definition. Completes
compilation of an infinite loop (i.e. no testing
done to terminate the loop). This may be
terminated with ABORT, EXIT or QUIT or other
outside intervention.

July 1993 (Rev. January 1994)

MLML Tech Pub 93-2

ALLOT (n-)
Increments the dictionary pointer H by n bytes.
Prints an error message if the new dictionary
pointer gets too close to the parameter stack.

Example:

40 ALLOT ok

allocates 40 bytes of the dictionary space and

H is incremented by 40.
AND (nln2--n3)
Performs a logical (i.e. bit-wise) AND of two
single-precision numbers.

Example:
HEX 1234 1FF AND . 34 ok

Related words: 1COM OR XOR

ASSEMBLER ()
Selects the assembler vocabulary as the context
vocabulary. See MC68332 FORTH Assembler for
more information on using the assembler. This is
useful if the user needs to use the assembler
rather than FORTH to create a routine for speed
and/or more efficient coding.

Related words: ;CODE CODE LABEL C;

(a-)

Computes the offset from the current dictionary
pointer to the address @ and compiles the offset
as a signed word to the dictionary. This is used
in the last loop words such as AGAIN, REPEAT,
LOOP and UNTIL to branch back to the word
after BEGIN or DO.

BACK

17

FORTH for NOAA/MLML Instruments

BACKGROUND (nln2n3--)

Format: BACKGROUND name

Sets up a background (non-terminal) task
definition table containing nl bytes of user area,
n2 bytes of parameter stack area and n3 bytes of
return stack area. Executing name puts the
address of the task table on the stack. This table
contains an array of 2 addresses: First the
pointer to the user variable area and the second
is the initial parameter stack pointer.

Example:
48 64 32 BACKGROUND TASK1 ok
Related words: TERMINAL BUILD
BASE (—-a)
A user variable containing the numeric base for

input and output ASCII conversions. By default,
the system starts with base 10.

BEGIN ()
Formats: : name .., BEGIN ... AGAIN ... ;
: name ... BEGIN ... UNTIL ... ;
: name ... BEGIN ... WHILE ...
REPEAT ... ;
Used only in a colon definition. This starts
compiling the indefinite loop. During
compilation, the address at that point is left on
stack.
Related words: AGAIN ~ REPEAT UNTIL
WHILE
BL (-n)

The ASCII value of a space (32) is put on stack.

(an--)

Fills the memory with spaces (ASCII 32) starting
at a with length n.

BLANKS

Related word: FILL

18

MLML Tech Pub 93-2

BUILD (a-)

Sets up the background task RAM area from the
task definition table @. This also connects the
background task to the multitasking loop. By
default, the task remains dormant until
ACTIVATE is used. Also, inputs-are disabled and
the outputs are directed to the console.

Example:
TASK1 BUILD ok
Related word: BACKGROUND
C! (ba--)
Stores a byte b to the memory address a.
Related word: C@
C# (--a)

A user variable containing the current column
number of the cursor.

Related word: L#
C+! (ba-)

Increments a byte in the memory address @ by b.
Result is left at a. Overflow is ignored.

Related words: +! H+!
C’ (b --)

Compiles a byte to the dictionary and increments
its pointer by one.

Related words: , H,
C/L (~n)

Puts the maximum