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ABSTRACT

This paper considers an adaptive approach to shipboard line transect surveys, in which the total effort available is fixed. This strategy
is aimed at increasing sampling efficiency for sparse but highly clustered populations, whilst recognising the practical and financial
restrictions of a shipboard survey. Effort is increased by initiating a zigzag trackline when the number of observations exceeds some
pre-set limit and a basic formula is provided to calculate the appropriate effort increase, known as the effort factor. The formulae derived
in the paper are conditional on the effort factors, and are therefore not design-unbiased (Thompson, 1992, p.17). A simulation program
is used to test the theory and to estimate the efficiency compared with conventional line transect methods. Simulation results, for
clustered populations, demonstrated reduced density estimate variance for adaptive surveys, compared with conventional line transects,
and that the efficiency increased as the clustering increased. Mean efficiency increases of 1.07 were recorded for highly clustered
populations and, as expected, a loss in efficiency (0.96) was detected for populations which exhibited complete spatial randomness.
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INTRODUCTION

Adaptive sampling allows survey effort to be increased in
areas of high animal density. This leads to larger numbers of
detections, and potentially higher precision, than for
conventional designs. A disadvantage is that it is difficult to
predict in advance the total survey effort required for an
adaptive design. Shipboard line transect surveys are
expensive, and the number of ship-days is usually
predetermined, so a design in which total effort is a
function of the number of animals detected is unlikely to
be acceptable. Further, a proportion of the planned survey
effort is typically lost, for instance through bad weather, and
a mechanism to reallocate the remaining effort is
desirable.

‘We develop an adaptive design for shipboard line transect
surveys in which the number of ship-days is fixed. A
minimum amount of survey effort, termed the nominal
effort, is predetermined, and the degree to which survey
effort increases in areas of high density is a function of the
difference between the total effort still available and the
nominal effort remaining.

The survey effort is adapted by increasing the effort,
above the nominal straight line effort, when the number of
observations exceeds some limit. The increased effort is
achieved by zigzagging for a period, after which the ship
returns to the nominal (straight line) cruise track (Fig. 1).
The increase in effort is measured by the effort factor, which
is the ratio of the length of transect line travelled to the
nominal (straight line) length. Thus a transect may be
divided into a number of sub-transects, or legs, each with a
different effort factor, The formulae derived in this paper are
conditional on the effort factors, and are therefore not
design-unbiased (Thompson, 1992, p.17). Simulations show
that little bias is introduced by conditioning on the effort
factors, and this relaxation of the requirements of adaptive
sampling allows a much wider class of designs than those
considered by Thompson (1992, p.263-318).

The formulae are derived for passing-mode surveys only,
where the ship does not detour to investigate observations. It
may be possible to modify the formulae to accommodate
closing-mode surveys, but this has not been investigated.

Actual effort

Nominal effort

Fig. 1. Actual effort is increased by zigzagging, nominal effort refers to
the equivalent straight line track.

METHODS

Adapting the nominal effort

The mechanism used to increase effort is by zigzagging
when the number of observations exceeds some limit. After
a number of zigzags the survey then reverts to a straight line
again. The ratio of the zigzag effort to the respective straight
line effort is defined as the effort factor, and denoted by A.

The change in effort can be varied by altering the zigzags,
either in length, angle, number or a combination of all these.
Thus the adaptive component can be modified as the survey
progresses to allow it to be completed, using fixed effort.

The adaptive scheme ensures that greater effort is
expended in areas of higher animal density. If analysis is
carried out ignoring this, abundance is overestimated. This is
avoided by downweighting data from zigzag sections in the
analysis. The weight is inversely proportional to the effort
factor, so that each section of transect is given weight in
proportion to the length of nominal effort through that
section.

We define the nominal number of observations in a
section to be the number of detections had the nominal
search effort been carried out. This is estimated in zigzag
sections by dividing the actual number by A.

Notation

Nominal values refer to the values expected if a conventional
straight line transect is followed. The nominal effort is
signified by a dash, such as L', whereas corresponding actual
effort is denoted by L. A detection may consist of one or
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more animals; throughout this paper ‘school’ is used to
indicate the target detected and ‘school size’ to indicate the
number of animals within a target.

Each transect is divided into a number of sub-transects or
legs, where the start and finish of each leg occurs at a change
in direction (Fig. 2). Typically the straight sections within a
zigzag will all have the same angle, and hence effort factor,
so the complete zigzag section can be considered as a single
leg (Fig. 3). This simplifies the labelling of transect
components.
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Fig. 2. Notation used for an adaptive transect, where the angle is varied
at each change of direction within a zigzag section.
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Fig. 3. Simplified notation when the angle of the zigzags remains
constant for the length of the zigzag section.

Where present, subscript / represents the it transect, [ =
1...k, and subscript j represents the jth leg within a transect, j
= l..m;.

L is the total actual effort;

L’ is the total nominal effort (i.e. the straight line effort in
the absence of zigzags);

l; is the actual effort for the /th transect;

I 1s the nominal effort for the it transect;

Iy is the actual effort for the j leg of the ith transect;

I is the nominal effort for the j leg of the ith transect;

k is the total number of transects.

Similarly: » is the total number of schools detected; s the
observed school size; A the effort factor; e the encounter rate;
and D the population density. So:

E(n) is the expected number of schools detected in the
surveyed area;

E(n;) is the expected number of schools detected for the jth
transect;

ni  is the number of schools detected for the /™ leg of the
Ith transect;

E(s) is the expected school size for the population;

E(s;) is the expected school size for the ith transect;

E(sy) is the expected school size for the ji leg of the ith
transect;

s is the mean observed school size for the jih leg of the
it transect;

six  is the school size for the X* (x = 1...n;;) observation for
the jth leg of the ith transect;

ki is the effort factor for the j™ leg of the i transect;

e;  Is the encounter rate for the j® leg of the /™ transect;

D is the population density (animals per unit area);

D;  is the population density for the i transect;

f(0) is the value of the probability density function of
perpendicular distances to detections, evaluated at
zero distance.

The effort factor as a function of survey schedule
The change in effort is represented by the effort factor, &,
where

Actual Effort
" Nominal Effort

Thus the effort factor for the j™ leg of the ith transect is given
by

Ay =l 11

The effort factor is calculated based on the excess effort
available (i.e. any effort over and above the nominal effort
required to complete the survey) and the expected number of
times the effort will be increased (i.e. the expected number of
times the observer will enter zigzag mode).

The excess effort available, at a given point in time, is any
effort remaining after subtracting both the effort used and the
nominal effort remaining from the total effort available for
the survey, L. Let:

Ly be the total actual effort used at any point in time;

Lg  be the amount of excess effort available at any point in
time;

Ly  be the nominal effort remaining at any point in time;

£ be the expected number of times the actual effort will
increase above its nominal level at any point in time.

Let the increase in effort, following an observation, be the
excess effort available, Lg, divided by the expected number
of times effort will increase above its nominal level, E, plus
the current increase. So the increase in effort for a leg is
given by

b =1 =Lg [(1+&)
By definition, [; = [i+A, so
(=D =Lg [1+8)

thus the effort factor is given by

L—Ly—Lg
ly—l““ , LE =1+( 7 4 R)
IL-(1+8) I (1+8)

When each effort increase is applied for a fixed distance
along the nominal trackline, then § can easily be calculated
from an estimate of the encounter rate. Let /% be the nominal
effort over which the effort increase is applied and vy be the
encounter rate estimate, which might be obtained from
previous surveys or a best guess provided by the user.
Then

E=v-(Lz-&1%)
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Thus when effort is increased over a fixed distance along the

nominal trackline /7 (i.e. [y = Iz for all i,j), then the effort
factor is calculated as

(L -L,- ‘{-‘;)
L’
£ 1+y—’f
A+y- 1)
Assumptions

In deriving these estimation equations, the following
standard line transect assumptions are made:

A, =1+

(a) probability of detection on the line, g(0), is 1;

(b) there is no size bias (the probability of detection is
independent of the school size);

(c) there is no responsive movement of schools in advance
of detection, and any non-responsive movement is slow
relative to the speed of the ship.

These assumptions could be weakened or removed using
similar strategies as for conventional line transect sampling.
Additional assumptions are:

(d) the expected encounter rate for a zigzag track is the
same as the expected encounter rate for the
corresponding nominal (straight line) track;

(e) the expected school size for an observation on a leg
following a zigzag track is the same as the expected
school size for an observation when following the
corresponding nominal track;

(f) conditional on the location of the actual (as distinct from
the nominal) trackline, detections are independent
events. That is, the probability of detecting a school is
only a function of its perpendicular distance from the
actual line (and is only a function of whether another
school is detected through its potential influence on the
location of the line).

The estimating equations

Conventional line transect density estimate

From Buckland et al. (1993, p.56) for a conventional line
transect survey, and setting the sampling fraction ¢ and the
probability g(0) to unity, the density is given by

E(n)- f(0)- E(s)
g e e A
74 big
If we assume f(0) is constant, then for the i transect, the
density D,, is given by

E(n)- f(0)- E(s,
D= (n)- £(0)- E(s,)
o

i =1..k

Let f{0) be a single pooled estimate of f{0) for the survey.
Then, replacing the parameters by their estimators, an
estimate of the density for the /™ transect is

E(n)- f(0)-E(s,)
D.' o e—
2l

i

&

So, from Buckland et al. (1993, p.92),
D=—>Y ID,
I i 2

To estimate the variance of the density for a conventional
line transect survey, if the density components are estimated
on a per transect basis, then from Buckland et al. (1993,
p.92),

o KB s i
VD) == (B~ Bf)

i=l

However, the estimate f{0) is made by pooling data across
transects. Dividing out this common estimate, we have

2

P bl ‘1 Z " b D
FO | Lk=D & || FO) f(O) (€

So an estimate of the variance of the density estimate has two

components, V/ - d I;’[ f‘(O))
» - | a1 .
f(O

Using the delta method (Seber, 1982, p.5-7), an estimate of
the variance of the density estimate is given by

ViD= 5 R ST T
B (o) @ (o)
1))
: @
where g — AD
f(0)

Adaptive line transect density estimate

In an adaptive line transect survey, greater effort is
systematically placed in areas of higher density. Thus the
overall encounter rate is a biased estimate of the expected
encounter rate for a conventional survey design. The effort
factors are used to downweight observations made while
zigzagging as follows. Let

7(0) be a single pooled estimate of f(0) for the complete
survey;

E [H;]f‘-'] an estimate of the expected number of observations
for the i*h transect following a straight line track;

E [S,-|i,-’] an estimate of the expected school size for the i
transect following a straight line track.

Evaluation of £(0), é[n,__[,{,_’] and E[sgj,',_’] is discussed in the
sections that follow.

Replacing the conventional survey parameters E(n;) and
E(s;) by their estimators from an adaptive survey, an estimate
of the density for the /" transect is given by

Enli]-70)-Elsk] )
2l

i

b=
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This estimate of the adaptive line transect density is used in
the same manner as the conventional transect estimator to get
estimates D and V (D) using equations (2) - (4).

f0)
Data are pooled across all transects to estimate f{0), using
conventional techniques. Thus we assume that there is no
correlation between f{0) and density.

Effort, L
By definition the nominal effort for the j* leg of the i
transect is

=1/,

with nominal transect length and total survey effort of

I= iq; and L'= i:{
i=1

j=1

Sample size, n, and encounter rate, e
Let é[n]L’] be an estimate of the expected total sample size,

and E[e|L’] the corresponding estimate of the expected

encounter rate, if only the nominal effon had been carried

J» Efmfy]. Eef] 0d ]
represent the expected sample size and encounter rate if only
the nominal effort is used for ith transect and ijth leg.

An estimate of the expected sample size if only the
nominal effort had been used for the jth leg of the it transect
is given by

out. Similarly let, E[n

n,
Enfi]=+-
if
A;
and the corresponding transect and survey estimates are

=Si[)]  and

j=l i=l

[n}.’i{.’]

The encounter rate for the j™ leg of the i transect is given
by

e; =n[l;

and hence by assumption D, an estimate of the expected
encounter rate for the jth leg of the it transect is given by

E{’;«F:]

Thus using weighted averages, an estimate of the expected
nominal encounter rate for the i transect is

Z[s , é[““|i*;]] ) iE[n‘_‘ il

é[e{|{.’] =

E[eﬁlli;] = % =
;

X

s | s mj = ¥

2l 3 “‘

£=1

and an estimate of the expected nominal encounter rate for
the survey is

ADAPTIVE SAMPLING
k &

o D) S g
E[dL]==— izl

S zf: ‘

i=l i=l

An estimate of the variance of E[nIL’] is
R L'
V(E[AL) = ﬁZ(f (E[efi]- e[L']) )

and an estimate of the variance of é[g[.f_,'] is

V(E{dL])= ﬁ[ﬂﬁf ’]J= ﬂfﬂf’]}

School size, s

Let E[s|L’] be an estimate of the expected school size if only
the nominal effort had been used for the survey. Similarly let
E'[sr_k_'] and E[sij_lll;]represent the expected school size for the

i*h transect and the ij*h leg.
The mean observed school size for the jih leg of the ith
transect is

Assuming there is no size biased detection, and that the
expected school size for a leg following a zigzag track is the
same as the expected school size when following the
corresponding nominal track, i.e.

Hs,] = £s;]

then an estimate of the expected school size for the ji leg of
the /™ transect is

E[S&i] =5

so an estimate of the expected school size for the j™ leg of the
it transect using nominal effort is

s,

i]=5,

and the expected total number of animals observed for the jt
leg of the ith transect following a nominal trackline is

ij Hij

W S S

] Hili]= o=

Er,

Using weighted averages, an estimate of the mean school
size for the ith transect is given by

2 (Efnke] Ek) Z[[ZJAJ

Hs]= 2 -

m,

M)

j=1

and an estimate of the mean school size for the survey is



REP. INT. WHAL. COMMN 47, 1997 " 925

(Bl sk (b Elsk)
AL

B =2 =4

> (énr)

i=1

An estimate of the variance of E[sIL’] is given by

(EL) - E[_I-E]l(k_—l)z
[é[n,.pg_]- (E[sk ]- E[SIL’])I)

SIMULATION STUDY

RATS

Simulation was conducted using the computer program
RATS (Restricted Adaptive Transect Sampling), written by
the first author. This allows comparison of results using
conventional and adaptive line transect methods.

RATS simulates a population in a square frame with side
100 units. Conventional and/or adaptive line transect surveys
can then be run on the simulated population, with nominal
transects running from left to right across the population
frame. The results from a simulated survey are analysed
using the formulae developed in this paper.

Automated runs are able to simulate a number of
populations in sequence and, for each population, an
adaptive and a conventional line transect survey are run. For
both surveys, the same transect start points are used but,
given the transect locations, the detection process is
simulated independently. Some sample simulations are
shown in Appendix 2.

Population parameters

Populations are simulated using randomly located parent
clusters, each of which consists of a number of schools
distributed around the parent cluster centre. Each ‘school’
has a fixed size of 1. That is, the simulated populations
comprise individual animals, each of which belongs to a
loose cluster of animals. The default set-up provides a
Poisson cluster process (Diggle, 1983, p.55).

The population is created as follows.

(i) The number of parent clusters is simulated using an
appropriate distribution selected by the user from the
options available.

(ii) For each parent cluster the following is then
performed.

(1) The number of animals within the parent cluster is
simulated, using a distribution selected by the user from
the list available.

(2) The centre of the parent cluster is simulated using
continuous uniform variates between 0 and 100 to
simulate its horizontal and vertical position within the
main population frame. Thus there is no gradient in the
simulated population densities in these simulations.

(3) For each animal in a parent cluster, its position, relative
to the parent cluster centre, is simulated using a radial
angle and distance. The angle is simulated using a
continuous uniform variate between 0 and 2w. The
radial distance from the centre to the animal is simulated
using a distribution selected by the user. This relative
position is then converted to the animal’s actual position
relative to the population frame. If this position lies
within the frame then the animal is included in the

population. If the animal lies outside the frame, then the
distance to the animal is wrapped around to the opposite
edge. This is performed both horizontally and vertically
as necessary, and is repeated until the animal lies inside
the population frame. The components of a simulated
population are summarised in Fig. 4.

Population frame —___| r}
°

* e
°
., s
/I/o L
Parent clusters\ %. +.
centres T
1

°
e o
Schools
—— _4_.
Schools rolled over to opposite s *
edge if outside population frame r—y

Fig. 4. Populations are simulated in clusters within a population frame.
Schools lying outside the frame are repeatedly ‘wrapped around’
until they lie within the frame.

The transect start positions are simulated to generate
randomly positioned lines parallel to the top and bottom
edges of the population frame. The total number of transects
can be set by the user.

Sampling parameters

The transect is traversed in horizontal steps of size 1 unit. For
a conventional line transect survey, at each step an area is
sampled using a rectangle centred on the transect. With an
adaptive survey, the rectangle becomes a parallelogram for
the zigzag sections. The perpendicular offset to the edge of
the rectangle or parallelogram, on each side of the transect,
is the value w (truncation width) specified by the user (Fig.

5).

Conventional sampling Adaptive sampling
Sampling
Sampling rectangles Wfﬂlﬂﬁgﬂﬂ'ﬁ

e

x = detection distance
w = fruncation distance

Scﬁoets

Fig. 5. Population is sampled using parallelograms.

For any animal within the parallelogram, detection is
simulated using a half-normal detection function.

The trigger to start zigzagging, in these simulations, is a
single detection within a parallelogram on the nominal
transect. Zigzagging occurs for a fixed nominal track length
of 8 units, with the angle of the zigzags adjusted to increase
effort to the level indicated by the effort factor. As
implemented, if an object is encountered on the last leg of a
zigzag, then there will be another zigzag for 8 nominal units.
Edge effects, due to the simulation still following a zigzag
track when the transect intersects the population frame, are
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ignored. In this case the transect stops at the boundary of the
population frame, and the next transect, if there is one, starts
in straight line mode.

Transect length
The nominal length of each transect can also be specified as
one of two options.

(1) The conventional and adaptive surveys use transects of
equivalent nominal length. In this case, the transects run
the full width of the survey area for both survey types.
This means there are fewer transects in the adaptive
survey than the conventional survey.

(2) The adaptive survey uses a nominal length which is
scaled such that there is an equivalent number of
transects for the two types of survey. When the adaptive
transect length is scaled down, the transects all start
from the extreme left hand side of the area. In our
simulations, this is not biased as there is no gradient in
the simulated populations. In a real survey, such an
option would not be used, but it was implemented here
to aid comparison between adaptive and conventional
sampling.

Output

The data sets were simulated using a half-normal detection
function. RATS has an option for analysing the data,
assuming the half-normal model and untruncated data.
Provided the truncation distance w is sufficiently large, the
performance of this model should therefore be very good. In
reality, the true detection function would not be known.
RATS can use the computer package DISTANCE (Laake et
al., 1994) to fit a selection of other models.

Summary analyses
Three types of population were considered:

(1) a population with Complete Spatial Randomness
(CSR);

(2) a population with medium clustering (Clustered);

(3) a population with high clustering (Highly Clustered).

The parameters used to simulate the populations are given in
Table 1. For each population type, 1,000 simulations were
run, with an adaptive and a conventional line transect survey
performed each time.

The survey parameters are given in Table 2. The
truncation distance of 1 is well into the tail of the half-normal
detection function with parameter ¢ = 0.3. Thus the RATS
estimation of f{0), which assumes no truncation, should work
well, given that the probability of detection of an object
beyond the truncation width is 0.000858.

A brief summary of the results follows; more detailed
results are provided in Appendix 1.

Table 1

Table 2

Details of parameters used to simulate the surveys.

Parameter Value
Total effort 1,500
Nominal effort 1,300
Equal nominal length transects TRUE
Truncation distance (w) 1
Detection function

Half-normal (0=0.3)
Expected encounter rate 0.045

The comparative efficiency of the two methods was
calculated by dividing the mean conventional variance
estimate by the mean adaptive variance estimate. The
efficiencies are summarised in Table 3 and Fig. 6. The
significant improvement in efficiency for the adaptive
estimate of V[n{L’] is misleading. Sightings made when
zigzagging are downweighted using the effort factor, so for
an adaptive survey E[n|L’] is generally smaller than for a
conventional survey, and consequently the variance of the
estimate is also smaller. It is the efficiency of the encounter
rate estimate, and not the number of observations estimate,
that is important for the density estimate.

DISCUSSION

The results from the computer simulations indicate that it is
acceptable to condition on the effort factors, A;. In addition,
the results demonstrate that, for populations displaying a
reasonable degree of clustering, adaptive line transect
sampling offers potential for improvement in the precision of
density estimators, and generates a larger number of
detections.

The 95% confidence intervals for the mean percent
relative bias of the expected encounter rate estimates are
given in Table 4. As expected, for all three population types
there was no significant bias for the conventional expected
encounter rate estimates, as all three intervals included zero.
There was also no significant bias for the adaptive estimates
for the CSR populations, but there was some evidence of a
tendency to underestimate for both the clustered and highly
clustered populations, although the bias was small.

The RATS estimate of f{0) assumes there is no truncation.
As the simulations had a truncation width of 1, this was
expected to lead to an overestimation of both f{0) and its
variance. This was supported by the confidence intervals for
the mean bias of the f{0) estimates, which had ranges above
zero for all three population types for both conventional and
adaptive estimates.

Details of the population simulation parameters. These parameters give an expected population size of 600
for all three population types.

Population
Component CSR Clustered Highly clustered
Number of parent clusters Constant (600) Poisson (40) Poisson (15)
X position of parent cluster centres Uniform [0, 100] Uniform [0, 100]  Uniform [0, 100]
Y position of parent cluster centres Uniform [0, 100] Uniform [0, 100]  Uniform [0, 100]
Number of objects in each parent cluster ~ Constant (1) Poisson (15) Poisson (40)
Object angle Uniform [0, 2x] Uniform [0, 2x] Uniform [0, 2x]
Object radial distance Constant (0) Normal (0, 4) Normal (0, 4)
School size Constant (1) Constant (1) Constant (1)
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Table 3
Efficiency of adaptive estimates in comparison to conventional estimates.
Population
Parameter CSR Clustered Highly clustered
Adaptive efficiency of ;;(E“ ["“‘I}) 1.237 1.341 1.368
Adaptive efficiency of 7 (E‘ [«lz ;]) 0.929 1.007 1027
Adaptive efficiency of - (f © )) 1.006 1.156 1.423
Adaptive efficiency of 7 p) 0.958 1.027 1.072
e populations. The increase in efficiency is correlated with the
degree of clustering and work is necessary to identify at what
2 ] level adaptive sampling provides a worthwhile benefit.
Z
£9 7 L o
o™ Z Heterogeneity in f{0)
= 7 Sightings made while zigzagging are not downweighted
0o 7 i s ; N
3 when estimating f{0) , which may lead to bias in the presence
a % of heterogeneity. For example good sighting conditions may
= g Y ke ple g ghting co: 1
EZ lead to an increase in the number of adaptive triggers, which
=2 in turn may lead to increased observations on the zigzag
o 41 i track and so negatively bias the f{0) estimate. (Effective strip
width is wider in good sighting conditions, so that f{0) is
= 2 : 3 smaller.) It is recommended that survey results are carefully
i CSR Clustered Highly clustered examined to check for such bias. A potential approach is to
74 viemnLy BOVIEEL)] pool the data for the observations while following a nominal
O] wifon V(D] track and separately, to pool the observations from the

Fig. 6. Summary of mean efficiency of adaptive estimates for three
types of population simulated. The bars represent the percentage
improvement in efficiency for the adaptive estimate over the
conventional estimate. The efficiency is calculated by dividing the
conventional variance estimate by the adaptive variance estimate.

There was also some evidence of overestimation for the
conventional density estimates, and a likely cause for this is
the overestimation of f{0). For the adaptive density estimates
the positive bias of the f{0) estimates appears to be partially
compensated for by the negative bias of the adaptive
encounter rate estimates, particularly for the clustered and
highly clustered populations.

For the CSR populations, adaptive sampling was less
efficient than conventional sampling. This is not surprising,
as a zigzag search path following a detection will only
enhance the expected number of detections if there is an
increased probability of detecting another animal, having
detected one. If animals are distributed entirely at random,
this is not the case. The adaptive efficiency for the variance
of the density estimate increased from around 0.96 for the
CSR populations to 1.07 for the highly clustered

Table 4

zigzag tracks. The resultant two estimates of f{0), fu(0) for
the nominal observations and f4(0) for the adaptive
observations, can then be tested for differences. Three
potential tests are:

(1) a basic z test of whether the expectations of fA*(O) and
Fr(0) are the same;

(2) a2 test of whether the perpendicular sighting distance
distribution for observations made on the nominal track
is the same as that for observations made when
adapting;

(3) Akaike’s Information Criterion (AIC).

The AIC approach could be applied by comparing the sum of
the AICs for modelling f4(0) and f(0) separately with the
AIC for modelling f{0) using sightings pooled across the two
survey modes. If the AIC value for the pooled model is less
than the sum of the other two AICs then this suggests that a
single model approximates the data better than two separate
models. As a rough guide, if the AIC value for the pooled
model is greater than the sum of the other two AICs, then this
could be taken as a sign of heterogeneity.

Initial simulation trials suggest these tests have low
power, though further investigation is required.

Estimated 95% confidence intervals, assuming a normal distribution, for the mean percent relative bias of
the estimates of expected encounter rate, f(0) and density over all 1,000 simulations. In each cell the top
confidence interval is for the adaptive simulations and the bottom one relates to the corresponding

conventional simulations.

Population
Estimate CSR Clustered Highly clustered
é[eiL'] [-1.00 %, 0.49 %] [-2.36 %, -0.05 %]  [-4.25 %, -1.14 %]

[-1.10 %, 0.35 %]

[-1.40 %, 0.89%)]  [-2.07 %, 1.01 %]

Fo) [140%, 251%] [130%, 242%)] [ 1.21%, 2.18%)
[177%, 2.88%)] [1.23%, 237%)] [ 1.70 %, 2.93 %)
B [0.78 %, 2.69%] [-0.61 %, 2.03%]  [-2.77 %, 0.49 %]

_[0.99 %, 2.8]1 %)

[0.27 %, 2.88%]  [-0.10 %, 3.28 %]
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Ideally the observation data used to estimate f{0) should be
weighted by the effort factor, to give pooling robustness. A
basic method of weighting the f{0) estimate can be achieved
using the computer package DISTANCE (Laake et al.,
1994), and entering the perpendicular sighting distances as
data grouped into intervals. Normally each sighting would
contribute 1 to the count of sightings in its appropriate
distance interval. However in this case, to weight the data,
the contribution from each sighting is taken as 1/);;, where A
is the effort factor for the leg on which the sighting was
made. Fortunately DISTANCE will allow the count of
sightings in each interval to be a non-integer value. This
approach requires validation through simulation.

Extensions/future work
There are several areas where further work is required as
discussed below.

Extending theory

Development of the theory to avoid the need to condition on
the effort factors would be of interest. The strategy of
zigzagging to increase effort conflicts with the requirements
of adaptive sampling as defined by Thompson (1992).
Thompson (pers. comm.) has suggested an approach in
which parallel transects are systematically spaced. If the
number of observations on a transect exceeds some limit,
additional transects are added parallel to the transect.
Although this method allows the adoption of Thompson's
adaptive sampling methods, it has the disadvantage of
additional costs in travelling off-effort to the start points of
the extra transects.

As described above, heterogeneity in f{0) may present an
issue, so tests to detect this need to be evaluated. Ideally, to
make the f{0) estimate pooling robust, methods of weighting
the observation data by the effort factor should be
developed.

Effort factor and adapting effort

The effort factor calculation is a key feature of our adaptive
sampling strategy. We have so far used a simple approach.
The following areas need further research.

(1) The trigger function is very simple: effort is increased if
the number of observations within a section exceeds
some value (zero in our simulations). This does not cater
for surveys of multiple species, where different trigger
functions may be required. The issue is further
complicated by the appropriate behaviour of the trigger
function during a period of increased effort. Currently,
primarily in the interests of acceptable field methods,
the effort is not increased further when a detection
occurs on a zigzag section. If observations are detected
on the last leg of a zigzag, then the effort factor is
re-calculated, and a new series of zigzags begins.

(2) The survey returns to nominal effort, following an
adaptive trigger, after a fixed number of zigzags. There
is potential to develop more sophisticated stopping
functions.

(3) No facilities are included to detect or adjust for a density
gradient in the population. The method will not
therefore be fully efficient if a gradient is present.
Provided the nominal tracklines are perpendicular to
density contours, loss in efficiency should be slight.

(4) The expected encounter rate is fixed at the beginning of
the survey, which requires that either an initial estimate
(or guess) is available or a pilot survey is carried out.
Adjustment of the expected encounter rate using the
data that accumulate as the survey progresses may prove
useful, particularly when a reliable initial estimate is not
available.

(5) The design of the zigzag sections (angle and number of
zigzags, and length of section) requires investigation.
When each leg in a zigzag is not large relative to the
truncation distance w, end and edge effects could be
problematic, and field procedures will need to be
carefully defined to minimise bias.

Field methods

Due to the complexities of identifying whether observations
lie within the searching parallelograms, a computer program
may be required to record the observations; calculate the
effort factor to use; identify the track to take; and analyse
results. The authors are currently exploring the possibility of
developing appropriate software.

Simulation and analysis

The bootstrap is a widely used method for quantifying
variance in line transect sampling when it is thought that
analytic variance estimators do not incorporate all sources of
variance. It is normal to resample transects, but this option is
not available for adaptive sampling. Instead, both the
population (with appropriate clustering) and the adaptive
strategy must be simulated in each bootstrap resample.
Research is needed on how best to achieve this.
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Appendix 1
SIMULATION RESULTS

Results are summarised for the population types in Tables 3, ‘Where appropriate the respective standard deviation of the
6 and 7 below. The tables contain mean values/estimates for 1,000 values/estimates is also included.
he 1,000 simulated adaptive and conventional surveys.

Table 5
CSR population results.
Adaptive Conventional

Mean SD Mean SD
Total area 10,000 10,000
Total effort per survey 1496.2 3.69 1500 -
Nominal effort per survey 1300 -
Population size 600 ] 600 1]
Population Index of Dispersion 1.02 0.40 1.02 0.40
Number of observations 67.23 8.07 6737 7.92
Nominal number of observations 58.46 7.06
True encounter rate 0.0451 0 0.0451 0
Estimated nominal encounter rate 0.0450 0.00543 0.0449 0.00528
Nominal encounter rate bias -0.00011 0.00543 -0.00017 0.00528
Estimated variance for nominal encounter rate estimate 0.000032 0.000013 0.000029 0.000012
Number of nominal encounter rate estimates within 95% CI 971 977
True f{0) 2.6619 2.6619
RATS estimate of f{0) 2.7140 0.2390 2.7238 0.2398
Bias of RATS estimate of f{0) 0.0521 0.23%90 0.0619 0.2398
RATS esti of V[F0)] 0.0560 0.0121 0.0563 0.0126
Number of f{0) estimates within 95% CI 971 973
True density 0.06000 0 0.06000 0
RATS density estimate 0.06104 0.00922 0.06114 0.00879
Bias of RATS density estimate 0.00104 0.00922 0.00114 0.00879
Number of density estimates within 95% CI 985 983
Efficiency using RATS for detection function estimat 0.958

Table 6
Clustered population results.
Adaptive Conventional

Mean SD Mean sD
Total area 10,000 10,000
Total effort per survey 1485.6 14.08 1500 -
Nominal effort per survey 1300 -
Population size 603.25 97.75 603.25 97.75
Population Index of Dispersion 12.27 435 12.27 435
Number of observations 77.87 18.21 67.81 16.82
Nominal number of observations 58.22 14.47
True encounter rate 0.0453 0.00734 0.0453 0.00734
Estimated nominal encounter rate 0.0448 0.01113 0.0452 0.01121
Nominal encounter rate bias -0.00054 0.00842 -0.00012 0.00833
Estimated variance for nominal encounter rate estimate 0.000068 0.000038 0.000069  0.000037
MNumber of nominal encounter rate estimates within 95% CI 959 964
True f{0) 2.6619 2.6619
RATS estimate of f{0) 27115 0.2408 2.7099 0.2452
Bias of RATS estimate of f{0) 0.0496 0.2408 0.0480 0.2452
RATS estimate of V [f(0)] 0.0504 0.0162 0.0583 0.0200
Number of f{0) estimates within 95% CI 971 976
True density 0.06033 0.00978 0.06033 0.00978
RATS density estimate 0.06075 0.01613 0.06127 0.01620
Bias of RATS density estimate 0.00042 0.01279 0.00094 0.01263
Number of density estimates within 95% CI 963 970

Efficiency using RATS for detection function estimates 1.027
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Table 7
Highly clustered population results.
Adaptive Conventional

Mean SD Mean SD
Total area 10,000 10,000
Total effort per survey 1466.1 28.34 1500 -
Nominal effort per survey 1300 -
Population size 599.18 151.68 599,18 151.68
Population Index of Dispersion 3136 11.12 3136 11.12
Number of observations 89.83 28.81 67.17 23.81
Nominal number of observations 56.95 20.31
True encounter rate 0.0450 0.01140 0.0450 0.01140
Estimated nominal encounter rate 0.0438 0.01563 0.0448 0.01587
Nominal encounter rate bias -0.00121 0.01132 -0.00024 0.01122
Estimated variance for nominal encounter rate estimate 0.000126 0.000084 0.000129 0.000083
Number of nominal encounter rate estimates within 95% CI 960 949
True f(0) 2.6619 2.6619 '
RATS estimate of f{0) 2.7069 0.2082 2.7235 0.2626
Bias of RATS estimate of f{0) 0.0450 0.2082 0.0616 0.2626
Number of f{0) estimates within 95% CI 987 975
True density 0.05992 0.01517 0.05992 0.01517
RATS density estimate 0.05923 0.02133 0.06087 0.02209
Bias of RATS density estimate -0.00068 0.01581 0.00095 0.01634
Number of density estimates within 95% CI 954 960
Efficiency using RATS for detection function estimates 1.072

Appendix 2
EXAMPLE SIMULATIONS

CSR population Clustered population
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Fig. 7. Simulation of an adaptive line transect survey of a CSR Fig. 8. Simulation of an adaptive line transect survey of a Clustered
population. Schools are represented by dots and each observed population. Schools are represented by dots and each observed
school is bounded by a square. In this case the total population is 600 school is bounded by a square. In this case the total population is 706
and the number of observations is 67. and the number of observations is 59.
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Highly Clustered population
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Fig. 9. Simulation of an adaptive line transect survey of a Highly
Clustered population. Schools are represented by dots and each
observed school is bounded by a square. In this case the total
population is 625 and the number of observations is 66.
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