INTER-AMERICAN TROPICAL TUNA COMMISSION COMISION INTERAMERICANA DEL ATUN TROPICAL

1

à

Bulletin — Boletin Vol. VII, No. 3

A QUANTITATIVE ANALYSIS OF THE PHYTOPLANKTON OF THE GULF OF PANAMA I. RESULTS OF THE REGIONAL PHYTOPLANKTON SURVEYS DURING JULY AND NOVEMBER, 1957 AND MARCH, 1958

by — por

Theodore J. Smayda (Con Resumen en Español)

> La Jolla, California 1963

CONTENTS

Page

ń

SUMMARY—RESUMEN	
Spanish Version	193
Versión en inglés	195
INTRODUCTION	197
ECOLOGICAL CONDITIONS IN THE GULF OF PANAMA	198
PHYTOPLANKTON OBSERVATIONS DURING THE SURVEY OF 10 - 12 JULY, 1957	202
PHYTOPLANKTON OBSERVATIONS DURING THE SURVEY OF 7 - 8 NOVEMBER, 1957	207
Environmental conditions	207
Analysis of phytoplankton growth during November	
Community structure, and comparison of standing crops	213
PHYTOPLANKTON OBSERVATIONS DURING THE SURVEY	
OF 18-21 MARCH, 1958	216
Environmental conditions	216
Phytoplankton distribution	
Stage of phytoplankton succession	231
Analysis of phytoplankton growth during March	232
DISCUSSION	238
LITERATURE CITED	241
APPENDIX TABLES	243

A QUANTITATIVE ANALYSIS OF THE PHYTOPLANKTON OF THE GULF OF PANAMA¹

I. RESULTS OF THE REGIONAL PHYTOPLANKTON SURVEYS DURING JULY AND NOVEMBER, 1957 AND MARCH, 1958

UN ANALISIS CUANTITATIVO DEL FITOPLANCTON EN EL GOLFO DE PANAMA¹

I. LOS RESULTADOS DE LAS INVESTIGACIONES REGIONALES DEL FITOPLANCTON DURANTE JULIO Y NOVIEMBRE DE 1957, Y MARZO DE 1958

by — por

Theodore J. Smayda²

RESUMEN

1. La Comisión Interamericana del Atún Tropical recolectó en el Golfo de Panama muestras cuantitativas de fitoplancton en la superficie y a los diez metros, como sigue:

- a) Del 18 al 21 de marzo de 1958 (31 estaciones)—durante el máximum de la estación de afloramiento.
- b) Del 10 al 12 de julio de 1957 (10 estaciones)—durante la epóca de transición a la estación lluviosa cuando reaparecen los vientos ligeros que causan el afloramiento.
- c) Del 7 al 8 de noviembre de 1957 (15 estaciones)—durante el máximum de la estación lluviosa.

2. Las poblaciones máximas de fitoplancton aparecieron durante la estación de afloramiento, seguido por una considerable disminución durante el mes de julio y una calma durante noviembre.

3. Durante la investigación se observó una remarcable uniformidad regional en la composición de las especies a pesar de las diferencias regionales en las condiciones de crecimiento. Las diatomeas predominaban en gran número en las comunidades.

4. Durante todas las investigaciones, las regiones más cerca de la costa, generalmente al norte de los 8°30'N, eran las más productivas. Las áreas menos productivas fueron las mar afuera de las Bahias de San Miguel y Parita, lo que sugiere que el aumento en las sales nutritivas causado por las escorrentías es inadecuado para sostener poblaciones grandes de plantas autotróficas en estas regiones.

Contribution No. 58 from the Narragansett Marine Laboratory, University of Rhode Island, Kingston, R. I.

^{2.} Narragansett Marine Laboratory, University of Rhode Island, Kingston, R. I.

¹⁹³

SMAYDA

5. Durante todas las investigaciones, el crecimiento del fitoplancton pareció estar limitado por la disponibilidad de las sales nutritivas.

6. Durante todas las investigaciones el crecimiento del fitoplancton pareció estar relacionado con la profundidad de la columna de agua.

7. Aunque las precipitación por debajo del promedio normal contribuyó a condiciones desusadamente favorables de crecimiento (estabilidad reducida, aumento de la transparencia y, presumiblemente, de la reserva de sales nutritivas) durante la investigación de noviembre en relación a noviembre de 1955 y de 1956 en los 8°45'N, 79°23'W, no se observó la alta reacción de fitoplancton que se esperaba.

8. Durante la investigación de noviembre, las reacciones locales de las diatomeas y sus fluctuaciones regionales pudieron relacionarse en forma satisfactoria con condiciones asociadas con la salinidad de la superficie. Sin embargo, esta correspondencia puede atribuirse sin duda a factores asociados con los niveles observados de salinidad, probablemente con las sales nutritivas, en lugar de directamente con la salinidad.

9. Condiciones calurosas no comunes ocurrieron durante la investigación de marzo, las que pueden atribuirse a que los vientos que ocasionan el afloramiento fueran más débiles que los normales, lo que contribuyó a que la cosecha estable fuera considerablemente más baja y a la demora de tres a cinco semanas en la suceción relativa a la que se observó durante 1955-1957 en los $8^{\circ}45'$ N, $8^{\circ}23'$ W, en el Golfo de Panamá.

10. Durante la investigación de marzo, existió una relación *inversa* bien definida entre la temperatura y la abundancia media de las diatomeas en los diez metros superiores, y entre la transparencia y la abundancia media de las diatomeas. Una relación *directa* ocurrió entre la salinidad de superficie y la abundancia media de las diatomeas en los diez metros superiores. Estas relaciones se interpretan como indicadoras de que la abundancia de diatomeas refleja primeramente las concentraciones de las sales nutritivas asociadas con una intensidad de afloramiento dada, en lugar de describir relaciones causales.

11. Los resultados de la investigación indican que la dinámica del fitoplancton observada en los 8°45'N, 79°23'W, desde noviembre de 1954 a mayo de 1957, es generalmente representativa del Golfo de Panamá.

12. Durante las investigaciones se observaron las siguientes formas nuevas, las que serán descritas en una publicación posterior:

Actinoptychus undulatus f. catenata	n.f.
Asterionella japonica f. tropicum	n.f.
Leptocylindrus maximus	n. sp.
Skeletonema costatum f. tropicum	n.f.

SUMMARY

1. Quantitative phytoplankton samples were collected by the Inter-American Tropical Tuna Commission at the surface and ten meters in the Gulf of Panama, as follows:

- a) 18-21 March, 1958 (31 stations)—during the height of the upwelling season,
- b) 10-12 July, 1957 (10 stations)—during the transition to the rainy season at a time when mild upwelling winds reappear,
- c) 7-8 November, 1957 (15 stations)—during the height of the rainy season.

2. Maximum phytoplankton populations occurred during the upwelling season, followed by a considerable decline during July, and a further subsidence during November.

3. A remarkable regional uniformity in species composition was observed during the surveys despite regional differences in growth conditions. Diatoms overwhelmingly dominated the communities.

4. During all surveys, the innermost regions, generally north of $8^{\circ}30'$ N, were the most productive. The least productive areas were in the offing of San Miguel Bay and Parita Bay, suggesting that nutrient accretion *via* runoff is inadequate to sustain sizeable autotrophic plant populations in those regions.

5. During all surveys, phytoplankton growth appeared to be limited by nutrient availability.

6. During all surveys, phytoplankton growth appeared to be related to depth of the water column.

7. Although below average rainfall contributed to unusually favorable growth conditions (reduced stability, increased transparency and, presumably, nutrient reserves) during the November survey relative to November 1955 and 1956 at 8°45'N, 79°23'W, the anticipated heightened phytoplankton response was not observed.

Ţ

8. During the November survey, the local diatom responses and their regional fluctuations could be satisfactorily related to the accompanying surface salinity conditions. However, this correspondence is undoubtedly attributable to factors associated with the observed salinity levels, probably nutrients, rather than salinity directly.

9. Unusually warm conditions occurred during the March survey, attributable to considerably weaker upwelling winds than normally occurring then, which contributed to a considerably lower standing crop and a

retardation in succession of three to five weeks relative to that observed during 1955-1957 at 8°45'N, 79°23'W in the Gulf of Panama.

10. During the March survey, a well defined *inverse* relationship existed between mean temperature and mean diatom abundance in the upper ten meters, and between transparency and mean diatom abundance. A *direct* relationship occurred between surface salinity and mean diatom abundance in the upper ten meters. These relationships are interpreted to indicate that diatom abundance primarily reflected the nutrient concentrations associated with a given upwelling intensity, rather than describing casual relationships.

11. The survey results indicate that the phytoplankton dynamics observed at $8^{\circ}45'$ N, $79^{\circ}23'$ W from November, 1954 through May, 1957 are generally representative of the Gulf of Panama.

12. The following new forms, to be described in a later publication, were observed during the surveys:

Actinoptychus undulatus f. catenata	n.f.
Asterionella japonica f. tropicum	n.f.
Leptocylindrus maximus	n. sp.
Skeletonema costatum f. tropicum	n.f.

INTRODUCTION

The Inter-American Tropical Tuna Commission has maintained a hydro-biological station¹ in the Gulf of Panama located at 8°45′N, 79°23′W where the depth is approximately 42 meters at mean low water (Schaefer, Bishop and Howard, 1958). Routine hydrographic and biological observations have been made, including the collection of quantitative phytoplankton samples at bi-weekly intervals from November, 1954 through May, 1957 (Smayda, 1959; in prep.). In order to evaluate to what extent the phytoplankton response at this station might be representative of the Gulf of Panama, additional phytoplankton samples were collected at the author's request during three bathythermograph cruises to various regions of the Gulf. The results of these phytoplankton surveys are presented in this paper.

The quantitative phytoplankton material consisted of 112 water bottle samples (only 104 enumerable) collected from the surface and 10 meters at 56 stations as follows:

10-12 July, 195710	stations
7-8 November, 195715	stations
18-21 March, 1958	stations

The phytoplankton samples were dispensed into 400 ml. citrate bottles, preserved with neutralized formalin and shipped to the Institute for Marine Biology, Sect. B, Oslo, Norway. The phytoplankton enumeration was then carried out on 2 ml. and 50 ml. sedimented sub-samples employing an inverted microscope (Utermöhl, 1931).

The author is indebted to Dr. Milner Schaefer, Mr. Izadore Barrett, Mr. Antonio Landa and Mr. Gerald Howard of the Inter-American Tropical Tuna Commission for their assistance in the collection and forwarding of the samples and in providing hydrographic data. He is also deeply indebted to Professor Trygve Braarud for providing facilities at his institute as well as the numerous tangible and intangible benefits gained during his association with him and his distinguished staff from 1955-1959. Mr. Joel O'Connor kindly advised on and assisted with the statistical analyses. An IBM 1620 computer was employed using the regression program developed by Mr. Richard Cooper of the Narragansett Marine Laboratory. The author is also indebted to his wife, Norma, for her assistance in processing the results of the phytoplankton enumeration.

This study was conducted in part during the tenure of a Woods Hole Oceanographic Associates' Fellowship.

¹Henceforth will be referred to as the permanent station.

ECOLOGICAL CONDITIONS IN THE GULF OF PANAMA

The following synopsis of the major environmental features of the Gulf of Panama has been abstracted from a considerably more detailed analysis to be presented elsewhere (Smayda, in prep.).

The Gulf of Panama, which approximates a circular embayment, occupies $28,850 \text{ km}^2$ and extends 175 km. inland from its entrance to the south where the distance from Cape Mala to the opposite (eastern) shore is 205 km. (Figure 1). San Miguel Bay and Parita Bay, two important drainage loci, and the Pearl Islands complex (Archipielago de las Perlas) are well-defined features within the Gulf of Panama.

The Gulf of Panama is relatively shallow throughout most of its expanse, 91.4 per cent of its total area being shallower than 200 meters.

The mean depth within this isobath is approximately 60 meters. Near its entrance, however, the Gulf deepens precipitously, as along the $79^{\circ}W$ meridian where the depth increases from 200 meters to 3,000 meters in 10 km. (Figure 1). The presence of a submarine valley is a significant topographical feature of the Gulf of Panama floor. Beginning north of the Pearl Islands, as indicated by the northeast protrusion of the 50 meter isobath, this arcuate valley continues southwards in the region west of the archipelago to the Gulf entrance where it remains detectable at the 200 meter isobath (Figure 1). This valley is important in guiding the incursion of offshore waters during upwelling (Smayda, in prep.).

Climatologically, the Isthmus of Panama is located within the path of the north-south seasonal movement of the Tradewind—Calm Belt (Doldrums) system (Chapel, 1927; Wooster, 1959). The Gulf of Panama, consequently, is successively influenced by the Northeast Trade Winds of the Atlantic, the Equatorial Calm Belt (Doldrums), and the Southeast Trade Winds of the Pacific during a calendar year. Important and specific hydrographic events accompany the different meteorological conditions.

From January through April, but occasionally including periods in December and May, the Gulf of Panama is predominantly influenced by the Northeast Trade Winds. These dry, northerly winds displace the watermass in the upper 40 to 75 meters offshore (Fleming, 1940; Schaefer, Bishop and Howard, 1958) causing an upwelling of 1) *colder*, 2) more *saline* and 3) *nutrient ricb* water to the surface (Figure 2, Table 1). Although the relative upwelling intensity varies with wind strength, a continual influx of cold, enriched water is generally characteristic of this period, with upwelling usually attaining its maximum intensity during March.

TABLE 1.	Monthly W	inds	and M	Iean Precipitati	ion at Bal	lboa d	luring 1956
	Compared	to	Mean	Temperature,	Salinity	and	Phosphate
	Conditions	at 8	3°45'N	, 79°23′W.	•		-

	WINDS	5 (km.)	RAIN ¹	°C	SALINITY	$\mathbf{P}-\mathbf{PO}_4^2$
MONTH	NORTH	SOUTH	(mm.)	(Mean, upp	er 20 meters)	$(mg.at./m^2)$
JAN	7918	160	28	21.46	31.99	58.50
\mathbf{FEB}	8229	142	14	25.68	31.91	41.58
MAR	10896	166	18	21.13	33.82	77.07
APR	8184	590	74	23.88	33.72	43.56
MAY	5035	1056	199	27.14	33.03	36.00
JUNE	3568	1541	202	27.86	28.90	34.69
JULY	5584	485	187	27.77	30.22	43.10
AUG	4888	570	194	27.64	30.13	37.00
SEPT	3237	1496	191	28.22	29.57	29.45
OCT	2202	3602	254	27.77	28.72	25.04
NOV	4656	805	250	27.15	27.38	30.27
DEC	5290	163	138	26.05	29.12	37.61

J

¹Anonymous, 1957. ²Calculated from stations 17-102, July 1955 to December 1958.

SMAYDA

The North East Trade Winds usually weaken in May attendant with the northward movement of the wind system resulting in an abrupt cessation of upwelling (Figure 2, Table 1). A marked increase in temperature and reduction in phosphate reserves occur throughout the water column at this time. The Gulf of Panama then becomes increasingly influenced by the Doldrums, followed by the rain-bearing southwest winds of the South East Trade Winds which usually persist until mid-December. Although there is usually a slight resurgence of northerly winds during July and/or August sufficient to induce mixing or even cause a slight upwelling, the ecological conditions associated with the rainy season are generally detrimental to phytoplankton production (Figure 2, Table 1).

Considerable runoff occurs during the rainy season causing a marked dilution and, hence, increased stability of the watermass (Table 1). Dur-

FIGURE 2. Long-term monthly averages of sea-level, sea-surface temperature (1908-1953) and northerly winds (1915-1956) at Balboa. (Modified from Schaefer, Bishop and Howard, 1958). The number of miles of northerly winds per month (weighted to a 31-day basis) was calculated by weighting the mean velocity of the north, northwest and northeast winds during a given month by the mean number of hours blowing. Measurements of the wind direction, velocity and duration of blowing were obtained for the years 1915-1956 from continuously recording anemometers located at Balboa.

£

ing 1955 at the permanent station, the surface salinity decreased from an upwelling maximum of 34.61 %/00 to 21.68 %/00 during mid-November. The silt-laden runoff also progressively increases the turbidity of the watermass which, combined with a reduced incident radiation accompanying the high cloud cover, raises the compensation depth. For example, the mean depth of the one per cent isolume during the 1956 rainy season was at approximately 30 meters, whereas during dryer 1957 it was at 50 meters. Phosphate accretion *via* runoff from the well-leached lateritic soils appears to be minimal (Table 1). Indeed, the evidence from the permanent station suggests that the runoff actually dilutes the inorganic phosphate reserves in the euphotic zone. The observations of Schaefer and Bishop (1958) in the Gulf of Panama suggesting that quantitative amounts of iron accretion accompany runoff are not contradictory, however, considering the widespread occurrence of iron in tropical lateritic soils (Mohr and Van Baren, 1954). Finally, the prevailing southerly winds during the rainy season tend to hold in place the warm, diluted and nutrient impoverished superficial waters of the Gulf of Panama hindering flushing and admixture with more fertile waters (Figure 2).

The average diatom biomass in the upper 20 meters during the upwelling season at the permanent station from 1955-1957 was ten-fold

FIGURE 3. Mean thermal conditions in the upper 75 meters of the Gulf of Panama during certain months as calculated from bathythermograph observations.

SMAYDA

greater than that observed during the rainy season (Smayda, 1959). Thus, the environmental conditions and ensuing biological response at $8^{\circ}45'$ N, $79^{\circ}23'$ W are very wind-dependent, permitting a natural classification of the annual phytoplankton cycle into a fertile upwelling period during the northern winter and a relatively unproductive rainy season during the remainder of the year. The average thermal conditions in the upper 75 meters during various times of the year suggest that a similar condition exists throughout the Gulf of Panama (Figure 3). However, the associated regional phytoplankton distribution must also be examined now.

PHYTOPLANKTON OBSERVATIONS DURING THE SURVEY OF 10-12 JULY, 1957

Phytoplankton samples were collected from the surface and 10 meters at ten stations, Stations 1-10 (Figure 4), during a bathythermograph survey from 10-12 July, 1957 comprising 46 stations. The Gulf of Panama

FIGURE 4. Phytoplankton stations during the surveys of 10-12 July and 7-8 November, 1957.

was characterized by uniformly high temperatures in the superficial layers associated with a well-developed thermocline below 25 meters at that time (Table 2).

TABLE 2.	Mean	Vertical	Temperature	Conditions	During	10-12	July,
	1957	(Bathyth	ermograph Su	rvey No. 8)	0		•

Depth (meters):	0	5	10	25	50	75
Temperature (°C):	28.59	28.56	28.54	27.63	22.86	18.74
Observations:	46	46	46	42	25	10

At the ten phytoplankton stations, the temperature ranged from 28.06° to 29.44° C in the upper 10 meters. Wind direction and force were the only ancillary observations made during this survey (Figure 5A).

Diatoms were the most active phytoplankton component throughout the Gulf of Panama during the July survey (Tables 3, 4). Their average population density of 51,900 cells/liter¹ was significantly greater than that observed for the other groups (Table 4). The coccolithophores (dominated by *Gepbyrocapsa oceanica*) were recorded only at stations 3, 5 and 7, whereas the more ubiquitous and abundant brown dinoflagellates were dominated by *Exuviaella baltica*. The diatoms, autotrophic dinoflagellates and monads attained their maximum concentrations at station 2, the coccolithophores at station 3, and the Gymnodiniaceae at station 4 (Table 4, Appendix Table 1).

The diatoms exhibited a conspicuous regional variation in abundance permitting the division of the Gulf of Panama into a northern and a southern floral region during this survey (Table 4, Figure 5). Stations 1, 2, 3, 9, 10 comprised the northern, inner region where the mean diatom abundance in the upper 10 meters of 89,455 c/l was six-fold greater than the 14,345 c/l characteristic of the outermost stations: 4, 5, 6, 7, 8. Although the average overall contribution of the various flagellate components was relatively insignificant, they also tended to be more abundant in the northern region (Table 4).

The regional variation in diatom abundance could be further related to depth of the water column. All stations in the phytoplankton "rich" northern region were located in 30 to 50 meters of water, whereas the average diatom density was considerably less at those stations located at other depths:

Depth (m)	Stations	Mean Diatoms (c/l)
20-30	4, 7	15,090
30-50	1, 2, 3, 9, 10	89,455
70-80	5, 6, 8	13,748

1. c/l will be used hereafter.

SMAYDA

FIGURE 5. A. Phytoplankton stations, and local wind direction and force during July survey. B. Regional variation in diatom abundance during July survey.

TABLE 3.Maximum Abundance of Major Diatoms at July 1957 Stations,
cells/10 ml.; + less than 5 cells/10 ml.

	STATIONS								
SPECIES 1	2	3	4	5	6	7	8	9	10
Bact. elegans	370	110	65		+	27	+	36	60
princeps 17	110	20			+-	17	+-	15	20
Ch. compressus 13	225	9			100	35	+	36	60
curvisetus 12	450	50	+-		15		+	30	135
didymus +	150	13	+-		+-	9	+	25	110
lorenzianus	190	55	+-		5	30	14	42	69
Nitz. delicatissima130	115	45	+-			40	65	5	65
pacifica +									
- pungens 45	115	40	25		10	+	+		25
Rh. delicatula	625	70	45		9	10	16	165	2 10
tropicum 13	405	105			15	5	+	19	70

TABLE 4. Population Densities at Stations 1-10; 10-12 July, 1957.
(cells/liter; n.d. = no data).

STATION AND DEPTH (m)	DIATOMS	GYMNO- DINIACEAE	DINO- Flagellates	COCCO- LITHOPHORES	MONADS
1-0	47,100		40		8,500
10	n. d.	n. d.	n. d.	n. d.	n. d.
2 — 0	56,700		1,300		3,000
10	387,360	3,500	3,500		14,000
3-0	18,320	4,500	1,260		2,500
-10	68,020	3,500	780	3,720	5,500
4 0	12,160	5,000	1,280		3,500
10	9,200	6,000	1,000		2,000
5-0	60	20	100	1,040	
10	n. d.	n. d.	n. d.	n. d.	n. d.
6 0	9,520	5,000	1,200		10,500
-10	23,320		500		
7-0	15,220	1,000	540	500	3,500
10	23,780	1,000	720	520	7,000
8-0	25,100		540		4,000
10	10,740		100		3,000
9-0	27,100	1,500	1,160		6,500
10	47,860	1,000	1,240		2,500
10-0	97,480	1,500	1,440		5,500
10	55,160	5,500	1,020		7,000
STATION M	IEANS:				
St. 1-10	51,900	2,115	930	320	4,915
St. 1, 2, 3.	,				
9, 10	89,455	2,335	1,195	413	6,110
St. 4-8	14,345	2,005	665	229	3,725

As with depth, there is an interesting correlation between diatom density and wind behavior observed at the collection site. The lowest diatom densities were encountered at stations 4, 5, 6 where southwest winds prevailed, and at stations 7 and 8 where northerly winds with a wind force

SMAYDA

of 7 to 8 were observed (Figure 5). The "fertile" stations, however, were located in areas where northerly winds with a force of 1 to 2 prevailed. It was demonstrated earlier that mild northerly winds usually reappearing during July may induce moderate upwelling (Figure 2, Table 1). Furthermore, upwelling appears to be especially intense in the northern regions within the 50 meter isobath (Smayda, in prep.). The relationships observed between plankton density, depth and wind during the July survey suggest, then, that the observed regional differences in phytoplankton abundance might be related to differences in upwelling intensity. However, the temperature data clearly indicate that sub-surface upwelling was not occurring at this time (Table 2, Appendix Table 1). An alternate possibility of wind-induced mixing with the deeper, enriched layers cannot be excluded, although the temperature data suggest that this process, if occurring, could not have been very vigorous.

The paucity of phytoplankton at station 4 located in the offing of San Miguel Bay, through which 45 per cent of the total annual runoff volume enters the Gulf (Smayda, in prep.), is notable (Figure 5, Table 4). This suggests that a limited accretion of inorganic nutrients with runoff occurs in this area, the presence of which is clearly signaled by the occurrence of *Peridinium inconspicuum*, a brackish dinoflagellate (Appendix Table 1). The heterotrophic Gymnodiniaceae, however, attained their maximum abundance at station 4 (Table 4).

A comparison of the average July phytoplankton densities in the upper 10 meters at the permanent station (8 observations) with those observed during the July, 1957 survey is presented in Table 5.

cells/liter).			
Stations: 1955, 1956 Permanent	1-10	1957 1, 2, 3, 9, 10	4-8
Diatoms	51,900	89,455	14,345
Dinoflagellates 1,747	930	1,195	665
Gymnodiniaceae 3,125	2,115	2,335	2,005
Coccolithophores 8,517	320	413	229
Monads	4,915	6,110	3,725

TABLE 5. A Comparison of the Average July Phytoplankton Densities
in the Upper 10 Meters at 8°45'N, 79°23'W with Those
Observed During the Gulf Survey of 10-12 July, 1957 (in
cells/liter).

It is observed that the overall survey results are lower than the mean standing crop observed at the permanent station during July. However, the average phytoplankton densities, excepting the coccolithophores and monads, characteristic of the northern region (Stations 1, 2, 3, 9, 10) during the July survey compare very favorably with those at the similarly located permanent station (Figure 4).

The community present during the July survey was similar to that found at the permanent station (Table 3, Appendix Table 1).

PHYTOPLANKTON OBSERVATIONS DURING THE SURVEY OF 7-8 NOVEMBER, 1957

Environmental Conditions

Phytoplankton samples were collected from the surface and 10 meters at 15 stations, Stations 11-25 (Figure 4), during the bathythermograph survey from 7-8 November, 1957 comprising 32 stations. Although a slight cooling of the watermass occurred by November in the upper 25 meters, the surface temperatures remained high, ranging from 27.5° to 29.2° C (Table 6).

TABLE 6.Mean Vertical Temperature Conditions During 7-8 November,
1957 (Bathythermograph Survey No. 9)

Depth (Meters):	0	5	10	25	50	75
Temperature (°C):	28.17	27.92	27.81	26.13	19.02	15.31
Observations:	32	32	32	30	20	14

A well-developed thermocline persisted below 25 meters, the watermass below this depth having cooled approximately 3.5° C since July (Tables 2, 6).

Surface salinity determinations made at 16 stations, located near the phytoplankton stations, ranged from 28.66 to 29.87 $^{\circ}/_{00}$, with a mean of 29.36 $^{\circ}/_{00}$ (Figure 6). These abnormally high salinities during the height of the rainy season (Table 1) undoubtedly reflect the below average rainfall recorded during 1957, distinguishing it as a "dry year" (Anonymous, 1957). The extent of this deviation, and associated ecological conditions, can be estimated from a comparison of conditions during early November at the permanent station during 1955-1957 (Table 7).

TABLE 7.A Comparison of the Surface Salinity, Surface Oxygen Saturation, Phosphate Concentration and Transparency During
Early November 1955-1957 at 8°45'N, 79°23'W.

Date	Surface ⁰ / ₀₀		Phosphate (mgat./m ²)	Secchi Disc (meters)
15 XI 1955 8 XI 1956	$\begin{array}{c} 21.68\\ 24.88\end{array}$	$109.3 \\ 97.7$	$18.32 \\ 13.62$	no data 6.5
5 XI 1957	28.62	96.1	51.84	11.0

It is seen that the surface waters were approximately 4.00 to $7.00 \,^{\circ}/_{00}$ more saline in November 1957 than during the previous two years; that is, 13 to 24% *less dilute*. This was accompanied by a considerably greater phosphate concentration and increased transparency during 1957, two parameters significantly influenced by freshwater runoff, as discussed on page 201. (The high oxygen saturation value during 1955 suggests that considerably higher phosphate reserves, since utilized, were actually associated with the observed salinity. However, oxygen saturation was repeatedly found

FIGURE 6. Surface salinity distribution during November survey. Filled circles represent stations where salinity determinations were made, and open circles phytoplankton stations.

to be an inadequate index of phytoplankton activity in the Gulf of Panama, unlike in certain non-tropical areas (Braarud and Bursa, 1939, for example).)

Secchi Disc measurements made during the November, 1957 survey at seven stations ranged from 6.0 to 12.5 meters, with a mean of 9.7 meters, revealing a transparency consistent with that expected from the salinity levels.

Thus, it appears reasonable to conclude that unusually favorable growth conditions, relative to 1955 and 1956, characterized the superficial waters during the survey of 7-8 November, 1957.

Despite the narrow salinity range, three surface watermasses can be distinguished (Figure 6). A central watermass of high salinity, 29.5 to $30.0^{\circ}/_{00}$, occurred between the slightly more dilute waters, less than 29.5 $^{\circ}/_{00}$, present in the inner and outer regions. The tongue of dilute water, less than 29.0 $^{\circ}/_{00}$, extending to the southwest from San Miguel Bay is especially well-defined (Figure 6). The surface salinity pattern, perhaps fortuitously, suggests the counter-clockwise circulation described for the Gulf of Panama (Wooster, 1959).

FIGURE 7. Diatom abundance at the surface and 10 meters during November survey.

Analysis of Phytoplankton Growth During November

Regional variations in the phytoplankton standing crop occurred, the northern reaches of the Gulf tending to be richer than the outer regions, as during July (Figures 6, 7, Table 8). A progressive increase in diatom abundance occurred on the track from station 11 to 15, except at station 12 where the coccolithophores exhibited their greatest abundance during the survey (Figures 6, 7, Table 8.) The densest populations of the survey occurred at stations 14-15 located in the passage between the Pearl Islands. Continuing southwards, a precipitous decrease in all components occurred at station 16, a condition which persisted in the southernmost region through station 21. On the inbound track, the diatom population then increased two-fold at station 22, and progressively thereafter through station 24, whereupon the population declined at station 25 (Figures 6, 7, Table 8).

TABLE 8.Population Densities at Stations 11-25; 7-8 November, 1957.
(cells/liter; n.d. = no data).

STATION		GYMNO-	DINO-	COCCO-	
AND DEPTH (m)	DIATOMS	DINIACEAE	FLAGELLATES	LITHOPHORES	MONADS
11-0	-5,120		220	8,000	2,500
10	52,980	3,540	180	4,520	4,500
12-0	6,680	1,000	780	6,040	2,500
-10	31,700	6,500	700	9,040	3,500
13— 0	21,280	500	40	3,000	1,500
10	44,480	7,000	680	9,000	2,500
14— 0	209,600	3,500	200	7,000	2,000
10	119,440	6,000		6,000	2,000
15— 0	190,740	8,300	1,560	7,500	3,500
—10	239,550	500	80	13,540	500
16 0	n.d.	n.d.	n. d.	n. d.	n. d.
10	12,100	4,000	40	1,540	
17 - 0	3,380	500	20	1,500	1,000
-10	4,980		1,060	1,040	
18— 0	2,240	500			
-10	1,500				
19 0	8,000	500	160	1,500	
-10	n. d.	n. d.	n. d.	n. d.	n.d.
20 - 0	$7,\!480$		200	2,000	
-10	11,960	500	80	3,000	2,500
21 — 0	5,620	500	500	2,000	1,000
10	8,620			500	500
22 — 0	21,200	80	80	1,500	4,040
-10	7,700		1,160	7,500	3,500
2 3— 0	4,380			1,000	1,000
10	19,500	40	660	1,540	1,000
24 - 0	28,810		820	3,500	4,000
10	52,360	40	780	6,000	1,500
25_{0}	18,280	2,000	200	2,040	1,500
10	20,740	5,580	2,160	3,660	4,500
MEAN:	$41,44\overline{3}$	1,824	441	4,052	1,822

This regional variation in abundance was clearly associated with the observed pattern of surface salinity distribution (Figures 6, 7). The greatest diatom populations generally occurred within the central core of dense water, as at stations 13-15, 22-24 (Figures 6, 7, Table 8). Sparse populations accompanied the increased dilution, 28.66 to 29.50 $^{\circ}/_{\circ\circ\circ}$, characteristic of the southernmost stations 16-21. Similarly, the transition from the central watermass to the fresher northern region, delineated by the 29.5 $^{\circ}/_{\circ\circ\circ}$ isohaline, was likewise accompanied by a population decrease—compare stations 12 and 13, 24 and 25 (Figures 6, 7, Table 8).

Although surface salinity determinations were not made at the phytoplankton stations, the mean diatom populations in the upper 10 meters are compared to the average of the *two* surface salinity determinations nearest the phytoplankton stations (Figures 6, 8). Notwithstanding the inherent shortcomings of this procedure, a remarkably good direct correlation is apparent (Figure 8). Two relationships could be distinguished. The diatom-salinity relationship at those stations located in 80-90 meters

SMAYDA

of water (open circles) differs from that at other depths, including greater ones (Figure 8). This confirms the July observations that phytoplankton growth is influenced by the depth of the water column as well. (Two plots are recorded for station 15 which lies in the central, saline watermass near its transition into the dilute southern one (Figures 6, 8). The nearest salinity observation within its own watermass appears to be a more appropriate datum to use in the correlation than a mean value, which includes an observation in the dilute watermass, in this instance.)

Calculation of semi-logarithmic linear regressions using the least square method reveals that 91 per cent of the variation can be explained by each regression. The standard error of the estimate is 0.073 for the 80-90 meter regression (open circles) and 0.055 for the other regression. Application of the *t*-test indicates that the regressions are significant to the 0.05 and 0.001 probability level, respectively.

Thus, the local diatom responses and their regional fluctuations during the November survey can be satisfactorily related to the accompanying surface salinity conditions. However, these responses are undoubtedly attributable to factors associated with the observed salinity levels, rather than salinity directly. (Note that the diatom responses could be related to the mean salinity values whose range was *less* than 1.0 $^{\circ}/_{00}$, 29.0 to 29.8 $^{\circ}/_{00}$ (Figure 8).) The uniformly high temperatures in the upper 10 meters at all phytoplankton stations, range of 27.8° to 28.9°C, cannot adequately account for the observed regional variation in diatom growth.

Light transmission and phosphate concentration were demonstrated previously to vary with salinity during the rainy season (Tables 1, 7). The average daily incident radiation recorded at Curundu near Balboa (Figure 1) was 615 gm.cal. per cm.² during the week previous to the November survey. The average of seven scattered Secchi Disc observations made during the survey was approximately 10 meters. Using the Poole and Atkins (1929) formula to calculate the average extinction coefficient (k) per meter,

$$k = \frac{1.7}{D}$$
.....(1)

where D equals the Secchi Disc depth in meters, and then using the extinction coefficient together with the incident radiation datum in the formula,

$$\frac{\mathbf{I}}{\mathbf{I}_{o}} = \mathbf{e}^{-\mathbf{k}\mathbf{L}}$$

where I_0 represents the incident intensity and I the intensity at depth L in meters, it can be calculated that the average energy flux was 307 gm.cal. per cm.² at the mean depth, 4.1 meters, of the 50 per cent isolume during the November survey. This intensity is similar to that occurring during the upwelling season when intense phytoplankton growth occurs (Smayda, 1959). These observations suggest that it is unlikely that light either limited phytoplankton growth in the superficial waters during the Novem-

ber survey, or accounted for the regional variations in diatom response. Consequently, it seems likely that variable nutrient conditions associated, and known to fluctuate, with salinity best account for the relationship (Figure 8) observed between diatom abundance and salinity during the November survey.

The direct correlation between diatom abundance and salinity level is especially informative about nutrient accretion during the rainy season. Since the observed dilution is related to freshwater runoff (Table 1), any significant leaching of nutrients accompanying drainage would probably be reflected in an increased phytoplankton response. Accordingly, the November salinity—plankton relationship might be inverted; that is, maximum phytoplankton growth would occur at the lowest salinities. That this did not occur further supports the conclusion that nutrient accretion during the rainy season is inadequate to sustain large populations (Smayda, in prep.).

TABLE 9.	Maximum Abundance of Major Diatoms and Coccolithophores
	at November 1957 Stations.
	(apply 10 ml \pm 1055 than 5 apply 10 ml)

	, 1111	• 9	105	5 011	ane		19/1	U II	п.,					
SPECIES 11	12	13	14	15	16	ST. 17	ATIO 18	NS 19	20	21	22	23	24	25
Bact. elegans	25	45	240	305	8	6	8	5	13	+	12	15	70	60
hyalinum var. princeps +	+	+	5	55	+	+	+	+	_		_			_
Ch. affinis +	24	+	80	535	+	+		+	+	5	12	7	15	18
brevis+	+	+	55	140	+	_	_	_	_			_	+	+
compressus355	55	6	315	755	+	+	_	+	+	50	10	75	10	17
didymus 5	28	7	100	35	17	8	8	7	15	30	12	12	60	15
laciniosus+	19	+	110	120	15	7	—	7	6	5	+	+	15	20
laevis+	+	25	40	30	+	+	15	+	+	_	_	+-	20	+
lorenzianus6	9	30	65	75	+	+		+	6		+	+	+	+
Nitz. closterium 5	15	5	25	45	_	_	_	+	10		_	10	+	+
delicatissima 10		25	80	55	5	+	_	30	30	_	5	_	_	_
pacifica $+$ pungens 11	7	15	130	145	+	5	5	+	15	10	14	6	170	50
Rh. delicatula +	50	25	285	190	25	20	—	+	+	+	+	5	+	+
stolterfothii+	+	35	95	16	+	+	_	+	_	+	+	+	10	5
Skel. costatum f. tropicum 45	16	340	395	290	6	+		+	15	20	12	20	165	15
Calciosolenia sinuosa 10	5	35	35	5	5	—	—	—	_	5		_	5	—
Coccolithus huxleyi 10	15	15	10	40	5	5	_	5	15		—	—	15	—
Gephyrocapsa oceanica 65	60	35	30	100	5	10	—	10	15	15	70	15	40	35
Halopappus adriaticus $+$	15	5	10	5	+	_	—	—	—	—	5	+	_	5

Community Structure and Comparison of Standing Crops

The major diatom species observed during the November survey included those present during July (Tables 3, 9, Appendix Tables I, II). As during the latter survey, the same diatom community predominated throughout the Gulf. *Chaetoceros affinis* and *Ch. brevis* increased in abundance since July to warrant their inclusion as major species, whereas *Lepto*-

SMAYDA

cylindrus minimus, Cb. constrictus, curvisetus and socialis decreased by November. Except for the Nitzschia pacifica + pungens complex, each of the major diatom species attained their maximum abundance during the November survey at stations 14-15 (Table 9). Cb. compressus and/or Skeletonema costatum f. tropicum clearly dominated at those stations where the mean diatom density exceeded 25,000 c/l—stations 11, 13-15 and 24 (Table 9). The communities at the other stations were characterized by the absence of certain species (Table 9; Appendix Table II), and a modest dominance of different species: Rbizosolenia delicatula (stations 16, 17), Cb. laevis (18), Nitz. delicatissima (19, 20), Cb. compressus (21, 23) and Bacteriastrum elegens (25). Several species co-dominated at station 22 (Table 9). Most of the major diatoms were ubiquitous, although Bact. byalinum var. princeps was conspicuously absent at stations 20-25, and Cb. brevis at stations 17-23 (Table 9).

Among the coccolithophores, *Gepbyrocapsa oceanica* was ubiquitous, whereas *Calciosolenia sinuosa*, *Coccolithus huxleyi* and *Halopappus adriaticus* were irregularly distributed at stations 17-25 (Table 9). No consistent regional pattern was apparent in the distribution of any of the autotrophic dinoflagellate species (Appendix Table II).

A comparison of the average November phytoplankton standing crops in the upper 10 meters at the permanent station with those observed during the November, 1957 survey is presented in Table 10.

TABLE 10.A Comparison of the Average November Phytoplankton
Densities in the Upper 10 Meters at 8°45'N, 79°23'W with
Those Observed During the Gulf Survey of 7-8 November,
1957 (in cells/liter).

Stations:	1954, 1956 Permanent	11 - 25	1957	Excluding 14-15
Diatoms Dinoflagellates Gymnodiniaceae Coccolithophores Monads	$15,740 \\ 1,710 \\ 1,500 \\ 3,650 \\ 4,500$	$41,443 \\ 441 \\ 1,824 \\ 4,052 \\ 1.822$		$\begin{array}{r} 16,771 \\ 438 \\ 1,366 \\ 3,310 \\ 1.800 \end{array}$

If the densely populated survey stations 14-15 are omitted in the comparison, the mean diatom abundance at the 13 other stations approximates that at the permanent station. The mean densities of the autotrophic dinoflagellates and monads were somewhat greater at the permanent station, whereas no appreciable differences were observed for the coccolithophores and Gymnodiniaceae.

The November survey data confirm the July observations that the brown dinoflagellates were more important at the permanent station during these months than elsewhere in the Gulf (Tables 5, 10). Furthermore, the November data, together with that of the July survey, indicate that

the absence of a succession from a diatom to a dinoflagellate community during the rainy season noted at the permanent station (Smayda, in prep.) is also characteristic of a large part of the Gulf.

The decline in diatoms, Gymnodiniaceae and monads which occurred between July and November at the permanent station (Smayda, in prep.) likewise was observed between the July and November surveys (Tables 5, 10). Unlike at the permanent station, however, the regional coccolithophore importance during the November survey was significantly greater than that during July. The data provide no clue for this behavior.

The surprising fact brought out in the comparison is the failure of the phytoplankton to respond to the seemingly more beneficial growth conditions extant during the November survey than normally encountered at the permanent station at this time of year (Tables 1, 8, 10). Only stations 14-15, characterized by the highest salinities (Figure 8), exhibited exceptional growth. The role of local influences on phytoplankton abun-

FIGURE 9. Phytoplankton stations during the survey of 18-21 March, 1958.

dance at these two stations, located in the main passage of the Pearl Island archipelago, cannot be assessed from the data at hand.

PHYTOPLANKTON OBSERVATIONS DURING THE SURVEY OF 18-21 MARCH, 1958

Environmental Conditions

Phytoplankton samples were collected from the surface and 10 meters at 31 stations, Stations 26-56 (Figure 9), during a bathythermograph survey from 18-21 March, 1958 comprising 62 stations. Surface-to-bottom temperatures were recorded at all stations (Figures 11-16, Table 11), while surface salinity determinations were made at 31 locations situated near the phytoplankton stations (Figure 10).

TABLE 11.Mean Vertical Temperature Conditions During 18-21 March,
1958 (Bathythermograph Survey No. 10)

Depth (meters):0	5	10	25	50	75
Temperature (°C):	26.02	24.62	22.48	19.61	16.58
Observations: 62	62	62	56	35	10
°C Change					
since November1.46	-1.97	-3.19	-3.65	+0.59	+1.27

FIGURE 10. Surface salinity distribution during March survey. Filled circles represent stations where salinity determinations were made, and open circles phytoplankton stations.

Upwelling regularly occurs during March (Table 1). This condition is reflected in the approximately 4.0 $^{\circ}/_{00}$ rise in mean surface salinity since November to 33.31 $^{\circ}/_{00}$ during the March survey, when it ranged from 32.59 to 33.96 $^{\circ}/_{00}$ (Figures 6, 10). Similarly, the mean temperatures *declined* since November from approximately 1.5° at the surface to 3.7°C at 25 meters, while the deeper waters became slightly warmed (Table 11). However, the mean temperatures at the surface, 26.71°C, and at 25 meters, 22.48°C, during the March survey were approximately 3° to 5°C higher than during similar bathythermograph surveys in 1955 and 1957. The high surface temperatures also contrast to the 19.4°C observed at the permanent station during mid-March, 1955. Accordingly, *the temperature data suggest that upwelling was not as intense during the March, 1958 survey as that observed previously during this period*.

Secchi Disc measurements made at 23 phytoplankton stations ranged from 5 to 18 meters, with a mean of 9.3 meters. This average transparency is comparable to that present during the November survey.

The temperature distribution at 10 meters exhibits well-defined regional variations which are undoubtedly attributable to differences in upwelling intensity (Figure 11). The surface salinity distribution generally corroborates the upwelling pattern suggested by the thermal conditions (Figure 10). (Since these figures are based on observations made over a span of four days during a hydrographically dynamic period, much significance cannot be attributed to the relative position of a given isotherm or isohaline. The general regional differences in upwelling demonstrated by these figures, however, are undoubtedly real.) Thus, upwelling was most pronounced in the innermost regions, especially at depths shallower than 50 meters, where a relatively cold, less than 24°C, saline, greater than 33.7 ⁰/₀₀, watermass was generally present (Figures 10-16). Indeed, irrespective of the surface salinity distribution, the temperature data suggest that relatively intense upwelling characterized the entire inner region north of 8°30'N (Figure 11). To the south, a slightly warmer, more dilute watermass occurred in the region overlying the submarine canyon and within the Pearl Island straits (Figures 10, 11). This watermass, in turn, was wedged between the appreciably warmer, more dilute waters characteristic of Parita and San Miguel Bays (Figures 10, 11). The extensive occurrence of the stagnant, dilute watermass in the Parita Bay region west of the 26°C isotherm is especially notable (Figures 10, 11). An upwelling of cold water, less than 24°C, is detectable south of the Pearl Islands at stations 36 and 37 (Figure 11).

The March salinity distribution is similar in certain respects to that observed during the November survey except, excluding the rise in salinity, for the presence of the most saline waters in the innermost region of the Gulf (Figures 6, 10). The observed upwelling pattern suggested by the

FIGURE 11. Temperature distribution at 10 meters during March survey. Open circles represent phytoplankton stations.

temperature-salinity distribution during the March, 1958 survey conforms, in general, to that predictable on theoretical grounds (Smayda, in prep.). Although nutrient determinations were not made during this survey, higher phosphate levels can be expected to accompany the colder, more saline waters than in those of less intense upwelling (Table 1; Smayda, in prep.).

Phytoplankton Distribution

The vertical oscillations of the 24° and 25° C isotherms in the upper 10 meters from station-to-station have been arbitrarily chosen as an index of relative upwelling intensity to facilitate description and analysis of the regional phytoplankton distribution. The temperature distribution on the track from stations 26-36 (Figure 9) indicates the occurrence of upwelling, of unequal intensity, through station 30 (Figures 9, 12), whereas a very warm, stagnant watermass (27°C) occurred at stations 31 to 35 (Figure 13). (Stations 31 and 32 are biologically transitional between these two watermasses despite their location within the stagnant watermass. Phytoplankton growth and composition at station 31 are related to that in the upwelling zone whereas that at station 32 is representative of the 27°C watermass. Both stations will be referred to as transitional in the text to

follow.) This variation in upwelling intensity was accompanied by differences in both phytoplankton abundance and community organization (Tables 12-15):

1. A sparse Pennate community consisting of Nitzschia closterium, delicatissima, pacifica + pungens, Thalassionema nitzschioides, and an unidentified Pennate species (either a small Pleurosigma or Gyrosigma species) characterized station 26 (Table 13). This community persisted at the other stations.

2. A Chaetoceros community consisting of Ch. curvisetus and cf. vixvisibilis predominated at stations 27 and 28 (Table 13).

3. An abundant Skeletonema costatum f. tropicum stand, and presence of an important Rhizosolenia community consisting of Rb. delicatula, fragilissima, setigera and stolterfothii characterized the intense growth at stations 29-31 (Table 14).

FIGURE 12. Thermal conditions in the upper 10 meters at March survey stations 26-32.

FIGURE 13. Thermal conditions in the upper 10 meters at March survey stations 33-36.

SMAYDA

The sudden pre-eminence of the *Skeletonema* + *Rbizosolenia* association at station 29, which remained through station 31, provides biological evidence that the watermass at those stations differs somewhat from that at station 28. On theoretical grounds, it is expected that upwelling in the *region* of stations 29-31 results primarily from an influx *east* of the Pearl Islands within the San Miguel Bay area (Smayda, in prep.). The upwelled waters in the inner regions north of station 29, however, are derived from the watermass flowing northwards *west* of the Pearl Islands within the submarine canyon and, perhaps, through the Pearl Island straits (Figures 1, 9; Smayda, in prep.). Although the temperature differences are slight, the data indicate the presence of a watermass warmer by 1.3° to 1.5° C in the upper 10 meters between stations 28 and 29 (sampled the same day), suggesting the anticipated incursion of *two* watermasses in this region (Figures 11, 12).

The presence of the littoral diatom *Melosira moniliformis* in appreciable densities at stations 26-31, accompanied by an abundance of terrigenous material in the samples, suggests that a roiling of the bottom accompanied upwelling in this region (Appendix Table III). This stirring can be expected to augment the nutrient supplies through a release of inorganic phosphate from the sediments (Jayaraman and Seshappa, 1957).

	× /	,	,		
STATION And Depth (m)	DIATOMS	GYMNO- Diniaceae	DINO- Flagellates	COCCO- Lithophores	MONADS
26-0	72,500		20	2,020	13,500
10	n. d.	n. d.	n. d.	n. d.	n. d.
27 - 0	n. d.	n. d.	n. d.	n. d.	n. d.
10	54,700	3,000	100		10,020
28 0	130,940	500	280	500	3,000
-10	341,220		40	500	4,000
29-0	832,500		40	3,500	7,500
-10	674,760		40	500	9,000
30 0	576,500	30,000	3,820	10,000	55,000
-10	368,520	10,000	1,600	2,000	76,000
31— 0	275,000	5,500	1,280	15,000	7,500
10	n. d.	n. d.	n. d.	n. d.	n. d.
32— 0	117,080	7,500	620	1,000	5,000
—10	81,400	1,000	1,560	3,000	6,000
33 0	35,340	7,000	7,880	4,500	8,500
10	34,140	1,000	1,040	1,040	5,500
34— 0	4,540	3,000	1,040		19,500
10	9,840	4,500	520	4,020	3,500
35— 0	4,740	3,000	1,040	2,000	4,000
-10	6,140	4,000	620	3,040	13,500
36 0	700	3,000	1,080	5,500	6,000
10	1,200	10,500	120	4,040	21,500

TABLE 12.Population Densities at Stations 26-36; 18-19 March, 1958.
(cells/liter; n.d. = no data).

TABLE 13.Station	26 ^{a)}	27 ^{b)}		28
Date		18 March 19	58	
Depth (meters)	0	10	0	10
°C	25.8	25.1	25.8	23.1
DIATOMS (cells/liter)	72,500	54,700	130,940	341,220
DINOFLAGELLATES	20	3,100	780	40
COCCOLITHOPHORES	2,020		500	500
MONADS	13,500	10,020	3,000	4,000
TOTAL	88,040	67,820	135,220	345,760
CHAETOCEROS SPP.	+	43,040 78.8%	35,740 27.3%	157,740 46.2%
—cf. vixvisibilis	<u> </u>	33,000	23,500	124,000
—curvisetus	+	10,040	12,000	33,500
PENNATE SPP.	68,600 94.6%	8,000 14.6%	60,300 46.1%	106,500 31.2%
Nitz. closterium	12,500	+	8,500	8,000
—delicatissima	2,500	2,000	_	21,000
—pacifica 🕂 pungens	19,000	2,500	8,000	16,000
Pennate sp.	33,000	2,500	9,500	20,000
Thal. nitzschioides	_	1,000	33,500	41,000
Skel. costatum f. tropicum	1,500 2.1%	1,620 3.0%	24,500 18.7%	61,500 18.0%

Data lacking from a). 10 meters, and b). surface; + = less than 500 cells/liter.

The transition into the stagnant 27°C watermass was accompanied by a pronounced decline in diatom abundance at stations 32-35 (Table 12), and renewed predominance of the Pennate facies, especially *Nitz. delicatissima*, which comprised from 70 to 95 per cent of the diatom population (Tables 15, 16). The *Chaetoceros* — *Skeletonema* — *Rbizosolenia* communities were either very sparse or absent within this watermass.

FIGURE 14. Thermal conditions in the upper 10 meters at March survey stations 37-41.

The anomalous occurrence of a meager, Pennate-dominated community, despite the presence of 24°C water, characterized station 36 (Figure 13, Table 12). The thermal conditions suggest that the phytoplanktonimpoverished watermass at station 36 was primarily flowing northwards, rather than upwelling at this station, where it then upwelled at stations 37-41 (Figures 9, 13, 14). However, this does not adequately explain the lack of phytoplankton growth at station 36. A precipitous increase in

TABLE 14	•									
Station Date Depth			29	18	March	3 1958	80		31 a))
(meters) °C	0 26.0		10 23.1		0 27.3		$\begin{array}{c} 10 \\ 23.6 \end{array}$		$\begin{array}{c} 0 \\ 27.5 \end{array}$	
DIATOMS (cells/liter) DINO-	832,500		674,600		576,500		368,520		275,000	
FLAGELLATES	40		40		33,820		11,600		6,780	
LITHOPHORES MONADS TOTAL	3,500 7,500 843,540		500 9,000 684,140		10,000 55,000 675,320		2,000 76,000 458,120		15,000 7,500 304,280	
CHAETOCEROS —cf. vixvisibilis —curvisetus	139,960 56,000 71,000	16.8%	154,740 123,000 30,500	23.0%	45,380 8,500	7.9%	49,000 2,000 23,500	13.4%	25,300 1,000	9.5%
PENNATE Nitz. closterium —delicatissima	167,500 41,000 18,000	20.2%	198,000 51,000 36,000	28.1%	42,780 9,000	7.4%	61,080 34,000 4,000	16.6%	41,500 3,500 5,500	15.1%
pungens	58,000		46,000		16,000		17,000		11,500	
nitzschioides Pennate sp.	20,500 30,000		41,000 22,000		13,500 3,000		5,000		21,000	
RHIZOSOLENIA —delicatula —fragilissima —setigera —stolterfothii	161,000 126,000 4,000 11,500 19,500	19.3%	69,500 33,000 3,500 12,500 20,500	10.3%	279,860 181,000 39,000 32,000 27,000	48.5%	120,120 87,000 5,000 4,500 23,500	32.6%	141,560 55,500 2,500 8,000 75,000	51.4%
Skel. costatum f. tropicum Fucampia	206,000	24.7%	152,000	22.5%	99,500	17.3%	85,000	23.1%	34,000	12.4%
cornuta	43,000		47,500		13,500		9,500		7,000	
bergonii Lept. minimus Thal. aestivalis	37,000 37,000 32,000		11,500 		58,000 		4,500		18,000 	

a). No data from 10 meters

TABLE 15.

Station	32		3	3 25.5 34,140			
Date		18 March 1	n 1958				
Depth (meters) °C	$\begin{array}{c} 0\\ 27.5\end{array}$	$\begin{array}{c} 10\\25.3\end{array}$	0 27.2	$\begin{array}{c} 10\\ 25.5\end{array}$			
DIATOMS (cells/liter) DINOFLAGELLATES COCCOLITHOPHORES MONADS TOTAL	117,080 8,120 1,000 5,000 131,200	81,400 2,560 3,000 6,000 92,960	35,340 14,880 4,500 8,500 63,220	34,140 2,040 1,040 5,500 42,720			
CHAETOCEROS SPP. —cf. vixvisibilis PENNATE SPP. Nitz. delicatissima Thal. nitzschioides RHIZOSOLENIA SPP. Skel. costatum f. tropicum	29,620 25.3% 28,500 68,000 58.1% 40,000 20,500 2,060 1.8% 14,000 12.0%	$\begin{array}{cccc} 3,280 & 4.0\% \\ 3,000 \\ 72,200 & 88.7\% \\ 61,500 \\ + \\ 2,240 & 2.8\% \\ 3,160 & 3.9\% \end{array}$	$\begin{array}{cccccc} 14,500 & 41.0\% \\ 14,500 \\ 18,580 & 52.6\% \\ 11,000 \\ + \\ 1,500 & 4.2\% \\ + \end{array}$	7,200 20.5% 7,000 25,740 75.4% 17,500 + + +			

diatom abundance and change in community organization accompanied upwelling at station 37 which persisted through station 41 (Tables 12, 16-19). The *Skeletonema* + *Rbiz. delicatula* association generally dominated, although *Cb. decipiens* and the Pennate community were important at certain stations. A slight subsidence in upwelling at stations 40 and 41 was accompanied by a decline in diatom abundance (Figure 14, Tables 16, 19). The community at station 40, where *Cb.* cf. *vixvisibilis* and *Skel. costatum* f. *tropicum* predominated, is clearly related to that at stations 28-31 (Tables 13, 14, 19).

FIGURE 15. Thermal conditions in the upper 10 meters at March survey stations 42-48.

TABLE 16.	Population Densities	at	Stations	37-47;	19-20	March,	1958.
	(cells/liter).					,	

STATION And Depth (1	m) DIATOMS	GYMNO- DINIACEAE	DINO- Flagellates	COCCO- Lithophores	MONADS
37— 0	632,800	1,000	1,440	15,000	2,000
10	886,840	6,000	3,360	8,000	21,000
38— 0	801,120	2,000	14,620	3,000	14,000
-10	1,409,320	1,000	120	2,000	40,000
39— 0	684,800	5,000	3,440	3,000	32,000
10	1,162,760	3,000	1,640	7,000	16,000
40-0	445,480	2,000	8,160		3,000
-10	765,520	2,000	680	8,000	13,000
41 - 0	259,460	3,000	$1,\!240$	2,000	10,000
-10	480,680	3,000	1,240	5,000	8,000
42-0	232,120		40	1,000	4,000
10	293,800	2,000	1,480	10,000	13,000
43 0	322,640		160		2,000
-10	141,360	3,000	1,000	5,000	20,000
44 - 0	232,040		880	4,000	9,000
-10	266,360	1,000	1,320	5,000	7,000
45— 0	32,560		1,640	10,000	5,500
-10	211,900		1,240	10,000	15,000
46 - 0	586,800	2,000	3,520	3,000	6,000
-10	670,320		1,440	7,000	6,000
47 - 0	383,800		7,280	9,000	7,000
10	527,080		400	8,000	5,000

SMAYDA

The relative upwelling intensity observed at station 41 persisted at stations 42 and 43 (Figures 13, 14). However, the watermass in the region overlying the submarine canyon south to station 47 was appreciably warmer, indicating that upwelling was not as intense in the upper 10 meters, if occurring, as at stations 26-30 and 37-41 (Figures 12, 14, 15). Nonetheless, an abundant phytoplankton population dominated by *Rbiz. delicatula* occurred at stations 42-47 (Tables 20-22), generally exceeding that at stations 26-31 (Tables 12, 16). Growth was especially intense at stations 46 and 47 where *Cerataulina bergonii* and *Eucampia cornuta* comprised 10 to 20 per cent of the diatom population. The community at these stations was related to that at station 37 (Tables 17, 22, Appendix Tables III, IV). The temperature data provide no clue for the exceptional growth at stations 44-47.

A greatly reduced population accompanied the presence of 27° C water at stations 48-52 (Figures 9, 15, 16, Table 23). As at stations 32-35, the Pennate community predominated within this stagnant watermass.

Station Date Depth (meters)	0	19 Mar	37 ch 1958 10	
	20.1		~ <u>~</u> ~.5	
DIATOMS (cells/liter)	632,800		886,840	
DINOFLAGELLATES	2,440		9,360	
COCCOLITHOPHORES	15,000		8,000	
MONADS	2,000		21,000	
TOTAL	652,240		925,200	
CHAETOCEROS SPP.	172,040	27.2%	226,080	25.5%
—affinis	55,000		8,000	
—brevis	5,500		39,000	
—costatus	28,000		61,000	
-constrictus	10,000		_	
—curvisetus	5,000		30,000	
decipiens	24,500		60,000	
PENNATE SPP.	120,500	19.0%	157,000	17.3%
Nitz. closterium	23,000		64,000	
—delicatissima	44,000		64,000	
—pacifica 🕂 pungens	48,000		24,000	
Pennate sp.	4,000		15,000	
RHIZOSOLENIA SPP.	182,280	28.8%	322,640	36.4%
delicatula	128,000		220,000	
fragilissima	18,000		17,000	
setigera	11,000		12,000	
—stolterfothii	25,000		73,000	
Skel. costatum f. tropicum	98,000	15.5%	114,000	12.9%

TABLE 17.

FIGURE 16. Thermal conditions in the upper 10 meters at March survey stations 49-56.

TABLE 18.

ŝ

Station		38					39	
Date			19 I	Iarch	1958			
Depth (meters)	0		10		0		10	
°C	26.7		24.7		26.9		24.6	
DIATOMS (cells/liter)	801,120		1,409,320		684,800		1,162,760	
DINOFLAGELLATES	16,620		1,120		8,440		4,640	
COCCOLITHOPHORES	3,000		2,000		3,000		7,000	
MONADS	14,000		40,000		32,000		16,000	
TOTAL	834,740		1,452,440		728,240		1,190,400	
CHAETOCEROS SPP.	355,680	44.4%	708,440	50.3%	150,160	21.9%	551,320	47.4%
—affinis	32,000		49,000		48,000		18,000	
—brevis	15,000		62,000		27,000		28,000	
compressus	20,000		34,000		1,000		84,000	
—costatus	37,000		61,000		_		45,000	
—curvisetus	2,600		63,000		22,000		31,000	
decipiens	190,000		227,000		21,000		135,000	
—didymus	7,000		61,000		3,000		53,000	
—laciniosus	7,000		31,000		_		20,000	
lorenzianus	10,000		24,000		10,000		25,000	
—socialis	_		_		_		25,000	
subsecundus	12,000		5,000		2,000		_	
PENNATE SPP.	286,000	35.7%	375,000	26.6%	203,000	29.7%	285,000	24.5%
Nitz. closterium	94,000		205,000		27,000	, -	82,000	
—delicatissima	34,000		28,000		37,000		25,000	
—pacifica $+$ pungens	114,000		88,000		65,000		80,000	
Pennate sp.	23,000		21,000		40,000		60,000	
Thal. nitzschioides	21,000		33,000		34,000		38,000	
RHIZOSOLENIA SPP.	127,120	15.9%	195,320	13.9%	200,200	29.2%	229,440	19.7%
delicatula	77,000		130,000		145,000		134,000	/0
—fragilissima	12,000		1,000		1,000			
setigera	9,000		9,000		18,000		22.000	
—stolterfothii	29,000		55,000		36,000		73,000	
Skel. costatum f. tropicum	1,640	.3%	25,000	1.8%	71,000	10.4%	80,000	6.9%
Cerataulina bergonii	6,000		57,000		21,000		3,000	
Eucampia cornuta	2,040		27,000		25,000		2,080	

TABLE 19.								
Station		40)			41		
Date	0		19 N	Iarch	1958			
°C (meters)	0 26.6		$\begin{array}{c} 10\\ 25.1\end{array}$		$\begin{array}{c} 0\\ 25.9\end{array}$	2	10 24.2	
DIATOMS (cells/liter)	445,480		765,520		259,460	4	80,680	
DINOFLAGELLATES	10,160		2,680		4,240		4,240	
COCCOLITHOPHORES	_		8,000		2,000		5,000	
MONADS	3,000		13,000		10.000		8.000	
TOTAL	458,640		789,200		275,700	4	97,920	
CHAETOCEROS SPP.	109,040	24.5%	310,160	40.5%	83,760	32.3% 1	33,440	27.8%
—affinis	14,000		6,000	70	.+	10	10,000	/0
—brevis	22,000		15,000		+		17,000	
-compressus	1,000		20,000		16,000		15,000	
-constrictus	_		_		_		13,000	
—costatus			5,000		8,000		10,000	
—curvisetus	18,000		55,000		22,000		28,000	
—decipiens	15,000		+		+		6,000	
—laciniosus			22,000		6,000		_	
—lorenzianus	5,000		13,000		+		_	
—cf. vixvisibilis	_		137,000		5,000		22,000	
PENNATE SPP.	115,320	25.9%	138,080	18.0%	60,520	23.3% 1	37,000	28.5%
Nitz. closterium	6,000		13,000		5,000		10,000	
—delicatissima	36,000		61,000		25,000		46,000	
—pacifica $+$ pungens	50,000		45,000		23,000		27,000	
Pennate sp.	14,000		7,000		7,000		7,000	
Thal. nitzschioides	2,320		5,080		+		47,000	
RHIZOSOLENIA SPP.	99,360	22.3%	121,400	15.9%	48,520	18.7% 1	31,720	27.4%
—delicatula	64,000		80,000		31,000		65,000	
—fragilissima	+		+		+		34,000	
—setigera	11,000		12,000		+		+	
—stolterfothii	23,000		28,000		16,000		32,000	
Skel. costatum f. tropicum	96,000	21.5%	155,000	20.2%	56,000	21.6%	70,000	14.6%

A notable increase in diatom abundance accompanied pronounced upwelling at stations 54-56 (Figure 16, Tables 23-25, Appendix Table V). Skeletonema dominated at stations 54 and 55, accompanied by rudimentary Chaetoceros, Rbizosolenia and Pennate communities (Table 24). The abundance of Biddulphia longicruris at the former station is noteworthy (Appendix Table V). An enormous development of Ch. curvisetus characterized station 56, unlike at stations 54 and 55 (Tables 24, 25). This indicates that, as with upwelling, biological differences occur between nearby stations (Figure 11, 14, 16).

226

TABLE	20.

÷.

Station		4	12				43	
Date			20) Mar	ch 1958			
Depth (meters)	0		10		0		10	
°C	25.9		24.2		26.1		24.2	
DIATOMS (cells/liter)	232,120		293,800		322,640		141,360	
DINOFLAGELLATES	40		3,480		160		4,000	
COCCOLITHOPHORES	1,000		10,000		_		5,000	
MONADS	4,000		13,000		2,000		20,000	
TOTAL	237,160		320,280		324,800		170,360	
CHAETOCEROS SPP.	13,840	6.0%	42,280	14.4%	52,200	16.2%	12,760	9.0%
—affinis	+		+		17,000		2,440	
—brevis			_		11,000		+	
—curvisetus	9,000		10,400		14,000		2,560	
—cf. vixvisibilis	3,000		3,000		_		4,000	
PENNATE SPP.	33,200	14.3%	72,560	24.7%	45,000	14.0%	27,000	19.1%
Nitz. closterium	1,000		11,000		2,000		8,000	
—delicatissima	9,000		34,000		25,000		10,000	
—pacifica $+$ pungens	19,000		10,000		18,000		9,000	
Pennate sp.	2,000		15,000					
Thal. nitzschioides	2,200		2,560		—		+	
RHIZOSOLENIA SPP.	87,800	37.8%	98,840	33.6%	189,200	58.6%	92,240	65.3%
—delicatula	68,000		78,000		109,000		63,000	
—fragilissima	8,000		6,000		6,000		2,200	
—stolterfothii	11,000		14,000		68,000		26,000	
Skel. costatum f. tropicum	94,000	40.5%	67,000	22.8%	36,000	11.2%	3,360	2.4%

TABLE 21.

Station		4	14			4	45	
Date			2) Mar	ch 1958			
Depth (meters)	0		10		0		10	
°C	26.6		24.4		26.9		26.1	
DIATOMS (cells/liter)	232,040		266,360		32,560		211,900	
DINOFLAGELLATES	880		2,320		1,640		1,240	
COCCOLITHOPHORES	4,000		5,000		10,000		10,000	
MONADS	9,000		7,000		5,500		15,000	
TOTAL	245,920		280,680		49,700		238,140	
CHAETOCEROS SPP.	21,960	9.5%	11,320	4.2%	10,240	31.4%	70,340	33.2%
—curvisetus	12,560		6,560		5,360		56,000	
PENNATE SPP.	37,000	16.0%	46,000	17.3%	6,500	19.9%	37,000	17.5%
Nitz. closterium	9,000		8,000		2,000		23,000	
—delicatissima	6,000		14,000		1,500		12,000	
—pacifica $+$ pungens	13,000		23,000		2,000		2,000	
Pennate sp.	9,000		1,000		1,000			
RHIZOSOLENIA SPP.	103,520	44.6%	168,200	63.1%	3,540	10.8%	81,440	38.4%
—delicatula	59,000		118,000		1,200		38,000	
stolterfothii	38,000		38,000		1,600		40,000	
Skel. costatum f. tropicum	63,000	27.2%	36,000	13.5%	9,000	27.6%	14,000	6.6%

. e;

2

6

÷

TABLE 22. Station Date	4	6 20 Mar	ab 1059	47
Depth (meters)	0	10	0	10
°C	26.6	25.8	26.8	26.0
DIATOMS (cells/liter)	586,800	670,320	383,800	527,080
DINOFLAGELLATES	5,520	1,440	7,280	400
COCCOLITHOPHORES	3,000	7,000	9,000	8,000
MONADS	6,000	6,000	7,000	5,000
TOTAL	601,320	684,760	407,080	540,480
CHAETOCEROS SPP. —affinis —brevis —compressus —cf. constrictus —costatus —lorenzianus —cf. vixvisibilis	218,160 37.2% 64,000 47,000 25,000 26,000 	243,440 36.3% 24,000 73,000 27,000 31,000 27,000 13,000 24,000	94,000 24.59 21,000 31,000 4,000 14,000 5,000	6 146,000 27.7% 24,000 32,000 2,000 19,000 51,000
PENNATE SPP.	91,000 15.5%	67,000 10.0%	46,000 12.09	6 38,000 7.2%
Nitz. delicatissima	44,000	28,000	9,000	12,000
—pacifica + pungens	36,000	29,000	31,000	19,000
RHIZOSOLENIA SPP.	149,000 25.4%	222,280 33.2%	159,240 41.59	6 209,160 39.7%
—delicatula	52,000	102,000	86,000	112,000
—fragilissima	48,000	46,000	44,000	56,000
—setigera	19,000	21,000	13,000	12,000
—stolterfothii	30,000	53,000	16,000	29,000
Skel. costatum f. tropicum	40,000 6.8%	25,000 3.7%	17,000 4.49	6 15,000 2.8%
Cerataulina bergonii	39,000	41,000	23,000	38,000
Eucampia cornuta	33,000	29,000	22,000	70,000

TABLE 23 .	Population	Densities	at	Stations	48-56;	20-21	March,	1958.
	(cêlls/liter	: n.d. = no	o da	ita).	,			

STATION And Depth (m)) DIATOMS	GYMNO- DINIACEAE	DINO- Flagellates	COCCO- Lithophores	MONADS
48-0	4,120	500	80	2,000	2,000
-10	12,060			2,000	3,000
49 0	n. d.	n. d.	n. d.	n. d.	n. d.
-10	2,300	_	520	3,500	2,500
50-0	1,260	_		6,000	3,000
-10	1,680		520	3,000	12,500
51 - 0	2,520			1,000	4,000
-10	2,140	_		2,500	6,000
52— 0	680		520	1,000	9,500
-10	1,100		540	1,000	6,000
53-0	8,220			6,000	3,500
-10	63,880	500	2,500	4,500	9,500
54— 0	503,360	1,500	1,500	4,500	24,500
-10	1,321,800	1,500		7,500	14,000
55-0	227,440	1,000	1,660	6,000	18,500
-10	221,980	2,000	280	9,000	10,500
56— 0	338,260	·	240	3,500	1,000
10	1,602,100	1,000	480	5,000	70,000

TABLE 24.

¢.

à.

4

Station		5	54		55			
Date			21 N	Iarch	1958			
Depth (meters)	0		10		0		10	
°C	25.5		22.9		25.4		23.9	
DIATOMS (cells/liter)	503,360		1,321,800		227,400		221,980	
DINOFLAGELLATES	3,000		1,500		2,660		2,280	
COCCOLITHOPHORES	4,500		7.500		6.000		9.000	
MONADS	24,500		14.000		18.500		10,500	
TOTAL	535,360		1,344,800		254,560		243,760	
CHAETOCEROS SPP.	49,440	9.8%	109,500	8.3%	9,440	4.1%	48,900	22.0%
—costatus	_		15,500		+		+	
—curvisetus	30,000		46,500		3,840		45,000	
PENNATE SPP.	45,500	9.0%	52,500	4.0%	22.000	9.7%	16.580	7.5%
Nitz. closterium	12,000		23,500		5.000	70	8,500	70
—delicatissima	7.000		7.500		6.500		5,500	
—pacifica $+$ pungens	25,000		21,500		9,000		1,080	
RHIZOSOLENIA SPP.	36,000	7.2%	34,820	2.6%	87.080	38.3%	26,580	12.0%
—delicatula	23.000		20.500	70	62.000	70	10,500	/0
—stolterfothii	6,000		6,000		19,000		11,500	
Skel. costatum f. tropicum	327,000	65.0%	1,084,000	82.0%	103,000	45.3%	102,500	46.2%

TABLE 25.

Station Date	56 21 March 1958						
Depth (meters) °C	0 25.2		10 23.2				
DIATOMS (cells/liter) DINOFLAGELLATES COCCOLITHOPHORES MONADS TOTAL	338,260 240 3,500 1,000 343,000		1,602,100 1,480 5,000 70,000 1,678,580				
CHAETOCEROS SPP. —curvisetus	78,100 72,000	23.1%	1,117,960 1,055,000	69.8%			
PENNATE SPP. Nitz. closterium —pacifica + pungens	35,500 12,000 13,000	10.5%	63,000 25,000 35,000	3.9%			
RHIZOSOLENIA SPP. —delicatula —setigera —stolterfothii	128,500 97,000 6,500 19,000	38.1%	201,560 75,000 21,000 105,000	12.6%			
Skel. costatum f. tropicum Thal. subtilis	91,000	26.9%	110,000 43,000	6.9%			

TABLE 26.

Maximum Abundance of the Major Diatoms at March Stations. (cells/10 ml.; + = less than 5 cells/10 ml.; * sample from one depth only)

STATIONS

SPECIES	26*	27	° 28	29	30	31*	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49*	50	51	52	53	54	55	56
Cer. bergonii	+	+	17	370	580	180	+	+	_		_	400	570	210	70	15	+	5	+	5	410	380	35	+			_	+	60	40	390
Ch. affinis brevis compressus costatus curvisetus decipiens lorenzianus cf. vixvisibilis	+			7 + - 710 + 1230	28 75 130 95 235 + 28 20	95 60 30 10 20 25	+ + + 285		 25	+		550 390 90 610 300 600 75 30	490 620 340 610 630 2270 240	480 280 840 450 310 1350 250 90	140 220 50 550 240 130 1370	100 170 160 280 60 + 220	6 	$170 \\ 110 \\ 16 \\ + \\ 140 \\ 6 \\ 6 \\ 40$	10 + 20 - 126 - 32 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - 1	22 16 8 + 560 + 17 60	640 730 270 270 180 20 260 240	240 320 50 40 190 510	++	+-	+			+++ " " +++	40 10 90 155 465 90 65	+ 15 ++ 450 + 7 30	+ 8 17 170 10550 + +
Euc. cornuta	+	7	475	425	45	_	_	_		_		150	270	250	32	7	10	20	9	11	330	700	_	_	_			+	55	25	55
Nitz. closterium delicatissima pacifica + pungens	125 25 190	+ 20 25	85 210 160	510 360 580	340 40 170	35 55 115	80 615 20	65 175 65	20 75 十	20 25 15	+ 10 +	640 440 650	2050 340 1140	820 370 800	130 610 500	100 460 270	110 340 190	80 250 180	90 140 230	230 120 20	60 440 360	50 120 310	25 15 +	15 — +	15 + +	10 15	10 +	25 30 55	235 75 250	85 65 90	210 45 350
Pennate sp	330	2 5	200	300	30	_	10	15	_	5	_	150	230	600	210	_	_		70	10	_	_			_		_	_	15	15	30
Rh. delicatula fragilissima setigera stolterfothii	+ + +	++++	10 + 6 90	1260 40 125 205	1810 390 320 270	555 25 80 750	20 +++++++	15 — — +		+	+	2200 180 120 730	1300 120 90 550	1450 10 220 730	800 9 120 280	650 340 5 320	780 80 7 140	1090 60 60 680	1180 24 110 380	380 28 + 400	1020 480 210 530	1120 560 130 290	+ +	+	 ++		+ + +	45 ++ +	230 + 80 60	620 50 10 190	970 60 210 1050
Skel. costatum f. tropicum	15	16	615	2060	995	340	140	+	_	+	+	1140	250	800	1550	660	880	360	630	190	400	150	+	—		_		270	10840	1030	1050
Thal. nitzschioides	16	10	410	410	135	210	205	+	+	+	_	40	330	380	50	470	26	5	13	+	90	_	+	_	_			+	175	200	45

230

SMAYDA

Stage of Phytoplankton Succession

The striking dominance of the Pennate community at the impoverished stations 32-36 and 48-53 located in the 27°C watermass is demonstrated in the regional distribution of the major diatom species summarized in Table 26. Actually, the abundance of the Pennate species in this watermass is lower, in general, than that attained by them at the other stations. This suggests that their predominance in 27°C water is attributable to a greater tolerance to such adverse environmental conditions than that possessed by the sparse, or absent, Chaetoceros and Skeletonema + Rhizosolenia communities. The more heterogeneous and abundant diatom standing crops at stations 31 and 53 reflect their transitional location between the stagnant 27°C watermass and a more fertile, upwelled one (Figures 9, 12, 16). Otherwise, the regional uniformity in species composition, as during the July and November surveys, is remarkable (Tables 3, 9, 26, Appendix Tables I-V). Excluding the 27°C stations, Rbiz. delicatula was the primary or secondary dominant at 80 per cent of the stations, while *Skel. costatum* f. *tropicum* attained similar importance at 60 per cent of the stations (Table 26). Local influences upon growth, aside from upwelling, are probably manifested at stations 37-39 where Ch. decipiens and Nitz. closterium were important, and at station 56 where Ch. curvisetus domi-The Rhizosolenia + Skeletonema association, however, persisted as nated. secondary dominants at these stations as well.

The great importance of *Skeletonema* so late during the upwelling season contrasts with its behavior at the permanent station during 1955-1957 where it predominated during December and January along with *Ch. compressus* to characterize the Stage I upwelling community (Smayda, in prep.). A varied *Bacteriastrum* and *Chaetoceros* component comprised the subsidiary species during this stage which evolved into a Stage II community, dominated by *Rb. delicatula* and, occasionally, *Eucampia cornuta* during February. A Stage III community appeared during March dominated, in part, by *Nitz. closterium*.

The maximum March abundance recorded for Skeletonema at the permanent station was 3,500 c/l. The relative sparsity of Cb. compressus during the March 1958 survey, except for stations 38 and 39 where a modified Stage I community exists (Table 18), is notable. These observations, coupled with an insignificant Bacteriastrum component, an abundant Rb. delicatula stand, and a significant Nitz. delicatissima response, suggest that the general community organization during the March 1958 survey represented an early Stage II community, notwithstanding the abundance of Skeletonema. This suggests that succession during the 1958 upwelling season was retarded from three to five weeks relative to that observed at the permanent station during 1955-1957. The delayed succession might be attributable to the observation that upwelling winds were "considerably weaker" than usual during March, 1958 following an unusually warm February (Anony-

mous, 1958). These meteorological conditions would also explain the 3° to 5° C higher temperatures noted in the upper 25 meters during the March 1958 survey relative to previous years.

The considerable importance of *Cerataulina bergonii*, *Rhiz. fragilissima*, *setigera* and *Thalassionema nitzschioides* during March 1958 contrasts with their relative insignificance at the permanent station.

The foregoing discussion stressed the diatom dynamics observed during the March survey for, as during the July and November surveys, this group overwhelmingly dominated the phytoplankton (Tables 4, 8, 10, 12, 16, 23, 28). For this reason, the relative phytoplankton growth during the surveys has been primarily gauged from the diatom abundance and response to environmental factors. Of the other components, the coccolithophores, dominated by Coccolithus huxleyi and Gephyrocapsa oceanica, exhibited only minor regional variations in composition and abundance (Tables 12, 16, 23, Appendix Tables III-V). The Gymnodiniaceae, as during the July survey, attained maximum densities at stations 30-37 located in the proximity of San Miguel Bay (Figure 9, Tables 4, 12, 16). The autotrophic dinoflagellates, in general, attained slightly greater concentrations in the Pearl Island perimeter, being characterized otherwise by the relative unimportance of *Exuviaella baltica*, unlike at the permanent station or July survey (Tables 4, 12, 16, Appendix Tables I-V). Both dinoflagellate groups were conspicuously sparse in the stagnant 27°C watermass near Parita Bay (Table 23).

Analysis of Phytoplankton Growth During March

The station-to-station fluctuations in diatom abundance described earlier frequently paralleled changes in upwelling intensity. The general association between upwelling and diatom growth is clearly illustrated in their regional variations encountered during the March survey (Figure 17). Maximum diatom growth occurred in those regions where the lowest temperatures obtained, especially below 25° C. Comparison with the surface salinity distribution reveals that the regions of maximum diatom response were generally the most saline, i.e. above $33.5^{\circ}/_{\circ 0}$ (Figures 10, 17). The conspicuous paucity of plankton in the warm, dilute waters in the offing of Parita and San Miguel Bays is well-defined. Accordingly, the regional patterns in distribution of temperature, salinity and diatom abundance during March indicate that 1) the regional differences in diatom abundance can be attributed to variations in upwelling intensity, and 2) the inner reaches of the Gulf of Panama were the most productive during the March survey, as during the July and November surveys.

A more quantitative evaluation of upwelling has been facilitated by computing semi-logarithmic linear regressions by the least square method of mean diatom abundance in the upper 10 meters on temperature, salinity and Secchi Disc observations (Figures 18-21, Table 27). A well-defined

FIGURE 17. The regional distribution of mean diatom abundance in the upper 10 meters, and thermal field at 10 meters during the March survey.

inverse relation exists between the mean diatom abundance and temperatures in the upper 10 meters (Figures 18, 19). This relationship is especially pronounced at depths greater than 50 meters where 91 per cent of the variation can be explained by the regression (Figure 18). Stations 36 and 53, though plotted, were omitted in the regression since the diatom response at those stations appears to reflect growth conditions associated with their presence in transitional areas between poor and productive watermasses (Figures 10, 11, 17, 18). The temperature regression is not as good at those stations located at depths shallower than 50 meters where only 44 per cent of the variation can be explained by the regression (Figure 19, Table 27). SMAYDA

FIGURE 18. The relationship between mean diatom abundance and mean temperature in the upper 10 meters at depths greater than 50 meters during March survey. Open circles are explained in text.

As with the temperature-diatom data, the Secchi Disc observations could be partitioned into two natural sub-groups which were characterized by equally good regressions (Figure 20, Table 27). The lower regression in Figure 20 comprised stations 30, 32-36 and 48, stations characterized by 1) a mean salinity¹ of less than 33.20 $^{\circ}/_{00}$ and 2) their general occurrence in the warmer, stagnant regions of the Gulf (Figures 10-13, 15-20). The general environmental conditions characterizing this series are reflected in the means of 26.4°C and 33.01 $^{\circ}/_{00}$. No Secchi Disc observations were made at stations 49-54 where the hydrographic conditions through station 52 suggest an affinity with this regression. The upper regression in Figure 20 comprises those stations located primarily in colder, more saline waters as evidenced by their mean temperature and salinity values of 25.5°C and 33.62 $^{\circ}/_{00}$, respectively. Unlike the temperature regression, no influence of depth was apparent in the *inverse relation* between transparency and mean diatom abundance.

^{1.} The mean surface salinity was obtained by averaging the two salinity observations nearest each phytoplankton station.

FIGURE 19. The relationship between mean diatom abundance and mean temperature in the upper 10 meters at depths shallower than 50 meters during March survey.

ГАВLЕ	27.	Regression	Equations	for Mar	ch Surve	у.	
	Y	d = mean dia	atom abund	lance, as	cells/lite	r, in upper	r 10 meters.

		% Variation Explained by		Standard Error of	
X =	Regression Equation	Regression	Probability	Estimate	d.t.
Mean °C					
at Stations					
> 50 meters	log Y == 41.65447 1.39133X	91	.001	0.103	11
Mean °C					
at Stations					
< 50 meters	$\log Y = 15.30169 - 0.38985X$	44	.02	0.100	10
Secchi Disc,	-				
in meters, at					
Stations 30,					
32-36, 48	log Y = 6.16683 - 0.17043X	88	.005	0.129	5
Secchi Disc,	-				
in meters, at					
other stations	log Y = 6.47383 - 0.09573X	79	.001	0.043	11
Mean Surface	5				
Salinity	$\log Y = -60.59814 + 1.96568X$	61	.001	0.129	24
Detailed availance	tion of V units provided in legende of F	Jauree 10 21			

Detailed explanation of X units provided in legends of Figures 18-21.

Maximum Secchi Disc readings were obtained in those areas where upwelling, and phytoplankton growth, were relatively insignificant. The low extinction coefficients at these stations, coupled with the annual occurrence of maximal incident light intensities during the upwelling season, suggest the unlikelihood that phytoplankton growth was light-limited in the superficial waters at these stations, or probably at any station during the March survey. Hence, the Secchi Disc regressions probably reflect the magnitude of the phytoplankton abundance at the stations, rather

FIGURE 20. The relationship between mean diatom abundance in the upper 10 meters and Secchi Disc observations during the March survey. The two regressions are explained in the text.

than describe a causal relation between light intensity and phytoplankton growth.

The mean diatom abundance could be reasonably well related to the mean surface salinity conditions (Figure 21, Table 27). The salinity data suggest that a subgrouping of stations exists, as with the regressions on temperature and transparency during March, and salinity during November (Figures 8, 18-21). However, since no objective criteria could be applied to justify sub-grouping the stations, probably reflecting a lack of salinity data, a single salinity regression was derived (Figure 21, Table 27). The observation that 61 per cent of the variation is attributable to the regression is surprisingly good, bearing in mind the nature of the salinity data. The direct relation observed between salinity and mean diatom abundance, as during the November survey, however, can undoubtedly be ascribed to factors associated with salinity rather than salinity per se. For, in general, the highest salinity values accompanied the lowest temperatures which, in turn, were accompanied by the greatest diatom populations (Figures 17-19). The relatively greater upwelling intensities suggested by this association were undoubtedly accompanied by higher phos-

FIGURE 21. The relationship between mean diatom abundance in the upper 10 meters and the mean surface salinity during the March survey.

phate concentrations as well (Table 1). Consequently, the March temperature regressions, as with salinity, probably indicate the general influence of upwelling on phytoplankton growth, rather than describe a causal relationship. This suggests that the regional variations in diatom abundance observed during the March survey primarily reflect the nutrient concentrations associated with a given upwelling intensity and, secondarily, other factors.

Regressions of diatom abundance on temperature, salinity, or water transparency were often improved by grouping the data according to the depth of the water column at each station. However, an analysis of the notably weaker temperature regression derived for the March stations shallower than 50 meters (Table 27), and the data in general, suggests that the "depth effect" may represent several unknown factors. For example, the March temperature regression can be significantly improved if stations 28-30, 41-45, 53-56 are grouped. These stations are characterized by reasonably similar hydrographic conditions and, except for stations 44 and 45, their location within the inner regions of the Gulf of Panama. Other, somewhat more subjective groupings of the data can be made lead-

SMAYDA

ing to improved regressions. Thus, there is some evidence that the regional differences in phytoplankton production encountered during the surveys, especially during March, are also attributable in part to the depth of the water column and unknown factors associated with depth.

The lack of nutrient and salinity data precludes a more refined statistical analysis of the phytoplankton growth during the March survey.

A comparison of the average March standing crop at the permanent station with those during the 1958 survey reveals a considerably lower diatom density during the latter period (Table 28).

Observed D cells/liter).	uring the Gulf S	urvey of 18-21	March, 1958 (in
	1955-1957]	1958
Stations:	Permanent	26-56	Omitting 34-36; 48-52
Diatoms	907,645	333,900	449,096
Dinoflagellates	3,415	1,516	1,903
Gymnodiniaceae	2,864	2,374	2,535
Coccolithophores	9.628	4,400	5,000

21.156

TABLE 28.	A Comparison of the Average March Phytoplankton Den-
	sities in the Upper 10 Meters at 8°45'N, 79°23'W with Those
	Observed During the Gulf Survey of 18-21 March, 1958 (in
	cells/liter).

This deviation persists even when the sparse stations 34-36 and 48-52 are omitted in the comparison. The average abundance of the Gymnodiniaceae was similar, whereas the means for the other flagellate groups were 50 per cent lower during 1958. A general increase in the average standing crops for all components occurred since the November survey, as at the permanent station (Tables 10, 28).

12,707

14,430

The considerably lower standing crop during March 1958 relative to the permanent station undoubtedly reflects the unusually high temperatures prevalent during this survey. As noted previously, the thermal conditions reveal a lower rate of upwelling than normally encountered during March which can be related to the meteorological conditions then prevalent (Anoymous, 1958). This demonstrates that *annual*, as well as *regional*, differences in upwelling intensity and associated phytoplankton production occur.

DISCUSSION

The surveys are ideally suited to evaluate to what extent the phytoplankton dynamics observed at the permanent station are representative of the entire Gulf of Panama, since they were conducted during the three major "seasons" of the annual cycle:

1. During the height of the upwelling season—March.

Monads

- 2. During the transition to the rainy season at a time when mild upwelling winds reappear—July.
- 3. During the height of the rainy season—November.

The occurrence of maximum phytoplankton populations during the upwelling season, followed by a considerable reduction in abundance during July, and further subsidence during November is consistent with observations at the permanent station from 1955-1957 (Smayda, in prep.). The surveys also reveal that the environmental conditions characteristic of a given "season," when present, occur throughout the Gulf of Panama. However, regional variations in phytoplankton growth occurred. During all surveys the innermost regions, generally north of $8^{\circ}30'$ N, were the most productive, while the least productive areas were in the offing of Parita and San Miguel Bays. The latter observation indicates that nutrient accretion *via* runoff is inadequate to sustain sizable autotrophic populations in those regions, contrary to Allen's (1925, 1939) general conclusions. The average standing crops during the surveys, except for March, compared favorably with those characteristic of the permanent station. The significantly lower populations during the March survey could be attributed to the unusually warm conditions then prevalent accompanying adverse meteorological conditions.

A remarkable regional uniformity in species composition occurred during all surveys despite regional differences in growth conditions. The communities observed during the surveys were generally similar to those occurring at the permanent station during an equivalent period. The unusually warm conditions during the March survey could be shown to have retarded succession three to five weeks relative to that observed at the permanent station. As at the permanent station, the diatoms overwhelmingly dominated the phytoplankton during all surveys.

These observations indicate, then, that the phytoplankton dynamics observed at the permanent station are indeed generally representative of the Gulf of Panama, and that this station lies within the most productive region of the Gulf.

Prior to the HANNIBAL Cruise in March 1933 (Allen, 1939), only nine surface net samples were collected in the Gulf of Panama, all during the upwelling season (Allen, 1925; Cupp, 1930, 1934). These authors reported that the phytoplankton abundance, which varied from approximately 6,000 to 700,000 c/l, was primarily due to a *Chaetoceros* community. Allen (1939) briefly reported on 66 net samples collected at the surface over a two-week interval in March, 1933. He observed that the eastern half of the Gulf was more productive than the western region, as during the 1958 survey. However, the inner regions of the Gulf were poorer than the outer ones, unlike in 1958. Allen could find no correlation between phytoplankton abundance and the physico-chemical conditions accompany-

SMAYDA

ing upwelling. However, he appears to have underestimated the significance of upwelling. A review of his original data indicates that *Chaetoceros debilis* dominated, accompanied by prominent stands of *Ch. curvisetus, didymus, lorenzianus,* and *Nitzschia seriata.* The conspicuous paucity of *Rhiz. delicatula, stolterfothii* and *Nitz. delicatissima,* normally important during March at the permanent station, is notable.

The following new forms included in the survey tables will be described in the biogeographical and floristic portion of this series. (Smayda, in prep.):

Actinoptychus undulatus f. catenata	n.f.
Asterionella japonica f. tropicum	n.f.
Leptocylindrus maximus	n. sp.
Skeletonema costatum f. tropicum	n.f.

LITERATURE CITED

Anonymous

- 1957 Climatological data, Canal Zone and Panama. Annual Rept. 1957. Panama Canal Co., Meteorol. and Hydrogr. Branch, Vol. 49, No. 13, pp. 1-25.
- 1958 Climatological data, Canal Zone and Panama. Annual Rept. 1958. *Ibid.*, Vol. 50, No. 13, pp. 1-25.

Allen, W. E.

- 1925 Statistical studies of surface catches of marine diatoms and dinoflagellates made by the yacht "OHIO" in tropical waters in 1924. Trans. Amer. Micros. Soc., Vol. 44, No. 1, pp. 24-30.
- 1939 Surface distribution of marine plankton diatoms in the Panama region in 1933.Bull. Scripps Inst. Oceanogr., Tech. Ser., Vol. 4, No. 7, pp. 181-196.

Braarud, T. and A. Bursa

1939 The phytoplankton of the Oslo Fjord 1933-34. Hvalraadet Skrifter, No. 19, pp. 1-63.

Chapel, L. T.

1927 Winds and storms on the Isthmus of Panama. Monthly Weather Review, Vol. 55, No. 12, pp. 519-530.

Cupp, E. E.

- 1930 Quantitative studies of miscellaneous series of surface catches of marine diatoms and dinoflagellates taken between Seattle and the Canal Zone from 1924 to 1928.
 Trans. Amer. Micros. Soc., Vol. 49, No. 3, pp. 238-245.
- 1934 Analysis of marine plankton diatom collections taken from the Canal Zone to California during March 1933. *Ibid.*, Vol. 53, No. 1, pp. 22-29.

Fleming, R. H.

1940 A contribution to the oceanography of the Central American region. Proc. Sixth Pac. Sci. Cong., Vol. 3, pp. 167-176.

Jayaraman, R. and G. Seshappa

1957 Phosphorus cycle in the sea with particular reference to tropical inshore waters.Proc. Indian Acad. Sci., Ser. B, Vol. 46, No. 2, pp. 110-125.

Mohr, E. C. J. and F. A. Van Baren

- 1954 Tropical Soils. A critical study of soil genesis as related to climate, rock and vegetation.Interscience Publ., Inc., New York, 498 p.
- Poole, H. H. and W. R. G. Atkins
 - 1929 Photo-electric measurements of submarine illumination throughout the year.J. Mar. biol. Ass. U.K., Vol. 16, pp. 297-324.
- Schaefer, M. B. and Y. M. M. Bishop
 - 1958 Particulate iron in the offshore waters of the Panama Bight and in the Gulf of Panama. Limnology and Oceanography, Vol. 3, No. 2, pp. 137-149.
- Schaefer, M. B., Y. M. M. Bishop and G. V. Howard
 - 1958 Some aspects of upwelling in the Gulf of Panama. Inter-Amer. Trop. Tuna Comm. Bull., Vol. 3, No. 2, pp. 79-111 (English), pp. 112-130 (Spanish).

Smayda, T. J.

- 1959 Some preliminary results from a quantitative analysis of the phytoplankton in the Gulf of Panama. Preprints, Int. Oceanogr. Cong., New York, pp. 901-903.
- in A quantitative analysis of the phytoplankton of the Gulf of Panprep. ama. III. General ecological conditions, and the phytoplankton dynamics at 8° 45′N, 79°23′W from November 1954 to May 1957.
- in A quantitative analysis of the phytoplankton of the Gulf of Panprep. ama. IV. Biogeographical and floristic observations.

Utermöhl, H.

 1931 Neue Wege in der quantitativen Erfassung des Planktons. (Mit besonderer Berucksichtigung des Ultraplanktons).
 Verh. Int. Ver. Limnol., Vol. 5, pp. 567-596.

Wooster, W. S.

1959 Oceanographic observations in the Panama Bight, "Askoy" Expedition, 1941.Bull. Amer. Mus. Nat. Hist., Vol. 118, No. 3, pp. 119-151.

APPENDIX TABLES I - V

In the format adopted here, governed by space considerations, the results of the phytoplankton enumeration are presented in two ways. For those species presented in *tabular* form, the population density is given as cells per 10 ml., whereas the less important species are presented in *text* form as cells per liter. The following example illustrates the manner in which the *text* tables are to be read:

Biddulphia mobiliensis 20 11s; 40 14, 15s, 22t, 24s;

Biddulphia mobiliensis occurred during the November survey with a density of 20 cells per liter at the surface (subscript s) at Station 11 (11s), and as 40 cells per liter at both the surface and 10 meters at Station 14 (no subscript), at the surface at Stations 15 and 24 (15s, 24s) and at 10 meters (subscript t) at Station 22 (22t). This species was not observed at any other station during the November survey.

The symbol - in the tabular presentation indicates that the species in question was not observed at that depth.

A phytoplankton census was not made at the following locations:

Station	Depth (m)	Station	Depth (m)
1	10	26	0
5	10	27	0
16	0	31	10
19	10	46	0

March stations 34-36 and 49-52 are not included in the tables, the communities being similar to those observed at Stations 33 and 48, respectively.

TABLE 1—RESULTS (10 ml.).)F TH	E PH	утоі	PLAN	KTON	ENI	UMER	ATION	FROM	THE	SUR	VEY	OF 10)-12 J	ULY,	1957.	(cells	s per
STATION	1	:	2	:	3	4	ł	5	(6	7	7	8	3	9)	1(0
LOCATION N W	8°45' 79°17'	8°4 78°5	1' 7.5'	8°2 78°4	9.5' 9.5'	8°13 78°3	3.5' 1'	7°58.5' 79°04.5'	8°0 79°4	2.5' 1'	7°5 80°0	7' 7.5'	8°1 79°2	7.5' 9.5'	8°3 79°1	8.5' 7.5'	8°47 79°3	7' 1.5'
DATE	10-VII	10-	VII	10-	VII	10-	VII	11-VII	11-	VII	12-	VII	12-	VII	12-	VII	12-7	VII
DEPTH (m) TEMPERATURE (°C)	$\begin{smallmatrix}&&0\\28.94\end{smallmatrix}$	0 29.44	$\begin{smallmatrix}&10\\29.11\end{smallmatrix}$	0 28.89	$\begin{smallmatrix}&10\\28.44\end{smallmatrix}$	$\begin{array}{c} 0\\28.50\end{array}$	$\begin{smallmatrix}&10\\28.39\end{smallmatrix}$	$\begin{array}{c} 0 \\ 28.06 \end{array}$	$\underset{28.89}{\overset{0}{}}$	$\begin{smallmatrix}&10\\29.00\end{smallmatrix}$	$\begin{smallmatrix}&0\\28.72\end{smallmatrix}$	$\begin{smallmatrix}&10\\28.72\end{smallmatrix}$	$\begin{smallmatrix}&0\\28.56\end{smallmatrix}$	$\begin{smallmatrix}&10\\28.56\end{smallmatrix}$	$\begin{smallmatrix}&0\\28.83\end{smallmatrix}$	$\begin{smallmatrix}&10\\28.56\end{smallmatrix}$	$\begin{smallmatrix}&0\\28.73\end{smallmatrix}$	$\begin{smallmatrix}&10\\28.50\end{smallmatrix}$
Bact. elegans	6.6	115	37 0	.6	109.6	65	.8	_	4		6	27.4	4.2	3	35	36	42	6 0
var, princeps Cerataulina bergonii Chaetoceros affinis	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 .4 3.2	$\begin{array}{r}110\\4.4\\4.6\end{array}$	2	$\substack{\substack{\textbf{20.4}\\\textbf{1.6}\\4}}$	1.4			$2.8 \\ .6 \\ 5.4$		$1.4 \\ 1.4 \\ 2.4$	17.2 .8 5.2	.8 .6 .6	$\frac{2.6}{15}$	15.4 .4 5	$^{15}_{19.2}$	13.6 4	20 2.8 .8
Chaetoceros brevis Chaetoceros compressus Chaetoceros constrictus Chaetoceros decipiens	12.6 4.6 11.8 15.6	$1.2 \\ 115 \\ 17.4 \\ 15 \\ 2.4$	$\begin{array}{r} 4.6 \\ 225 \\ 320 \\ 450 \\ 15.2 \end{array}$	2 6 6	$4.2 \\ 8.8 \\ 22 \\ 50 \\ 17.2$		 140		4.4 2.2 1.4	$ \begin{array}{c} 25 \\ 100 \\ \hline 15 \\ \hline - \end{array} $	35	13.2 	8		-14.4 4.6 3.6 3.2	$\frac{\overline{36.4}}{\overline{30}}_{4.2}$		22.8
Chaetoceros didymus var. protuberans Chaetoceros laciniosus Chaetoceros laevis Chaetoceros lorenzianus	5.6 9.4 20.4	7 22.4 5.6 33.2	135 310 190	.6 1.4 1.4 2.4	12.8 18.8 20 55	$\frac{1}{3.2}$ 1.6	 1.4 1.4		4.2 3.8 4.2 5.6	15 	4.6 	$9.2 \\ 12.8 \\ 1.6 \\ 30$.8 3 90 5.6	$2.2 \\ 1.8 \\ 10 \\ 14.2$	8 31.8 1.6 41.6	$25 \\ 34 \\ 10 \\ 34.8$	$110 \\ 10 \\ 4.4 \\ 60$	10 12.8 12.4 68.8
Corethron hystrix Coscinodiscus ''lineati'' Eucampia cornuta Hemiaulus sinenis Nitz. closterium	$ \begin{array}{cccc} $.6 .2 1.4 25 10	$2.8 \\ 1.2 \\ 32.8 \\ 2 \\ 30$	2 	$1.6 \\ 1.2 \\ 5 \\ .6 \\ 15$.2 .6 3.2		.4 .6 .2 5	2	.2 .4 6 10	$1.4 \\ .8 \\ .6 \\ 4.4 \\ 10$	$1.2 \\ 1 \\ 1.4 \\ 3 \\ 20$	3.2 .6 .8 5	1 .8 .8 2.2	.8 2.8 5 11.2	.2 3 2.6 6.4 10	$3.6 \\ 1.2 \\ 2.8 \\ 10 \\ 10 \\ 10$
Nitz. delicatissima Nitz. pacifica + pungens Rhiz. delicatula Rhiz. imbricata var shrubsolii	130 45 80 8	5 2.8 65 2	$ \begin{array}{r} 115 \\ 115 \\ 625 \\ 90 \\ 6 \end{array} $.8 1 5	45 40 70	25 5	$1.6 \\ 10 \\ 45 \\ .8$		8.6 1.4	10	6 104	40 5.4 5.2 1.2	65 1.2 9.8 1.2	$\frac{20}{16}$.8	$\frac{5}{21.6}$		25 210 2	$65 \\ 1.6 \\ 125 \\ .8$
Phig_staltonfothii		=	12.6	-					10.4	.2	2.6	1.2	1 0	.2	2	10.0		10.4
Schroederella delicatula	8	13.6	32.4	.4	8.8 9.4	4.4	о .6	_	3.8	40		1.8	4.2	0	$\frac{1}{2.6}$	2.8	35 4	4.6
f. tropicum Thalassionema nitzschioides	12.6 6	 3.4	40.5 17.8	155 .6	105 10.4		— 14.2	7	14.6 1.4		5	5.2 7.4	3.4 .4	4.2	18.6 .4	9 1	70 4	21 9.2
Exuviaella baltica Peridinium trochoideum Prorocentrum micans Prorocentrum spp.			10 1.6 .6 .4	2.6 .8 .4	5.2 4	 1.2 7.2		2	<u>10</u> 6	5	5	5 —	2		2 .2 .2	5	5 .2 1.4 3.6	5 .6 .2 2.0

244

SMAYDA

TABLE I (Cont.) (Cells per liter)

DIATOMS: Actinoptychus undulatus 20 3t,10t; Asterionella japonica f. tropicum 20 1s, 80 2t,4t,10s, 280 3t; Asteromphalus flabellatus 20 8t, 40 3t,7s, 60 2t; Bacteriastrum varians 440 1s, 300 2s; Biddulphia mobiliensis 20 3t,6s,9; Bidd. sinensis 20 1s,4t; Ch. aequatorialis 40 8s; Ch. affinis var. circinalis 20 2t,6s,10t, 60 3t, 160 8s; Ch. appendiculatus 40 10t; Ch. atlanticus var. neapolitana 80 2t; Ch. atlantidae 20 4t, 300 9s,10t, 420 2s; Ch. coarctatus 60 8s; Ch. debilis 120 7t; Ch. densus 60 7t; Ch. diversus 60 2t, 80 1s, 120 9s,10s; Ch. pendulus 20 4s, 40 2s, 60 9t, 80 10t, 100 1s; Ch. perpusilus 3000 2s,10s; Ch. peruvianus 20 6s,7t,10, 40 9t; Ch. socialis 1000 3t,9s, 17500 2t; Ch. subsecundus 60 2s, 80 1s, 140 9t; Ch. subtilis 420 6s; Ch. wighami 2500 8s; Corethron pelagicum 20 2; Cosc. marginatus 40 4t; Cosc. nobilis 40 2s; Cyclotella cf. caspia 40 8t,9t, 60 6s,80 4t, 100 2s, 220 1s, 260 10t; Dactyliosolen mediterraneus 40 9s,8t, 120 7t, 200 6t; Ditylum brightwelli 40 3t, 80 1s,10, 180 4t; Ditylum sol 20 2,9s, 60 3t; Guinardia flaccida 20 1s,7s; Hemiaulus membranaceus 20 1s,6s, 40 2t,10t; Lauderia annulata 60 2t, 80 10t, 100 1s, 120 6s; Leptocylindrus danicus 2000 6t; Lept. maximus 40 3t,8t, 60 10t, 120 9s; Lept. minimus 6000 7s; Nitz. sigma var. indica 80 7t; Nitz. sigma var. intercedens 20 9t, 40 7t; Planktoniella sol 20 1s; Rhiz oslenia acuminata 20 10s; Rhiz. alata f. genuina 20 6t,9t; Rhiz. bergonii 20 7t; Rhiz. calcar avis 80 2t; Rhiz. setigera 20 1s,6s, 40 2t,7t; Stephanopyxis turris 120 2s; Thalassiothrix delicatula 20 4t; Thal. frauenfeldii 20 2t,8s, 6d 4t, 100 6s, 160 10t, 260 ls,7t; Thal. mediterranea var. pacifica 20 1s,6t,8t,9s, 40 7; Tropidoneis antarctica 20 1s,3t,6t,9t, 40 2t; Tropidoneis lepidoptera 20 2s.

DINOFLAGELLATES: Blepharocysta splendor-maris 20 10s; Ceratium breve 40 3s; Cer. furca var. eugrammum 20 3s; Cer. fusus var. setaceum 20 2t,4s,9t, 40 7t,10s, 60 3t; Cer. kofoidii 20 1s,2t,4t,10t; Cer. macroceros 20 4t,9s,10; Exuviaella compressa 40 3s; Ex. vaginule 20 4t,10s; Goniaulax minima 20 10t; Gon. polygramma 20 6s, 40 3t,4t,8t,9t, 60 2s, 200 10s; Gon. scrippsae 60 2s,10t; Oxytoxum crassum 20 9t; Oxy. scolopax 20 10; Oxy. variabile 20 10t, 500 3s,9t, 2000 2t; Oxy. viride 60 4s; Peridinium crassipes 20 7t; Per. globulus 20 9s; Per. globulus var. quarnerense 20 7t,8s,10t, 60 2s,3s; Per. granii 20 2s; Per. heterospinum 20 ?t,8t, 40 4, 60 6s, 80 2t,3s; Per. subinerme 20 2,6s,8t,10t, 40 3s; Per. tuba 20 2t,3s; 120 4s; Prorocentrum maximum 20 4t,9t,10t, 40 2t; 80 3t; Per. obtaidens 20 2s.

COCCOLITHOPHORES: Acanthoica lithostratus 20 7t, 60 3t; Calciosolenia sinuosa 500 5s, 1000 3t; Coccolithus huxleyi 500 3t; Discosphaera tubifer 40 5s, 160 3t; Gephyrocapsa oceanica 500 5s, 7.

DIVERSE: Chilomonas marina 500 4t; Halosphaera sp. 40 8t; Cyanophyceans + 3t, c 5s, r 6s; Oscillatoria nigro-virides 60 7s.

TABLE II—RES (Cel	SULTS Us per	OF TH 10 ml.).	іе рну	TOPLAN	KTON E	NUMI	E RATIO	N FRO	ом т	THE SU	URVEY	OF 7-	8 NOV	EMBER,	1957.	246
STATION	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
LOCATION N W	8°56 79°23	8°39.5 79°20.5	6′ 8°31′ 6′ 79°11.5′	8°24′ 79°03′	8°14′ 78°59.5′	8°04′ 78°58′	7°54′ 78°56.5′	7°52′ 79°08.5′	7°45.5 79°19′	5′ 7°47′ 79°32′	7° 57′ 79° 33′	8°07′ 79°29.5′	8°17′ 79°29.5′	8°26′ 79°29.5′	8°35.5′ 79°29.5′	
DATE	7-XI	7-XI	7-XI	7-XI	7-XI	7-XI	7-XI	7-XI	7-XI	8-XI	8-XI	8-XI	8-XI	8-XI	8-XI	
DEPTH (m) TEMPERATURE (°C)	0 1 27.9 27	0 0 1 7.9 28.3 28.	0 0 10 1 28.1 27.	0 10 2 28.6 27.8	0 10 8 28.9 27.6	10 27.7	$\begin{smallmatrix}&&&10\\28.1&27.8\end{smallmatrix}$	0 10 28.1 27.4	0 28.2	0 10 28.2 27.8	0 10 28.3 28.4	$\begin{smallmatrix}&&&10\\28.1&28.0\end{smallmatrix}$	$\begin{smallmatrix}&0&10\\28.0&28.0\end{smallmatrix}$	0 10 27.9 27.9	0 10 28.0 28.0	
Bact. elegans Bact. hyalinum var. princeps Cerataulina bergonii Chaetoceros affinis Chaetoceros brevis	. 2.8 28 . 2.6 – . 2 3	8.8 10.4 25. 2 5.8 3.2 24 4	2 45 3 4 — . .2 1. 6 .4 .	240 85 8 3.6 5 4 19.2 80 4 55 —	100.4 305 55 50 1.2 1.6 54.8 535 2.6 140	8 2.8 2.6 1.6	5.4 6.2 1.6 .4 1.6 	8.4 — — —	5.2 .8 2.4 1.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.6 — .4 5	6.4 11.6 <u></u> <u></u> <u>3.2 12</u> <u>-</u>	6 15.2 	6 70 <u></u> <u></u> <u>4.4</u> 15 <u></u> 1.6	50 60 	
Chaetoceros compressus Chaetoceros curvisetus Chaetoceros didymus var. protuberans Chaetoceros diversus	. 15 355 . — — — — . —	i .2 55 8 . 1.4 9.6 28. 8 .	$\begin{array}{c} - & - & 6 \\ - & - & - \\ 4 & - & - \\ 8 & - & - \end{array}$	315 140 4 20 95 100	275 755 175 5.2 35 3.2 3 10 —	3.2 — 17.2 .6	— 3 .6 — 7.4 7.6 1 1.2	8.4 — .2 —	4.8 7.2 .6	$ \begin{array}{cccc} 1.2 & 2.4 \\ & - & - \\ 8.8 & 14.8 \\ 2.4 & 1.2 \\ \end{array} $	50 15 1.2 30 .2 —	<u> </u>		$ \begin{array}{cccc} 10 & 60 \\ - & 3.6 \\ 19.6 & 60 \\ .8 & 10 \end{array} $	$\begin{array}{c} 3.2 & 16.8 \\ \underline{)} & \underline{-} & \underline{-} \\ 15 & 7.6 \\ \underline{.8} & .8 \end{array}$	SI
Chaetoceros laciniosus . Chaetoceros laevis Chaetoceros lorenzianus . Cosc. "lineati" Hem. membranaceus	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.6 3.2 19. .6 2.4 4 .6 4.8 8. .2 — 1. .8 .8	2 <u> </u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 100 & 120 \\ 30 & \\ 75 & 35 \\ 3 & 1.2 & .4 \\ 2.8 & \end{array}$	14.6 4.8 1.6 .6	7 3.8 .4 .4 .4 2.2 .4 1	15 15 	7 1.6 1.2 .4	.8 6 .8 2.4 .8 6 .4 .8	.8 5 .2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} - & 1.6 \\ - & 2.4 \\ - & 1.2 \\ - & - \\ - & .4 \end{array} $	5.6 15 1.6 20 	$\begin{array}{cccc} 20 & 9.6 \\ - & 4 \\ 1.6 & .8 \\ .4 & .4 \\ - & .8 \end{array}$	MAYDA
Hem. sinensis Nitz. closterium Nitz. delicatissima Nitz. pacifica + pungens Rhiz. calcar avis	2 10 8 10	.4 4.8 1. 5 15 .8 — — 0.8 .8 7. .2 — .		$\begin{array}{ccccccc} 6 & .4 &\\ & 25 &\\ & 80 & 25\\ 8 & 130 & 15\\ 2 & & 1.2 \end{array}$	5.2 .4 45 35	5 2.4	 1 5 .6	 5			 10	4 5 14.4 3.2 1.6 .4	4 — 10 — — 5.6 — .8	.4 1.6 4 35.9 170 2.4	.4 <u>1</u> 50 40.8	
Rhiz. delicatula Rhiz. fragilissima Rhiz. setigera Rhiz. stolterfothii Rhiz. styliformis		$\begin{array}{c} 1.2 & 1.2 & 50 \\ \hline 1.2 & 1.6 & 3. \\ \hline 1.6 & 3. \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 285 & 60 \\ 8 & 120 & \\ 8 & 2.4 & .8 \\ 2 & 10.8 & 95 \\ \end{array}$	$\begin{array}{cccc} 190 & 110 \\ 60 & .8 \\ 3 & .4 & .2 \\ 15 & 15.6 \\ \end{array}$	25 .4 .2 3.4	20 2 2	= =	.4 .8 2	1.2 1.2 10 .8 	4 2 .2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.4 2.4 2 .8 2 4.8 10	3.2 2 .8 2.8 .8 .4 .8 5	
var. longispina	· — ·	.2 1.2 2.	8									- 2.4	- 1.2	4.4 3.6	6.8 4.4	
Sch. delicatula Sk. cost. f. tropicum Thal. nitzschioides	1.2 45 1 4	.4 <u> </u>	2 <u> </u>	4 .8 <u>–</u> 395 360 6 1.6 3.2	2.8 - 210 290 2 2 12	1.6 5.8 4.4	$\frac{1}{1.2}$ $\frac{-}{8}$	= =	1.4 1.6 3.6	154 1587.6	20	.8 — 12.4 1.6 — 5.2	— 1.2 — 20.4 — 1.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4 - 15 - 15 8 2.4	
Exuviaella baltica		- 5 —				_	<u> </u>		_		5 —	— 5	— 5	— 5	<u> </u>	
Calciosolenia sinuosa	5 10	- 5	— 35	35 15	— 5	5			—		5 —			- 5		
Coccolithus huxleyi Gephyrocapsa oceanica . Halopappus adriaticus	10 10 .65 25	- 15 60 55 .2 .4 15	5 15 25 35 	-10 30 25 5 10	40 20 35 100 — 5	5 5 .2	10 5 10 5	= =	10 10	10 15 5 15	15 5	15 70 5	10 15 4	15 35 40	15 35 5 1.2	

1

 $\mathbf{24}$

TABLE II (Cont.) (Cells per liter)

DIATOMS: Actinoptychus undulatus 20 11t, 40 24s; Ast. bleakeleyi 720 20t; Ast. japonica 160 20t, 200 24s, 720 14s,15t, 1000 15s; Asteromphalus flabellatus 20 11s,14s,16t,17s, 40 14t,25t, 60 12t; Bacillaria paradoxa 240 15t; Bact. comosum 1000 15s; Bact. delicatulum 60 17s, 100 13t; Bact. hyalinum 120 15s; Bact. mediterraneum 60 12t; Bact. varians 80 15s, 3500 14s; Bidd. mobiliensis 20 11s; 40 14,15s,22t,24s; Brenneckiella sp. 40 14s; Ch. affinis var. circinalis 60 11s, 100 14s, 120 23t, 160 20t, 360 25t, 480 15s; Ch. appendiculatus 120 16s; Ch. atlantidae 20 12t,13t, 40 20t, 100 16t, 120 11s; Ch. constrictus 800 15s; Ch. costatus 80 15t, 160 14s,16t, 500 15s; Ch. decipiens 40 14s, 80 15t, 500 15s; Ch. densus 40 14t;

Ch. lauderi 40 14t,19s, 60 15s, 120 15t; Ch. pelagicus 2000 15s; Ch. pendulus 40 12,24s,25t, 80 22t; Ch. peruvianus 20 19s,21s, 40 11,12s,14s,20t,22, 60 15s, 80 25s; Ch. seiracanthus 160 12s, 2500 11t; Ch. subsecundus 20 20s, 40 24t, 360 15s; Ch. tetrastichon 40 21s,22s; Ch. van heurckii 120 19s; Corethron hystrix 20 12t,13t, 40 14s,15t,22s,24t,25t, 80 20t, 100 11t, 120 16t, 140 15s; Corethron pelagicum 20 13t, 40 16t,24s, 60 12t, 100 11t; Cosc. concinnus 20 15s; Cosc. marginatus 40 14s,22s,24t,25s; Cosc. nobilis 20 12t,13t, 40 14t; Cyclotella cf. caspia 20 11s, 80 15t; Dactyliosolen mediterraneus 40 19s,20s, 100 16t, 360 15s; Citylum brightwelli 20 11s,17, 40 14s,15,16t; Ditylum sol 20 15s; Eucampia cornuta 40 12t,23t,24t, 360 15s;

Grammatophora marina var. tropicum 320 22s; Hemiaulus hauckii 20 17t, 40 25s, 60 19s, 120 25t, 180 16t, 220 20t; Lauderia annulata 20 14s; 40 22s, 80 23t, 200 15s; Lept. danicus 20 11s, 40 22s, 60 11t, 80 20t,22t, 120 24t, 200 16t; Lept. maximus 80 11t, 120 15t, 160 14t; Mel. sulcata 100 21t, 13880 22t: Nitz. kolaizeckii 20 12t,13t,16t,17t, 40 22t,24, 80 25t, 120 20t,25s; Nitz. longissima 20 11s; Nitz. sigma var. indica 40 15s, 80 15t; Pseudoeunotia doliolus 80 19s, 20s, 200 20t; Rhiz. alata f. genuina 20 11s,13t, 120 25t; Rhiz. alata f. indica 20 13t, 60 11t, 160 24s; Rhiz. bergonii 20 21t, 40 13t,24t; Rhiz. imbricata var. shrubsolei 80 22t, 100 13t, 240 15t, 80 12t,23t, 100 14t; Step. palmeriana 160 14s; Thalassiothrix delicatula 20 16t,23s, 40 19s,23t,25, 120 24t; Thal. frauenfeldii 20 13t,17s, 40 22s, 60 11t,15s, 80 12t,23t, 100 19s, 120 20t, 160 14s; Thal. mediterranea var. pacifica 20 11t, 20t, 40 13t,14t,19s,20s,22s,24t, 60 11s, 80 14s,15s,22t,23t, 160 25s; Tropidoneis antarctica 20 13t, 15s, 40 11t.

DINOFLAGELLATES: Blepharocysta splendor-maris 20 17s; Cer. furca var. eugrammum 20 14s, 100 15s; Cer. fusus var. seta 20 11s,13t,15s,17t, 40 22t, 23t,25s, 80 20s,24t, 120 24s; Cer. kofoidii 20 11s, 40 24, 80 25t; Cer. macroceros 20 16t, 40 20s, 24s; Cer. massiliense f. macroceroides 40 23t; Glen. lenticula f. minor 20 13s,15s; Gon. digitata 20 15s; Gon. minima 20 11, 40 12s; Gon. polyedra 40 25s; Gon. polyegramma 20 11s,20t, 40 12; Gon. spinifera 20 11s, 40 15s; Ornithocercus magnificus 20 12t, 40 25t; Oxytoxum crassum 20 15s; Oxy. scolopax 20 11t, 40 20s; Oxy. variabile 40 25s, 100 12t, 500 13t,22t,24s, 1000 25t; Per. depressum 20 17t; Per. divergens 20 15s; Per. globulus 20 15s; Per. globulus var. ovatum 20 15s;

Per. globulus var. quarnerense 20 15s, 40 11s,20s,22,25s, 80 11t; Per. inconspicuum 20 15s; Per. nipponicum 20 11t,13t,15s, 40 19s,23t,24s,25s, 60 11s, 80 12s, 120 14s; Per. pellucidum 20 13s; Per. pyriformis 40 15s,24t; Per. pyriformis f. oviformis 60 15s; Per. steinii 40 15s; Per. subinerme 40 20t, 80 15s; Per. trochoideum 20 14s, 40 15t, 80 12s, 100 15s, 140 13t, 520 12t; Per. tuba 20 17t, 60 15s; Podolampas spinifer 20 19s; Pror. maximum 20 19s, 40 24s,25s: Pror. micans 20 11s, 40 12s,14s,15t,19s,22s,23t,24, 60 15s, 80 22t.

COCCOLITHOPHORES: Anoplosolenia brasiliensis 40 11t, 500 20s; Discosphaera tubifer 20 16t, 40 12t,17t,25s, 500 15t; Pontosphaera maxima 40 25t. DIVERSE: Chilomonas marina 500 21t; Euglenaceae 2500 19s, 3000 18t; Halosphaera sp, 40 22s.

TABLE III—RESULTS OF THE PHYTOPLANKTON ENUMERATION FROM THE SURVEY OF 18-21 MARCH, 1958, STA-
TIONS 26-33. (Cells per 10 ml.).

STATION	26	27		28		29	3	30	31	3	32	3	33
LOCATION N W	8°54' 8°51' 79°18.5' 79°08		8 78	°44' °58'	8 78	° 39' ° 47.5'	$\begin{array}{c}8^{\circ}\\78^{\circ}\end{array}$	30' 41'	$\frac{8^{\circ}21}{78^{\circ}41}$	8° 78°	$\frac{13}{33.5}$	8° 78°	08' 27.5'
DATE	18-III	18-III	18	3-III	18	3-III	18	-III	18-III	18-	III	18-	III
DEPTH (m) TEMPERATURE (°C)	$\overset{0}{25.8}$	$\begin{smallmatrix}&10\\23.4\end{smallmatrix}$	$\stackrel{0}{25.8}$	$\begin{smallmatrix}&10\\23.1\end{smallmatrix}$	$_{26.0}^{0}$	$\begin{smallmatrix}&10\\23.1\end{smallmatrix}$	$\overset{0}{27.3}$	$\begin{smallmatrix}&10\\23.6\end{smallmatrix}$	$\overset{0}{27.5}$	$\overset{0}{27.5}$	$\substack{10\\25.3}$	$\begin{smallmatrix}&0\\27.2\end{smallmatrix}$	$\substack{10\\25.5}$
Asterionella japonica Biddulphia mobiliensis Biddulphia sinensis Cerataulina bergonii Chaetoceros affinis	$\frac{-2}{2.6}$	$^{4}_{2}$	4.4 .8 10.4 16.8 	3.2 .4 19 16.8 	$13.2 \\ .8 \\ 6 \\ 370 \\ 3.6$	$19.2 \\ 3.6 \\ 50 \\ 115 \\ 6.8$	2.8 .2 .4 580 27.6	53.2 2.4 45 5.6	8 	$\frac{-}{1.4}$ 1.2	- 2.2 .4		 1.6
Chaetoceros brevis Chaetoceros compressus Chaetoceros curvisetus Chaetoceros lorenzianus Chaetoceros cf. vixvisibilis	 	100.4 330	120 235	335 .8 1240	$\begin{array}{r} .4 \\ \overline{} \\ 710 \\ 2.4 \\ 560 \end{array}$	$305 \\ 1230$	75 130 85 27.6	$5 \\ 235 \\ 12.4 \\ 20$	60 30 10 25	$\underbrace{\frac{-}{8.2}}_{285}$	 30	 145	
Coscinodiscus ''lineati''	.8 .8 .2	.8 — 2.4		2 6.8 —	$1.2 \\ 90 \\ 340 \\ 2 \\ 16.8$	$ \begin{array}{r} 6 \\ 245 \\ 230 \\ 1.6 \\ 3.6 \end{array} $	$1\\135\\290\\20\\15$	$1.6 \\ 95 \\ 75 \\ 20 \\ 10.8$	$25 \\ 45 \\ 40$	$\frac{1.6}{}{2}$	-6 -6 -2 1.4	$\frac{.4}{.2}$ 1.6	.8
Leptocylindrus maximus Melosira moniliformis Nitz, closterium Nitz, delicatissima Nitz, pacifica + pungens	10.6 125 25 190	$\frac{-}{20}$	5.2 85 80	80 210 160	$14 \\ 8 \\ 410 \\ 180 \\ 580$	510 360 460	14.8 90 $-$ 160	$3.6 \\ 50.8 \\ 340 \\ 40 \\ 170$	$5.6 \\ 2.4 \\ 35 \\ 55 \\ 115$	$55 \\ 400 \\ 10$	80 615 20	$10 \\ 110 \\ 65 \\ 65$	65 175
Pennate spp. Rhiz. delicatula Rhiz. fragilissima Rhiz. setigera Rhiz. stolterfothii	330 3 .2 .2	25.4 .2 .4 1.2 3.6	$97 \\ 10 \\ 1.6 \\ 6 \\ 28.4$	$203 \\ 1.6 \\ -2.4 \\ 90$	$301.2 \\ 1260 \\ 40 \\ 115 \\ 195$	$221.2 \\ 330 \\ 35 \\ 125 \\ 205$	$33.6 \\ 1810 \\ 390 \\ 320 \\ 270 $	$7.2 \\ 870 \\ 50 \\ 45 \\ 235$	$1.2 \\ 555 \\ 25 \\ 80 \\ 750$		$5.4 \\ 20 \\ 1.2 \\ .2 \\ 1$.8 15 — —	
Skel. costatum f. tropicum Thalassionema nitzschioides Thalassiothrix frauenfeldii Thalassiosira spp. Th. mediterranea var. pacifica	15 16 	$ \begin{array}{c} 16.2\\ 10\\ \hline 2.8\\ \hline \end{array} $	$245 \\ 335 \\ 4.8 \\ -$	$\begin{array}{r} 615\\ 410\\ \hline 2\\ \hline \end{array}$	$2060 \\ 205 \\ 3.2 \\ 320 \\ 7.6$	$1520 \\ 410 \\ 4 \\ 311.2 \\ .4$	$995 \\ 135 \\ 2.6 \\ 15 \\ 6.2$	850 50 2.8 53.2	$ \begin{array}{r} 340 \\ 210 \\ 5.2 \\ \overline{9.2} \end{array} $	$ \begin{array}{r} 140 \\ 205 \\ 25 \\ - \\$	31.6 	4.2 .8 	3.6 2.4
Exuviaella baltica Prorocentrum spp	_	_	Ξ	_	4	_	$5 \\ 1.2$	5 .8	$5 \\ 1.6$	⁵ .8	15	10 60	5
Coccolithus huxleyi Gephyrocapsa oceanica	$\begin{array}{c} 10 \\ 10 \end{array}$	_	5	5	$\begin{array}{c} 15\\ 20 \end{array}$	5	30 60	$\begin{array}{c} 10 \\ 10 \end{array}$	$30 \\ 120$	10	20	$^{30}_{5}$	5 5

248

SMAYDA

TABLE III (Cont.) (Cells per liter)

DIATOMS: Actinoptychus undulatus var. catenata 40 27t,32s, 60 28t, 240 28s, 320 29t; Ast. japonica f. tropicum 120 29s, 140 32s, 160 26s, 200 30t, 240 29t; Asteromphalus flabellatus 20 30s, 40 27t; Bacillaria paradoxa 500 28t, 800 28s; Bact. elegans 160 30s; Bact. hyalinum 200 29s; Bact. hyalinum var. princeps 520 31s, 540 30s; Bellerochea sp. 320 30t; Bidd. alternans 20 26s, 80 28t, 120 30t, 160 29t; Bidd. longicruris 200 30t;

Ch. aequatorialis 40 30s; Ch. affinis var. circinalis 520 30s; Ch. appendiculatus 80 33t; Ch. atlanticus f. audax 60 30s; Ch. atlantidae 60 30s, 360 29t. 500 30t; Ch. constrictus 260 30s, 480 30t, 1000 31s; Ch. costatus 7000 30t, 9500 30s; Ch. decipiens 80 29s,33t, 100 30s, 2000 31s; Ch. densus 80 29t.30s; Ch. didymus 500 30t; Ch. didymus var. protuberans 80 27t, 140 30s; Ch. laciniosus 60 26s, 160 30s, 5000 30t; Ch. laevis 140 32s, 300 31s; Ch. lauderi 40 27t, 160 28t, 240 28s,30s; Ch. peruvianus 20 26s, 40 29s,33t, 120 32s; Ch. subsecundus 2000 30t; Ch. subtlib 12000 29s;

Corethron hystrix 20 28t,32t,33s, 40 29t,32s,37,38t, 100 30s, 120 31s, 200 30t, 240 29s; Corethron pelagicum 80 29t; Cosc. concinnus 20 30s, 120 31s, 160 30t, 280 28s; Cosc. costatus 120 28s; Cosc. granii 40 27t,29t, 80 28s; Cosc. marginatus 20 27t,28t,30s, 40 33t, 80 28s; Cosc. perforatus 40 30t, 60 27t: Cyclotella cf. caspia 40 33t, 80 29s, 160 27t, 320 30t, 440 28t, 600 29t; Ditylum brightwelli 20 28t, 40 32s,33t; Ditylum sol 20 28t, 40 30t; Guinardia flaccida 120 30t, 280 31s, 320 30s, 400 29s;

Hemiaulus membranaceus 20 30s, 120 31s; Lauderiopsis sp. 180 32t, 280 30t, 1440 29t; Leptocylindrus minimus 37000 29s; Lithodesmium undulatum 40 31s, 80 29t; Melosira sulcata 80 28t, 320 29t; Nitz. kolaizeckii 40 29s; Nitz. sigma var. indica 20 30s, 40 28s, 31s, 60 26s; Rhiz. alata f. genuina 40 30s. 80 30t, 120 31s; Rhiz. alata f. indica 40 30t, 80 29t, 160 29s, 31s, 200 30s; Rhiz. alata f. genuina - indica intergrade 160 31s, 300 30s; Rhiz. bergonii 40 31s, 60 30s; Rhiz. calcar avis 40 29s, 80 30s, 31s; Rhiz. imbricata var. shrubsolei 180 30s; Schroederella delicatula 20 33s, 100 30s, 120 30t; Stephanopyxis palmeriana 160 30s; Step. turris 40 30s, 120 30t, 400 29s; Thalassiosira subtilis 9280 30t; Thalassiothrix delicatula 80 30t; Tropidoneis antarctica 120 30s, 200 30t.

DINOFLAGELLATES: Ceratium furca var. eugrammum 40 30s, 120 28s,30t; Cer. fusus var setaceum 40 30t; Cer. pentagonum f. turgidum 40 28s; Glen. lenticula f. minor 20 27t, 40 28s, 80 30t; Goniaulax polygramma 20 33s, 80 31s; Gon. scrippsae 20 33s; Gon. spinifera 40 30t; Oxytoxum curvatum 20 32t; Oxy. variabile 500 30t,33t; Peridinium claudicans 20 30s; Per. decipiens 40 30t; Per. globulus var. quarnerense 20 26s, 40 27t,28t,29t, 80 30t; Per. inconspicuum 40 30t, 80 30s, 320 33s; Per. leonis 40 28s; Per. minutum 40 30t; Per. tuba 40 30t,32t,33t; Prorocentrum micans 20 27t, 40 28s,30s,31s,32s, 500 33s.

COCCOLITHOPHORES: Calciosolenia sinuosa 20 26s, 500 32t, 33s, 1000 30s; Pontosphaera maximus 40 33t, 500 32t.

DIVERSE: Euglenaceae 20 27t, 4000 30s, 7000 26s; Halosphaera sp. 40 29s, 200 30s; Laboea compressa 260 33t, 3960 33s; Lab. strobila 40 33t, 640 33s.

TABLE IV—RESULTS OF THE PHYTOPLANKTON ENUMERATION FROM THE SURVEY OF 18-21 MARCH, 1958, STA- TIONS 37-44. (Cells per 10 ml.).STATION3738394041424344																
STATION		37		38		39		40	4	41	4	12		43		44
LOCATION N W	8 79	°02' °06'	89 79	°14' °0 3 .5'	8 79	°26' °05'	$\frac{8}{79}^{\circ}$	37' 08.5'	8° 79°	948' 915'	79°	48' 25'	8° 79°	36' 25.5'	79°	23' 26.5'
DATE	19)-III	19	-III	19)-III	19	-III	19	-III	20	-III	20	-III	20	-III
DEPTH (m) TEMPERATURE (°C)	$\begin{smallmatrix}&0\\26.7\end{smallmatrix}$	$\begin{smallmatrix}10\\23.5\end{smallmatrix}$	$\begin{array}{c} 0 \\ 26.7 \end{array}$	$\substack{10\\24.7}$	$\begin{array}{c} 0 \\ 26.9 \end{array}$	$\begin{smallmatrix}&10\\24.6\end{smallmatrix}$	$\begin{array}{c} 0 \\ 26.6 \end{array}$	$\begin{smallmatrix}&10\\25.1\end{smallmatrix}$	$\begin{array}{c} 0 \\ 25.9 \end{array}$	$\underset{24.2}{\overset{10}{}}$	$\begin{smallmatrix}&0\\25.9\end{smallmatrix}$	$\begin{smallmatrix}&10\\24.2\end{smallmatrix}$	$\begin{array}{c} 0 \\ 26.1 \end{array}$	$\begin{smallmatrix} 10\\ 24.2 \end{smallmatrix}$	$\begin{array}{c} 0 \\ 26.6 \end{array}$	$\begin{smallmatrix} 10\\ 24.4 \end{smallmatrix}$
Biddulphia mobiliensis Cerataulina bergonii Chaetoceros affinis Chaetoceros brevis Chaetoceros compressus	$\substack{ 400 \\ 550 \\ 55 \\ 90 } $	$3.6 \\ 160 \\ 80 \\ 390 \\ 80 \\ 80$	$\begin{array}{r} 2 \\ 60 \\ 320 \\ 150 \\ 200 \end{array}$	$3.2 \\ 570 \\ 490 \\ 620 \\ 340$	$210^{.8} \\ 270_{10}^{.70}$.8 30 180 280 840	$70 \\ 140 \\ 220 \\ 10$	$.4 \\ 60 \\ 150 \\ 200$	$.8 \\ 4.8 \\ 1.6 \\ 2.4 \\ 160$	$\substack{.8\\15.2\\100\\170\\150}$.8 .8 3.2 —	1.6 2.8 6.4	1.6 170 110 	$.8 \\ 5.2 \\ 24.4 \\ 7.2 \\ 15.6$	$1.6 \\ 4 \\ 10 \\ 2.4 \\ 20$	$\begin{array}{r}.8\\\hline2.4\\2.4\\12\end{array}$
Chaetoceros costatus Chaetoceros curvisetus Chaetoceros decipiens Chaetoceros didymus Chaetoceros laciniosus	280 50 245	610 300 600 20	370 26 1900 70	$\begin{array}{r} 610 \\ 630 \\ 2270 \\ 500 \\ 110 \end{array}$	$220 \\ 210 \\ 30 \\$	$\begin{array}{r} 450 \\ 310 \\ 1350 \\ 530 \\ 200 \end{array}$		$50 \\ 550 \\ 150 \\ 20 \\ 220 $	$\overset{80}{\overset{220}{-}_{60}}$		90 1.6 	$\overset{10\overline{4}}{\underline{4.8}}$	$140 \\ 6 \\ 10$	$2.4 \\ 25.6 \\ 4 \\$	125.6 32	
Chaetoceros lauderi Chaetoceros lorenzianus Chaetoceros cf. vixvisibilis Chaetoceros spp. Eucampia cornuta	$20 \\ 75 \\ 170 \\ 4$	 80		$3.2 \\ 240 \\ \overline{710} \\ 270 $	100 160 220	$250 \\ 90 \\ 780 \\ 19.2$	$50 \\ 200 \\ 3.2$	130 1370 200 30.8	$18 \\ 1.6 \\ 50 \\ 240 \\ 6.8$	$\begin{array}{r} 4.4 \\ 220 \\ 120 \\ 5.6 \end{array}$	$ \begin{array}{r} \overline{3.6} \\ 30 \\ \overline{1.6} \end{array} $	4.4 6 300 10	6 80	$1.2 \\ 3.6 \\ 40 \\ 3.6 \\ 20$		5.6 8.8 3.2 1.6
Guinardia flaccida Hemiaulus sinensis Lauderia annulata Leptocylindrus maximus Nitz. closterium	$\begin{smallmatrix} .4 \\ 40 \\ 1.6 \\ 4.4 \\ 230 \end{smallmatrix}$	$5.2 \\ 110 \\ 13.2 \\ 10 \\ 640$	$1.2 \\ 60 \\ 4.4 \\ 5.2 \\ 940$.8 70 17.6 9.6 2050	120 $\overline{9.2}$ 270	50 16 7.6 820	$100 \\ 4 \\ 60$	$1.2 \\ 30 \\ 16.4 \\ 5.2 \\ 130$	$.4 \\ 40 \\ 5.2 \\ 4.8 \\ 50$	6 2.8 7.6 10.8 100	$2.4 \\ 20 \\ 1.6 \\ 10$	$1.6 \\ 40 \\ 10.4 \\ 10.4 \\ 110$	 20	$\overset{3.6}{\overset{10}{\overset{4}{}}}_{\overset{.8}{}}$	$4 \\ 10 \\ 5.6 \\ 19.2 \\ 90$	$ \begin{array}{r} 2.4 \\ 2.4 \\ 19.2 \\ 1.2 \\ 80 \end{array} $
Nitz. delicatissima Nitz. pacifica + pungens Pennate spp. Rhiz. delicatula Rhiz. fragilissima	$\substack{440\\480\\40.8\\1280\\180}$	$90 \\ 515 \\ 153.6 \\ 2200 \\ 170$	$340 \\ 1140 \\ 231.2 \\ 770 \\ 120$	$280 \\ 880 \\ 210.8 \\ 1300 \\ 10$	$370 \\ 650 \\ 400.4 \\ 1450 \\ 10$	$250 \\ 800 \\ 600.4 \\ 1340$	$360 \\ 500 \\ 210 \\ 640 \\ 9.2$	$610 \\ 450 \\ 140 \\ 800 \\ 9.2$	$250 \\ 230 \\ 70.4 \\ 310 \\ 8.4$	$460 \\ 270 \\ 70.8 \\ 650 \\ 340$	$90 \\ 190 \\ 20.4 \\ 680 \\ 80$	$340 \\ 100 \\ 150 \\ 780 \\ 60$	250 180 1090 60	$100 \\ 90 \\ 1.2 \\ 630 \\ 22$	$60\\130\\90.8\\590\\24$	$140 \\ 230 \\ 10.8 \\ 1180 \\ 11.2$
Rhiz. imbricata var. shrubsolei Rhiz. setigera Rhiz. stolterfothii Skel. costatum f. tropicum	110 250 980	$2 \\ 120 \\ 730 \\ 1140$	90 290 16.4	$90 \\ 550 \\ 250 $	$\begin{array}{c} .4 \\ 180 \\ 360 \\ 710 \end{array}$	3.6 220 730 800	.8 110 230 960	$1.6\\120\\280\\1660$	$\overline{ 3.6 } \\ 160 \\ 560 $.8 5.2 320 700	$3.6 \\ 2.8 \\ 110 \\ 940$	$\overline{\begin{array}{c}7.2\\140\\670\end{array}}$	$\substack{\textbf{1.6}\\ \textbf{60}\\ \textbf{680}\\ \textbf{360}}^{\textbf{1.6}}$	$.4 \\ 9.6 \\ 260 \\ 33.6$	4 30 380 630	$.8\\110\\380\\360$
Thalassionema nitzschioides Thalassiosira spp Thalassiothrix mediterranea var. pacifica	¹⁵ .8 16	$\begin{array}{c} 40\\ 2.4\\ 24.8\end{array}$	210 4.8	330 	340 	380 9.6	$23.2 \\ 60 \\ 15.6$	$50.8 \\ 100 \\ 8.4$	5.2 30 8	$470 \\ 3.2 \\ 10$	22 4.8	25.6 20 6.8		5.2 	12.8 5.6	6.4 5.6
Peridinium spp Prorocentrum spp	4	_	81.8	40	33.6.4	$\frac{2}{10}$	$\substack{34.4\\40}$	4.4	2	$9.2 \\ .4$	<u>,</u>	3.6	.8 .8	$\substack{6.8\\2.4}$	2.4	2.4
Coccolithus huxleyi Gephyrocapsa oceanica	70 3 0	$\begin{array}{c} 60\\ 20 \end{array}$	10	$10 \\ 10$	$10 \\ 20$	40	_	$\frac{40}{30}$	20	10 20	10	$\begin{array}{c} 10\\90 \end{array}$	_	50	$\frac{20}{20}$	$ 10 \\ 30 $

250

SMAYDA

TABLE IV (Cont.) (Cells per liter)

DIATOMS: Act. undulatus var. catenata 80 39t; Ast. japonica 120 43t, 160 38s,44t, 440 42t, 1000 37s, 1280 28t; Ast. japonica f. tropicum 400 41t, 1000 42t, 2200 37t; Bact. cf. comosum 7000 38t; Bact. delicatulum 1500 37s; Bact. elegans 3000 40t, 13000 37t; Bact. hyalinum 40 40s, 120 41t, 240 37s,41s, 4000 38s; Bact. hyalinum var. princeps 240 44s; Bidd. alternans 240 38t; Bidd. longicruris 40 41t, 80 38s, 120 39s, 160 44s; Bidd. sinensis 40 40s, 80 39t, 120 41s, 280 41t, 480 42t; Cerataulina compressa 120 37s; Ch. affinis var. circinalis 48000 39s; Ch. anastomosans 2000 38t; Ch. constrictus 13000 41t; Ch. didymus var. anglica 5000 40s; Ch. didymus var. protuberans 1000 42s, 11000 38t; Ch. laevis 80 41s, 1000 37s, 3000 37t, 4000 38t;

Ch. pendulus 40 39t; Ch. peruvianus 40 37s,39s,44s, 80 37t, 120 41s; Ch. rostratus 40 40s,41s,42t, 80 38s, 120 38t,39s, 160 40t, 280 39t; Ch. seiracanthus 20000 38s; Ch. socialis 25000 39t; Ch. subsecundus 1000 37s, 2000 39s, 5000 38t, 12000 38s; Ch. teres 2000 38t; Ch. wighami 8000 38t; Corethron hystrix 40 41t,43t, 80 39s,40t,44, 120 39t; Cosc. "lineati" 120 39s; Cyclotella cf. caspia 20 41s, 40 41t,42s; Dactyliosolen mediterraneus 120 41s, 280 37t; Ditylum brightwelli 40 39s; Eucampia zoodiacus 160 39t,40t,41t, 3000 39s; Leptocylindrus minimus 8000 38s; 9000 39s;

Lithodesmium undulatum 80 39s, 520 38s, 1520 38t, 2640 39t; Melosira sulcata 440 37s; Rhiz. alata 80 37t; Rhiz. alata f. genuina 40 38,41t,43t, 80 42t, 120 39s, 160 37s,40t,41s, 320 44s; Rhiz. alata f. indica 80 41t, 160 41s, 200 37t, 240 38t, 280 40s, 320 44s; Rhiz. alata f. genuina - indica intergrade 40 37t,39s, 80 38s, 120 37t,40t; Rhiz. bergonii 40 40s,42t, 80 44s, 120 37t; Rhiz. calcar avis 40 40,43s, 80 39t, 160 42s; Schroederella delicatula 80 38s, 320 40s,44t, 440 37s, 720 37t; Stephanopyxis palmeriana 160 42t; Step. turris 360 38s; Streptotheca thamesis 40 41s, 80 38s,40t, 320 37t; Thalassiosira subtilis 360 42t, 100 37t,38s, 1120 41t; Thalassiothrix frauenfeldii 40 40s, 200 37s, 280 40t, 320 38s, 520 39t, 640 38t, 760 37t; Tropidoneis antarctica 80 38s, 120 43t, 160 38t.

DINOFLAGELLATES: Ceratium furca 280 39s; Cer. fusus var. setaceum 40 37t; Cer. kofoidii 40 37s; Cer. pentagonum f. robustum 40 37s; Exuviaella baltica 1000 39s,41s,44t; Glenodinium lenticula f. minor 40 39s,42,43t, 80 40t,44t, 120 39t,41t, 160 40s; Goniaulax polygramma 80 38s; Oxytoxum curvatum 40 37t; Oxy. variabile 1000 38s,39s,42t,44t; Peridinium brochii 40 39t; Per. crassipes 40 37s,39t, 280 39t; Per. divergens 40 37t; Per. globulus 40 38,40t, 41t, 80 40s; Per. globulus var. quarnerense 80 37s,40s,44s; Per. inconspicuum 120 41t, 200 40s, 360 39s, 1000 38s; Per. leonis 40 37,38s,39s; Per. minus-culum 40 40t; Per. nipponicum 40 38s,39; Per. oviforme 80 37t; Per. subinerme 40 39s,40s, 80 37s, 240 44s; Per. tuba 37t,39t; Prorocentrum micans 40 38t,41s,43t, 80 37,42t, 160 40s, 200 38s,39s, 320 44s; Perorocentrum obtusidens 120 39t; Pyrophacus horologicum 40 38t.

COCCOLITHOPHORES: Anoplosolenia brasiliensis 1000 41t; Calciosolenia sinuosa 1000 40t.41t.44t, 2000 38s.39t, 5000 37s; Halopappus adriaticus 1000 39t.

DIVERSE: Chilomonas marina 1000 42t.43: Euglenaceae 500 37s. 2000 37t. 4000 39s: Halosphaera sp. 40 39s.40.41t.43t.44s. 80 37t. 160 37s.

TIONS 45-48, 53-56. (Cells per 10 ml.). STATION 45 46 47 48 53 54 55 56																	
STATION	4	5		46		47	4	8	5	53		54		55		56	
LOCATION N W	$\frac{8^{\circ}}{79^{\circ}}$	$\frac{11}{27.5}$	7° 79°	258.5' 29'	79	947' 934'	7°4 79°4	14' 17'	$\frac{8^{\circ}}{79^{\circ}}$	22.5' $41'$	8 79	°31' °36'	89 795	'42' '32'		°54' °29'	
DATE	20-	III	20	-III	20	-111	20-	III	21-	-III	21	I-III	21	-III	21	L-III	
DEPTH (m) TEMPERATURE (°C)	$\begin{array}{c} 0 \\ 26.9 \end{array}$	$\substack{10\\26.1}$	$\begin{array}{c} 0\\ 26.6\end{array}$	$\begin{smallmatrix}10\\25.8\end{smallmatrix}$	0 26.8	$10 \\ 26.0$	$\underset{27.3}{\overset{0}{}}$	$\begin{smallmatrix} 10 \\ 26.9 \end{smallmatrix}$	$\overset{0}{27.7}$	$\begin{smallmatrix}&10\\27.2\end{smallmatrix}$	$\underset{25.5}{\overset{0}{}}$	$\underset{22.9}{\overset{10}{}}$	$\begin{smallmatrix}&0\\25.4\end{smallmatrix}$	$\begin{smallmatrix}10\\23.9\end{smallmatrix}$	$\underset{25.2}{\overset{0}{}}$	$\begin{array}{c} 10\\23.2\end{array}$	
Bacteriastrum elegans Biddulphia longicruris Cerataulina bergonii Chaetoceros affinis Chaetoceros brevis		$2 3.2 \\ -5.6 \\ 16.4 \\ 15.6 $	390 640 470	$230 \\ 410 \\ 240 \\ 730$	$130 \\ 230 \\ 210 \\ 310 \\$	380 240 320		35 5 5	2.8 2.4 1.6	.4 .6 1.8 1.2	85 19.2 36.8	$2 \\ 115 \\ 60 \\ 40 \\ 10$	1.6 2.4 4.8 .8	1.6 40 5.2 15	$\frac{-}{7.2}$ 2.4 8	390 ^{.2}	
Chaetoceros compressus Chaetoceros costatus Chaetoceros decipiens Chaetoceros laciniosus			250 180 20	270 270 3.2 —	40 	50 20				$ \frac{2.8}{8} \frac{3.6}{.4} $	$25 \\ - 300 \\ 1.6 \\ 55$	$90 \\ 155 \\ 465 \\ 90 \\ 75$	$3.6 \\ 2.4 \\ 38.4 \\ 3.2 \\ 1.6$	$\overset{2}{\overset{3.2}{_{450}}}_{\overset{.8}{_{-}}}$	$720 \\ 4 \\ 5.6$	$16.8 \\ 170 \\ 10550 \\ 2.4 \\$	
Chaetoceros lauderi Chaetoceros lorenzianus Chaetoceros cf. vixvisibilis Chaetoceros spp. Coscinodiscus ''lineati''		$17.2 \\ 60 \\ \\ 1.2$	260 360	$130 \\ 240 \\ 140 \\$	$140 \\ 50 \\ 150 $	190 510 100				1.6 	$1.6 \\ 8.8 \\ -5.6 \\ 17.6$	$\overset{\overline{65}}{\overset{40}{.4}}$	$\begin{array}{r} 2.8 \\ 6.8 \\ 30 \\ \hline 1.2 \end{array}$	$ \begin{array}{c} 1.6 \\ 1.2 \\ \\ 2.4 \end{array} $	$ \begin{array}{r} 16.8 \\ 4.8 \\ $	440 	
Eucampia cornuta Eucampia zoodiacus Guinardia flaccida Hemiaulus sinensis Lauderia annulata	$ 1.6 \\ 1.6 \\ 4 \\ 5 \\ 2.4 $	10.8 $\overline{1.2}$ 2.4 4	330 2.4 50 4.8	$270 \\ 20 \\ - \\ 80 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ $	220 80 8	700 .4 50 2.8		20.4 	38 	1.2 154.4 5 2.2	55 15		25 2.4 5 .4	$\frac{1.2}{-}$ $\frac{2.8}{3.2}$	 10 10.4	$45 \\ 55 \\ 40 \\ 53.2$	
Leptocylindrus maximus Nitzschia closterium Nitzschia delicatissima Nitzschia pacifica + pungens Pennate spp.	20 15 20 10	1.6 230 120 20 $.4$	$\begin{array}{r} 4\\ 40\\ 440\\ 360\\ 70\end{array}$	$2.8 \\ 60 \\ 280 \\ 290 \\ 40$	$1.6 \\ 50 \\ 90 \\ 310 \\ 10.4$	$\begin{array}{r} & - \\ & 40 \\ 120 \\ 190 \\ & 30.4 \end{array}$	20 15	$2.8 \\ 25 \\ 15 \\ 5 \\$	${1.2}$.8 .4	$25 \\ 30 \\ 55 \\$	$120 \\ 70 \\ 250 \\ 15.8$	$2 \\ 235 \\ 75 \\ 215 \\ 26.2$	$3.6 \\ 50 \\ 65 \\ 90 \\ 15.4$	$.4\\5\\55\\10.8\\15.2$	$5.6 \\ 120 \\ 45 \\ 130 \\ 60$	$3 \\ 210 \\ 350 \\ 76.4$	
Rhiz. delicatula Rhiz. fragilissima Rhiz. setigera Rhiz. stolterfothii Skel. costatum f. tropicum Thalassionema nitzschioides	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$380 \\ 28 \\ 4.8 \\ 400 \\ 190 $	$520 \\ 480 \\ 190 \\ 300 \\ 400 \\ 5.6$	$1020 \\ 460 \\ 210 \\ 530 \\ 250 \\ 90$	860 440 130 160 170	$1120 \\ 560 \\ 120 \\ 290 \\ 150 \\$		$\frac{5}{.2}$ $\frac{1}{.4}$	5 — 1.2 25.6 —	${}^{45}_{\ .8}_{\ .2}_{\ 1.6}_{\ 270}_{\ 3}$	$230 \\ 5 \\ 65 \\ 60 \\ 3270 \\ 175$	$205 \\ 3.2 \\ 80 \\ 60 \\ 10840 \\ 85$	${ \begin{smallmatrix} 620 \\ 50 \\ 8.8 \\ 190 \\ 1030 \\ 8 \end{smallmatrix} }$	$105 \\ 35 \\ 10 \\ 115 \\ 1025 \\ 200$	$970 \\ 60 \\ 65 \\ 190 \\ 910 \\ 5.6$	$750 \\ .8 \\ 210 \\ 1050 \\ 1100 \\ 45$	
Thal. mediterranea var. pacifica	8	4.8	28	9.6	11.2	4	.4	_	_	.2	2.4	2 .4	5.2	.4	5.6	2.6	
Prorocentrum micans Prorocentrum spp	2.4	$\overset{.4}{_{10.4}}$	$\begin{array}{c} 1.6\\ 20\end{array}$	8	$4.8 \\ 5.2$	4	8	2	_	.8 .2	_	_	_	.4	_	4	
Coccolithus huxleyi Gephyrocapsa oceanica	. 20 . 80	$\begin{array}{c} 40 \\ 60 \end{array}$	$10 \\ 20$	50 20	$\frac{20}{70}$	$10 \\ 70$	5 5	15 5	$10 \\ 15$	$\begin{smallmatrix} 5\\40\end{smallmatrix}$	$\frac{15}{30}$	10 60	$\begin{array}{c} 10 \\ 45 \end{array}$		10 20	$\begin{array}{c} 10 \\ 40 \end{array}$	

TABLE V-RESULTS OF THE PHYTOPLANKTON ENUMERATION FROM THE SURVEY OF 18-21 MARCH, 1958, STA-TIONS 45-48, 53-56, (Cells per 10 ml.).

TABLE V (Cont.) (Cells per liter)

DIATOMS: Actinoptychus undulatus var. catenata 80 54t; Asterionella japonica 80 55s, 880 56t, 3500 54t, 4500 54s; Ast. japonica f. tropicum 200 55t, 360 56t; Asteromphalus flabellatus 40 53s, 80 45t; Bact. hyalinum 160 45t,56t; Bact. hyalinum var. princeps 60 53t, 240 56t, 320 55t, 440 45s; Bact. varians 320 45s; Biddulphia alternans 120 54t; Bidd. aurita 120 54t, 400 55t; Bidd. mobiliensis 20 53t, 80 45,55t, 120 55s, 140 56t, 160 54t, 320 54s; Bidd. sinensis 40 55s, 160 55t, 520 56t; Chaetoceros affinis var. circinalis 4000 47s; Ch. anastomosans 3000 46t; Ch. constrictus 31000 46t;

Ch. densus 120 46t, 160 46s, 480 45t; Ch. didymus 480 45t, 800 53t, 3000 47t; Ch. didymus var. anglica 6000 54s, 7000 46t; Ch. didymus var. protuberans 160 56s, 1000 55t, 5500 54t; Ch. diversus 400 45t; Ch. laevis 40 53t, 200 45t, 320 45s, 1000 54t; Ch. rostratus 40 45t, 80 56s; Ch. socialis 500 56s; Ch. subsecundus 400 56s; Ch. teres 900 45t; Corethron hystrix 40 45t,46t,47, 80 54t; Cosc. marginatus 40 45t; Ditylum sol 40 56t, 80 54s,55t; Hemiaulus membranaceus 400 54s, 420 53t; Lauderiopsis sp. 240 56t; Lithodesmium undulatum 40 55s, 80 56t, 120 54t, 240 54s; Melosira sulcata 320 55t;

Rhiz. alata f. genuina 20 56t, 40 55t,53t, 160 47s, 200 53s, 280 46t; Rhiz. alata f. indica 20 53t, 40 56t, 80 45t,47t; Rhiz. alata f. genuina - indica intergrade 80 45t; Rhiz. bergonii 20 56t, 40 55t, 80 47s,55s; Rhiz. calcar avis 20 48t, 40 53s, 60 53t; Rhiz. imbricata var. shrubsolei 80 47t, 140 53t, 280 46t, 400 56t; Rhiz. styliformis var. latissima 40 53s; Schroederella delicatula 40 53t, 80 55t, 120 47,55s, 160 46,56s, 1600 54s; Stephanopyxis turris 80 56s, 200 45t; Thalassiosira subtilis 320 55t, 43000 56t; Thalassiosira spp. 40 55s, 60 48t,54s, 160 55t, 500 48s, 680 54t; Thalassiothrix frauenfeldii 160 54t, 180 53t, 640 54s; Tropidoneis antarctica 40 53t,55, 80 56s.

DINOFLAGELLATES: Ceratium breve 40 56t; Cer. falcatum 20 56t; Cer. furca var. eugrammum 180 56t; Cer. fusus var. setaceum 80 46s; Cer. kofoidii 40 45t, 46t; Cer. pentagonum f. turgidum 20 56t; Exuviaella baltica 1000 47s, 54s, 1500 55s; Glenodinium lenticula f. minor 40 45, 80 55s, 56t, 120 46t, 47t; Goniaulax scrippsae 80 47s; Gon. spinifera 80 45s; Noctiluca sp. 80 56s; Oxytoxum variabile 500 53t, 54s, 1000 46t; Peridinium claudicans 40 47s; Per. depressum 20 56t, 40 55t, 80 55s; Glenodinium 80 55s, 120 46t, 55t; Per. oviforme 160 46s, 880 47s; Per. ovum 40 45s; Per. subinerme 80 45s; 240 47s, 720 46s; Per. trochoideum 3040 47s; Per. tuba 40 55s; Peridinium spp. 60 56t, 80 45, 160 55t, 200 47t, 400 46s, 720 47s; Procentrum gracile 40 53t.

COCCOLITHOPHORES: Anoplosolenia brasiliensis 500 53t; Calciosolenia sinuosa 500 48s,54t,55s,56s, 1000 53t; Halopappus adriaticus 500 48s; Pontosphaera maximus 500 55t.

DIVERSE: Chilomonas marina 500 53t,54s,55t; Euglenaceae 500 55t, 1000 56t; Halosphaera 40 46t, 80 54s.