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Abstract

This paper investigates the properties of realized volatility and correlation series in the Indian stock

market by employing daily data converting to monthly frequency of �ve di�erent stock indices from

January 2, 2006 to November 30, 2014. Using non-parametric estimation technique the properties

examined include normality, long-memory, asymmetries, jumps, and heterogeneity. The realized

volatility is a useful technique which provides a relatively accurate measure of volatility based on the

actual variance which is bene�cial for asset management in particular for non-speculative funds. The

results show that realized volatility and correlation series are not normally distributed, with some

evidence of persistence. Asymmetries are also evident in both volatilities and correlations. Both

jumps and heterogeneity properties are signi�cant; whereas, the former is more signi�cant than the

latter. The �ndings show that properties of volatilities and correlations in Indian stock market have

similarities as that show in the stock markets in developed countries such as the stock market in the

United States which is more prevalent for speculative business traders.
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1 Introduction

Volatility is central to many issues in �nance, ranging from asset management to risk management; in

both in developed and emerging markets. However, volatility is latent. Volatility can also be estimated

by non-parametric estimators apart from parametric and semi-parametric ones. Any non-parametric

estimator estimates quadratic variation, which is regarded as the best estimator of integrated (latent)

volatility.The stylized facts (properties) of volatility are active research issues; especially for the emerging

stock markets. However, not much research has been done so far which examines the properties of

volatility in particular for the emerging markets. Furthermore, the existing empirical literature has

investigated this issue mainly by using parametric models,

In this paper, we emphasize the importance of realized volatility and correlation estimation via the

realized range estimator for the Indian stock market; an emerging and quite promising market. We

focus on a period which incorporates various stock market booms and crashes, from January 2, 2006 to

November 30, 2014. The dataset includes four indices of the National Stock Exchange of India (NSEI),

such as CNX-500, CNX-100, CNX NIFTY JUNIOR (CNX-J) and CNX NIFTY (CNX). In addition, one

index from the Bombay stock exchange (BSE) i.e., S&P BSE SENSEX (BSESN) is been used. (BSE):

S&P BSE SENSEX (BSESN).

The empirical literature has not investigated the properties of realized volatility series of the Indian

stock market. In addition, previous studies, which have examined emerging markets (including India),

are scattered. In case volatilities are estimated non-parametrically, literature suggests various models

to capture the respective properties for prediction and forecasting purposes. However, the parametric

estimators of volatility can incorporate volatility properties in the parametric estimators only. Never-

theless, the parametric volatility estimator cannot incorporate all volatility properties in a single model.

The recent literature suggests using mixed parametric models to estimate volatility more accurately.1

We employ the most well-known non-parametric volatility estimators which incorporate the most par-

simonious volatility properties. Furthermore, to the best of our knowledge, realized correlation for the

Indian stock market has not been extensively examined in literature. The realized volatility is a useful

technique which provides a relatively accurate measure of volatility based on the actual variance which

is bene�cial for asset management in particular for non-speculative funds. In this paper, we investigate

the following properties of realized volatility and realized correlation series of the Indian stock mar-

ket: normality, long memory, asymmetry, discontinuity and heterogeneity. Also, this paper �lls the gap

by estimating volatility and correlation via a contemporary realized (range) volatility and correlation

estimator non-parametrically.

Our �ndings indicate that the properties of volatilities and correlations of the Indian stock market

1In this paper, we do not focus on such models, because the purpose of the paper is not to �nd the best parameterisation
of a model for volatility estimation.
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show similar properties of volatilities and correlations like developed stock markets, such as the United

States (US) stock market. These results pave the way towards the investigation of asset and risk man-

agement in the Indian stock market or any other emerging �nancial market.

The rest of the paper is organised as follows: section 2 reviews the literature regarding the impact

of the 2008 �nancial crisis in India, the Indian stock market in general, volatility and correlation in

the Indian stock market, and the properties of volatility and correlation. Section 3 describes the data.

Section 4 presents the realized range estimators of volatility and correlation, the long-memory estimator

and FIGARCH model, asymmetric tests, asymmetry equations and asymmetic GARCH-type models, the

jumps detection schemes, and the HAR-J and HAR-CJ models. Section 5 deploys the results of normality,

long memory, asymmetry, discontinuity, and heterogeneity properties of volatility and correlation series.

Section 6 provides concluding remarks.

2 Literature review

2.1 2008 �nancial crisis and India

Economic disasters have been regarded as universal occurrence all over the contemporary history of the

human race. All together, around 200 �nancial and economic disasters had happened since late 1970 until

2013. Das, Kumar, Debnath and Mandal (2012) examined economic disasters in detail. Moreover, the

general aspect of approximately every disaster has been considered as a speed up method. This means

exploring the fastest and most superior pro�ts as well as a huge divergence among desire for threat and

the ability for tolerating it. As illustrated in Mandelbrot and Hudson (2009), the worldwide economic

consideration in 2008 has been considered as an astounding illustration of covetousness and hedonism of

the organizations in the USA. There is a big di�erence between these crises and the recent 2008 one. The

latter emerged from the extremely center of the globalised �nancial system and has not been restricted

to a particular area. Furthermore, the warmth of chaos was experienced in the entire global �nancial

system; however of unreliable length, same way as a pebble in a pool, its waves moved in even outward

direction. It has been recognised that those who break the rules do create repercussions for the people

around them. Several corporations of the Wall Street penniless the �scal o�cial procedure and the public

generally and the US especially tire the load of it. The sub-prime disaster, which has been regarded

as nastiest after vast dejection of 1930s obtained its platform around 2007 and in�uenced the complete

�scal and economic system in the US and United Kingdom (UK). On the other hand, the breakdown of

Lehman Brothers in the middle of September 2008 additionally provoked the circumstances directing to

a crisis of buoyancy in the �scal markets. The harshness and abruptness of the crisis could be observed

from the prediction of International Monetary Fund (IMF) for the worldwide �nancial system. Hence,

the IMF depicted a worldwide collapse with depressing e�ect on the gross domestic product (GDP) of
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the world in the year 2009-2010, which occurred for the �rst time in sixty years.

The prime cause of collapse was US housing �zz that emerged high in 2006. Thus, according to Prasad

and Reddy (2009), throughout this era, mortgage agents fascinated by the huge payments, attracted

purchases with meagre credit to admit housing mortgages with small or no deposits and not including

credit checks. Financial institutions provided funds on the supposition that housing values would increase

persistently. Nevertheless, the house prices in America have increased by 130% between 1998 and 2007.

This reality �zz increased the demand for houses as economic resources. Banks and other loan agencies

afterward repackaged these debts with other high-risk debts and sold them to global �nanciers by forming

new �scal tools called collateralised debt obligations (CDOs). Thus, threat was deceased multifold in

the global economic markets. Hence, because of excess inventory of houses and enhanced interest rates,

there was a slump in housing values between 2007 and 2008 that turned out into an augmented evasions

and foreclosure actions that distorted the housing movement. The result of this collapse was experienced

internationally for the reason that CDOs were sold globally and circumstances turned out to be more

devalued because several banks of Wall Street had rented 50 times more than the actual value (Mandelbrot

and Hudson, 2009). Various �nancial institutions that had purchased securities of billion dollars' worth

derived from mortgages were in problem currently. This chaos happened to emerge in the middle of 2007

intensi�ed largely since August 2008 (Monhan, 2009). Moreover, this impact might have been noticed

in the international �nancial markets since then.

Originally, the �nancial system of India appeared to be comparatively con�rmed from this collapse.

Rather the outcome was optimistic as India obtained increased organizational investment �ows from

overseas during the year 2008 when the line of the subprime mortgages had begun developing in the

United States. The amount of total in�ows in India during 2008 was approximately $21 billion. However,

India could not protect itself from the unfavourable incidents in the global markets soon after; although

its banks had insigni�cant asset in the �scal tools like CDOs. Moreover, the instant pessimistic in�uence

of collapse on the country was experienced only after the meltdown of Lehman Brothers with the loss

of organizational overseas investment from the equity market and rising interest rates in capital market

that got boosted about 30% throughout the month.

Various factors of the Indian �nancial system, like: Indian exchange rates, IT, foreign investment,

foreign exchange out�ows, unemployment rate, volume of exports, stock market and banking, have been

in�uenced by the 2008 crisis started from the United States (Prasad and Reddy, 2009). However, the

most instantaneous outcome was experienced on the meltdown of its foreign exchange and equity markets.

During the period between January and October 2008, the RBI reference rate for the rupee cut down

by almost 30%. Another market that was with most horribly struck by this disaster was the Indian stock

market. The Sensex index accounted over 21,000 points in January, 2008 and felled lower than 10,000

points in October, 2008. A declining stock market index shows the reduction of the asset atmosphere
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whereas an increasing stock index shows more poise and reliability of the �nancial system. As a result, it

is not uncertain to believe that worldwide economic collapse had reduced the self-con�dence of investors

in the Indian stock markets.

In the current situation, stock return volatility is a subject of big concern for investors and policy

makers. High variations in stock return or stock return volatility are detrimental for the development

of a �nancial system. Practical facts show that economic solidity is believed to be under risk more by

unexpected alterations in instability rather than by a constant enhancement in the attitude of instability.

Various researchers have observed the time �uctuation in the instability with the a�ect of several market

shocks and liberalization transformations. Rao and Kaur (2009) examined the in�uence of �nancial

collapse of the world on the NCDEX commodity exchange.

2.2 Indian stock market

Bhar and Nikolova (2009), examined the level of integration and the dynamic relationship between BRIC

(Brazil, Russia, India and China) countries, their respective regions and the world and found that India

had the highest level of regional and global integration among the BRIC countries. Durand, Lan and

Ng (2011) examined conditional betas using both local and world excess returns and a model using both

local and world excess returns in India's and other emerging stock markets. Majumder (2012) proposed

a transformation on original market returns in the objective of relaxing the strong assumption of market

e�ciency behind application of an asset pricing model in the Indian market. Giannikos and Gousgounis

(2012) provided evidence that opinion dispersion leads to higher overpricing in the Indian equity market

in which short sales are prohibited. French and Naka (2013) found that positive shocks to US equity

�ows to India elicited an insigni�cant response to returns; and, shocks to dividend yields have a strong

negative in�uence on US equity �ows. Anand (2014) measured the relationship between risk and return,

and the e�ect of diversi�cation on market risk in Indian stock market by applying a market index model.

2.3 Volatility of the Indian stock market

Pandey (2002) reported range estimates of volatility performed better than realized volatility in fore-

casting the volatility of the S&P CNX Nifty Indian stock market index.

In the present paper, volatility is estimated as in Martens, and van Dijk (2007) with the realized

range estimator. Bhaduri and Samuel (2009) analyzed the correlation between the Indian stock market

and other world markets. Tripathy and Gil-Alana (2010) estimated volatility in the India NSE via (i) his-

torical/rolling window moving average estimator, (ii) exponentially weighted moving average (EWMA),

(iii) generalized autoRegressive conditional heteroskedasticity (GARCH) model, (iv) extreme value indi-

cators (EVI) and (v) volatility index (VIX). Dixit, Yadav and Jain (2010) examined the �in-the-sample�

and �out-of-the-sample� forecast e�ciency of implied volatilities of S&P CNX Nifty index options, via a
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GARCH and an EGARCH (exponential GARCH) model.

Chiang, Chen and Lin (2013), investigated the spillover e�ects of returns and volatility in the US

stock market on the stock markets of Brazil, Russia, India, China and Vietnam (BRICVs) via an ARJI

(autoregressive conditional jump intensity) model, found that India demonstrated the lowest total long-

run risk. Bentes and Menezes (2013) found that the feasible generalized least squares (FGLS) model

better forecasts realized volatility than ordinary least squares (OLS) and asymmetric ordinary least

squares (AOLS) in the stock markets of India, US, Hong Kong, China and South Korea. Kumar and

Jaiswal (2013) found that Black Scholes implied volatility dominates the forecasting e�ciency over the

VIX even though both estimates are biased. A recent study on the properties of realized range by

Todorova and Soucek (2014), uses the realized (Parkinson) range estimator for accuracy without noise

daily volatility estimates. Kumar (2014) researched spillover e�ects between Indian exchange rates

relative to US Dollar, Great Britain pound, Euro and Japanese Yen via a parametric vector autoregressive

model for the mean and a multivariate GARCH for volatility (VAR(1)-MVGARCH) model. Garg and

Vipul (2015) provided evidence from the Indian options market that the forecasts based on realized

volatility are signi�cantly more e�cient and less biased than those based on model-free implied volatility.

They also found that the volatility risk premium can provide economic bene�ts only to those option

writers, who have su�ciently low transaction costs. Also, Tripathy and Gil-Alana (2015) researched the

in- and out-of-sample properties of volatilities via di�erent GARCH models. Bentes (2017) investigates

the relation between implied and realized volatility using monthly data from the BRIC countries, and

shows that implied volatility is an unbiased estimate of realized volatility for India and that implied

volatility was not found to be e�cient in any of the BRIC countries.

2.4 Correlation and the Indian markets

Martens and van Djik (2007) estimated the correlation series via the realized (Parkinson) range correla-

tion estimator. Jumps are detected in correlation series via the jump test statistic of Andersen, Bollerslev

and Diebold (2007). Bianconi, Yoshino and de Sousa (2013) examined the evolution of unconditional

and conditional correlations between stocks and bonds of BRIC nations before and after the September

2008 �nancial crisis.

2.5 Volatility and correlation properties

The property of heteroscedasticity and asymmetry in volatility series of the Indian stock market (S&P

CNX Nifty index) was examined by Karmakar (2007). He found that volatility which exhibits clustering,

high persistence and predictability, is an asymmetric function of past innovation. Amira Taamouti and

Tsafack (2011) analyzed the Granger-causality asymmetries on correlations in terms of returns- and

volatilities- news. Alper, Fendoglu and Saltoglu (2012) showed evidence that the Mixed Data Sampling
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(MIDAS) model provided more accurate weekly volatility forecasts than a GARCH(1,1) model for the

Indian and other nine emerging stock markets. A recent study on discontinuity's (jumps') importance in

volatility prediction is Atak and Kapetanios (2013). The bene�t of modelling jumps in realized volatility

is deployed in Liao (2013). A recent study utilizing the bene�ts of HAR is Sevi (2013). Atak and

Kapetanios (2013) compared the out-of-sample performance of HAR to factor models. A recent study

on the properties of jumps and asymmetries in realized volatility is Soucek and Todorova (2014).2

3 Data

We employ daily data for the main stock indices in India, focusing on a period which incorporates various

stock market booms and crashes including the 2008 global �nancial crisis. The dataset contains four

indices of the National Stock Exchange of India (NSEI): CNX-500, CNX-100, CNX NIFTY JUNIOR

(CNX-J) and CNX NIFTY (CNX); and one index of the Bombay stock exchange (BSE): S&P BSE

SENSEX (BSESN). All data series begin on January 2, 2006 and end on November 30, 2014. For all

indices, trading takes place from 9:00 to 15:30 Indian standard time3. Trading times are common across

all Indian stock exchanges. The prices of indices are expressed in local currency (Indian rupee). In this

study, we convert the daily data into monthly frequency to examine the volatility and correlation series

in the Indian stock market.

The Indian stock market is one of the oldest in Asia, operating since 1875. The creation and em-

powerment of Securities and Exchange Board of India (SEBI) has helped in providing higher level ac-

countability in the market. New institutions like National Stock Exchange of India (NSEIL), National

Securities Clearing Corporation (NSCCL), and National Securities Depository (NSDL) have been the

new agents helping to clean the system and providing safety to the public at large to invest. With

modern technology in hand, these institutions have set benchmarks and standards for others to follow.

The microstructure changes brought about reduction in transaction cost that helped investors to lock

in a faster and cheaper deal. The major changes in the capital market have resulted in the complete

transformation of structure and composition of the market. In addition, Indian capital markets also have

started trading on derivative products in line with the developed countries.

4 Methodology

This paper �ll the gap by estimating non-parametrically volatility and correlation via a contemporary

realized (range) volatility and correlation estimator

2We examine the Granger-causality asymmetries on correlations in the main �ve Indian indices. The scope of asymmetric
regressions is to detect, apart from asymmetries, the existence of incremental information from indicators.Furthermore, the
signi�cance of heterogeneity- and jumps- properties of volatilities (correlations) is examined via the HAR-J and HAR-CJ
models.

3Indian standard time is 5 hours and 30 minutes later than the Greenwich Mean Time (GMT) in the UK.
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4.1 Realized (range) volatility estimation

Volatility is latent. However, volatility can be estimated by apart from parametric and semi-parametric

estimators, also by non-parametric However, apart from the parametric and semi-parametric estimators

volatility can be estimated by non-parametric estimators as well. Any non-parametric estimator estimates

quadratic variation, which is considered as the best estimator of integrated (latent) volatility. In the

present paper, volatility is estimated by the realized range estimator. This estimator is a combined

estimator between realized volatility and range estimators. Andersen, Bollerslev, Diebold and Labys

(2001) theoretically developed and empirically examined the realized volatility estimator. Parkinson

(1980) introduced the range estimator in the literature. Martens, and van Dijk (2007), under both

simulation experiments and empirical study, were the �rst to provide evidence of more accurate estimates

coming from realized Parkinson range-based estimator than an unrestricted realized volatility estimator.

Christensen, Oomen and Podolskij (2010) and Christensen and Podolskij (2012) settled the use of the

realized range estimator in a daily frequency. More recently, Todorova (2012) empirically examined the

properties as well as the accuracy of the realized (Parkinson) range estimator.

We employ the realized (Parkinson) range estimator to nonparametrically estimate volatility in a

monthly frequency. According to literature, this estimator is de�ned as:

RV RRt =
1

4 log(2)

m∑
i=1

(hi,t − li,t)2 (1)

where hi,m and li,m are the within the i-th day high and low logarithmic prices for each t month; m is

the number of trading days in a month (≈ 21; in average).

4.2 Realized (range) correlation estimation

Covariance as well as correlation is estimated non-parametrically. The best non-parametric estimator

in a multivariate level is realized correlation. Barndor�-Nielsen, and Shephard (2006a) introduced the

realized covariance and realized correlation estimator. The realized covariance is given by the cross-

products of the two daily asset returns series throughout each month:

RCovRVt =

m∑
i=1

ra,i,m,t · rb,i,m,t (2)

where ra,i,m,t and rb,i,m,t are the daily returns series for the a and b corresponding assets; and m is

the number of trading days in a month (≈ 21; in average). Realized covariance was also discussed

in Andersen, Bollerslev, Diebold and Labys (2001). In the absence of noise, RCovRVt is a consistent

estimator of covariance as the sampling frequency increases. The realized range correlation coe�cient

(RCRRt ) comes from the RCovRVt devided by the square roots of the realized range volatility RV RRt
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estimates of two assets
(
RV RRt,a andRV RRt,b

)
.

RCRRt =
RCovRVt√

RV RRt,a

√
RV RRt,b

=

m∑
i=1

ra,i,m,t · rb,i,m,t√
1

4 log(2)

∑m
i=1 (ha,i,m,t − la,i,m,t)2

√
1

4 log(2)

∑m
i=1 (hb,i,m,t − lb,i,m,t)2

(3)

where realized range volatility RV RRt estimates are estimated as in sub-section 4.1 for each t month and

i trading day. Martens and van Djik (2007) introduced the realized Parkinson range-based volatility

estimator (in a univariate level) and Brandt and Diebold (2006) introduced the realized (Parkinson)

range-based covariance and correlation estimators.

4.3 Long memory

4.3.1 Long memory estimator

The long-memory parameter d is estimated in a semiparametric fashion. The Andrews and Guggenberger

(2000) (AG, henceforth) estimator is considered. d is least squares estimated in the frequency-domain

regression

lnI(λi)= γ0 − d · ln
(

4 · sin2
(
λi
2

))
+

J∑
j=1

γjλ
2j
i + ε (λi) (4)

where I(.) is the periodogram of data in harmonic frequencies λi = 2πi
n with i = 1, ...,m < n. The

bandwidth parameter m is allowed to vary between [
√
n] and

[
n0.8

]
+1, where [x]is the integer part of x;

J = 1, and cJ = 2.25. The limiting distribution in the above equation was obtained by AG (2000) under

the assumption of stationarity (d < 0.5). This assumption is true for realized volatility and realized

correlations in developed countries. According to Bandi and Perron (2006), the AG estimator reduces

the asymptotic mean squared errors of the d estimates relative to the GPH estimator. The degree of

fractional integration can also be estimated by running OLS regressions of log-autocorrelations on log-

lags as introduced in Beran and Ocker (2001) and empirically recently researched in Chiriac, and Voev

(2011).

4.3.2 FIGARCH model

The models used in this research consist of an autoregressive model for the conditional mean and a

�rst-order GARCH-type model for the conditional variance, as follows:

rt= c+ ut (5)
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ut= htzt, zt ∼ i.i.d.(0, 1) (6)

where rt is the Indian stock index price return on month t, ut is the error term, zt is a white noise

process, and ht is the conditional standard deviation. We present results for the FIGARCH (fractionally

integrated GARCH) model.

The FIGARCH model, as proposed by Baillie, Bollerslev and Mikkelsen (1996), captures the tem-

poral dependencies (long memory) in predicted volatility. Following Bentes (2014) and (2016), the

FIGARCH(1,d,1) model can be modelled as follows:

h2t= ω + β · h2t−1 +
[
1− β · L− (1− ϕ · L) · (1− L)d

]
· u2t (7)

where:

0 < d < 1 (8)

4.4 Asymmetries

4.4.1 Asymmetric tests

The assumption of symmetry requires that the skewness should be equal to zero. In this sub-section, we

apply two di�erent statistical tests, in order to examine the asymmetry in conditional distribution. The

�rst test is a bootstrap non-parametric test of asymmetry for the null hypothesis that the distribution

is symmetric with skewness equal to 0. We generate the sampling distribution by bootstrapping and

re-sampling from the original data and we apply a single-tailed test for the null hypothesis that the

distribution is symmetric with skewness equal to 0. For robustness propose, we also apply the D'

Agostino (1970) test, in order to examine if the skewness is equal to zero.4

4.4.2 Asymmetry equations

Asymmetries are examined as in Amira, Taamouti and Tsafack (2011). Standard errors (SE) in all

equations are based on the Newey-West (NW) estimator of the variance-covariance matrix (see, Dufour,

Pelletier and Renault, 2006). The asymmetriy property in volatilities (correlations) is analyzed with

upturn and downturn volatilities (correlations). Volatility (correlation) is decomposed into upturn and

downturn volatility (correlation). Their corresponding impact on correlation (volatility) is examined.

So,

4D' Agostino (1970) test has such null hypothesis and is useful to detect a signi�cant skewness in normally distributed
data. It is also a test for the hypothesis of normality.
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(1− L)
d
RCRR

t RCRRt = a+ b ·D+ ·RCRRt−1 + γ ·D− ·RCRRt−1 + ui,t (9)

or

(1− L)
d
RV RR

t RV RRt = a+ b ·D+ ·RV RRt−1 + γ ·D− ·RV RRt−1 + ui,t (10)

where D+ =


1 ri,t ≥ 0

0 ri,t < 0

, D− = 1 −D+ and dRCRR
t

(dRV RR
t

) is the AG long memory estimate of

realized correlation
(
RCRRt

)
and volatility

(
RV RRt

)
, respectively.

4.4.3 Asymmetric GARCH-types models

The models used in this research consist of an autoregressive model for the conditional mean and a

�rst-order GARCH-type model for the conditional variance, as follows:

rt= c+

S∑
i=1

ϕirt−i + ut (11)

ut= htzt, zt ∼ i.i.d.(0, 1) (12)

where rt is the Indian stock index price return on month t, ut is the error term, zt is a white noise

process, and ht is the conditional standard deviation. Following Ferreira, Menezes and Mendes (2007)

and Bentes, Menezes and Ferreira (2013), we present results for di�erent asymmetric GARCH-type

models for robustness proposes, namely EGARCH and GJR-GARCH.

The EGARCH model, as proposed by Nelson (1991), captures the e�ect of external unexpected shocks

on the predicted volatility. The EGARCH(1,1) model can be modelled as follows:

log(h2t )= ω + α

[∣∣∣∣ut−1

ht−1

∣∣∣∣−
√

2

π

]
+ β · log(h2t−1) + δ · ut−1

ht−1
(13)

The GJR-GARCH model, as proposed by Glosten, Jagannathan and Runkle (GJR) (1993), captures

the e�ect of positive and negative shocks on the volatility. The GJR-GARCH(1,1) model can be modelled

as follows:

h2t= ω + α · u2t−1 + β · h2t−1 + γ · u2t−1It−1 (14)

where:
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It−1=


1 if ut−1 < 0

0 if ut−1 ≥ 0

(15)

4.5 Jumps detection schemes

4.5.1 Volatility jumps

The jumps detection scheme employed was the one introduced in Huang and Tauchen (2005) and �nalised

in Andersen, Bollerslev and Diebold (2007). This detection scheme of jumps in volatility series depends

on the idea that volatility is split into a jumps and a continuous component of volatility. The scheme

requires an estimator that excludes jumps. Barndor�-Nielsen and Shephard (2006a and 2006b) set up

an accurate estimate of the integrated variance excluding jumps; entitled as bipower variation:

RV BPVt = µ−2
p

m∑
i=2

|ri,m| |ri−1,m| (16)

In general, RV RRt −RV BPVt → λt which is the jump component of volatility and RV RRt denotes realized

range. Huang and Tauchen (2005) proposed the following test statistic (also settled and extensively

examined in Andersen, Bollerslev and Diebold, 2007):

Zt= m1/2 log
(
RV RRt /RV BPVt

)[(
µ−4
1 + 2µ−2

1 − 5
){
TPQt

(
RV BPVt

)−2
}]1/2 (17)

A jump is indicated as J̃RV
RR

t = max
(
RV RRt −RV BPVt , 0

)
. The following test-based version for de�ning

a day with a signi�cant jump is used:

JRV
RR

t = I (Zt > Φα)
(
RV RRt −RV BPVt

)
(18)

The continuous component of volatility is de�ned as CRV
RR

t = RV RRt − JRV RR

t . Φα is the critical value

of the standard normal distribution at α level of signi�cance. Here, Jt is the sample estimator of the

theoretical jump component λt in the sense that Jt → λt.

4.5.2 Correlation jumps

The jump detection scheme for correlations employed was introduced and empirically examined in Huang

and Tauchen (2005) and Andersen, Bollerslev and Diebold (2007) respectively. As far as the distribu-

tional properties of correlation series are not by far di�erent to volatility properties, the test statistic of

Andersen, Bollerslev and Diebold (2007) is employed for detecting jumps in realized correlations:
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JRC
RR

t = I
(

max
(
| RC(RR)

t −RC(BV )
t |, 0

)
> c
)
·
(
RC

(RR)
t −RC(BV )

t

)
(19)

where RC
(RR)
t is the realized range correlation estimator and RC

(BV )
t is realized bipower-variation

correlation estimator.5 The threshold c can take di�erent values. The value used throughout the paper

is c = 0.05, which is a benchmark value to use. The continuous component of correlation is de�ned as:

CRC
RR

t = RC
(RR)
t −max

(
| RC

(RR)

t −RC(BV )
t |, 0

)
(20)

where naturally JRC
RR

t = max
(
| RC(RR)

t −RC(BV )
t |, 0

)
. This jump detection test is very strict. So, it

captures only high in magnitude jumps; and, only one jump per day.

4.6 HAR-J and HAR-CJ models

Both heterogeneous autoregressive model with jumps (HAR-J) and heterogeneous autoregressive model

with continuous and jumps components (HAR-CJ) have been often researched in literature. Ghysels,

Santa-Clara, and Valkanov (2006), Andersen, Bollerslev and Diebold (2007), Clements Galvao and Kim

(2008) and Corsi (2009) set up the scheme for a further empirical analysis of jumps and heterogeneity

properties. Both models examine both the heterogeneity and jumps properties of volatility and correla-

tion series. The present paper employs both models in their original outline in a monthly frequency. So,

instead of daily, weekly and monthly volatilities and components, one month (1M), �ve months (5M)

and twenty months (20M) lagged volatilities and components are employed to examine heterogeneity

and jumps.

4.6.1 Volatility

The HAR-J model models both heterogeneity and jumps in realized range volatility RV RRt series:

RV RRt = β0 + β1MRV
RR
t−1,t + β5MRV

RR
t−5,t + β20MRV

RR
t−20,t + γJJ

RV RR

t−1,t (21)

β1M , β5M , β20M and γJ are the regression coe�cient estimates for the one month (1M), �ve months

(5M) and twenty months (20M) lagged volatilities and jumps series of the realized range volatility RV RRt

series.

The model in which heterogeneity is distinguished between the continuous and jumps components of

realized range volatility RV RRt series is the HAR-CJ model:

5The realized bipower variation correlation is

RC
(BV )
t =

RCovt√
RV

(BV )
t,a

√
RV

(BV )
t,b

=

m∑
i=1

ra,i,mrb,i,m√
µ−2
p
∑m

i=2 |ra,i,m| |ra,i−1,m|
√
µ−2
p
∑m

i=2

∣∣rb,i,m∣∣ ∣∣rb,i−1,m

∣∣ where µp = E (|Z|p) is

the mean of the p-th absolute moment of a standard normal distribution. For a detailed analysis of the properties of the
realized bipower- estimator, see Barndor�-Nielsen, and Shephard (2006b).
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RV RRt =


β0 + βC1M

· CRV RR

t−1,t + βC5M
· CRV RR

t−5,t + βC20M
· CRV RR

t−20,t+

γJ1M · JRV
RR

t−1,t + γJ5M · JRV
RR

t−5,t + γJ20M · JRV
RR

t−20,t + εt

(22)

βC1M
, βC5M

, βC20M
, γJ1M , γJ5M and γJ20M are the regression coe�cient estimates for the one month (1M)

continuous, �ve months (5M) continuous, twenty months (20M) continuous, one month (1M) jumps, �ve

months (5M) jumps and twenty months (20M) jumps series of the realized range volatility RV RRt series.

4.6.2 Correlation

The HAR-J model models both properties heterogeneity and jumps in realized range correlations RCRRt

series:

RCRRt = β0 + β1MRC
RR
t−1,t + β5MRC

RR
t−5,t + β20MRC

RR
t−20,t + γJJ

RCRR

t−1,t (23)

β1M , β5M , β20M and γJ are the regression coe�cient estimates for the one month (1M), �ve months

(5M) and twenty months (20M) lagged volatilities, and jumps series of the realized range correlation

RCRRt series.

The model in which heterogeneity is distinguished between the continuous and jumps components of

realized range correlation RCRRt series is the HAR-CJ model:

RCRRt =


β0 + βC1M

· CRCRR

t−1,t + βC5M
· CRCRR

t−5,t + βC20M
· CRCRR

t−20,t+

γJ1M · JRC
RR

t−1,t + γJ5M · JRC
RR

t−5,t + γJ20M · JRC
RR

t−20,t + εt

(24)

βC1M
, βC5M

, βC20M
, γJ1M , γJ5M and γJ20M are the regression coe�cient estimates for the one month (1M)

continuous, �ve months (5M) continuous, twenty months (20M) continuous, one month (1M) jumps,

�ve months (5M) jumps and twenty months (20M) jumps series of the realized range correlation RCRRt

series.

5 Empirical �ndings

In this section, we provide an extensive analysis of the volatility and correlation properties of the main

Indian stock indices. For both volatility and correlation series, the properties examined are: (i) normality,

(ii) long-memory, (iii) asymmetries, (iv) jumps and (v) heterogeneity. The properties are investigated

via: (i) the magnitude of the average-, skewness- and kurtosis- values as well as the CVM normality test

and JB normality test; (ii) the Andrews and Guggenberger (2000) estimator and FIGARCH model as in

Bentes, Menezes and Mendes (2008); (iii) asymmetric tests (bootstrap non-parametric test of asymmetry

and D' Agostino (1970) test), asymmetric regressions (following Amira Taamouti and Tsafack, 2011)

and asymmetric GARCH-type models (following Bentes, Menezes and Ferreira, 2013); (iv) frequency of
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occurrence of jumps and jumps coe�cients in the HAR-J and HAR-CJ models; and (v) heterogeneous

volatility and continuous volatility series in the HAR-J and HAR-CJ models.

5.1 Normality

Table 1A reports descriptive statistics for volatility series. Average values of returns and volatilities

are compatible between all Indian stock indices. Skewness values are around 8 and kurtosis values at

around 70. All statistic values are extreme; indicating lack of normality. So, returns are far from being

normal; as expected. Fat tails are also evident. The kurtosis of returns is much higher than that of a

normal distribution at intraday frequency and tends to decrease as the return length increases. Thus, the

probability density functions (pdf) of returns are leptokurtic with shapes depending on the time scale

and presenting a very slow convergence of the Central Limit Theorem to the normal distribution. These

results are consistent with Jarque-Bera (JB) test; in which, normality is rejected in all series of returns.

However, normality is not rejected by the Cramer-von Mises (CVM) test on returns. Moreover, the

skewness and kurtosis values for volatilities are close to 3 and between 11 and 13, respectively; indicating

distributions not strongly adverse to normality. However, normality is rejected by the CVM test and JB

test on volatilities of all Indian stock indices.

Table 1B reports descriptive statistics for correlations series. As expected, all correlations are positive,

and all higher than 0.50. Positive correlations indicate that there are no diversi�cation e�ects/bene�ts

between di�erent stock indices / exchanges in India. Their skewness values are close to 0 and their

kurtosis values between 3 and 10; both statistics indicate a distribution close to normality. The normality

in correlations contradict to the results in Andersen, Bollerslev, Diebold and Ebens (2001), where they

found realized (co)variances are extremely right skewed and leptokurtic. However, normality is rejected

by the CVM and JB normality tests.

5.2 Long memory

Table 2A reports the long-memory estimates of volatilities and correlations series. All degrees of long

memory estimates are statistically signi�cant. Long memory is evident in both volatility and correla-

tion series. The persistency in volatilities was also evident to Andersen and Bollerslev (1997), Andersen,

Bollerslev, Diebold and Labys (2001) and Granger (2003), among many other more contemporary empir-

ical studies. Literature indicates that realized (co)variances and correlations inherit long memory (see,

Andersen, and Bollerslev, 1997, and Andersen, Bollerslev, Diebold, and Ebens, 2001, among others).

The magnitude of persistency of both volatilities and correlations in the present paper is lower than

those of developed markets as examined in these studies. The lack of strong in-magnitude persistency

may be explained by the monthly frequency of volatility and correlation estimates, compared to the daily

frequency in these studies. According to the market e�ciency theory, it is expected that long memory

15



will be lower in emerging than developed �nancial markets.

Table 2B reports the estimates of the FIGARCH (1,d,1) model under the Gaussian distribution in

each monthly return series. The empirical results indicate that the long memory property in volatility

holds and in implies dependencies between distant volatility in Indian stock indices, except the indices

CNX-500 and CNX-J. In terms of signi�cant, the �ndings based on the estimates of FIGARCH (1,d,1)

model are consistent with the semiparametric model and AG estimator for the CNX-100, CNX and

BSESN indices. On the other hand, the �ndings of FIGARCH (1,d,1) model are inconsistent with the

�ndings of AG estimator for the CNX-500 and CNX-J indices. Overall, the signi�cance of the FIGARCH

(1,d,1) model proves the presence of long memory in volatility of the Indian stock market.

5.3 Asymmetries

Table 3A reports the results regarding the property of asymmetry on volatilities series of each index.

Speci�cally, panel A reports the �ndings of asymmetry equations. According to this panel, there is a

strong evidence of asymmetries on volatilities, as far as all coe�cients are signi�cant. However, R2 values

are low. Positive news is more important than negative for three out of �ve indices. Panel B shows the

�ndings for the bootstrap non-parametric test of asymmetry for the null hypothesis that the distribution

is symmetric with skewness equal to 0. The empirical �ndings show that the null hypothesis of symmetry

is rejected in all volatility series. These results are also consistent with the D' Agostino (1970) skewness

test. Furthermore, according to the three tests, the property of symmetry is rejected in all volatility

series.

Table 3B reports the results regarding the property of asymmetry on correlation series of each index.

In speci�c, panel A and panel B report the �ndings of asymmetry equations. The �ndings indicate

signi�cance in all asymmetric coe�cients revealing asymmetries in all correlations. The magnitude of

positive and negative news is close to each other. In both directions, news has a negative impact on

correlations. Panel C shows the �ndings for the bootstrap non-parametric test of asymmetry for the null

hypothesis that the distribution of correlations is symmetric with skewness equal to 0. The empirical

�ndings show that the null hypothesis of symmetry is rejected in all correlation series. These results are

also consistent with the D' Agostino (1970) skewness test, as reported in panel D. According to the three

tests, the property of symmetry is also rejected in all correlation series.

Table 3C reports the estimates of the asymmetric GARCH-types models. Panel A reports the esti-

mates of AR(1)-EGARCH(1,1) model in each monthly return series. Panel B reports the estimates of

AR(1)-GJR-GARCH(1,1) model in each monthly return series. According to panel A, we notice that the

coe�cient bhta, which implies the presence of persistence in volatility is signi�cant only for the return

series of indices CNX-500 and CNX-J. Furthermore, the leverage coe�cient delta, which indicates the

presence of an asymmetric behavior is not signi�cant in all return series. These parametric results are
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inconsistent with the previous one. According to panel B, we can notice that the estimates of coe�cient

bhta are in accordance with the estimates of coe�cient bhta for the AR(1)-EGARCH(1,1) model. On

the other hand, according to the coe�cient gamma, which indicates the asymmetric behavior, this is

signi�cant only for the CNX index. These results are also inconsistent with non-parametric results, as

described in Table 3B.

5.4 Discontinuity / Jumps

Table 4 presents the frequency of jumps on volatilities and correlations in panels A and B, respectively.

Signi�cant in jumps are evident when the frequency of occurrence of jumps is higher than 50%. Most of

volatilities of indices have a signi�cant (in-magnitude) frequency of occurrence of jumps. All correlations

indicate highly signi�cant jumps with frequencies of occurrences of jumps higher than 70%.

5.5 Heterogeneity

Tables 5A and 5B report results in heterogeneity and jumps of volatilities. According to HAR-J (Table

5A), heterogeneity is evident on all frequencies. Jumps property is also evident in most of indices. The

jumps impact is higher than that of the heterogeneity for most of the Indian stock indices. The overall

HAR-J model (both heterogeneity and jumps properties) signi�cance is high enough, with R2 values from

23% to 34%. According to HAR-CJ (Table 5B), jumps coe�cients are signi�cant in all three di�erent

frequencies; continuous components are signi�cant for a time period of up to 5 months. The impact of

jumps components is higher than that of the continuous components of volatilities. Both continuous and

jumps components of most of volatilities do positively a�ect volatilities. This result is expected for the

continuous but not for the jumps components. The overall signi�cance of the heterogeneity and jumps

for volatilities in the HAR-CJ model is high with R2 values from 23% to 37%.

Tables 5C and 5D report results in heterogeneity and jumps of correlations. According to HAR-J

(Table 5C), heterogeneity is evident on the 5- and 20-months frequencies. The jumps property is only

evident in theBSESN correlations. The overall HAR-J model (both heterogeneity and jumps properties)

signi�cance is not negligible, with R2 values from 2% to 10%. However, the HAR-J model signi�cance

is lower for correlations than for volatilities. According to HAR-CJ (Table 5D), the coe�cients of

jumps and continuous components are signi�cant in all three di�erent frequencies; the latter are more

important (higher in magnitude) than the former components. A negative impact of 1-month and 5-

month continuous as well as 20-months jumps components of correlations. The results for the continuous

and jumps components can not provide clear-cut concluding remarks. The overall signi�cance of the

heterogeneity and jumps in the HAR-CJ model for correlations is high enough with R2 values from 2%

to 16%.
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6 Concluding remarks

We examine the properties of realized volatility and correlation series in the Indian stock market. The

properties are normality, long-memory, asymmetries, jumps and heterogeneity. Most of realized volatility

and correlation series are not normally distributed, with some evidence of persistence. Asymmetries are

also evident in both volatilities and correlations. Both jumps and heterogeneity properties are signi�cant;

whereas, the former is more signi�cant than the latter. The period of analysis spans from January 2,

2006 to November 30, 2014 and incorporates various stock market booms and crashes.

Table 6 summarises results for all properties of volatilities and correlations of the Indian stock market.

Firstly, across all descriptive statistics, non-normality is more evident than normality in both volatilities

and correlations. This result is revealed by the skewness and kurtosis values, the CvM normality test

and the JB test on volatilities and correlations. Secondly, there is evidence in favour of long memory

for both volatilities and correlations. The AG estimator reveals long memory. This is also evident by

the signi�cance of the FIGARCH (1,d,1) model. Asymmetries are also signi�cant for both volatilities

and correlations. This is evident via the signi�cance of the equations of the asymmetry equations,

the bootstrap non-parametric test, the D' Agostino (1970) skewness test, and the signi�cance of the

coe�cients of the asymmetric GARCH-type (EGARCH, and GJR) models. There are signi�cant jumps

in both volatilities and correlations.6 Regarding the Indian stock market as a total, jumps property is

signi�cant based on the frequency of occurrence of jumps as well as the HAR-J and HAR-CJ models.7

Heterogeneity is mostly signi�cant only for volatilities. There is a signi�cant heterogeneity property in

volatilities.8 In correlations, heterogeneity property is not evident.9 Regarding the Indian stock market

as a total, heterogeneity property is signi�cant based on the HAR-J and HAR-CJ models only for the

volatilities and correlations series.10

The empirical �ndings indicate the importance of realized volatility and correlation estimation for

emerging and quite promising markets, such as the Indian stock market. Furthermore, the Indian stock

market shares the properties of volatilities and correlations of developed stock markets. This result is

promising for the empowerment of the most recent asset and risk management research in emerging

markets, like India. The out-of-sample as well as the portfolio behaviour of the properties of realized

volatilities and correlations in emerging stock markets may be a future research topic. The �ndings are

relevant for non-speculative funds such as individual investors and pension funds which make decision

in a monthly frequency rather than daily frequency. Overall, the results suggest that normality, long-

memory, asymmetries, jumps and heterogeneity properties of volatility and correlation series enhance the

risk management practices of non-speculative funds in the Indian stock market. Moreover, the resources

6There is a single exception for the volatility series of the CNX − 100 index.
7There is a single exception for the HAR-J model upon the correlation series.
8There are two exceptions for the volatility series of the CNX − 500 and CNX − 100 indices.
9There are two exceptions for the correlation series with the CNX and BSESN indices.

10There is a single exception for the HAR-J model upon the correlation series.
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for economic growth comes from non-speculative and pension funds, if risk can be well measured then

the decision can be made e�ciently which increases further growth. As far as Indian stock market has

the similar properties like the developed world, this study suggest that the use of realized volatility is

recognized as the best in asset management for non-speculative funds.

7 Acknowledgements

Konstantinos Gkillas (Gillas) gratefully acknowledges research support by General Secretariat for Re-

search and Technology (GSRT) and Hellenic Foundation for Research and Innovation (HFRI).

19



References

[1] H. Akaike, A new look at the statistical model identi�cation. IEEE Transactions on Automatic

Control, 19 (1974), 716-723.

[2] C. Alper, E. Fendoglu, B. Saltoglu, MIDAS volatility forecast performance under market stress:

Evidence from emerging stock markets. Economics Letters, 117 (2012), 528-532.

[3] K. Amira, A. Taamouti, G. Tsafack, What drives international equity correlations? Volatility or

market direction? Journal of International Money and Finance, 30 (2011), 1234-1263.

[4] M. Anand, Determination of volatile pattern of portfolios to invest in Indian stock

market. Journal of Portfolio Management, (2014), forthcoming. Available at SSRN:

https://ssrn.com/abstract=1025766.

[5] T. Andersen, T. Bollerslev, Heterogeneous information arrivals and return volatility dynamics: Un-

covering the long-run in high frequency returns. Journal of Finance, 52 (1997), 975-1005.

[6] T. Andersen, T. Bollerslev, F. Diebold, Roughing it up: Including jump components in the measure-

ment, modeling and forecasting of return volatility. Review of Economics and Statistics, 89 (2007),

701-720.

[7] T. Andersen, T. Bollerslev, F. Diebold, H. Ebens, The distribution of stock return volatility. Journal

of Financial Economics, 61 (2001), 43-76.

[8] T. Andersen, T. Bollerslev, F. Diebold, P. Labys, The distribution of realized exchange rate volatility.

Journal of the American Statistical Association, 96 (2001), 42-55.

[9] D. Andrews, P. Guggenberger, A bias-reduced log-periodogram regression estimator for the long-

memory parameter. Econometrica, 71 (2000), 675-712.

[10] A. Atak, G. Kapetanios, A factor approach to realized volatility forecasting in the presence of �nite

jumps and cross-sectional correlation in pricing errors. Economics Letters, 120 (2013), 224-228.

[11] R.T. Baillie, T. Bollerslev, H.O. Mikkelsen, Fractionally Integrated Generalized Autoregressive Con-

ditional Heteroskedasticity. Journal of Econometrics, 74 (1996), 3-30.

[12] F. Bandi, B. Perron, Long memory and the relation between implied and realized volatility. Journal

of Financial Econometrics, 4 (2006), 636-670.

[13] O. Barndor�-Nielsen, N. Shephard, Impact of jumps on returns and realised variances: Econometric

analysis of time-deformed Levy processes. Journal of Econometrics, 131 (2006a), 217-252.

20



[14] O. Barndor�-Nielsen, N. Shephard, Econometrics of testing for jumps in �nancial economics using

bipower variation. Journal of Financial Econometrics, 4 (2006b), 1-30.

[15] S. Bentes, Measuring persistence in stock market volatility using the FIGARCH approach. Physica

A, 408 (2014), 190â197.

[16] S. Bentes, Long memory volatility of gold price returns: How strong is the evidence from distinct

economic cycles? Physica A, 443 (2016), 149â160.

[17] S. Bentes, On the relation between implied and realized volatility indices: Evidence from the BRIC

countries. Physica A, 482 (2017), 243â248.

[18] S. Bentes, R. Menezes, On the predictability of realized volatility using Feasible GLS. Journal of

Asian Economics, 28 (2013), 58-66.

[19] S. Bentes, R. Menezes, N. Ferreira, On the asymmetric behaviour of stock market volatility: evidence

from three countries. International Journal of Academic Research, 5 (2013), 24-32.

[20] S. Bentes, R., Menezes, D.A. Mendes, Long memory and volatility clustering: Is the empirical

evidence consistent across stock markets? Physica A, 387 (2008), 3826-3830.

[21] J. Beran, D. Ocker, Volatility of stock-market indexes - An analysis based on SEMIFAR models.

Journal of Business and Economic Statistics, 19 (2001), 103-116.

[22] S. Bhaduri, A. Samuel, International equity market integration: The Indian conundrum. Journal of

Emerging Market Finance, 8 (2009), 45-66.

[23] R. Bhar, B. Nikolova, Return, volatility spillovers and dynamic correlation in the BRIC equity

markets: An analysis using a bivariate EGARCH framework. Global Finance Journal, 19 (2009),

203-218.

[24] M. Bianconi, J. Yoshino, M. de Sousa, BRIC and the US �nancial crisis: An empirical investigation

of stock and bond markets. Emerging Markets Review, 14 (2013), 76-109.

[25] M. Brandt, F. Diebold, A no-arbitrage approach to range-based estimation of return covariances

and correlations. Journal of Business, 79 (2006), 1-13.

[26] S.-M. Chiang, H.-F. Chen, C.-T. Lin, The spillover e�ects of the sub-prime mortgage crisis and

optimum asset allocation in the BRICV stock markets. Global Finance Journal, 24 (2013), 30-43.

[27] R. Chiriac, V. Voev, Modelling and forecasting multivariate realized volatility. Journal of Applied

Econometrics, 26 (2011), 922-947.

21



[28] K. Christensen, R. Oomen, M. Podolskij, Realised quantile-based estimation of the integrated vari-

ance. Journal of Econometrics, 159 (2010), 74-98.

[29] K. Christensen, M. Podolskij, Asymptotic theory of range-based multipower variation. Journal of

Financial Econometrics, 10 (2012), 417-456.

[30] M. Clements, A. Galvao, J. Kim, Quantile forecasts of daily exchange rate returns from forecasts of

realized volatility. Journal of Empirical Finance, 15 (2008), 729-750.

[31] F. Corsi, A simple approximate long-memory model of realized volatility. Journal of Financial

Econometrics, 7 (2009), 174-196.

[32] A. Das, N.R. Kumar, B. Debnath, S. Mandal, Global economic crisis: Causes, impact on Indian

economy, agriculture and �sheries. International Journal of Agriculture Sciences, 199 (2012), 221-

226.

[33] R.B. De Agostino, Transformation to normality of the null distribution of G1. Biometrika, 57 (1970),

679-681.

[34] A. Dixit, S. Yadav, P. Jain, Informational e�ciency of implied volatilities of S&P CNX Nifty index

options: A study in Indian securities market. Journal of Advances in Management Research, 7

(2010), 32-57.

[35] J.M. Dufour, D. Pelletier, E. Renault, Short run and long run causality in time series: Inference.

Journal of Econometrics, 132 (2006), 337-362.

[36] R.B. Durand, Y. Lan, A. Ng, Conditional beta: Evidence from Asian emerging markets. Global

Finance Journal, 22 (2011), 130-153.

[37] N.B. Ferreira, R. Menezes, D.A. Mendes, Asymmetric conditional volatility in international stock

markets. Physica A, 382 (2007), 73â80.

[38] J.J. French, A. Naka, Dynamic relationships among equity �ows, equity returns and dividends:

Behavior of US investors in China and India. Global Finance Journal, 24 (2013), 13-29.

[39] S. Garg, Vipul, Volatility risk premium in Indian options prices. Journal of Futures Markets, 35

(2015), 795-812.

[40] E. Ghysels, P. Santa-Clara, R. Valkanov, Predicting volatility: Getting the most out of return data

sampled at di�erent frequencies. Journal of Econometrics, 131 (2006), 59-95.

[41] C.I. Giannikos, E. Gousgounis, Short sale constraints and dispersion of opinion: Evidence from the

Indian equity market. Financial Review, 47 (2012), 115-143.

22



[42] L.R. Glosten, R. Jagannathan, D.E. Runkle, Relationship between the expected value and the

volatility of the nominal excess return on stocks. The Journal of Finance, 48 (1993), 1779-1801.

[43] C.W.J. Granger, Time series concepts for conditional distributions. Oxford Bulletin of Economics

and Statistics, 65 (2003), 689-701.

[44] X. Huang, G. Tauchen, The relative contribution of jumps to total price variance. Journal of Fi-

nancial Econometrics, 3 (2005), 456-499.

[45] C.M. Jarque, A.K. Bera, E�cient test for normality, homoscedasticity and serial independence of

residuals. Economic Letters, 6 (1980), 255-259.

[46] M. Karmakar, Asymmetric volatility and risk-return relationship in the Indian stock market. South

Asia Economic Journal, 8 (2007), 99-116.

[47] D. Kumar, Return and volatility transmission between gold and stock sectors: Application of port-

folio management and hedging e�ectiveness. IIMB Management Review, 26 (2014), 5-16.

[48] A.V. Kumar, S. Jaiswal, The Information content of alternate implied volatility models: Case of

Indian markets. Journal of Emerging Market Finance, 12 (2013), 293-321.

[49] Y. Liao, The bene�t of modeling jumps in realized volatility for risk prediction: Evidence from

Chinese mainland stocks. Paci�c-Basin Finance Journal, 23 (2013), 25-48.

[50] D. Majumder, Asset pricing model for ine�cient markets: Empirical evidence from the Indian

market. Reserve Bank of India Occasional Papers, 33 (2012), 65-88.

[51] B. Mandelbrot, L. Hudson, The Misbehavior of Markets, Basic Books (2009).

[52] M. Martens, D. van Dijk, Measuring volatility with the realized range. Journal of Econometrics,

138 (2007), 181-207.

[53] R. Monhan, Global �nancial crisis and key risks: Impact on India and Asia. Remarks (IMF-FSF

High Level Meeting on the Recent Financial Turmoil and Policy Responses at Washington D.C.)

(2009).

[54] D.B. Nelson, Conditional heteroscedasticity in asset returns: a new approach. Econometrica, 59

(1991), 347-370.

[55] A. Pandey, The extreme value volatility estimators and their empirical performance in Indian capital

markets. Working paper, Indian Institute of Management (2002).

[56] M. Parkinson, The extreme value method for estimating the variance of the rate of return. Journal

of Business, 53 (1980), 6-15.

23



[57] A. Prasad, C.P. Reddy, Global �nancial crisis and its impact on India. Journal of Social Sciences,

13 (2009), 1-5.

[58] D.N. Rao, G. Kaur, E�ect of global economic meltdown on commodities markets: An empirical

study of select agricultural commodities traded in NCDEX. SSRN Working paper, (2009).

[59] B. Sevi, An empirical analysis of the downside risk-return trade-o� at daily frequency. Economic

Modelling, 31 (2013), 189-197.

[60] M. Soucek, N. Todorova, Realized volatility transmission: The role of jumps and leverage e�ects.

Economics Letters, 122 (2014), 111-115.

[61] N. Todorova, Volatility estimators based on daily price ranges versus the realized range. Applied

Financial Economics, 22 (2012), 215-229.

[62] N. Todorova, M. Soucek, The impact of trading volume, number of trades and overnight returns on

forecasting the daily realized range. Economic Modelling, 36 (2014), 332-340.

[63] T. Tripathy, L.A. Gil-Alana, Suitability of volatility models for forecasting stock market returns:

A study on the Indian national stock exchange. American Journal of Applied Sciences, 7 (2010),

1487-1494.

[64] T. Tripathy, L.A. Gil-Alana, Modelling time-varying volatility in the Indian stock returns: Some

empirical evidence. Review of Development Finance, 5 (2015), 91-97.

24



Tables

Table 1A. Distributional properties

Mean Skew. Kurt. CVM-test JB-test

Panel A. Returns

CNX − 500 0.812 -8.204 72.555 3.341 (2.82e+13) 9.669 (0.008)**

CNX − 100 0.830 -8.196 72.480 3.283 (1.42e+12) 14.048 (0.000)**

CNX − J 0.894 -7.862 68.555 2.802 (699.330) 14.340 (0.000)**

CNX 0.832 -8.269 73.346 3.418 (1.76e+15) 15.603 (4.09e-04)**

BSESN 0.952 -8.440 75.346 3.804 (1.48e+25) 12.216 (0.002)**

Panel B. Volatilities

CNX − 500 3.52e-3 2.715 11.172 1.658 (1.52e-9)** 603.244 (0.000)**

CNX − 100 4.15e-3 2.949 13.393 1.678 (1.81e-9)** 764.320 (0.000)**

CNX − J 5.49e-3 2.554 10.305 1.684 (1.93e-9)** 287.432 (0.000)**

CNX 5.34e-3 2.900 13.353 1.757 (4.06e-9)** 904.367 (0.000)**

BSESN 4.00e-3 2.771 12.337 1.597 (9.40e-10)** 1,015.101 (0.000)**

Notes. Table 1A reports the descriptive statistics of returns (panel A), and volatilities (panel B) for

the �ve Indian stock indices. In brackets, there are p-values. ** and * reveal signi�cance in the 5% and

10% signi�cance level, respectively.
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Table 1B. Distributional properties - Correlations

CNX − 500 CNX − 100 CNX − J CNX BSESN

Panel A. Mean

CNX − 500 -

CNX − 100 0.808 -

CNX − J 0.696 0.653 -

CNX 0.725 0.713 0.566 -

BSESN 0.720 0.705 0.564 0.638 -

Panel B. Skewness

CNX − 500 -

CNX − 100 2.026 -

CNX − J 1.140 0.935 -

CNX 1.353 1.396 0.027 -

BSESN 0.932 0.912 0.247 -0.105 -

Panel C. Kurtosis

CNX − 500 -

CNX − 100 10.573 -

CNX − J 6.738 6.239 -

CNX 6.825 7.746 3.623 -

BSESN 8.870 9.093 5.349 5.438 -

Panel D. CVM-test

CNX − 500 -

CNX − 100 0.349 (8.93e-5)** -

CNX − J 0.120 (0.059)* 0.107 (0.088)* -

CNX 0.289 (4.29e-4)** 0.403 (2.34e-5)** 0.036 (0.758) -

BSESN 0.313 (2.27e-4)** 0.345 (9.85e-5)** 0.139 (0.032)** 0.284 (4.84e-4)** -

Panel E. JB-test

CNX − 500 -

CNX − 100 526.164** -

CNX − J 213.281** 187.531** -

CNX 597.963** 357.622** 191.451** -

BSESN 512.161** 550.276** 234.018** 552.695** -

Notes. Table 1B reports the descriptive statistics of correlations between the �ve Indian stock indices.
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Panel A reports their mean values; panel B reports skewness values; panel C reports the kurtosis values;

panel D reports the CVM-test for normality; and panel E reports the JB-test for normality. In brackets,

there are p-values. ** and * reveal signi�cance in the 5% and 10% signi�cance level, respectively.
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Table 2A. Long-memory property

Volatility (RV RRt ) Correlations (RCRRt )

CNX − 500 CNX − 100 CNX − J CNX

CNX − 500 0.206 -

CNX − 100 0.247 0.247 -

CNX − J 0.232 0.206 0.247 -

CNX 0.253 0.247 0.250 0.242 -

BSESN 0.269 0.208 0.248 0.252 0.255

Notes. Table 2A entries report the long-memory estimates (d-values) for the realised ranges and realised

range correlations. All estimates are statistically signi�cant. SE are available upon request.
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Table 2B. Estimation results of FIGARCH model for long memory

c ω β δ φ

CNX − 500 0.003* 1.34e-4 0.742* 0.884 0.334

CNX − 100 0.003* -9.02e-6 0.587* 0.458** 0.161

CNX − J 0.004* 1.65e-5** 0.681* 0.790 0.296

CNX 0.003* -1.73e-5 0.589* 0.461** 0.084

BSESN 0.003* 3.75e-6 0.540* 0.517* -0.016

Notes. Table 2B reports the FIGARCH(1,d,1) estimates for the four Indian stock indices. The model

was selected according to the Akaike (1974) information criterion. ** and * reveal signi�cance in the 5%

and 10% signi�cance level, respectively.
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Table 3A. Asymmetries - Volatilities

Panel A. b - coe�cient

β γ R2

CNX − 500 5.06e-3** 9.23e-4** 0.026

CNX − 100 3.23e-3** -2.30e-4** 7.03e-3

CNX − J 4.36e-4** 5.71e-3** 6.03e-3

CNX 9.66e-3** -2.37e-3** 0.033

BSESN 3.94e-3** -4.69e-3** 0.017

Panel B. Test for Asymmetry

Bootstrap non-parametric test De Agostino skewness test

CNX − 500 149.537** 7.102**

CNX − 100 130.128** 7.339**

CNX − J 176.882** 6.752**

CNX 126.809** 7.473**

BSESN 116.444** 7.521**

Notes. Table 3A entries report the R2 and the asymmetric (b- and g-) coe�cients from the asymmetric

regression for volatilities.

(1− L)
dRV RR RV RRt = α+ β ·D+ · rit−1 + γ ·D− · rit−1 + ut

where D+ =


1 rit ≥ 0

0 rit < 0

and D− = 1−D+, RV
RR
t is the realised range of each index and rit is the

returns series of the i respective indicator. ** and * reveals signi�cance in the 5% and 10% signi�cance

level.11

11The heteroscedasticity and autocorrelation consistent (Newey-West) SE (NW SE) are available upon request.
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Table 3B. Asymmetries - Correlations

CNX − 500 CNX − 100 CNX − J CNX

Panel A. β - coe�cient

CNX − 500 -

CNX − 100 -0.065** -

CNX − J 0.016** 0.012** -

CNX -0.068** -0.078** -0.014** -

BSESN -0.037** -0.023** -0.029** -0.050**

Panel B. γ - coe�cient

CNX − 500 -

CNX − 100 -0.012** -

CNX − J -0.055** -0.055** -

CNX -0.016** -4.84e-4 -0.043** -

BSESN -0.061** -0.063** -0.069** -0.051**

Panel C. Bootstrap non-parametric test

CNX − 500 -

CNX − 100 -110.790** -

CNX − J -136.921** -128.178** -

CNX -104.732** -88.145** -123.440** -

BSESN -132.210** -120.821** -193.464** 120.468**

Panel D. De Agostino skewness test

CNX − 500 -

CNX − 100 -6.829** -

CNX − J -5.992** -5.848** -

CNX -6.926** -6.266** -5.817** -

BSESN -7.407** -7.487** -6.451** -7.491**

Notes. Table 3B reports the b - and g - coe�cients of the asymmetric regression for the realised

correlation (RCRRt ) estimates between the �ve Indian stock indices in panel A and B accordingly.

(1− L)
dRCRR RCRRt = α+ β ·D+ ·RCRRt−1 + γ ·D− ·RCRRt−1 + ut

where D+ =


1 rit ≥ 0

0 rit < 0

and D− = 1−D+.

RCRRt is the realised range correlation. ** and * reveals signi�cance in the 5% and 10% signi�cance

level.12

12The heteroscedasticity and autocorrelation consistent (Newey-West) SE (NW SE) are available upon request.
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Table 3C. Estimation results of asymmetric GARCH-type models

c φ1 ω α β δ R2

Panel A. AR(1)-EGARCH(1,1)

CNX − 500 0.003* -0.384* -6.926* 0.980* 0.295* -0.017 0.077

CNX − 100 0.001* -0.357* -8.552* 0.854* 0.080 -0.043 0.098

CNX − J 0.006* -0.187 -6.482* 1.300* 0.359* -0.030 0.041

CNX 0.003* -0.391* -9.600* 0.683* -0.061 -0.090 0.100

BSESN 0.003* -0.436* -7.998* 0.900* 0.146 -0.078 0.106

Panel B. AR(1)-GJR-GARCH(1,1)

CNX − 500 0.005* -0.327* 3.29e-5 0.146 0.641* 0.065 0.102

CNX − 100 0.004* -0.423* 1.28e-4* 0.397 -0.043 0.288 0.089

CNX − J 0.005* -0.132 2.21e-5 0.313** 0.658* -0.087 0.034

CNX 0.003* -0.352* 2.52e-4* 0.340 -0.433** 0.613** 0.106

BSESN 0.003* -0.510** 1.13e-3* 0.200** -0.068 0.247 0.094

Notes. Table 3C reports the asymmetric GARCH-types estimates for the four Indian stock indices.

Panel A reports the estimates of an AR(1)-EGARCH(1,1,1). Panel B reports the estimates of an AR(1)-

GJR-GARCH(1,1,1). The model was selected according to the Akaike (1974) information criterion. **

and * reveals signi�cance in the 5% and 10% signi�cance level.
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Table 4. Frequency of Jumps

Volatility Correlations

CNX − 500 CNX − 100 CNX − J CNX

CNX − 500 0.393 -

CNX − 100 0.452 0.880* -

CNX − J 0.583* 0.831* 0.795* -

CNX 0.595* 0.867* 0.795* 0.723* -

BSESN 0.510* 0.819* 0.843* 0.687* 0.783*

Notes. Table 4 reports the frequency of jumps occurence in volatilities and correlations. Jumps series

is signi�cant (indicated by *) if the frequency of occurence of jumps is higher than 50%.
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Table 5A. Heterogeneity and Jumps (HAR-J model) - Volatilities

β1M β5M β20M γJ R2

CNX − 500 0.411** 0.136** 0.024* 5.754* 0.290

CNX − 100 0.458** 0.132** 0.013 -0.024 0.248

CNX − J 0.328** 0.215** 0.053** 3.523** 0.282

CNX 0.438** 0.126** -0.019* 2.85e-3 0.228

BSESN 0.554** 0.109** -7.65e-3 -1.501** 0.343

Notes. Table 5A entries report R2 and the β1M , β5M , β20M and γJ regression coe�cient estimates from

the HAR-J model:

RV RRt = β0 + β1MRV
RR
t−1,t + β5MRV

RR
t−5,t + β20MRV

RR
t−20,t + γJJ

RV RR

t−1,t

and dependent variable is volatilities. ** and * reveals signi�cance in the 5% and 10% signi�cance level.13

13The heteroscedasticity and autocorrelation consistent (Newey-West) SE (NW SE) are available upon request.
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Table 5B. Heterogeneity and Jumps (HAR-CJ model) - Volatilities

βC1M
βC5M

βC20M
γJ1M γJ5M γJ20M R2

CNX − 500 7.253 -0.247 6.114 0.397** 0.101** 7.98e-4 0.363

CNX − 100 0.387 1.049* 2.244 0.434 0.098** -5.25e-3** 0.264

CNX − J 4.965** -3.074** 0.051 0.395** 0.223** 0.016 0.329

CNX 0.404* -0.123** 0.291 0.435** 0.136** -0.028* 0.232

BSESN -1.190* 1.935** 3.028 0.546** 0.085** -0.053** 0.367

Notes. Table 5B entries report R2 and the βC1M
, βC5M

, βC20M
, γJ1M , γJ5M and γJ20M regression

coe�cient estimates from the HAR-CJ model:

RV RRt =


β0 + βC1M

CRV
RR

t−1,t + βC5M
CRV

RR

t−5,t + βC20M
CRV

RR

t−20,t+

γJ1MJ
RV RR

t−1,t + γJ5MJ
RV RR

t−5,t + γJ20MJ
RV RR

t−20,t + εt

and dependent variable is the realised range (volatility) series. ** and * reveals signi�cance in the 5%

and 10% signi�cance level.14

14The heteroscedasticity and autocorrelation consistent (Newey-West) SE (NW SE) are available upon request.
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Table 5C. Heterogeneity and Jumps (HAR-J model) - Correlations

CNX − 500 CNX − 100 CNX − J CNX

Panel A. β1M

CNX − 500 -

CNX − 100 1.295 -

CNX − J 1.1671 -0.330 -

CNX 2.630 2.948 1.679 -

BSESN -0.031* 0.125** -0.053** 0.097**

Panel B. β5M

CNX − 500 -

CNX − 100 -0.091** -

CNX − J 5.29e-3 0.042** -

CNX -5.61e-3 -0.015* 0.125** -

BSESN -0.085** -0.101** 0.071** -0.114**

Panel C. β20M

CNX − 500 -

CNX − 100 0.053** -

CNX − J 0.018** -7.03e-3 -

CNX 0.103** 0.054* 8.10e-4 -

BSESN 0.133** 0.103** 0.082** 0.113**

Panel D. γJ

CNX − 500 -

CNX − 100 -1.495 -

CNX − J -1.160 0.310 -

CNX -2.857 -3.182 -1.637 -

BSESN 0.075* -0.142** 0.330** -0.072

Panel E. R2

CNX − 500 -

CNX − 100 0.052 -

CNX − J 0.035 0.023 -

CNX 0.078 0.103 0.048 -

BSESN 0.022 0.021 0.052 0.025

Notes. Table 5C reports the β1M , β5M and β20M coe�cients and R2 of the HAR-J model in panels A,

B, C and D accordingly.

RCRRt = β0 + β1MRC
RR
t−1,t + β5MRC

RR
t−5,t + β20MRC

RR
t−20,t + γJJ

RCRR

t−1,t

where JRC
RR

t is the jump component series of the realised range correlation series. ** and * reveals

signi�cance in the 5% and 10% signi�cance level.15

15The heteroscedasticity and autocorrelation consistent (Newey-West) SE (NW SE) are available upon request.
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Table 5D. Heterogeneity and Jumps (HAR-CJ model) - Correlations

CNX − 500 CNX − 100 CNX − J CNX

Panel A. βC1M

CNX − 500 -

CNX − 100 -0.245** -

CNX − J -0.090** -0.140** -

CNX -0.244** -0.251** -0.010 -

BSESN -0.036 -0.053* 0.193** 0.135**

Panel B. βC5M

CNX − 500 -

CNX − 100 -0.177** -

CNX − J -0.183** -0.110** -

CNX 4.73e-3 0.060** 0.065** -

BSESN -0.430** -0.408** -0.448** -0.335**

Panel C. βC20M

CNX − 500 -

CNX − 100 0.074** -

CNX − J 0.096** 0.027** -

CNX 0.217** 0.167** -0.028 -

BSESN 0.106** 0.085** 0.108** 0.321**

Panel D. γJ1M

CNX − 500 -

CNX − 100 2.80e-4** -

CNX − J 2.92e-4** 4.01e-4** -

CNX 2.05e-4** -8.42e-5** 1.10e-4** -

BSESN 2.46e-4** 2.42e-4** -4.69e-5** -2.22e-4**

Panel E. γJ5M

CNX − 500 -

CNX − 100 5.46e-3** -

CNX − J 5.62e-3** 3.75e-4** -

CNX -3.83e-5** -1.34e-4** 5.64e-5** -

BSESN 1.62e-3** 1.27e-3** 1.37e-3** 5.99e-4**

Panel F. γJ20M

CNX − 500 -

CNX − 100 -2.38e-4** -

CNX − J -2.68e-4** -2.17e-4** -

CNX -5.68e-4** -2.75e-4** -9.52e-5** -

BSESN -2.99e-4** -1.51e-4** -2.62e-4** -7.02e-4**

Panel G. R2

CNX − 500 -

CNX − 100 0.093 -

CNX − J 0.099 0.083 -

CNX 0.097 0.085 0.020 -

BSESN 0.134 0.114 0.164 0.100

Notes. Table 5D reports the βC1M
, βC5M

, βC20M
, γJ1M , γJ5M and γJ20M coe�cients and R2 of the

HAR-CJ model in panels A, B, C, D, E, F and G accordingly.

RCRRt =


β0 + βC1M

CRC
RR

t−1,t + βC5M
CRC

RR

t−5,t + βC20M
CRC

RR

t−20,t+

γJ1MJ
RCRR

t−1,t + γJ5MJ
RCRR

t−5,t + γJ20MJ
RCRR

t−20,t + εt

** and * reveals signi�cance in the 5% and 10% signi�cance level.16

16The heteroscedasticity and autocorrelation consistent (Newey-West) SE (NW SE) are available upon request.
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Table 6. Summarized results

CNX − 500 CNX − 100 CNX − J CNX BSESN India

Panel A. Volatilities

Non-normality
√ √ √ √ √ √

Long-memory
√ √ √ √ √ √

- FIGARCH − √ − √ √ √

Asymmetry
√ √ √ √ √ √

- EGARCH − − − − − −

- GJR-GARCH − − − − √ −

- Frequency − − √ √ √ √

- HAR-J
√ − √ − √ √

- HAR-CJ
√ √ √ √ √ √

Jumps
√ − √ √ √ √

- HAR-J
√ √ √ √ √ √

- HAR-CJ − − √ √ √ √

Heterogeneity − − √ √ √ √

Panel B. Correlations

Non-normality
√ √ √ √ √ √

Long-memory
√ √ √ √ √ √

Asymmetry
√ √ √ √ √ √

- Frequency
√ √ √ √ √ √

- HAR-J − − − √ √ −

- HAR-CJ
√ √ √ √ √ √

Jumps
√ √ √ √ √ √

- HAR-J − − − √ √ −

- HAR-CJ
√ √ √ √ √ √

Heterogeneity − − − √ √ −

Notes. Table 6 summarizes the empirical evidence on distributional, long-memory, asymmetries, jumps

and heterogeneity properties of the volatilities and correlations of the �ve Indian stock indices.
√

indicates the existence/signi�cance of a property and − indicates the lack of such a property.
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