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I. LEAST SQUARES ESTIMATION 

Least squares estimation is a widely used technique in analyzing and processing engineering and scientific 
data. 

The least squares estimation problem can be stated as follows: given the observed/measured data sequence 
Xi, i = 1,2 ... n the objective is to estimate a related sequence Yj, j = 1, ... m such that the estimated 
sequence Yj, j = 1, ... m is as close as possible to the original sequence in the Euclidean norm. 

Let 
i = I, ... m (1.1 ) 

be the estimated sequence where x = [Xl • •• X n ]' is the given data vector and Ij(x) is in general a non linear 
multi variable function. The error vector in this estimation is given by 

e=y-y	 (1.2) 

with 
Y = [Yl ... Yrn]' and y = [YI ... Yrn]' 

The objective of least squares estimation is to determine the functions Ij such that the least squares error 
criterion 

m 

E = lel 2 = L (Yj - Yj)2	 (1.3) 
j=l 

is minimum. In linear least squares functions Ii are linear and Yj is a linear combination of the measurements 
Xi, i=l, ... n. 

Least squares technique was originally developed independently by the German mathematician Gauss and 
French mathematician Legendre. 

The concept of least squares analysis is probably best explained by Gauss himself in Theoria ~lotus Corporum 
Celestium [1] (Theory of the Motion of Heavenly Bodies): 

If the astronomical observations and other quantities on which the computation of orbits is based were 
absolutely correct, the elements also, whether deduced from three or four observations would be strictly 
accurate (so far indeed as the motion is supposed to take place exactly according to the laws of Kepler) 
and, therefore, if other observations were used, they might be confirmed but not corrected. But since 
all our measurements and observations are nothing more than approximations to the truth, the same 
must be true of all calculations resting upon them, and the highest aim of all computations concerning 
concrete phenomena must be to approximate, as nearly as practicable to the truth. But this can be 
accomplished in no other way than by a suitable combination of more observations than the number 
absolutely requisite for the determination of the unknown quantities. 

Gauss goes on to say that 

. .. the most probable value of the unknown quantities will be that in which the sum of the squares 
of the differences between the actually observed and the computed values multiplied by numbers that 
measure the degree of precision is a minimum. 

NOTATIONS 

For the sake of clarity, the following conventions are adopted in this document: 

1.	 Scalars are represented by lowercase letters such as a, x, y and so on. Indexed scalars are denoted as 
Xl, X2, and so on. 
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2.	 Vectors are denoted by boldface lowercase letters such as a, b, x and so on. Indexed vectors are denoted 
as Xl, x2 and so on. 

3. Matrices are denoted by boldface uppercase letters such as A, B and so on. Indexed matrices are denoted 
as M I , M 2 , and so on. 

ORGANIZATION OF THE DOCUMENT 

Section 2.0 introduces the linear least squares problem. Section 2.1 uses basic principles to derive the 
least squares solution for an overdetermined system of linear equations. Section 2.2 discusses orthogonal 
projections and provides a new interpretation for the least squares solutions in terms of these projections. 
Section 2.3 introduces singular value decomposition and gives an alternate interpretation for the least squares 
technique in terms of subspaces spanned by orthonormal basis functions. 

Finally, section 2.4 introduces the general case of weighted least squares and derives the solution for this 
general case. 
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11.- LEAST SQUARES SOLUTIONS 

2.0 INTRODUCTION 

In this section we will develop the theory of linear least squares estimation. Here the functions Ij are assumed 
to be linear and of the form 

Yj = fj(x) =L
n 

fjkXk =fJx j = 1, ... m (2.1) 
k=l 

Where 
fj = [fjl ... fjn] (2.2a) 

The estimated sequence fJ can be expressed as 

y= Fx (2.3) 

where F is an m x n matrix of the form 

(2.4)
F= [J] 

m 

and x and yare defined as before. 

2.1 Least Squares Solution of an Overdetermined System of Linear Equations 

Let 
Ax=b (2.1.1 ) 

be an overdetermined set of linear equations where A, x and b have the following dimensions. 

A = m x n = coefficient matrix m > n 

x = n x 1 = vector of the unknowns 

b = m x 1 = RHS vector of known quantities 

m = number of rows 

n = number of columns (2.1.2) 

The solution to this problem can be found by explicitly writing out the error and minimizing it by setting 
the partial derivatives relative to components of x equal to zero. The error e is defined as the difference 
between the RHS and the LHS. Let x* be the least squares solution vector, then the error vector is given 
by: 

e = b - Ax * (m xl) (2.1.3) 

The least squares cost function is given by: 

E =e'e = /e1 2 (2.1.4) 

where: 

e' = transpose of e; and 

lei = norm of e 
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Substituting for e, we get: 
E =b'b - 2b'Ax+ x'A'Ax (2.1.5) 

Differentiating with respect to x, we get the gradient vector 

\7E = -2A'b + 2A'Ax (2.1.6) 

Setting the derivatives to zero we get: 

A'Ax = A'b (2.1.7) 

solving for x we get: 
x* (A'A)-l A' b 

i 
I 
I 

nx1 

i 
I 
I 

nxn 

i 
I 
I 

n x m 

i 
I 
I 

m x 1 

(2.1.8) 

Note that A'A is an n x n square matrix and the above solution exists only if this matrix is nonsingular. In 
case A is square (say n x n) and invertible, then 

(2.1.9) 

and we get: 
(2.1.10) 

which is the standard solution. 

Matrix (A'A) is nonsingular if and only if A is full rank. If r = rank(A) < n, then equation 2.1.7 is an 
underdetermined set of linear equations and the least squares solution x* is not unique. This is because 
q =A'b is a vector in the row space of A and A'Ax is also a vector in the row space of A and since A is 
not full rank equation A'y = q does not have a unique solution for y which implies that equation Ax = y 
does not have a unique solution for x. 

Note also that for nonsquare A, the relationship Ax =b is not an exact equality, rather it is an approximate 
relationship, thus it can be more appropriately written as: 

Ax~b (2.1.11) 

To summarize: 

1) if A is not full rank, then least squares solution is not unique 

2) if A is full rank, that is rank (A) =n, then least squares solution x* is unique and is given by (2.1.8). 

2.2 Orthogonal (Minimum Distance) Projections and Least Squares Solutions 

The least squares solution to an overdetermined system of linear equations was derived using the first 
principles. This solution can also be derived using the theory of orthogonal projections. In the following we 
will look at the geometric interpretations of the least squares solution and present an alternative method of 
derivation using this theory. 
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To introduce the geometric approach we look at the m x n matrix A as an operator that maps the n
dimensional vector x in ~n to an m-dimensional vector Ax in a subspace of ~m. The particular subspace 
where x is mapped to is the subspace spanned by the columns of A. If the rank of A is r( r ~ n), then the 
subspace is r-dimensional. To see what Ax means, let Xl, X2, .•• X n be the components of vector x . Also 
let 81, a2, ... an denote the n columns of matrix A, then Ax can be written as: 

n 

Ax =LXi8i (2.2.1) 
i=l 

Thus to form Ax one takes the oblique set of vectors {a1' 82, ... an} and forms Ax by the parallelogram 
rule, i.e. by weighting the vectors ai by Xi and adding up these vectors. Considering that: 

n 

X =LXiCi 

i=l 

where c~s are the unit vectors of the standard Cartesian coordinates, we can see that one merely replaces 
c~s with a~s to get Ax. 

Geometric Interpretation 

The error vector in (2.1.3) after substituting the least squares solution from (2.1.7) is given by: 

e* = b - Ax* = [I - A(A'A)-l A']b (2.2.2) 

Also from (2.1.6) the equation for solving x* can be rewritten as: 

VE = A'(b - Ax*) =A'e* =0 (2.2.3) 

Equation (2.2.3) implies that the error vector e* corresponding to the (optimum) least squares solution is 
orthogonal to the column space of the coefficient n1atrix A. This is referred to as the principle of orthogonality 
and equation (2.2.3) is also referred to as the normal equations. Using this principle we can show that the 
solution given by (2.2.3) is the least square solution. To see this consider any other solution x to (2.1.1) or 
more precisely to (2.1.11). Then we can show that: 

(2.2.4) 

Let 
e = b - Ax =b - Ax* + A(x* - x) =e* + A(x* - x) 

(2.2.5)
lel 2 = Ib - Axl 2 = le*12 + 161 2 + 26'e* 

where 
6=A(x*-x) 

Now since Ax and Ax* both lie in the column space of A so does 6 and since e* is orthogonal to this space 
therefore it must be orthogonal to fJ too, that is: 

6'e* = (x* - x)'A'e* = 0 (2.2.6) 

Using (2.2.6) in (2.2.5) we get: 
(2.2.7) 

From which (2.2.3) follows easily. 
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Now we proceed to show that the least squares solution x* is such that b = Ax* is the orthogonal projection 
of b onto the column space of A. It is obvious that b lies in the column space of A. We have also seen that 
the error vector e* = b - b is orthogonal to the column space of A and therefore to b. Hence using (2.2.6) 
we get the Pythogoras theorem in the hyperspace 

Thus b is orthogonal to e* = b - band b = b + e*, which means that b has been decomposed into two 
orthogonal components, one (b) in the column space of A and the other (b - b) orthogonal to this space. 
From this we conclude that b is the orthogonal projection of b onto the column space of A. Substituting 
the least squares solution from (2.1.8) we get: 

b =Ax* =A(A'A)-l A'b == Pb (2.2.8) 

where the matrix 
P = A(A'A)-l A' (2.2.9) 

is called the orthogonal projection matrix because it projects b onto the column space of A. Equation 
Ax ~ b is approximate but equation Ax = b is exact. Figure 1 illustrates these concepts. 

b +--- e· 

column of space A 

A 

b 

1\ 

Figure 1: Orthogonal decomposition of b into band e· 

2.3 Singular Value Decomposition and Least Squares Solutions 

From the above discussion we know that least squares solutions are related to orthogonal projections. This 
discussion however does not provide a method of solving for x. In this section we will use singular value 
decomposition to first shed more light into the nature of the solution and second to give a method of finding 
the solution vector x. The singular value decomposition of an m X n matrix A is given as: 

A = u E V' 
i i i i 
I I I I 
I I I I 

mx n I I I
 
I I I
 

mxm I I 
I' I 

mx n I 

nxn (2.3.1) 
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The column space of the U matrix forms an orthonormal basis for ~m and those of V an orthonormal basis 
for ~n, that is 

U'U = I(m x m) (2.3.2) 

y'y = I(n x n) (2.3.3) 

where I is the identity matrix and E is an m x n diagonal matrix of the form: 

0'1 0 0 10 
0 0'2 0 10 

L= 0 0 O'r 

I 
I 
I 

(2.3.4) 

0 0 /0 
0 0 10 

where r is the number of nonzero singular values and is equal to the rank of A. 

r = rank(A) (2.3.5) 

~latrix ~ can also be written as: 

(2.3.6) 

Where D is a diagonal matrix of singular values 0'1 to O'r. 

_[0"1. 0]
D- . (2.3.7) 

o O'r 

Columns of U and Y form orthonormal basis functions for ~n and ~m that are different from the standard 
Cartesian systems in these spaces (i.e. the system whose basis vectors are (1,0,0..0), (0, 1,0,0, .0), ... and 
(0,0, ... ,1)). The Cartesian system defined by the columns of U for example can be obtained from the 
standard system by rotating this system through (m - 1) consecutive rotations with one each aligning one 
axis from the standard Cartesian system from columns of Y. The combined effect of these (m - 1) axial 
rotations is one complex rotation. The two Cartesian systems however have the same origin because under 
the transformation y = Ux the origin (point (0,0, .. ,0)) maps into itself. We now use the SVD representation 
of A to find a solution for the overdetermined set of linear equations Ax ~ b. To do this we first dwell a 
little bit on the meaning of the transformation x ---+- Ax. We mentioned in section 2.2 equation (2.2.1) that 
to get Ax from x one has to replace the unit vectors of the Cartesian system with the columns of A, this 
maps vector x in ~n to vector Ax in an r-dimensional subspace of ~m where r = rank(A). Using singular 
value decomposition we will show that the action of operator A corresponds to two rotations (one in ~n and 
the other from ~n to the r- dimensional subspace of ~m) and a dilation. 

Let z = Ax, then 

z = Ax = ULV'x = ULY = Wy (2.3.8) 

where: 

y=Y'x (2.3.9a) 

W=U~ (2.3.9b) 
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Let us first absorb the meaning ofV'x. If we denote columns of V by VI, V2 to V n , then the i-th component 
of y, Yi can be written as 

Yi = v~x (2.3.10) 

that is Yi is the inner product of two vectors Vi and x. Reflecting on this a little bit, it becomes clear that y 
is exactly the same vector x only in the coordinate system defined by columns of V, Yi of equation (2.3.10) 
is the i - th component of x in the new Cartesian coordinate system. From this perspective it is clear that: 

Iyl = IV'xl = Ixl (2.3.11) 

This can be shown using (2.3.10) as follows: 

lyl2 = IV'xl2= 2;:(v~x)2 = ~ [2;: Vi jXj ] 2= 2;: 2;: ~ VijVi/cXjX/c 

a a 1 , 1 ~ 

lyl2 = 2: 2: XjXk· 2: VijVik (2.3.12) 
j k 

From orthonormality of Vi'S we have: 

j=k 
(2.3.13)

else 

Thus (2.3.12) can be written as: 

2 

IYl2 =2: 2: XjXkDjk = 2: = Ixl2 (2.3.14) 
j k j 

Since all our references are with respect to the standard Cartesian system (SCS), therefore we must look for 
an interpretation of y in this system. One way to do this is to rotate SCS through an angle () such that it 
coincides with the coordinate system defined by the Vi'S. Since SCS must be kept unchanged what we have 
to do is to rotate x by -() to get y, by doing so the relationship of y to SCS will be exactly the same as x 
with respect to V. Remember that {} is the angle between the Cartesian coordinate system of V and the 
SCS that is the angle that SCS must be rotated to coincide with V. Note that vector Vx is x rotated +0 
degrees, while V'x is obtained by rotating x by -{} degrees. This is a direct consequence of orthonormality 
of V whereby V' equals to the left inverse of V. 

V'V=I 
V-IV = I 

Continuing from equation (2.3.8), the next step to get from y to Ax is to map y by the operator U~ to the 
r- dimensional subspace of ~m. This r-dimensional subspace is defined by the first r orthonormal columns 
of U. If {U1 ... u r } are the first r columns of U, then the basis of this subspace is {0'1 U1, .• . 0'r U r }. If r = n, 
then operator W corresponds to a rotation ¢J of the SCS to that defined by the columns of W (try to visualize 
the case where m=3 and r=n=2). Transformation y -+ Wy in general requires changing from subspace ~n 

to an r-dimensional hyper space of ~m (change of planes for r=n=2 and m=3). Thus the mapping x -+ Ax 
corresponds to three consecutive operations: i) rotation of vector x in ~n by amount -{} determined by V 
to get y = V'x, ii) rotation of y from ~n by ¢J to the r- dimensional subspace of ~m defined by the first r 
columns of U to get w iii) dilation of vector w by matrix ~. If we let z = ~w, then the i - th component of 
z, Zi is related to the i - th component of w, Wi by the dilation relationship Zi = UiWi. Figure 2 illustrates 
these operations geometrically. 
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z 

An r-dimensional 
subspace of 9t. 

z=Uw=Ax 

..... ............ 

.......... 

..... ........... ......... 

.... .... .... ....~ V z 

Dilation and projection 
onto r-dimensl0nal 
Cartesian subspace of 9t D 

9 ' , 
,,,,,, 

,,,,,, 

,,,,,,,,,., 
x 

y=V'x 
~ 

VI 

9 = A rotation from 9tD to 9\ 

1:


cp

A projection from 9\ to 9r and dilation 

A rotation from 9r to an r-dimensional subspace of 9tDl 

y 

Figure 2. Geometric interpretation of singular 
value decomposition for r-l, n-2, and m-3. 
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Using singular value decomposition of A from equation (2.3.1), the generalized inverse of A, A -1 can be 
expressed as: 

A -1 =V~-lU' (2.3.15) 

where ~-1 is an n x m matrix and is defined as: 

0-1 0]
~-1 = ----+--- (2.3.16) 

[ o 0 

It can be shown by direct substitution that the solution 

(2.3.17) 

will always satisfy equation (2.1.7), that is it is a least squares solution. 

Figure 3 gives a geometrical interpretation for equation (2.3.17). Figures 4a and 4b provide schematic 
interpretations for the forward and inverse operations. 

2.4 Weighted Least Squares (WLS) 

In ordinary least squares, components of the error vector are weighted equally in forming the total least 
squares error. In weighted least squares, error components are weighted according to their significance. The 
cost function of WLS is: 

E = L L Wijeiej = e'We (2.4.1) 
j 

where e =b - Ax = the error vector 

W = {Wij} is the weighting matrix ~ 0 (2.4.2) 

We will show that the solution to the weighted least squares problem is obtained by solving the following 
system of equations: 

SAx= Sb (2.4.3) 

where S is the square root of W: 
S's=w (2.4.4) 

This follows from (2.4.1) if we substitute for e =b - Ax 

E = e'We = (b - Ax)'W(b - Ax) = x'(A'WA)x - 2(b'WA)x + b'Wb 

VE = 2(A'WA)x - 2(A'W'b) = 0 (2.4.5) 

x = (A'WA)-l(A'W'b) 

Substituting for W, we get: 

x = (A'S'SA)-l(A'S'Sb) = [(SA)'(SA)]-l(SA)'Sb (2.4.6) 

which shows that (equation 8, section 2.1) x is the least squares solution of the following system of equations: 

SAx ~ Sb 
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z 

~ 

b	 
~ 

~//
~ 

,II // ' b 2 = [ I riO] b 1 

--I!\ 
I
/ /	 oro- 't' ~ 

~---.~, ~/ projection of hi onto r-dimensional 
/ subspace of ~Q 

e 
b3 == ~bl - dilation of h2 

x· = Vb3	 rotation of h3 by e to get x· 

Figure 3.	 Geometric interpretation of least squares solution in terms of 
singular value decoIIlposition. 
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b=Ax=ULV'x=ULy=UW 

Dilation and	 Rotation by +q> from 
.. Rotation in ..	 ...x ...	 .... projection into r 9\f onto r-dimensional ~ b

9\D by -89\D	 y=V'x W=Ly9\'	 subspace of 9\m 

Figure 4a.	 Schematic illustration of the linear operation Ax=b. 

x=A-1b=VL-tU'b 

Dilation by L-t Rotation by +8 from 
Rotation inb	 ...... .. and projection ~ 9\' onto an r-dimensional~ x9\m by -q> U'b onto 9\f	 subspace of 9\D 

Figure 4b.	 Schematic illustration of the inverse operation 
x =A-1b where A-t is the generalized inverse. 
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