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. To predict the hydrodynamics of lakes, estuaries and shallow seas, a two 'di

mensional numerical model is developed using the method of fractional steps. The

governing equations, i.e., the vertically integrated Navier-Stokes equations of fluid

motion, are solved through three steps: advection, diffusion and propagation. The

characteristics method is used to solve the advection, the alternating direction im-

plicit method is applied to compute the diffusion, and the conjugate gradient it-

erative method is employed to calculate the propagation. Two ways to simulate

the moving boundary problem are studied. The first method is based on the weir

formulation. The second method is based on the assumption that a thin water layer

exists over the entire dry region at all times. A number of analytical solutions are

used to validate the model. The model is also applied to simulate the wind driven

circulation in Lake Okeechobee, Florida.
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CHAPTER 1
INTRODUCTION

In the past two decades, numerical modeling has been widely applied to the

study of the hydrodynamics of lakes, estuaries, coastal regions, etc. Many numerical

models ( Reid and Bodine, 1968, Leendertse, 1970, Yeh and Chou, 1979, etc.) have

been developed from the shallow water equations, i.e. vertically integrated Navier

Stokes equations of fluid motion, using the finite difference technique.

Many numerical schemes have been proposed to solve the shallow water equa

tions in the development of numerical models. They all have advantages and dis

advantages. The explicit scheme is computationally simple, but the time step must

be sufficiently small such that the Courant number is less than 1 (Smith, 1969) in

order to attain numerical stability. The implicit scheme does not have this limita-

tion, but it requires solving the matrix equations. For. two- and three-dimensional

flows, it is very difficult to overcome the computational difficulties resulting from

the sheer size of the matrices.. The alternating direction implicit method, or ADI

method, avoids solving complex matrix equations, but can obtain accurate solutions

only for Courant numbers less than 5 (Weare, 1979). Furthermore the ADI method

is not applicable to three-dimensional problems (Yanenko, 1971). The method of

fractional steps developed by Yanenko (1971), on the other hand is known to be

an effective method for solving complicated multi-dimensional problems in several

variables. In this scheme, the computation from one time level to the next is divided

into a series of intermediate steps. For each intermediate step, the computational

procedure is relatively simple, an exact solution can be obtained in some cases and

the time step can be quite large. However, this scheme still has the disadvantage

1
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that its consistency has not completely been justified theoretically. Nevertheless, it

has been used to solve the shallow water equations (Benque et al., 1982).

In the development of numerical hydrodynamic models, the treatment of the

shoreline boundary is very important. Most existing numerical hydrodynamic mod

els were developed based on the assumption of a fixed boundary with a vertical wall

located at the shoreline defined by the mean water depth. However, the shoreline

boundary can actually move with time in such problems as wave runup on a beach

and coastal flooding into a dry coastal region due to tides or storm surges. Some

researchers have tried to simulate this problem numerically. Reid and Bodine (1968)

considered the motion of the shoreline according to the water elevation and used

the empirical weir formulation to compute the velocity in which water flows into or

out of the dry land region. The disadvantage of this method is that the empirical

coefficients in the weir formulation are very site-dependent. Yeh and Chou (l979)

treated the shoreline boundary as a discrete moving boundary, but the impulsive

motion of the boundary could introduce serious numerical problems. Lynch and

Gray (1980) simulated the shoreline boundary as a continuous moving boundary

using continuous grid deformation. This method, however, can not be applied to

problems with complex topography.

In this study, a two-dimensional finite-difference numerical hydrodynamic model

is developed from the shallow water equations by using the method of fractional

steps. Two ways to simulate the moving boundary problem are studied. For some

simplified flow situations, analytical solutions are compared with numerical solu

tions to verify the consistency of the fractional step method .and the accuracy of

the numerical model. The numerical model is used to investigate the wind driven

circulation in Lake Okeechobee, Florida.

In Chapter 2, a careful derivation of the numerical model from the shallow

water equations will be presented. The computational mesh consists of rectangular
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cells with 'variable sizes. The governing equations are solved through three steps:

advection, diffusion and propagation. The characteristics method is used in the

advection step, the ADI method is applied to the diffusion step, and the conjugate

gradient method is applied to the propagation step.

In Chapter 3, linear and nonlinear analytical solutions to the one- dimensional

long wave propagation are developed and used to verify the accuracy of the numer

ical model. Theoretical solutions of tidal responses inside a rectangular basin with

Coriolis effect and bottom friction obtained by Rahman (1981) will be used to test

the ability of the model to simulate two-dimensional problems.

In Chapter 4, two ways to simulate the moving boundary problem are discussed

in detail. One way is similar to that used by Reid and Bodine (1968). Another way

is to include the dry land region into the computational domain by assuming a thin

water layer on the dry land region at all times. The theoretical solutions for wave

propagation on a linearly sloping beach developed by Carrier and Greenspan (1958)

are then presented and compared to the numerical solutions to verify the second

method for the moving boundary problem.

In Chapter 5, the wind driven circulation in Lake Okeechobee, Florida, including

the effects of the Coriolis force and a moving boundary, is investigated numerically.

In Chapter 6, conclusions are drawn and suggestions are made towards further

studies on numerical simulation of the moving boundary problem.



CHAPTER 2
DEVELOPMENT OF A TWO-DIMENSIONAL TIDAL CIRCULATION

MODEL

In this Chapter, a two-dimensional implicit tidal circulation model is devel-

oped using the method of fractional steps. The vertically-integrated momentum

and continuity equations, which govern the two-dimensional tide-generated cur-

rents, are solved through three steps which include an advection step, a diffusion

step and a propagation step. Momentum advection is solved using the method of

characteristics. An alternating direction implicit (ADI) method is applied to calcu

late momentum diffusion. The wave propagation is calculated using the conjugate

gradient method.

2.1 Governing Equations

The mathematical equations describing tidal flow in shallow water can be ob

tained by vertically integrating the three-dimensional Navier-Stokes equations of

fluid motion. Generally, it is assumed that the density of water over the depth is

constant and the vertical pressure variation is hydrostatic, thus leading to the fol-

lowing continuity and momentum equations in a right-handed Cartisian coordinate

system shown in the Fig. 2.1

az + au + av =0 (2.1)
at ax By

au eco e-o haz nv Tb: - T8 : [a (Kau) a (KBU)]- 0 (22)
at + ax + BY +9 ax - + p - ax ax + ay ay - .

av auv avv haz flU Tbll - T811 [a (Kav) a (Kav)]_ 0 (23)
at +-a + -a + 9 -a + + - -a -a + -a -a - .z u u p x x y y

4
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z

I IX. '1'.TI

FREE SURFACE

U.U

IS IX. n

x

Figure 2.1: Definition sketch for tidal equations

where t is time, x and yare the spatial coordinates, Z(x, y, t) is the free surface

elevation, U(x,y,t) and V(x,y,t) are the unit-width discharges in the x- and y

directions, respectively, u(x, y, t) and v(x, y, t) are the vertically-averaged velocities

corrresponding to U(x, y, t) and V (x, y, t), h(x, y, t) is the water depth, n is the

Coriolis acceleration parameter, g is the gravitational acceleration, p is the density

of water, K is the horizontal turbulent diffusion coefficient, T,: and T'll are the wind

shear stresses in the x- and y-directions, respectively, and Tb: and Tbll are the bottom

shear stresses in the x- and y-directions. Tb: and Tbll can be expressed as

and

pgVv'U2 + V2
Tbll = C2h2

where C is the Chezy coefficient which is

(2.4)

(2.5)

RI/6
C = 8.21

n
cml

/
2

/ sec. (2.6)
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or

R l / 6

C = 1.49
n

jt l / 2
/ sec. (2.7)

where R is the hydraulic radius and n is the Manning coefficient.

Obviously we have

U=uh }
V =vh

h = Z - Zb
(2.8)

where Zb is the bottom bed elevation of an estuary which is only a function of x

and y. Using these relationships and Eq. (2.1), the nonlinear terms in Eqs. (2.2)

and (2.3) can be expressed as

and

auu +avu =h(uau+vau)_uaz
ax ay ax ay at (2.9)

(2.10)auv + avv = h(uav + vav) _ vaz
ax ay ax ay -Bt

Substituting them into Eqs. (2.2) and (2.3), we obtain

au h( au au) az haz nv Thz - Tu [a(K~~) a(K~~)1-+ u-+v- -u-+g -- + - + =0at ax ay at ax p ax ay
(2.11)

av h( av av) ez haz nu Tbll - T'll [a(K~~) a(K~~)]-+ u-+v- -v-+g -+ + - + =0at ax ay at ay p ax ay .
(2.12)

Using the method of fractional steps, Eqs. (2.1), (2.11) and (2.12) can be solved

through three steps which are called advection step, diffusion step and propagation

step (Benque et al., 1982). In order to represent working equations at each step,

we use the subscript n to denote the model variables at time nAt and n+1 for the

model variables at time (n + l)At.

The working equations for the advection step are as follows:

un+ l / 3 - un au au
----+u-+v- =0

At ax ay . (2.13)
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V"+l/S - v" av av
----+u-+v- =0

~t ax ay
U"+~/s = u"+l/sh"

(2.14)

(2.15)

(2.16)

where the subscript n+ 1/3 is a symbolic used todenote the result. at time (n+ l)~t

due to the advection step alone.

The working equations for the computation of the diffusion step are

U"+2/S U"+l/S a au a au
- - nv - [-(K-) + -(K-)] = 0
~t ax ax ay ay

V"+2/S V"+l/S a av a av
- + nu - [-(K-) + -(K-)] = 0
~t ax ax ay ay

where the subscript n + 2/3 denotes the result after the diffusion step.

The working equations for the propagation step are as follows:

Z"+l - Z" au av
~t +-a +-a =0x y

U"+l - U"+2/S az az Tbz - Tu
At -u-+gh-+ =0
~ at ax p

V"+l - V"+2/S az az T - T-__"'-' + h + bl! ~I! 0-v- g - =
~t at ay p

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

The terms u ~; and v ~; come from the nonlinear terms. Compared with other

terms in Eqs, (2.20) and (2.21), their values are small and could be neglected in

the propagation step.

2.2 Numerical Scheme

Just like the splitting of a single time step into three steps as shown above, three

steps could be further split into two directional steps. For example, the advection

step can be treated with the following two steps:

x-advection
U"+l/6 _ u" au"+1/6

tlt + u" ax = 0 (2.22)



y-advection
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Vn+1/6 _ Vn aVn+1/ 6____ +Un =0
tlt ax

U n+1/3 _ un +1/ 6 aun +1/ 3

------ + V
n +1/6 = 0

tlt ay

Vn+1/3 _ vn+1/6 avn+1/ 3
------ + vn+1/6 = 0

tlt ay

(2.23)

(2.24)

(2.25)

where n + 1/6 represents the state after the x-advection. This scheme is implicit

and unconditionally stable.

For the diffusion step, an alternating direction implicit method is used which

leads to

x-sweep

U • un+l/3 a eo: a aun+1/ 3
- - -(K-) - -(K ) = 0 v n+1/3
ttlt ax ax ay ay

v· - v n+1/3 a av· a avn+1/3

ttlt - ax(K ax ) - ay(K ay ) = 0

y-sweep

V
n
+

2
/
3

- v· _ ~(Kav· ) _ ~(Kavn+2/3) = -0 U.
ttlt ax ax ay ay

(2.26)

(2.27)

(2.28)

(2.29)

where u· and v· are the intermediate values of unit-width discharge during the

computation of the diffusion step. Yanenko (1971) showed that the ADI scheme

was absolutely consistent and unconditionally stable for the two-dimensional heat

conduction equations, which become the working equations for the diffusion step if

the source terms arll! added.

The propagation step is the most important of the three steps and its work

ing equations are more complicated than the other two steps. By introducing a
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coefficient a (0 ~ a ~ 1) for the spatial derivatives, the working equations for the

propagation step can be written as

u n+1 _ Un+2!3

Ilt +

+

V n+1 _ vn+2!S

Ilt +

+

ez az Un+2!S zn+l z:
a(gh_)n+l + (1 - a)(gh-)n - ( -)

ax ax hn Ilt
a(bz - T.z)"+1 + (1 _ a) (bZ - T.z)n = 0 (2.30)

p p

zn+l - z» au au av av---+ a(_)n+1 + (1 - a)(_)n + a(_)n+l + (1 - a)(_)n = 0 (2.32)
Ilt ax ax ay ay

It is clear that the scheme is fully implicit when a is equal to 1 and fully explicit

when a is equal to o. From Eqs. (2.30) and ( 2.3i), we can obtain the formulae

for Un+1 and V n+1 as follows

u n+1 = Un+2!S

v n+1 = V n+2!S'

Treating the bottom friction and surface friction explicitly for clarity, and substi

tuting Un+1 and vn+1 into equation ( 2.32) yield

IlZ
g(llt)2

where
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and
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(l-a)(BV)n a (BV)n+2/8 B(hnBzn) aB(TbV-T8V)n( )..:......_..:... -- -- - +a- -- +-- 2.37
gD.t By gD.t By By By 9 By p

D.Z = zn+l - zn (2.38)

It is very complicated to solve for D.Z directly from Eq. (2.35) because of the

existence of second derivative terms with respect to x and y. Some researchers

(Benque et al, 1982) proposed solving this problem by splitting the Eq. (2.35) into

the following two equations

in which q(x, y) is the coordination term. IT D.Zl = D.Z2' the solution of Eq. (2.35),

D.Z, will be exactly the same as the solution of Eq, (2.39) or (2.40), D.Zl or D.Z2.

The details of solving Eqs. (2.39) and (2.40) for D.Zh D.Z2 and q are presented in

appendix A.

IT the bottom friction terms in Eqs. (2.30) and ( 2.31) are treated implicitly,

the first-order series expansion in terms of velocity (U, V) and water depth h can

be used to linearize them as

where

D.h = hn
+

1
- hn = D.Z }

D.U = Un+ 1 _ Un+2/ 8

D.V = V n+1 _ vn+2/3
(2.43)
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Substituting Eqs. (2.4) and (2.5) into the above equations, we get

(;=)n+1 _ (;)n+2/3 _ ~(2Uy'~: + V2)n+2/3~Z

+ -i..( y'U
2+ V

2 + U2 )n+2/3(un+1 _ Un+2/3) (2.44)
C2 h2 h2J U2+ V2

(;)"+1 _ (;)n+2/3 _ -b(2VJ~: + V2)n+2/3~Z

+ -i..( y'U2 + V
2 + V

2
)n+2/3(vn+1 _ V n+2/3) (2.45)

C2 h2 h2y'U2+ V2

Plugging them into Eqs. ( 2.30) and ( 2.31), expressions for un+1 and vn+1 can be

extracted as

v n+1

where

(2.48)

and

(2.49)

Substituting un+l and Vn+l into Eq. (2.32), an equation for the single unknown

~Z(x, y) will be obtained. It can be solved by using a splitting scheme. The two

split equations are



(2.54)

- --------- ------------------------~--------------

12

D.-Z a(hn8t..Z2
) a(D.-Z ~) N a(V n +2

/
3 D..Z )

2 N 2{ 811 + 2 811} a h" 2 f + (2 51)
-2g--:(-D.---:t)""""2 - a ay ay + gD.-t ay = 2 q .

where

1 au M au a(h8Z)n M a( U~)n+2/3
f =_~(_)n _ ~(_)n+2/3 M a; ~ h2 ()

1 A a A a + a a + C2 a 2.52
g~t x g~t x x x

av M av a(h8Z)n M a(V~)n+2/3 ..
f = _1- a(_)n _ ~(_)n+2/3 M 811 ~ h 2 ()
2 A a A a + a a + C2 a 2.53

g~t Y g~t Y Y Y

2.3 Grid System

A mesh of rectangular cells with variable sizes is established for the development

of the finite difference approximation. This is shown in Fig. 2.2 in which D.-Xi

expresses the size for ith column and D.-Yj represents the size for jth row.

The grid system is shown in Fig. 2.3. In this grid, each (U, V) grid point is

located at the center of rectangles made by four Z grid points, but each Z grid

point is not at the center of rectangles marked by (U, V) points. The cell sizes in

the (U, V) grid system and in the Z grid system have the following relationship

D..X D.-X.(i) + D.-X.(i+l)
uti) = 2

D..Y: D.-Y.U-l) + D.-~(i)
uU) = 2 (2.55)

where D.-Xu(i) and D..YuU) present the sizes of the cell (i,j) in the (U,V) grid system,

D..X.(i) and D.-Yz(i) express the sizes of the cell (i,j) in the Z grid system.

To illustrate the relationship between the numerical values in the Z and (U,V)

systems, a property denoted by P is introduced. Its value at the (U,V) grid points

is denoted by PU(i,i) and at the Z grid points by PZ(i,i)' PZ(i+l/2,i) is used to denote

the value at the middle point between the Z grid points (i,j) and (i + l,j), and

PZ(i,i-r1/2) represents the value at the middle point between the Z grid points U,j)

and (i,j + 1). Given these, we have

Pu(i,i) = [Pz(i.i) + PZ(i,i-l) + Pz(Hl,i) + P z(i+l,i- 1)1!4 (2.56)
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Figure 2.2: Schematic of finite difference mesh with variable rectangular cells
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Figure 2.3: Computational grid definition
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~Xll(i)~yll(j-l) P. ~Xll(i)~yll(j) P.
+ 4 AX A:y' u(i-l.i+l) + 4~X ~:y. u(i-l.;)

L.}. u(i-I)L.}. uri) u(i-l) u(j)

and

~Xll(i-l) ~Xll(i)
P Z(i.i+1/2) = 2~X PU(i,i+l) + 2~X PU(i-l,i+l)

u(i-l) u(i-l)

P Z(i+I/2,i) and P z(i.i+I/2) can also be evaluated by

P ll(i+l/2,i) = [Pz(i,n + Pz(HI,i)]/2

For a spatially uniform grid system, Eqs. (2.57), (2.58) and (2.59) become

PZ(iJ) = [Pu(iJ+l) + PU(i,i) + Pu(i-IJ+l) + PU(i-I,n]/4

P Z(i+l/2,i) = [Pu(i,i+l) + pU(i ,i) ] / 2

P Z(i,i+l/2) = [Pu(i,i+l) + PU(i-I,i+l)]/2

2.4 Finite Difference Approximation

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

Suppose that the state of the model is known at time n~t. Then the state of

the model at time (n + 1)~t can be obtained by successively solving the .advection,

diffusion and propagation steps. From Eqs. (2.22) to (2.29), it is seen that the water

surface elevation Z does not appear in the advection and diffusion steps. Therefore

these steps can be executed solely on the (U, V) grid.

The finite difference equations for the advection step are

x-advection

n+l~ n n+l~ n+l~u· . - u· . u·+l. - U· I·
1.1 1.1 + U~ . 1.1 1- .1 = 0

~t 1,1 ~Xu(i-l) + ~Xu(i)
(2.65)



y-advection

15

n+l/6 n n+1/6 n+l/6
V· . - V· . V'+l' - V· 1 .

I,' I., + u~ . 1 " 1- ., = 0
At I., AXu(i-1) + AXu(i)

n+l/3 n+1/6 n+1/3 n+1/3
u· . - U· . 1/6 U·· 1 - U·· 1I,' I., + n+ 1.'+ 1,'- _ 0V· . -

At I" AYu(i-1) + AYu(i)

(2.66)

(2.67)

(2.68)
n+l/3 n+l/6 n+l/3 n+1/3

Vi,j - vi,; + n+1/6 V i.i+1 - V i •i - 1 _ 0
V· . -

At I" AYu(i-l) + AYu(i)

where the subscripts i and ;" correspond to the (U,V) grid. After x-advection

and y-advection, we get the modified velocities un+1/ 3 and vn +l / 3 • The discharges

corresponding to un+1/ 3 and vn+l/S can be calculated by

in which hi.i is water depth on the (U, V) grid at time nAt.

The finite difference equations for the diffusion step are as follows:

x-sweep

(2.69)

(2.70)

U.*. - U~71/3I" I,'
!At
2

!At
2

y-sweep

K [ Vi~l,j - Vij _ Vij - Vi:1,j 1
AX.(i) AXu(i) AXu(i-1)

K v n.+l/ 3 _ v n.+l/ 3 V.n;+1/ 3 _ V n.+ 1/ 3
___[ 1.,+1 I., I., 1,,-1 1
AY.(i-1) AYu(j) AYu(j-l)

- 0

K [U/+1,i - Ui:i _ Ui:i - U/_ 1,j 1
AX.(i) AXu(i) AXu(i-1)

(2.71)

.(2.72)
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K U~72/3 _ U~72/3 U~72/3 _ U~72/3
---::'~_[ '.1+1 '.1 _ ',1 '.1-1 ]

~Yz(j-l) ~YU(j) ~Yu(j-l)

= 0

. K [Vi~I.i - Vij _ Vi~i - Vi:l.i]
~Xz(i) .D..Xu(i) .D..Xu(i-l)

K V",+2/3 _ V.":+2/3 V,".+2/3 _ V.".+2/3___I 1,,+1 1.1 '.1 1,,-1 ]

~Yz(i-l) ~YU(j) ~YU(j-l)

- -out,;

(2.73)

(2.74)

where (£,J") also corresponds to the (U,V) grid.

After the diffusion step, the discharges U"+2/3 and V"+2/3 are known on the

(U, V) grid. The propagation step is performed in terms of these modified discharges

and consists of two computations. One is the computation of Z"+1 which is executed

on the Z grid. The other is the evaluation of U"+1 and V"+1 which is performed on

the (U, V) grid. The finite difference equations for the computation of Z"+1 can be

expressed as

~ZI(i.i)

2g(~t)2

~Z2(i.i)

2g(~t)2

in which

ex.2 [h" .D..Z1(l+l.i) - .D..Zl(i.i) +.D..Z Zr+1,; - Zi~i
AX 1+1/2'; AX l(i+l/2";) AX
~ u(i-l) ~ .I(i) ~ .I(i)

h" .D..Z1(i.i) - .D..Z1(i-l.i) A Z Zri - Zr-l'i]
i-l/2,i AX - ~ l(i-l/2,i) AX

~ .I(i-l) ~ z(i-l)

U "+2/3 U"+2/3
ex. I+l/2,i i-l/2.i+ ~t~X, [h n .D..Zl(i+l/2.i) - hn .D..Z1(i-l/2.i)]

g u('-I) i+l/2,i i-l/2,i

- 11 - q (2.75)

ex.2 [h" .D..Z2(i";+I) - ~Z2(i";) Z[J+1 - Zi~i
Sy' i,i+l/2 ~Y: + ~Z2(i,i+1/2) ~Y:

u(j) z(;) .1(;)

h" .D..Z2(i,j) - ~Z2(i,j-l).D..Z Zi~i - Zr.i- 1 ]
i";-1/2 A v - 2(i";-1/2) A v

~.l .1(;-1) ~.l .1(;-1)

Y "+2/3 y"+2/3
ex. i,i+1/2 i,i -1/2

+ .D..t~Y:' [h" ~Z2(i.i+1/2) - h" .D..Z2(i,i-l/2)]
g U(1) i,i+1/2 i,i-l/2

= 12 + q (2.76)

U" U U n+ 2/3 U"+2/3(1 - ex.) i+1/2,i - i"-1/2,i _ ~ i+l/2,i - i-l/2,i

g~t .D..Xu(i-l) g.D..t .D..Xu(i-l)
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+ 0: [h" Zr+1,j - Zi~; _ h" Zr,j - Zr-l,;]
AX i+l/2,; AX i-l/2,; AX

L..l. u(i-l)' L..l. z(i) L..l. z(i-l)

+ A~ [(Th: - T':)?+1/2,; - (Tb: - T':)?-1/2 ,;]
pg u(i-l)

(2.77)

(2.78)

(2.79)

hi±I/ 2,j = (h;±1,; + hi ,; ) /2 }
hi ,;±1/2 = (h;,j±1 + hi ,;)/2

AZi±1i2.;= (A Z i±1,; + AZi.;)/2
AZi,;±1/2 = (AZi,;±1 + AZi,;)/2

Note that the subscripts i, J', i ± 1/2 and j ± 1/2 refer to the Z -grid and the

discharges at the Z-grid can be calculated by solving Eqs. (2.57), (2.58) and

(2.59) in terms of the discharges on the (U, Y) grid.

The finite difference forms for Un+l and yn+1 are

zn+1 zn+l
U":72/ 3 _ txta h':'t1 i+1/2,; - i-l/2,;

',1 g ',1 AX
L..l. z(i)

. Z" - Z" U"+2/3
At(1 - 0:) h':'. i+1/2,; i-l/2,; + I,; (Z~71 - Z~.)

g ',1 AX ' hn ',1 ',1
z(.) I,;

Ato:( )"+1 At(l - 0:) ( )n
-- Tb: - T,: i1' - Tbz - T,: i1'
P'p I

(2.80)

V",+1
'']

Z"+1 'Zn+l_ V",+2/3 _ Ato:gh':'t1 i,;+1/2 - i,;-1/2
',1 ',1 AY:

L..l. z(;-I)

z: Z" V"+2/3
At(1 - o:)gh':', i,;+1/2 - i,;+1/2 + I,; (Z~71 _ Z~.)

',1 A Y: . hn ',1 ',1
L..l. Z(,-1) I,;

Ato: ( )"+1 At(1 - 0:) ( )"
-p- TbV - T,V I,; - P TbV - T,V i,; (2.81)

in which the indices i, J', i ± 1/2 and j ± 1/2 refer to the (U, V) grid.
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2.5 Boundary and Initial Conditions

Two types of boundary conditions are normally encountered in the numerical

simulation of tidal circulation. One is the open boundary which is an artificial

termination of the computational system. The other is the shoreline boundary. At

the open boundary, the water surface elevation and/or the current velocities are

specified. In this model, the velocity gradients in the direction normal to the open

boundary is set to zero, and the water surface elevation is specified along the open

boundary.

The shoreline boundary can be treated as either a moving boundary or a fixed

boundary. The moving boundary problem will be discussed in detail in Chapter

4. Along a fixed boundary, the normal velocity is zero, but the tangential velocity

may either be set to zero ( no-slip condition) or satisfy the zero-slope in the normal

direction ( slip condition).

In this model, boundary conditions must be imposed' at each of the fractional

steps. Since the water surface elevation does not appear in the advection and

diffusion steps, only velocity boundary conditions are imposed for these steps. For

the propagation step, however, boundary conditions in terms of surface elevation

and velocities must be specified along the open and closed ( fixed or moving )

boundaries.

The specification of the initial conditions requires the knowledge of the free

surface position and the flow field at t = O. Usually this is impossible and the

model is started with the still water condition that Z =constant and U = V = 0 at

t = O.

2.6 Consistency and stability

As seen previously, the numerical scheme for each of the three fractional steps

is relatively simple. However, we need to show that the combination of these three

steps is consistent with the original governing equations. This is hard to prove
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theoretically because of the existence of, the two-dimensional nonlinear terms and

diffusion terms. This is a drawback in applying the method of fractional steps to the

problems of fluid dynamics in several variables. It will be seen in the next chapter,

however, that this drawback does not appear to affect the accuracy of the numerical

model.

Since each fractional step is unconditionally stable, the complete scheme is un

conditional stable. However, for numerical accuracy, it 'is desirable to keep the time

step sufficiently small such that the Courant number based on the velocities does

not become exceedingly larger than 1.



CHAPTER 3
COMPARISONS BETWEEN THEORETICAL AND NUMERICAL SOLUTIONS

In this Chapter, results of the two-dimensional tidal circulation model will be

compared to four different theoretical solutions. The first comparison will primarily

investigate the model's capability to simulate the propagation step. The second

comparison will validate the model's ability to compute the nonlinear effects. The

other two comparisons will focus on the simulation of the Coriolis and friction forces.

From these comparisons, we can then assess the model's accuracy and consistency.

3.1 Comparison With a Linear Theoretical Solution

Neglecting the advective terms, diffusion terms, bottom friction and wind sur-

face stress, the one-dimensional shallow water equations are

au ez
-+gh-=Oat ax

az au
-+-=0at ax

(3.1)

(3.2)

where U = uh represents the vertically integrated velocity in the x-direction, u is

the vertically averaged velocity, h is the mean water depth and Z is water surface

elevation. Assuming a closed boundary at x = 1 and an open boundary at x = 0,

the boundary conditions and initial conditions associated with Eqs. (3.1) and (3.2)

are:

Boundary conditions

U(l,t) = 0

Z(O,t) = Zo + asinwt

20

(3.3)

(3.4)
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Initial conditions

Z(x,O) = Zo

U(x,O) = 0

(3.5)

(3.6)

where 1 is the length of an estuary, Zo is the still water level elevation, and a

and w'are the amplitude and frequency of the forcing tide at the open boundary,

respectively.

Combining Eq. (3.1) with Eq. (3.2), we get

a2z a2z
-_=c2__

ax2 ax2 (3.7)

where c is the wave speed. which can be expressed as c = JiFi. Let the solution of

Eq. (3.7) take the form of

Z ( ) acos k (l - x) . ~ . k' '7
x, t = kl sin wt + L..- An sin nX sm wnt + LJo

cos n=O
(3.8)

which apparently satisfies the boundary condition (3.4) and initial condition (3.5).

Substituting Eq. (3.8) into Eq. (3.7), we can obtain the following dispersion rela

tionship

(3.9)

(3.10)

where k and kn represent the wave numbers. From Eq. (3.1), it is seen that

boundary condition (3.3) leads to

az
ax 12:=1 = 0

In order to' satisfy this boundary condition, it follows

00

L Ankn cos knl sin wnt = 0
n=O

Therefore

cos knl = °

(3.11)

(3.12)

(3.13)



(3.14)
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So

k = (2n + 1)1r
n 2l

where n is an integer. By using initial condition (3.6), we can determine the coeffi-

cient An as

-2aw fal cos k(l - x) . k d
- -1-- kl SIn n X X

W n 0 cos
-2aw

Consequently, we obtain

Z( ) acosk(l-x). ~[-zaw. k . ] '7

x, t = k1 smwt + L- 1 (k2 _ k2) sm nX smwnt + Llo
cos n=O C n

Substituting the above equation into Eq. (3.1), we get

ac sin k(l- x) 00 -2aw
. U(x,t) = k1 coswt + LI

1
(k 2 _ k 2) cosknx coswnt]

cos n=O n

(3.15)

(3.16)

(3.17)

To compare the numerical solution with a linear theoretical solution, a rectangu

lar basin shown in Fig. 3.1 with a constant water depth of 10 meters is considered.

Assume that a periodic tide with an amplitude of 50 centimeters and a period of

12.4 hrs is forced along the mouth of the basin. The still water level elevation Zo is

set to be O. The numerical solutions can be obtained by discretizing the rectangular

basin with 15 x 30 grid points as shown in Fig. 3.2 and the use of a time step of 30

minutes.

It is noted that in the numerical computation, extra diffusion is introduced due

to the use of the implicit numerical scheme. Thus the numerical solution should

correspond to the first mode of the theoretical solution, i.e., the first terms in the

Eqs. (3.16) and (3.17). The comparison of them is shown in Figs. 3.3 and 3.4.

Figure 3.3 shows the water surface elevation near the mouth (x = 10km) , at the

middle point of the estuary (x = 30km), and near the closed boundary (x = 60km).

Figure 3.4 presents the velocity near the mouth (x. = lOkm), at the middle point
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THEORETICAL SOLUTION
A NUMERICAL SOLUTION
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face elevation
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Figure 3.4: Comparison between theoretical and numerical solutions for velocity
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Figure 3.5: Comparison of theoretical solution to numerical results with different
time steps
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(x = 30km), and near the closed boundary (x = 50km). Both Fig. 3.3 and Fig. 3.4

show that there is a reasonably good agreement between theoretical and numerical

solutions, even though a slight phase shift between the theoretical and numerical

results exists.

To investigate the origin of the phase shift, different time steps for the numerical

computation are used and the numerical results for water surface elevation and

velocity are presented in Fig. 3.5. From these results, it is seen that the phase

shift between theoretical and numerical solutions tends to diminish as the time step

decreases.

3.2 Comparison With a Non-linear Theoretical Solution

When nonlinear terms are included in two-dimensional shallow water equations,

it is impossible to obtain an analytical solution. In one-dimensional nonlinear tidal

motion, however, we can use harmonic analysis to develop a theoretical solution.

Obtaining exact theoretical solutions, however, is still difficult because the high

order terms are difficult to solve for. In this study, only the zeroth and first order

harmonic solutions are developed.

Without the consideration of Coriolis and bottom friction forces, the governing

equations for one-dimensional nonlinear tidal motion can be written as

au au az
-+u-+gh-=Oat ax ax

az au
-+-=0at ax

where h is assumed to be constant. The bounary conditions are

Z(O,t) = a sinwt

U(l,t) = 0

(3.18)

(3.19)

(3.20)

(3.21)

Based on the idea of harmonic analysis, the theoretical solution of Eqs. (3.18) and
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(3.19) can be expressed as

U = U1 + U2

U1 + U2
u=

h

(3.22)

(3.23)

(3.24)

where Zl and U1 are the theoretical solutions of one-dimensional linear shallow

water equations which have been obtained in the preceding section:

Z
_ acos k (1 - x) .

1 - kl Slnwtcos

U
_ ac sin k (1 - x)

1 - kl coswtcos

(3.25)

(3.26)

Subsituting Z, U and u into Eqs. (3.18) and (3.19) and neglecting terms higher

than the first order ones, we can get the governing equations for Z2 and U2:

a2c2k .
- 8h cos2 kl {sin[2k(l- x) + 2wt]

+ sin[2k(l- x) - 2wt] + 2 sin 2k(l- x)}

aZ2 aU2-+-=0at ax

(3.27)

(3.28)

The boundary conditions for Z2 and U2 can be obtained from Eqs. (3.20), (3.21),. .

(3.22) and (3.23) as follows

U2(l , t) = 0

Z2(0, t) = 0

(3.29)

(3.30)

(3.31)

Subject to these boundary conditions, the solutions of Eqs. (3.27) and (3.28) are

a2k 1
h 2kl [x sin 2k(l- x) + kl sin 2k(l + x)8 cos cos 4

I
kl

tan 2kl cos 2k(l- x)] cos 2wt
cos4

a2w 1
8hcos2kl[xcos2k(1-x) + 2ksin2k(l-x)

1 kl cos 2k(l + x) + I kl tan 2kl sin 2k(l- x)] sin 2wt (3.32)
cos4 cos4
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THEORETICAL SOLUTION
A NUMERICAL SOLUTION
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Figure 3.6: Comparison between theoretical and numerical solutions for water sur
face elevation with nonlinear effects
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THEORETICAL SOLUTION.. NUMERICAL SOLUTION
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Details on the derivation of Z2 and U2 is presented in appendix B.

The same basin and forcing conditions of the preceding section will now be used

to compare theoretical solutions with numerical results obtained with a time step

of 30 minutes. The comparisons between the numerical results and the theoretical

solutions are shown in Figs. 3.6 and 3.7. Figure 3.6 presents water surface elevations

near the mouth, at the middle point, and near the closed boundary of the rectangular

basin. Figure 3.7 shows velocities near the mouth, at the middle point, and near

the closed boundary. From Figs. 3.6 and 3.7, it can be seen that the numerical

results are reasonably similar to the theoretical solutions.

3.3 Comparison to a Theoretical Solution with Coriolis Effect

Neglecting convection, diffusion, and bottom friction, the two-dimensional linear

shallow water equations can be written as

au 2az-+c --OV =0
at ax

av 2az .
-+c -+Ou=o
at ay
az au av
-+-+-=0at ax ay

(3.33)

(3.34)

(3.35)

where 0 is the Coriolis parameter, and e = .;gFi. in which h is assumed to be

constant. Referring to the system shown in Fig. 3.1, the boundary conditions

associated with Eqs. (3.33), (3.34) and (3.35) are

Z(O, y, t) = Zm

U(l,y,t) = 0

V(x,O,t) = 0

V(x,b,t) = °

(3.36)

(3.37)

(3.38)

(3.39)

where Zm is the forced water surface elevation at the mouth of the basin, I and b

are the length and width of the basin, respectively.
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By using the concepts of Kelvin waves and spectrum of Poincare waves, Rahman

(1982) proposed the theoretical solutions of Eqs. (3.33), (3.34) and (3.35) as follows:

Z - A exp[ Ok y + ik(l- x) - iwt]
w

+ AR exp[Ok (b - y) - ik(l - x) - iwt]
w

+ f: {Cn[cos K1n(b - y) + O~2n sinK1n(b - y)]
n=l W In
exp[-iK2n(l - X) - iwt]}

U Akc2 [Ok 'k(l ) . ]- - -- exp -y + ~ - X - ~wt
w w

+ ARkc
2

exp[Ok (b - y) _ ik(l- x) - iwt]
w W

c2 00 Ow
+ - 2:{Cn[K2ncos K1n(b - y) + -K2 sin K1n(b - y)]

W n=l InC
exp[ -iK2n(l - x) - iwt]} (3.41)

(3.42)

where A is the Kelvin wave amplitude at x = 1 and y - 0, R is the reflection

coefficient of Kelvin waves, k and w are wave number and frequency of Kelvin

waves, respectively, KIn and K2n are wave numbers of the nth Poincare mode with

respect to the y- and x-directions, respectively, and Cn is the amplitude of the nth

Poincare mode. The dispersion relationship for Kelvin waves is

(3.43)

For Poincare waves, we have

(3.44)

From the boundary condition of V (x,0, t) = 0, it is easy to obtain

(3.45)
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The unknown coefficients Rand Gn are obtained when the boundary condition

U(l, v, t) = 0 is satisfied. Thus we have

Ok Ok
-Ak exp(-y) + ARk exp[-(b - y)]

w w
00 Ow

+ 2: Gn[K2n cos K 1n(b - y) + -K2 sin K 1n(b - y)] = 0
n=l 1nC

(3.46)

The simple way to solve for the unknown coefficients Rand Gn is through the matrix

method. Let us truncate the sum in Eq. (3.46) at the Nth term; the number of

unknown coefficients is then N + 1 (R and G1 , ••• , Gn ) . If Eq. (3.46) is made to

hold at N +1 points on (l, y), we then have N + 1 nonhomogeneous linear equations

for the same number of unknowns. Solutions are readily obtained by inversing the

matrix of the coefficients.

The rectangular basin defined previously is used to compare the tidal responses

inside the basin calculated from the theory and the numerical model. The Coriolis

parameter 0 is chosen to be 10-4 • The period of the forcing tide at the mouth of

the basin is 12 hrs and the amplitude of the Kelvin wave is 50 cm. Given this basic

information, the theoretical solutions for the tidal response inside the basin can be

obtained by choosing the real parts of Eqs. (3.40), (3.41) and (3.42).

For the numerical computation, the time step is chosen to be 30 minutes and

the grid system shown in Fig. 3.2 is employed. The amplitude of the forcing tide

at the mouth of the basin is

Z - Re{A exp( Ok y + ikl) + AR exp[ Ok (b - y) - ikl]
w w

+ f:Gn[cosK1n(b - y) + °KK2n sinK1n (b - y)]exp(-iK2nl)} (3.47)
n=l W 1n

which is obtained from Eq. (3.40) by setting t = O. The comparison between the

numerical results and the theoretical solutions is shown in Figs. 3.8, 3.9 and 3.10.

Figure 3.8 shows the variation of water surface elevation with time near the

mouth, at the middle point, and at the closed end of the basin. Figure 3.9 presents
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the flow vefocities u in the x-direction at three points in the middle axis of the basin.

Figure 3.10 shows the flow velocities v in the y-direction at the middle point and at

the closed boundary. Both the theoretical and the numerical solutions at x = 10km

are very small, thus are not shown in the figures. These figures illustrate that the

model results agree quite well with the, theoretical solutions.

3.4 Comparison to a Theoretical Solution with Friction Effect

With the. bottom. frictions, the two-dimensional shallow w~ter equations can be

written as

au az 1"b:
-+gh-+-=Oat ax p

av ez 1"bv-+gh-+-=Oat ay p

az au av
-+-+-=0at ax ay

(3.48)

(3.49)

(3.50)

where p is the density of water. Assume that the water depth h is constant and the

bottom frictions can be calculated by linear friction formulae

1"b: = pFU

where

Given these, Eqs. (3.48), (3.49) and (3.50) can be simplified as

au + c2 az + FU =0at ax

av az
-+c2-+FV =0at ay

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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az au av
-+-+-=0
at ax fJy

(3.56)

Subject to the boundary conditions defined by Eqs, (3.36), (3.37), (3.38) and (3.39),

Rahman (1982) proposed the theoretical solutions of Eqs. (3.54), (3.55) and (3.56)

as follows

Z - Re {Ao(cos k» + tan kl sin kx)exp( -iwt)
00

+ 2: [An cos K 1n(b - y)
n=l

(cos K 2nx + tan K 2nl sin K 2nx)]exp(-iwt)} (3.57)

2

U - Re{F-
c

, Aok(-sinkx+tanklcoskx)exp(-iwt)
-tW

-c2 00·

+ F - iw ;[AnK2nCosKln(b - y)

(- sinK2nx + tan K 2nl cos K 2nx)]exp( -iwt)} (3.58)

-C2 00

V - Re{F_iw;[AnKlnsinKln(b-y)

(cos K 2nx + tan K 2nl sin K 2nx)]exp( -iwt)} (3.59)

where b and I are the width and length of the basin, respectively, and

k2 W2 ( .F)= - 1+t-
c2 w

K 2 _ w
2

( .F) (n7r)2- - 1+t- - -
2n c2 W b

The coefficients Ao,• . •, An can be obtained using the condition

Z(O, y, t) = Zmezp] -iwt)

at x = O. They are given as

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)
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An = fob ZmCOSKln(b - y)dy (3.65)

To compare the theory with the numerical results, the same basin defined pre

viously is used. The amplitude of the forcing tide along the mouth of the basin

is assumed to be constant (50 cm), which leads to no flow in the y-direction, Le.

V = 0, and zero value for the coefficients All ..., An. The period of the forcing

tide is 12 hrs, The. Manning coefficient is 0.02 and the maximum velocity is 50

cm/sec.. Thus the theoretical solutions for the tidal responses inside the basin can

be easily obtained from Eqs. (3.57) and (3.58). With a time step of 30 minutes,

the numerical results can be obtained by the use of the grid system shown in Fig.

3.2. The comparisons between the theory and the model results are shown in Figs.

3.11 and 3.12.

Figure 3.11 shows the variation of the water surface elevations with time at

three points inside the basin. And Fig .. 3.12 presents the comparison for the veloc

ities. From both figures, it is seen that the numerical results are very close to the

theoretical ones.



CHAPTER 4
NUMERICAL SIMULATION OF FLOW OVER TIDAL FLATS

In the computation of flow over tidal fiats, the difficulty is to simulate prop

erly the shoreline boundary which moves with time. .The work associated with it

includes the determination of the instantaneous location of the shoreline and the

implementation of boundary conditions. In this chapter, two ways to treat this

problem will be discussed in detail, also the wave propagation on a sloping beach

will be theoretically and numerically studied to investigate the ability of these two

methods to simulate the moving boundary problems.

4.1 Properties of a Moving boundary

The moving 90undary has the basic property that it can move with time. Its

movement is mainly controlled by the topography of the coastal region, the tidal am

plitude, the water level associated with a storm surge, etc. Based on the Lagrangian

description of fluid motion, the movement of a boundary can be mathematically ex-

pressed as

(4.1)

where X(t) is the location of the boundary at the time t, Xo is the initial location,

and Vb is the velocity of the boundary motion. The basic boundary conditions on

the moving boundary are

h=O (4.2)

(4.3)

where h is total water depth and v is the velocity of a fluid particle on the moving

boundary.

42
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Although the mathematical expressions for the movement of the boundary are

simple, it is difficult to couple numerically the boundary movement to the main

numerical model. The first problem which arises is the difficulty in simulating the

continuous boundary motion with conventional finite difference techniques. Without

a generalized finite difference formulation for irregular grids, it is impossible to

consider the continuous boundary motion.

The second problem is that it is difficult to compute the velocity of the moving

boundary, which is governed by the topography and the water surface gradient. Usu

ally the topography is given, but the water surface gradient on the moving boundary

is unknown and is related to the velocity of the boundary motion implicitly.

The third problem arises from the computation of the bottom friction in the

vicinity of a moving boundary. The most common bottom friction formulation

in vertically-integrated shallow water problems is the Manning-Chezy formulation.

This formulation provides finite bottom friction throughout the interior of the com

putational domain. However, it breaks down near the moving boundary since the

computed bottom friction approaches infinity as the water depth tends to zero. Us-

ing the conventional finite difference model, the computed strong bottom friction
.

causes problems both in the flooding and drying. During the flooding, the strong

bottom friction leads to very sharp surface slope which may lead to very large veloc

ity and cause numerical instability. During the drying, the strong bottom friction

leads to very slow water motion locally.

4.2 Past Study

Several numerical models for simulating the moving boundary problem have

been proposed in the past. Most of them are developed using the finite difference

technique and finite element technique with fixed grids or deforming grids. The

technique that makes use of the fixed grids usually treats the moving boundary by

turning cells on or off at the boundary based on the mass conservation. Although



44

this technique is simpler to implement than the technique that makes use of de-

forming grids, it possesses other problems. The impulsive filling of a cell with fluid

often leads to numerical problems unless treated very carefully.

Reid and Bodine (1968) investigated the transient storm surges in Galveston

Bay, Texas. Omitting nonlinear advection and Coriolis terms, they developed a

finite difference numerical model with the inclusion of the tidal flat. A uniform

Cartesian mesh and staggered grid system were used. The elevation of the sea bed

or land was represented by a constant value at each grid point within a square

grid. Hence, the actual topography was approximated in a stair-step fashion. The

movement of the boundary was controlled by the water elevation. If the water

elevation in a flooded square was less than the base elevation of an adjacent dry
I

square, then a zero normal flow boundary condition was applied along their com

mon boundary. However, if the water elevation in a flooded square was greater

than that of an. adjacent dry square, then the water was permitted to flow into the

dry square. The flow rate between two squares was determined using an empirical

equation for flow over a broad-crested barrier. The overtopping of a barrier could

be treated also. However, the model could treat only barriers aligned along the grid

mesh division. Flow across the barrier was permitted when the water height on one

side exceeded the barrier height. If the water height exceeded the barrier height on

both sides, then the flow rate was determined using an empirical equation for flow

over a submerged weir. The empirical coefficients in the model were determined

by iteration, comparing the model with tidal data and data from hurricane Carla

(September 9-12, 1963). The gross features of the inundation were predicted rea

sonably well. However, it should be noted that the empirical coefficients used could

be very site-dependent.

Yeh and Yeh (1976) developed a nonlinear nondispersive moving boundary

model for simulating storm surge using an AD! technique. The shoreline in this
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numerical model moved as the flow inundated low lying land. However, details

of the treatment of the boundary were not given. It appears that the shoreline

advanced or retreated in discrete increments of grid cells. They reported good

agreement with field data.

Yeh and Chou (1979) developed a nonlinear nondispersive finite difference surge

model using an explicit technique with reference to a fixed grid system. The bound

ary between dry land and the water was simulated as a discrete moving boundary,

i.e, the boundary moves in discrete jumps. It advances or retreats according to the

rise or recession of the surge level. During the rising surge, a new grid was added to

the computations if the surge elevation of any of its neighbors was above the base

elevation of that grid point. During the receding surge, a grid point was taken out

of the computations if its total water depth was decreased to a preset value. If any

of its neighboring points still has a surge elevation above its bottom, this grid point

was kept in the computations. They compared the model to the field results and

also with a similar numerical model, which used a fictitious vertical wall instead of

a sloping shoreline. They reported that their model showed much better agreement

with field data than the fixed boundary model. The fixed boundary model pre

dicted up to 30 percent higher surge levels than their moving boundary model. The

discrepancy was greater for higher surge values. They explained the discrepancy as

being due to the storage effect of the inland region where water can accumulate but

which is not part of the computational domain of the fixed boundary model.

Hirt and Nichols (1981) proposed a method of treating the free boundary which

was similar to the marker particle method. They called this method the volume of

fluid (VOF) technique. According to this technique, they defined a step function,

F, whose value is unity at any point occupied by fluid and zero otherwise. The

average value of F in a cell would then represent the fractional volume of the cell

occupied by fluid. In particular, a unity value of F would correspond to a cell full
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of fluid, while a zero value would indicate that the cell contains no fluid. Cells with

F values between zero and one must then contain a free surface. The location of
)

the free boundary in a boundary cell is determined in terms of the F value and

the normal direction of the boundary. The normal direction to the boundary is

thought to be the direction in which the value of F changes most rapidly. The F

field is governed by the equation which states that F moves with the fluid at any

time. This equation is solved by the donator- acceptor iteration. With this method

to simulate the free boundary, they developed a finite difference free surface model

with a variable rectangular mesh using an iteration scheme. The model was applied

to the broken dam, undular bore and breaking bore problems, etc. They reported

good agreements with the experimental results.

Some French researchers ( Benque et al., 1982 ) developed a finite difference

numerical model with the inclusion of the tidal flat using the method of fractional'

steps. They solved shallow water equations through three steps, which are advec-

tion, diffusion and propagation steps. A different numerical scheme was applied at

each computational step. The treatment of the boundary motion was considered

at the propagation step. The dry land region was assumed to be covered by a thin

water layer. The flow in this region was governed by die bottom friction. During

the computation of the propagation, the shallow water equations were first applied

to the whole computational domain including the region of the thin water layer.

Then the solution in the vicinity of the moving boundary needed to be adjusted

to satisfy the resistance flow. The Manning-Chezy friction formulation was used

to compute the bottom friction. They reported that the moving boundary model

developed in this way violated the continuity equation slightly. Good agreement of

the numerical results with the measured data were presented based on the model

application to the Bay of Saint Brieuc and the River Canche Estuary, France.

Lynch and Gray (1980) outlined a general technique whereby a moving boundary
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can be treated by finite element Eulerian models. The finite element basis functions

are chosen to be functions of time so that the element boundaries track the moving

shoreline. They showed how this motion generates extra terms which, if treated

properly, reduce the problem to one that can be treated by standard finite element

procedures. They showed how to apply the method to treat the propagation and

runup of long waves. They looked at two simple problems involving the runup of

waves on plane beaches. They showed that estimating the runup by extrapolating

the wave height at a vertical wall could introduce significant errors. They also

pointed out that treating deforming elements is computationally more expensive

than fixed ones, and recognized that potential problem can arise if the mesh becomes

geometrically too distorted.

Gopalakrishnan and Tung (1983) described a finite-element nonlinear long wave

runup model valid only for one horizontal dimension. The model contained terms

that accounted for· vertical accelerations. The moving shoreline was handled by

allowing the shoreline element to deform so that the beach node always tracked the

shoreline. If the shoreline element became too stretched, it split into two elements.

The element containing the shoreline node continued to deform but the other new

element created by splitting stayed fixed. They showed some plots that detailed

the runup process, but they did-not present any results about the rundown process.

The technique outlined by the authors seems applicable to tsunami runup, but

they did not present a thorough or convincing argument to show that their model

could be used reliably for such studies. It should be noted that the technique in

their work cannot be extended easily to include two horizontal dimensions since the

element-splitting procedure would be very complex.

4.3 Numerical Treatment of a Moving Boundary

In this section, two ways to simulate the moving boundary problem will be

studied in detail. The first method was proposed by Reid and Bodine, and the
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second method was proposed by Benque et al. (1982).

4.3.1 Method to Treat a Moving Boundary with the Weir Formulation

Reid and Bodine (1968) treated the continuous moving boundary as a discrete

moving boundary. In their scheme, a discrete Cartesian grid system is used and the

actual topography in the vicinity of a moving boundary is approximated by two

dimensional stair-steps. Thus the elevation of the sea bed or land can be regarded

as uniform over each grid square.

The boundary motion is controlled by the water level. During the flooding;' a

grid point is added to the computational system if its water depth is greater than

a preset value hi· which is the minimum water depth for the effective application of

the Navier-Stokes equations. The value of hi also depends on the topography and

the grid system and is usually taken to be 10 to 20 em. During the .drying, a grid

point is taken out of the computation if its water depth is decreased to a preset

value, h 2 , which is usually slightly different from hi.

In the computation of flooding, the condition of no normal mass flux is applied

at the moving boundary when the water elevation is less than that of the adjacent

dry land, i.e., the normal component of flow, Q"" at the juncture of a flooded cell

and a dry cell is taken as zero, while the tangential component of flow may satisfy

the no-slip or free-slip condition. However, if the water elevation is greater than

that of the dry land, flow will be allowed to flood into the dry cell until the water

depth in this cell reaches hi. The mass flux per unit width of the dry cell, Q"" can

be calculated by the weir formulation ( Reid and Bodine, 1968) as:

(4.4)

where Zd and Zc are the water surface elevation in the donator and acceptor cells,

respectively; Co is an empirical dimensionless coefficient which was suggested to be
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less than 0.5 by Reid and Bodine (1968); and

(4.5)

(4.6)

(4.7)

where Z/> is the bottom elevation of the acceptor cell. During the period of D..t, the

increment of water level in the acceptor cell, D..Zc , is

D..Z
c

= Qn D..t B
Ac

where A c is the area: of the acceptor cell and B is the width of the acceptor cell.

The decrement of water level at the donator cell, D..Zd, is

D..Zd = Qn D..t B
Ad

where Ad is the area of the donator cell. During the flooding computation of each

time step, each donator cell must be examined to see if too much water is flooded

from the donator cell to the acceptor cell. If the water level in the donator cell is

less than that in the acceptor cell, the mass flux computed by Eq. (4.4) must be

adjusted to make the water level in the donator cell the same as that in the acceptor

cell.

When the water depth becomes small during the drying, an artificial water

depth has to be considered so that the Manning-Chezy friction formulation can still

be used to compute the bottom friction. The value of this artificial water depth is

determined empirically. Usually we can set it to be 20 em.

The development of a two-dimensional moving boundary model in this manner

is very cumbersome since the location of the new boundary must be determined at

each time step. But if the grids in the vicinity of the moving boundary and the time

step are kept small, we can obtain reasonable numerical solutions for the moving

boundary.

4.3.2 Method to Treat a Moving. Boundary With a Thin Water Layer

Based on an assumption that the water flow in the region of shallow water

15 dominated by the bottom friction, Benque et al. (1982) proposed a way to
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treat the moving boundary by controlling the water flow discharges through the

adjustment of the water depth. In this scheme, a grid system is first established

in the computational domain which includes the entire tidal flat region. To ensure

numerical accuracy, grid sizes in the tidal flat region should be smaller than those

in the main computational domain.

A thin water layer is assumed to exist at all times over the dry land region so

that all grids in the computational domain are always wet. Thus, no grid needs to

be taken out of the computational domain during the computation and we do not

need to consider the motion of the boundary. The shoreline boundary can thus be

treated simply as a fixed boundary, so the Navier-Stokes equations of fluid motion

can be applied to the entire computational domain so long as the bottom friction

is adequately resolved for small water depths. From the Manning-Chezy friction

formulation, we see that the water depth plays an important role in the computation

of the bottom friction, so it is possible to "control" the bottom friction by adjusting

the water depth.

As seen in Chapter 2, the free surface elevation Z does not appear during the

advection and diffusion steps. Since the motion of the boundary is mainly controlled

by the water elevation, it is only necessary to consider the propagation step. From

the governing equations, Eqs. (2.75) and (2.76), of the propagation step, it is seen

that the water depth, h, and the increment of water surface elevation during one

time step, tlZ, at the points of i. ± 1/2 and j ± 1/2 must be calculated. They

are governed by the water depth and the surface elevation at their upstream and

downstream grid points, and can be calculated by the following formulae:

(4.8)
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and

hi+l/2 = Ii hi + (1 -li)hi+l }
hi-1/ 2 = li-l hi-1 + (1 - li-l)hi
~Zi+l/2 = Ii ~Zi + (1 -li)~Zi+l

~Zi-l/2 = li-l ~Zi-l+ (1 -li-d~Zi

where I is a weighting coefficient. Normally the shape of the water surface between

two successive grid points can be assumed to be a straight line, so that I can be set

to 0.5. However, in the regions where the water flow is dominated by the bottom

resistance, I cannot be equal to 0.5 since the shape of the water surface is greatly

curved. Therefore we need to look for a formulation to calculate it.

Neglecting the effect of the interior force, we can obtain the governing equations

for the flow dominated by the bottom resistance as follows

h az Tbz 0
g ax + p =

ez Tbll
gh-+-=Oay p

Using the Manning-Chezy friction formulation,

we can rewrite Eqs. (4.10) and (4.11) as

az Uv'U2 + V 2

ax + C2hs = 0

ez Vv'U2 + V2
ay + C2hs = 0

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

For flow controlled by the bottom resistance, it can be assumed that the discharge

should always increase when the downstream level decreases, i.e,

au
--<0azd , -

av
--<0azd, -

(4.16)

(4.17)
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Where the ~subscript ds refers to the downstream. Rewriting Eqs. (4.14) and (4.15)

in the discrete form, we have

z, - Z V JU2 + V2
• w + = 0 (4.19)
!::..Yi C 2h'+l/2

where the subscript us refers to the upstream. In Eq. (4.18), the upstream and

downstream correspond to flow in the x-direction, but in Eq. (4.19) they refer to

flow in the y-direction. Introducing a coefficient (3, the water depth h in Eqs. (4.18)

and (4.19) can be expressed as

.
hi+l/2 = (3 hu.. + (1 - (3)hd• (4.20)

hi +l/2 = (3 hu., + (1 - (3)hd, (4.21)

where

hu., = Zu.. - Ze; (4.22)

hd, = Zd. - ZBd, (4.23)

in which Z Bu.. and Z Bd• are the bottom elevations upstream and downstream of

the point i + 1/2 or j + 1/~, respectively. Differentiating Eq. (4.18) with respect to

Zd. and bearing in mind that U is a function of Zu.. and Zd" and V is constant, we

obtain

Applying the condition {}~. ::; 0, we get

(4.25)

From Eq. (4.20), we know

(4.26)
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Substituting {j~~. and h into inequality (4.25) yields

(4.27)

So we obtain

{3 ;::: 3(Zu, - Zd,) - hdll (4.28)
3(Zu, - Zd,) + hI" - hll,

Differentiating Eq. (4.19) with respect to Zd" treating U as a constant and following

the same procedure as above, we can get the same inequality for {3 as in (4.28).

The weighting coefficient 'Y in Eq. (4.8) for the propagation step must be re

placed by either {3 or 1 - {3 in the shallow water region. Since the direction of flow

during flooding is different from that during drying, the concepts of upstream and

downstream are changed. Thus during flooding, 'Y ={3 and during drying 'Y = 1-{3.

If {3 computed from Eq. (4.28) is less than 0, it can be set equal to O. If it is greater

than 1, it is set equal to 1. In general, {3 is 0.5 in the computational domain except

in the transitional region between the thin water layer and the deep water region.

For the flow controlled by the bottom friction, we can obtain the maximum

discharge, Umaz and Vm~z, from Eqs. (4.14) and (4.15)

Um~z = sign(u) (4.29)

in which
. az az

s~gn(u) = --j I - Iax ax
. az az

s~gn(v) = --j I - Iay ay

(4.30)

(4.31)

(4.32)

After the propagation step, the new state of the model is known. Corresponding to

the water surface gradient at this state, we can calculate the maximum discharge

from the above two equations. Also we have discharges U and V at this state which

are computed from the momentum and continuity equations. If U or V is greater
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than Urn,az or Vrn,az, U or V must be replaced by Urn,az or Vrn,az before the computation

proceeds to the next time step.

It should be noted that using this way to develop a moving boundary model

leads to relatively simple computer program since we do not need to simulate the

motion of the boundary. But the continuity equation is slightly violated by always

maintaining a thin water layer on the dry land region and replacing the discharges

U and V by Urn,az and Vm.az' The thickness of the water layer on the dry land region

is determined by the requirement that the computational cell cannot become dry

during one time step.

4.4 Theoretical Solution of Wave Propagation on a Sloping Beach

In this section, the theoretical solution for the wave propagation on a linearly

sloping beach obtained by Carrier and Greenspan (1958) will be presented briefly.

Referring to the system shown in Fig. 4.1, the one- dimensional nonlinear shallow

water equations can be written as

a,,· a [(. h.).j-+- ,,+ u =0at· ax·
au· au· a,,·-+u·_+g-=Oat· ax· ax·

where the asterisks denote dimensional quantities, " is the displacement of water

surface above the mean water level, h is the still water depth which varies linearly

with z, u is the velocity in the x direction. Let L be the characteristic horizontal

length scale of the wave motion. Then we can define a time scale, T, and velocity

scale, uo, as follows

T = JL/¢g

Uo = J¢gL

(4.35)

(4.36)

where ¢> is the beach angle. Let us choose the following nondimensionalization

x·
x=-

L
t·

t =-
T

".,,= -
¢>L
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Figure 4.1: Definition sketch for wave propagation on a sloping beach

and define

h*
h=-=x4>£

·u*
u=

Ua
(4.37)

h: + n:
C

2 = = h + rJ = x + rJ4>£
With these definitions, Eqs. (4.33) and (4.34) become

rJt + [(rJ + x)u]: = 0

Ut + U U: + rJ: = 0

In terms of u and c, Eqs. (4.39) and (4.40) become

2ct + 2u c: + c U: = 0

Ut + U U: + 2c c: = 1

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

Through the elegant series of transformations, Carrier and Greenspan (1958) were

able to transform this problem, with two coupled nonlinear equations, into a new

problem with only one linear equation. A brief derivation will be presented in the

following.
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If Eqs. (4.41) and (4.42) are added and subtracted, we obtain

d
-(u ± 2c - t) = 0
dt

along
dx
-=u±c
dt

(4.43)

Let us define the characteristic variables ~ and eby

~ = u + 2c - t

e= -u + 2c + t

Hence, Eq. (4.43) becomes

(4.44)

(4.45)

~ = cotist

e= const

along

along

dx
-=u+c
dt

dx
-=u-c
dt

(4.46)

(4.47)

Now let us consider x and t to be functions of ~ and e. Then for ~ = const or

e= const we get

dx _ ax/ at----
dt ae ae
dx _ ax/at
di - a~ a~

From above two equations, we get

if

if

~ = const

e= const

(4.48)

(4.49)

xe=te(u+c)

From Eqs. (4.44) and (4.45), we can obtain

u+c=(3~-e)/4+t

u-c= (~-3e)/4+t

(4.50)

(4.51)

(4.52)

(4.53)

Substituting u + c and u - c into Eqs. (4.50) and (4.51) yields the transform

relationship between (x, t) and (~, e) as follows:

(4.54)
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xr = tr(~ - 3e)/4 + (t2/2)r

Eliminating z from Eqs. (4.54) and (4.55), we get

(4.55)

(4.56)

This is a linear partial differential equation for t (~, e). It is convenient to introduce

new variables a and A by

A= e- ~ = 2(t - u)

a = e+ ~ = 4c

Then Eq. (4.56) becomes

Since from Eq. (4.57), t = A/2 + u, u must also satisfy Eq. (4.59)

If we introduce a "potential" Ip(u, A) so that

Iprr
u=

U

then Eq. (4.60) reduces to

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

This is a single linear partial differential equation. The boundary condition at the

shoreline for Eq. (4.62) is

u=o (4.63)

which corresponds to the condition c = 0, i.e., the total water depth must be

identically zero at the shoreline for all time.

In terms of the variables a, A and the potential Ip(u, A), Carrier and Greenspan

(1958) proposed the following expressions for t, z, TJ, u and c

A A Iprr
t=-+u=-+-

2 2 u
(4.64)
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1 2 2 1 1 <p,,) 2 1 0'2
X = -u + c + -<p>. = -(- + -<p>. + -

2 4 2 0' 4 16
0'2 1 0'2

TJ = C
2

- X = - - X = --<p>. --
16 4 16

<Per
u= -

0'

0'
c= -

4

(4.65)

(4.66)

(4.67)

(4.68)

Although Eq. (4.62) is certainly much simpler to solve than the two original coupled

nonlinear equations (4.39) and (4.40), it is difficult to obtain TJ or u as explicit

functions of X and t, IT <p(O',..\) is given, then Eqs. (4.64)-(4.68) will give t, z, TJ

and u all parametrically in terms of the variables 0' and X. In general, it is very

difficult to eliminate 0' and ..\ to obtain direct functional relationships for TJ and u

in terms of X and t,

4.5 Comparison of Theoretical Solution with Numerical Solution

A simple solution of Eq. (4.62) pointed out by Carrier and Greenspan (1958) is

(4.69)

where Ao is an arbitrary amplitude parameter and Jo is the Bessel function of

the first kind of order zero. This potential corresponds to a standing wave solution

resulting from the perfect reflection from the shore of a wave of unit frequency. With

<p(O', >') given by Eq. (4.69), Eqs. (4.64) to (4.68) will implicitly give the solution of

this standing wave. To evaluate TJ(x,t) and u(x,t) for arbitrary X and t, Eqs. (4.64)

to (4.68) must be solved numerically. For specific values of x and t, 0' and>. can

be obtained from Eqs. (4.64) and (4.65) by using Newton's Method, so that TJ(x,t)

and u(x,t) can easily be obtained from Eqs. (4.66) and (4.67), respectively.

To test the ability of the finite-difference model to simulate the moving boundary

problem, a numerical simulation of a long wave will be performed in a rectangular

basin with linearly varying water depth. All quantities used in the finite-difference
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Figure 4.2: Computational grid

model are dimensional since the model is developed based on the dimensional gov

erning equations, but the final solution obtained by the numerical model will be

converted to dimensionless form in order to be compared with the theoretical solu

tion. In the rest of this section, all dimensional quantities will be presented with

units and dimensionless quantities will be presented without units.

The length of the rectangular basin is 60 km as measured from the mean water

level and the width of the basin is 10 km. The slope of the bottom, <1>, is 1 : 2500.

The still water depth at the offshore boundary is 24 meters. The period of the long

wave is set equal to 1 hour. Thus the frequency, w*, is 0.00174sec.- 1• We may now

define the characteristic horizontal length scale by

L _

L = -.!!!!L = 129500 cm
(w*)2

Therefore we have the velocity scale

UQ = V<l>gL = 224 em]sec.

and the time scale

T = VL/<I>g = sec.

(4.70)

(4.71)

(4.72)
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The computational domain is shown in the Fig. 4.2. Here we see that the grid

density in the x-direction in the vicinity of the moving boundary is higher than in

the offshore region. From the grid line of 50 km to the offshore boundary, the grid

space increment is held at 1000 meters. Starting at this grid line, the grid space

increment decreases 10 percent successively for about 6 km until the grid space

increment of 200 meters is obtained. In the region of the moving boundary, the

grid space increment is fixed at 200 meters. The grid density in the y- direction is

unchanged, and the space increment is 2000 meters.

The moving boundary is simulated using the way of assuming a thin water layer

to cover the dry region all the time. The thickness of this water layer is set to be

5 em. To decrease the violation of mass conservation resulting from this layer, the

friction with the Manning coefficient of 0.03 is considered in the region of thin water

layer. However, there is no friction considered in the main computational domain

since we did not consider the effect of friction in the derivation of the theoretical

solution.

A time step of l::.t = 30 seconds is chosen. At t = 0, the fluid is quiescent. For

t > 0, the wave amplitude at the offshore boundary, n', can be given by

f'J-(t) = f'J(t) ¢L em (4.73)

where f'J(t) is the dimensionless value of the wave amplitude which can be obtained

from the theoretical solution. After about three periods, we can obtain the state

numerical solution of the standing wave which will be compared with the theoretical

solution.

Figures 4.3 and 4.4 shows the comparisons between numerical and theoretical

wave profiles over the entire length of the basin at 7 time instant during half of a

period. Fig. 4.5 presents the amplification of these comparisons near the moving

boundary region. From Figs. 4.3,4.4 and 4.5, it is seen that the agreement between

the numerical solution and the theoretical solution is good.
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Figure 4.6 presents the comparisons of water surface displacement near the

moving boundary and the offshore boundary. Figure 4.7 presents the comparisons

of velocities at the same points as in Fig. 4.6. Both Figs. 4.6 and 4.7 show that the

agreement between the numerical solution and the theoretical solution is good.

----------------------------------------"'----------
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~ NUMERICRL SOLUTION
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Figure 4.3: Comparison between wave profiles as predicted by theory and the nu
merical model ( n = Tl'W2/</>2g, X = X'W2/</>g )
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THEORETICAL SOLUTION
t::. NUMERICAL SOLUTION
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Figure 4.4: Comparison between wave profiles as predicted by theory and the nu
merical model (77 = 77·w2j¢2g, X = X·W2j¢g)
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THEORETICRL SOLUTION
.6. NUMERICRL SOLUTION
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Figure 4.5: Comparison between wave profiles near moving boundary as predicted
by theory and the numerical model (TJ = TJ·W 2/</J2g, X = X·W 2/</Jg)
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CHAPTER 5
APPLICATION TO LAKE OKEECHOBEE

In this chapter, the moving boundary numerical model developed in the previous

chapter will be applied to simulate wind driven circulation in Lake Okeechobee,

Florida.

As shown in Fig. 5.1, the western part of Lake Okeechobee is the grass region

where the water depth is about 30 to 100 centimeters. During a seiche induced by

a hurricane, this region may be inundated or dried due to the temporal variation

of water level. The water depth outside the grass area is about 4 meters on the

average.

A 31 x 50 grid is constructed as shown in Fig. 5.2. The north to south grid

spacing is uniform, but the east to west grid spacing is variable with smaller spacing

in the grass area. The north to south grid spacing is 1120 meters. The maximum

east to west grid spacing is 2240 meters and the minimum is 1120 meters.

Water depth values at the grid points are obtained by adding 1.2 meters to the

numbers given in the 1987 contour map of Lake Okeechobee which is for low water

conditions.

The wind shear stress acting on the lake surface can be calculated by the fol-

lowing formulae

Tz = Po CdoJW; + Wi Wz

Til = PoCda.JW; + WiWII

(5.1)

(5.2)

where Tz and Til denote respectively the wind shear stresses in the x- and y-directions,

Po is the density of air, W:z: and WII are the wind speeds in the x- and y-directions,

respectively, and Cdo is the wind shear stress coefficient. The value of Cda. can be

67
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Figure 5.1: The sketch of Lake Okeechobee

..- ,... -

Figure 5.2: Computational grid
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obtained from the following formulation proposed by Garrett (1977)

Cda. = 0.001 x (0.75 + 0.00067 x JW; + Wi) (5.3)

where the unit of W: and WI! is em/sec.. The maximum value of Cda. is 0.003. The

bottom friction can be calculated from the Manning-Chezy friction formulation.

As discussed previously, the computer programming becomes very complicated

when using the weir formulation to simulate the two-dimensional moving boundary

problem. Thus the method proposed by Reid and Bodine (1968) is not applied to

study the wind driven circulation of Lake Okeechobee. The method to simulate the

moving boundary problem with a thin water layer on the dry land area is employed

here. To illustrate the significance of the moving boundary to the actual problem,

the simulations will be conducted with and without the moving boundary. For the

moving boundary case, the grass area is included in the computational domain and

the thickness of the thin water layer on the dry area is assumed to be 10 em. For

the fixed boundary case, the grass area is taken out of the computational domain

and a vertical wall is assumed to be located at the edge of the grass region. Thus

the boundary between the grass area and open water can be considered as a closed

boundary.

A numerical time step of 3 minutes is used here. The Coriolis parameter, n, in

Lake Okeechobee is 0.73 x 10-" see.-1 (Schmalz,1986).

A spatially uniform wind from the east to the west is applied over the lake

surface for 9 hours. The wind speed is 20 m/sec.. After the wind stops, a seiche

in the lake will be produced. When the wind is applied over the lake, the Manning

coefficient is chosen to be 0.02 ( Schmalz, 1986). But after the wind stops, the

Manning coefficient is taken as 0.005 in order that the seiche can last for a longer

time for studying the shoreline motion.

The steady state of wind-driven circulation in the lake is reached after the wind

is applied for 7 hours. Figures 5.3 and 5.4 show the circulations for the moving
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Figure 5.3: Wind driven circulation with moving boundary

--+
150 CM/SEC. •

WIND

Figure 5.4: Wind driven circulation with fixed boundary
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boundary case and the fixed boundary case respectively after the wind has been

applied for 8 hours. It is seen that the circulation for the two cases are quite

similar, although the velocities in the moving boundary case appear to be larger

than those in the fixed boundary case. This can be explained by the fact that

the area of the lake in the moving boundary case is greater than that in the fixed

boundary case.

Figure 5.5 shows the variation of the wind speed with time. Figure 5.6 shows

the motion of the western shoreline during the first cycle of seiche oscillation in the

lake after the wind has stopped.

As mentioned previously, mass conservation is violated by assuming that a thin

water layer exists on the dry area at all times. Figure 5.7 shows the extent of the

mass conservation violation during the entire computational period. It is found that

an extra mass of 0.2 percent of the total water mass in the lake is induced due to

the consideration of the shoreline motion. Figure 5.8 presents the variation of the

total dry area in the lake with the time.

Figure 5.9 shows the comparisons of the transient variations of the water surface

elevation at points A, B and C between the moving boundary case and the fixed

boundary case. The locations of points A, Band C in the lake are shown in the

Fig. 5.1. Figures 5.10 and 5.11 present the comparisons for the velocities U and V,

respectively, between the moving boundary case and the fixed boundary case. From

Figs. 5.9, 5.10 and 5.11, it is seen that there is a phase lag between the results for

the moving boundary case and the fixed boundary case.

Figures "5.12 and 5.13 present the transient variation of the bottom friction in

the x- and y-directions at point A, respectively.
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CHAPTER 6
CONCLUSIONS

6.1 Conclusions

The objective of this study is to develop a two-dimensional moving boundary

numerical model which can predict the hydrodynamics in lakes, estuaries and shal

low seas with the effect of a moving boundary . The study consists of derivation,

verification, and application of the model.

The finite difference technique is used to develop the model in terms of a non

uniform rectangular grid. The governing equations, which are vertically-integrated

Navier-Stokes equations of water motion, are solved using the method of fractional

steps. The transition from one stage of the computation to the next is divided into

three steps which are advection, diffusion, and propagation. Different numerical

schemes are employed for each computational step. The method of characteristics

is used for the advection, the ADI method is applied to the diffusion, and the

conjugate gradient iterative method is used for the propagation. The numerical

schemes used in the model are implicit so that there is no limitation for the choice

of the numerical time step.

Two methods for simulating the moving boundary problem are discussed in

this study. The first, which was proposed by Reid and Bodine (1968), is examined

briefly. It is found that it is difficult to determine the values of empirical coefficients

in the weir formulation since they are very site-dependent. It is also found that the

computer programfor simulating the motion of the boundary is very complicated

for two-dimensional problems. The second, which was proposed by Benque et al.

(1982), is studied in detail. The advantage of this method is that the computer
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program for simulating two-dimensional moving boundary problems is very simple.

The disadvantage is that the mass conservation is violated slightly.

For the verification of the model, four analytical solutions are used to compare

with the numerical solutions. From these comparisons, it can be concluded that the

consistency and the accuracy of the model are acceptable. It is also found that the

method of fractional steps is a powerful means of solving the complicated problems

in several variables although its consistency has not been completely proved. In

order to validate the model's ability to simulate the motion of the boundary, wave

propagation on a linearly sloping beach is studied theoretically and numerically. It

is found that the moving boundary model developed using this method can simu

late moving boundary problems reasonably well although the mass conservation is

violated slightly.

The model is applied to the wind-driven circulation in Lake Okeechobee, Florida.

Comparison is made between the results obtained from the moving boundary model

and the fixed boundary model. From this comparison, it is seen that the boundary

motion can not be neglected when studying wind-driven circulation in Lake Okee

chobee. It is found that the violation of mass conservation in the moving boundary

model can be negligible.

6.2 Future Study

In the moving boundary region, the water depth is usually very small and the

water motion is controlled by the bottom friction. In this case, the Manning

Chezy formulation cannot give a correct estimation of the bottom friction since it

breaks down when the water depth approaches zero. Therefore, basic hydrodynamic

research is needed in this area. For example, Yih (1963) investigated the stability

of liquid flow down an inclined plane and Melkonian (1987) studied nonlinear waves

in thin films.

When using a uniform or non-uniform rectangular grid to approximate the com-
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plex geometry of water bodies, a large number of grid points is generally required.

As a result, the computational cost is increased greatly. To avoid this, it is useful

to modify this model to work in a curvilinear grid.

In addition, we can use the method of fractional steps to develop a three

dimensional numerical model.



APPENDIX A
APPLICATION OF THE CONJUGATE GRADIENT METHOD TO THE

PROPAGATION STEP

In this appendix, the algorithm of the conjugate gradient method for the so

lution of simultaneous linear algebraic equations will be presented briefly and the

procedure of the application of this method to the propagation step will be described

in detail.

A.l Conjugate Direction Method

In order to understand the algorithm of the conjugate gradient method, the

conjugate direction method needs to be reviewed briefly since the conjugate gradient

method is a special case of the conjugate direction method. It is assumed that there

is a solution vector h existed to a system of simultaneouse linear algebraic equations,

Ax=k (A.l)

in which A is an N x N matrice of coefficients, x is an N x 1 vector of unknowns,

and k is an N x 1 vector of constants. In the following description, the symbol (p,q)

presents the inner product of the vectors P and q, or the value of pT q.

Let us suppose that a set of N "A-conjugate" or "A-orthogonal" vectors {Pi},

t = 0,1,2"", N - 1, is available to us. This means that the inner product

(Api,Pj) = 0 where i =f: J'. If A is positive definite, then (Api,Pi) > O. In this

case, since the vectors {Pi} are necessarily linearly independent and span the N

dimensional space, the solution vector h can be written as

h = CoPo + CIPI + C2P2 + ... + CN-IPN-I
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where {c.} are coefficients. If we can determine {Ci}, the solution h can be quickly

calculated. Since

(A.3)

(AA)

we get

(A.5)

(A.6)

Consequently

h (k,po) + (k,PI) + + (k,PN-d= Po PI .•• PN-I
(Apo,Po) (ApbPI) (ApN-bPN-I).

This computation of h defined by equation ( A.6) also can be described as the

following itera:,tive scheme

(A.7)

(A.8)

where

(A.9)

and Po, Ph···, PN-I is the given set of N A-conjugate vectors. The iteration can

be terminated when XM = h where M ~ N.

A.2 Conjugate Gradient Method

In conjugate gradient method, a particular set of A-conjugate vectors, {Pi}, is

developed and a solution to equation (A.I) formed in terms of these. Introducing

residual vectors,

(A.I0)



83

Beckman (1958) used Gram-Schmidt Orthogonalization procedure to obtain the

A-conjugate direction vectors {Pi} . They are expressed as

(A.H)

in which

(A.12)

where I rHl I and I ri I represent the length of the vectors rHl and rio The fun

damental conjugate gradient iterative procedure leading to a solution of equation

(A.I) can be defined by following formulae:

Po = ro = k - A Xo (A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

After M iterations, with M ~ N, XM will be equal to the solution h if all conputa-

tions are done with no loss of accuracy.

A.3 Application to the Propagation Step

The key to the prapagation step presented in Chapter 2 is to solve for f)..Zl (x, y),

f)..Z2(X, y) and q(x, y) which satisfy

a(hn 86 Z ) a( 8Z") a(U"+2/3 AZ)«z, 2{ ~ az,~} 0: -,;n-u 1 - f
--';;"--0: + +- - l-q
2g(f)..t)2 ax ax gf)..t ax. (A.19)
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( n8dZ2) 8(~Z 8Z
ra

) 8(V ra+2
/

3 AZ )AZ2 2{ 8 h 82 2'8'V} a -';;;-'-1 2 - f
----:~~-a + + - 2+q
2g(At)2 8y . 8y g~t 8y

(A.20)

(A.21)

and subject to the open boundary and fixed boundary or moving boundary condi

tions. In order to present the way to solve above equations clearly, we need to write

the above equations in the matrix form as

(A.22)

(A.23)

(A.24)

in which [Az ] and [All] are symetrical coefficient matrix of Eqs. (A.19) and (A.20),

respectively, [~Zl] and [~Z2] are vectors of unknowns, [II! and [f2] are vectors of

known terms at the right sides of Eqs. (A.19) and (A.20), respectively, [q] is the

vector of coordinate terms, and [Bz ] is identity matrice.

It should be noted that the arrangement of elements in [~Zl] is different from

that in [~Z2]' Equation (A.21) is for the same grid point. Therefore, a matrice

needs to be defined to make the same arrangement of elements in [~Zl] and [~Z2]'

[BII ] is defined to do it. Actually for large grid system, it is difficult to obtain the

explicit form of [BII ] . Fortunately it will be seen in later description that we do not

really need to know [BII ] .

Eqs. ( A.22), (A.23) and (A.24) can be rewritten as

(A.25)

(A.26)
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Denoting [~: 1
v
1= A, [ ~~~ 1= AZ, [ ~~ 1= I, [ ~; 1= B, and [q] = q,

Eqs. (A.25) and (A.26) become

AAZ =I-Bq

where BT is transposed matrice of B. From Eq. (A.27), we can get

Substitution of AZ into Eq. (A.28) yields

(A.27)

(A.28)

(A.29)

(A.30)

where (BT A -1B) is a symetric matrice.

The conjugate gradient method is used to solve Eq. (A.30) for q. The iteration

on q consists of looking for qm+~ by given qm where m means the mth iteration.

The residual vector is

r m+1 _ B T A-I I _ (BT A-I B) qm+l

_ B T (A- 1 I - A-I B qm+l)

Pm =

Coefficient Pm can be calculated by

I r m +1 1
2

I r m
1
2

I,J I,J

- L[AZ;(tJ) - AZ;(tJ)12/L[AZ;(i,j) - AZ;(i,j)1 2

t.i i,j

The direction vector is

(A.3!)

(A.32)

(A.33)
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The coefficient am is

(pm, rm)

[pmjT [BT D.Zm]
- [pm]T [BT A-I B pm]

Defining A-IBpm = H'", therefore we have

AHm =Bpm

(A.34)

(A.35)

Comparing Eq. (A.35) with Eq. (A.27), it is seen that H": can be obtained by

using the double-sweep method to solve

a( n8HI) a(H 8Z
n

) a(Un +2
/3 H)

HI _ a 2{ h 8: + I'{f;" } +~ ---xn- 1 = B: pm (A.36)
2g(D.t)2 aX ax gD.t ax

( n 8Ha) a(H 8zn
) a(Vn +213 H )H2 2{a h 82 28'V} a ---xn- 2 _ B m ( )

2g(D.t)2 - a ay + ay + gD.t ay - 11 P A.37

where [ ~~ ] = H. Consequently

[pm]T [BT D.Zm]
am = [pm]T [BTHm]

I,J I,J

- I:[D.Zrkj} - D.Z;(i,j)] P(:,j}/ I:[H;'kj) - H;'(i,j)] P(:,j) (A.38)
iJ iJ

The iteration procedure for q can be sumarized as:

(1) Let the final value of q at the previouse time step be the initial approximation

to the solution of q at the new time step.

(2) Apply the double-sweep method to solve Eqs. (A.19) and (A.20) for D.Zp

and D.zg.

(3) Calculate the residual vector by rO = D.Zp - D.Z~.

(4) Let po = rO

(5) Use the double-sweep method to solve Eqs. (A.36) and (A.37) for Hf and
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(6) Compute the coefficient CXo using Eq. (A.38).

(7) Advance q by ql = qO + CXo pO

(8) Determine successively

I,J I,J

13m = L[~ZntJ) - ~znt,h]2 / L[~Zn,i) ...:. ~Zni,j)]2
iJ iJ

I,J I,J
_ "[ Azm+l Azm+l] m+l/ "[Hm+1 Hm+1] m+lCXm +! - L..J ~ 1 (i,i) - ~ 2 (ij) P(i,i) L..J 1 (iJ) - 2 (i.i) P(ij)

iJ i,i

(A.39)

(AAO)

(AA1)

(AA2)

(A.43)

(9) Repeat Step 8 with m +1 replacing m and continue until m = N - 1 or until

the residual vector becomes sufficiently small, whichever condition may be satisfied

first.

(10) Let ~Z = (~ZI + ~Z2)/2



APPENDIX B
DERIVATION OF Z2 AND U2

The governing equations are

(B.1)

a2c2k
- 8hcos2 kl {sin[2k(1 - x) + 2wt]

+ sin[2k(1 - z] - 2wt] + 2 sin 2k(1 - xn (B.2)

8 2Z2 282 Z2
---c -- -
8t2 X

I.
and the boundary conditions are

·Eliminating U2 from Eqs. (B.1) and (B.2), we obtain

a2c2k2

4hcos2 kl {cos[2k(1 - x) + 2wt]

+ cos[2k(1 - x) - 2wt] + 2k cos 2k(1 - xn

(13.3)

(B.4)

(B.5)

Since we want to obtain the solutions which vary with the time, the third term in

the right hand side of Eq. (B.5) can be neglected. Let the general solution of Eq,

(B.5) take the form of

Z2 - F{sin[2k(l- x) + 2wt] + sin[2k(l- z] - 2wt]}

+ G{cos[2k(l- x) + 2wt] + cos[2k(l- z] - 2wt]} (B.6)
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where F and G are fountion of x only. Substitution of Z2 into Eq. (B.5) yields

[_c2F" - c24kG']{sin[2k(l- x) + 2wt] + sin[2k(l- x) - 2wt]}

+ [c24kF' - c2G"]{cos[2k(l- z] + 2wtJ + cos[2k(l- x) - 2wt]}

a2c2k 2

- 4hcos2 kl{cos[2k(l- x) + 2wtJ + cos[2k(l- z] - 2wt]} (B.7)

Obviousely we get

- C
2F" - c24kG' = 0

a2c2k 2

c24kF' - c2G" = --~
4hcos2 kl

(B.8)

(B.9)

Integrating Eq. (B.9) with respect to z: and set the integrating coefficient as zero,

we have

(B.lO)

Eliminating G' from Eqs. (B.8) and (B.lO), we obtain

(B.ll)

A general solution for F of Eq. (B.ll) is

(B.12)

where C1 is a constant to be determined from the boundary conditions. A particular

solution of Eq. (s.n) is

, -- -- ---------

Therefore

F - Fg+Fp

a2k
- C1 cos4kx + h 2 kl x

16 cos

Substituting F into Eq. (B.8), we can obtain

G = C1 sin4kx + C2

(B.13)

(B.14)

(B.lS)
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where C2 is a integration constant. Plugging F and G into Eq. (B.6) and simplifying

it, we have

a2k
Z2 - [Clcos4kx+ 8hcos2klx]sin2k(1-x)cos2wt

+ [CI sin 4kx + C2] cos 2k(1 - x) cos 2wt

From the boundary condition (B.3), we obtain

Thus

a2kl
CI = - - - - - -

8h cos2 kl cos 4kl

Similarly from boundary condition (B.4), we can get

a2kl
C2 = - tan2kl

8h cos2 kl cos 4kl

(B.16)

(B.lI)

(B.IS)

(B.19)

Substituting CI and C2 into Eq. (B.16) and simplifying it, we consequently obtain

h a
2
k
2k1

[x sin 2k (1 - x ) + 1 klsin2k(1+x)
8 cos cos 4

1
kl

tan2klcos2k(1- x)]cos2wt
cos 4

(B.20)

Substituting Z2 into Eq. (B.I) and integrating with respect to x, we have

a2w 1
U2 - 8hcos2kl[xcos2k(1-x)+2ksin2k(1-x)

1 1cos 2k(l + x) + 1 kl tan 2kl sin 2k(l- x)] sin 2wt (B.2I)
cos 4k cos 4



C.l.1 Main Routine: T2D

APPENDIX C
PROGRAM LISTING

C.1 Flow Chart

T2DIN

Input Parameters
Initiate Variables

Yes

ADVT1

Yes

ADVT2

No

DIFN1

PROP
Perform Propagation

CUV
Advance Velocities

DIFN2

T2DOT
Output Variables
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C.1.2 Subroutine: PROP

Initiate Q(I,J)

I
CIWSE

Compute DZl(I,J)
. DZ2(I,J)

~ Yes: Evaluate DZ(I,J) I
No 1

I Return I
R(I,J)

Compute P (I,J)

1
COYMI

Compute YM(I,J)

1
Update Q(I,J)

1
CIWSEI

Compute DZl(I,J)
. DZ2(I,J)

I

C.2 Program listing

C.2.1 Description of Parameters

KID: Maximum number of grid points in the x-direction;

KJO: Maximum number of grid points in the y-direction;

KXl(J), KX2(J), KYl(I), KY2(I): Grid numbers for the boundary's location;

CN: Manning coefficient;

F: Coriolis parameter;

G: Gravitational acceleration;
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NT: Number of time steps;

HMIN: Minimum water depth;

DELT: Time increment;

EPSLON: Accuracy of the conjugate gradient iteration;

NCG: Number of the conjugate gradient iterations;

ALFA: Coefficient of implicitization;

DC: Horizontal diffusion coefficient;

ATA: Amplitude of the focing tide;

WOMAGA: Frequency of the forcing tide;

AX(I,J), BX(I,J), CX(I,J), DDX(I,J): Coefficients of the matrix equations for

the propagation in the x-direction;

AY(I,J), BY(I,J), CY(I,J), DDY(I,J): Coefficients of the matrix equations for

the propagation in the y-direction;

DELX(I): Space increment of (U, V) grid in the x-direction;

DELY(J): Space increment of (U, V) grid in the y-direction;

ZDELX(I): Space increment of Z grid in the x-direction;

ZDELY(J): Space increment of Z grid in the y-direction;

Z(I,J): Water surface elevation;

ZB(I,J): Bed elevation;

H(I,J): Water depth at Z grid;

HUV(I,J): Water depth at (U, V) grid;

. ZP(I,J): Water surface elevation at the previous time;

HP(I,J): Water depth of Z grid at the previouse time;

HUVP(I,J): Water depth of (U, V) grid at the previous time;

U(I,J): Unit-width discharge in the x-direction;

V(I,J): Unit-width discharge in the y-direction;

PU(I,J): Velocity corresponding to U(I,J);
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PV(I,J): Velocity corresponding to V(I,J);

UD(I,J): Unit-width discharge in the x-direction after the diffusion;

VD(I,J): Unit-width discharge in the y-direction after the diffusion;

UAD(I,J): Unit-width discharge in the x-direction after the advection;

VAD(I,J): Unit-width discharge in the y-direction after the advection;

W(I,J): Wind speed;

DZ(I,J): Increment of water surface elevation during one time step;

DZl(I,J): Increment of water surface elevation due to the propagation in the

x-direction;

DZ2(I,J): Increment of water surface elevation due to the propagation in the

y-direction;

.GAMA(I,J): Weighting coefficient;

P(I,J): Direction vector;

R(I,J): Residual vector;

Q(I,J): Lagrange coordinates;

HX(I,J): Water depth at the middle point of (I+l,J) and (I,J) on Z grid;

HY(I,J): Water depth at the middle point of (I,J) and (I,J+l) on Z grid;

C.2.2 Program listing

e···•••••••••••• MAIN PROGRAM: T2D ••••••••*••••
e·· THIS PROGRAM IS USED TO SIMULATE THE TWO-DIMENSIONAL
e WATER MOTION IN ESTUARIES, LAKES AND SHALLOW SEAS.
e IT IS DEVELOPED USING THE METHOD OF FRACTIONAL STEPS
e

INCLUDE 'DIM.FOR'
e
C--- INPUT PARAMETERS AND INITIATE VARIABLES
C

CALL T2DIN
e
C--- ADVAeE VARIABLES
e

DO 1000 NT-l,SOO
e

IF(NT.GT.200) THEN
DO 10 I-l,KIO
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DO 10 J-l,KJO
W(I,J)-O.

10 CONTINUE
ENDIF

C
C--- DETERMINE THE POSITION OF THE MOVIllG BOUllDARY
C

CALL FMOVB
C
C--- EVALUATE VATER DEPTH AT 'UV' GRID,
C HYDRAULIC RADIUS HX, AllD HY
C

CALL UVDEP
C
C--- PERFORM CALCULATION OF THE ADVETIOll
C

CALL ADVTl FOR CASE OF ADVECTION
C CALL ADVT2 FOR CASE OF NO ADVECTION
C
C--- CALCULATE THE DIFFUSION
C

CALL DIFNl FOR CASE OF DIFFUSION
C CALL DIFN2 FOR CASE OF NO DIFFUSION
C
C--- COMPUTE THE PROPAGATION
C

CALL PROP(NCG,EPSLON)
C
C--- ADVANCE THE UNIT-WIDTH DISCHARGES
C

CALL CUV
C
C--- OUTPUT THE RESULTS
C

CALL T2DOT
C
1000 CONTINUE
C

STOP
END

C•••••••••••••••••• SUBROUTINE T2DIN ••••••••••••••••••
C... THIS SUBROUTINE IS DEVELOPED TO INPUT ALL NECESSARY
C PARAMETERS AND DATA FOR RUNNING THE MAIN PROGRAM T2D
C

SUBROUTINE T2DIN
C

INCLUDE 'DIM.FOR'
C

OPEN(UNIT-l,NAME-'KX.DAT' ,STATUS-'OLD')
OPEN (UNIT-2 ,NAME-'KY.DAT' ,STATUS-'OLD')

C
C--- EVALUATE CONSTMIT PARAMETERS
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C
ALFA-1.0
G-980.
CN-O.02
DC-O.
F=O.13E-4
EPSLON-1.E-4
HMIN-20.
DELT-180.
ATA-50.
WOMAGA-0.14E-3
NCG-20
KIO-32
KJO-51

I CM/SECOND**2
CM**(1/6. )
CM**2/SEC.
1/SEC.

CM
SECOND
CM

I 1/SEC.

C
C--- INPUT THE POSITION OF THE BOUNDARY KX1(J).KX2(J).KY1(I).KY2(I)
C

DO 2" J-1,KJO
READ(l,3)KX1(J).KX2(J)

2 CONTINUE
3 FORMAT(6X.I2.5X.I2)

CLOSE(l)
C

DO 5 I-1,KIO
READ(2,6)KY1(I),KY2(I)

5 CONTINUE
6 -FORMAT(7X.I2,5X,I2)

CLOSE (2)
C
C--- INPUT GRID STRUCTURE

CALL GRID
C
C--- INITIATE VARIABLES
C

CALL INIT
C
C--- EVALUATE WEIGHTING COEFFICIENTS
C

DO 10 I-1.KIO
DO 10 J-1.KJO

DO' (I.EQ .1) THEN
GAMA(I.J)=O.5

ELSE
GAMA(I , J)-DELX(I)/(DELX(I)+DELX(I-1»

ENDIF
10 CONTINUE
C

RETURN
END

C
C**************SUBROUTINE GRID *********••••••••
C** PERFORM CONSTRUCTION OF THE GRID
C

SUBROUTINE GRID
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C
INCLUDE 'DIM.FOR'

C

C--- EVALUATE THE SCALE OBTAINED FROM THE MAP OF LAKE OKEECHOBEE.
C

C (1+7/16)IN-2 MILES
C 1 MlLE-l.609 KM- ·1609M -160900 CM

SCALE"2.160900./(1.+7/16.) ! CM/INCH
C
C--- INPUT THE GRID SIZE IN THE X-DIRECTION
C AT (U,V) GRID
C

DO 10 I-l,KIO-l
IF(I.LE.1S) THEN
DELX(I)-O.S.SCALE

ELSE
IF(I.LE.20) THEN
DELX(I)-DELX(I-l)+O.l.SCALE

ELSE
DELX(I)-l .•SCALE

ENDIF
ENDIF

10 CONTINUE
DELX(KIO)-DELX(KIO-l)

C
C AT Z GRID
C

DO 20 1-2,KIO-l
ZDELX(I)-(DELX(I)+DELX(I-l»/2.

20 CONTINUE
ZDELX (l)-DELX (1)
ZDELX(KIO)-ZDELX(KIO-l)

C
C--- INPUT GRID SIZE IN THE Y-DlRECTION
C AT (U,V) GRID
C

DO 30 J-l, KJO-l
DELY(J)-O.6.SCALE

30 CONTINUE
DELY(KJO)-DELY(KJO-l)

C
C AT Z GRID
C

DO 40 J-2,KJO-l
ZDELY(J)-(DELY(J)+DELY(J-l»/2.

40 CONTINUE
ZDELY(l)-DELY(l)
ZDELY(KJO)-ZDELY(KJO-l)

C
RETURN
END

C
c••••••••••••••••• SUBROUTINE INIT ••••••••••••••
c•• INPUT INITIAL VALUES OF VARIABLES
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C
SUBROUTINE INIT

C
INCLUDE 'DIM·. FOR'
DIMENSION WDP(100, 100) ,WDPl(100, 100)

C

OPEN (UNITKl,NAME-'DEPTHl.DAT',STATUS-'OLD')

OPEN (UNIT-2,NAME-'DEPTH2.DAT' ,STATUS-'OLD')
OPEN (UNIT-3,NAME-·DEPTH3.DAT'.STATUS-·OLD·)

C
C--- READ WATER DEPTH AT Z GRID POINTS
C

DO 10 J-2.KJO
READ(I,II) WDP(2,J).WDP(3.J).WDP(4.J).WDP(5.J).WDP(6,J),

t WDP(7;J).WDP(8,J),WDP(9,J),WDP(10.J),WDP(II.J)
READ(2.11) WDP(12.J),WDP(13.J),WDP(14.J),WDP(15,J).WDP(16,J),

t WDP(17.J).WDP(18,J),WDP(19.J).WDP(20.J).WDP(21,J)
READ(3.12) WDP(22.J).WDP(23,J).WDP(24,J).WDP(25.J),WDP(26.J),

t WDP(27,J).WDP(28.J).WDP(29.J),WDP(30.J).WDP(31.J),
t YDP(32.J) .

10 CONTINUE
11 FORMAT (4X.F4.1.2X.F4.1.2X.F4.1.2X.F4.1.2X,F4.1.2X.F4.1.2X,F4.1,

t 2X.F4.1.2X.F4.1.2X.F4.1)
12 PORMAT (4X,F4.1,2X,F4.1,2X.F4.1,2X,F4.1,2X.F4.1.2X,F4.1.2X.F4.1,

t 2X.F4.1,2X.F4.1.2X,F4.1,2X,F4.1)
C

CLOSE(I)
CLOSE (2)
CLOSE (3)

C
C--- SMOOTH WATER DEPTH
C

DO 5 1-2.KIO
DO 5 J-2.KJO
WDP1(I,J)-(WDP(I-l.J)+WDP(I.J)+WDP(I+1.J)+WDP(I-l.J+l)+YDP(I,J+l)

t +WDP(I+l.J+l)+YDP(I-l.J-1)+WDP(I.J-1)+WDP(I+1.J-1»/9.
5 CONTINUE
C
C--- TRANSFORM THE UNIT
C

DO 15 J-2.KJO
DO 15 1-2,KIO
H(I,J)-YDPl(I.J)*30.48 CM

15 CONTINUE
C

DO 16 J-2,KJO
H(I.J)-H(2.J)

16 CONTINUE
C

DO 17 1-1,KIO
H(I,I)-H(I,2)

17 CONTINUE
C

DO 18 I-l.KIO
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DO 18 J-1.KJO
IF(H(I,J).LT.HMIN) THEN
H(I.J)-HMIll

ENDIF
18 CONTIllUE
C
C--- EVALUATE THE WATER SURFACE ELEVATION AT 'Z' GRID
C

CM

DO 20 1-1.KIO
DO 20 J-1.KJO
Z(I,J)-2000.

CONTINUE20
C
C--- EVALUATE THE BED ELEVATION ZB(I,J)
C

(U, V) GRID

DO 30 1-1,KIO
DO 30 J-1,KJO
ZB(I,J)-Z(I,J)-H(I,J)

CONTINUE30
C
C--- EVALUATE VATER DEPTH AT
C

I CM

DO 40 J-l,KJO-l
DO 40 I-l,KIO-1

HUV(I,J)-(H(I,J)+H(I,J+1)+H(I+1,J)+H(I+l,J+1»/4.
CONTINUE
DO 41 J-1,KJO
HUV(KIO,J)-HUV(KIO-l,J)

CONTINUE
DO 42 1-1,KIO
HUV(I,KJO)-HUV(I,KJO-1)

CONTINUE

40

41

42
C
C--- INITIATE UNIT-WIDTH DISCHARGES AND VELOCITIES
C

CM/SEC.

I CM**2/SEC.

DO 60 I-l,KIO
DO 60 J-l,KJO
U(I,J)-O.
V(I,J)-O.
UD(I,J)-O.
VD(I,J)-O.
UAD(I,J)-O.
VAD(I,J)-O.
PU(I,J)-O.
PV(I,J)-O.

CONTINUE50
C
C--- INITIATE THE INCREMENT OF WATER SURFACE ELEVATION
C

DO 60 Ie1,KIO

DO 60 J-1,KJO
DZ(I,J)-O. I CM

60 CONTINUE
C
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C--- INPUT THE WIND SPEED
C

DO 70 J-2,KJO
IF(J.LT.25) THEN
NI-KX1(J-l)+1
N2-KX2(J-l)

ELSE
NI-KX1(J)+1
N2-KX2(J)

ENDIF
DO 70 I-Nl,N2-1
W(I,J)-2000. CM/SEC.

70 CONTINUE
C

RETURN
END

c•••••••••••••• SUBROUTI1~ ADVTl ••••••••••••••••••••••
C••THIS SUBROUTINE IS USED FOR SOLVING THE ADVECTION. USING THE METHOD
C OF FRACTIONAL STEPS, THE TWO-DIMENSIONAL ADVECTION IS DIVIDED AS TWO
C O~-DIMENSIONAL ADVCTIONS WHICH ARE X-ADVECTION AND Y-ADVECTION. THE
C IMPLICIT CHARACTERISTIC NUMERICAL SCHEME IS USED TO SOLVE EACH
C ADVECTION. IT IS NOTED THAT THE FOLLOWING PROGRAM IS DEVELOPED
C ACCORDING TO A RECTANGULAR BASIN. UX(I,J),VX(I,J): VELOCITY
C COMPONENTS IN THE X- AND Y-DlRECTIONS AFTER X-ADVECTION. UY(I,J),
C VY(I,J): VELOCITIES COMPONENTS IN THE X- AND Y-DlRECTIONS AFTER
C Y-ADVECTION.
C

SUBROUTINE ADVT
C

INCLUDE 'DIM.FOR'
D~MENSION A(100),B(100),C(100),D(100),X(100)
DIMENSION UX(100, 100) ,VX(l00,100) ,UY(100,100) ,VY(l00,100)

C
C--- X-ADVECTION
C COMPUTATION OF UX(100,100)
C

KI2-KIO-l
KJ2-KJO-l
DO 10 J-2,KJ2
DO 20 I-2,KI2

C
A(I)-1.
B(I)-PU(I,J).DELT/(DELX(I)+DELX(I-l»
C(I)--PU(I,J).DELT/(DELX(I)+DELX(I-l»
D(I)-PU(I,J)

C
IF (1. EQ. 2) THEN
A(I)-A(I)+C(I)
C(I)-O.

ENDIF
c

IF (I.EQ.KI2) THEN
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B(I)-O.
ENDIF

C
20 CONTINUE
C

KM=KI2-1
CALL CUGA(X,A,B,C,D,KM)
DO 30 I-2,KI2
UX(I,J)-X(I)

30 CONTINUE
10 CONTINUE
C

DO 40 J-2,KJ2
UX(l,J)-UX(2,J)

40 CONTINUE
C
C COMPUTATION OF VX(100,100)
C

DO 50 J-2,KJ2
DO 60 I-2,KI2
A(I) -1.
B(I)-PU(I,J)*DELT/(DELX(I)+DELX(I-1»
C(I)--PU(I,J)*DELT/(DELX(I)+DELX(I-l»
D(I)-PV(I,J)

IF(I.EQ.2) THEN
A(I)-A(I)+C(I)
C(I)-O.

ENDIF
IF (I.EQ.KI2) THEN
A(I)-A(I)+B(I)
B(I)-O.

ENDIF
60 CONTINUE
C

KM-KI2-1
CALL CUGA(X,A,B,C,D,KM)
DO 10 I-2,KI2
VX(I,J)-X(I)

10 CONTINUE
50 CONTINUE
C

DO 80 J-2,KJ2
VX(1, J)-VX(2, J)

80 CONTIlIUE
C
C--- Y-ADVECTION
C COMPUTATION OF UY(100,100)
C

DO 110 I-2,KI2
DO 120 J"2,KJ2
A(J)-1.
B(J)-VX(I,J)*DELT/(DELY(J)+DELY(J-1»
C(J)--VX(I,J)*DELT/(DELY(J)+DELY(J-l»
D(J)-UX(I,J)



KM-KJ2-1
CALL CUGA(X,A,B,C,D,KM)
DO 170 J-2,KJ2
VY(I,J)-X(J)

CONTINUE
CONTINUE
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IF(J.EQ.2) THEN
A(J)-A(J)+C(J)
C(J)-O.

ENDIF
IF(J.EQ.KJ2) THEN
A(J)-A(J)+B(J)
B(J)-O.

ENDIF
120 CONTINUE
C

KM-KJ2-1
CALL CUGA(X,A,B,C,D,KM)
DO 130 J-2,KJ2
UY(I,J)-X(J)

130 CONTINUE
110 CONTINUE
C
C COMPUTAITON OF VY(100,100)
C

DO 150 I-2,KI2
DO 160 J-2,KJ2
A(J)-1.
B(J)-VX(I,J)*DELT/(DELY(J)+DELY(J-1»
C(J)--VX(I,J)*DELT/(DELY(J)+DELY(J-1»
D(J)-VX(I,J)

IF(J.EQ.2) THEN
C(J)-O.

ENDIF
IF(J.EQ.KJ2) THEN
B(J)-O.

ENDIF
160 CONTINUE
C

170
160
C
C--- IMPOSE BOUNDARY CONDITIONS
C

DO 200 J-2,KJ2
UY(l,J)-UY(2,J)
VY(l,J)-VY(2,J)
UY(KI,J)-O.
VY(KI,J)-VY(KI2,J)

200 CONTINUE
C

DO 220 I-l,KIO
UY(I,1)-UY(I,2)
UY(I,KJO)-UY(I,KJ2)
VY(I,l)-O.
VY(I,KJO)-O.
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220 CONTINUE
C
C--- TRANSFER UY,VY INTO UAD,VAD
C

DO 240 I"I,KIO
DO 240 J-I,KJO
UAD(I,J)-UY(I,J)·HUV(I,J)
VAD(I,J)-VY(I,J).HUV(I,J)

240 CONTINUE
C

RETURN
END

c.·..·...····•.. SUBROUTINE ADVT2 ••••••••••••••
C••THIS SUBROUTINE IS USED FOR THE CASE OF NO ADVECTION.
C

SUBROUTINE ADVT2
INCLUDE 'DIM.FOR'

C
DO 20 I-I,KIO
DO 20 J-KYI(I),KY2(I)
UAD(I,J)-U(I,J)
VAD(I,J)-V(I,J)

20 CONTINUE
C

RETURN
END

C··.·••••••••••• SUBROUTINE DIFNI •••••••••••••••••
C••PERFORM THE CALCULATION OF THE DIFFUSION
C THE DIFFUSION IS SOLVED USING THE ADI METHOD.
C

SUBROUTINE DIFNI
C

DIMENSION A(150) ,B(150) ,C(150) , D(150),X(150)
DIMENSION AA(150),BB(150),CC(150),DD(150)
INCLUDE 'DIM.FOR'

C
C--- COMPUTE UD(I,J)
C

KJ2-KJO-I
DO 50 J-2,KJ2

NI-KXI(J)+I
N2-KX2(J)-1

DO 60 I-NI,N2
IF (J.EQ.2) THEN
TERMI-2·DC.(UAD(I,J+I)-UAD(I,J»

t /DELY(J)/(DELY(J)+DELY(J-I»
ELSE

IF (J.EQ.KJ2) THEN
TERMI--2.DC.(UAD(I,J)-UAD(I,J-I»

t /DELY(J-I)/(DELY(J-I)+DELY(J»



CONTINUE

DO 70 I-Nl,N2
UD(I,J)-X(I-Nl+2)

CONTINUE
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ELSE
TM-(UAD(I,J+l)-UAD(I,J»/DELY(J)

t -(UAD(I,J)-UAD(I,J-l»/DELY(J-l)
TERM1=2*DC*TM/(DELY(J-l)+DELY(J»

ElIDIF
ENDIF

C
IF(I.EQ.Nl) THEN
A(I)-l.+DC*DELT/DELX(I)/DELX(I)
B(I)--DC*DELT/DELX(I)/DELX(I)
C(I)oaO.
D(I)-UAD(I,J)+DELT*(F*VAD(I,J)+TERM1)

ELSE
IF(I.EQ.N2) THEN
A(I)-1.+2*DC*DELT/DELX(I)/DELX(I-l)
B(I)-O.
C(I)--2*DC*DELT/DELX(I)/DELX(I-l)
D(I)-UAD(I,J)+DELT*(F*VAD(I,J)+TERM1)

ELSE
A(I)-1.+2*DC*DELT/DELX(I)/DELX(I-l)
B(I)--2*DC*DELT/DELX(I)/(DELX(I)+DELX(I-l»
C(I)--2*DC*DELT/DELX(I-l)/(DELX(I)+DELX(I-l»
D(I)-UAD(I,J)+DELT*(F*VAD(I,J)+TERM1)

ENDIF
ENDIF

60 CONTINUE
C

N-N2-N1+1
DO 65 I-2,N+l
AA(I)-A(Nl-2+I)
BB(I)-B(Nl-2+I)
CC(I)-C(Nl-2+I)
DD(I)-D(Nl-2+I)

65 CONTINUE
C

CALL CUGA(X,AA,BB,CC,DD,N)
C

70
C
50
C
C--- COMPUTE .VD(I,J)
C

KI2-KIO-l
DO 110 I-2,KI2

NI-KY1(I)+1
N2-KY2(I)-1

DO 120 J-Nl,N2
IF (I.EQ.2) THEN

TM-(VAD(I+l,J)-VAD(I,J»/DELX(I)
TERMI-DC*TM/DELX(I)

ELSE
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IF(I.EQ.KI2) THEN
TM--(VAD(I,J)-VAD(I-1,J»/DELX(I-1)

TERM1=2*DC*TM/(DELX(I)+DELX(I-1»
ELSE

TM-(VAD(I+1,J)-VAD(I,J»/DELX(I)
t -(VAD(I,J)-VAD(I-1,J»/DELX(I-1)

TERMl-2*DC*TM/(DELX(I)+DELX(I-1»
ENDIF

ENDIF
C

IF (J .EQ. 111) THEN
A(J)-1.+2*DC*DELT/DELY(J)/DELY(J-1)
B(J)--2*DC*DELT/DELY(J)/(DELY(J)+DELY(J-1»
C(J)-o.
D(J)-VAD(I,J)+DELT*(-F*UAD(I,J)+TERM1)

ELSE
IF (J.EQ. N2) THEN
A(J)-1.+2*DC*DELT/DELY(J-1)/DELY(J-1)
B(J)-O.
C(J)--2*DC*DELT/DELY(J-l)/(DELY(J)+DELY(J-l»
D(J)-VAD(I,J)+DELT*(-F*UAD(I.J)+TERM1)

ELSE
A(J)-1.+2*DC*DELT/DELY(J)/DELY(J-1)
B(J)--2.*DC*DELT/DELY(J)/(DELY(J)+DELY(J-1»
C(J)--2.*DC*DELT/DELY(J-1)/(DELY(J)+DELY(J-l»
D(J)~VAD(I.J)+DELT*(-F*UAD(I.J)+TERM1)

ENDIF
ENDIF

120 CONTINUE
C

N-N2-N1+1
DO 130 J-2.N+1
AA(J)-A(Nl-2+J)
BB(J)-B(Nl-2+J)
CC(J)-C(Nl-2+J)
DD(J)-D(Nl-2+J)

130 CONTINUE
C

CALL CUGA(X.AA.BB,CC.DD,N)
C

DO 140 J-N1.N2
VD(I.J)-X(J-N1+2)

140 CONTINUE
110 CONTINUE
C
C IMPOSE THE CLOSE BOUNDARY CONDITIONS
C

DO 200 J-l.KJO
00(1, J)-O.
VD(l.J)-O.
OO(KIO,J)-O.
VD(KIO,J)-O.

200 CONTINUE
DO 210 I-2.KIO-1
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IF (1. LT. 25) THEN
N1-KY1(I-1)
N2-KY2(I-1)

ELSE
N1-KY1(I+1)
N2-KY2(I+1)

ENDIF
DO 220 J-1,N1
UD(I,J)-O.
VD(I,J)-O.

220 CONTIlnm
DO 230 J-N2.KJO
UD(I,J)-O.
VD(I,J)-O.

230 CONTINUE
210 CONTINUE
C

RETURN
END

C**************** SUBROUTINE DIPN2 **************
C**THIS SUBROUTINE IS USED FOR THE CASE OF NO DIFFUSION.
C

SUBROUTINE DIFN2
INCLUDE 'DIM.FOR'

C
DO 10 J-2.KJO-1
DO 20 I-1,KIO-1
UD(I,J)-UAD(I,J)+DELT*F*VAD(I,J)
VD(I,J)-VAD(I,J)-DELT*P*UD(I,J)

CONTINUE
CONTINUE

20
10
C
C--- IMPOSE THE BOUNDARY CONDITIONS
C

DO 30 J-1,KJO-1
UD(KIO,J)-O.
VD(KIO,J)-VD(KIO-1,J)

30 CONTINUE
DO 40 I-1,KIO-1
UD(I,1)-UD(I,2)
UD(I,KJO)-UD(I,KJO-1)
VD(I,1)-0.
VD(I,KJO)-O.

40 CONTINUE
C

RETURN
END
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C*************** SUBROUTINE PROP *************
C** PERFORM THE COMPUTATION OF THE PROPAGATION
C THE PROPAGATION IS SOLVED USING THE CONJUGATE GRADIENT
C ITERATION METHOD.
C

SUBROUTINE PROP(NCG,EPSLON)
C

INCLUDE 'DIM.FOR'
DIMENSION Q(150,150),P(150,150),R(150,150)

C
C
C--- PERFORM THE CONJUGATE GRADIENT ITERATION
C

DO 50 N-l,NCG
C

IF (NT.EQ.l) THEN
IF(N.EQ.l) THEN

DO 60 I-2,KIO
IF(I.LT.25) THEN
Nl-KY1(I-l)+l
N2-KY2(I-l)

ELSE
Nl-KY1(I)+1
N2-KY2(I)

ENDIF
DO 60 J-Nl,N2
Q(I,J)-O.

60 CONTINUE
ENDIF

ENDIF
C
C COMPUTE DZ1(I,J) AND DZ2(I,J)
C

IF(N.EQ.l) THEN
CALL CnSE (Q)

ELSE
CALL CnSEl (Q)

ENDIF
C
C CALCULATE THE SUM OF ERRORS: TE
C

TE-O.
DO 80 I-2,KIO

IF(I.LT.25) THEN
Nl-KY1(I-l)+1
N2-KY2(I-l)

ELSE
Nl-KY1(I)+1
N2-KY2(I)

ENDIF
DO 80 J-Nl,N2
TE-TE+(DZ1(I,J)-DZ2(I,J»**2

80 CONTINUE
C
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IF (TE.LT.EPSLOll) GOTO 200
C
C EVALUATE THE COEFFICIENT A2
C

IF(N.NE.l) THEN
A2"TE/TE1

ENDIF
TEl-TE

C
C COMPUTE RESIDUAL VECTOR R(I.J)
C

DO 90 I-2.KIO
IF(I.LT.25) THEN
Nl-KY1(I-l)+1
N2-KY2(I-1)

ELSE
Nl-KY1(I)+1
N2-KY2(I)

ENDIF
DO 90 J-Nl, N2
R(I.J)-DZ1(I,J)-DZ2(I.J)

90 CONTINUE
C
C COMPUTE THE DIRECTION VECTOR P(I.J)
C

DO 100 I-2.KIO
IF (1. LT. 25) THEN
Nl-KY1(I-l)+l
N2-KY2(I-1)

ELSE
Nl-KY1(I)+1
N2-KY2(I)

ENDIF
DO 100 J-Nl.N2

IF (N.EQ.l) THEN
P(I. J)-R(I. J)

ELSE
P(I,J)-R(I.J)+A2*P(I.J)

ENDIF
100 CONTINUE
C
C COMPUTE YMl(I.J) AND YM2(I,J)
C

CALL COYMl (P)
C
C EVALUATE THE COEFFICIENT Al
C

PDZ-O.
PYM-O.
DO 120 I-2.KIO

IF(I.LT.25) THEN
Nl-KY1(I-l)+l
N2-KY2(I-l)

ELSE
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Nl-KY1(I)+1
N2-KY2(I)

ENDIF
DO 120 J-Nl,N2
PDZ-PDZ+(DZ1(I,J)-DZ2(I,J»*P(I.J)
PYM-PYM+(YM1(I,J)+YM2(I.J»*P(I,J)

120 CONTINUE
Al-PDZ/PYM

C
C UPDATE THE LAGRANGE COORDINATE Q(I.J)
C

CONTINUE

DO 140 I-2,KIO
IF(I.LT.25) THEN
Nl-KY1(I-l) +1
N2-KY2 (1-1)

ELSE
Nl-KY1(I)+1
N2-KY2(I)

ENDIF
DO 140 J-Nl,N2
Q(I,J)-Q(I.J)+Al*P(I,J)

CONTINUE

DO 160 I-2,KIO
IF(I.LT.25) THEN
Nl-KY1(I-l) +1
N2-KY2(I-l)

ELSE
Nl-KY1(I)+1
N2-KY2(I)

ENDIF
DO 160 J-Nl.N2
DZ(I.J)-(DZ1(I,J)+DZ2(I,J»/2.

CONTINUE160
C
C--- IMPOSE THE BOUNDARY CONDITIONS
C

140
C
50
C
C--- EVALUATE DZ(I.J)
C
200

DO 170 I-2,KIO
IF(I.LT.25) THEN
DZ(I,KY1(I-l»-DZ(I.KY1(I-l)+1)
DZ(I,KY2(I-l)+1)-DZ(I,KY2(I-l»

ELSE
DZ(I.KY1(I»-DZ(I,KY1(I)+1)
DZ(1,KY2(1)+1)-DZ(1.KY2(1})

ENDIF
170 CONTINUE

DO 180 J-KY1(1).KY2(1)
DZ(1.J)-DZ(2,J) !CLOSE BOUNDARY AT 1-1

180 CONTINUE
DO 190 J-KY1(KIP).KY2(KIO)
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DZ(KIO+1.J)-DZ(KIO,J) !CLOSE BOUlIDARY AT I-KIO
190 CONTINUE

DO 195 J-2,KJO
IF(J.LT.25) THEN
DZ(I.KX1(J-1»-DZ(I,KX1(J-l)+1)
DZ(I.KX2(J-l)+1)-DZ(I,KX2(J-1»

ELSE
DZ(I.KX1(J»-DZ(I,KX1(J)+1)
DZ(I,KX2(J)+1)-DZ(I,KX2(J»

ENDIF
195 CONTINUE
C

RETURN
END

C****************** SUBROUTINE CIWSE ******************
C** PERFORM THE COMPUTATION OF DZ1(I,J) AND DZ2(I,J) ,GIVEN Q(I,J)
C

SUBROUTINE CIWSE (Q)
C

DIMENSION Q(150,150)
DIMENSION A(150),B(150),C(150),D(150),X(150)
INCLUDE 'DIM.FOR'

C
C--- COMPUTATION OF DZ1(I,J)
C

DO 20 J-2,KJO
IF (J.LT.25) THEN
NI-KX1(J-1)+1
N2-KX2(J-1)

ElSE
N1-KX1(J)+1
N2-KX2(J)

ENDIF
DO 30 I-Nl,N2
DX-(ZDELX(I)+ZDELX(I-1»/2.
IF(I.EQ.N2) THEN
TERM1-1./2./G/DELT/DELT
TM-HX(I-1,J)+(Z(I,J)-Z(I-1,J»*GAMA(I-1,J)

TERM2-ALFA**2*TM/DX/ZDELX(I-1)
TM-UD(I,J)/HX(I,J)-GAMA(I-1,J)*UD(I-l,J)/HX(I-1.J)

TERM3-ALFA*TM/G/DELT/DX
AX(I,J)-TERM1+TERM2+TERM3

c
BX(I,J)-O.

c

C

TM--HX(I-1,J)+(1-GAMA(I-1,J»*(Z(I,J)-Z(I-1,J»
TERM1-ALFA**2*TM/DX/ZDELX(I-1)
TM-(1-GAMA(I-1,J»*UD(I-1,J)

TERM2--TM*ALFA/G/DELT/HX(I-1,J)/DX
CX(I,J)-TERM1+TERM2

TM-(1-ALFA)*(U(I,j)-U(I-1,J»+ALFA*(UD(I,J)-UD(I~1,J»



C

C

C

C

C

C

-----_._------ ----------------------

111

TERMI--TM/G/DELX(I-l)/DELT
TM--HX(I-l,J)*(Z(I,J)-Z(I-l,J»

TERM2-ALFA*TM/DX/ZDELX(I-l)
FC=116.*CN**2/HR(I,J)**(1./3.)

TM1-SQRT(U(I.J)**2+V(I.J)**2)*U(I,J)*FC/8./HX(I,J)**2
FC=116.*CN**2/HR{I-l.J)**(1./3.)

TM2=SQRT(U(I-l,J)**2+V(I-l.J)**2)*U(I-l,J)
t *FC/8./HX{I-l.J)**2

TM3-3.*O.OOOOOl*ABS(W{I,J»*W(I,J)
TM4-3.*O.OOOOOl*ABS(W(I-l,J»*W{I-l,J)

TERM3=ALFA*{TMI-TM2-TM3+TM4)/G/DX
DDX{I,J)-TERM1+TERM2+TERM3-Q{I,J)

ELSE

TERM1=1./2./G/DELT/DELT
TMI-HX(I,J)-(Z{I+l,J)-Z(I,J»*(l-GAMA(I,J»
TM2-HX(1-l,J)+(Z(1,J)-Z(1-l,J»*GAMA(I-l,J)
TM-TM1/ZDELX(1)+TM2/ZDELX{I-l)

.TERM2-ALFA**2*TM/DX
TMI-UD(1,J)*(l-GAMA(I,J»/HX(I,J)
TM2-UD(1-l,J)*GAMA(I-l.J)/HX(I-l,J)

TERM3-ALFA*(TMI-TM2)/G/DELT/DX
AX(1,J)-TERM1+TERM2+TERM3

TERMI--ALFA**2*HX{1,J)/DX/ZDELX{I)
TERM2--ALFA**2*(Z(I+l,J)-Z(I.J»*GAMA(1,J)/DX/ZDELX(1)
TERM3-ALFA*UD(1,J)*GAMA{I,J)/G/DELT/HX(1,J)/DX

BX(I.J)-TERM1+TERM2+TERM3

TERMI--ALFA**2*HX(1-l,J)/DX/ZDELX(1-l)
TERM2-ALFA**2*{Z(1,J)-Z(1-l,J»

t *(l-GANA(1-l,J»/DX/ZDELX(I-l)
TERM3--ALFA*UD(I-l,J)*(1-GAMA(1-l,J»

t /G/DELT/HX(1-l,J)/DX
CX(1,J)-TERM1+TERM2+TERM3

TERM1--(1-ALFA)*{U(1,J)-U(1-l,J»/G/DELT/DELX(1-l)
TERM2--ALFA*(UD(1,J)-UD{1-l,J»/G/DELT/DELX(1-l)
TMI-HX(1,J)*{Z(1+l,J)-Z(1,J»/ZDELX{1)
TM2=HX(1-l,J)*(Z(1,J)-Z(1-l,J»/ZDELX(I-l)

TERM3=ALFA*(TMI-TM2)/DX
FC-116.*CN**2/HR(1,J)**(1./3.)

TM1-SQRT(U(1,J)**2+V(I,J)**2)*U(1.J)*FC/8./HX(I.J)**2
FC-116.*CN**2/HR(1-l.J)**(1./3.)

TM2-SQRT{U(1-l,J)**2+V{1-l,J)**2)*U{1-1,J)
t *FC/8./HX(I-l.J)**2

TM3=3.*O.OOOOOl*ABS(W(1,J»*W(1,J)
TM4-3.*O.OOOOOl*ABS(W{1-l.J»*W(I-l,J)

TERM4-ALFA*(TMI-TM2-TM3+TM4)/G/ZDELX{1-l)
DDX(I,J)=TERM1+TERM2+TERM3+TERM4-Q(I,J)

IF(1.EQ.Nl) THEN
AX(1,J)-AX(1,J)+CX(1,J) ICLOSE BOUlIDARY AT 1-2



CONTINUE

DO 40 I-Nl,N2
DZ1(I,J)-X(I-Nl+2)

CONTINUE
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CX(I,J)-O.
ENDIF

C
ENDIF

30 CONTINUE
C

N-N2-Nl+l
DO 35 r-2,N+l
A(I)-AX(Nl-2+I,J)
B(I)-BX(Nl-2+I,J)
C(I)-CX(Nl-2+I,J)
D(I)-DDX(Nl-2+I,J)

35 CONTINUE
C

CALL CUGA(X,A,B.C,D,N)
C

40
C
20
C
C--- COMPUTATION OF DZ2(I,J)
C

DO 50 I-2,KIO
IF(I.LT.25) THEN
Nl-KY1(I-l)+l •
N2-KY2(I-l)

ELSE
Nl-KY1(I)+1
N2-KY2(I)

ENDIF
DO 60 J-Nl,N2
DY-(ZDELY(J)+ZDELY(J-l»!2.
IF (J.EQ.Nl) THEN
TERM1-1.!2.!C!DELT!DELT
TM--HY(I,J)+(l-CAMA(I,J»*(Z(I,J+l)-Z(I,J»

TERM2--ALFA**2·TM!DY!ZDELY(J)
TM-(l-CAMA(I,J»*VD(I,J)

TERM3-ALFA*TM!G!DELT!DY!HY(I,J)
AY(I.J)-TERM1+TERM2+TERM3

C
TM-HY(I,J)+CAMA(I,J)*(Z(I,J+l)-Z(I,J»

TERM1--ALFA**2*TM!DY/ZDELY(J)
TM-GAMA(I,J)*VD(I,J) -

TERM2-ALFA*TM!G!DELT!DY!HY(I,J)
BY(I,J)-TERM1+TERM2

C
CY(I,J)-O.

C

TERM1--«1-ALFA) *V(I,J)+ALFA*VD(I ,J»!C/DELT/DELY(J-l)
TERM2-ALFA*HY(I,J) *(Z(I,J+l)-Z(I,J»!ZDELY(J)/DY

FC-116.*CN**2/HR(I,J)**(1.!3.)
TM1-FC*SQRT(U(I,J)**2+V(I,J)**2)*V(I,J)!8./HY(I,J)**2



C

C

C

C

C

C

C

C

C

C
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TERM3-ALFA*TM1/C/DY
DDY(I,J)-TERM1+TERM2+TERM3+Q(I,J)

ELSE
IF(J.EQ.N2) THEN

TERM1-1./2./C/DELT/DELT
TM-HY(I,J-l)+(Z(I,J)-Z(I,J-1»*CAMA(I,J-l)

TERM2-ALFA**2*TM/ZDELY(J-1)/DY
TM-GAMA(I,J-1)*VD(I,J-l)

TERM3--ALFA*TM/C/DELT/DY/HY(I,J-1)
AY(I,J)-TERM1+TERM2+TERM3

BY(I,J)-O.

TM--HY(I, J-1)+ (Z (I, J) -Z(I, J-1)') *(l-GAMA(I, J-1»
TERM1-ALFA**2*TM/ZDELY(J-1)/DY
TM-(l-CAMA(I,J-l»*VD(I,J-l)

TERM2--ALFA*TM/C/DELT/DY/HY(I,J-l)
CY(I,J)-TERM1+TERM2

TMl-(l-ALFA)*V(I,J-l)+ALFA*VD(I,J-l)
TERM1-TM1/G/DELT/DELY(J-l)
TERM2--ALFA*HY(I,J-l)*(Z(I,J)-Z(I,J-l»/DY/ZDELY(J-l)

FC-116.*CN**2/HR(I,J-l)**(1./3:)
TM1-FC*SQRT(U(I,J-l)**2+V(I,J-l)**2)*V(I,J-l)

~ !8./HY(I,J-l)**2
TERM3--ALFA*TM1!C/DY

DDY(I,J)-TERM1+TERM2+TERM3+Q(I,J)

ELSE

TERMl-l.!2.!C!DELT!DELT
TM1--HY(I,J)+(Z(I,J+l)-Z(I,J»*(1-GAMA(I,J»
TM2--HY(I,J-l)-(Z(I,J)-Z(I,J-l»*GAMA(I,J-l)
TM-TM1/ZDELY(J)+TM2/ZDELY(J-l)

TERM2--ALFA**2*TM/DY
TM1-VD(I,J)*(1-GAMA(I,J»!HY(I,J)
TM2-VD(I,J-l)*GAMA(I,J-l)/HY(I,J-l)

TERM3-ALFA*(TM1-TM2)/G!DELT/DY
AY(I,J)-TERM1+T.ERM2+TERM3

TERM1--ALFA**2*(HY(I,J)+GAMA(I,J)
t *(Z(I,J+l)-Z(I,J»)!DY!ZDELY(J)

TERM2-ALFA*GAMA(I,J)*VD(I,J)!G!DELT!DY!HY(I,J)
BY(I,J)-TERM1+TERM2

TERM1--ALFA**2*HY(I,J-l)!DY!ZDELY(J-l)
TERM2-ALFA**2*(Z(I,J)-Z(I,J-l»

t *(l-GAMA(I,J-l»!DY!ZDELY(J-l)
TERM3--ALFA*VD(I,J-l)*(1-GAMA(I.J-l»

t !G!DELT!DY!HY(I.J-l)
CY(I.J)-TERM1+TERM2+TERM3
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TERM1--(l-ALFA).(V(I,J)-V(I,J-l»/G/DELT/DELY(J-l)
TERM2=-ALFA*(VD(I,J)-VD(I,J-l»/G/DELT/DELY(J-l)
TERM3-ALFA*HY(I,J).(Z(I,J+l)-Z(I,J»/DY/ZDELY(J)
TERM4--ALFA*HY(I,J-l)*(Z(I,J)-Z(I,J-l»/DY/ZDELY(J-l)

C
-------COMPUTATION OF FRICTION-----~

C

FC-116 .•CN*.2/HR(I,J)**(l./3.)
TM1-FC*SQRT(U(I,J)*.2+V(I,J)**2).V(I,J)/8./HY(I,J).*2
FC-116 .•CN••2/HR(I,J-l)··(l./3.)

TM2-FC.SQRT(U(I,J-l) ••2+V(I,J-l) ••2)
l .V(I,J-l)/8./HY(I,J-l) ••2

TERM5-ALFA/G/DY*(TM1-TM2)
DDY(I,J)-TERM1+TERM2+TERM3+TERM4+TERM5+Q(I,J)

C
ENDIF

ENDIF
60 CONTINUE
C

N-N2-N1+1
DO 65 J-2,N+l
A(J)-AY(I,Nl-2+J)
B(J)-BY(I,Nl-2+J)
C(J)-CY(I,Nl-2+J)
D(J)-DDY(I,Nl-2+J)

65 CONTINUE
C

CALL CUGA(X,A,B,C,D,N)
C

DO 70 J-Nl, N2
DZ2(I,J)-X(J-Nl+2)

70 CONTINUE
C
50 CONTINUE
C

RETURN
END

C***.*******........ SUBROUTINE CIWSEl *••••*•••••••
C*. PERFORM THE COMPUTATION OF DZ1(I,J) AND DZ2(I,J)
C

SUBROUTINE CIWSE1(Q)
C

DIMENSION Q(150,150)
DIMENSION A(150) ,B(150) ,C(150) ,D(150) ,X(150)
INCLUDE 'DIM.FOR'

C
C--- COMPUTATION OF DZ1(I,J)
C

DO 20 J-2,KJO
IF(J.LT.25) THEN
Nl-KX1(J-l)+1
N2-KX2(J-l)



CONTINUE

DO 40 I-Ni,N2
DZi(I,J)-X(I-Ni+2)

CONTINUE

----------- -----------------------------------------
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ELSE
Ni-KXi(J)+l
N2-KX2(J)

ENDIF
N-N2-Ni+i
DO 30 I-2,N+i
A(I)-AX(Nl-2+I,J)
B(I)-BX(Nl-2+I,J)
C(I)-CX(Nl-2+I,J)
D(I)-DDX(Nl-2+I,J)-Q(Nl-2+I,J)

30 CONTINUE
C

CALL CUGA(X,A,B,C,D,N)

40
C
20
C
C--- COMPUTATION OF DZ2(I,J)
C

DO 50 I-2,KIO
IF(I.LT.25) THEN
Ni-KYi(I-i)+l
N2-KY2(I-i)

ELSE
Ni-KYi(I)+l
N2-KY2(I)

ENDIF
N-N2-Ni+i
DO 60 J-2,N+i
A(J)-AY(I,Nl-2+J)
B(J)-BY(I,Nl-2+J)
C(J)-CY(I,Nl-2+J)
D(J)-DDY(I,Nl-2+J)+Q(I,Nl-2+J)

60 CONTINUE
C

CALL CUGA(X,A,B,C,D,N)
C

DO 70 J-Ni,N2
DZ2(I,J)-X(J-Ni+2)

70 CONTINUE
C
50 CONTINUE
C

RETURN
END

C**************** SUBROUTINE COYMi ***************
C** PERFORM THE COMPUTATION OF YM1(I,J) AND YM2(I,J) I

C GIVEN P(I,J)
C



CONTINUE

DO 40 I-Nl,N2
YMl(I,J)-X(I-Nl+2)

CONTINUE
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SUBROUTINE COYM1(P)
C

DIMENSION P(150,150)
DIMENSION A(150) ,B(150) ,C(150) ,D(150),X(150)
INCLUDE 'DIM.FOR'

C
C--- COMPUTATION OF YMl(I,J)
C

D9 20 J-2,KJO
IF(J.LT.25) THEN
NI-KX1(J-l)+l
N2-KX2(J-1)

ELSE
NI-KX1(J)+1
N2-KX2(J)

ENDIF
N-N2-Nl+l
DO 30 I-2,N+l
A(I)-AX(Nl-2+I,J)
B(I)-BX(Nl-2+I,J)
C(I)-CX(Nl-2+I,J)
D(I)-P(Nl-2+I,J)

30 CONTINUE .
C

CALL CUGA(X,A,B,C,D,N)
C

40
C
20
C
C--- COPUTATION OF YM2(I,J)
C

DO 60 1-2,KIO
IF(I.LT.25) THEN
Nl-KY1(I-l)+1
N2-KY2(I-l)

ELSE
NI-KY1(I)+1
N2-KY2(I)

ENDIF
N-N2-Nl+l
DO 60 J-2,N+l
A(J)-AY(I,Nl-2+J)
B(J)-BY(I,Nl-2+J)
C(J)-CY(I,Nl-2+J)
D(J)-P(I,Nl-2+J)

60 CONTINUE
C

CALL CUGA(X,A,B,C,D,N)
C

DO 70 J-Ul,N2
YM2(I,J)-X(J-Nl+2)
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70 CONTINUE
C
50 CONTINUE
C

RETURN
END

C******************* SUBROUTltm CUV ***************
C** ADVANCE THE VELOCITIES
C

SUBROUTINE CUV
DIMENSION ZP(150,150) ,HP(150,150) ,HUVP(150, 150)
INCLUDE 'DIM.FOR'

C
C--- RESTORE THE OLD WATER SURFACE ELEVATION AND WATER DEPTH
C TO ZP(I,J), HP(I,J) AND HUVP(I,J)
C

DO 20 I-l,KIO
DO 20 J-1,KJO
ZP(I,J)-Z(I,J)
HP(I,J)-H(I,J)

. HUVP (I, J)-HUV(I,J)
20 CONTINUE
C
C--- ADVANCE WATER SURFACE ELEVATION AND WATER DEPTH
C

CALL DEPT
C
C--- ADVANCE UNIT-WIDTH DISCHARGES U(I,J) AND V(I,J)
C

DO 60 I-2,KIO-l
IF(LLT .25) THEN
Nl-KY1(I-l)+1
N2-KY2(I-1)-1

ELSE
Nl-KY1(I+l)+1
N2-KY2(I+1)-1

ENDIF
DO 60 J-Nl,N2
UV-(U(I,J)**2+V(I,J)**2)**O.5

C
C COMPUTATION OF U(I,J)
C

TM1-(Z(I+1,J)+Z(I+l,J+1»/2.-(Z(I,J)+Z(I,J+1»/2.
TM2-(ZP(I+1,J)+ZP(I+1,J+l»/2.-(ZP(I,J)+ZP(I,J+1»/2.

TERM1--DELT*G*(ALFA*HUV(I,J)*TMl
t +(l-ALFA) *HUVP(I,J) *TM2)/ZDELX(I)

TM1-(Z(I+1.J)+Z(I+1,J+1)+Z(I,J)+Z(I,J+1»/4.
"TM2-(ZP(I+1,J)+ZP(I+1,J+l)+ZP(I,J)+ZP(I,J+1»/4.
TERM2-UD(I,J)*(TM1-TM2)/HUVP(I,J)

TM1-UV*U (I, J)
FC-116.*CN**2/HR(I,J)**(1/3.)
TRM1-FC*TM1/8./HUVP(I,J) **2
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TRM2-3.*0.000001*ABS(V(I,J»*W(I,J)
TERM3--DELT*(TRM1-TRM2)

U(I,J)-UD(I,J)+TERM1+TERM2+TERM3
C
C COMPUTAION OF V(I,J)
C

TM1-(Z(I,J+l)+Z(I+l,J+l»/2.-(Z(I,J)+Z(I+l,J»/2.
TM2-(ZP(I,J+l)+ZP(I+l,J+l»/2.-(ZP(I,J)+ZP(I+l,J»/2.

TERM1--DELT*a*(AlFA*HUV(I,J)*TMl
+(1.-AlFA)*HUVP(I,J)*TM2)/ZDELY(J)

TM1-(Z(I+l,J)+Z(I+l,J+l)+Z(I,J)+Z(I,J+l»/4.
TM2-(ZP(I+l,J)+ZP(I+l,J+l)+ZP(I,J)+ZP(I,J+l»/4.

TERM2-VD(I,J)*(TM1-TM2)/HUVP(I,J)
TM1-UV*V(I,J)

TERM3--DELT*FC*TM1/8./HUVP(I,J)**2
V(I,J)-VD(I,J)+TERM1+TERM2+TERM3
CONTINUE60

C
C---IMPOSE CLOSE BOUNDARY CONDITIONS
C

DO 70 J-l,KJO
U(1,J)-O.
V(l,J)-O.
U(KIO,J)-O.
V(KIO,J)-O.

70 CONTINUE
C

PU(I,J) AND PV(I,J)

DO 80 1-2,KIO-l
IF(I.LT.25) THEN
Nl-KY1(I-l)
N2-KY2(I-l)

ELSE
Nl-KY1(I+l)
N2-KY2(I+l)

ENDIF
DO 85 J-l, N'l
U(I,J)-O.
V(I,J)-O.

CONTINUE
DO gO J-N2,KJO
U(I,J)-O.
V(I,J)-O.

CONTINUE
CONTINUE

85

90
80
C
C--- ADVANCE VELOCITIES:
C

DO 100 I-l,KIO
DO 100 J-KY1(I),KY2(I)
PU(I,J)-U(I,J)/HUV(I,J)
PV(I,J)-V(I,J)/HUV(I,J)

100 CONTINUE
C

RETURN
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END
C
C
C*~************ SUBROUTINE DEPT **************
C** ADVANCE \l'ATER DEPTH AND \l'ATER SURFACE ELEVATION
C

SUBROUTINE DEPT
INCLUDE 'DIM.FOR'

C
DO 30 1-2,KIO
DO 30 J-2,KJO

Z(I,J)-Z(I,J)+DZ(I,J)
H(I,J)-Z(I,J)-ZB(I,J)

30 CONTINUE
. DO 29 1-1,KIO

Z(I,1)-Z(I,2)
H(I,1)-H(I,2)

29 CONTINUE
DO 31 J-1,KJO
Z(1,J)-Z(2,J)
H(1,J)-H(2,J)

31 CONTINUE
C

DO 32 1-1,KIO
DO 32 J-1,KJO

IF(H(I,J).LT.HMIN) THEN
H(I,J)-HMIN
Z(I,J)-ZB(I,J)+HMIN
ENDIF

32 CONTINUE
C

DO 35 J-1,KJO
DO 35 1-1,KIO-1
HX(I,J)-GAMA(I,J)*H(I+1,J)+(1-GAMA(I,J»*H(I,J)

35 CONTINUE
DO 36 J-1,KJO
HX(KIO,J)-H(KIO,J)

36 CONTINUE
C

DO 40 J-1,KJO-1
DO 40 1-1,KIO
HUV(I,J)-(HX(I,J)+HX(I,J+1»/2.

40 CONTINUE
DO 45 1-1,KIO
HUV(I,KJO)-H(I,KJO)

45 CONTINUE
C

RETURN
END

C*************** SUBROUTINE FMOVB **************
C** PERFORM THE COMPUTAION OF THE TIDAL FLOODING AND DRYING
C
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SUBROUTINE FMOVB
C

INCLUDE 'DIM.FOR'
COMMON/W/BAT(150, 150)

C
C--- CHECK TO SEE IF THE FLOW COMPUTED FROM THE NAVIER-STOKES
C EQUATIONS IS CONSISTENT WITH THE FLOW CONTROLLED BY THE
C BOTTOM FRICTION
C

AFF"2.
DO 5 J-2,KJO-l

NI-KX1(J)
N2-KX2(J)

DO 5. I-Nl, N2
C
C EXAMINE U(I,J)
C

SGR-AFF*ABS(G*(Z(I+1,J)-Z(I,J»/DELX(I»
FC-116.*CN**2/HUV(I,J)**(1/3.)

BFR-FC/S.*U(I,J)**2/HUV(I,J)**3.
C

IF(H(I,J).LT.50.) THEN
IF(BFR.GT.SGR) THEN

TM-G*ABS(Z(I+l,J)-Z(I,J»/DELX(I)*HUV(I,J)**3.*S/FC
U(I,J)-AFF*SQRT(TM)*U(I,J)/ABS(U(I,J»

ELSE
U(I,J)-U(I,J)

ENDIF
ENDIF

C
C EXAMINE V(I,J)
C

SGRI-AFF*ABS(G*(Z(I,J+l)-Z(I,J»/DELY(J»
FC-116.*CN**2/HUV(I,J)**(1/3.)
BFRI-FC/S.*V(I,J)**2/HUV(I,J)**3.

C
IF(H(I,J).LT.50.) THEN

IF(BFR1.GT.SGR1) THEN
TM-C*ABS(Z(I,J+l)-Z(I,J»/DELY(J)*HUV(I,J)**3.*S/FC

V(I,J)-AFF*SQRT(TM)*V(I,J)/ABS(V(I,J»
ELSE
V(I,J)-V(I,J)

ENDIF
ENDIF

C
5 CONTINUE
C
C--- UPDATE THE WEIGHTING COEFFICIENTS DUE TO THE MOTION
C OF THE BOIDlDARY
C

DO 10 J-2,KJO-l
IF(J.LT.25) THEN
NI-KX1(J-l)+1
N2-KX2 (J-l)
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ELSE
N1-KX1(J)+1
N2-KX2(J)

ENDIF
DO 10 I-N1,N2

IF(U(I,J).LT.O) THEN
c
C FLOODING
C

TM-3.*(Z(I,J)-Z(I+1,J»
TMM-(TM-H(I+1,J)+H(I,J»
IF(TMM.EQ.O) THEN
BAT(I,J)-=O.5

ELSE
BAT(I,J)-(TM-H(I+1,J»/TMM

ENDIF
IF (BAT(I,J).LT.O.) THEN
BAT(I,J)-o.5

ELSE
IF(BAT(I,J).GT.1.) THEN
BAT(I,J)-1.

ELSE
BAT(I:J)-BAT(I,J)

ENDIF
ENDIF
GAMA(I,J)-BAT(I,J)

C
ELSE

C
C DRYING
C

IF(Z(I,J).LT.ZB(I+1,J» THEN
BAT(I,J)-1.

ELSE
TM-3.*(Z(I+1,J)-Z(I,J»

TMM-(TM-H(I,J)+H(I+1,J»
IF(TMM.EQ.O) THEN
BAT(I,J)-0.5

ELSE
BAT(I,J)-(TM-H(I,J»/TMM

ENDIF
IF (BAT(I,J).LT.O.) THEN
BAT(I,J)-O.2

ELSE
IF(BAT(I,J).GT.1.) THEN

BAT (L, J) -1.
ELSE
BAT(I,J)-BAT(I,J)

ENDIF
ENDIF

ENDIF
GAMA(I,J)-1-BAT(I,J)

C
ENDIF



------------------------------------------------------------
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10 CONTINUE
C

RETURN
END

C•••••••••••••••• SUBROUTINE UVDEP •••••••••••**
C** PERFORM CALCULATION OF HX(I. J). HY(I, j). HYDRAULIC RADIUS, AND
C VATER DEPTH AT (U,V) GRID
C

SUBROUTINE UVDEP
INCLUDE 'DIM.FOR'

C
C--- EVALUATE HX(I.J) AND HY(I.J)
C

DO 10 I-1,KIO-1
DO 10 J-1.KJO
HX(I,J)-CAMA(I.J)*H(I+1,J)+(1-CANA(I,J».H(I,J)

10 CONTINUE
DO 20 J-1,KJO
HX(KIO.J)-H(KIO.J)

20 CONTINUE
C

(U,V) CRID

DO 30 1-1,KIO
DO 30 J-1,KJO-1
HY(I.J)-BATAY(I,J)*H(I.J+1)+(1-BATAY(I,J»*H(I,J)

CONTINUE
DO 40 1-1.KIO
HY(I.KJO)-H(I,KJO)

CONTIlUJE

30

40
C
0.--- EVALUATE VATER DEPTH AT
C

DO 50 1-1,KIO
DO 50 J-1,KJO-1
HUV(I,J)-(HX(I,J)+HX(I.J+1»/2.

CONTINUE
DO 60 1-1.KIO
HUV(I,KJO)-H(I,KJO)

CONTINUE60
C
C--- EVALUATE THE HYDRAULIC RADIUS
C

50

DO 70 1-1,KIO
DO 70 J-1,KJO
HR(I,J)-HUV(I,J)

70 CONTINUE
C

RETURN
END

C*••*·•••*••••••* SUBROUTINE T2DOT .***•••*.**••
C*·· THIS SUBROUTINE IS USED TO OUTPUT THE RESULTS



123

C
SUBROUTINE T2DOT
INCLUDE 'DIM.FOR'

C
C--- OUTPUT THE VELOCITIES
C

IF(NT.EQ.200) THEN
OPEN(UNIT-l,NAME-'VELOCITY.DAT' ,STATUS-'NEW')
DO 10 I-l,KIO
DO 10 J-l,KJO
TM1-U(I,J)/HUV(I,J)
TM2-V(I,J)/HUV(I,J)
WRITE(l,*) NT,TM1,TM2

10 CONTINUE
CLOSE(l)

ENDIF
C
C--- OUTPUT THE LOCATION OF THE BOUNDARY
C

IF(NT.EQ.l00) THEN
OPEN(UNIT-l,NAME-'BOUNDARY.DAT',STATUS-'NEW')

40 DO 20 J-l,KJO
DO 30 I-l,KIO
IF(H(I+l,J).GT.HMIN) THEN
VRlTE(1, *) J, I
GOTO 40

ENDIF
30 CONTINUE
20 CONTINUE

CLOSE(l)
ENDIF

C
RETURN
END
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C CUGA----------MATRIX INVERSE
C

SUBROUTINE CUGA(X.A.B.C.D.M)
C
C PERFORM TRIDIAGONAL MATRIX INVERSE
C

DIMENSION X(150).A(150).B(150).C(150).D(150)
DIMElJSION P(200). R(200).T(200).W(200)

C
MN-M-l
P(1)-A(2)
DO 10 K-l.MN

10 R(K)-B(K+1)
DO 20 K-2.M
T(K)-C(K+1)/P(K-1)
P(K)-A(K+1)-T(K).R(K-1)

20 CONTINUE
W(1)-D(2)
DO 30 K-2.M
W(K)-D(K+1)-T(K).W(K-1)

30 CONTINUE
X(M+1)- W(M)/P(M)
DO 40 KK-1.MN
K-MN-KK+1
X(K+1)-(W(K)-R(K).X(K+2»/P(K)

40 CONTINUE
RETURN
END

C··············DIM.FOR···········.···.·
C.. DIMENSION FILE
C

COMMON/A/Z(70.70).H(70.70).HR(70.70).HUV(70.70).HX(70.70)
I: .HY(70.70) .ZB(70.70)

COMMON/B/U(70.70).V(70.70),UD(70,70),VD(70.70).UAD(70.70)
I: ,VAD(70.70)

COMMON/C/DZ(70.70).DZ1(70.70).DZ2(70.70)
COMMON/D/ZDElX(70).ZDELY(70).DElX(70).DELY(70)
CONNON/E/GAMA(70,70).ALFA
COMMON/F/C,CN.DELT.DC,F,WOMACA.ATA.HMIN
CONMON/G/KIO.KJO,NT.KX1(70),KX2(70).KY1(70).KY2(70)
COMNON/I/YM1(70.70).YM2(70.70)
COMMON/J/PU(70.70).PV(70,70)
COMMON/K/AX(70.70).BX(70.70).CX(70.70),DDX(70.70)
COMMON/L/AY(70.70),BY(70,70).CY(70.70).DDY(70.70)
COMMON/M/W(70.70)
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