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Estimation of MIMO Transmit-Antenna Number Using
Higher-Order Moments Based Hypothesis Testing

Tao Li, Yongzhao Li, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE,
Leonard J. Cimini, Jr., Fellow, IEEE, and Hailin Zhang, Member, IEEE

Abstract—This letter proposes a higher-order-moment based
hypothesis testing algorithm to estimate the transmit-antenna
number for multiple-input multiple-output (MIMO) systems.
Exploiting the asymptotic normal distribution of the moments
composed by noise eigenvalues, the proposed algorithm improves
the estimation performance for low signal-to-noise ratios (SNRs).
Moreover, since the empirical distribution of the moments con-
verges quickly to the normal distribution when the number of
samples increases, our algorithm can make a reliable estimation
in a sample starved condition. Computer simulations are provid-
ed to demonstrate that the proposed algorithm outperforms the
conventional algorithms.

Index Terms—Higher-order moments, hypothesis testing,
MIMO, number of transmit antennas.

I. INTRODUCTION

BLIND identification of signal parameters is a vital
technology in intelligent multiple-input multiple-output

(MIMO) scenarios (e.g., cognitive radio, software defined
radio, surveillance, and security-monitoring) [1]. In particular,
the estimation of the number of transmit antennas is often a
prerequisite for identifying other signal parameters.

The representative works on the estimation of the number
of transmit antennas can be mainly categorized as information
theoretic criteria based algorithms [2]–[5] and hypothesis
testing based algorithms [6]–[10]. The former transforms the
estimation problem into a model selection problem according
to the Akaike information criterion (AIC) or the minimum
description length (MDL) [2]. However, the AIC algorithm
is inconsistent, and the MDL algorithm underestimates at a
low signal-to-noise ratio (SNR) for a small sample size. For
example, in [5], the statistical properties of the higher-order
moments were exploited to derive an improved MDL algo-
rithm, which requires less samples than MDL to achieve the
same probability of correct estimation. The latter transforms
the estimation problem into a series of hypothesis tests by
comparing test statistics with thresholds. They can achieve
a tradeoff between the AIC and MDL algorithms. Hence,
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the hypothesis testing based approaches have attracted much
attention. Nevertheless, the conventional hypothesis testing
algorithms do not perform well at a low SNR for a small
sample size either, since the distributions of the test statistics in
the conventional hypothesis testing algorithms do not converge
fast when the sample size increases. Owing to the fast-
converged distribution property of higher-order moments com-
posed by noise eigenvalues [4], [5], in this letter, we propose
a hypothesis testing algorithm by exploiting the distribution
properties of higher-order moments.

To our best knowledge, no previous hypothesis testing based
algorithm utilizes the distribution properties of higher-order
moments of noise eigenvalues to construct the test statistics.
As the empirical distributions of the test statistics converge fast
to the normal distribution, the proposed algorithm can perform
well with a reduced resolution SNR threshold in a sample
starved condition. The main contributions of this letter are
twofold. i) According to the asymptotic normal distribution of
the higher-order moments, the thresholds of the test statistics
are derived for the estimator. ii) A hypothesis testing method
based on the test statistic constructed by the higher-order
moments is used to determine the number of transmit antennas.
Simulation results show that, at a low SNR and a sample
starved condition, the proposed algorithm compares favorably
with the conventional algorithms.

II. SYSTEM MODEL

We consider a MIMO communication system, where an
unauthorized receiver with Nr antennas is intercepting the
signals from a transmitter with Nt antennas (Nr > Nt). The
received signals at the i-th time instant are described by

y(i) = Hx(i) + n(i) for i = 1, ..., N, (1)

where y(i) ∈ CNr×1 denotes the received signals, x(i) ∈
CNt×1 denotes the transmitted signals, n(i) ∈ CNr×1 repre-
sents the complex additive white Gaussian noise with mean
zero and variance σ2

n, and H ∈ CNr×Nt stands for the
unknown channel matrix which is assumed to be of full rank.

The population covariance matrix of y(i) is

Σ = E[y(i)y†(i)], (2)

where (·)† denotes the Hermitian transpose. After eigenvalue
decomposition (EVD), the eigenvalues of Σ are arranged in
descending order as

λ1 > λ2 > · · · > λNt > λNt+1 = · · · = λNr = σ2
n. (3)

From (3), the number of transmit antennas can be deter-
mined from the cardinality of the smallest eigenvalues of Σ.
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However, the population covariance matrix Σ is unavailable
at the unauthorized receiver. It can only be approximated by
a sample covariance matrix (SCM) as

R =
1

N

∑N

i=1
y(i)y(i)†, (4)

where N denotes the number of samples. The sample eigen-
values of R are

l1 ≥ l2 ≥ · · · ≥ lNt ≥ lNt+1 ≥ · · · ≥ lNr . (5)

Therefore, it is difficult to determine the number of trans-
mit antennas by merely “observing" the sample eigenvalues
{lj}Nr

j=1.

III. HIGHER-ORDER-MOMENT BASED HYPOTHESIS
TESTING ALGORITHM

A. Pertinent Statistical Properties of Higher-Order Moments

In this section, we introduce some pertinent statistical
properties of higher-order moments of eigenvalues according
to the random matrix theory (RMT) [11].

Let Rsf denote a signal-free SCM formed from an Nr ×
N matrix of observations with independent and identically
distributed (i.i.d.) Gaussian samples of mean zero and variance
σ2. The eigenvalues of the signal-free SCM Rsf are

d1 ≥ d2 ≥ · · · ≥ dNr−1 ≥ dNr . (6)

Then, the celebrated result from Marčenko and Pastur [12]
states that, in the asympotic regime, i.e.,

Nr, N → ∞, c = Nr/N, (7)

FRsf (x) associated with the empirical distribution of the
eigenvalues converges to a Marčenko-Pastur distribution
FW (x) with density

dFW (x) = max
[
0,
(
1− 1

c

)]
δ(x)

+

√
(x−a−)(a+−x)

2πσ2xc Π[a−,a+](x) dx,
(8)

where a± = σ2 (1±
√
c)

2, Π[a−,a+](x) = 1 when a ≤ x ≤ b
and zero otherwise, and δ (x) is the Dirac delta function.

Hence, the rth-order moment of the eigenvalues of the
signal-free SCM Rsf converges almost surely as

MRsf
r =

1

Nr

∑Nr

j=1
dj

r a.s.−−→
∫

xrdFW (x) =: MW
r . (9)

In the presence of signals, the eigenvalues of the SCM R are
different from the eigenvalues of Rsf . Nevertheless, Johnstone
[13] has shown that the distribution of the Nr − Nt noise
eigenvalues of R is closely approximated by a Marčenko-
Pastur distribution, as in the signal-free case [4], [13]. The
rth-order moment of the noise eigenvalues of the SCM R is

MR
r (Nt) =

1

Nr −Nt

∑Nr

j=Nt+1
lj

r. (10)

Following the method in [4], [5], the rth-order moment based
test statistic Tr is constructed as

Tr(Nt) =
MR

r (Nt)

[σ̂2(Nt)]
r =

1
Nr−Nt

∑Nr

j=Nt+1 lj
r

[σ̂2(Nt)]
r , (11)
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Fig. 1. CDF of the normalized Tr(Nt) with Nt = 2, Nr = 8, N = 32
and SNR= 0 dB.

where σ̂2(Nt) is the maximum likelihood (ML) estimate of
the noise variance given by [7]

σ̂2(Nt) =
1

Nr −Nt

∑Nr

j=Nt+1
lj . (12)

According to [4], [5], the distribution of Tr(Nt) converges
to a normal distribution as

Tr(Nt)
a.s.−−→ CN

(
αr,

βr

Nr
2

)
. (13)

For r = 2, 3, 4, and 5, the parameters αr and βr are α2 = c+1,
α3 = c2 + 3c+ 1, α4 = c3 + 6c2 + 6c+ 1, α5 = c4 + 10c3 +
20c2 + 10c + 1, and β2 = 2c2, β3 = 3c2(6c2 + 13c + 6),
β4 = 36c2(2c2 + 4c + 1)(c2 + 4c + 2), β5 = 20c2(2c3 +
15c2 + 20c + 5)(5c3 + 20c2 + 15c + 2), where c = Nr/N .
Therefore, the normalized test statistic Tr(Nt) asymptotically
has a standard normal distribution, which is expressed as

Tr(Nt)− αr√
βr

/
Nr

2

a.s.−−→ CN (0, 1) . (14)

To demonstrate that (14) is reasonable, curves for the
empirical cumulative distribution function (CDF) of the nor-
malized test statistic Tr(Nt) are shown in Fig. 1 when Nt = 2,
Nr = 8, N = 32, and SNR= 0 dB. For comparison, we also
plot the CDF curve of the standard normal distribution.

As shown in Fig. 1, for r = 2, 3, 4, and 5, the distribution
of the normalized test statistic Tr(Nt) is close to the standard
normal distribution, demonstrating that (14) is reasonable, and
it has strong reliability under sample-starved conditions.

B. Hypothesis Testing and Threshold

Using the theoretical distribution of the test statistic in (13),
we can estimate the number of transmit antennas using a serial
binary hypothesis test as{

Tr(k) > γr, under H1,

Tr(k) ≤ γr, under H0,
(15)

where Tr(k) = 1
Nr−k

∑Nr

j=k+1 lj
r
/
σ̂2r(k) denotes the rth-

order moment based test statistic, and γr denotes the threshold
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with k = 1, 2, . . . , Nr − 1. The alternative hypothesis H1

represents the case when the eigenvalue lk+1 is a signal
eigenvalue, while the null hypothesis H0 represents the case
when the eigenvalue lk+1 is a noise eigenvalue.

In blind estimation, since the unauthorized receiver cannot
obtain enough information about the transmitted signals, it is
difficult to obtain the distribution function of Tr(k) under H1.
On the other hand, (13) provides the distribution function of
Tr(k) under H0. Therefore, the value of the threshold γr can
be calculated under H0.

For the standard normal distribution CN (0, 1), we can set
a double-sided threshold t. According to (14),

−t ≤ Tr(Nt)− αr√
βr

/
Nr

2
≤ t. (16)

Then, the threshold γr can be derived as

γr = αr + t
√

βr

/
Nr

2 , (17)

with r = 2, 3, 4, and 5.
The main procedures of the proposed higher-order moments

based hypothesis testing (HOM-HT) algorithm are summa-
rized in Algorithm 1.

Algorithm 1 HOM-HT
1: Obtain the eigenvalues of the SCM R by EVD:

l1 > l2 > · · · > lNt > lNt+1 > · · · > lNr ;

2: for k = 1 to Nr − 1 do
3: Calculate the value of the test statistic

Tr(k) =
1

Nr − k

∑Nr

j=k+1
lj

r

/
σ̂2r(k) ;

4: Calculate the value of the threshold γr(k) using (17);
5: if Tr(k) ≤ γr(k) then
6: break;
7: end if
8: end for
9: Output: K̂HOM−HT = k.

In addition, as this algorithm exploits the distribution pro-
perties of higher-order moments composed by the eigenvalues
from noise subspace, it is only valid for Nr > Nt.

Theorem 1 (Asymptotic consistency): The HOM-HT algo-
rithm is an asymptotically consistent estimator when the
sample size N goes to infinity with Nt and Nr fixed, i.e.,

lim
N→∞

P
{
K̂HOM−HT = Nt

}
= 1, (18)

Proof: See Appendix A.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we compare the empirical performance
of the proposed HOM-HT algorithm with the conventional
algorithms, and then illustrate the impact of the sample
length on the performance of the HOM-HT algorithm. The
simulations are implemented in an i.i.d. flat Rayleigh fading
MIMO channel with complex valued signals and complex
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Fig. 2. Comparison of the empirical performance of the HOM-HT algorithm
with the AIC, MDL, PET, NE-MDL, and HOM-MDL algorithms (Nt = 2,
Nr = 8, N = 100, and r = 5).

Gaussian noise. The double-sided threshold of the HOM-
HT algorithm is set to t = 1.6. The transmitted data are
modulated into QPSK symbols and the MIMO space-time
mode is BLAST using spatial multiplexing. The performance
metric is probability of detection, which is calculated over
10000 trials of Monte Carlo simulations.

Fig. 2 shows the detection probability of the HOM-HT
algorithm with r = 5, the conventional AIC, MDL algorithms
[2], and the predicted eigenvalue threshold (PET) based al-
gorithms [6], the secondary moment based improved MDL
algorithm [4], and the higher-order moments based improved
MDL algorithm [5]. The results demonstrate that the HOM-
HT algorithm reaches 100% correct estimation the fastest.
Specifically, when Nt = 2, Nr = 8 and N = 100, the
HOM-HT algorithm can achieve 98% correct estimation. The
AIC algorithm cannot make a consistent estimation despite the
fact that its probability of detection is higher than the other
algorithms at low SNRs.

Impact of the sample length on the performance of the
HOM-HT algorithm is shown in Fig. 3. Obviously, the proba-
bility of correct estimation can be improved by increasing the
number of samples from N = 32 to N = 128. Specifically,
when Nt = 8 and Nr = 16, the improvement is 4 dB.
In Fig. 4, the impact of the receive-antenna number on the
performance of the HOM-HT algorithm is illustrated. The
probability of correct estimation can be improved by increa-
sing the receive-antenna number from Nr = 8 to Nr = 12.
Specifically, when Nt = 4 and N = 128, the improvement
is 2 dB. On the other hand, the order of moments also
impacts the performance slightly. As can be seen from Figs. 3
and 4, the 5th-order moment has the fastest convergence
speed. As a consequence, simulation results show that the
HOM-HT algorithm compares favorably with the conventional
algorithms. With the larger noise subspace, a higher detection
probability can be achieved, since the implementation of the
HOM-HT algorithm is based on the properties of the noise
subspace.
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Fig. 3. Comparison of the empirical performance of the HOM-HT algorithm
with different values of N (r = 2, 3, 4, and 5, Nt = 8, and Nr = 16).
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V. CONCLUSION

In this letter, we have proposed a higher-order moments
based hypothesis testing algorithm to estimate the transmit-
antenna number for non-cooperative MIMO systems. Theoret-
ical analysis and simulation results have shown that the pro-
posed algorithms can obtain a reliable estimate at a relatively
low SNR, and a consistent estimation. In engineering practice,
the algorithm can provide significant technical support for
various civil and military wireless communication scenarios,
such as cognitive radio, eavesdropping, countermeasure, and
civilian security-monitoring.

APPENDIX A
PROOF OF THEOREM 1

When N → ∞, the SCM tends to the population covariance
matrix, i.e., R → Σ. Furthermore, the eigenvalues of R in (5)
tend to the eigenvalues of Σ in (3) with probability one.

When N → ∞, we obtain αr → 1 and βr → 0. Then, from
(17), we have

lim
N→∞

γr = 1+. (19)

For hypothesis H1, when 1 ≤ k ≤ Nt− 1, from (11) we have

lim
N→∞

Tr(k) =
MR

r (k)

σ̂2r(k)
> 1. (20)

Hence, when N → ∞, Tr(k) > γr is always true. According
to the decision criterion in (15), we obtain

lim
N→∞

P
{
K̂HOM−HT ≥ Nt

}
= 1. (21)

For hypothesis H0, when Nt ≤ k ≤ Nr − 1, from (11), we
have

lim
N→∞

Tr(k) =
MR

r (k)

σ̂2r(k)
= 1. (22)

Hence, when N → ∞, Tr(k) < γr is always true. According
to the decision criterion in (15), we obtain

lim
N→∞

P
{
K̂HOM−HT > Nt

}
= 0. (23)

Therefore, with (21) and (23), we obtain

lim
N→∞

P
{
K̂HOM−HT = Nt

}
= 1, (24)

and the asymptotic consistency of the HOM-HT algorithm is
proved.
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