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Abstract 

Different cooling paths from a supersolvus temperature have been applied to FGH96, a 
polycrystalline nickel base superalloy for turbine disc applications, in order to simulate the 
different microstructures that exist through the thickness of a disc following an industrial heat 
treatment. Secondary and tertiary γ’ precipitate size distributions and morphology have been 
analysed and compared for the different heat treatments using SEM and atom probe tomography 
(APT). Detailed compositional data for both γ’ precipitate and γ matrix are presented, and 
compared to equilibrium compositions calculated by Thermo-Calc. For the heat-treatments 
studied, the secondary γ’ composition indicates a shell of differing composition to that towards 
the precipitate core. From sequential equilibria compositional calculations, it is suggested that 
the ‘shell’ forms at a lower temperature than the precipitate core. The fine tertiary precipitates do 
not show the core-shell compositional differences on continuous cooling. W peaks are noted at 
the γ/γ’ interfacial region, which is of significance for retarding coarsening. A γ’ depletion zone 
surrounds the secondary precipitates, within which the γ matrix composition differs significantly 
to the γ far-field values, Finally, a precipitate nucleation and growth mechanistic model is 
suggested based on the experimental data and Thermo-Calc calculations.  
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1 Introduction 
 

Nickel base superalloys are extensively used in elevated temperature environments such as gas 

turbines due to their excellent strength, ductility, fatigue resistance and oxidation resistance at 

elevated temperature [1]. The good mechanical properties of such alloys are derived from their 

internal structure: a combination of a FCC γ matrix and a coherent L12 γ’ precipitate which 

inhibits dislocation motion effectively, especially at relatively high temperature. FGH96 is a 

second generation poly-crystalline turbine disc material fabricated by a powder metallurgy route 

that was developed for improved creep strength and lower fatigue crack growth rate compared to 

the previous generation FGH95 (René 95). Its highest service temperature is reported as 750°C 

[2]. The nominal chemical composition of this alloy in wt.% is: 2.1% Al, 12.9% Co, 15.7% Cr, 

3.7% Ti, 4% Mo, 4% W, 0.7% Nb, 0.05% Zr, 0.05% C, 0.03% B and balanced Ni. The elements 

and composition are carefully tailored in order to obtain the required properties in nickel base 

superalloys. For example, Al and Ti promote γ’ precipitate formation, the combined amount 

decides γ’ volume fraction; Cr provides excellent corrosion resistance; Co lowers the stacking 

fault energy; W improves the strength of the γ matrix, while Mo and Cr form carbides and 

borides with B and C and segregate to grain boundaries [3, 4]. 

It has been found that the microstructure of these alloys, especially in terms of γ’ precipitate size 

distribution, morphology and chemical compositions, significantly affects the materials’ 

mechanical properties [5-9], which can be altered significantly by heat treatment. This is due to 

the ease with which dislocations can cut through and/or bow around the precipitates. The lattice 

mismatch between γ and γ’ phase depends on their composition and γ’ precipitate size and 

therefore element partitioning and precipitate size have an essential impact on dislocation 
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movement while deforming. Generally speaking, the stress necessary for dislocations to bow 

around the precipitates is inversely proportional to the inter particle distance, and this distance 

increases with particle size. The FGH96 alloy is typically subjected to a two stage heat treatment. 

The first stage includes solutionising the material at a temperature above the solvus temparature, 

usually at 1150°C, for 30 to 60 minutes to dissolve all the γ’ phase. This includes dissolution of 

the large primary γ’ precipitates located at γ grain boundaries, such that the grains can grow. This 

is followed by continuous cooling to room temperature at appropriate cooling rates, to form 

secondary and tertiary γ’ precipitates (also known as cooling γ’ together) within grains. The 

second stage involves ageing the material at a certain temperature (usually 760°C) to refine the 

dispersion of the γ’. The tertiary γ’ has near spherical shape and is much smaller in size than 

secondary γ’ precipitates. 

In superalloys such as FGH96, the γ’ precipitate size distribution and morphology strongly 

depends on the applied cooling rate. When cooling rate is rapid, such as water quenching the 

alloy from a supersolvus temperature, a monomodal size distribution of fine γ’ precipitates is 

obtained [10-13]. These precipitates are nanoscale in size with near spherical morphology and 

their number density is rather high. In industrial applications, however, such fast cooling rates 

are not usually applied because the thermal stresses induced by the quenching process can 

sometimes exceed the ultimate strength of the alloy, resulting in crack formation [14]. Slower 

cooling rates are generally applied in order to obtain a bimodal size distribution of γ’ precipitates 

[10, 12, 15-18]. Multimodal size distribution are generally attributed to multiple distinct bursts of 

nucleation of precipitates at different undercoolings below the γ’ solvus temperature [16]. These 

multiple nucleation bursts in turn result from the complex interplay of: (i) continuously 

increasing thermodynamic driving force for nucleation (chemical free energy difference) due to 
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increasing undercooling; (ii) a reduction in this driving force due to previous nucleation events; 

and (iii) the rapidly declining diffusivity of alloying elements with decreasing temperature [16]. 

However, due to the relatively large scale of turbine disc (about 40mm in thickness at the rim 

[19]) and the poor thermal conductivity for a series of cast superalloys (~10 W/(mK) [20]), 

compared to aluminium (~200 W/(mK)) and copper (~380 W/(mK)) at room temperature [21], it 

is challenging to maintain a uniform cooling rate across the whole disc. When subject to oil 

quenching from a single γ phase solid solution above the solvus temperature (a typical industrial 

heat treatment for FGH96), layers of different γ’ size distribution can form across the thickness 

direction due to uneven cooling rates [22]. The disc surface is exposed to cold oil directly and 

therefore has narrow γ’ particle size distribution with small γ’ size due to high undercooling. At 

the central region, the undercooling is low and therefore has a coarse γ’ distribution. Many 

researches revealed that coarser γ’ distributions generally have weaker creep strength due to 

larger inter-particle distance which requires less energy for dislocation motion [23-26]. This 

unevenness of γ’ distribution across the disc could cause strain localisation and thus decrease the 

creep life of the component. Thus it is important to understand the mechanism of the 

microstructural change in terms of size distribution, morphology and chemical composition. 

Three-dimensional microstructural characterisation of nickel base superalloys at atomic scale via 

3D atom probe tomography (APT) has been employed over the years [4, 13, 27]. The most 

recent atom probe system, local electrode atom probes (LEAP®) incorporating a local electrode 

in close proximity to the specimen was first commercially introduced by Kelly et al. in 2003 

[28]. Compared to the more traditional atom probe field ion microscopy, LEAP provides not 

only faster data acquisition and lower voltages due to the local electrode but also substantially 

larger field-of-view (FOV) over which high mass resolution can be achieved, which leads to data 
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generation from larger volumes over the same time period [29, 30]. In modern atom probe 

equipment such as CAMECA’s LEAP 3000XTM and LEAP 4000XTM, laser pulsing is used to 

assist generating pulsed field evaporation so that it produces a very low energy spread from the 

ions, which results in very high mass resolving power (MRP) for long flight times compared to 

voltage pulsing [29]. Recently, several studies have been conducted on both binary Ni-Al alloy 

and commercial superalloys [11, 31-36] via APT. These studies primarily focused on the 

changing of γ/γ’ compositions during isothermal annealing after fast and/or slow quenching from 

the high temperature single γ phase resulting in a either monomodal or bimodal γ’ distribution. 

Although these studies are informative in understanding element partitioning as well as γ’ 

nucleation and growth, the applied heat treatments are quite different from industrial situations.  

Therefore, the current paper focuses on the size distribution, morphology and composition of 

secondary and tertiary γ’ precipitates generated from different cooling rates throughout the disc 

as well as the compositional partitioning between these γ’ precipitates and the adjacent γ matrix. 

APT provides detailed chemical analysis at the nanoscale, but is not suitable for analysing coarse 

γ’ precipitates morphology and distribution. SEM (Scanning Electron Microscopy) is a more 

suitable technique for better understanding of an overall coarse γ’ size distribution and 

morphological features over a larger scale. The three primary objectives of this paper are as 

follows: 

1. to analyse γ’ size distribution and morphology change corresponding to different heat 

treatments applied to FGH96 samples as well as the γ’ particle number density via SEM 

and APT; 

2. to understand the compositional difference between different generations of γ’ and the 

relationships with cooling rate as well as the near-field (in the vicinity of a precipitate) 
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and far-field (not in the vicinity of a precipitate) γ phase compositions carried out by APT 

analysis; 

3. to understand and illustrate the mechanism for γ’ nucleation and growth and the 

elemental diffusion behaviour upon cooling. 
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2 Experimental 
 

The FGH96 material was provided by BIAM (Beijing Institute of Aeronautical Materials Co., 

AVIC). The FGH96 alloy in this study has a composition of 2.1% Al, 12.9% Co, 15.7% Cr, 

3.7% Ti, 4% Mo, 4% W, 0.7% Nb and balance Ni in weight percentage or 4.6% Al, 12.9% Co, 

17.8% Cr, 4.5% Ti, 2.5% Mo, 1.3% W, 0.44% Nb and balance Ni in atomic percentage. The 

samples were cut from a disc by electro discharge machining in a tangential direction, which is 

the force direction on turbine discs during service. A supersolvus solutioning temperature of 

1150°C was applied for 40min to the samples, then individual samples were cooled at different 

continuous cooling rates of 25, 50, 100 and 150°C/min to room temperature in order to simulate 

different undercoolings throughout the disc in the thickness direction. The sample names in this 

paper are referred to as F25, F50, F100 and F150 respectively. For comparison, another sample 

was cooled at the rate of 25°C/min to 1050°C followed by 150°C/min to room temperature 

which is referred to as IC (interrupted cooling). All samples were subsequently aged at 760°C for 

8 hours followed by air cooling.  

For SEM analysis, the samples were mechanically ground and polished then electro-etched with 

an etchant solution consisted of 35ml H3PO4, 2ml H2SO4 and 3g CrO3 and an applied voltage of 

2.5 - 3V for 1-2 seconds. SEM imaging was performed on a LEO GEMINI 1525 field emission 

scanning electron microscope. ImageJ software was applied for digital analysis, in which the 

secondary γ’ average size, particle size distribution, particle number density and roundness were 

determined. For representative statistics, at least 200 particles were counted from each 

micrograph, and three micrographs taken from different grains were analysed. The errors for 

image analysis in this study are taken as 95% confidence derived from statistical treatments.  
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Samples for APT analysis were cut to 0.5mm×0.5mm×10mm match sticks with a slow speed 

cutting blade and electro-polished to a needle shape with tip diameter less than 100nm. The 

electro-polishing contained two steps: In the first step, the samples were immersed in an etchant 

of 25 vol.% HClO4 in butoxyenthanol at 20V (DC) for coarse polishing; Fine polishing for the 

second step was performed using a solution of 2 vol.% HClO4 in butoxyethanol at 7V. A LEAP 

4000X Si instrument, located at the Department of Materials Science and Engineering, 

Northwestern University was used to carry out the APT experiments. APT measurements were 

carried out in the UV laser assisted field evaporation mode at a wavelength of 355nm, with an 

evaporation rate of 0.3 to 1.0%, a laser pulse repetition frequency of 500 kHz, laser pulse energy 

from 18 to 45pJ and a tip base temperature of 40K. IVAS 3.6 software was used for data 

analysis. Approximately 36 to 270 million atoms were collected for each APT sample. Mass 

spectrums of these samples were obtained after data collection, enabling the elements Al, Cr, Co, 

Ti, Ni, Mo, W, Nb, and Zr, C, B to be isolated.  
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3 Results 
 

3.1 γ’ size distribution and morphology  
 

Fig. 1 shows the SEM images of the FGH96 samples that underwent different cooling paths. 

Cooling from a supersolvus temperature results in a bimodal γ’ distribution. Two categories can 

be defined based on average size, morphology, and number density: secondary γ’ precipitates 

with a relatively large size, irregular shape and low number density; and tertiary γ’ precipitates 

with a small size, spherical shape and high number density. The secondary γ’ precipitates are 

evenly distributed in the γ matrix with the tertiary γ’ precipitates present in the γ matrix are 

separated by secondary γ’. For the continuous cooling samples, Fig. 1a – d, the secondary γ’ size 

decreases with increasing cooling rate due to higher undercooling which restrains elemental 

diffusion rate; and its morphology changes from a butterfly-like shape to near spherical. The 

detailed statistics analysed from ImageJ software are listed in Table 1. The mean-equivalent 

diameters were calculated from the areas of the precipitates which were treated as equivalent 

circles. The roundness is used to evaluate the precipitate morphology, the closer this value is to 

1, the closer the precipitate is to spherical. For a perfect circle, the roundness value is 1, for a 

square it is 0.75. As the results suggest in Table 1, the roundness values of the secondary γ’ 

precipitates increase with cooling rate for the continuously cooled samples. Due to a high 

nucleation driving force resulting from high undercooling, the particle number density for 

secondary γ’ precipitates increases with cooling rate, and the average inter-particle distance 

decreases. For IC (Fig. 1e), due to the 2-stage cooling path, the average γ’ sizes of both 

secondary and tertiary are in the middle range with respect to continuous cooling. The 
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quantification of tertiary γ’, however, is at the limit of SEM, and is also subject to error from 

etching effects and binary image processing. Indeed, quantification by TEM was not attempted 

as accurate quantification of the tertiary particle is hindered by the fine particle size relative to 

foil thickness, and this methodology also requires binary image processing. 

The secondary γ’ particle size distribution (PSD) is shown in Fig. 2. It shows that for a slow 

cooling rate, the range of secondary γ’ precipitate diameter (about 40 – 480 nm for F25) is wider 

than that of the fast cooling rate (about 40 to 180 nm for F150), indicating that the nucleation 

events of secondary precipitates in the more slowly cooled sample occurred over a broader 

temperature range and also that the higher cooling rate restricted precipitate growth, leading to a 

narrower size distribution.   

The tertiary γ’ precipitates (not presented in the PSD) are nucleated at higher undercooling due 

to the super-saturation of γ’ favoured elements (Al and Ti) provides a high thermodynamic 

driving force but the growth rate is limited due to a lower diffusivity rate at lower temperatures. 

 

3.2 Chemical composition analysis of γ’ phase  
 

3.2.1 Continuous cooling 

The chemical composition analysis for both γ and γ’ phases have been conducted using atom 

probe tomography. The 3D reconstruction of F25 with 80 million atoms counted in total is 

shown in Fig. 3a. An iso-concentration surface value of 12 at.% Al+Ti, shown in red, has been 

applied to differentiate the γ and γ’ phases (a phase containing more than 12 at.% Al+Ti is 

considered as γ’, and γ otherwise). A background level of 5% Ni ions is shown in blue to 

highlight the geometry of the sample needles. A secondary γ’ precipitate is observed at the top 

left region of the needle, surrounded by a tertiary γ’ depleted zone. The tertiary γ’ in the vicinity 
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of the depleted zone are smaller in size than those away from the depleted zone. Fig. 3b shows 

the 3D reconstruction of F150 with a total of 270 million atoms counted. Again, both secondary 

and tertiary γ’ precipitates are presented with an isoconcentration surface value of 12% Al+Ti 

shown in red, and a tertiary γ’ depletion zone is observed around the secondary γ’ precipitates. 

The tertiary γ’ precipitates are again smaller close to the depletion zone and larger away from it. 

The size of tertiary γ’ was deduced from the APT data using an ion count method. Using the 

12% Al+Ti isoconcentration surface value, there is a slight decrease in mean size from 

approximately 12 to 9 nm ± 1nm for the continuous cooled samples, however, these nano 

particle size quantified by APT is dependent on the isosurface value applied. 

Fig. 4 illustrates proximity histogram concentration profiles (proxigrams for short) across the 

γ/γ’ interfaces of the main alloying elements in FGH96 (Cr, Al, Co and Ti). The proxigrams 

represent three different continuous cooling rates, and were constructed using the Al+Ti = 12 

at.% isoconcentration surface value and a bin size of 0.1nm. The proxigrams clearly reveal that 

the γ phase (represented as negative x values of each plot) is enriched in Cr and Co and depleted 

in Al and Ti, with the γ’ phase (positive x values of each plot) showing the opposite. The 

compositional data in these proxigrams were averaged from the detected γ’ precipitates: 3-6 

precipitates for secondary γ’ and 50-200 for tertiary γ’. Although the tertiary γ’ precipitate size 

varied within an APT specimen, depending on its proximity to a secondary precipitate, a 

compositional variation due to this size difference was not found.  

Compositional gradients of Al and Ti are observed within the secondary γ’ precipitates, 

highlighted by black arrows in Fig. 4a, c and e, but are not observed within the tertiary γ’ 

precipitates, Fig. 4b, d, e. These composition gradients show that the Al concentration in the 

secondary γ’ decreases from the interface towards the core of the particle while that of Ti 
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increases. No correlation has been found between cooling rate and these gradient changes for Al 

or Ti. The compositional gradient can be rationalised by considering that the shell of the 

secondary precipitate nucleated at a lower temperature than the core, and the diffusion rates are 

then too low to achieve uniform compositional equilibrium at low temperatures within the 

precipitate. Table 2 shows the γ’ compositions for samples F25, F50, F100 and F150, along with 

760°C equilibrium composition calculated by Thermo-Calc software and the TCNI5 database. 

760°C equilibrium composition is displayed in the table is because the samples were 

subsequently aged at 760°C. For each cooling rate, there are 3 categories: secondary-shell 

(calculated from 5-7nm away from the γ/γ’ interface centre into the precipitate in each 

proxigram), secondary-toward-centre (calculated from 30-35nm away from the γ/γ’ interface 

centre into the precipitate in each proxigram) and tertiary γ’ composition. The errors are not 

plotted as they obscure the data, but are less than 1% of the data. The correlation between 

cooling rate and secondary-toward-centre γ’ composition has been found to be minimal. Only the 

Cr and Co concentrations tend to increase with a higher cooling rate. A possible reason could be 

a factor of 6 (150°C/min / 25 °C/min) difference in the cooling rate may not have been sufficient 

to observe a difference in the chemical ordering of secondary γ’ precipitates that occurs, and a 

much higher cooling rate would be required to observe any difference. Indeed, Singh [15] 

compared the composition of secondary γ’ when water quenched (>300°C/min) and slow cooled 

(24°C/min), and the results clearly showed a difference in the γ’ composition of these two 

samples.  

For the tertiary γ’ compositions, there is no clear evidence of compositional difference in the 

range of cooling rates in the present study, this could be associated with the post 8h ageing at 

760°C resulting in diffusion and diminishing the compositional difference for different cooling 
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rates. The last column of Table 2 is the combined concentration of Al and Ti. It shows that Al+Ti 

content is similar for the γ’ phase (secondary-toward-centre, secondary-shell and tertiary γ’) for 

the same heat treatment. A detailed analysis is conducted in section 4.2. 

 Fig. 5 shows the proxigrams of F25 and F150 for low content elements Mo, W and Nb. It can be 

seen that the γ phase is enriched in Mo and γ’ is enriched in Nb. Like Al, Nb also exhibits a 

declining concentration away from the interface in the secondary γ’ precipitates (see arrows), and 

this is not observed in the tertiary γ’ precipitates. W exhibits a unique partitioning behaviour: 

Clear W peaks have been found at the γ/γ’ interfaces for both secondary and tertiary γ’ as shown 

in Fig. 5. The 760°C equilibrium composition of γ’ (Table 2) and γ phases (Table 4) calculated 

by Thermo-Calc suggest that W tends to segregate to the γ phase. The γ’ phase ejects W to the γ 

phase upon cooling, but due to the large atomic radius of W (W: 0.193nm, Ni: 0.149nm, Al: 

0.118nm), its diffusivity is relatively slow, and therefore a peak of W is formed at the interface 

and its composition decreases towards the γ’ phase centre. This is reasonable as W is deliberately 

added to nickel-base superalloys such as FGH96 to slow down diffusion and retard coarsening at 

high temperature. The enrichment of W at the γ/γ’ interfaces has also been found in other 

commercial nickel-base superalloys analysed by APT [37]. The W enrichment at the interface is 

lowered with higher diffusion rates and/ or time. This is seen in Fig. 5, where the W enrichment 

at the interface of secondary γ’ in F25 is not as sharp as that of sample F150. 

 

3.2.2 Interrupted cooling 

The 3D reconstruction image from the sample IC is shown in Fig. 6, it indicates that unlike the 

continuous cooled samples, the interrupted cooling path created 3 distinctive γ’ populations: 

secondary γ’, large tertiary γ’ and fine tertiary γ’. The proxigrams of these three γ’ types are 
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shown in Fig. 7. The Al concentration decreases in secondary γ’ away from interface, while Ti 

increases (Fig. 7a) in the same way as for the continuously cooled samples (Fig. 4). Again, this 

trend for Ti and Al concentration was not found in the fine tertiary γ’ (Fig. 7e). The 

compositional change of Al and Ti for large tertiary γ’, however, shows similar trend for the Al 

and Ti compositions to the secondary γ’ precipitates but the absolute values of the composition 

gradients are not as large. This is evident as a convergence of the Al and Ti concentration 

profiles in secondary γ’ (arrowed in black) while those of large tertiary γ’ do not converge as 

shown in Fig. 7c. The large tertiary γ’ precipitates have characteristics between secondary and 

tertiary γ’ in terms of size and chemical compositions (based on the APT results). The data 

shown in Table 3 is evidence of this phenomenon. Like the continuously cooled samples, the 

secondary-shell composition is somewhere between secondary-toward-centre and tertiary. For 

the large tertiary γ’, the shell composition is close to tertiary γ’, but the centre is closer to 

secondary-toward-centre. The Mo and Nb participation behaviours are similar with continuous 

cooled samples. W peaks are also present at the γ/γ’ interface for both secondary and tertiary 

precipitates. 

 

3.3 Chemical composition analysis of γ phase  
 

Not only have compositional differences in γ’ been found, the γ phase near these precipitates also 

exhibits local compositional variations. Composition gradients from the γ phase towards the γ/γ’ 

interface of the plotted 4 elements have been observed (Fig. 4, arrowed in red), in which the Cr 

and Co exhibit positive gradient slope values (concentrations increase towards the interface) 

while Al and Ti exhibit negative values (concentrations decrease towards the interface). When 

comparing between cooling rates, the gradients increase with cooling rate. For the same cooling 
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rate, when comparing compositional gradients in the γ phase originating from secondary and 

tertiary γ’ precipitates, no difference is found for F25 and F50 (slow cooling), but for F100 and 

F150, the compositional gradients within γ are greater from the γ to tertiary γ’ precipitates than 

from the γ phase to secondary γ’.  

Fig. 8 shows magnified proxigrams for Cr, Al and Ti in the γ matrix of F25 and F150 from the γ 

phase on the left of the plots to the γ/γ’ interface on the right of the plots, thus highlighting the 

precipitate free depletion zone of the γ near the interface. Both near-field and far-field (up to -

35nm) matrix compositions are presented in the plots. As can be seen from Fig. 8(a), for both 

F25 and F150, the Cr compositions near the interface are much greater than away from the 

interface. Compositional variations moving away from the interface in the γ phase are also 

observed in Al and Ti (Fig. 8b). The γ matrix is depleted in Al and Ti for both F25 and F150 next 

to the interface, with composition of ~1 at.% and ~0.5 at.% respectively. The Al and Ti 

compositions increase gradually away from the interface. These observations are supported by 

the data in Table 4, in which the γ compositions for each sample have been listed based on 3 

categories: γ near secondary γ’ precipitates (-7 to -5nm from the centre of the interface), γ far 

from secondary precipitates (-33 to -30nm from the centre of the interface) and γ near tertiary 

precipitates (-7 to -5nm from the centre of the interface).  

When comparing the far-field γ composition from different cooling rates, it is clear that the 

decrease of Cr composition and increase in Al and Ti compositions away from the interface and 

into the matrix is more dramatic for F150 than for F25, as is shown in Fig. 8. This is associated 

with the higher undercooling that limits diffusion in the more rapid cooled sample (F150). Table 

4 shows the compositional changes in detail. Slow cooling rates (F25 and F50) exhibit more Cr 
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and Co content and less Al and Ti in the far-field γ composition compared to fast cooling (F100 

and F150), indicating that a higher undercooling limits elemental diffusion rate. 
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4 Discussion 
 

4.1 γ’ precipitation mechanism upon cooling and subsequent ageing 
 

Based on the detailed compositional analysis of γ and γ’ phases from APT experiments and the 

size and morphology analysis from SEM images, a mechanistic model can be proposed to 

explain the overall γ’ precipitation process upon cooling and subsequent ageing for the FGH96 

superalloy. When cooling from a supersolvus temperature, the chemical volume free energy, 

∆Gv, continues to increase with increasing undercooling once the temperature is below solvus 

(1120°C for FGH96), until the critical activation energy barrier ∆G* for nucleation is low enough 

to be overcome, leading to the first burst of nucleation. In the case of the slow cooled sample 

F25, a slow cooling rate results in precipitation occurring at relatively high temperature where 

diffusion rates are relatively fast. This promotes rapid elemental partitioning between the 

secondary γ’ precipitates and the surrounding γ matrix; that is, Al and Ti partition to the ordered 

γ’ phase while Cr and Co partition to γ phase. These secondary γ’ precipitates grow rapidly due 

to fast elemental partitioning, and the precipitate morphology develops from spherical shape to 

cuboidal or butterfly shape once the anisotropic elastic strain energy surpasses the isotropic 

interfacial energy. Meanwhile, the driving force for nucleation is relatively low under low 

undercooling which results in a low particle number density (8/µm2, Table 1), and the 

precipitates are separated by large distances (average particle distance of 157nm, Table 1).  

In the applied heat-treatment of sample F25, the near filed γ phase at the γ/γ’ interface of the 

secondary precipitate is depleted in Al and Ti while enriched in Cr and Co forming γ’-free 

depletion zones around the secondary γ’. These precipitates are enriched in Al and Ti whereas 
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depleted in Cr and Co (composition data in Table 2 and Table 4). However, long-range γ 

equilibrium was not achieved following cooling and subsequent ageing, resulting in a 

compositional gradient through the γ matrix (Fig. 8). During the continuous cooling, new nuclei 

form with continuous nucleation driving force building up from increased undercooling, which 

produces a broad γ’ size distribution (Fig. 2). As secondary γ’ precipitates grow in size during 

initial cooling, when the long range diffusion fields of two adjacent precipitates overlap (often 

referred to as soft impingement) [17], it is more energetically favourable for precipitate growth 

instead of new secondary γ’ nucleation within γ between these precipitates. One would assume 

that not until the γ’ forming elements Al and Ti in the far-field γ phase are super-saturated and 

the undercooling temperature is low enough with a critical energy barrier ∆G*  sufficiently low, 

does a second burst of nucleation occur, forming tertiary γ’ precipitates in the γ phase between 

secondary γ’ precipitates, next to depletion zones, consuming part of the built nucleation driving 

force as well as eliminating elemental super-saturation. These tertiary γ’ precipitates are very 

small in size and high in number density due to limited diffusivity of atoms under such high 

undercooling coupled with a great thermodynamic driving force for nucleation. Also, they are 

relatively smaller in size close to the depletion zones and larger away from these zones (Fig. 3), 

presumably because the driving force for nucleation in the γ matrix is higher away from the 

depletion zone (higher Al content and lower Cr away from the depletion zone). The growth of 

secondary γ’ continues during tertiary γ’ formation and during ageing, and a ‘shell’ of different 

composition to the core is deposited on the secondary γ’ precipitates (Table 2). This ‘shell’ 

composition is somewhere between that of secondary and tertiary γ’. 

For the fast cooled sample F150, when it’s cooled from the same supersolvus temperature and 

aged subsequently, due to higher undercooling and reduced atom diffusivity coupled with a high 
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nucleation driving force, the secondary γ’ precipitates are high in number density (42/µm2, Table 

1), small in size, remain near-spherical shape (Fig. 1 and roundness value in Table 1) and 

possesses narrow particle size distribution (Fig. 2). The basic mechanisms for both secondary 

and tertiary γ’ formation are very similar with F25. The final composition of secondary γ’ lies 

further away from the calculated 760°C equilibrium compared to F25 due to the faster cooling 

rate, as evidenced by more Cr and Co towards the core of the secondary γ’ in Table 2, although 

this difference is very subtle. Also, due to the high number density of secondary γ’ in F150, the 

distance between these secondary precipitates are narrower (67nm average particle distance in 

Table 1), so that the tertiary γ’ size difference near and away from the precipitate depletion zones 

isn’t as apparent as in F25 (Fig. 3). No clear relationship has been found between the tertiary γ’ 

compositions and the cooling rate (Table 2), which may indicate that tertiary γ’ precipitates were 

formed over a relatively short temperature range. Singh et al. [16] studied the γ’ nucleation and 

growth in Rene 88DT alloy, which is a very similar alloy to FGH96, and found that at a cooling 

rate of 24°C /min, the tertiary γ’ nucleate between ~800 and 700°C.  

For F50 and F100, these two samples also exhibit bi-modal γ’ distribution and the γ’ growth 

mechanism is similar with F25 and F150. The secondary γ’ precipitates again show 

compositional variation from the precipitate core towards the ‘shell’, with the ‘shell’ 

composition close to that of the tertiary γ’ precipitates.  

Finally, for sample IC, the interrupted cooling path and subsequent ageing resulted in 3 γ’ 

populations, with low secondary γ’ particle density and a wide interparticle distance (Table 1). 

The γ’ nuclei formed are as described for the F25. The change in cooling rate to from 25 to 

150°C/min at 1050°C (in the temperature range corresponding to secondary γ’ formation), limits 

the further diffusional growth of these secondary precipitates. A larger tertiary γ’ nucleated as a 
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result of the interrupted cooling heat-treatment. These large tertiary precipitates are relatively 

larger in size as compared to the fine tertiary precipitates (Fig. 6). They also possess 

compositions that vary from the precipitate core to the shell (Table 3). The fine tertiary γ’ are 

formed following the same mechanism as the continuous cooled samples (Table 3). 

 

4.2 Sequential equilibria 
 

Using the TCNI5 database, Thermo-Calc has been applied to calculate the equilibrium 

compositions of γ and γ’ phases from 1120°C down to 500°C for every 5°C in order to see the 

equilibrium concentration change for the elements during cooling. Fig. 9 shows the Al and Ti 

sequential equilibria diagrams for the γ’ phase. It illustrates that the Al and Ti curves are 

symmetrical, with decreasing temperature, the Al equilibrium concentration increases while that 

of Ti decreases. These calculations rationalise the Al and Ti compositional differences for 

secondary and tertiary γ’ in Table 2 and the compositional gradients of Al and Ti in secondary γ’ 

in Fig. 4 (black arrows). At high temperature when secondary γ’ nucleates, the calculated 

equilibrium concentration difference for Ti and Al is relatively large, for example (Ti - Al) ≈ 2 

at.% at 1000°C, but this difference is much smaller at the lower temperatures where tertiary γ’ is 

formed, for example this value is ≈ 0.8 at.% at 700°C. In addition, the Al + Ti compositional 

value remains steady in the temperature range studied. The APT experimental data, Table 2 and 

Table 3 of Al and Ti (the γ’ forming additions) show the same trend as the sequential equilibria 

calculations. The Ti concentration towards the core of the secondary precipitates is greater than 

the Al concentration, while the Al concentration of the tertiary precipitates is in fact greater than 

the Ti concentration. Furthermore, the previously discussed concentration gradients from within 

the secondary precipitate to the secondary precipitate shell agree with the trends of the calculated 
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equilibria. From the APT experimental data, the Al concentration increases towards the shell, 

while that of Ti decreases, see the proxigrams of Fig. 4 and 6 and the tabulated data in Table 2 

and 3. This appears to suggest that the shell forms at a lower temperature to the precipitate core. 

It is noted in the sequential equilibria calculations that the Al and Ti curves have inflection points 

around 970°C that are also symmetrical, see Fig. 9. This temperature could be the point at which 

secondary γ’ precipitates stop nucleating so that the nucleation driving force keeps building up 

and therefore affects the equilibrium composition. This would be in agreement with a previous 

study, the nucleation temperature range for secondary γ’ in Rene 88DT is found to be from 

~1200 to ~1000°C [16].  
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5 Conclusions 
 

1. Different cooling paths from a supersolvus heat treatment temperature have been applied 

on FGH96, a commercial powder metallurgy nickel base superalloy for turbine disc 

applications. The SEM images and post digital software analysis show that with 

increasing cooling rate both the secondary and tertiary γ’ average size decrease, the 

secondary γ’ morphology changes from butterfly like to spherical, and the particle 

number density increases while average inter-particle distance decreases. A higher 

cooling rate leads to a narrower secondary γ’ particle size distribution. The interrupted 

cooling sample (IC) has 3 distinct γ’ populations observed from the APT reconstruction: 

secondary, large tertiary and fine tertiary γ’.  

2. Based on the APT data reconstructions, γ’ free depletion zones are found adjacent to 

secondary γ’ precipitates in the γ matrix, and tertiary γ’ precipitates are found to be 

smaller in size near these depletion zones and bigger away from these zones.  

3. Analysis of the APT data shows that the γ’ phase is enriched in Al, Ti, and Nb, while the 

γ phase is enriched in Cr, Co and Mo. The composition of the ‘shell’ of the secondary 

precipitates formed on cooling, differ from towards the core of the precipitates. This 

core-shell difference in composition was not observed for the fine tertiary γ’. There is no 

evidence that the different cooling rate has influence on secondary-shell and tertiary γ’ 

compositions, although the post ageing treatment might affect their composition. 

4. Tungsten concentration peaks are found at the γ/γ’ interfaces, which is evidence of W 

retarding coarsening at high temperature. 
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5. The γ phase composition within the precipitate free zones differs from the far-field γ 

compositions, and is dependent on the cooling rates. These zones are enriched in Cr and 

depleted in Ti and Al. 

6. A model rationalising the γ’ nucleation and growth mechanism has been proposed based 

on the experimental data and analysis. 

7. The difference of Al and Ti compositions (the γ’ forming elements) within secondary and 

tertiary γ’ precipitates, and the compositional gradient of Al and Ti from the γ/γ’ interface 

towards the core of the secondary γ’ precipitates, are rationalised in light of a sequential 

equilibria analysis calculated in Thermo-Calc, with good agreement shown between 

calculation and experimental data. 
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Table 1. Statistical results of secondary and tertiary γ’ extracted from SEM images. 

Sample 
ID 

Secondary γ’ 
diameter (nm) 

Particle density 
(no./µm2) RN 

Tertiary γ’ 
diameter (nm) 

Average particle 
distance (nm) 

F25 220 8 0.72 26 157 

F50 171 14 0.74 16 116 

F100 128 26 0.76 16 90 

F150 101 42 0.78 13 67 

IC 149 16 0.78 15 141 

 

Table 2. Secondary γ’ particle compositions (at.%) of continuous cooling samples, determined from APT 

proximity histogram concentrations at (i) 5-7nm away from the center of the γ/γ’ interface, into the secondary 

precipitates, termed ‘secondary-shell’; (ii) the center of the tertiary precipitates; and (iii) 30-35nm away from 

the center of the γ/γ’ interface, into the secondary precipitates, termed ‘secondary-towards-center’. The 

compositional equilibrium of γ’ precipitate at 760oC, is also presented, calculated from Thermo-Calc using 

the TCNI5 nickel-base superalloy database. 

Sample Location Ni Cr Al Co Ti Mo Nb W Al+Ti  

F25 

Secondary-shell 70.6 1.2 11.6 4.4 9.4 0.8 0.6 1.2 21.0 

Tertiary 70.0 1.4 12.2 4.3 8.6 1.0 0.7 1.6 20.8 

Secondary-

towards-centre 

70.8 1.6 10.1 4.9 10.8 0.6 0.4 0.7 20.9 

F50 

Secondary-shell 69.4 1.3 11.6 4.8 10.4 0.7 0.6 1.0 22.0 

Tertiary 70.1 1.2 12.2 4.8 9.4 0.9 0.4 1.3 21.6 

Secondary-

towards-centre 

68.8 1.8 10.8 5.4 11.4 0.5 0.6 0.7 22.2 

F100 

Secondary-shell 70.3 1.4 10.9 4.6 10.6 0.7 0.4 0.9 21.5 

Tertiary 69.6 1.5 11.9 4.3 9.6 0.9 0.5 1.4 21.5 
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Secondary-

towards-centre 

69.8 2.0 9.6 5.5 11.4 0.6 0.3 0.7 21 

F150 

Secondary-shell 70.7 1.3 11.3 4.5 9.8 0.7 0.5 1.1 21.1 

Tertiary 70.5 1.5 11.8 4.4 8.8 0.9 0.5 1.4 20.6 

Secondary-

towards-centre 

69.8 1.9 10.1 5.4 11.2 0.5 0.4 0.7 21.3 

Eq at 760°C FGH96 69.3 1.7 10.3 5.8 11.0 0.1 1.1 0.6 21.3 

 

Table 3. γ’ particle compositions (at.%) of the interrupted cooling sample, determined from APT proximity 

histogram concentrations. The compositions are determined under three distinct precipitate-size categories: 

secondary, large tertiary and fine tertiary, see Figure 6.  Similar to Table 2, the secondary and large tertiary 

γ’ precipitates are separated into the compositions within the precipitate shell and towards the precipitate 

core, with the ‘large tertiary towards-centre’ value determined 15-20nm away from the interface. The 

calculated compositional equilibrium of the γ’ precipitate at 760oC from Thermo-Calc and the TCNI5 

database is presented.  

Sample Location Ni Cr Al Co Ti Mo Nb W Al+Ti  

IC 

Secondary-shell 70.6 1.4 11.1 4.5 10.2 0.7 0.5 1.0 21.3 

large tertiary-shell 71.2 1.3 11.4 4.2 9.3 0.8 0.5 1.2 20.7 

Fine tertiary 70.9 1.3 11.7 4.2 8.8 0.9 0.5 1.3 20.5 

large tertiary-

towards-centre 

70.9 1.4 11.0 4.2 10.4 0.6 0.5 1.0 21.4 

Secondary-towards-

centre 

69.6 2.0 10.0 5.7 11.6 0.5 0.4 0.7 21.6 

Eq at 760°C FGH96 69.3 1.7 10.3 5.8 11.0 0.1 1.1 0.6 21.3 
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Table 4. Compositions of γ matrix (at.%) determined from APT proximity histog ram concentration profiles 

for samples with different cooling histories. The matrix compositions are calculated at three locations: near 

secondary, far from secondary and near tertiary γ’ precipitates. Near secondary: 5 to 7nm from the interface 

centre, into the matrix; Far from sec: 33 to -30nm from the centre of the interface; Near tertiary: 5 to 7nm 

from the interface centre. The calculated compositional equilibrium of the γ phase at 760oC from Thermo-

Calc and the TCNI5 database is presented. 

  Ni Cr Al Co Ti Mo Nb W 

F25 

Near secondary 47.4 28.0 1.0 18.0 0.4 3.1 0.1 1.6 

Far from sec 49.5 25.8 2.0 16.5 1.2 2.9 0.2 1.6 

Near tertiary 47.4 28.2 1.0 17.7 0.4 3.2 0.1 1.7 

F50 

Near secondary 46.6 28.6 1.0 18.4 0.4 3.1 0.1 1.6 

Far from sec 51.4 24.0 2.7 15.8 1.6 2.7 0.2 1.5 

Near tertiary 47.4 29.6 1.1 17.8 0.4 3.0 0.1 1.5 

F100 

Near secondary 46.8 28.5 1.1 18.2 0.4 3.0 0.1 1.6 

Far from sec 51.5 23.5 3.2 15.2 2.0 2.5 0.2 1.6 

Near tertiary 47.3 28.4 1.1 17.8 0.5 2.9 0.1 1.6 

F150 

Near secondary 46.9 28.5 1.1 18.1 0.4 2.9 0.1 1.6 

Far from sec 51.3 23.9 2.8 15.7 1.8 2.6 0.2 1.6 

Near tertiary 47.4 28.2 1.1 17.9 0.5 2.9 0.1 1.6 

IC 

Near secondary 46.9 29.7 1.0 18.3 0.5 3.0 0.1 1.6 

Far from sec 51.7 24.2 3.0 15.5 2.1 2.6 0.2 1.5 

Near tertiary 47.5 29.5 1.1 17.9 0.5 3.0 0.1 1.5 

Eq at 760°C FGH96 48.7 28.4 1.2 17.3 0.3 2.7 0.03 1.4 
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Figure 1. SEM images showing the size and morphology of γ’ precipitates after different heat treatments. All 

samples were cooled from a supersolvus temperature and have bimodal γ’ distributions. 

 

(a) F25 (25 °C /min ) (b) F50 (50 °C /min ) 

(c) F100 (100 °C /min ) (d) F150 (150 °C /min ) 

(e) IC (25 °C/min to 1050°C then 150 °C/min) 
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Figure 2. Secondary γ’ precipitates size distribution of samples F25 and F150. A fast cooling rate leads to a 

narrower secondary γ’ distribution.  

 

Figure 3. 3D APT reconstructions of sample F25 (a) with 80 million ions detected and F150 (b) with 270 

million ions. The iso-concentration surface (or isosurface) value of 12 at.% Al + Ti is shown in red, both 

secondary and tertiary γ’ precipitates can be seen clearly. 5% of Ni ions are shown in blue indicating sample 

geometry. 

 

F25 F150 

200nm 

160nm 

400n
m

 

(a) (b) 70n
m
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Figure 4. Proximity histogram concentration profiles (proxigrams) of the main elements in at.% (Cr, Al, Co 

and Ti) for F25, F100 and F150 across γ/γ’ interface using an Al+Ti = 12% isoconcentration surface value. 

Left column proxigrams (a, c and e) show secondary γ’ and γ interface and right column (b, d and f) shows 

tertiary. For all the proxigrams negative x values represent γ phase and positive x values represent γ’. The 

composition data in these proxigrams represent data from the detected precipitates, about 3-6 for secondary 

(c) 

(d) 

interface (a) (b) 

(c) (d) 

(e) (f) 
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and 50-200 for tertiary γ’. The black arrows highlight compositional gradients of Al and Ti within the 

secondary γ’ precipitates. The red arrows highlight compositional gradients from the γ phase towards the γ/γ’ 

interface. 

 

 

Figure 5. The proximity histogram concentration profiles (proxigrams) in at.% of Mo, W and Nb in samples 

F25 and F150 across the γ /γ’ interface using Al+Ti = 12% isoconcentration surface values. The left column 

proxigrams (a and c) show the secondary γ’ interface and the right column (b and d) shows tertiary. For all 

the proxigrams negative x values represent γ phase composition and positive x values represent γ’. The black 

arrows highlight compositional gradients of Nb within the secondary γ’ precipitates, that are not observed in 

the tertiary γ’ precipitates. 

 

 

(c) (d) 

(a) (b) 
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Figure 6. 3D APT reconstruction of sample IC with 208 million ions detected. The iso-concentration surface 

value of 12 at.% Al + Ti is shown in red, 5% Ni ions are shown in blue indicating sample geometry. 3 

distinctive populations of γ’ are observed: secondary on the right, large tertiaries on the left and fine 

tertiaries in the middle. 

 

160nm 
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Figure 7. The proximity histogram concentration profiles in at.% of Mo, W and Nb in the IC sample across 

the γ /γ’ interface using Al+Ti = 12% isoconcentration surface values. Left column proxigrams (a, c and e) 

show Cr, Al, Co and Ti and right column proxigrams (b, d and f) show Mo, Nb and W. For all the 

proxigrams negative x values represent γ phase composition and positive x values represent γ’. The black 

arrow highlights compositional gradients of Al and Ti within the secondary γ’ precipitates. The large tertiary 

precipitates also exhibit this trend in Al and Ti, but not as dramatically. 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 8. Magnified proximity histograms concentration profiles in at.% of the γ phase composition for F25 

and F150 samples in the vicinity of secondary γ’ precipitates. The plots show the near-field and far-field 

matrix composition of Cr (a), Al and Ti (b) in the γ matrix. The black dash lines represent depletion zones in 

γ phase. 

 

 

 

 

 

(a) (b) 

Depletion zone Depletion zone 
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Figure 9. Sequential equilibria diagram of Al and Ti (at.%) in γ’ phase from solvus temperature 1120°C to 

500°C, calculated from Thermo-Calc and database TCNI5. 
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Highlights 

• The γ matrix, secondary γ’ and tertiary γ’ chemical compositions from different 
cooling rates have been measured and compared; 

• Secondary precipitates have ‘shells’ with different composition to the cores has been 
observed; 

• A physical model and thermodynamics have been proposed for γ’ formation; 

• Sequential equilibria analysis explaining Al and Ti gradient in secondary γ’; 
• The findings can provide information for alloy designs. 

 


