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Abstract  

This paper concentrates on the effects of misalignment on meshing behaviour of acetal gears as 

hardly any misalignment investigations on polymer gears in the existing literatures. The experimental 

results show that the wear of acetal gears is insensitive to radial and axial misalignments but sensitive 

to yaw and pitch misalignments which degrade the conjugate contact action. Yaw misalignment leads 

to ‘scoop’ wear marks near tooth pitch points. Pitch misalignment causes ‘superimposed palisade’ wear 

marks and micro cracks near tooth roots. Compared with metal gears, the effects of small pitch angle 

on acetal gears are insignificant which may be linked closely to polymer’s low elastic modulus. Strikingly 

different wear striations and various debris morphologies are observed by using scanning electronic 

and optical microscope (SEM, OM) and misalignment effects can be noted.  

Keywords: Acetal spur gear; Misalignment; Wear debris morphology; Micro cracks 

1.  Introduction  

    The increasing use of polymer and polymer composite gears in transmission system such as acetal, 

polycarbonate, PEEK, and carbon/glass fibre reinforced PEEK gears is driving manufacturing industry 

into a new energy-saving era. Great efforts have been made to investigate and understand the wear 

mechanisms of polymer and polymer composite gears in the past 40 years such as design standard [1-

5], sources of heat generation [6], varying temperature effect [7-12] and effect of sliding-rolling contact 

[13-19] and so on.  

    However, almost no literature has been found on the subject of polymer gear tooth contact under 

misaligned condition although in depth research has been conducted on metal gears. Houser et al [20] 

listed major sources of misalignment, defined three categories of misalignment for metal helical gears 

and presented some possible methods such as lead crowning and end relief to reduce the detrimental 

effects of misalignment; Li [21-23] developed a finite element method (FEM) to investigate the effects 

of shaft misalignment. It is found that misalignment on the plane of action exerts significant effect on 

contact stress (CS) and tooth root bending stress (TRBS) while misalignment on the vertical plane of 

action exerts minimal effect. Prabhakaran et al [24] calculated and modelled the variations of the 

bending stress (BS) and CS of a spur gear pair which are exerted by misalignment on the plane of 

action. Lias et al [25] attempted to use FEM to analyse theoretical forces that create stresses due to 

misalignment in a spur gear pair. It is found that the CS is proportional with the misalignment deviation 

and its concentration is higher in tooth contact region and root as an increase in misalignment angle.   

Ameen [26] used distributed point loads to describe the non-uniformity in load distribution under 

misalignment and found an increase in angular misalignment results in an increase in maximum BS 

and stress concentration (SC) on the edge of tooth. Driot and Liaudet [27] modelled the dynamic 

behaviour of a spur gear pair due to shaft misalignments. Velex and Maatar [28] introduced a 

comprehensive mathematical model. Saxena et al [29] calculated the mesh stiffness of a spur gear pair 

subject to yaw misalignment using potential energy method considering the effect of friction force. Jones 

[30] investigate the static effects of misalignments through using FEM  on the LSR and reaction force 

under contact to approximate contact in dynamic model. A similar method with computer aid was applied 

by Simon [31-33]. It is found that the misalignments degenerate conjugate action and result in an 

increase of CS, BS and transmission error (TE).  
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In practice, the occurrence of misalignment is inevitable for meshing gear pairs due to the elastic 

deformation, manufacture error, assembling of gears and shafts and so on [20]. Currently solely the 

field of transmission errors of plastic gears is found to be investigated by Tsai et al [34] and Meuleman 

et al [35]. However they are not directly linked to misalignment. Polymer has an elasticity modulus 

approximately 100 times less than metal, and a lower thermal conductivity and softening/melting 

temperature. As a consequence, it is more flexible than its metallic counterparts. No publications are 

available highlighting the particular issue of the misalignment effect on non-metallic gears, therefore it 

is essential to investigate into the effect of misalignment on polymer gears.  

Vibration monitor, oil debris analysis and oil temperature analysis are three major sources of 

information to monitor the metal geared system [30]. Analysis of wear particle morphology can aid to 

understand wear mechanism, tribology system diagnosis and fault diagnosis [36-38]. Compared with 

metal gears, the wear particle can be detected and obtained straight due to no need of lubricant for 

most polymer gears. The wear debris morphology of polymer gears is associated with wear mechanism 

and operating condition such as rubbing, scratching, CS, local contact temperature and mesh 

misalignment. Varieties in morphology of polymer wear debris and their effects have not received 

enough attention [14-16].  

    A novel design of polymer gear test rig has been developed to investigate the effects of gear 

misalignment, however detailed research was not conducted [39]. This paper describes the operation 

of the test rig to continuously measure the wear behaviour of the misaligned polymer gear pairs. To 

demonstrate clearly the interaction between the wear and misalignment, extensive experiments with 

great misalignments are conducted. The preliminary aligned and misaligned experimental results 

include wear rate, load distribution, noticeable various morphologies of wear debris and SEM 

micrographs of worn tooth surfaces. Some possible causal wear mechanisms, and general conclusions 

are presented in this paper.   

2. Experiment 

2.1 Misalignment  

    A gear pair mesh alignment is the ideal condition. There are four main categories of misalignment for 

gear engagement in imperfect condition shown in Fig.1 [30]: 

 Axial misalignment (AM)- (Fig.1(a))  

 Radial misalignment (RM)- (Fig.1(b))  

 Pitch misalignment (PM) - (Fig.1(c))  

 Yaw misalignment (YM) - (Fig.1(d))  

Y
X

a     

Y
X

b  
Y

X

c                        

Y
X

d  
Fig.1 Schematic of a gear pair mesh misalignment [39]:  

(a) Axial misalignment, (b) Radial misalignment, (c) Pitch misalignment, (d) Yaw misalignment 

    Apart from the AM (reduction in tooth mating length along tooth face width) and RM (variations in 

centre distance), the PM and YM (angular misalignment on the plane of action) tend to cause an uneven 
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load distribution [25, 29] and the wear rate rise sharply. The causes of gear mesh misalignment may be 

due to many factors, e.g. bearing and housing deflections, shaft bending or torsional deflections, gear 

blank deflections and assembly errors [20].  

2.2 Experimental method 

A unique gear test rig shown in Fig.2, was designed and manufactured at the University of Warwick 

with a capacity to continuously measure the gear surface wear, and also conduct the test in both 

alignment and misalignment modes. The assembly photos of gear test rig and its wear mechanism are 

presented in detail in [39]. To continuously measure and record the wear in real-time, an exclusive data-

logging system was designed and made, consisting of a displacement measurement device and a data-

logging software. The non-contact displacement measurement device was designed by applying the 

principle that output voltage of Hall Effect sensor varies in response to an applied magnetic field. The 

transducer is able to move in three dimensions according to the experimental requirement. The gear 

wear is indirectly measured through the rotation of the pivot block. The details of wear definition and 

wear measurement method are explained in [8, 39]. 
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Fig.2 Schematic diagram of polymer gear test rig 

Tab.1 Experimental specifications    

Parameters Value 

Gear material Acetal 
Gear category Spur gear 
Module(mm) 2 
Pressure angle (o) 20 
Tooth number 30 
Pitch circle radius rp (mm) 30 
Tooth thickness at rp (mm) 3.14 
Face width (mm) 15 
Center distance (mm) 60 
Contact ratio 1.67 
Elasticity modulus at 23°C (MPa) 2200 
Melting point (°C) 165  
Rotation speed (rpm) 1000  
Torque (Nm) 7.2  

 



4 
 

    Throughout this paper, acetal spur gears with no addendum modification defined in Tab.1 were used. 

All the test data presented in this paper are obtained from machine cut acetal gear pairs running at a 

speed of 1000 rpm and a torque of 7.2 Nm. 

3. Experimental results and discussions  

    The wear phenomena of a nominally properly aligned gear pair is described in Section 3.1, and the 

results compared with those of misalignment tests outlined in Sections 3.2 to 3.5.  

3.1 Perfect alignment test  

In the alignment test, two regimes of debris shown in Fig.3 were observed by using an OM. Powdery 

debris dominated through all the test and granular-like debris emerged around the transitional wear 

phase. There were no wood-shavings-like wear debris and large snowflake-like wear debris mentioned 

in tests of AM and PM, although the load was increased to 12NM. SEM examinations of the driving and 

driven teeth shown in Fig.4 (a) demonstrate markedly different wear features on the worn surfaces. A 

‘groove’ forms at the pitch line on the driving tooth and a ‘ridge’ on the driven tooth. Many wear striations-

ploughing-are observed on the wear surface of the dedendum area than that of the addendum on the 

driving tooth, and vice versa for the driven tooth.  

3.2. Test results on axial misalignment and discussions  

AM test results presented in Fig.5 (a) indicate three main wear phases: initial (wear-in), transitional 

and steady wear phases, having very similar wear curves. Wear rate discussed in the following 

paragraphs is achieved through averaging the total wear by its corresponding operating revolutions. 

The wear rate calculated prior to steady wear phase is defined as initial wear rate and the one within 

steady phase is referred as linear wear rate. Taking the results of alignment (see Fig.5 (a)) as an 

example, the expression of initial wear rate is (Ya-Yo)/(Xa-Xo) and the linear one is (Yb-Ya)/(Xb-Xa).  

    In contrast to alignment test, the initial wear of AM is sharper and wear loss is heavier. The initial 

wear loss increases as axial gap widens. Fig.5 (b) shows that the wear rate tends to increase as axial 

gap increases. It is noted that the initial wear rate is directly proportional to the axial gap and the linear 

wear rate appears slightly less linear to the axial gap. 

    In addition to powdery wear debris, handful of long strip-like wear debris shown in Fig.6 appeared in 

these tests. The strip-like wear debris resembles wood shavings and small flake-like wear debris is like 

thin slice of snow. Noticeable load distribution shift could be seen from SEM micrographs of worn tooth 

surfaces shown in Fig.4 (b). Obvious characteristics are that the worn tooth surfaces are much rougher 

(coarse furrows) and more debris distributes on them. Compared with alignment (Fig.4 (a)) considerably 

more debris evenly scatters over the dedendum of the driving teeth and over the addendum of the 

driven. 

    With regard to the disproportional relationship of linear wear rate and axial gap, one possible reason 

is the test measurement and data calculation error; one might be due to a disproportionally accumulative 

gear bulk and flash temperature during the long term operation, another maybe an increase in surface 

roughness owing to the trapped debris and consequently it further affects the wear as stated in [14-16]. 

Fig.4 (b) demonstrates that AM leads to edge loading, resulting in a contact area reduction, 

subsequently contact pressure increase. The unworn edge tends to prevent debris escaping from 

uncontacted tooth ends. The increase in debris size might be caused by a high volume of powdery 

debris trapped on tooth contact surfaces and be recirculated many cycles, finally the powdery debris is 

compacted into large piece. It In turn makes contact surfaces rougher. 
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(a) Powdery debris                                           (b) Granular debris 

Fig.3 OM micrographs of debris morphologies from alignment test  

addendum

dedendum

Driving gear tooth Driven gear tooth 

b.   Axial misalignment (axial gap=1.42mm)

dedendum

addendum

a. Alignment 

dedendum

addendum addendum

dedendum

c.  Radial misalignment (radial gap=-0.25mm)

d. Yaw misalignment (yaw angle= 0.35 º )

addendum

dedendum
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addendum

dedendum

e.  Pitch misalignment (pitch angle= 0.42 º )
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dedendum

addendum
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Fig.4 SEM micrographs of gears mesh alignment and misalignment  
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Fig.5 (a) Wear curve of axial misalignment: 1-initial (wear-in) phase, 2-transitioal wear phase, 3-steady wear phase (remove) 

 

Fig.5 (b) Wear rate against axial gap 

Magnification

  

Fig.6 (a) Wood shavings-like wear debris 
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 (b) Small round flake-like wear debris 

Fig.6 OM micrographs of wear debris from axial gap =1.42 mm test  

3.3. Test results on radial misalignment and discussions 

RM has two cases that actual centre distance (CD) is less than and greater than the nominal CD. 

The RM test results are shown in Fig.7.The wear curve (d=+0.45mm) shown in Fig.7(a) is parallel to 

that of alignment, and its initial wear rate is close to that of alignment but linear wear rate is slightly 

lower than that of alignment as shown in Fig.7(b). The RM wear curves (d=-0.25 and -0.3 mm) shown 

in Fig.7(a) are steep in initial phase, and their initial wear rates shown in Fig.7(b) are over twelve times 

that alignment. However their linear wear rates are not greater than that of alignment.  

As with alignment test, almost no visible differences of debris morphology was found when actual CD 

increases (d=+0.45 mm). However when actual CD diminishes, a strikingly different debris regime was 

observed. Long strip-like debris shown in Fig.8 (a) dropped instantly once initiated and needle-like 

debris shown in Fig.8 (b) generated in steady phase. SEM micrographs of worn tooth surfaces are 

shown in Fig.4(c).  

A slight increase in CD almost does not greatly impact acetal gears’ performance, but a reduction in 

CD does affect significantly. The former introducing backlash could allow thermal expansion and moves 

load forwards tooth tip. The later results in an increase in the gear profile contact ratio, which could be 

proved by Fig.4(c). It is interesting to note that the worn tooth surfaces (Fig.4(c)) are as rough (wear 

striations) as those subject to AM (Fig.4 (b)), but without much debris. As with alignment and AM, it 

seems that substantial wear occurs over driving tooth tip. The long strip-like debris and needle-like 

debris reveal that the material is possibly torn from the wear surfaces. This may be due to the 

interference fit of teeth, where the material is scratched once relative motion occurs between contacting 

teeth. Hence the amount of backlash should be considered in polymer gearing application.    

 

Fig.7 (a) Wear curve of radial misalignment 
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Fig.7 (b) Wear rate against radial gap d 

Note: CD is nominal centre distance 60 mm, CD’ is the actual centre distance, d presents radial gap, thus CD’=CD+d 
alignment d=0 mm  

Magnification

 

Fig.8 (a) OM micrograph of long strip-like debris - radial gap d= -0.3mm 

 

Fig.8 (b) OM micrograph of needle-like debris - radial gap d= -0.3mm 

3.4 Test results on yaw misalignment and discussions 

    Three different sets of acetal gear tests subjected to YM were conducted, at yaw angles α of 0.35°, 

0.45° and 1.16° respectively. The YM wear curves and wear rates are plotted in Fig.9. Fig.9 (a) shows 

that the wear curves with yaw angles of 0.35º and 0.45º are similar to that of alignment except relatively 

steep wear gradient and high wear loss in initial wear-in phase. Fig.9 (b) shows that wear rates increase 

as yaw angle increases. Note that when a yaw angle α=1.16°, the wear curve gradient is steep almost 

no transitional wear phase and linear wear rate is over fifty fold that of the other three.  

    The wear debris of YM tests is similar to that of RM (d=-0.3mm), spindly needle-like wear debris 

shown in Fig.10 dropped instantly once initiated and powdery debris dominated in steady wear phase. 

Striking wear characterises can be seen clearly from SEM micrograph in Fig.4 (d). ‘Scoops’ wear marks 

formed closely along the bottom of the driver’s pitch point and the top of the driven. Coarse wear furrows 

can be seen and much wear occurs over addendum of driving gear as RM tests (Fig.4 (c)). Copious 

debris scatters over driving tooth roots and driven tooth tips, however, not much as AM test (Fig.4 (b)).  

Non-conformal contact form subject to YM tends to change from full active (tooth width) line contact 
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to short active line contact. Consequently it leads to wear rate increases as yaw angle increases. The 

appearance of spindly needle-like debris (Fig.10) is much likely to be caused by cyclic scratches due 

to imperfect conjugate contact action and short line contact. Perfect gear involute profile does not exist 

due to YM, which is a possible reason for scoops of material being removed from the surfaces near 

pitch point. 

 

Fig.9 (a) Wear curve of yaw misalignment  

Note: the plot of yaw angle α=0.45° does not conform to others due to the testing device and environment variations. However it 

still shows the wear trend. The wear loss is the sum of driving and driven teeth.  

 

Fig.9 (b) Wear rate against YM angle  

 

Fig.10 OM micrograph of spindly needle-like debris of 0.35o YM test 

3.5 Test results on pitch misalignment and discussions 

Three different sets of pitch misalignment (PM) experiment were carried out respectively at pitch 

angles of β=0.42°, β=0.60° and β=0.86°. PM test results are presented in Fig.11. Fig11 (a) shows that 
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steep wear gradient would be initiated once the pitch angle β reaches a threshold value, such as 

β=0.86°.Its initial wear loss approaches 1.6 mm per tooth, nearly half of tooth thickness (at pitch point). 

This will reduce the tooth strength resulting in gears failing prematurely. Wear rates plotted in Fig.11 (b) 

shows that initial wear rate approaches a linear relationship with PM angle. However, linear wear rate 

increases as PM angle increases within 0.6°, and possibly decreases as PM angle greater than 0.6°. 

 

Fig.11 (a) Wear curve of pitch misalignment (pitch angle β) 

 

Fig.11 (b) Wear rate against pitch angle 

High volume of large snowflake-like were debris was produced prior to steady wear phase. The 

powdery wear debris took dominant in the steady wear phase as other tests. Fig.12 shows the OM 

micrographs of snowflake-like wear debris. It reveals that the size of snowflake-like debris increase as 

PM angle increases. Coarser wear ‘ploughing’ can be seen from SEM in Fig.4 (e), where a series of 

‘palisade’ wear marks across the dedendum of the driver and addendum of the driven. A visible 

difference is that ‘groove’ forms along the pitch line on the driven tooth and a ‘ridge’ on the driving tooth. 

Fig.13 shows the pitting over driving root, the intersection of ‘superimposed palisade’ wear marks and 

micro cracks on tooth root respectively. 

Linear wear rate is less proportional to PM angle. A possible reason might be its contact formation 

alters greatly from the initial wear-in phase to a steady wear phase. Namely tooth active contact line 

tends to become short line or even point contact as the pitch angle increases. It results in an increase 

in local CS and hence the initial wear rate increases greatly. In addition the uniform load distribution 

changes into parabolic distribution along tooth due to PM. Copious material is removed from contact 

surfaces and elastic deformation may occur owing to temperature rise. The short line contact gradually 

develops into long active line contact or even into interfacial contact which subsequently reduces wear 
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in the linear wear phase. In brief, while gear teeth were in mesh, the non-conformal line contact evolved 

into conformal contact. Fig.11 (a) indicates that when pitch angle is great, such as 0.86°, initial wear 

loss should be taken into account. Otherwise gear may fail prematurely. The snowflake like debris is 

found solely in PM tests. From the OM magnification micrograph, it is similar to chunk snow, piling up 

by copious small flake-like wear debris of AM. The superimposed layers of ‘palisade’ wear striations 

tend to trap powdery debris which is recirculated in many revolutions and is squeezed into large 

snowflake-like wear debris. 

MAGNIFICATION

 

(a) Snowflake like debris (pitch angle 0.42º)               

magnification

 

(b) Snowflake like debris (pitch angle 0.86º)         

Fig.12 OM micrographs of snowflake like debris from PM tests 

     

  (a) Pitting on root of driving gear          (b) Junction of multi-layers palisade         (c) Micro cracks of driving gear tooth root 

Fig.13 SEM micrographs of a gear pair with pitch angle 0.42º 

It is concluded that of four types of misalignment, pitch misalignment has significant effect on the wear 

of acetal gears. pitch misalignment has greatly changed the size, shape and position of contact area 

[30]. A unique wear mark-a superimposed layer of ‘palisade’ (Fig.4(e)) was noticed, which resembled 

the wear striation described in [14]. It may contribute to the generation of snowflake-like wear debris. It 

is very possibly developed in initial wear phase. Micro cracks (Fig.13 (c)) were observed near tooth 

roots. Further tests are underway to establish its origin. 

4. General conclusions  

    The wear behaviours of machine cut acetal gears subject to radial, axial, yaw and pitch 

misalignments have been investigated. Detailed experiment results are presented and discussed. A 

number of conclusions may be drawn from this work.  

a) The similar wear behaviours have been observed for acetal gear under both aligned and misaligned 

engagements.  
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b) An increase in axial gap, pitch and yaw angles results in an increase in wear rate. Of the four 

categories of misalignment, acetal gears are most sensitive to pitch misalignment in view of its 

unique wear marks-superimposed ‘palisade’, micro cracks near tooth roots and steep initial wear 

gradient. And the second susceptible could be yaw misalignment judging from high initial wear rate, 

the ‘scoop’ wear marks closely along pitch point and the rough worn tooth surfaces.    

c) Strikingly various morphologies of wear debris could have close relationships with misalignment. In 

addition to powder wear debris, needle-like wear debris appeared in radial and yaw misalignment 

tests, wood-shavings-like wear debris in axial misalignment tests and large snowflake-like wear 

debris in pitch misalignment tests.  

d) Uneven wear is shown in the SEM micrographs of axial misalignment tests due to edge loading. 

Superimposed layers of ‘palisade’ wear marks exhibit on pitch misaligned worn tooth surfaces.  
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