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Abstract 

Many laboratory and space plasma phenomena exhibit scaling, i.e., no char­
acteristic spatial and/or temporal scale can be identified in their dynamics. This 
lack of a characteristic scale makes the dynamics of these systems extremely complex 
and intractable to analytical approaches. Their statistical features, however, appear 
to be simple and exhibit a degree of universality. We will explore two approaches to 
scaling in plasma systems, one based on avalanching sandpile model and the second 
one based on turbulence. 

The avalanching model developed here exhibits a wide range of dynamic be­
havior and incorporates other established models as limiting cases. A single control 
parameter that specifies the length scale over which the redistribution rule operates 
compared to the finite system size, allows us to explore different regimes of the 
model's dynamics close to and away from the existing fixed points. An advanced 
Virtual Reality visualization technique was employed to gain a better qualitative un­
derstanding of the sandpile behavior in the parameter space. This sandpile model 
was used to simulate features found in the fusion plasma in both low and high con­
finement modes. Because of the simplicity of this model, it was possible to formally 
characterize and explain the mechanisms underlying steep gradients formation and 
appearance of internal transport barriers, and to identify links to tokamak plasma 
behavior. 

The solar wind is a supersonic, super-Alfvenic flow of compressible and in­
homogeneous plasma from the Sun. The solar wind provides a natural laboratory 
for observations of MHD turbulence over extended temporal scales. In this case a 
generic and model independent method of differencing and rescaling was applied to 
identify self-similarity in the Probability Density Functions (PDF) of fluctuations 
in solar wind bulk plasma parameters as seen by the WIND spacecraft. The single 
curve, which we found to describe the fluctuations PDF of some quantities, is non­
Gaussian. We model this PDF with two approaches-Fokker-Planck, for which we 
derived the transport coefficients and associated Langevin equation, and the Cas­
taing distribution that arises from a model for the intermittent turbulent cascade. 
The technique was also used to quantify the statistical properties of fluctuations 
in the coupled solar wind-magnetosphere system. These quantitative and model­
independent results place important constraints on models for the coupled solar 
wind-magnetosphere system. 
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Chapter 1 

Introduction 

1.1 General concepts 

A large class of physical phenomena can be characterized as dynamic processes 

occurring on many different spatial and temporal scales. Ordinarily a set of distinct 

scales, independent or weakly coupled, can be identified and the physical theories 

are then developed to treat the dynamics on each scale separately. Let us imagine, 

for example, that local 15 minutes averaged measurements of temperature are used 

to develop a linear dynamical model for the weather prediction. Such measurements 

will clearly reveal several important temporal scales. The temperature at night will 

be usually much lower than during the day. Seasonal changes will be noticeable 

when time scales longer then a year are considered. Finally, long term processes, 

such as these related to ocean currents changes, may be detected for data samples 

that span very long (several years) periods. Which of these processes need to be 

taken into account for the weather prediction model depends on the temporal scale 

of interest. To model observed changes in the temperature during one week, we 

do not have to include seasonal changes or other processes with long characteristic 

temporal scales. Similarly, in the description of long and systematic changes of the 

climate, 24 hours and seasonal cycles are clearly irrelevant. 

The dynamical theory of plasma, where a hierarchy of scales can be iden­

tified, is also a good example of such an approach. The most detailed descrip-
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tion of the plasma is given by a Liouville equation. Let jth particle in the sys­

tem be specified by its phase space coordinates (Xj, Vj), which we will abbrevi­

ate as Xj. A Liouville probability density h(Xj , t), defined in such way that 

h (Xl, ... ,X N, t )dX 1 ... dX N gives the probability that the system is in state [(Xl, Xl + 
dX 1), ... ,(X N , X N + dX N )] at time t, satisfies the Liouville equation (Clem mow 

and Dougherty, 1990): 

aiL ~ ah ~ aiL at + L- Vj ax. + L- aj avo = o. 
j=l J j=l J 

(1.1) 

Here aj is an exact acceleration of the jth particle due to all the other particles, 

without any smoothing. Solving such large number of equations is both impossible 

and not informative. A simplified approach is to consider a phase space of a single 

particle. This leads to Boltzmann's one-particle probability distribution equation 

(Krall and Trivelpiece, 1986): 

a I + v a I + i. (E + v x B) a I = (a I ) 
at ax m c BY at c, 

(1.2) 

where < E > and < B > represent a sum of all external and averaged internal 

fields. The latter satisfy Maxwell's equations: 

'V'. < E >= 47r < p > 1 a < E > 47r 
and 'V'x < B >= - a + - < J > . 

etc 
(1.3) 

Probability density I == I(x, v, t) in (1.2) is defined so that Id3xd3v gives a number 

of particles in the range (x, x + dx), (v, v + dx). The right-hand side of (1.2) is the 

effect of collisions between near-neighbor particles. The first characteristic scale of 

the plasma dynamics can be associated with the mean free path i m / p , i.e., the mean 

distance that a particle moves between two successive collisions. If the phenomena 

of interest occurs on the scale Lc that is much shorter then i m/ p , the collision term 

in (1.2) can be neglected. In the same regime, where Lc «im / p , the motion of the 

individual charge can be studied using classical mechanics with the Lorentz force 

included in the Hamiltonian. If the length scale Lc is larger than a gyro radius given 

by 

mv..l 
Rg = IqlB (1.4) 
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where v 1. is a velocity perpendicular to the magnetic field B, a so called guiding 

center approach can be used (Krall and Trivelpiece, 1986). In the opposite case, 

when Lc > > imfp, the collision term in (1.2) has to be prescribed. The Boltzmann 

equation, however, is often too detailed for large systems and a different set of ap­

proximations can be used to obtained a simplified set of equations on the relevant 

scale. Taking the limits of the infinite system size L -+ 00 and small frequency 

w -+ 0 magnetohydrodynamical (MHD) equations can be derived (Clem mow and 

Dougherty, 1990; Jackson, 1975) where the particles are treated as a fluid and varia­

tions of local quantities are described by differential equations. The incompressible 

MHD equations relate magnetic field B, plasma velocity v, pressure P and density 

p: 

OtP + V(pv) = 0, (1.5) 

1 1 
OtV + (vV)v = --P - -B x (V x B), 

P PJ1.o 
(1.6) 

OtB = V x (v x B), (1.7) 

gt(;) =0. (1.8) 

Here Ot denotes a partial derivative with respect to time and 'Y is the ratio of the spe­

cific heat at constant pressure to that at constant volume ("( = 5/3 for a monoatomic 

gas). In the case where ions and electrons need to be treated separately due to, for 

example, a large temperature difference between them, a two fluid description of the 

plasma can be invoked. 

The above-described approach fails when the relevant dominant scale can not 

be identified in a given system. Its evolution is then equally influenced by all spatial 

or / and temporal scales. We will refer to such phenomena as a complex system. One 

could point out the abundance of such systems in nature (Jensen, 1998; Bohr et al., 

1998), here we mention just one. Bursty turbulent magnetic reconnect ion is a crucial 

process in understanding the dynamics of the Earth magnetotail, dynamics of Sun 
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and the processes occurring in the solar wind. Thrbulent reconnect ion leading to the 

change in the magnetic field topology can occur in the system with non-zero resistiv­

ity and large magnetic field gradients. During this process a large amount of energy 

is released and plasma is accelerated to very high velocities. These effects must be 

included in any proper description of the plasma systems mentioned above. MHD 

equations, used to describe the magnetotail dynamics, can not, however, completely 

model these effects as the reconnect ion requires localized breaking of the frozen-in 

condition. This break usually occurs on distances comparable to the gyro radius 

where the MHD approximation fails. The underlying nonlinear dynamics of such 

multi-scale confined plasma systems prohibits the use of the traditional electrody­

namics and fluid equations. To study these systems, a different approach can be 

taken. A simple model, capable of reproducing the features of the original system, 

is constructed and the emergent phenomenology of this model is used to explain the 

dynamics of the physical system. Examples are shell models, coupled map lattices 

(Kaneko, 1992) (which are reversible on the micro scale) and avalanche (sandpile) 

models (which on the micro scale have some hysteresis or irreversibility) (Vlahos 

et al., 1995). All these models have similar essential features. They exhibit self­

similar and nontrivial (fractal) scaling and long range correlations. Their advantage 

is in their simplicity. Numerical implementations of these models do not require 

large computational resources. Some of them are also tractable to Renormalization 

Group and other dynamical systems approaches. 

The statistical features of complex systems are of great importance as they 

seem to represent the unifying and simplifying aspect of their dynamics. Namely, 

many systems of interest exhibit a power law distribution of the relevant physical 

quantities. Such power laws could arise from a strong coupling between all scales 

relevant to the system's dynamics. We note that a power law P(x) ex X S exhibits 

a natural lack of scale as a relative change P( kx) / P( x) ex k S is independent of 

the scale x. It can be shown that power law statistics are consistent with long 

range correlations within the system (Jensen, 1998; Barnette, 2000). Intriguingly, 

these features may lead to the development of fractal spatia-temporal patterns found 
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in many complex systems. Although such statistical features are indicative of the 

multi-scale behavior they, do not provide a unambiguous test for the existence of the 

complex dynamics. Indeed, in Jensen (1998) the 1/ f power law was obtained from 

the linear superposition of many signals, each exhibiting exponentially decaying au­

tocorrelation function. Thus any description of the complex system's dynamics must 

include the general statistical features, as discussed before, and other specific char­

acteristics such as the existence of the self-similar energy cascade in space assumed 

in most turbulence models. Here we will investigate two manifestations of com­

plex systems, Self-Organized Criticality (SOC) and turbulence and their relevance 

to confined plasma phenomena. Both, SOC and turbulence models are capable of 

reproducing observed statistical features of complex systems but the origin of the 

underlying self-similarity may be quite different (avalanching vs. semi-local energy 

cascade). Interestingly, SOC and turbulence can be studied using similar analysis 

methods such as finite size scaling presented in Chapter 2. The possible relation 

between avalanching models and turbulence is an important and topical issue of 

modern physics. 

1.1.1 Self-Organized Criticality. Sandpile models 

Since its introduction in 1987 by Bak, Tang and Wiesenfeld (BTW) Self-Organized 

Criticality (Bak et al., 1987) attracted much attention from the scientific community. 

The concept offered a way to treat a whole class of physical systems that exhibit 

critical behavior (phase transition) without the need of any tuning parameters. The 

underlying features of these systems are scale invariance, self-similarity and power­

law distributions of any observable. These features indicate the existence of long 

range (spatial and temporal) correlations within the system which in turn leads to 

the appearance of highly organized structures and fractal patterns (Hwa and Kardar, 

1992; Jensen, 1998; Sornette, 2000). The underlying idea of the SOC theory is that 

the competition between simple dynamical rules, namely a driving process and the 

diffusive response of the system to that drive, can create a very complex and in some 

cases, critical behavior. 
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Over the years, a large number of models that encapsulate the SOC paradigm 

has been developed (Sneppen, 1992; Jensen, 1998). Prototypical models widely used 

to demonstrate SOC are these of the sandpile (Ivashkevich and Priezzhev, 1998). 

Sandpiles are dissipative systems in which the energy is dissipated through dis­

charge events called avalanches. The phenomenology of the sandpile models has 

been applied successfully to a variety of physical systems such as earthquakes (Chen 

et al., 1991), biological evolution (Sole and Manrubia, 1996) or interface growth 

(Sneppen, 1992). Its applicability to complex, confined plasma systems remains, 

however, questionable. To date, a number of studies has used sandpile methodology 

to investigate the dynamics of energy transport in both astrophysical and labora­

tory plasma systems. These included astrophysical accretion disks (Mineshige et al., 

1994; Dendy et aZ., 1998), energy releases in the Earth's magnetotail (see (Chang, 

1992) and references therein, (Chapman et al., 1999; Chapman and Watkins, 2001a)) 

as well as nonlocal and non diffusive energy transport processes in laboratory toka­

mak plasma investigated in Carreras and Newman (1996); Chapman et al. (2001c). 

All sandpile models feature thresholded dynamics and as such exhibit local stepwise 

instability, i.e., the stability of the model is determined by the value of the local 

gradient gi. If the value of gi at some point i is larger then the threshold the sand 

will be redistributed down the pile. Different realizations of the sandpile model are 

obtained by varying the redistribution rules (i.e., microscopic dynamical rules) as 

well as the driving methods. These changes do not necessarily lead to a detectable 

variation in the global behavior (for example, observed power law indices) thus al­

lowing one to categorize models by means of the universality classes (A maral and 

Lauritsen, 1997; KadanoJJ et al., 1989). Despite many differences between existing 

"classical" sandpile models, there is one feature shared by all of them - the relax­

ation of the system is much faster than the growth rate of the instability (drive). 

Recent studies of standard sandpile models strongly suggest that this separation of 

time scales is absolutely necessary for the emergence of critical behavior in spatially 

extended systems (Hwa and Kardar, 1992). In essence, it has been proposed that the 

driving rate A is a tuning parameter for the sandpile model, similar to these found 
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in the ordinary systems exhibiting phase transition. The criticality then emerges as 

a limiting behavior of the system with the constant driving rate>. -t 0 (Vespignanni 

and Zapperi, 1997, 1998). This result is hard to reconcile with apparent ubiquity of 

SOC in nature where the driving rate is often strong and highly variable. Yet, sta­

tistical features found in the observed time series are very similar to these of classic 

SOC models, strongly suggesting the presence of criticality (Lu and Hamilton, 1995; 

Dendy et al., 1998; Chapman et al., 200lb). 

Indeed, the problem of applicability of the sandpile models, and SOC in 

general, to natural phenomena can not be understated. The microscopic rules are 

often prescribed arbitrarily, without any apparent physical motivation. Additionally, 

results of the Renormalization Group analysis are obtained only in the limit of 

infinite system size. These results may not be relevant for the finite size natural 

systems. These difficulties motivated the development of a new sandpile model 

presented in the next section. The model exhibits a wide range of dynamic behavior 

and incorporates other established models as limiting cases. Self-similar behavior 

on the large scale is robust against strong and variable driver (Chapman et al., 1999; 

Watkins et al., 1999). A single control parameter that specifies the length scale over 

which the redistribution rule operates compared to the finite system size, allows us to 

explore different regimes of the model's dynamics close to and away from the critical 

regime. Within certain range of this control parameter, the system exhibits features 

characteristic of SOC dynamics. Another regime has been also identified where 

features reminiscent of low-dimensional chaos, such as inverse cascade structures, 

intermittency and period doubling of a limit cycle, emerge (Chapman, 2000). Similar 

to real physical systems, the dynamics of the model can be strongly influenced by 

both its finite size and its interaction with boundaries. 

1.1.2 Turbulence 

Turbulence is an intrinsically nonlinear and complex phenomenon that, at least 

on small scales, can be extremely sensitive to the initial and boundary conditions. 

Figure 1.1 shows one possible realization of the high Reynolds number turbulent flow 
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Figure 1.1: Color contours of the vorticity magnitude in Direct Numerical Simu­
lations of supersonic turbulent jet with near acoustic field. The simulations were 
performed by Jonathan Freund, Parviz Moin and Sanjiva K. Lele. at NASA 's Center 
for Turbulence Research. 

obtained by computer simulation. The complexity of the flow is obvious - one can 

observe the existence of self-similar structures on all scales as well as the emergence 

of the certain large scale patterns in the flow. 

The systematic studies of turbulence started in 1920's when Richardson pro­

posed a mechanism for the creation of turbulence by large scale forcing, that prop­

agates toward the small spatial scales by the nonlinearities of fluid motion. This 

is often referred to as a spectral paradigm and was later further developed by Kol­

mogorov in his celebrated 1941 theory (K41). In this work, the Gaussian distributed 

energy is inputed randomly at large spatial scale. It sets up the nonlinear and semilo­

cal energy cascade that allows the energy to transfer toward smaller and smaller 

scales until it dissipates due to viscous heating. All scales between the largest one 

L, where the energy is injected, and the viscous scale fJ are referred to as the inert ial 

range R. The introduction of the inert ial range brought universality into studies 

of turbulence. According to Kolmogorov's theory, the only relevant parameter for 

the dynamics in the inertial range R, is the energy flux € between different scales. 

This assumption led Kolmogorov to the development of the dimensional analysis 

where only R, E and the fluid density p are considered. Parallel to these theo-
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retical predictions, experimental methods were developed to study turbulent flows. 

Among them, statistical methods proved to be the most robust under perturba­

tions allowing one to extract and characterize (by means of scaling exponents, for 

example) a macroscopic description of the fluid. Richardson, in his early studies, 

found that the velocity field itself is too sensitive to the boundary conditions and 

is not suitable for the statistical measurements. Instead, he suggested the velocity 

difference 8v(rl' r2) = v(r2) - v(rt} as an ideal field for statistical studies. Often 

one dimensional cuts of the velocity fields are considered: 

(1.9) 

where R = r2-rl is a separation vector between rl and r2. The main interest lies in 

the probability distribution function of 8v(rl' r2) and its moments. These moments 

are the structure functions and according to Kolmogorov's theory they should scale 

as: 

(1.10) 

Here, n is the moment and symbols < .. . > indicate an ensemble average. Experi­

mental results do not confirm that scaling, however, and modification of the theory 

(Kolmogorov, 1962) includes intermittency by means of randomly varying energy 

transfer rate E. Intermittency modifies scaling of the structure function and experi­

mental data show significant departure of higher moments from these predicted by 

(1.10). In this context, a plethora of computer models has been suggested to cap­

ture this observed scaling. The picture of turbulence emerging from these models 

is much more complex then that suggested by the original Kolmogorov theory. It 

requires a multi-fractal phenomenology to be invoked as the self-similarity of the 

cascade is broken by the introduction of the intermittency. We stress that statisti­

cal studies of higher moments of the structure function are very important as the 

distribution function of the turbulent flows can depart significantly from a Gaussian 

distribution. This non Gaussian shape of the PDF, corresponding to the increased 

probability of finding large events, is called statistical intermittency and is most 

pronounced for small temporal or spatial scales. In a finite sized system, large scale 
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PDFs should converge to the Gaussian distribution as indicated by the central limit 

theorem (Bornette, 2000). 

All aspects of the turbulence, discussed above, are common for neutral fluids 

and Magnetohydrodynamics. There are, however, some differences in the physics 

of the magnetized plasma turbulence and we will mention few of them now. One 

of the profound differences between plasma and the neutral fluid is the variety of 

linear waves that the plasma can support. This comes from the coupling between 

charged particles and a self-consistent field that they generate. It is also a result 

of the linear low frequency solutions of the plasma equations such as (1.5)-{1.8). 

These oscillations may lead to, so called, weak turbulence where the turbulent ed­

dies, now considered as wave packets, are well separated in space and do not interact 

(Krommes, 2002). The presence of the strong magnetic field B introduces a natu­

ral anisotropy as the motion in the direction perpendicular to the field is strongly 

suppressed. This makes MHD turbulence to be in some sense a 2-D phenomenon, 

while the neutral-fluid turbulence occurs in three dimensions. We should mentioned 

here that 2-D and 3-D turbulence is quite different and the differences in the scal­

ing indices are detectable (see for example, Biskamp (1993)) in simulations. For 

experimental reasons, the ability to estimate the extent of the inertial range is very 

important as it is within this range of spatial scales that the theoretical predictions 

can be applied. The development of a well-defined inertial range can be strongly 

inhibited in a plasma due to the linear dissipation mechanisms such as Landau 

damping (Krommes, 2002). Significant differences may also arise from the existence 

of additional invariants of motion, associated with the magnetic field, in MHD. 

It can be shown (Biskamp, 1993) that equations (1.5)-{1.8) have three quadratic 

invariants, namely total energy: 

the cross-helicity defined as 

00 

E = ~ J {v2 + B2)d3x, 
o 

10 

(1.11) 

(1.12) 



and the magnetic helicity 

(1.13) 

where A is a magnetic potential. In two dimensions, magnetic helicity is replaced by 

the mean square magnetic potential. These invariants are conserved in a turbulent 

flow. Their spectral components, defined in the wave number k space, must obey 

strict energy conservation relations. If any of these quantities are injected (excited) 

into a turbulent system all other modes in k space will be excited as well (Biskamp, 

1993; Paret and Tabeling, 1998). Such a nonlocal (in k space) transfer process is 

called cascade and was already mentioned. Recent experimental results from Paret 

and Tabeling (1998); Biskamp (1993) confirm the cascade of the total energy and the 

inverse cascade of the magnetic helicity in 3-D as well as the mean square magnetic 

potential A in 2-D turbulence. It was also found that the inverse cascade leads to 

self-organization and emergence of large magnetic structures as well as an alignment 

of currents j and magnetic field B (Biskamp, 1993; Krommes, 2002). 

The experimental observations of plasma turbulence are extremely difficult, 

with most experiments being conducted in magnetized fluids (Paret and Tabeling, 

1998). Two systems, however, allow us to observe plasma with high Reynolds num­

bers directly. The laboratory fusion devices, such as tokamak, are one of them. The 

second is a natural system - the solar wind. These systems give us an insight into 

two very different states of the plasma. We now introduce these systems and discuss 

their properties. 

1.2 Tokamak plasma 

In a tokamak, the plasma is confined by strong magnetic fields. Table 1.1 outlines 

typical values of physical quantities characteristic ofthe tokamak plasma. Figure 1.2 

shows how the typical configuration of the magnetic field is produced. The toroidal 

component Be is generated by external coils. A smaller, poloidal magnetic field is 

produced by toroidal currents induced in the plasma. The complete magnetic field 
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I Parameter I Typical Value 

Plasma volume 1 -100mJ 

Ion concentration 1019 - lO:·!UmJ 

Temperature 1-7keV 
Pressure 0.1 - 1atmosphere 
Magnetic field 1 - 10Tesla 
Total plasma current 0.1- 5MA 

Table 1.1: Typical parameters of tokamak plasmas. 

produces an infinite set of nested, toroidal magnetic surfaces. The direction of the 

magnetic field changes from surface to surface, making it prone to many instabilities. 

These instabilities are thought to be responsible for the enhanced loss of energy of 

the confined plasma which is much faster than this predicted by a simple particle 

collision calculations. This anomalous confinement can result, for example, from 

E x B drifts arising from electric field fluctuations. Magnetic instabilities are also 

present and can modify the structure of the magnetic field. Among them tearing 

modes can produce the rapid transport of energy along the distorted field lines and 

result in an enhanced radial transport. 

It has been well established that the transport in the confinement zone of 

a tokamak device is dominated by turbulence (Diamond and Hahm, 1995). This 

turbulent transport is triggered by so called marginal instabilities in the plasma. 

The marginal instability concept simply states that, when the local gradient ex­

ceeds the critical value, the flux increases rapidly bringing the local gradient below 

criticality. The large scale transport events or bursts, consistent with such mech­

anism, has been observed in both computer simulations (Garbet and Waltz, 1998; 

Sarazin and Ghendrih, 1998) and tokamak experiments (Rhodes et al., 1999). Faced 

with plethora of possible mechanisms for the enhanced transport and energy loss, 

analytical theory of these phenomena is not well developed. The marginally stable 

system can, however, be modeled using avalanching models, for example, the sand­

pile model described previously. In Carreras and Newman (1996) a SOC paradigm 

for turbulent transport in magnetically confined plasma was proposed to model 
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plasma transition from low to high confinement state. This high confinement state, 

or the H-mode, is usually attributed to a transport barrier developing spontaneously 

within the system. Such barrier causes the local reduction of turbulent transport 

near the edge of the plasma. The H-mode can be detected by observing the pressure 

and temperature profiles of the plasma. These exhibit a steep gradient close to the 

plasma edge. Steady high confinement state is accompanied by edge localized modes 

(ELMs). These ELMs are periodic rapid energy and particle loss events. In Chapter 

5, we will show how the previously described sandpile can be used to model the ap­

pearance of such transport barriers in the plasma. Because of the simplicity of this 

model, it is possible to formally characterize and explain the mechanisms underly­

ing pedestal formation and to identify links to tokamak plasma behavior (Chapman 

et al., 2001c). In contrast with Carreras and Newman (1996), where the transport 

barriers were created artificially, confinement phenomenology characteristic of the 

tokamak plasma emerges naturally from the simple sandpile model presented here. 

We find close analogs for enhanced confinement, edge pedestal and ELMs ( Chapman 

et al., 2001c). The quantitative measures of correlation between stored energy and 

edge localized mode frequency are in good agreement with available experimental 

results. The overall picture that emerges from this study suggests that the low 

confinement mode corresponds to the SOC state of the plasma, while the H-mode 

or high confinement mode exhibits features characteristic of deterministic chaotic 

systems such as limit cycles and period doubling. 

1.3 Solar wind 

Statistical properties of the interplanetary magnetic field (IMF) fluctuations are 

a topic of considerable interest in space research. The subject is closely related 

to energy transport and acceleration processes in the solar wind (Th and Marsch, 

1995; Burlaga, 2001). Statistical features of the velocity field fluctuations recorded 

in the wind tunnels and these obtained from the solar wind observations exhibit 

striking similarities (Carbone et al., 1995; Veltri, 1999). A unifying feature found 
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Figure 1.2: Magnetic field generation III tokamak. Image courtesy of Lawrence 
Livermore National Laboratory. 

in these fluctuations is statjstical intermittency defined as the presence of large 

deviations from the average value. Intermittency can be detected and characterized 

by the Probability Density Function (PDFs) of these fluctuations. The PDFs, unlike 

the power spectra that do not reveal intermittency, show a clear departure from 

the Normal distribution on small temporal scales (Boh?' et al., 1998; H'isch, 1995) 

while large scale features appear to be uncorrelated and converge toward a Gaussian 

distribution. These similarities suggest a common origin of the fluctuations in the 

turbulent fluid and the solar wind. The approach is to treat the solar wind as an 

active highly nonlinear system with fluctuations arising in situ in manner similar 

to that of hydrodynamic turbulence (Tu and Marsch, 1995; Goldstein and Roberts, 

1999; Milovanov and Zelenyi, 1998). 

Single point measurements can not uniquely determine the existence of tur­

bulence (H'isch, 1995) and ideally, one needs to construct a structure function from 

a range of spatial locations in the fluid. However, data taken over long intervals 

in the solar wind is routinely single point and can yield strongly suggestive, if not 

definitive results, and it is this type of data that we treat in Chapter 6. Data analy­

sis methods applied to investigate solar wind turbulence so far has relied on existing 

turbulence models. Spectral methods, used in Goldstein and Roberts (1999) or Ho?'-
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bury and Schmidt (1999), are used to examine the scaling of the power spectrum of 

the Elsasser variables defined as: 

I5b 
Z± = I5v±-­

J41fp' 
(1.14) 

where I5v and I5b are velocity and magnetic field fluctuations around mean. Calcu-

lated power spectra show a power law regions with slope near 5/3 as predicted by 

Kolmogorov's dimensional analysis. The result, however, assumes that the magnetic 

field fluctuations are dominated by Alfven waves. Only then, knowing the exact dis­

persion relation, can one transform the result to k space for direct comparison with 

Kolmogorov's theory. Obtaining a clean power spectrum is, however, difficult due 

to bursty character of the data. Stationarity of the data is often an issue. In recent 

years, studies of the PDF of both velocity and magnetic field fluctuations experi­

enced a significant development. Following Kolmogorov's 1962 theory (Kolmogorov, 

1962), where the observed statistical intermittency appeared as a result of the fluc­

tuations in the rate of energy transfer of the turbulent cascade, Castaing proposed 

an empirical model for the PDF of velocity differences (Castaing et al., 1990). Given 

that: 1) for a constant energy transfer rate €, the fluctuating quantity has a Gaussian 

distribution and 2) the width of the Gaussian has a log-normal distribution, it was 

shown that the resultant Castaing distribution gives a good fit to the velocity differ­

ence PDFs in laboratory fluid turbulence experiments. In the case of the solar wind, 

one can obtain a good fit to the PDF of velocity and magnetic field fluctuations by 

this method (Sorriso- Valvo et al., 1999, 2001) or one can consider the fluctuations 

about the mean value (Padhye et al., 2001). In Chapter 2, we will discuss a finite 

size scaling method that can be used not only to study the PDF scaling but also to 

obtain the analytical functional form of the asymptotic PDF. Our analysis suggests 

that the magnetic field energy density fluctuations are governed by the mono-scaling 

process that can be described by a Fokker-Planck equation. In Chapter 6, we will 

demonstrate how the diffusion coefficient can be calculated directly from our results. 

The interaction of the solar wind with the Earth's magnetic field creates 

a natural plasma confinement system with complex dynamics. This solar wind­

magnetosphere-ionosphere system is shown in figure 1.3. The solar wind energy is 
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Figme 1.3: The coupled solar wind-magnetosphere-ionosphere system. 

constantly transfered into the magnetosphere keeping it out of equilibrium. The en­

ergy is than released by a range of mechanisms such as plasma sheet heating or the 

kinetic energy of a plasmoid ejection. Recently, there has been considerable interest 

in viewing the coupled solar wind-magnetosphere as a complex system where multi­

scale coupling is a fundamental aspect of the dynamics (see (Chang, 1999; Chapman 

and Watkins, 2001a; Consolini and Chang, 2002) and references therein). Exam­

ples of the observational motivation for this approach are bursty transport events in 

the magnetotail (Angelopoulos et al., 1992) and evidence that the statistics of these 

events are self-similar (as seen in auroral images (Lui et al., 2000)). Geomagnetic 

indices are of particular interest in this context as they provide a global measure 

of magnetospheric output and are evenly sampled over a long time interval. There 

is a wealth of literature on the magnetosphere as an input-output system (see for 

example, Klimas et al. (1996); Sitnov et al. (2000); Tsurulani et al. (1990); Vassil­

iadis et al. (2000); Voros et al. (1998)). Recent work has focussed on comparing 

some aspects of the scaling properties of input parameters such as E (Perreault and 

Akasofu, 1978) and the AE index (Davis and Sugium, 1966) to establish whether, 

to the lowest order, they are directly related (Freeman et al., 2000a; Uritsky et at., 

16 



2001). Although these studies are directed at understanding the coupled solar wind­

magnetosphere in the context of Self-Organized Criticality (SOC), a comprehensive 

comparison of the scaling properties of the indices and some proxy for the driver 

(/':) also has relevance for the predictability of this magnetospheric "output" from 

the input. Importantly, both "burstiness" (or intermittency) and self-similarity can 

arise from several processes including SOC and turbulence. Indeed, SOC models 

exhibit threshold instabilities, bursty flow events and statistical features consistent 

with the "scale-free" dynamics such as power law power spectra. It has been pro­

posed by Chang (1992, 1999) that magnetospheric dynamics is indeed in the critical 

state or near it. Alternatively, Consolini and De Michelis (1998) used the Castaing 

distribution - the empirical model derived in Castaing et al. (1990) and based on a 

turbulent energy cascade - to obtain a two parameter functional form for the Prob­

ability Density Functions (PDF) of the AE fluctuations on various temporal scales. 

Turbulent descriptions of magnetospheric measures also model observed statistical 

intermittency, i.e., the presence of large deviations from the average value on dif­

ferent scales (Consolini et al., 1996; Voros et al., 1998). An increased probability 

of finding such large deviations is manifested in the departure of the PDF from 

Gaussian toward a leptokurtic distribution (Sornette, 2000). 

In Chapter 6, we will apply a finite size scaling to parameters that quantify 

the coupling between the solar wind and the magnetosphere. This investigation 

includes the Akasofu's /': parameter as well as AL, AU and AE magnetospheric 

indices. The Akasofu's /': parameter (Perreault and Akasofu, 1978), the energy flux 

entering the magnetosphere, is closely related to the Poynting flux and is defined 

as: 

(1.15) 

(1.16) 

The AL and AU indices measure the magnetic activity of the magnetosphere through 

the range of the ground based magnetometers. We will discuss the results of finite 
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Chapter 2 

Models and Methods 

Analytical description of a complex system's dynamics is often intractable. In some 

cases, the allowed number of degrees of freedom is too large and traditional attempts 

to solve exact dynamical equations fail. The sandpile model used in this • work 

represent a good example of such systems. Although the local rules, from which 

the overall dynamics arise, are very simple, the strong coupling between different 

parts of the system, combined with the long range correlation imposed on it, makes 

it impossible to construct continuous differential equations describing the system's 

dynamics. In the case of turbulence, the situation is different. Here the equation 

that, as it is widely believed, describes all possible aspects of the fluid flow is given 

in the form of the Navier-Stokes equation. It is impossible, however, to obtain all 

possible solutions of this equation and map them onto all possible experimental 

flows. The lack of an exact analytical approach, in both cases, forces us to use other 

methods to characterize the systems and differentiate between the various modes 

of its behavior. One of the possible approaches is statistical analysis. This chapter 

is structured in the following way. First, we introduce the sandpile model, used 

throughout this work, and discuss already published results. Section 2 introduces 

a Fokker-Planck equation and two finite size scaling techniques, one for spatialy 

localized data, another for spatially extended systems. Phase space reconstruction 

will be discussed in Section 3. These techniques will be applied to experimental 

in the following chapters. Finite size scaling and phase space reconstruction will 
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Figure 2.1: Schematic of the sandpile algorithm described in this section. 

be used in Chapter 4 to obtain new results for the sandpile model. In Chapter 6, 

a finite size scaling method will be used for our studies of the solar wind and its 

interaction with the Earth's magnetosphere. 

2.1 Our sandpile model 

The sandpile algorithm (Chapman et al., 1999; Tam et al., 1999; Chapman, 2000) 

investigated here is defined on a one-dimensional grid of N equally spaced cells as 

shown on the figure 2.1. The real variable hi, representing the height of the sand, 

is assigned at each node. The local gradient at cell i is given by 9i = hi - hi+l' 

Stability of the model at any given time is determined by the value of the local 

gradient 9i. All points with the value of 9i smaller than some assigned tlu'eshold 9c 

are stable. If, however, the value of gi at some point 'i is larger than the threshold 

the sand will be redistributed down the pile. The system is driven by adding sand 

to cell 1 at a constant rate g. The inflow rate of the sand is slow compared to the 

time between avalanches, i.e., 9e1 9 > > 1 and the dynamics of the system has been 

round to be insensitive to the choice of 9 as long as this condition holds. Assuming 

20 



that the critical gradient is exceeded in node i our redistribution rules are given by 

following equations: 

h'! k' k 1 . = h· k' k+l . - D. t- ,1- + , ... ,1 t- ,t- , ... ,t (2.1) 

(2.2) 

Where * indicates intermediate steps in the relaxation, D. is equal to 9i / (k + I), index 

k = min(i,Lf} and Lf is the tuning parameter that can assume values between 1 

and the length of the lattice N. The value of the parameter Lf is fixed for every 

run of the simulation. The boundary conditions are such that the system is closed 

at node 1 and open at node N. If the avalanche of the tumbling sand reaches the 

open boundary the sand simply exits the system. The parameter Lf is a major, new 

feature of this algorithm. By modifying the value of Lf' one can change the number 

of interacting sites within the model. In the case of L f = N, the instantaneous 

propagation of information across the entire avalanche gives rise to a scale free 

dynamics of the system and the existence of the nontrivial fixed point (Tam et al., 

1999). 

Since the avalanches propagate instantaneously, there is no sand added dur­

ing the transport process. The minimum time increment is then taken as time 

elapsed between two consequtive avalanches. We define the energy of the sandpile 

at any given time t as its potential energy 

N 

E(t) = (Lh~k (2.3) 
i=l 

The energy dissipated during one event is simply the difference of this potential 

energy of the sandpile immediately before and after the event: 

(2.4) 

These two quantities, E(t) and dE(t) represent a phase space in which dynamics 

of our sandpile can be represented (see Figure 2.2). We will use this approach in 

the next section when presenting different dynamical regimes of the system. The 
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Figure 2.2: Phase space plots of the sandpile stationary state constructed by plotting 
dE as defined in (2.4) versus total energy E of the system. System Length N = 
4096; (a) Lf = N and no randomization, (b) Lf = Nand 2% randomization, (c) 
Lf = 2000 and 2% randomization, (d) Lf = 50 and 2% randomization. 

control parameter L f is not the only one relevant to the dynamics of the model. 

Since the value of the critical gradient 9c is assigned to every node of the grid 

one can investigate if the system performs differently under different assignment 

schemes. There are two cases leading to distinct dynamics: 

1. The parameter 9c is constant. 

2. The parameter 9c is a random variable with a given (here, a top-hat) proba­

bility distribution. 

The first scenario is tractable analytically and was used in an analytical calculation 

of the fractal dimension for the energy curve. We will present this result in Chapter 

4. The second case is more appropriate for modeling the real physical systems where 
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Figure 2.3: Reducing the complexity of 
the dynamical system via Renormaliza­
tion procedure. 
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Figure 2.4: Coarse-graining proce­
dure for the one-dimensional directional 
sandpile model. 

the driving rate is nonuniform and the fluctuating critical gradient represent possible 

values of the threshold for various instabilities within the system. 

2.1.1 Renormalization Group 

The sandpile model presented here was previously studied using Renormalization 

Group (RG). We will briefly described the use of RG method for critical systems 

before we discuss the dynamics of the model. Consider the behaviour of the macro­

scopic magnetization of the material undergoing a transition of the ferromagnetic 

type. The spins of individual atoms are uncorrelated and no magnetization can be 

detected in the material for high temperatures. When the temperature decreases, 

some correlation of spins appear and isolated islands of magnetization can be de­

tected. These ordered regions persist for a certain length of time and one can 

attempt to characterize this phase by introducing a correlation time T and a cor­

relation length e. For the critical temperature Tel this correlation length become 

infinite and the entire material, no matter how large in size, becomes spontaneously 

magnetized. Such divergence of the correlation length at the critical point makes 

the analytical studies of critical systems difficult. Indeed, the most widely used 

approximation methods neglect the correlation between large number of particles 

and work only for small correlation lengths. In plasma physics, for example, which 

is not critical but where the long correlation length is imposed by the electrostatic 
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forces, many problems are approximated by considering only two particle interaction 

(Clemmow and Dougherty, 1990). 

RG methods allow us to establish a correspondence between a system with 

a given correlation length and another where the correlation length is smaller by a 

certain factor. At the critical point, the system should be invariant under dilation , 
while in the vicinity of it there is a certain mean correlation length that destroys 

this invariance. In that sense, the RG is an essential and central tool for critical 

system analysis as it is simplified when the correlation length tends to infinity. We 

will now use a simple dynamical model to illustrate how RG analysis can be applied 

to study a many-body system. Let us consider a large number of blocks, each with 

mass m, connected with identical springs with Hook's constant k as illustrated in 

figure 2.3. If Xi represents the displacement of the i - th block, the equation of 

motion can be written as: 

(2.5) 

We then propose the solutions of (2.5) to be in the form Xi = aieiwt, where ai is 

independent of time. Equation (2.5) can now be reduced to 

mw 
where K=-4k . (2.6) 

Similar equations can be written for ai-l and ai+1 and solved for these quantities. 

Results, now expressed in terms of ai-2 and ai+2, can be substituted into (2.6) which 

then takes form of: 

(2.7) 

We now note that equation (2.7) is identical in form to (2.6) if one defines a renor­

malized coefficient K*, 

K* = 4K(1- K). (2.8) 

Thus we have eliminated all odd blocks in the chain, reducing the complexity of the 

problem. We have done it by redefining the quantity K and doubling all distances 
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between blocks. This procedure can be iterated until the system of interest can 

no longer be reduced, i.e., each next rescaling will map our system onto itself. The 

existance of such fixed point can be deduced from the renormalization equation (2.8). 

One looks for such values of Kf that, F(Kf} == 4Kf{1- Kf} = Kf. In general, the 

existence of a fixed point is not trivial but very crucial for studies of critical systems. 

In our simplified example, the fixed point corresponds to the renormalized system 

with only one block left. Such equation can be easly solved and the results can be 

related to the original system by transforming back parameters of the system. In 

summary, the objective of the renormalization group approach is not to solve the 

equations of motion but to reduce original equations by means of the renormalization 

transformation similar to {2.8}. 

In the case of the directional and one dimensional sandpile models, the renor­

malization procedure is often discussed in terms of the scaling found in the avalanche 

length distribution. We consider an ongoing avalanche propagating in the sandpile 

system and define a conditional probabilities Qk that a given avalanche stops at 

cell k (Tam et al., 1999). The coarse graining procedure, illustrated in figure 2.4, is 

equivalent to doubling the size of the system at each iteration. It was then shown 

in Tam et al. (1999) that the renormalization transformation of the probability Q 

is given by: 

(2.9) 

Similarly to the RG analysis of Vespignanni et al. (1995), no site-site correlation 

was assumed here. The probability that, after reaching site k, the avalanche will 

continue to site k + 1 is given by product (1 - Qk)(l - Qk+1)' The RG analysis 

confirmed the existence of a fixed point for the system with parameter L f = N 

and the randomization of the critical gradient. The previously reported power law 

index of -1 for the avalanche and dissipated energy probability distributions was 

also found to be valid for the large scale events. 
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(c) : Total Energy vs. Time Cd): 3D height profile evolution 

Figure 2.5: System dynamics for system length N = 1024 with L f = N (a,b) and 
L f = 200 (c,d) . Cri t ical grad ient is constant. 

2.1.2 System Dynamics 

T he behavior of the system has been described in some detail in Chapman et al. 

(1999) ; Tam et al. (1999); Chapman (2000). Here, we will summarize these results 

and present some add itional interpretations. New results, obtained using a finite 

size scaling and a nonlinear time series analysis, will be discussed in Chapter 4. 

These resulLs will address a quest ion o f quantifying t he proximity o f the system to 

iLs fixed po int through t ime series analysis. 

To study the system, we let it evolve until the energy time series reaches a 

stat ionary state indicated by a constant value of the mean i.e, < E(t) >= canst. 
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The behavior of the system exhibits several different regimes and the nature of the 

regime is solely dependent on the control parameter LtlN, where N is the size 

of the sandpile. A given value of the control parameter L, / N can, of course, be 

achieved either by fixing N and varying L, or by fixing the L, and using the size 

of the system, N, as the dynamic parameter. This suggests an instructive way 

of considering the role the control parameter L,. The fixed parameter L, can be 

treated as the scale size of the anomalous transport in the system. By varying the 

size of the system N, one can then obtain the dynamical behavior of the system. 

This implies that a finite size system with an anomalous transport scale (L,) and 

dynamic boundaries (corresponding to different values of N in the model) or a 

variable anomalous transport scale and fixed boundaries can explore a large portion 

of its dynamical range and is unlikely to remain at the L, = N fixed point (at 

criticality). For astrophysical observation and most laboratory plasma systems, the 

driving rate is not slow and can be non-uniform. Importantly, the statistics of 

the large scale events in the model are unaffected by increased fluctuations in the 

driving rate (ge/g) (Chapman et al., 1999; Watkins et al., 1999) and, as we will 

discuss, dynamics of these events is controlled by a nontrivial fixed point (L, = N). 

We start the discussion of the system's dynamics with the case when the 

critical gradient ge is constant. For L, = 1 the model is essentially the original 

BTW sandpile in one dimension (Bak et al., 1987). The dynamics of this system is 

dominated by the attractive fixed point in the parameter space. A state where all 

nodes of the sandpile are marginally below a critical gradient is a strong attractor of 

its dynamics. Once this state is reached all perturbations, such as an added grain of 

sand, are immidiately suppressed via system-wide avalanche and the system returns 

to the marginally stable configuration. This state of the system can be represented 

by a single point in the phase space given by the total energy E(t) of the system and 

the change of the energy dE(t). Another limiting case is when L, = N. A number 

of results have been obtained in this regime. For the constant critical gradient ge, 

the evolution of the sandpile can be obtained analytically (Helander et al., 1999). 
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Cc) : Total Energy vs. Time CeI): 3D height profile evolution 

Figure 2.6: System dynamics for system length N = 1024 with LJ = N (a,b) and 
Lf = 200 (c,d). 2% fluctuat ions of the critical grad ient are added . 

Probability distributions of the avalanche lengths and energy dissipated show power 

law behavior with index equal to -1. The phase space plot, shown on 2.2( a), is a set 

of the line segments spaced 2£ units apart (e is integer). The behavior of the system 

is strongly influenced by the closed boundary in this regime. The three-dimensional 

surface in 2.5(b) shows that the edge oCthe sandpile never remains in the immed iate 

vicinity of the open boundary. As soon as the avalanche reaches the end of the 

system, the edge is pushed back. The length of the horizontal step-like features in 

the height profile appears at values given by 2£ (e integer). In such configuration, 

the majority of the energy stored in the system is located near the closed boundary 

of the sandpile. As long as the dynamic parameter is of the order of the system's 
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length N, the dynamics of the system is reminiscent of that for L f = N. The 

probability distributions of the avalanche length and energy dissipated show similar 

scaling as before (see Fig. 12-15 in Chapman (2000)). The most interesting region 

of the systems behaviour can be observed for 2 < L f < N /4. The signal is now 

oscillating (see 2.5{c)) and has a period doubling sequence (Chapman, 2000). A 

clear case of the scale separation emerges from the phase space plots. The small 

scale behaviour (avalanche length < L f) is identical to that of the system with 

L f = N and emerges as the set of linear segments. On the large scale, we have 

a low-dimensional nontrivial structure representing a limit cycle of the oscillatory 

dynamics (see figure 7 in Chapman (2000)). Figure 2.5(d) shows that the dynamics 

of the system is influenced much more by the open boundary rather than the closed 

one. Avalanche statistics show the increase in the probability of system wide events 

in this regime. These long avalanches push the edge of the sandpile up to the open 

boundary. The edge is then slowly retracted and this backward movement of the 

edge creates horizontal steps of approximately equal length. 

We now discuss the case when statistical fluctuations are added to the value 

of the critical gradient. We use a "top hat" probability distribution P(gc) for values 

of the random numbers assign to the local critical gradient i.e., P(gc) is nonzero and 

constant in range [a, b] and zero elsewhere. It can be shown that, for Lf = N, the 

system has a repulsive fixed point and the avalanche length probability distribution 

varies as l-I for large scale events (Tam et ai., 1999). For small avalanches dissipated 

energy exhibits different scaling (Chapman et ai., 1999) which extends to about 128 

in avalanche length units for the system size of 4096. The fact that there are two fixed 

points and the evidence that the repulsive fixed point only governs the dynamics 

of the large scale events makes the small events scaling relevant for the further 

investigation. When the fluctuation of the critical gradient reaches 2%, the phase 

space plot, shown on 2.2(b), changes very profoundly. The scale separation appears 

and linear segments, although still present in the small dE region, are replaced by 

a parabolic curve for the large events. For values of the parameter L f between N /4 

and N, the dynamics of the system is now irregular. Figure 2.6(a,b) shows the time 
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Figure 2.7: (a): Mean normalized energy stored in the system as a function of 
the control parameter for three different system sizes: (0) == 512, (*) == 4096 and 
( +) == 8192. The region of slope -1. 9 corresponds to L JI N < 1/4. (b): Mean height 
profile for the system length N = 1024 and L, parameter equal to 800 (solid line), 
550 (dashed line) and 200 (dash-dot line). 

evolution of the system for the same values of input parameters as used on 2.6(a,b) 

but with 2% critical gradient fluctuations. 

Similar to the case of constant critical gradient, the transition in behaviour 

occurs approximately for L, ~ N/4. Interestingly, figure 2.7(a) shows that the 

system's energy scales with its finite size N for small and large values of the control 

parameter L, / N and the break in scaling appears at L, / N ~ 1/4. The region of 

dynamics given by 1 ~ L, ~ N /4 is weakly sensitive to the added fluctuations and all 

of the features of the time series observed for constant critical gradient are preserved 

(Chapman, 2000). For LJlN ~ 1/4 horizontal steps of approximately equal size 

appear in the height profile. This linear (rather than as 21) dependence of the 

length of the step on its position on the grid leads to the increase of the total energy 

stored in the system (see figure 2.7(b)), when compared with the 1/4 < L, ~ N 

dynamics. Increased level of fluctuations does not change the appearance of the 

phase space attractor shown in figure 2.2(d). This apparent low dimensionality of 

the model's dynamics, with or without randomization, is its essential feature. Figure 

2.6(c,d) shows the time series and 3-D height profile for the same values of input 

parameters as used in figure 2.5( c,d) but with 2% critical gradient fluctuations. The 
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periodicity of the signal is preserved on the large scale in this case and the amplitude 

does not differ from that with constant critical gradient. 

2.2 Fokker-Planck equation 

The Fokker-Planck equation (FPE) provides an important link between statistical 

studies and the dynamical approach expressed by the Langevin equation (Sornette, 

2000; Schertzer et al., 1995): 

Y(t + dt) - Y(t) == m(Y(t), t)dt + a(Y(t), t)dS (2.10) 

where m is a deterministic term and dS represent a stochastic driving source. To 

derive the FPE for the system described by (2.10), we need to start with definitions 

of some quantities and concepts of probability theory. 

2.2.1 Stochastic Markov process and Fokker-Planck Equation 

The fundamental quantity of the stochastic analysis is a random variable. A random 

variable Y is a function that ascribes a numerical value to any point w drawn from 

the sample space 0, in mathematical terms, w ~ Y(w). We can, then, consider a 

mapping x -7 .Py(x), where the function .Py(x) is defined on the real axis from -00 

to 00, and insist it has following properties (Haken, 1978): 

1. \Ix: .Py(x) ~ 0 

00 

2. J .Py(x)dx = 1 
-00 

If the function .Py(x) operates on the domain of the random variables Y(w) then 

.Py(x) is called a probability density function (PDF) and the probability that a 

sampling of the random variable Y gives values between x and x + dx is given by: 

x+dx 

p(x ~ x ~ x+dx) = ! P(x)dx (2.11) 

x 

where the continuous limit has been applied to the density function P(x). We can 

now define a stochastic process Y(t) as a random variable such that its probability 
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density function depends on time. A Markov stochastic process is a process where 

the variable Y(t + dt) depends only on the previous step, i.e., Y(t), t and dt: 

Y(t + dt) - Y(t) = M (2.12) 

where M is drawn from the set of independent and identically distributed (iid) 

samples. Let us consider n - 1 steps of Markovian process Yl, Y2,··· ,Yn-l. Due to 

the lack of memory in the process, the probability that in the next step the random 

variable Y(t) = Yn is given by the conditional probability density 

where tn > ... > tl. The density P(Yn, tnIYn-l, tn-d is often called transition 

probability. The transition probability allows us to calculate the PDF of the Markov 

random variable M at the time t + dt: 
00 

P(y, t + r) = ! P(y, t + rlyl, t)P(yl, t)dyl (2.14) 
-00 

Assuming a one dimensional process where y - yl = £ and writing P(y, t + rlYI, t) = 

PM(£) we obtain: 

00 

P(y, t + r) = ! PM (f)P(y - £, t)df (2.15) 
-00 

We will now expand both P(y, t + r) and P{y - f, t) in a Taylor series around rand 

f respectively. 

8P 
P(y, t + r) = P(y, t) + rat + O{r2) (2.16) 

(2.17) 

For the 8-correlated Markov process, the mean value < £2 >(X r when r 4- 0 

and thus one needs to keep the quadratic term in (2.17) as it is linear in time. 

Substituting both (2.16) and (2.17) into (2.15) we get: 

P(y, t) + T &P~, t) = 1 PM (l)dl[P(y, t) + lP~' t) + ; &' ~~' t)l (2.18) 

-00 
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We note that all the terms involved in P{y, t) on the right hand side (rhs) do not 

depend on £ and so the integrals are simply the moments of the PDF PM. Writing 

the moments as: 
00 

/ PMdf = 1, (2.19) 

-00 

(2.20) 

00 

/ £2PMdl =< £2 >, (2.21) 

-00 

we obtain the linear Fokker-Planck equation: 

ap{y, t) _ ap{y, t) D82 P{y, t) 
at - 'Y ay + ay2' (2.22) 

where 'Y = <~> and D = <~~>. The coefficient D is called the diffusion coefficient. 

Coefficient D obtained by means of the FPE should be identical to that calculated 

from the normal diffusion of the physical quantity in space. Equation (2.22) was 

obtained under the assumption that the mean < £2 ><x: ".. In many systems, how­

ever, this relation is not found and instead we have < £2 ><x: ".a. Such processes are 

referred to as anomalous diffusion. They can be modeled either by allowing func­

tional dependence of the diffusion coefficient on the spatial coordinate, D == D{y) or 

by introducing a fractional derivatives in the FPE (Schertzer et al., 1995). In terms 

of the FPE, this result can be obtained by allowing moments given by (2.19)-{2.21) 

to vary with spatial coordinate y. The result is a FPE that can be written as: 

8P{y, t) = ~D( )ap{y, t) 
at ay y ay , (2.23) 

where P{y, t) is normalized so that f P{y, t) = 1. Equation (2.23) describes the 

dynamic evolution of the probability density function P{y, t) in terms of a diffusion 

process in space y characterized by the diffusion coefficient D{y). We note that 

the F -P approach is also valid for non Markov processes, provided the time scale of 

interest exceeds the correlation time of the individual steps. 
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2.2.2 Finite size scaling for turbulent systems. 

The Fokker-Planck equation (2.23) is a second order parabolic partial differential 

equation and as such is very difficult to solve. Both initial conditions and boundary 

conditions must be known to obtain its exact solution. A considerable insight into 

physical processes of interest can be gained, without knowing the exact solution, by 

studying a generic class of self-similar functions satisfying the FPE. As was already 

mentioned earlier, statistical self-similarity emerges as a simplifying aspect for both 

SOC and turbulence. The simplest process exhibiting statistical self-similarity is a 

diffusion process often modeled by a purely self-similar Brownian walk. A Brownian 

walk is obtained by summing independent identically distributed (iid) samples drawn 

from a zero-centered Gaussian distribution. A typical time series of a Brownian walk 

is shown in figure 2.8{a). The dynamics of the PDF in such case is given by the linear 

FPE (2.22). It can be shown (Tikhanov and Samarskii, 1988) that the solutions of 

(2.22) are invariant under the change of variables: 

y 
y-t yi' (2.24) 

In other words, if P{y, t) represents a solution of (2.22) then the rescaled function 

P{y/Vt, t) also satisfies equation (2.22). The function that satisfies such rescaling 

is the well known Gaussian curve. 

We will now illustrate how the existence of such self-similar solution can be 

deduced from the time series Y{t) of the Brownian walk. The analysis is applied to 

the PDFs ofthe individual events (increments) and thus, in the case of the Brownian 

walk, one first needs to difference the original time series. This is done for several 

different temporal scales T. After the differencing, we obtain several time series: 

c5Y{t, T) = Y{t) - Y{t + T). (2.25) 

The PDF P{c5Y, T) is then calculated for each time series c5Y{t, T) which, in the case 

of a Brownian walk, is a Gaussian (see figure 2.8{b)). Statistical self-similarity, if 

present, guarantees that the statistical features of the observed process should not 

change under dilation of the time interval, i.e., the PDFs P{c5Y, T), obtained for the 
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Figure 2.8: Brownian walk time series (a) and corresponding PDFs of the increments 
for different values of the time lag r (b). 

different time dilated intervals, should be equivalent. To test this conjecture, we 

will compute the standard deviation a, as a function of the dilated time interval r 

and assume the most general change of variables: 

y -+ y/a(r) and P -+ Pa{r), (2.26) 

where the rescaling P -+ Pa(r) assures that the area under the curve is kept un­

changed as required by the definition of the probability. If the underlying process 

is indeed statistically self-similar all PDFs, corresponding to different time dilated 

intervals r, should be identical after transformation (2.26) is applied. Figure 2.9(b) 

shows the collapse of the Gaussian PDFs obtained for the increments of the Brown­

ian walk and after the rescaling is performed. The nearly perfect collapse achieved 

in this case is merely a representation of the Gaussian law stating that a sum of N 

Gaussians with variance (72 is still a Gaussian with variance Na2 (Sornette, 2000). 

One immediately notices that the slope of the fitted line in figure 2.9(b) is 1/2 and 

so a(r) ex J(r}. This reduces our general rescaling of argument in {2.26} into that 

found in (2.24), as it should for the Gaussian PDFs. 

The goal now is to generalize the above-described rescaling procedure to 

study time series obtained from turbulent systems where the departure of the PDFs 

from the Gaussian function is well documented for small values of r. The following 
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Figure 2.9: Standard deviation scaling as a function of time lag r (a) and the PDFs 
rescaled according to (2.26) (b) for a Brownian walk time series. 

rescaling procedure is based on that introduced in Mantegna and Stanley (1995, 

2000). To the best of our knowledge, this method was never used to study turbulent 

systems before. We also extend the analysis to connect the results obtained from 

the rescaling procedure to the Fokker-Planck approach. We are now looking for 

the self-similar solutions of the nonlinear FPE (2.23) and these should exhibit the 

following scaling: 

(2.27) 

where Ps (8Y r-c:r) is a self-replicating "master" PDF obtained by rescaling P(8Y, r) 

with different temporal dilation factors r-c:r. Here, rescaling index Q (Q = 1/2 for 

the Brownian walk) is unknown a priori and has to be determined from the observed 

time series. We use the peaks of the PDFs to obtain the scaling exponent Q. This 

is important as the peaks are the most accurate parts of the distributions. Figure 

2.1O(a) shows the peaks P(O, r) of the unscaled Gaussian PDFs plotted versus r on 

log-log axes. We see that there is a range of r for which P(O, r) is well described 

by a power law r-c:r. Within this range, we attempt to collapse the entire unscaled 

PDF shown in figure 2.8(b) onto a single master curve (2.27). A single parameter 

rescaling, given by equation (2.27), for a mono-fractal process, should give a perfect 

collapse of the PDFs on all scales. Indeed, figure 2.1O(b) shows the expected result. 
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The successful single parameter rescaling of the PDFs can reveal some key features of 

the processes governing the fluctuations of the investigated quantity. In particular, 

one can quantify an asymptotic behavior of the rescaled PDFs. The index given by 

l/a characterizes the common functional form of the distributions P{8Y} viz: 

• 0 < l/a < 2 Levy {power-law with a -+ oo} 

• l/a = 2 Gaussian {finite a} 

• l/a > 2 power-law with finite a 

where the distribution is given by: 

P{8Y} "" 118YII-(1+1/0) for 8Y --+ ±oo (2.28) 

The rescaling allows us to conclude that the fluctuations are described by 

the same law on different temporal scales. And last, but not least, it gives us a good 

estimation of the maximum temporal scale within which that common law can by 

applied. One can treat the identification of the scaling exponent a and, as we will see, 

the non-Gaussian nature of the rescaled PDFs (Ps ) as a method for quantifying the 

intermittent character of the time series. A possible interpretation of the rescaling 

is to treat P(8Y, r) as the self-similar solution of the equation describing the PDF 

dynamics. The mono-scaling of the studied PDFs, together with the finite value of 

the samples' variance if such exists, indicates that a Fokker-Planck approach can be 

used to study the dynamics of the unscaled PDF P(8Y, t} in time and with respect 

to the coordinate 8Y (van Kampen, 1992). Recently a fractional FPE has been 

obtained that can be used to treat Levy walk PDF dynamics (Schertzer et al., 1995). 

Alternatively, the anomalous diffusion of the PDF, consistent with truncated Levy 

walk, can be obtained by introduction of a functional dependence of the diffusion 

coefficient on the "spatial" coordinate. 

2.2.3 Finite size scaling for spatially extended systems. 

So far, the rescaling procedures we described operated in the temporal domain. In 

the case of the spatially extended systems a similar techniques are used but the 
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Figure 2.10: P(O, T) scaling as a function of time lag T (a) and the PDFs rescaled 
according to (2.27) (b) for a Brownian walk time series. 

rescaling is performed for spatial variables. SOC models are often studied ana­

lytically using Renormalization Group which requires taking a limit of the infinite 

system size (Tam et al., 1999; Jensen, 1998). Thus, strictly speaking, the analytical 

results obtained from such analysis are relevant only for infinite size systems. A vail­

able experimental data as well as computer simulated results, however, are always 

obtained from finite size systems. That presents a problem of developing methods 

to verify the relevance of the analytical results, obtained for infinite system, to the 

finite size system investigation. One of the possible solutions is to look for the 

scale-invariance in the probability density functions. If such scale-invariance can be 

detected, then the size of the system is not a relevant parameter and analytical and 

experimental results can be compared. In practice, one tries to determine if the 

the PDFs obtained from the systems of different size are exactly equivalent. For 

different system sizes N one tries to collapse the PDFs on a single curve using the 

following formula: 

(2.29) 

We should mention that formula (2.29) applies only to purely self-similar processes 

where the observable of interest scales with a system size N as ex NO.. 

Many complex systems exhibits richer scaling where the exponent a may 
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be a function of the position within the system itself. Such behaviour is often 

termed multi-fractal or, in certain cases, multi-scaling and we will now show how 

such an approach leads to a different scalings than that given by (2.29). Let S 

represent a support on which a probability density function of the scalar variable 

X is computed. We can imagine that this veriable is distributed in paches, each 

with its own scaling exponent a and thus S itself has a fractal structure described 

by the function f(a). Using a box counting method we partition the support S by 

covering it with dimensionless boxes of size € I"V liN, where N is the size of S. We 

assume that the probability of finding a point in the box number i is proportional 

to its size €: 

(2.30) 

We then suggest that the number of boxes covering set S for which the scaling 

exponent assumes value of a is of the form (Heisey et al., 1986): 

n(a, N) '" B(a)N/(o.) , (2.31) 

where f(a) is a continuous function. With this assumed form of the probability 

(2.30) we can write the variable Xi, an averaged value of X in the box i, associated 

with the probability distribution function as: 

N 

Xi(a,N) f"V A(a)N-o.2: X j(a,N). 
j 

(2.32) 

, where the sum is over all possible values of X. Writing the last sum in (2.32) as 

constant Co and dropping the index i we rewrite (2.32) as: 

X(a, N) I"V CoA(a)N-o.. (2.33) 

Similarly, based on (2.31) we can write down the probability the the measurement 

X was drown from the region with the scaling exponent a as: 

P(a) I"V PoB(a)N/(o.). (2.34) 
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Equations (2.33) and (2.34) will form the basis of our further analysis. First, we will 

consider a case where both A(a) and B(a) themselves exhibit a power law scaling 

with index a. In such case, we will write 

(
N)-O 

X(a) "" Xo No ' (2.35) 

and 

( 
N )/(0) 

P(a) "" No (2.36) 

These assumptions lead to the following scaling formula (indices i has been omitted) 

(KadanoJJ et al., 1989): 

log(P) = f(a) where a = _log(X/ Xo) 
log (N/No) log(N/No) 

(2.37) 

Parameters Xo and No are fitting constants that optimize the collapse of all P(X, N) 

onto a single curve given by f(a). This procedure is quite different from the simplest 

rescaling (2.29) where exponents a and (3 are usually chosen in an ad hoc manner. 

We also note that constants Xo and No are typically, but not always, related to the 

smallest observed values of observable X and the size of the grid. 

In Vlahos et al. (1995) another approach, termed multi-fractal, has been 

proposed. The appropriate scaling formula has been derived from (2.33) and (2.34) 

by assuming that both A(a) and B(a) are represented by constants. This multi­

fractal scaling form is than given by: 

log(P/ Po) = f("') h _ log(Xo/ X) 
log(N) <-< were a - log(N) (2.38) 

Parameters Xo and Po are, again, fitting constants that optimize the collapse of 

all P(X, N) onto a single curve. Rescalings (2.37) and (2.38) yield a spectrum of 

the scaling indices, given by the derivatives df / da. We shall note that the PDF of 

the SOC systems are power laws and as such do not fall into a class of the stable 

distributions. Experiments show, however, that such power laws are stable in the 

sense that their power law index is the same regardless of the length of the considered 

time interval. We should also point out that, especially in computer simulations, 
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Figure 2.11: First three iterations of the von Koch snowflake (a) and the same curve 
after 6 iterations (b). 

one can obtain directly the increments of the investigated variable. In such case, the 

differencing (2.25) is not performed. The time series 15Y(t, N) is then experimentally 

obtained from the system of size N. 

2.3 Fractal analysis 

Both SOC and turbulent systems exhibit complex and nonlinear dynamics. The time 

series obtained from these systems lack periodic oscillations and have a very inter­

mittent character that can not be reproduced using a linear system with stochastic 

input. The classical data analysis methods, such as spectral analysis, are not ad­

equate in such cases and new nonlinear time series analysis methods need to be 

applied. Among these methods, one can consider a fractal and multi-fractal ap­

proach which can be applied to time series itself or to a reconstructed phase space 

attractors. 

The concept of fractals was introduced around 1975 by Mandelbrot to char­

acterize geometrical objects that posses no natural length scale. Self-similarity and 

fractional dimension are two most celebrated features of such geometrical objects. 

Self-similarity, the consequence of the lack of a characteristic scale, means that the 

given object preserves its features under the change of scale. The fractional dimen-
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sion allows us to distinguish between regular Euclidean objects and fractal ones. 

Fractal dimension of a Euclidean object is identical to its topological dimension and 

is represented by an integer. The dimension of a straight line is 1 and that of a 

square is 2. A concept of dimension can be generalized for any compact subset of 

a metric space. For each r > 0, let N (r) be the smallest number of balls of radius 

::; r necessary to cover a compact subset S. Suppose 

D = lim log(N} 
r~O+ log(l/r} 

(2.39) 

exists. Then, D is called the fractal dimension of S. Such defined dimension, unlike 

the topological dimension, need not be an integer. It does, however, give a correct 

integer value for the dimension of the typical Euclidean objects. Figure 2.11(a,b} 

presents iterative procedure for constructing a fractal curve, the von Koch snowflake. 

Using the equation 2.39 one obtains the fractal dimension of the Koch curve to be 

D = 1.26 .... This non-integer dimension reveals unusual properties of the fractal 

curve. It fills more space than a line but less then a Euclidean area of a plane. After 

the infinite number of iterations, the length of the curve is infinite but the area 

enclosed by it is finite. Although fractals were originally developed to investigate 

the properties of the geometrical objects, the concept can be applied to investigate 

the dynamics of the complex natural systems. Such studies can be done in several 

different ways. Here, we will explore two possibilities: using the time series itself 

as a geometrical object and reconstructing a low-dimensional attractor in the phase 

space. 

2.3.1 Self-similarity and fractal dimension of time series 

An observed time series is often the only link between the natural system and the 

physical theory or a model developed to describe its dynamics. The complexity and 

irregularity of the time series obtained from the complex systems is such that no 

single model can be found to recreate the behavior. The ultimate goal of fractal 

analysis is to establish an iterative algorithm, similar in concept to that of von Koch 

snowflake, that would allow us to create a time series of any desired length and any 
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requested resolution. The quest for such a prescription must start with detecting 

self-similarity and then, if such can be found, proceed to obtain a fractal dimension. 

There is, however, an important difference between geometrical objects and time 

series traces when detecting self-similarity is considered. For geometrical curves 

embedded in a 2-dimensional plane, both axes represent the same physical variable, 

while two axes of the time series usually represent different physical variables, with 

different units and scales. Such non-uniform scaling, where the object is invariant 

under transformation that scales different coordinates by different amounts, is known 

as self-affinity. Comparing original and a rescaled copy of the time series also requires 

a different approach from that applied to geometrical objects. The rescaled copy of a 

time series should represent the same dynamical process that generated the original 

sample but occurring on a different scale. One can easily imagine the situation 

where, by rescaling the spatial or temporal domain, a different physical processes 

may come into play or vanish. To verify that the rescaled time series still represents 

the same physical processes, statistical measures, such as Probability Distribution 

Function (PDF), can be used. Hence a test for detection of self-affinity of the time 

series needs to include two steps. First, we take a subset of the object and rescale 

it to the same size of the original object, using different magnification factors for its 

width and height. Then we compare the statistical properties of the rescaled object 

with the original one. The procedure can be represented by the following statement: 

Vr E (0, tmax] 3H such that Y(t) == rHy (~) (2.40) 

where r is a rescaling factor and . means that the statistical properties of both sides 

of the equation are identical. The exponent H is called the self-affinity or Hurst 

exponent. One should note that in practice the statistical equivalence in (2.40) 

should apply to all moments of the PDF. The weaker approximation is usually 

used that examines only the first two moments. For the time series with a PDF 

represented by a power law, with an exponent close to 1, not only variance but even 

a mean value may not exist. 

Although, as we discussed above, a time series rarely exhibits pure self­

similarity, the fractal dimension can still be used to obtain the Hurst exponent. 
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Figure 2.12: Time series length approximation with a yardstick of length r. Here 
r2 = (Yi+8 - Yi)2 + (Ti+8 - Ti)2. 

Many methods exists that when applied to a time series allow us to find an approxi­

mate value of the fractal dimension. Among the most popular are the box counting 

method and the divider or length scaling method. Here, we will concentrate on 

the second method which was used, both analytically and numerically, to study 

the energy curve of the sandpile model presented earlier. The technique consists 

of computing the length of the given curve by measuring it with the yardstick of 

length r. As the length of the yardstick decreases and the measurement becomes 

more detailed, the length ofthe curve increases. Figure 2.12 shows such curve length 

approximation with a yardstick of length r. The length of the yardstick is given by 

its end points r2 = fJy2 + fJt2, where fJy is the difference between two measurements 

in the time series separated by time difference fJt. The results obtained from this 

method are sensitive to the ratio fJy/fJt. It was shown in Schmittbuhl et al. (1995) 

that the correct scaling can be obtained only if fJy » fJt. In such case, the length of 

the time series is given by: 

(2.41) 

44 



10 ~ 

8 

slope: -1.2626 
~6 -Z -en 
.2 

4 

2 

OL---L----L----~--~----~----~--~--~ 

1 2 345 6 7 8 
log(r) 

Figure 2.13: Fractal dimension estimation via the length measurement of the von 
Koch curve. Fractal dimension D = 1.2626 is given by the slope of the fitted line. 
Confidence level 95%. 

where N{r, tmax ) is the number ofthe line segments oflength rand D is a fractal di­

mension. It can be shown (Hentschel and Procaccia, 1984) that the relation between 

the fractal dimension D and the Hurst exponent H, in two dimensions, is given by 

D = 2 - H. Figure 2.13 shows the scaling N{r, tmax ) ex: rD, on the log-log plot, 

obtained for the von Koch fractal with 6 iterations applied. The fractal dimension 

obtained here is quite accurate and agrees with one found by (2.39). 

2.3.2 Embedding, phase space reconstruction and fractal dimen­

sion of the attractor 

The self-similarity of the time series is a strong indicator of a self-similar processes 

occurring within the system, but the connection between the features of the time 

series and the dynamics of the system is not straightforward. Phase space recon­

struction allows us to study the dynamics of the complex systems in their canonical 

form, i.e., using the optimal number of the degrees of freedom (Crutchfield and 

McNamara, 1987; Crutchfield and Young, 1989). The method was originally de-
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veloped to study chaotic systems where the complex dynamics coincides with the 

low dimensional attractor in phase space. The fractal dimension of the attractor 

provides an upper bound on the number of the differential equations needed to fully 

describe the dynamics of the system. Recent studies by Chang (1992); Osborne and 

Provenzale (1989) indicate that this technique can be used for the analysis of the 

dynamics of the spatially extended self-organizing systems such as sandpile. Indeed, 

such systems often exhibit low dimensional structures in phase space. To obtain a 

fractal dimension of the attractor from the time series, a phase space reconstruc­

tion process needs to be applied first to find the right embedding dimension for the 

system's dynamics. This is done by the method of the delay reconstruction of the 

time series. Let Sn be the n-th value in the time series. A delay reconstruction in m 

dimensions is formed by the vectors Bn = (Sn-(m-l)v, Sn-(m-2)v, ... , sn-v, sn). The 

parameter v is the delay parameter. The embedding dimension theorem guarantees 

that, for relatively noise-free data, there exist a dimension m such that vectors Bn 

are equivalent to the phase space vectors. For an infinitely long time series an arbi­

trary delay parameter v can be taken, but in practice results of the reconstruction 

are very sensitive to the choice of value for v. Generally, a delay parameter has to 

be selected in such a way to assure the independence of coordinates for the recon­

structed vector Bn. Several algorithms can be used to estimated the optimal time 

delay v. The most popular method is based on the autocorrelation function of the 

signal defined as: 

(2.42) 

where a2 is the variance of the investigated time series. A rule, discussed in Kantz 

and Schreiber (1997), is to choose the time where the autocorrelation function decays 

to lie with increasing time delay. This value of v should minimize the spreading of 

the attractor in phase space and lead to a good estimate of the fractal dimension. 

Fraser and Swinney (1986) demonstrated, however, that the first minimum of the 

mutual information could give a better estimate of the optimal v. Let Pi be a prob­

ability that the signal assumes a value given by the ith bin of the signals histogram. 

We find conditional probability Pij(V) that the signals value s(t+v) is in bin j while 
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s(t) is in bin i. We then define the mutual information as: 

I(v) = LPij{V) In(pij{v)) - 2 LPi In(pi). 
ij 

(2.43) 

Quantity I(v) expresses the amount of information about s(t + v) that one can 

recover from the known value s(t). The first minimum of (2.43) indicates the time 

lag v where s(t + v) contributes maximum additional information to that already 

obtained from the measurement s{t). 

Knowing the values for both embedding dimension and the delay parameter, 

it is possible to reconstruct the attractor and estimate, numerically, the value of 

its fractal dimension. Fractal dimension estimation of the complex phase space 

structure represents natural extension of the methods used in the studies of the 

self-similar geometrical objects. The dimension can be estimated by dividing the n 

dimensional Euclidean space, containing the data set, into the grid of hypercubes of 

size Ln and counting the number of such cubes n(L) that are non-empty. Let the 

self-similar object be initialy covered by a box of Lmax size. If one subdivide the 

maximum box each of the N = ::h points will fall within one box of size L = r Lmax r 

where r < 1 and D is a box counting or capacity dimension. One can also generalized 

the concept and consider a higher moments of the fractal dimension. The generalized 

dimension of order q is defined as: 

D = _1_ lim In{E~(;) pi) 
q q - 1 E~O In{ €) 

(2.44) 

Where pi is a probability density of Ni points being present in box i, € = l/r is a 

size of the covering boxes and N (€) is the number of boxes used to cover a given 

set. First three moments are the most widely used in the literature and are called: 

1. q = 0 Capacity Dimension 

2. q = 1 Information Dimension 

3. q = 2 Correlation Dimension 

The correlation dimension is the most widely used statistical parameter to charac­

terize fractal phase space structures of a dynamical system. The correlation sum 
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algorithm is the least sensitive to noise and exhibits good convergence for the finite 

size data sets (Kantz and Schreiber, 1997). Calculation of the correlation dimension 

is relatively easy but the definition, given by (2.44), is not optimal for numerical 

implementation. It has been shown that the same results can be obtain if one counts 

the number of pairs in the time series with a distance smaller then € (Grass berger 

and Procaccia, 1983). The correlation sum can then be defined as: 

(2.45) 

Where e is a Heaviside function. One usually plots C(€) as a function of €, on a log­

log scale, and then looks for the linear behavior on the plot in its middle section. The 

slope of the fitted line estimates the correlation dimension. To eliminate the pairs 

that are close due to residual time correlation and not their true position in the phase 

space, a space-time plots can be used. The plots provide a value of the maximum 

window needed for the numerical search of the near neighbors. We should stress the 

difference between the analysis of the sandpile model and a system where chaotic 

dynamics is expected. In the later case one needs to determine that the dynamics is 

deterministic and not purely stochastic. This can be done by computing Lyapunov 

exponents or performing a surrogate data test. If the dynamics of the system is 

indeed deterministic, one can use correlation dimension to determine the number of 

degrees of freedom needed to describe the system. In the case of the sandpile, the 

exact character of the dynamics is known, i.e., we know that the complex behavior 

is due to the nonlinearities and the long range correlations. Here we attempt to use 

the correlation dimension of the phase space structure to determine the proximity 

of the system to its critical point. In Chapter 4, we will apply this technique to 

investigate the phase space attractor of the sandpile model. 
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Chapter 3 

Scientific Visualization and 

Data Mining 

Recently, advanced visualization techniques has received increasing attention among 

scientists and engineers. These techniques not only allow a direct analysis of multi­

dimensional structures to provide intuitive and quick comparison of experimental 

data with model results, but also yield quantitative measures to support or negate 

the model itself (Hnat et ai., 2000). Here, we demonstrate the use of the immersive 

Virtual Reality (VR) visualization in the study of the sandpile model described in 

section 1.1. The emergent phenomenology of the model is broadband, but can be 

represented on a finite grid making it very suitable for scientific visualization. Two 

generic features of a sandpile model, namely the large number of degrees of freedom 

and a multi-scale character of the dynamics, introduce some complex problems to 

the task of the visualization (Hnat and Chapman, 2000). The large number of the 

degrees of freedom contributes to extremely large data sets while the multi-scale 

character of the data does not allow us to neglect any of the details. This rep­

resents a generic problem of visualizing multi-scale structures in data sets derived 

from non-linear systems, where one needs to retain all the information required for 

understanding a decimated data set without a priori knowledge of the region of in­

terest. To achieve sufficient speed in real time display and to ultimately facilitate 
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fast responds to user's requests, the full data set must be represented graphically in 

a compact form without loss of information. We present a novel approach into data 

set reduction and visualization of the multi-scale surface. We discuss a development 

of the intelligent data set reduction algorithm as well as a data mining technique 

that combines traditional two-dimensional representation of the data with three­

dimensional view of the complex surfaces. This is a new approach to the studies of 

the avalanching systems, such as the sandpile model, and we will discuss immedi­

ate benefits of this method in understanding the complex behavior of the system. 

The software modules were developed in OpenGL™ and Glut™ library and are 

implemented in semi-immersive VR on ImmersaDesk™. 

3.1 Virtual Reality and Scientific Visualization 

Most physical experiments, be they laboratory measurements or computer simu­

lations, generate time series characteristic for the investigated system. Very often 

collected data presents more structure that can be analyzed using traditional meth­

ods. One of the possibilities to enhance the well-known techniques is to supple­

ment the researcher with a three-dimensional visualization tool. Here, we discuss 

software developed to visualize results of the sandpile simulation with inherently 

multi-scale output. Many complex models of non-linear physical systems (such as 

Computational Fluid Dynamics or CML) characteristically yield gridded data that 

are inherently multi-scale (Bak et al., 1987). The sandpile model provides a rela­

tively straightforward test case for other multi-scale systems where grids may be in 

addition irregular and non-uniform. To study the dynamics of the sandpile in space 

and time, requires simultaneous display of structures differing in scale by several 

orders of magnitude. 

The challenge in visualization of the data from the spatially extended mod­

els comes not only from its multi-scale character but also the size and complexity. 

A vailable algorithms such as visibility culling, triangle or polygonal surface sim­

plification (Watt and Watt, 1998) have serious limitations when used for scientific 
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applications. Details of the structure are often neglected or compromised to mini­

mize the size of the data set (Chow, 1997; Barnsley et al., 1988). This may lead to 

false conclusions about the investigated system. Therefore, in this case, it is critical 

that the full three-dimensional surface is retained with all the information required 

for understanding a decimated data set without a priori knowledge of the region of 

interest. Another problem that most visualization applications must overcome is 

real-time managing and rendering of the data. For applications that perform data 

storage, some optimization and compression of the geometry can be performed to 

speed up future rendering. Most scientific applications, however, must respond to 

user's interrupts at a speed that makes any disk storage rather impractical to use. 

A scientific visualization of the multi-scale data sets must balance the amount of 

data required to study the system and amount of time needed to compute, encode 

and display that data. The goal of this project was to develop a tool for display 

and analysis of the large, multi-scale structures, that is, with generic features on 

different scales. To achieve this, one has to be able to select interesting regions of 

the structure and focus on its detailed topology as well as gain an appreciation of 

trends in the data over its entire dynamic range. We will discuss developing, in 

OpenGL™, rendering techniques for real-time display of the multi-scale data. We 

also attempt to combine two data sets, using OpenGL™ blending algorithms to 

study the impact of the changing parameters on the sandpile evolution. Information 

of detailed structure in the sandpile has also been coded into the sound, which can 

be played simultaneously by the user to further enhance pattern recognition in the 

data. 

3.1.1 System and Application Overview 

The development of the program was performed on two different platforms. The con­

cept was prototyped on the SUN Ultra-2 workstation with 256 MB of memory and 

Creator 3D graphics card. After initial code verification, the program was ported to 

the ImmersaDesk™ VR system driven by Silicon Graphics Origin2000 machine with 

8 processors, 2 graphics pipes and Onyx2 operating system. The ImmersaDesk™ 
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Figure 3.1: A complete user interface of the sandpile simulation and visualization 
program. The interface allows rapid visualization of the sandpile dynamics in 3-D 
VR space as well as performing basic analysis of t he collected data. 

is a drafting-table format virtual prototyping system. Using stereo glasses and IR 

head and hand tracking, this projection-based system offers virt ual reality t hat is 

semi-immersive and shared. The system features 4 x 5-foot rear-projected screen 

at 45° angle. The size and position of the screen give a sufficiently wide-angle view 

and the abili ty to look down as well as forward. The resolution is 1024 x 768 at 

96 Hz. The application described here was developed using C and OpenGLTM 

graphics library on the UNIX platform. OpenGL™ is an industry standard for 

three-dimensional visualization. It provides not only a complete Application Pro­

gramming Interface (API) for drawing 3-D primitives but also sophisticated shad ing, 

lighting and blending algorithms. T he Graphical User Interrace (GUI) was devel­

oped using Glut™ library. Figure 3.1 shows the complete user interface with a 

sample output data. T he applicat ion uses four windows to display all the requ ired 

information. The"Parameters" window provides the top-level control of the soft­

ware. It allows the user to modify input parameters to the simulat ion and select the 

amount of outpu t data to be stored in memory for the more detailed analysis. The 
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"Time Series" window, apart from displaying the output data, makes it possible to 

zoom-in (holding down third mouse button) on a region of interest that will be also 

represented as a three-dimensional surface. The "Analysis" window provides the 

user with numerical tools to investigate the data. These include line fit, building 

histograms and computing fractal dimensions of the curves. All options relevant to 

a given window are available through the pop-up menus. 

3.1.2 Visualization Methods 

The choice of the visualization algorithms used in this program, was influenced by 

the following factors related to application's specification: 

1. Real-time display rate for the large range of the system parameters and sus­

taining frame rates up to 22 frames per second required by ImmersaDeskT M 

environment. 

2. Maintaining the original accuracy of the evolution surface with smooth tran­

sitions between the regions with varying levels of detail. 

The majority of the visualization and surface optimization methods used for the 

height field structures evolved around triangulated irregular network (TIN) algo­

rithm (Chow, 1997; Lindstrom and Thrk, 1998). In this method, the grid is modified 

to contain larger number of points in the areas of more detailed topology. Using a 

TIN algorithm, one can approximate the surface with any given accuracy and with 

fewer polygons then required by other methods. The TIN method, however has one 

serious drawback - it requires some a priori knowledge about the generated surface. 

One has to know which areas of the surface will contain higher levels of detail to 

build the grid appropriately. If the position of these areas can not be predicted 

correctly, even a small size TIN may require a spatial reorganization of the grid and 

the visualization can not be performed in real-time. 

The second method researched for this project was a "level of detail" (LOD) 

algorithm introduced in Lindstrom et al. (1994). The algorithm operates on the 

uniform grid and does not require any pre-processing or any a priori knowledge 
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Figure 3.2: Vertex reduction method based on the normal vector direction change. 

about the surface. We will discuss the details of this algorithm in a later section. A 

uniform grid representation is often superior to irregular grid method, it is compact, 

easier to manipulate and allows fast reconstruction of the surface for different level 

of detail. Clear spatial organization of the grid makes it easy to index and store 

efficiently in the memory - a very important feature if the real-time rendering has to 

be achieved. We selected a rectangular topology for the grid as the most intuitive 

in our case. Each vertex of the grid contains its coordinates, normal vector, needed 

for the surface optimization process, and a color index that can be used to visualize 

additional system parameter (through the color coding technique), for example, the 

avalanche length associated with each relaxation. It should be pointed out, however, 

that the color coding must be done using texture mapping as not to interfere with the 

surface optimization algorithm. Finally, the mesh is generated using the OpenGLTM 

display list facility combined with lighting, shading and blending algorithms. 

3.1.3 Data Set Reduction and Surface Optimization 

The storage requirements for the presented problem are quite stringent. A typical 

run of the simulation generates between 105 to 106 records. Each record contains 

energy data, avalanche data and heights profile. If the performance of the appli­

cation is not to be compromised, one has to find simple, yet efficient methods to 

reasonably reduce the original data set. Closer analysis of the sandpile output struc-
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tures suggested that two reduction schemes could be applied. First of all, one need 

to store only that part of the height profile that was effected by the last relaxation 

event - other heights remain the same. Secondly, the run length encoding can be 

used for further data size reduction. After each relaxation, the modified heights are 

scanned. If the heights in the neighboring sites are the same, only one record is used 

to record the heights together with its start and end position. Additionally, the size 

of the data set increases if the dynamic parameter color mesh is displayed together 

with the height profile. The color mesh of the dynamic parameter is stored in a very 

compact form; no value of the parameter is stored but only an index to a matrix 

where the two possible values of the parameter are stored. Since the index can be 

only zero or one, we pack 8 indices in one character type variable (8 bits long). One 

of the common problems with using regular grid representations of the surface is 

that the polygonal mesh is never the optimal one. Since large, Hat areas may coexist 

with very dynamic ones different regions need to be optimized differently based on 

the details of the topology it included. The simplification method used here is the 

"level of detail" (LOD) algorithm (Lindstrom et al., 1994). We use iterative reduc­

tion code that replaces many small polygons with fewer larger ones. The normal 

vector direction change is used to estimate the amount of information loss during 

the surface coarse graining process. If selected polygons are to be fused, we require 

that the normal vectors had exactly the same direction. The process starts with a 

grid at its highest resolution. A doubly link list, used to store the mesh, is traversed 

and all polygons that meet our criteria are joined together. Figure 3.2 shows how 

few polygons with the same slope are replaced with a larger one without any loss in 

accuracy. The data structure used allows immediate release of the purged polygons. 

This reduces the number of polygons by an order of magnitude on average (see table 

3.1.3). The algorithm is applied only once before the final polygonal mesh is created 

using OpenGLTM functions. We do not re-optimize the surface for every rendered 

frame and allow OpenGL™ algorithms to handle the viewpoint or field of view 

changes. It should be stressed that this method does not eliminate any details from 

the original data set and thus the image always reHects the true evolution of the 
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Figure 3.3: (a): State variable (total energy) of the sandpile dynamics and (b) 
corresponding 3-D view of the sandpile height profile. 

system. If, however, one needs to reduce the size of the structure further an errol' 

parameter can be added to allow the fusion of the polygons with normal vectors 

differing by a given amount. This optimization is fast and allows a real-time display 

of the surfaces originally consisting of up to 500,000 polygons. 

One of the most common method used to visualize high-dimensional data 

sets is color meshing. Additional system parameters may be mapped to a color 

of the underlying polygons. The use of the LOD algorithm, however, makes the 

simple color coding of the surface impossible as some polygons will be eliminated 

during the process. Since all our additional parameters are functions of time (and 

not the position within the system), one could restrict LOD algorithm to coarse 

grain the surface only along the system length axis. In our case, this method did 

not provide sufficient enough reduction in the number of polygons. The texture 

mapping technique will be explored to avoid the constrains of the color meshing. 

3.1.4 Data Mining and Visualization Results 

The usual method of summarizing the evolution of a complex system over its entire 

bandwidth is to use a state variable graph. Figure 3.3(a) shows a time evolution 

of the total energy (the state variable) of the thresholded sandpile system. The 
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simplicity of the plot allows display of the entire evolution of the system. This is 

crucial, since it indicates the interval where the time series reached a steady state. 

The multi-scale character of the system is also revealed. In the equilibrium state, the 

energy plot has a clearly self-repeating pattern. Different spatio-temporal scales of 

these oscillations allow us to expect the existence of similar features in the generated 

three-dimensional image. A state variable graph, although very informative, does 

not provide enough clues to understand collective behavior of the sand in the model. 

Figure 3.3{b) presents the surface of the sandpile profile in time that corre­

sponds to this steady state. The three-dimensional surface can be rotated, translated 

and viewed in a close-up mode by the user. Such a method, where the user is guided 

through the full data set to search for relationships and global patterns that exist 

in it, is called data mining. The novelty of our method lies in the fact that we 

employ a simple two-dimensional graph that is capable of displaing the entire data 

set, regardless of it size and complexity as a guide. The researcher is allowed to 

select a region of interest and explore the trends, otherwise hidden among the vast 

amounts of data, in three-dimensions. The benefits of this approach are: the fast 

display of the 3-D images (only the selected region needs to be processed), ability to 

examine different regions of the model's dynamics quickly and the opportunity to 

compare generic features in the state variable graph with those present in the 3-D 

height profiles. 

Looking at figure 3.3{b) the multi-scale character of the structure is very 

obvious. The topology of the surface varies strongly with distance across the system 

and time-it is an inverse cascade from small to large scales. Over a short length 

System Size Algorithm Applied Output Polygons 
256 None 69 MB 132608 
256 Data Reduction 8.0 MB 30500 
256 Data Reduction and Sur- 6.4 MB 2500 

face Optimization 

Table 3.1: Data set size before and after optimization. 
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range, one can observe short peaks oscillating in time. The structure contains com­

plex patterns that could not be predicted without three-dimensional imaging. Two 

very distinct regions are clearly visible on the figure 3.3(b). First one takes the form 

of long and smooth slopes and corresponds to a descending side of the total energy 

curve. The other, "step-like" structures are characteristic of a growing side of the 

energy curve. Since different regions of the surface must be studied in a close-up 

mode, it is very apparent that the use of LOD algorithm was necessary. The image 

on figure 3.4(a) presents a special case in our studies-an exact analytical solution 

exists for this sandpile model (Helander et at., 1999). This special case has simple 

self-similarity and in consequence information on all scales is of equal importance. 

This case allowed us to test the efficiency of our visualization techniques against 

the existing mathematical model. The next simplest case is when the dynamic rules 

include a control parameter that can assume only two values (with equal proba­

bility). To study the correlation of this dynamic parameter with the behavior of 

the system, the two data sets are visualized simultaneously in a three-dimensional 

view (see figure 3.4(b)). A flat color mesh representing two values of the dynamic 

parameter is drawn under the translucent, three-dimensional sandpile profile sur­

face. OpenGLTM alpha blending algorithm was used to achieve the effect of the 

translucent evolution surface. In this three-dimensional view, one can notice that 

the edges of the surface facets tend to align with the area of change of the dynamic 

parameter. 

The scientific visualization of the complex structure is not a goal in itself, of 

course. The methods presented here allow an instant insight into the dynamics of 

the system and thus allows us to draw analogies between the model and real physical 

systems (Hnat et at., 2000). 

3.1.5 Quantitative Sonification 

Quantitative sonification was also used to enhance user's experience of the explored 

system. In our case, we used sound to improve the analysis of the most complex areas 

of the surface. The frequency of the sound, its volume and duration are all based on 
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Figure 3.4: 3-D visualization of the sandpile height profiles for (a) purly self-similar 
solution and (b) with stochastic parameter represented as a colour mesh. 

the sequence of avalanche lengths in time. The choice of the parameter was based on 

the analytical solution presented in figure 3.4( a). In this special case, of the sandpile 

with dynamic rule acting over the length of the system, avalanche lengths are shown 

to only exist with lengths 2n cells (where n is an integer) (Helander et al., 1999). 

For other values of the range of the redistribution rule, the small avalanches cluster 

around values of 2n. The avalanche lengths are hence approximately always linear 

on the logarithmic scale and so are tones in the octave. Combined with a "close-up" 

view of the structure sonification is an additional tool for visualization of the multi-

scale topology. In particular it flags to the user underlying regular patterns in the 

time series that would be difficult to see on the visual representation of the sandpile. 

Standard UNIX audio device is used to generate the sound. The ioctl C function is 

used to interact with the device and set its parameters. We found, however, that the 

large disadvantage of sonification is that various parameters describing the sound 

can inHuence each other (i.e., the volume and the frequency of the sound) giving 

false perceptions of the changes within the system. 

59 



3.1.6 Conclusions 

Many modern mea.surements of pla.sma systems provide high-dimensional data sets 

that are too difficult to study using traditional methods. As the available informa­

tion becomes more and more complex, new and more advanced ways to explore it 

must be found. Virtual Reality, and scientific visualization in general, proved to be 

extremely helpfull in understanding the sandpile model's dynamics. The visualiza­

tion revealed striking similarities between the dynamics of tokamak pla.sma and that 

of the sandpile. In particular, the visual examination of the 3-D profiles led us to 

quantitative studies of transport bariers in tokamaks. We will discuss these results 

in Chapter 5. Direct visual methods can also be used to verify analitical predictions 

for the model itself. Indeed, a.s it ha.s been already mentioned in here, the exact 

results obtained in Helander et al. (1999) could be verified via direct comparison 

of the self-similar height profile patterns. The method, however, ha.s its limitations 

when quantitative studies are concidered. To obtain more then just general trends 

in the system's dynamics the visual tools need to accompanied by other quantitative 

techniques. These have been describe in detailes in Chapter 2. 
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Chapter 4 

Statistical Analysis of the 

Sandpile Model 

There is increasing evidence that the essential dynamics of a range of naturally 

occurring systems can be captured by the paradigm of Self-Organized Criticality 

(SOC). Intriguingly, this may include plasma confinement systems both in the lab­

oratory (tokamak plasma), and in space (solar flares, the earth's magnetosphere). 

These systems depart from the well established formalisms of SOC where the critical 

point is approached in the limit of vanishing drive and the true scaling behavior is 

obtained for arbitrarily large events. Instead, we have physical systems with finite 

size and highly variable driving rates. Yet, they still exhibit bursty energy release 

events which are self-similar and exhibit inverse power law statistics. This behavior 

has been recovered in numerical avalanche models for which one can find fixed points 

and which exhibit corresponding inverse power law burst statistics. These features 

are robust, against the drive, for large events. We consider such a model which has 

a "tuning parameter", that can be used to bring the system away from its fixed 

point. In natural systems, the time series may be the only observable with sufficient 

dynamic range to test for self-similarity. We use the model to test if the time series 

alone is sufficient to quantify the system's proximity to its nontrivial fixed point. 

If not, this may provide a simple explanation for the apparent ubiquity of SOC in 

nature. 

61 



4.1 Finite size scaling for the sandpile model 

Finite size scaling of the spatially extended systems is a well established technique. 

The method, described in details in Chapter 2, is especially suited for the numerical 

models where the system size can be easily varied. Results of the finite size scaling 

allow us to relate the features found in the data, obtained from the finite size system, 

to these predicted by the Renormalization Group (RG) where the limit of infinite 

system size is taken. Scaling indices found in the critical regime, i.e., when system 

size N -+ 00, allow us to introduce the concept of universality classes and group 

different numerical realizations of the sandpile based on their critical dynamics. 

In this section, we will present a finite size scaling analysis of the sandpile model 

introduced in Chapter 2. Our analysis will be performed using energy dissipated in 

a single event dE (2.4) and avalanche length dl observable. The RG analysis of this 

sandpile model (Tam et al., 1999), performed for parameter L, = N, shows that 

the avalanche length and the energy dissipated exhibit an inverse power law scaling 

with index -1. In the case of L, < N, such analysis can not be performed due to 

a coarse graining procedure that fails on the scales larger then L" 

The goal of this investigation is twofold. Firstly, we will obtain scaling indices 

for the sandpile model using finite size scaling. Such analysis has never been done for 

this model. Values of scaling indices will allow us to identify a universality class for 

this model. We will also verify results of the analytical RG analysis for the system 

with L I = N. Our main interest will be in establishing the scaling exponent for the 

large events. We will, however, also investigate the scaling of the small events. Small 

scale dynamics of the sandpile is not relevant from the universality class perspective 

but is important in the modeling of the physical systems where dual scaling regimes 

may be observed (Lu and Hamilton, 1995; Chapman et al., 1999). Our second aim 

will be to determine if the system's proximity to its fixed point can be quantified 

using a finite size scaling techniques. To facilitate direct comparison with earlier 

results and other published work, our analysis will be performed using Probability 

Distribution Functions (PDIF) rather then Probability Density Functions. We note 

that, in the case of the power law PDIF with exponent c¥, the corresponding density 
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Figure 4.1: PDIFs of the avalanche lengths (a) and dissipated energy (b) for different 
system's sizes N and constant control parameter L f. 

function is also a power law with the exponent a + 1. 

Figure 4.1(a,b) shows the probability distribution functions for the avalanche 

lengths and the energy dissipated in a single event observed in the sandpile model 

with varied length N, Lf = Nand 2% randomization o( the critical gradient. It 

is immediately visible from the figure 4.1 that the randomization of the critical 

gradient affects the scaling of small events while the large scale dynamics remains 

unchanged with a power law index adl,dE = -1 for bothe dE and dl. The finite 

size scaling analysis' of the PDIFs reveals some differences in scaling between the 

avalanche lengths, shown in figure 4.2(a) and the dissipated energy presented in 

,figure 4.2(b). The best collapse o( the PDIFs (or the avalanche lengths is achieved 

by applying a self-similar finite size scaling (2 .29) with parameters a dl = 0 and 

f3 cll = 1 (used in (2.29)) which can be then written as: 

1 
P(dl, N) = NPs(dl, N) (4.1) 

The energy dissipation PDIFs, however, show multi-index scaling consistent with 

dual regime scaling reported in Tam et al. (1999) and Chapman et al. (1999). Con­

sequently, the best collapse of original PDIFs is obtained using the multi-scaling 

ansatz (2 .37) with fitting parameters Xo = 1.0 and No = 0.001. Figure 4.2(b) 

shows how small scale events of the dissipated energy depart from the critical regime 
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Figure 4.2: Finite size scaling of the avalanche lengths PDIFs (a) and dissipated 
energy PDIFs (b). Parameter L / = Nand 2% randomization of the critical gradient 
was added. 

scaling of atE = -0.99 ± 0.05 and can be well approximated by the second index 

a~E = -0.63 ± 0.04. The analysis indicates that the transition point between small 

and large events regime of the dissipated energy PDIFs also scales with the system's 

size and, in the graph of the rescaled distributions, it collapses onto the single point. 

This is a new result that could not be addressed previously by applying RG anal­

ysis. As it was already mentioned, the small scale regime is not relevant from the 

universality point of view as the small events dynamics is model dependent. Indeed, 

the distribution of small avalanches is dramatically affected by the added stochastic 

part of the critical gradient and changes with the driving rate. The behavior of 

the small avalanches is of interest when applying the sandpile to model a particular 

physical phenomena, where finite size must be assumed from the outset. Chapman 

et ai. (1999) used this sandpile model to investigate the dual scaling of the dissipated 

energy in the substorms of the Earth's magnetosphere. In the same, work it was 

pointed out that the finite size effects, such as appearance of the mean dissipated 

energy for the largest events, are also of importance for developing realistic models 

of the physical systems. 

The apparent ubiquity of the critical systems in nature rises an interesting 

and challenging question: Can criticality be quantified through the observation of 
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Figure 4.3: PDIFs of the avalanche lengths (a) and dissipated energy (b) for different 
system's sizes N, L f = N/2 and 2% randomization of the critical gradient. 

physical system and data analysis? To address that question, we will now investigate 

a finite size scaling of the sandpile for the parameter L f < N . In this case the system 

is away from its fixed point and thus is not critical. The challenge lies in quantifying 

the proximity of the sandpile to its fixed point. If existing statistical methods can not 

detect the departure of the system from its fixed point then many observed systems, 

that exhibit power laws and fractal patterns, may not be, strictly speaking, in the 

critical state. 

Figure 4.3(a,b) shows the probability distribution functions for the avalanche 

lengths and dissipated energy observed in the sandpile model with varied length N, 

Lf = NI2 and 2% randomization of the critical gradient. It is immediately clear 

that the finite size effects are more pronounced in this mode. This applies especially 

to the PDIFs of avalanche lengths, which for L f = N exhibited nearly perfect 

length invariance (see figure 4.2(a)). Now, with the departure of the system from 

the critical regime, the probability of the system size events increases visibly. In the 

case of the dissipated energy PDIFs, the changes are less visible. In fact, without 

closer analysis, the dissipated energy PDIFs for L f = Nand L f = N 12 could 

be taken as identical. Figure 4.4(a,b) shows the collapse of the PDIFs for both 

observable after the multi-fractal ansatz (2.38) was applied. Fitting parameters 

were taken as No = 1.0, Xo = 0.2 for avalanche lengths and No = 0.004, Xo = 1.0 
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Figure 4.4: Finite size scaling of PDIFs for avalanche lengths (a) and dissipated 
energy (b) for different system's sizes N, L1 = N/2 and 2% randomization of the 
critical gradient. 

for the dissipated energy PDIFs. In this case, neither ordinary scaling nor multi­

index approach gave a satisfactory collapse for the large and small scale events. 

This apparent multi-fractal character of the avalanche length distribution could be, 

however, misleading. It is clear, from the features of the rescaled PDIFs, that 

mono-scaling statistics is still dominant on the large number of scales. For these 

scales, the power law index a dl = -1.01 ± 0.05 is identical to that obtained from 

the system with L 1 = N. Multi-fractality appears as a result of the increased 

probability of avalanches with dl > L 1. Dissipated energy exhibits higher sensitivity 

to the departure of the system from its critical regime. The small events scaling, 

corresponding to the index value of a~E = -0.65±0.04 now extends further towards 

the large scale events. The dual scaling, observed for L 1 = N, does not provide a 

good description of the scaling in this case. We observe a smooth transition of the 

scaling index from the initial value of -0.65 towards atE = -0.93 ± 0.05 predicted 

for the large events. Similarly to the case of L 1 = N, the largest dE events exhibit 

a clear departure from the power law distribution with the average events size being 

well defined. 

The finite size scaling approach presented here allowed us to study the differ­

ences in scaling between systems with varied parameter L 1. Our results shed light 
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on the role of the finite size effects in the dynamics of the system. We identified 

statistical differences, due to the finite size effects, between critical and near critical 

system. An enhanced probability of system wide avalanches appear to emerge, as a 

feature, that could characterize the near critical system. This feature is not, how­

ever, very pronounced in the distribution function of the energy dissipated in single 

event. Given that individual events are difficult to measure in the real systems, we 

conclude that this method can not be used to distinguish between critical and near 

critical system. Our results suggest that this sandpile model does not belong to 

any well known universality classes and, therefore, is not equivalent to any other 

sandpile model. 

4.2 Self-similarity and length scaling of the time series 

An accurate determination of the self-similarity (or self-affinity) exponents is of cru­

cial importance for the theory of critical systems such as SOC sandpile models. 

Many possible variations of the sandpile algorithm exists but their emergent fun­

damental features, such as the power law scaling index, are often identical. This 

universality allows us to focus on the few distinct phenomena, rather then studying 

all possible sandpile algorithms. Calculation of the fractal dimension allows us to 

estimate the self-affinity of the time series and characterize the system. In Chapter 

2, we introduced a divider or length scaling method and in this section we will use it 

to obtain the fractal dimension of time series collected from the sandpile model. We 

start with the analytical estimation of the fractal dimension for the critical model 

(L f = N) with no randomness. Consider the time series E( t) for the sandpile with a 

constant threshold gc and the parameter L f equal to the length of the grid. We will 

show, analytically, that the energy curve E(t) (see 4.5) has a fractal capacity dimen­

sion of 1. Figure 4.5(b) shows how this curve may be reconstructed using successive 

midpoint divisions. Since the avalanches are instantaneous, all vertical segments are 

perpendicular to the time axis. We also know the length of each vertical segments 
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Figure 4.5: (a): The total energy of the sandpile in the stationary state. System 
Length N = L f = 4096, no noise present. (b): Midpoint division used to reconstruct 
the energy time series. 

from the analytical solution by Helander et al. (1999): 

HI = Ho/3 and Hn = Hn-d2 for all n > 1. (4.2) 

We start with a triangle ABC. The length of the curve is then equal to the length 

of the hypotenuse. Next, we draw a vertical segment from the midpoint of the 

hypotenuse and connect the lower end SI with point B. The length of the vertical 

segment should be HI = Ho/3. The total length of the curve is now a sum of the 

segments A01, 01S1 and SIB and can be expressed as: 

Pt = Ho ( ~ + ~JR2 + 1 + ~v en 2 + I) , (4.3) 

where Ho is the length of the first vertical segment and R is a ratio of Lo/ Ho. Now, 

we add two vertical segments in the midpoints of the segment A01 and SIB. Their 

length, given by (4.2), are H2 = Hd2. After 3 steps, the combined length of the 

curve can be written as: 

P3 = ~o [3+~ (JW+I+1sVc:r +1+ 2IVc:r +1+9Vc:r +1 )] 
(4.4) 

If one carries on this procedure, the energy time series can be obtained with any 

given accuracy. Closer examination of terms in (4.4) reveals that the total length of 
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the curve after n-th division can be written as: 

(4.5) 

where binomial coefficients Cj are given by: 

Cn n! 
j = k!{n - k)" 

(4.6) 

If we normalize maximum time to be 1 (Ho = 3) then the ratio R will have a value of 

1/3. Applying this in the above formula and assuming 2j + 3 » 1 we can perform 

the summation in equation (4.5): 

n n n 

LCj(2j + 3) = 2LjCj +3LCj = 2n{n+3) (4.7) 
j=O j=O j=O 

The second term in (4.5), 2"~i v'1 + R2, can be neglected for large values of n. The 

final expression for the Sn can then be reduced to Sn = 2n + 3. To obtained the 

fractal dimension, one needs to find the ratio: 

D = lim In(Sn) = lim In(2n + 3) 
n-+oo In( n) n-+oo In( n) 

(4.8) 

Clearly, this ratio will converge to 1 for n approaching infinity. The result highlights 

interesting aspect of the fractal dimension estimation, from the finite size sample 

and with instrumental or physical threshold. The analytical result given by (4.8) 

is obtained in the limit of the infinite experimental resolution, i.e., when all the 

relevant scales are present. As we can see in the figure 4.6, however, the fractal 

dimension D(n) of the curve for a given n is well above 1 even for quite large values 

of n. This suggests that the fractal dimension, calculated by length measurement of 

the experimentally observed time series, could, in principle, yield a nontrivial but 

incorrect fractal dimension D(n) > 1. 

The length scaling was also investigated, numerically, for the different values 

of the control parameter L f. Figure 4.7 shows time series corresponding to three 

selected values of the Lf parameter and constant (plates (a),{b),{c» as well as the 

randomized {plates (d),(e),(f» critical gradient. The results of the curve length 

analysis are shown in figures 4.8. In the case of L f = N, added fluctuations of the 
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Figure 4.6: Fractal dimension estimation for the energy time series obtained through 
the successive midpoint division. 

critical gradient (Up to 2%) did not change the scaling properties of the system. The 

time series curve is still self-similar. The fractal dimension of 1 can be concluded 

from the slope of the line. The scaling curve for Lf = N/2 looks very similar. 

It is clear that the length of the curve scaling can not be used to differentiate 

between the critical and near critical case. This is also true for the randomized 

critical gradient where the slopes of the scaling curves are identical. As the L f 

parameter decreases, long avalanches become more probable and their probability 

distribution is no longer a power law with index -1. The distribution of the small 

events is unchanged (for example see Figures 12 and 13 in Chapman (2000)). This 

should give rise to a kink, which indeed can be observed in the scaling curves. The 

existence of the kink and its location· on the scaling curves are consistent with the 

scale breaking in the probability distribution of the avalanche length in the given 

region (Chapman et al., 1999). This ability of scaling curves to recover features 

present in the probability distribution suggests that the curve length estimation 

could be used as an alternative to probability distributions of events. In the case, of 

the time series from real physical systems the individual events are often convoluted 
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Figure 4.7: (a): Total energy time series for the sandpile with length N = 4096. (a) 
L f = N, constant critical gradient, (b): L f = N /2, constant critical gradient, (c): 
Lf = 48, constant critical gradient, (d) Lf = N, randomized critical gradient, (e): 
Lf = N/2, randomized critical gradient, (f): Lf = 48, randomized critical gradient. 
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(b) randomized critical gradients. Letters identify corresponding plates in the figure 
4.7. 

with sampling and contaminated with other signals. In such scenarios, these events 

are hard to identify and methods that are less sensitive to external fluctuations are 

highly desirable. 

4.3 Phase Space Reconstruction 

Let us now turn our attention toward the phase space representation of the sys­

tem's dynamics. The phase space plots, shown in the figure 4.9, indicate that, when 

away from the fixed point, a low-dimensional structure emerges. Before the fractal 

dimension can be estimated from the time series, a phase space reconstruction pro­

cess needs to be applied to identify the right embedding dimension for the problem 

(as described in the Section 2.3.2). As the higher order fractal dimension are more 

sensitive to the scale breaking, we will present our results using correlation dimen­

sion. These curves show a local slope of the correlation sum (2.45) computed for 

the given range of scales € = 1/ r and different embedding dimensions. If, for all 

embedding dimensions larger than a minimal one, these curves collapse onto each 

other and the clear plateau can be found then the correlation dimension is estimated 

directly as a value of that plateau. The general behavior of the scaling curves is well 

understood. For the small values of r, the stochastic part of the dynamics dominates 

72 



and the curves diverge and the slope of the correlation sum is proportional to the 

embedding dimension. For the large values of r, the slope changes again as the edge 

of the attractor is approached. To eliminate pairs that are close in distance, due 

to residual time correlation and not their true position in the phase space, space­

time plots were used. This technique allows us to determine the maximum window 

needed for the numerical search of the near neighbors. The optimal maximum win­

dow was found to correspond to the value of the parameter L / and we used this 

value in all computations. 

4.3.1 Constant critical gradient 

We start our analysis with the constant critical gradient model. The selection of 

the time delay T for the phase space reconstruction is crucial (Kantz and Schreiber, 

1997). In Fraser and Swinney (1986), a method was proposed for finding an optimal 

value of the delay parameter by using the first minimum of the mutual information. 

Figures 4.1D-4.12(a} show the mutual information curves calculated for three differ­

ent values of the control parameter L /. The arrows indicate the time delay chosen 

for each case. We note that the term "first minimum" may be misleading as one 

needs to assure that all relevant physical scales are included in the reconstructed 

vectors. In many cases, similarly to one presented here, small minima occurring 

early in the mutual information curve must be omitted in order to include these 

scales. The arrows on the the mutual information figures indicate values of the de­

lay T = 1024,512,15 for parameters L / = N, N /2 and '" (N /90) = 48 respectively. 

Figure 4.7(a} show the time series of the total energy of the sandpile for control 

parameter L / = N and no randomization. Corresponding phase space structure, 

shown in figure 4.9(a), consists of log2(N} linear structures with point density in 

each segment decreasing with the dissipated energy. Panel (a) of the figure 4.10 

shows the mutual information 1m. Similarly to the energy time series under inves­

tigation, it also exhibits a self-similar character. As mentioned before, the delay 

parameter was chosen so that all relevant scales contribute to the correlation sum 

algorithm. Finally, panel (b) shows the local slope of the correlation sum computed 
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Figure 4.9: Phase space structures. Parameters for each plate correspond to these 
in the figure 4.7. 
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Figure 4.10: Mutual information (a) and the local slope of the correlation sum curve 
(b). Dashed line represented the estimation of the correlation dimension. System 
parameters: N = 4096, L f = N and constant critical gradient. 

for the embedding dimensions 1 to 10 and the delay parameters found above. A 

low correlation dimension d2 = 1.14 ± 0.02 found for this parameter range is consis­

tent with the phase space structure shown in figure 4.9(a). We note the excellent 

convergence of the curves for all embedding dimensions larger then 4. 

Figures 4.11 (a, b) show the mutual information and the correlation dimension 

estimates for the control parameter L f = N /2. It is immediately clear that the 

time series (see figure 4.7(b)) and the phase space structure (see figure 4.9(b)) are 

very similar to these found in the previous case. Both consist of linear segments 

spaced evenly on the logarithmic scale. This indicates that the system's dynamics 

is influenced by the fixed point for the large range of the L f parameter values. We 

find the correlation dimension d2 = 1.05 ± 0.01. This estimate is quite different from 

that found for L f = N and the errors are small. The estimate, however, is based 

only on the slopes of correlation sum extending over about one decede. 

A visual inspection of the energy curves presented before, clearly shows the 

change in system's dynamics for Lf = 48 (see figure 4.7(c)). We now attempt 

to detect this change using phase space reconstruction. For the low values of L f' 

the system exhibits many features reminiscent of low dimensional chaos, such as, 

period doubling and intermittency (Chapman, 2000). This dynamical region can be 
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Figure 4.11: Mutual information (a) and the local slope of the correlation sum curve 
(b). Dashed line represented the estimation of the correlation dimension. System 
parameters: N = 4096, L f = N /2 and constant critical gradient. 

associated with increased probability of the long events, the increased importance of 

the system interaction with the open boundary and the separation of the small and 

large scale dynamics. Phase space structure, generated by plotting the total energy 

of the sandpile against the energy dissipated in the single event, shows the low 

dimensional structure that is formed between the values of 102-104 of the dissipated 

energy (see figure 4.9{c)). Clear periodicity of the signal (see figure 4.7{c)) of the 

total energy can also be observed. Figure 4.12 shows the mutual information and the 

d2 estimates for the given parameters. The first minimum of the mutual information 

occurs for the time delay of'" 20, as shown in the insert of the figure 4.12{a). A 

nontrivial correlation dimension, d2 = 1.33 ± 0.02, can be then obtained from the 

figure 4.12{b). The plateau extends only throughout the parabolic structure of 

the phase space structure. The results strongly suggest that two distinct regimes 

influence system's dynamics. First regime, dominant on small scales, is identical to 

that found for Lf = N. The phase space graph 4.9{c) shows linear segments for 

energy releases up to dE ::::: 50. Large events, with energy dissipated being above 

50, are governed by a different, more structured process. 
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Figure 4.12: Mutual information (a) and the local slope of the correlation sum curve 
(b). Dashed line represented the estimation of the correlation dimension. System 
parameters: N = 4096, Lf = 48 and constant critical gradient. 

4.3.2 Randomized critical gradient 

We now turn our attention toward the case with randomized critical gradient. The 

data will now much more closely resemble an experimental time series where the 

noise is an omnipresent phenomenon and can not be neglected. It has been shown 

empirically that the maximal tolerable noise level, for which the correlation dimen­

sion of the chaotic system can be estimated, is about 2% (Kantz and Schreiber, 

1997). We will apply 2% noise level of the critical gradient to simulate such real 

experimental time series. Figures 4.7(d,e,f) and 4.9(d,e,f) show the energy time 

series and phase space graphs for the same values of the parameter L f as previ­

ously, i.e., Lf = N, Lf = N/2 and Lf = 48. The dynamics in the critical and 

near critical regimes is affected significantly by fluctuations of the critical gradient. 

The low-dimensional regime, however, is still dominated by the periodic oscillations. 

Figures 4.13(a,b) show the mutual information and the estimate of the slope of the 

correlation sum for L f = N and randomized critical gradient respectively. The mu­

tual information changes dramatically even for this, relatively low, level of added 

fluctuations. Its self-similar nature is no longer observed. We find the first, well 

pronounced, minimum at T ~ 1.36 X 104 and this will be the value of the delay pa­

rameter used for the phase space reconstruction process. Interestingly, the scaling 
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Figure 4.13: Mutual information (a) and the local slope of the correlation sum curve 
(b). Dashed line represented the estimation of the correlation dimension. System 
parameters: N = 4096, L f = N and 2% randomization of the critical gradient. 

improves when the randomization of the critical gradient is included in the model. 

Added fluctuations allow the system dynamics to explore the larger area of the phase 

space. This is in contrast with the chaotic systems where the noise "spreads" the 

attractor and destroys the scaling. The estimated value of the correlation dimen­

sion is d2 = 1.14 ± 0.02, identical to that found for Lf = N and constant critical 

gradient. The different response of the system to the added noise, could be in prin­

ciple used to distinguish between critical and near critical dynamics. In practise, 

however, one does not control the level of noise in the observed system and the use 

of this method is rather limited. Once again, we attempt to quantify the system's 

proximity to its critical state. We will test if the difference between a critical and 

a near critical system could be identified through the phase space reconstruction. 

We repeat the procedure for the dynamical parameter L f = N /2 and 2% fluctua­

tions of the critical gradient. As before, the mutual information, shown in figure 

4.14(a), has lost its self-similar features. The scaling found through the correlation 

sum algorithm is even more similar to that of L f = N now that the randomization 

is present. A slight difference between obtained estimated correlation dimensions 

is too small to quantify the difference between these two cases. Our estimate of 

the correlation dimension is d2 = 1.10 ± 0.02. We conclude that the correlation 
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Figure 4.14: Mutual information (a) and the local slope of the correlation sum curve 
(b). Dashed line represented the estimation of the correlation dimension. System 
parameters: N = 4096, Lf = N/2 and 2% randomization of the critical gradient. 

dimension is identical, to within errors, for L f = N and L f = N /2. Decreasing the 

value of L f we approach the dynamical region where a low-dimensional structure 

in the phase space can be clearly identified. Figure 4.15(a), the mutual information 

curve, shows clear periodicity present in the signal. The insert of this figure shows 

that the first minimum occurs for T :::::: 22 and we used that value as the time delay 

parameter in the reconstruction process. The figure 4.15(b) clearly shows that the 

scaling of the parabolic structure, that was found in the non randomized model, is 

now absent. Two sharp peaks, marked on the figure with arrows, indicate the edges 

of the attractor corresponding to dissipated energy between ~ 2 x 102 and ~ 8 x 103 • 

These peaks mark the transition regions between linear segments and the parabolic 

structure on the phase space graph 4.9(f). 

This analysis was repeated for various values of the time delay parameter T 

to confirm that our results are not sensitive to the small changes in the reconstruc­

tion procedure. We also attempted to use the first visible minimum of the mutual 

information shown in 4.15 (a) and corresponding to T:::::: 1.1 x 104 , No single scaling 

was found in that case, however. 
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Figure 4.15: Mutual information (a) and the local slope of the correlation sum curve 
(b). Dashed line represented the estimation of the correlation dimension. System 
parameters: N = 4096, L f = 48 and 2% randomization of the critical gradient. 

4.4 Conclusions 

Certain statistical features of the times series are being invoked as evidence for SOC. 

It is important to know whether it is possible to determine, from the time series 

alone, whether a system is precisely at the fixed point or not. Results of the higher 

order nonlinear fractal analysis presented in this chapter indicate that: 

• The scaling of the critical and near critical system's dynamics can be obtained 

from the finite size data set, using correlation dimension estimation. The 

results can not, however, quantify the proximity of the system to its fixed 

point. 

• In the case of non critical system with noise present, the scaling may not be 

possible to detect. The scale separation can, however, be identify with the 

aim of the phase space graphs. 

The fact that the near critical system can exhibit statistical features characteristic 

of SOC raises an important question about the role of the criticality in the observed 

systems. Our inability to distinguish between the critical and near critical system, 

even with sophisticated non linear analysis, highlights the underlying difficulty in 
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understanding the common character of SOC. The fact that the system does not 

need to be precisely at the fixed point to show SOC phenomenology, combined 

with the results presented in here, may offer a simple explanation for the apparent 

ubiquity of SOC in nature. 
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Chapter 5 

Modeling tokamak plasmas with 

the Sandpile Model 

There is growing interest in relating the observed characteristics of energy trans­

port in both astrophysical and laboratory plasmas to sandpile models that dissipate 

energy by means of avalanches. The empirical features of a sandpile, for exam­

ple the scaling of its profile and energy storage capacity with model parameters, 

may display significant parallels with those of complex plasma systems. In a fu­

sion experiment, parameters such as the turbulent correlation length depend in a 

complicated, and in many cases unknown, way on a hierarchy of nonlinear, coupled 

and multi-scale plasma physics processes. The sandpile approach is motivated by 

the hypothesis that fusion plasmas are complex systems, exhibiting self organization 

and perhaps SOC. This is well supported by observations of rapid, nonlocal and non 

diffusive energy transport events in tokamaks (Carreras and Newman, 1996; Dendy 

and Helander, 1997) and large scale numerical simulations (Garbet and Waltz, 1998; 

Sarazin and Ghendrih, 1998). In this chapter, we will discuss significant qualita­

tive parallels between aspects of the observed phenomenology of magnetic fusion 

plasma confinement systems and the analogous outputs of the model with variable 

L f. Our results strongly suggest that this unity may extend to some of the most 

distinctive features of toroidal magnetic plasma confinement: enhanced confinement 
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regimes ("H modes"), edge localized modes ("ELMs"), steep edge gradients ("edge 

pedestal") and their observed phenomenological and statistical correlations (Zhang 

et al., 1998; Fishpool, 1998; Hugill, 2000). High confinement transport regime, or "H 

mode" , is a most developed mode of high confinement tokamak operation. Its defin­

ing feature is a reduction in transport near the edge of plasma. This leads to the 

appearance of the steep gradients in temperature and pressure near the edge. These 

are often referred to as edge pedestals. The high confinement regime is accompanied 

by edge localized modes (ELMs). ELMs are periodic rapid energy and particle loss 

events which are restricted, again, to the region near the plasma boundary. An 

important question is whether the low confinement mode ("L mode") to H-mode 

transition necessarily reflects a catastrophic bifurcation of confinement properties 

or can be associated with a monotonic change in the character of the turbulence 

(Hugill, 2000). 

5.1 Tokamak-like enhanced confinement phenomenol­

ogy from the sandpile model 

Transitional behavior, resembling that observed in fusion plasmas, has been found in 

the sandpile algorithms before. For example, Carreras and Newman (1996) studied 

a sandpile with an imposed local sheared flow region which reduces the characteristic 

avalanche length, thereby affecting confinement. In Carreras et al. (1998), changes 

in the redistribution rule lead to changes in profile stiffness. We will show that 

key elements of the observed phenomenology emerge naturally from a simple one­

dimensional sandpile model, that introduced in Chapter 2. This model's distinctive 

algorithmic feature relates to the length scale Lj, over which the most rapid redis­

tribution occurs. In a context of plasma systems, this could be considered a proxy 

for turbulent correlation length or eddy size. In Chapman (2000) the sandpile is ex­

plored for all regimes 1 < Lf ~ N for both constant and fluctuating critical gradient 

ge' We consider the dynamics of the more realistic case with random fluctuations 

in ge' The behavior of the sandpile is essentially insensitive to both the level and 
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structure. 
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Figure 5.2: Time evolution of the 512 
cell sandpile with L f = 50: (top) stored 
energy; (middle) position of last occu­
pied cell; (lower) magnitude and occur­
rence of mass loss events. 

spectral properties of these random fluctuations (Chapman, 2000; Chapman et al., 

1999). In the limit Lf = N, where N is the number of cells in the grid, the sandpile 

is flattened everywhere behind an unstable celL A real space RG approach (Tam 

et al., 1999) shows that the robust and scale free dynamics, for the limiting case 

Lf = N, corresponds to a nontrivial (repulsive) fixed point. The essential result, 

reported in Chapman (2000) is that different regimes of avalanche statistics emerge, 

resembling a transition from regular to intermittent dynamics reminiscent of deter­

ministic chaos. The control parameter is the normalized redistribution scale length 

Lf which specifies whether the system is close to the nontrivial Lf = N fixed point. 

Height profiles for the sandpile with 512 cells, time averaged over many thou­

sands of avalanches, are shown in 5.1 for three different values of the fluidization 

length L f in the range 50 ~ L f ~ 250. The sandpile profile shape, stored gravi­

tational potential energy and edge structure (smooth decline or pedestal) correlate 

with each other and with L f. As L f is reduced, the edge pedestal steepens and 

the time averaged stored energy rises. Multiple barriers (regions of steep gradient) 

appear in trace (a) and to some extent trace (b) of figure 5.1. Time evolution of 

the sandpile for Lf = 50, 150, and 250, respectively, is quantified in figures 5.2-5.4. 

The top traces show total stored energy, the middle traces show the position of 
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Figure 5.3: As in figure 5.2, for L f = Figure 5.4: As in figure 5.2, for L f = 
150. 250. 

the edge of the sandpile (the last occupied cell) and the bottom traces show the 

magnitude and occurrence times of mass loss events (hereafter MLEs). During each 

MLE the sand is lost from the system by being transferred beyond the 512th cell. 

Time is normalized to the mean inter-avalanche time t:u and is proportional to the 

fueling rate. The sandpile is fueled only at the first cell, so that the great major­

ity of avalanches terminate before reaching the 512th cell. These are classified as 

internal. While internal avalanches result in energy dissipation and may alter the 

position of the edge of the sandpile, they do not result in an MLE. Visible peri­

ods of quiescence in the middle and lower traces of figures 5.2-5.4 are associated 

with this lack of MLEs. Conversely, the MLEs are associated with sudden inward 

movement of the sandpile edge and in this important sense, appear to be edge lo­

calized. However, MLEs and the associated inward edge movement are, in fact, the 

result of systemwide avalanches triggered at the sandpile center (cell n = 1). The 

character of the MLEs changes with Lf. In the figure 5.2, where the mean and 

peak stored energy are greatest, the MLEs are similar to each other and occur with 

some regularity. The regularity of MLE occurrence in figure 5.3 is less marked, the 

magnitude of the largest MLEs is greater than in figure 5.2 and there is greater 

spread in MLE size. This trend continues in figure 5.4, which also has the lowest 

stored energy. These effects correlate with the underlying dynamics of the sandpile. 

Figure 2.7, discussed in Chapter 2, plots the relation between average stored energy 
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and Lf for the N = 512 system and much larger N = 4096 and N = 8192 systems 

(normalized to the system size N). The curves coincide, demonstrating invariance 

with respect to system size, with an inverse power law with slope close to -2 for 

Lf/N < 1/4, and a break at Lf ~ 1/4. These two regimes yield the quasi-regular 

and quasi-intermittent dynamics in figures 5.2-5.4 (see also the plot of avalanche 

length distribution against L f in figure 8 of reference Chapman (2000)). The pa­

rameter L f is a measure of proximity of this high dimensional system to the L f = N 

nontrivial fixed point. This determines both the apparent complexity of the time 

series in figures 5.2-5.4 and the underlying statistical simplicity described below, 

which is also invariant with respect to system size. 

There is systematic correlation between time averaged stored energy < E > 

and MLE frequency fMLE' as shown in figure 5.6. To obtain these curves, which are 

again normalized to system size, we have derived MLE frequencies using a standard 

algorithm previously applied by Zhang et al. (1998) to assign frequencies to ELMs 

observed in tokamak plasmas in the JET. A number of MLE discharges C MLE is 

obtain for a given time interval t2 - tl and the frequency is then calculated as: 

f = CMLE(tl, t 2). (51) 
MLE t t . 

2 - 1 

Since the sandpile often generates bursts of mass loss with structure down to the 

smallest time scales, which might not be resolvable under experimental conditions, 

we have followed Zhang et al. (1998) in applying a (relatively narrow) measurement 

window of width 450AT to obtain fMLE. The correlation between < E > and fMLE 

is a noteworthy emergent property. Furthermore, figure 5.6's characteristic curve is 

very similar to that of figure 5.5 taken from Fishpool (1998), which relates measured 

energy confinement to ELM frequency in JET. Energy confinement time Tc can be 

defined for the sandpile by dividing the time averaged stored energy < E > by the 

time averaged energy dissipation rate < AE > (where AE is the energy dissipated 

in a single avalanche). The embedded plot of 5.6 shows Tc against MLE frequency 

fMLE. 

Finally, we explore the situation where there is a secular change in the re­

distribution algorithm. In figure 5.7, L f decreases slowly, continuously and linearly 
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Figure 5.5: Energy confinement versus 
ELM frequency from H98 (top) and H93 

(bottom) measurements. Solid curve 
corresponds to the model developed in 
Fishpool (1998). 

500 

300 
400 .. 

~2oo 0 . .. " 
z 300 

• 0 
100 

'" -1\ 
W 
v 200 

.,. 
0 0 

• '0 0.2 

100 

0 
Of +. 0 e+ 0 •• 

0.2 0.3 0.4 0.5 0.6 
'MlE xN 

Figure 5.6: Average stored energy ver­
sus MLE frequency, and (inset) Tc versus 
MLE frequency for sandpiles of N = 512 
,4096, and 8192. Energy and MLE fre­
quency are normalized as in figure 5.5. 

with time, from one constant value to another, over a period encompassing many 

tens of thousands of avalanches. There is a corresponding time evolution of the 

energy confinement properties of the sandpile and of the character of the MLEs. 

Figure 5.7(top) shows total stored energy as a function of time as Lf changes from 

250 at t = 4 X 104 to 50 at t = 1.15 X 105 , while I'V 105 avalanches occur. The system 

smoothly evolves from low to high confinement over a period of time corresponding 

to a few tens of MLEs. This is accompanied by a gradual change in character of the 

time variation in the sandpile edge (position oflast occupied cell, figure 5.7(middle)) 

and of the MLEs (figure 5.7(lower)), from large amplitude to small and from irreg­

ular to regular. Figure 5.7 can perhaps be regarded as the analog of, for example, 

figure 2 of Zhang et al. (1998) or figure 2 of Hugill (2000). The essential point here 

is that the sandpile apparently freely explores phase space with changing control 

parameter Lf. Characteristic properties of the dynamics (whether quasi-regular 

or quasi-intermittent) and, correspondingly, confinement properties (such as stored 

energy and MLE characteristics) smoothly follow changes in this parameter rather 
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50. sequent growth phase are shown. 

than exhibiting a sudden phase transition or catastrophe. 

5.2 Self Organization of Edge and Internal Pedestals in 

a Sandpile 

A distinct ive fea ture of magnetically confined plasmas is that they can sustain lo­

cal regions having very steep (indeed, almost discontinuous) temperature gradients. 

Pedestals in the edge temperature are a key feature of the good confinement regimes 

of tokamaks ("H-modes" ) (Hugill, 2000). Additionally, advanced operating regimes 

for tokamaks have now been accessed, which involve the creation of "internal trans­

port barrier~" (ITB~). ITB~ are ~tep-like feature~ in the temperature profile~ internal 

to the plasma (Synakowski, 1998; Kinsey et ai., 2001). The occurrence of such struc­

tures in externally heated plasma systems that are diffuse, high temperature, and 

turbulent is surprising. It presents a striking instance of their capacity for macro­

scopic self-organization. Here, we shall identify how apparently similar structures 

arise spontaneously in previously discussed sandpile model. Because of t he s implic­

ity of this model, it is possible to formally characterize and explain the mechanisms 

underlying pedestal [ormat ion, a nd to identiry links to tokamak plasma behavior. 
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This approach is complementary to studies that employ large scale numerical simu­

lation of tokamak plasmas, which have had some success in illuminating the subtle 

interplay between turbulence and bulk flows that may give rise to ITBs (Kinsey 

et al., 2001). 

Evidence for avalanche-type transport from tokamak experiments (Politzer, 

2000) and numerical simulations (Garbet and Waltz, 1998) provides growing support 

for the applicability in some circumstances of the sandpile paradigm, introduced into 

fusion plasma physics in recent years (Newman et al., 1996; Chapman et al., 1999). 

Particularly relevant to the present study are observations and analysis, by Pedrosa 

et al. (1999), of edge plasma turbulence in a range of magnetically confined plasmas. 

These suggest that edge plasma turbulence, the environment in which H-mode edge 

pedestals form, which then coexist with the turbulence, self-organizes into a critical 

state, independent of the size and plasma characteristics of the devices considered. 

It is known (Chapman et al., 2001c) that, depending on the value of the control 

parameter L" the statistical behavior of the sandpile model from Chapman (2000) 

displays features reminiscent of enhanced confinement phenomenology in tokamaks. 

These include the time averaged height profiles, which possess edge pedestals in the 

good confinement regime. Furthermore, as we have showed in the previous section, 

the frequency of systemwide avalanches resulting in mass loss scales with stored 

sandpile energy in the same way as the frequency of edge localized modes (ELMs) 

scales with stored energy in tokamaks. 

The three dimensional plot of figure 5.8 shows sandpile height as a function 

of position as time evolves, for the good confinement regime with L, = 50 in a 

512 cell system. It displays two distinct phases. First, there is a relaxation phase 

where the sandpile profile is smooth down to the self-organized edge pedestal, except 

within a distance L, of the core where fueling has a continual local effect. During the 

relaxation phase mass loss occurs, via many systemwide avalanches closely spaced in 

time, which carry sand over the sandpile boundary. The relaxation phase terminates 

with a final systemwide avalanche, after which the growth phase begins. This is 

characterized by a stationary edge pedestal which resides at the outermost cell of 
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Figure 5.9: Time evolution of the elec­
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Figure 5.10: Local height of sand as a 
function of time at different locations 
in the sandpile relative to the center 
cell n = 1: (a) n=20, (b) n=65, (c) 
n=100, (d) n=125, (e) n=150 and (f) 
n=300. System size N = 512, control 
parameter L f = 50. 

the sandpile. As time progresses, additional pedestals (localized regions of steep 

gradient just below critical) form successively at positions increasingly close to the 

core of the sandpile, with average separation '" L f. Each of these is generated at 

positions where (outward propagating) major internal avalanches have come to rest. 

The location of the most recently formed (and therefore innermost) internal pedestal 

propagates inward during the growth phase. 

Figure 5.10 is motivated by simultaneous multichannel measurements of toka­

mak temperature profiles in the presence of ITBs. An examples of such observations 

is presented in the figure 5.9 adapted from Kinsey et al. (2001). Similar observations 

has been reported in Burrell et al. (1998) and in Kinsey et al. (2001), also the re­

sults of large scale numerical simulations (shown in figure 2 of Kinsey et al. (2001)) 

exhibit a close resemblance to our results. Figure 5.10 shows sandpile height at 

different positions from the edge to the center. Just over two growth and relaxation 

phases are shown. The successive formation of internal pedestals is reflected in a 

stepwise increase in height at any given point during the growth phases. Since the 

internal pedestals form at locations increasingly close to the core as the growth phase 
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Figure 5.11: Location of cells where the value of the local gradient exceeds gc/2 for 
(a)Lf = 50 and (b)Lf = 250. Zero corresponds to the apex where fueling occurs. 
The edge pedestal is visible as the uppermost trace. 

proceeds, the points within the sandpile that are most affected by the formation of 

these pedestals, are those closer to the core of the sandpile. Points nearer the edge 

are only affected by the formation of the first few internal pedestals during the early 

growth phase. The results shown in figure 5.10 emerge naturally from the dynamics 

of the sandpile during the growth phase of its good confinement regime. Central 

to this structure is the unexpected capacity of this sandpile to organize persistent 

steep pedestals both at the edge and internally. 

The role of these internal pedestals and their relationship to the edge pedestal 

is highlighted in figures 5.11. In this figure, all cells at which the gradient exceeds 

gc/2 are marked by black points, while all other cells are left blank. In figure 5.11(a) 

(Lf = 50) data follows five ofthe growth and relaxation cycles shown in figure 5.10. 

The edge pedestal is visible close to the sandpile boundary in both the relaxation 

and the growth phases. Its time behavior is essentially regular and, as we shall see, 

orders the structure internal to the sandpile. For any L f < N /4, the location of 

each internal pedestal is fixed during a given growth phase, so that they persist as 

distinguishable features of the time averaged phenomenology of the sandpile. In 

contrast, figure 5.11(b) shows the behavior for the poor confinement (SOC) regime 

with L f = 250 > N /4. Although the sandpile successively fills and empties, it does 
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so in an irregular manner. Pedestals can be seen both at the edge and internal to the 

sandpile, but these are no longer organized in a coherent pattern. The time averaged 

profile of this sandpile is smooth and corresponds to low energy confinement (see 

figure 5.1). 

A resilient edge pedestal arises for all LI; the pedestal is steep, indeed unre­

solved, in that the entire change in height occurs between neighboring cells. The lo­

cation of the edge pedestal is strongly time dependent for large L I, whereas for small 

L I it is confined to a region close to the outermost cell of the sandpile. The time 

averaged profile in the edge region, therefore, depends strongly on L I, and the stead­

iest edge pedestal corresponds to small LI and good confinement. Following each 

avalanche in our algorithm, the value of the critical gradient gc is randomized about a 

mean value at all cells that participated in the avalanche. Nevertheless, the gradient 

at the edge pedestal remains always close to, but just below, the critical value gc as 

shown in figure 5.12. Elsewhere in the sandpile (for example at its midpoint), except 

where internal pedestals arise, the gradient is well below gc. The internal pedestals 

appear as barriers to transport: despite their apparent fragility against avalanch­

ing (gradient 9 close to gc), no sand passes through either the edge or the internal 

pedestals until the final avalanche that terminates the growth phase. The physical 

mechanisms and principles underlying the self organization of the edge pedestal and 

multiple internal pedestals that arise in the sandpile model of Refs. Chapman (2000) j 

Chapman et al. (2001c) are, therefore, of considerable interest. As a first step, we 

confirm the hypothesis of Chapman et al. (2001c) that the good confinement regime 

(small LI) corresponds to low dimensional behavior. In figures 5.13 the position of 

the last occupied cell at time t is plotted against that at time t + T, where T = 50, for 

runs with LI = {a)50, (b)150 and (c)250 in a 512 cell system. This is an example of 

phase space reconstruction, achieved here by embedding (Ott, 1993). Figure 5.13{a) 

shows low dimensional system dynamics that repeatedly follows a simple limit cycle 

(attractor) around a restricted region of the reconstructed phase space. This implies 

that the large number of cells in the sandpile have self-organized: their collective 

dynamics are encapsulated by a small number of dynamical variables. Once L I is 
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Figure 5.12: Local gradient normalized to the local value of 9c for cells at the edge 
(Ae, upper traces, value close to unity) and halfway into the sandpile (Amid, lower 
traces, value close to zero), for Lf = (top) 250, (center) 150, (bottom) 50. 

increased to 150 (figure 5.13{b)), the simple limit cycle seen in figure 5.13{a) bi­

furcates, and more stochastic behavior is seen in figure 5.13{c) (Lf = 250). Thus, 

increasing complexity of the phase space portrait correlates with deterioration of 

confinement. The lowest confinement regime corresponds to self-similar avalanche 

statistics. This is associated with a nontrivial fixed point in the space of the pa­

rameter used in Tam et al. (1999) to perform rescaling under the RG procedure, 

corresponding to behavior that is both self-organized and critical (Sethna et al., 

2001). Importantly, global relaxation of the sandpile is ultimately achieved by large 

(systemwide) avalanches for all values of Lf. When Lf is of order the system size 

N, systemwide avalanches are straightforwardly propagated: because L f '" N, no 

characteristic scale is imposed by the redistribution process and the dynamics are 

self-similar and in SOC (Tam et al., 1999). Conversely, when Lf is significantly 

distinct from the system size (found empirically to be Lf < Nj4) , there is scale 

breaking. This leads to broken power law avalanche statistics (Chapman, 2000) and 
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the system is no longer in SOC. By separating the characteristic length scales we 

also effectively separate the long term growth-relaxation time scale from the time 

interval between systemwide avalanches. In the SOC regime, such a distinction is 

not possible. Thus, in the good confinement regime (when Lf < N/4) the require­

ment for self organization is satisfied. The feature evolving on the slow time scale , 
namely the position of the edge pedestal, is sufficient to determine the details of 

the internal dynamics. It organizes the sequence of events leading to the successive 

formation of internal edge pedestals and the time variation of total energy (sand) 

in the system. In short, the sandpile is entrained to its edge. 
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Figure 5.13: Phase space reconstruction of the dynamics of the edge position ep(t). 
Plotted are coordinates ep(t) versus ep(t + T) for T = 50 and Lf = (a)50, (b)150 
and (c)250. The system dynamics explore a larger region of the phase space with 
increasing values of L f. The topology shown is insensitive to the value of T in the 
range of interest. 

5.3 Conclusions 

By varying a single control parameter in the sandpile algorithm, we have shown 

correlations between stored energy, confinement times, sandpile profile, sandpile 

edge structure and the amplitude, frequency and dynamical character of mass loss 

events. We have also seen how slow secular change in the control parameter pro­

duces a smooth evolution in confinement properties. If a single control parameter 

analogous to L f exists for tokamaks, it can, in principle, be found from experi­

mental data by examining scaling with respect to system size. The existence of 
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such extensive tokamak-like phenomenology, emergent from a very simple system, 

is a novel discovery. Insofar, as the phenomenological resemblance is close, there 

is more to be learned. A minimalist interpretation starts from the premise that 

the sandpile algorithm provides a simple one-parameter model for studying generic 

nonlocal transport, conditioned by a critical gradient, in a macroscopic confinement 

system. Changing the value of the single control parameter L f then corresponds 

to altering the range in configuration space over which the transport process oper­

ates. It then follows from the results presented here, that this may be the minimum 

requirement to generate those aspects of tokamak-like confinement phenomenology 

described. This is a significant conclusion but one can consider a more far reaching 

one. A possible maximalist interpretation attaches greater weight to recent observa­

tions reported in Carreras and Newman (1996); Rhodes et al. (1999); Politzer (2000) 

of avalanching transport in tokamaks and in large scale numerical simulations (Gar­

bet and Waltz, 1998; Sarazin and Ghendrih, 1998) thereof, and therefore regards the 

avalanching transport that is built into sandpile algorithms as an additional point of 

contact with magnetically confined plasmas. One would then infer from the present 

results that tokamak observations of avalanching transport are deeply linked to the 

existence of enhanced confinement and ELMs. The confinement physics of our sand­

pile model offers a robust framework in which a distinctive structure of edge and 

internal pedestals (previously known only from tokamak plasmas) arises naturally. 

There is only one control parameter, LJlN, which can be considered as a proxy for 

the lengthscale of turbulent transport, normalized to system size. Provided that this 

lengthscale is sufficiently short, the underlying system dynamics give rise to persis­

tent, marginally sub critical profile steps whose formation point propagates inwards 

in the growth phase. Furthermore, the self-organized edge pedestal is continuously 

present in all phases of the sandpile evolution and positions itself exactly at the 

sandpile boundary throughout the growth phase. These results are sufficient to in­

dicate that some of the distinctive edge and internal pedestal phenomenology, seen 

in tokamak plasmas, can also arise in a simpler idealized confinement system, and 

that they may be linked to the observed avalanching transport phenomena. 
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Chapter 6 

Intermittency, scaling and a 

Fokker-Planck approach to solar 

wind fluctuations and coupled 

solar wind-magnetosphere 

system 

In Chapter 2, have we discussed a finite size scaling method that can be applied 

to a time series obtained from the turbulent system. We also derived a Fokker­

Planck equation and have shown how it relates to the rescaling procedure. We 

will now apply this technique to investigate the solar wind and the coupled solar 

wind-magnetosphere system. For the solar wind studies, we consider bulk plasma 

parameters provided by the WIND spacecraft. These are magnetic field magnitude 

B, velocity magnitude v, ion density p, kinetic and magnetic energy density (pv2 and 

B2) and Poynting flux approximated by vB2. Such approximation of the Poynting 

flux is consistent with ideal MHD where E = v x B. We will show that fluctuations 

in the ion density p, energy densities B2 and pv2 as well as MHD-approximated 

Poynting flux vB2 are self-similar, whereas the fluctuations of speed v and IMF 
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magnitude B are multi-fractal. The mono-scaling nature of this fluctuations suggests 

a simplified picture of the intermittency in the turbulent energy cascade for these 

quantities. We also develop a Fokker-Planck model of these fluctuations which 

allows us to identify the transport coefficients in the plasma. We will compare this 

stochastic model with the Castaing distribution derived from turbulence. 

We will also consider the coupled solar wind-magnetosphere system. Recent 

work has focused on comparing some aspects of the scaling properties of input 

parameters such as €, given by (1.15) and the AE index (Davis and Sugiura, 1966) 

to establish whether, to the lowest order, they are directly related (Freeman et al., 

2000a; Uritsky et al., 2001). We use the finite size scaling to directly compare 

the PDF of the solar wind driver, represented by the € parameter with PDFs of 

the global magnetospheric indices AU, AL and AE. Our results suggest a strong 

connection between the scaling of the driver and that observed in the indices. This 

is also supported by the identical, to within the error, value of the rescaling indices 

found for these quantities and a common temporal scale at which this mono-scaling 

can no longer be found. 

The work presented here has been published in Hnat et al. (2002a,b). 

6.1 The Dataset 

The solar wind is a supersonic, super-Alfvenic flow of the compressible and inho­

mogeneous plasma. The WIND spacecraft orbits the Earth-Sun L1 point providing 

magnetic field measurements from the MFI experiment (Lepping et al., 1995) and 

the plasma parameters from the SWE instrument (Ogilvie et al., 1995). The WIND 

solar wind magnetic field and key parameter database used in here comprise over 1.5 

million, 46 second averaged samples from January 1995 to December 1998 inclusive. 

The selection criteria for solar wind data was given by the component of the space­

craft position vector along the Earth-Sun line, X > 0, and the vector magnitude, 

R > 30 RE. The data set includes intervals of both slow and fast speed streams. 

Table 6.1 outlines typical range of values found in the solar wind at '" 1 Astronom-
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Figure 6.1: Unsealed PDFs of the ion density fluctuations. Time lag 7 = 2k X 46s, 
where k = 0,1,2, .. , 14. Standard deviation of the PDF increases with 7. Error bars 
on each bin within the PDF are estimated assuming Gaussian statistics for the data 
within each bin. 

ical Unit. Similar to other satellite measurements, short gaps in the WIND data 

file were present. We have omitted any intervals where the gap was larger than 2% 

to minimize the errors caused by such incomplete measurements. The original data 

were not averaged nor detrended. Two dominant sampling frequencies, 1146Hz and 

1192Hz, has been identified in the data set. We use sampling frequency fs of 1/46 

as our base and treat other temporal resolutions as gaps when the accuracy requires 

it (7 ~ 92 seconds). 

Geomagnetic indices are obtained from a number of ground magnetometer 

stations (usually greater than 10) distributed in the latitude region of the northern 

hemisphere auroral zone. The north-south magnetic perturbation 6BN s is measured 

as, a function of universal time, for each of the stations. The maximum negative 

excursion of the perturbations 6BNS from all stations constitutes AL index. Simi­

larly, maximum positive excursion in 6BNS is called the AU index. The difference 

between these two indices, AU-AL, gives the AE index. The indices AU and AL pro-
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I Parameter I Value(s) at 1AU I 
Proton density 0.4 - 100cm .,j 

Magnetic field 0.2 - 80nT 
Flow speed 200 - 900km/s 
Proton gyroradius 80km 
Proton-proton collision time 4 x lOos 

Table 6.1: Typical parameters of the solar wind at 1AU. 

vide measure of the individual strengths of eastward and westward electrojets, while 

AE gives a good estimate of the overall horizontal current strength. Excursions in 

the AE index from a nominal daily baseline are called magnetospheric substorms 

and may have durations of tens of minutes to several hours. The AL, AU and AE 

indices data set investigated here comprises over 0.5 million, 1 minute averaged sam­

ples from January 1978 to January 1979 inclusive. The E parameter was computed 

according to (1.15) and (1.16) from the WIND magnetic field and key parameter 

database described in the previous section. The time series of indices and that of 

the € parameter were obtained in different time intervals and we assume that the 

samples are long enough to be statistically accurate. 

6.2 Estimates of the rescaling index 

Let x(t) represent the time series of the studied signal, in our case magnetic field 

magnitude B, velocity magnitude v, ion density p, kinetic energy density pv2, 

magnetic field energy density B2, the Poynting flux component approximated by 

vB2 , Akasofu E parameter or any of the geomagnetic indices. A set of time series 

OX(t,7) = x(t + T) - x(t) is obtained for each value of non-overlapping time lag T. 

The PDF P(ox, T) is then generated for each time series ox(t, T). We extract the 

scaling index a directly from differenced time series of the quantity x as described in 

Section 2.2.2. Ideally, we use the peaks of the PDFs to obtain the scaling exponent 

a, as the peaks are statistically the most accurate parts of the distributions. In 

certain cases, however, the peaks may not be the optimal statistical measure for 
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Figure 6.2: Scaling of the peaks P(O, r) of the PDFs for all quantities under inves­
tigation: 0 corresponds to 6B2, 0 ion density 6p, 0 kinetic energy density <5(pv2) 
and 6. Poynting flux component 6(vB2). The plots have been offset vertically for 
clarity. Errors as in figure 6.1. 

obtaining the scaling index. For example, the Bz component of the magnetic field is 

measured with an absolute accuracy of about 0.1 nT. Such discreteness in the time 

series introduces large errors in the estimation of the peak values P(O, r) and may 

not give a correct scaling. However, if the PDFs rescale, we can obtain the scaling 

exponent from any point on the curve, in principle. We will illustrate that in the 

next sections where we obtain the rescaling index a from two points on the curve 

P(O, r) and P(a, r) for the solar wind. For the € parameter and the geomagnetic 

indices, we will compare a obtained from the PDF peaks with that given by the 

temporal scaling of the variance (Hurst exponent, see definition (2.40)). 

6.3 Scaling in the solar wind bulk plasma parameters 

We are now ready to present results of the rescaling procedure as applied to the solar 

wind bulk plasma parameters. Figure 6.1 shows the unsealed (raw) PDF curves of 
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Figure 6.3: One parameter rescaling of the PDF for (a) 8B2,(b) 8p, (c) 8(pv2) and 
(d) 8(vB2) PDFs. The curves shown correspond to r between", 2 minutes and '" 26 
hours. Error bars as in figure 6.1. 

the ion density data. These PDFs, like all others presented in this section, were 

generated with the bin size decreasing linearly toward the center of the distribution. 

This improves the accuracy with which the peak P(O, r) of each PDF can be located. 

Although the entire range of data was used to create these PDFs, we truncated 

the plotted curves for 18xl ~ lOa(r) , where a(r) is a standard deviation of the 

differenced time series for the specific time lag r. Figure 6.2 shows P(O, r) plotted 

versus r on log-log axes for 8x = 8(p), 8(pv2), 8(B2) and c5(vB2). Straight lines on 

this plot suggest that the rescaling (2.27) holds for the peaks of the distributions. In 

Figure 6.2, lines were fitted with R2 goodness of fit for the range of r between", 2 
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minutes and '" 26 hours, omitting points corresponding to the first two temporal 

scales as in these cases the sharp peaks of the PDFs can not be well resolved. The 

lines suggest self-similarity persists up to intervals of r ~ 26 hours. The slopes of 

these lines yield the exponents a. These are summarized in Table 6.2 along with 

the values obtained from analogous plots of P(cr(r), r) versus r which show the 

same scale break and the same scaling exponent for 6(p), 6(pv2), 6(B2) and 6(vB2), 

within the error. 

Quantity a from P(O, r) a from P(cr, r) Approx. PDF 
rmax scales 

6B -0.47 ± 0.02 -0.23 ± 0.05 26 hrs No 
6v -0.52 ±0.05 -0.21 ± 0.06 26 hrs No 
6(B2) -0.43 ± 0.03 -0.42 ± 0.08 26 hrs Yes 
6(p) -0.39 ± 0.03 -0.37 ± 0.05 26 hrs Yes 
6(pv:l) -0.41 ± 0.03 -0.37 ± 0.05 26 hrs Yes 
6(vB2) -0.42 ± 0.02 -0.43 ± 0.06 26 hrs Yes 

Table 6.2: Scaling indices derived from P(O, r) and P(cr, r) power laws. 

Within this scaling range, we now attempt to collapse each corresponding un­

scaled PDF onto a single master curve using the scaling (2.27). Figures 6.3(a,b,c,d) 

show the result of one parameter rescaling applied to this unscaled PDF of fluctua­

tions in p, pv2, B2 and vB2 respectively, for the temporal scales up to '" 26 hours. 

We see that the rescaling procedure (2.27) using the value of the exponent a of the 

peaks P(O, r) shown in figure 6.2, gives good collapse of each curve onto a single 

common functional form for the entire range of the data. These rescaled PDFs 

are leptokurtic rather than Gaussian. This is strongly suggestive of an underlying 

nonlinear process. All PDFs are symmetric with the exception of the density fluc­

tuations which seem to have higher values for the large positive values as compared 

to the negative ones. It has been reported previously in Castaing et al. (1990) that 

the PDFs obtained from hydrodynamic turbulence have exponential tails. These 

look linear on the semi-log plots that are commonly used here and elsewhere in the 

literature. In the case of the solar wind bulk plasma parameters, we do not find 
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Figure 6.4: Direct comparison of the PDFs of fluctuations for all four quantities. 
o corresponds to 8(B2), 0 ion density 8(p), 0 kinetic energy density 8(pv2) and ~ 
Poynting flux component 8(vB2). 

such clear exponential cutoff region but rather see stretched exponential tails of 

the form exp( -A\8x\lt) (Veltri, 1999). We can now directly compare these rescaled 

PDFs by overlying the curves on the single plot for a particular T within the scaling 

range. Fig. 6.4 shows these normalized PDFs Ps(8xs, T) for 8xs = O(p)" O(B2)s, 

8(pv2)s, 8(vB2)s and T ~ 1 hour overlaid on a single plot. The oXs variable has been 

normalized to the rescaled standard deviation (j 8 (T ~ 1hr) of Ps in each case to facil­

itate this comparison. These normalized PDFs have remarkably similar functional 

form suggesting a shared process responsible for fluctuations in these four plasma 

parameters on temporal scales up to Tmax ~ 26 hours. 

It has been found previously by Burlaga (2001) that the magnetic field mag­

nitude fluctuations are not self-similar but rather multi-fractal. For such processes, 

the scaling derived from P(O, T) would not be expected to rescale the entire PDF. 

To verify this, we applied the rescaling procedure for magnetic field magnitude dif­

ferences 8B(t, T) = B(t + T) - B(t). Figure 6.5(a) shows the result of one parameter 
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Figure 6.5: One parameter rescaling of the PDF for the fluctuations in the (a) mag­
netic field magnitude Band (b) velocity magnitude. The curves shown correspond 
to r between", 2 minutes and", 26 hours. Error bars as in figure 6.1. 

rescaling applied to the PDFs of the magnetic field magnitude fluctuations. We see 

that the scaling procedure is satisfactory only up to 3 standard deviations of the 

original sample, despite the satisfactory scaling obtained for the peaks P(O, r) of 

the PDFs (see insert of the figure 6.5{a)). This confirms the results of Sorriso- Valvo 

et al. (1999) where a two parameter Castaing fit to values within 3 standard devi­

ations of the original sample yields scaling in one parameter and weak variation in 

the other. Attempts to improve the collapse by using information in the tails (val­

ues loBI> 30") would introduce a significant error in the estimation of the scaling 

exponent o. We found similar lack of scaling in the fluctuations of the solar wind 

velocity magnitude and we show the rescaled PDF in the figure 6.5(b). We stress 

that the log-log plots of the PDF peaks P(O, r) show a linear region for both velocity 

and magnetic field magnitude fluctuations (see insert in each figure). Their PDFs, 

however, do not collapse onto a single curve when the rescaling (2.27) is applied. 

This lack of mono-scaling is evident when indices derived from P(O, r) and these 

found for P(O", r) are compared (see Table 6.2). 

104 



-1~~------~-------'-------'-------'--, 

,........ ,.... 
I 
r c ....... 

-2 

:::::::-3 
~ 

w « 
(,() 

(t' -4 -o ,.... 
0) 
o 

-6 -1000 

t == 36 hrs. 

I 

-500 o 500 1000 
o AE [nT] 

Figure 6.6: Unsealed PDFs of the AU index fluctuations. Time lag r assumes values 
between 60 seconds and about 36 hrs. Standard deviation of the PDF increases with 
r. Error bars as in figure 6.1. 

6.4 Scaling in the solar wind € and geomagnetic indices 

Figure 6.6 shows these PDFs for the oAU. A generic scaling approach is applied to 

these PDFs. Figure 6.7 shows P(O, r) plotted versus r on log-log axes for ox = Of, 

oAE, oAU and oAL. Straight lines, fitted for the range of r between 4 and 136 

minutes, suggest self-similarity persists up to intervals of r = 97 - 136 minutes. The 

slopes of these lines yield the exponents a and these are summarized in Table 6.4 

along with the values obtained from plots of o-(r) versus r which show the same 

scale break. We note that, for the € parameter, the scaling index a obtained from 

the P(O, r) is different from the Hurst exponent measured from the o-(r). This 

difference could be a result of the previously discussed difficulties with the € data 

(discreteness of the time series). However, it does appear to be a feature of some real 

time series (see Gopikrishnan et al (1999), for example). Indeed, such a difference 

between index a and a Hurst exponent Ha is predicted in the case of the fractional 
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Figure 6.7: Scaling of the peaks of the PDFs for all quantities under investigation: 
o corresponds to €, 0 AU index, b. AL index and 0 the AE index. The plots have 
been offset vertically for clarity. Error bars as in figure 6.1. 

Levy motion (Chechkin and Gonchar, 2000). 

We see that, for the € as well as the AL and AU indices, there is a range 

of 7 up to '" 4.5 hours for which P(0,7) plotted versus 7 is well described by a 

power law 7-0 with indices a = 0.42 ± 0.03 for the € and a = 0.45 ± 0.02 and 

a = 0.47 ± 0.03 for the AL and AU indices, respectively. Thus the break in scaling 

at '" 4.5 hours in the AL and AU indices may have its origin in the solar wind, 

although the physical reason for the break at this timescale in epsilon is unclear. 

The break in the AE index, however, appears to occur at a smaller temporal scale 

of '" 2 hours, consistent with the scaling break timescale found in the same index 

by other analysis methods (Consolini and De Michelis, 1998; Takalo et al., 1993). 

This was interpreted by Takalo et al. (1993) as due to the characteristic substorm 

duration. Takalo et al. (1998) also reported a scaling break at the same 2 hour 

timescale for AL, in contrast to the 4 to 5 hour timescale found here. Indeed, one 

might have expected a substorm timescale to cause the same scaling break in both 
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the AE and AL indices, because their substorm signatures are so similar in profile 

(e.g., figure 2 of Caan et al. (1978)). The resolution may lie in the difference between 

analysis of differenced and undifferenced data (Price and Newman, 2001). 

Quantity a from P(O, T) a from O'(T) Approx. 
Tmax 

€ -0.42 ± 0.03 0.33 ± 0.04 4.5 hrs 
AE-index -0.44 ± 0.03 0.43 ± 0.03 2.1 hrs 
AU-index -0.47 ± 0.03 0.47 ± 0.02 4.5 hrs 
AL-index -0.45 ± 0.02 0.45 ± 0.02 4.5 hrs 

Table 6.3: Scaling indices derived from P(O, T) and O'(T) power laws. 

Figures 6.8(a,b,c,d) show the result of the one parameter rescaling applied 

to the unsealed PDF of the 8€ and the fluctuations of indices, respectively, for the 

temporal scales up to '" 4.5 hours. We see that the rescaling procedure (2.27) using 

the value of the exponent a of the peaks P(O, T) shown in Figure 6.7, gives good 

collapse of each curve onto a single common functional form for the entire range of 

the data. These rescaled PDFs are leptokurtic rather than a Gaussian and are thus 

strongly suggestive of an underlying turbulent process. 

The successful rescaling of the PDFs now allows us to perform a direct com­

parison of the PDFs for all four quantities. Figure 6.9 shows these normalized PDFs 

Ps (8X, T) for 8X = 8€, 8AE and T ~ 1 hour overlaid on a single plot. The 8X vari­

able has been normalized to the rescaled standard deviation O's(T :::::: Ihr) of P, in 

each case to facilitate this comparison. We then find that AE and € fluctuations have 

indistinguishable P"~ The PDFs of 8AU and 8AL are asymmetric such that -8AL 

fits 8AU PDF closely (see insert in the figure 6.9); when overlaid on the PDFs of 

the d€ and 8AE these are also indistinguishable within errors. This provides strong 

evidence that the dominant contributions to the AE indices come from the eastward 

and westward electrojets of the approximately symmetric DP2 current system that 

is driven directly by the solar wind (Freeman et al., 2000a). The mono-scaling of the 

investigated PDFs, together with the finite value of the samples' variance, indicates 

that a Fokker-Planck approach can be used to study the dynamics of the unsealed 
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Figure 6.8: One parameter rescaling of the fluctuation PDF for (a)€ parameter, 
(b)AE index, (c)AL index and (d) AU index. The curves shown correspond to r 
between 46 seconds and '" 4.5 hours. 

PDFs within their temporal scaling range. 

6.5 Modelling the data 

The rescaling technique applied in the previous sections indicates that, for certain 

temporal scales, PDFs of certain solar wind bulk plasma parameters can be col­

lapsed onto a single master curve. The challenge now lays in developing physical 

models that can describe the functional form of this curve. Here, we consider two 

approaches. The first one is a statistical approach where we assume that the fluctu­

ations can be described by a stochastic Langevin equation. The second method is 
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Figure 6.9: Direct comparison of the fluctuations PDFs for E (¢) and AE index (0). 
Insert shows overlaid PDFs of AU(O) and -AL(.6.) fluctuations. 

to assume the fluctuations are the result of the nonlinear energy cascade and derive 

the corresponding PDF form for the rescaled PDFs (Castaing distribution). 

6.5.1 Diffusion model 

The Fokker-Planck equation (FPE) provides an important link between statistical 

studies and the dynamical approach expressed by the Langevin equation (Sornette, 

2000). In the most general form, FPE can be written as: 

(6.1) 

where P == P(8X,T) is a PDF for the differenced quantity 8x that varies with time T, 

A(8x) is the friction coefficient and B(8x) is related to a diffusion coefficient which 

we assume to vary with 8x. For certain choices of A(8x) and B(8x), a class of self­

similar solutions of (6.1) satisfies the rescaling relation given by (2.27). This scaling 

is a direct consequence of the fact that the FPE is invariant under the transformation 

8x -t 8XT-o and P -t PTo. 
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It can be shown (see Appendix A) that equations (2.27) and (6.1) combined 

with power law scaling of the transport coefficients A(b'x) and B(b'x) lead to the 

following equation for the PDF: 

8P __ 8 [ l-l/n ( ~)] 
8T - 8(b'x) (b'x) aoP + boox 8(ox) . (6.2) 

In (6.2) ao and bo are constants, 0 is the scaling index derived from the data and 

P(ox) and Ox are unsealed PDF and fluctuations respectively. Written in this form, 

equation (6.2) immediately allows us to identity the functional form of the diffusion 

coefficient, namely D{ox) ex (ox)2-l/n. In Appendix A, we show how (6.2) can be 

also expressed as: 

(6.3) 

The partial differential equation (6.3) can be solved analytically and one arrives at 

the general solution in the form: 

where ko is a constant and H{oxs) is the homogeneous solution: 

1 ( 0
2 

( l/n) H{oxs) = (oxs)ao/bo exp - bo oXs) . (6.5) 

We then attempt to fit the predicted solution (6.4) to the normalized rescaled PDFs. 

The results of such a fit for the fluctuations of the kinetic energy density PDF 

is shown in the figure 6.10 (solid line). This fit is obtained with the following 

parameters ao/bo = 2.0, bo = 10, C = 0.00152, ko = 0.0625 and 0 = 0.41 as 

derived from the rescaling procedure. We note that the figure is a semi-log plot 

and emphasizes the tails of the distribution. For a different value of the ratio ao/bo, 

the fit around the smallest fluctuations could be improved. Equation (6.4) can not, 

however, properly model the smallest fluctuations as it diverges for b'xs ~ O. 

Let us now assume that a Langevin equation in the form 

d~tx) = f3{ox) + 'Y{ox)~{t) (6.6) 
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can describe the dynamics of the fluctuations. In (6.6) the random variable ~(t) is 

assumed to be 8-correlated, i.e., 

(6.7) 

This condition is fulfilled in the data analysis by forming each time series 8x(t, 7") 

with non-overlapping time intervals 7" and was also verified by computing the au­

tocorrelation function of the differenced time series. Introducing a new variable, 

z = I;x 1/,y(8x')d(8x'), equation (6.6) can be written as: 

dz f3(z) 
dt = 'Y(z) + e(t). (6.8) 

One can immediately obtain a F-P equation that corresponds to the Langevin equa­

tion (6.8) (van Kampen, 1992). We can then compare this FPE with that given by 

(6.2) to express coefficients f3(8x) and 'Y(8x) in terms of ao and bo (see Appendix 

B). Defining Do =< e(t) > /2 we obtain: 

fbO 1 1 'Y(8x) = V jJo"(8x) - 20, (6.9) 

and 

f3(8x) = [bo{1- ;0:) - ao](8x)1-~. (6.10) 

Equation (6.6) together with definitions of its coefficients (6.9) and (6.10) constitutes 

a dynamical model for the fluctuations in the solar wind quantities. From (6.9) and 

(6.10), we see that the diffusion of the PDF of fluctuations in the solar wind is of 

comparable strength to the advection (ao/bo ::::::: 2). We stress that the advection and 

diffusion processes that we discuss here are of the probability in parameter space 

for fluctuations and do not refer to the integrated quantities. 

6.5.2 Castaing model 

We now, for comparison, consider a model motivated directly by a cascade in energy, 

that is, the Castaing model. This empirical model was developed for the spatial 

velocity fluctuations recorded from controlled experiments in wind tunnels ( Castaing 
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et al., 1990; van Alta and Park, 1972}. The underlying idea of this approach is that, 

for constant energy transfer rate 'between spatial scales, all quantities should exhibit 

a Gaussian distribution of fluctuations. The intermittency is then introduced to the 

PDF through the fluctuations of the variance a- of that Gaussian distribution. A 

log-normal distribution is assumed for the variance a-: 

1 (ln
2
(u/uo}) 

Q(a-) = V'ii>-. exp - 2,\2 d(ln(a-)), (6.11) 

where a-o is the most probable variance of the fluctuations and A is the variance of 

In(u}. Combining thet>e twohypothet>it>, Castaing propot>ed the following functional 

form for the observed PDF: 

P (o'.) _ _ 1 roo (_ (Jx)2) (_ln2(u/uo)) du 
,\ uX - 27r'\ io exp 2u2 exp 2,\2 u2' (6.12) 

The dashed line in the figure 6.10 shows the Castaing curve fitted with parameters 

,\ = 1.275 and uo = 0.225 to ,the J(pv2 ) PDF. 

We can now compare the rescaled PDFs with both FPE and Castaing pre­

dicted curves which are shown in figure 6.10. We can see from the figme that 
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both models provide an adequate fit to the 8(pv2)s PDF, and hence will also de­

scribe the PDF of other scaling bulk plasma parameters. Both curves however fall , , 
significantly below observed PDF values for IO(pv2)sl ::; 2, although the Castaing 

distribution fits the peak of the PDF very well (see insert in figure 6.10). This de­

parture from the experimental PDF, in the case of the Castaing distribution, may 

reflect the difference between hydrodynamics and MHD turbulence. 

6.6 Conclusions 

In this section, we have applied a generic PDF rescaling method to fluctuations of 

the solar wind bulk plasma parameters, e parameter that measures the energy flux 

entering the magnetosphere and geomagnetic indices AU, AL and AE. In the case 

of the solar wind, we find that, consistent with previous work, magnetic field and 

velocity magnitudes do not exhibit mono-scaling whereas PDFs of fluctuations in 

B2, p, pv2 and vB2 can be rescaled with just one parameter for temporal scales up 

to '" 26 hours (Hnat et al., 2002c). All investigated PDFs show intermittency on 

these temporal scales. Consequently, their PDFs are leptokurtic and show increased 

probability of large fluctuations compared to that of the normal distribution. Fluc­

tuations on large temporal scales, T > 26 hours, seem to be uncorrelated and their 

PDFs converge toward a Gaussian. The self-similarity of fluctuations associated 

with energy densities and Poynting flux is intriguing and suggests a simplifying pic­

ture of intermittency in the energy cascade. The fact that all quantities share the 

same PDF, to within errors, is strongly suggestive of a single underlying process. 

This is also supported by the similar values of the scaling exponents. 

Similar results were found in the investigation of the e parameter and the 

global magnetospheric indices. Firstly, the similar values of the scaling exponent and 

the leptokurtic nature of the single PDF that, to within errors, describes fluctuations 

on time scales up to T max in e and the indices provide an important quantitative 

constraint for models of the coupled solar wind-magnetosphere system. One possi­

bility is that, up to Tmax '" 4 hours, fluctuations in AU and AL are directly reflecting 

those seen in the turbulent solar wind. The data also suggest that AE index departs 
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from this scaling on shorter time scale of Tmax ,...., 2 hours. Importantly, identifying 

a close correspondence in the fluctuation PDF of €, AE, AU and AL may simply 

indicate that fluctuations in the indices are strongly coupled to dayside processes 

and are thus weak indicators of the fluctuations in nightside energy output. We 

stress, however, that practically an approximate collapse of PDFs is an indicator 

of a dominant mono-fractal trend in the time series, i.e., this method may not be 

sensitive enough to detect multi-fractality that could be present only during short 

time intervals. It is then possible that our method simply detects a dominant mono­

fractal component in the time series associated with the solar wind energy input into 

magnetosphere, while the magnetosperic processes, such as turbulent reconnect ion, 

may contribute only during short time intervals. 

We also presented a Fokker-Planck approach that allowed us to obtain a 

functional form of the rescaled PDFs and a Langevin equation for the dynamics 

of the observed fluctuations in the solar wind. The model shows that both ad­

vective and diffusive transport need to be invoked to describe the dynamics of the 

fluctuations. The presence of the advective term in our FPE means that the proba­

bility of finding fluctuations of a given size grows linearly in time. We are currently 

exploring different physical process (11 years solar cycle, for example) that could 

provide such mechanism in nature. The calculated diffusion coefficient is of the form 

D(xs) ex (~xs)2-1/0. We obtained a good fit of the model to our rescaled PDFs over 

at least 10 standard deviations. We also examined a Castaing model and found a 

set of fit parameters for which both Castaing distribution and our diffusion model 

have nearly identical form. Since both FPE model and Castaing distribution fit our 

rescaled PDFs in the similar fashion we conclude that their moments should exhibit 

same variation with time lag T. 

And last but not least, this work confirms that statistical intermittency of 

the PDF can be accompanied by the statistical self-similarity of the fluctuations. 

Previously it was found that such behavior is possible if the fluctuations are treated 

as random variables with a Levy distribution. Here, we find similar behavior for the 

scaling indices that are sub diffusive and well outside the Levy range. 
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Chapter 7 

Conclusions 

In this work, two alternative approaches to scaling phenomena in space and labora­

tory plasma have been explored. Confined plasma systems exhibit complex dynamics 

that can not be easily described by equations of motion. This complexity arises as a 

result of strong coupling between processes occurring on many spatial and temporal 

scales, all equally relevant to the behavior of the system. Statistical features of 

complex systems can emerge as a unifying and simplifying aspect of their behavior. 

Among them, scaling-a direct consequence of the lack of a characteristic spatial or 

temporal scale-is one of the fundamental characteristics of complex systems. 

7.1 Conclusions from the sandpile model study 

The first approach to scaling considered here was an avalanching sandpile model. 

This model, described in details in Chapter 2, has a single control parameter L f / N 

that allows us to study its dynamics in a critical state as well as away from it. 

Although the basic dynamical rules, prescribed in the numerical algorithm, are 

quite simple the emergent behavior of the system is complex. In the course of this 

study, we have used advanced visualization methods for qualitative studies of the 

model as well as quantitative time series analysis techniques (Hnat and Chapman, 

2000). 
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7.1.1 Qualitative results 

Advanced Virtual Reality visualization software, used for qualitative studies of the 

sandpile behavior, has been presented in Chapter 3. There, we have discussed al­

gorithms for data reduction and surface optimization applied in the software as 

well as results obtained from the visualization. We have analyzed two different sur­

face optimization methods-triangulated irregular network (TIN) algorithm (Chow, 

1997; Lindstrom and Turk, 1998) and a level of detail (LOD) algorithm introduced 

in Lindstrom et al. (1994). We concluded that the LOD method is much more 

efficient for multi-scale visualization when fast responses to user's interrupts are 

also required. We emphasize that problems encountered during the development 

of this VR software are generic problems in visualization of large multi-scale (frac­

tal) structures. Algorithms developed for our software can be used to optimize any 

three-dimensional structure with large number of detail. They are especially suit­

able for scientific data as one can control the level of information lost during the 

optimization process. 

When applied to 3D sandpile height profiles, this method allowed us to select 

a region of interest, in space and time, and explore the trends, otherwise hidden 

among the vast amounts of data. The following list presents qualitative results 

obtained from the visualization: 

1. In the case of L f = N and constant critical gradient, a self-similar character 

of the total energy time series corresponds to a self-similar pattern of the 

hight profile (see figure 2.5(a,b)). This also confirmed already known results 

published in Helander et al. (1999). 

2. In the case of L f = Nand 2% randomization of the critical gradient, long 

internal avalanches appear as seen in figure 2.6(a,b). 

3. In the case of L f < < N, two distinctive regions of behavior can be identified. A 

growth phase, with characteristic step-like features, is followed by a relaxation 

phase where systemwide avalanches lead to many clustered energy dissipation 

events. During this relaxation phase, the edge of the sandpile is retracted back 
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whereas during the growth phase the edge is always positioned at the last cell 

of the grid. 

4. In the case of L f < < N, the continuous fueling at the cell n = 1 affects region 

within distance '" L f cells. This region always exhibits features characteristic 

of Lf = N case. 

This observations were used extensively during the development of a tokamak-like 

sandpile model discussed in Chapter 5. 

7.1.2 Quantitative results 

In Chapter 4, we investigated scaling of the sandpile model for the critical and near 

critical regime. Three different techniques have been used to characterize the scaling 

and to identify length scales where the scale break occurs in various cases. First, 

we applied a finite size scaling method to investigate the scaling of avalanche length 

and dissipated energy probability distributions for the critical system. We found 

that the avalanche length distribution exhibits a finite size scaling for the system 

with Lf = N. The scaling exponent obtained from this scaling is Q = -1. The 

dissipated energy PDIF, however, does not exhibit a finite size scaling and we then 

used a multi-scaling ansatz to collapse PDIFs from systems of different sizes N. 

This procedure suggests two dominant scaling regimes with tll = -0.65 ± 0.04 for 

the small scale events and tl2 = -0.93 ± 0.05 for the large dissipated energies. The 

scaling index Q2 is consistent with that reported previously in Tam et al. (1999) 

where the RG method was used. We also found that a multi-fractal approach needs 

to be applied to obtain a satisfactory collapse of all PDIFs for the near critical 

system. In this case, when L f = N /2, we used multi-fractal ansatz (2.38) and 

found the scaling index for the avalanche length is still -1, in the region where the 

clear power law can be identified. Scaling of the dissipated energy PDIFs resembles 

closely that found in the case of L f = N with indices yielding the same values, 

within error bars. Interestingly, the statistical features of the dissipated energy data 

are very similar for both cases with L f = Nand L f = N /2. These results also 

117 



highlight the difficulties in quantifying the proximity of the physical system to its 

fixed point. Values of scaling indices obtained here suggest that this sandpile model 

does not belong to any known universality class. 

Geometrical features of the time series are sometimes used to quantify scaling 

characteristics of a physical process. In Chapter 4, we have obtain, analytically, the 

fractal dimension of the total energy time series for the system with L f = Nand 

constant critical gradient. Our method is based on the scaling of the length of 

a given curve with the size of the ruler. This result shows that the curve itself 

is self-similar and has a trivial fractal dimension of 1. The result is obtained in 

the limit of the system size N ---t 00. For the finite size physical system, where 

size N is fixed, this condition can be approximated only when the resolution of 

experimental measurements is infinitely high. Such observations would allow us to 

sample all relevant scales of the curve. We then discussed the impact of the finite 

resolution measurements on the determination of the fractal dimension of the time 

series curve. We also performed numerical studies of the curve length scaling for 

the system with different values of L f and with randomized critical gradient. We 

found that the fractal dimensions of all the investigated curves were close to 1. 

We note, mathematically, intriguing form of the mutual information curve for the 

system with constant critical gradient and Lf = N (see figure 4.1O(a)). This curve 

closely resembles a Weierstrass function given by: 

00 

W(x) = L bn cos(an7rx) , (7.1) 
n=O 

where a is an odd number, bE (0,1) and ab > 1 + 37r /2. This function, just like the 

total energy trace, is continuous but not differentiable at any point. 

Finally, we performed a phase space reconstruction of the sandpile dynamics 

and quantified the complexity of the phase space structures. A correlation sum was 

obtained for every structure and a correlation fractal dimension was then estimated. 

For the system with constant critical gradient we were able to differentiate between 

critical and near critical system. Estimates of their fractal dimensions were different 

with high confidence level of 95%. We have also found a nontrivial value of d2 = 
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1.33 ± 0.02 for the system with L f = 48 < < N and constant critical gradient. 

Interestingly, when the 2% randomization of the critical gradient was considered, 

estimates of the fractal dimension for the critical and near critical system gave 

identical values of d2 = 1.14 ± 0.02, to within errors. This result is supported by 

the character of the phase space structures that are very similar for these two cases 

(see figure 4.9(d,e)). We found that the scaling of the correlation sum is destroyed 

by added randomization for small value of L f = 48. In that case, we are only able 

to identify edges of the distinctive dynamical regions that may, perhaps, correspond 

to a growth and a relaxation phases of the sandpile cycle. 

7.1.3 Application of the sandpile model 

In Chapter 5, we have shown how close phenomenological parallels can be identified 

between our sandpile and the tokamak plasma behavior. Extensive discussion of 

our results was given in the Conclusions of Chapter 5. We provide a list of major 

results obtained from that study. 

1. Distinctive features, such as steep edge gradients, edge localized modes, low 

and high confinement regimes and internal transport barriers, seen in tokamak 

plasmas can also arise in a simpler idealized confinement system and they may 

be linked to the observed avalanching transport phenomena. 

2. Correlations between stored energy, confinement times, sandpile profile, sand­

pile edge structure and the amplitude, frequency and dynamical character of 

mass loss events are very similar to these found in tokamak plasma. 

3. If a single control parameter analogous to L f / N exists for tokamaks, it can, in 

principle, be found from experimental data by examining scaling with respect 

to system size. 

4. The low confinement mode is equivalent to a critical state of the system with no 

characteristic spatial scale. The H-mode or the high confinement mode arises 

when the rapid systemwide transport has been suppressed. This corresponds 

to small values of L f parameter in the sandpile. In such case, a number of 
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transport barriers emerge within the system allowing for an increased amount 

of energy to be stored. 

5. Transition between L-mode and H-mode can be achieved by smooth evolution 

of the control parameter. 

The results of this investigation should be considered in a wider context of a search 

for a minimal set of physical principles that underline complex tokamak plasma 

behavior. In the absence of the fully developed theory of turbulence in plasma and 

considering the lack of long, stationary experimental observations identifying simple 

model, whose phenomenology closely resembles that of tokamak plasma is very 

important (Krommes, 2002). We also stress that a number of recent observations 

confirmed the existence of rapid radial avalanching transport in tokamak (Rhodes 

et al., 1999; Politzer, 2000). The results further suggest a test of the depth of the 

physical analogy that we have found, as follows. If the analogy is deep, there will 

exist one or a few dimensionless control parameters, linked to the properties of the 

turbulent transport, that entirely determine the key features of the confinement 

phenomenology. For example, these parameters would control the extent to which 

global confinement is entrained to edge pedestal dynamics. The search for such 

parameters, for example by further application of the techniques of nonlinear time 

series analysis to edge plasma measurements as initiated in Pedrosa et al. (1999), is 

potentially highly rewarding. 

7.2 Conclusions from the finite size scaling and a Fokker­

Planck approach to space plasmas 

In Chapter 6, we have applied a finite size scaling, described in Section 2.2, to two 

space plasma systems-the solar wind and the coupled solar wind-magnetosphere 

system (Hnat et al., 2002a,b). The method used in this investigation is generic and 

model independent. It allows us to identify quantities that exhibit statistical mono­

scaling. Interestingly, such mono-scaling can coexist with statistical intermittency 

defined as the existence of the very large events as compared to the average. 
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Scaling indices derived from this method can be treated as a measure of 

this intermittency that is also exhibited as a departure of the PDF from a Normal 

distribution. And last but not least, the method allows us to directly compare the 

PDFs for different investigated quantities and develop a diffusion based model of 

the PDF dynamics. 

7.2.1 Solar wind fluctuations 

In the case of the solar wind, we have identified four quantities whose fluctuations 

exhibit mono-scaling for temporal scales up to I"V 26 hours. Their PDFs are lep­

tokurtic and show increased probability of large fluctuations, compared to that of 

the normal distribution. Fluctuations on large temporal scales, T > 26 hours, seem 

to be uncorrelated and their PDFs converge toward a Gaussian. The self-similarity 

of fluctuations associated with energy densities and Poynting flux is intriguing and 

suggests a simplifying picture of intermittency in the energy cascade. It indicates 

that, on average, the energy transfer rate is a constant from one scale to the next. 

This, in turn, implies that the energy cascade, in terms of these quantities, is self­

similar. This self-similarity should be reflected in the plasma fluid equations, when 

written in terms of these mono-scaling quantities. 

In recent years, two alternative paradigms have been proposed for the origin 

of the solar win fluctuations (Dobrowolny et al., 1980). The first approach assumes 

that the solar wind is a passive medium and observed fluctuations are low-frequency 

Alfven waves that originated at the solar corona. This is supported by observations 

that over 90% of these fluctuations are consistent with pure Alfven waves (Horbury 

and Schmidt, 1999). The second paradigm treats the solar wind as an active highly 

nonlinear system with fluctuations arising in situ in manner similar to that of hy­

drodynamic turbulence (Goldstein and Roberts, 1999). Single point measurements 

can not uniquely determine which mechanism is dominant. Indeed, to verify that 

the observations are consistent with the turbulence theory, for example, ideally one 

needs to study a structure function constructed from a range of spatial locations in 

the plasma. However, single point data taken over long intervals in the solar wind 
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can yield strongly suggestive results as we have shown in Chapter 6. 

The results of the PDF rescaling analysis are consistent with underlying 

turbulent process generating the fluctuations. We have illustrated this by fitting a 

Castaing distribution (Castaing et at., 1990) to the rescaled PDFs. We have also 

shown, however, that a simpler diffusive model can be developed to approximate 

observed PDFs with the same accuracy. Such a diffusive model, operating in the 

probability space of the observed fluctuations, may have certain advantages over 

turbulent models. For example, one can derive a corresponding Langevin equation 

for such model that allows one to generate a time series of the fluctuations with 

statistical properties identical to that observed in the solar wind. 

7.2.2 Coupled solar wind-magnetosphere system 

Results of this investigation strongly suggest that geomagnetic indices are measures 

of the dayside processes associated with the solar wind coupling to the Earth mag­

netic field. This is strongly supported by the identical values of the scaling indices 

as well as the similar shape of the rescaled PDF curves. The results also shed new 

light on the reconnect ion processes occurring on the dayside. Assuming that all 

energy input given by f from (1.15) comes from the reconnection type processes our 

results suggest that these processes are relevant on all temporal scales up to ,...., 4 

hours. The geomagnetic indices are often considered a measure of activities in the 

Earth magnetosphere. Our research, however, does not confirm that. A possible 

explanation of this results could lie in bursty and rapid character of these activities. 

As we pointed out in Chapter 6, our method may not be sensitive enough to detect 

short multi-fractal components in the time series. 

7.2.3 Results from the Fokker-Planck model 

A dynamical model of the solar wind fluctuations has been presented in Chapter 

6. This model allowed us to obtained transport coefficients for the fluctuations. 

In particular we have identified a diffusion coefficient to be of the form D(xs ) <X 

(<5xs )2-1/0. The model also gives an estimated functional form of the rescaled PDF 
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curve. We used this function to fit the PDFs over at least 10 standard deviations. 

The fit is satisfactory everywhere, except for the peaks of the distribution where our 

solution diverges. We have compared our model with that of Castaing et al. (1990) 

and we have concluded that both can approximate our PDFs quite well. Since both 

F-P model and Castaing distribution fit our rescaled PDFs in the similar fashion 

we conclude that their moments should exhibit same variation with time lag r. We 

have also demonstrated that a Langevin equation can be derived from our model 

(Hnat et al., 2002c). 

7.3 Future work 

• Observations from tokamaks are difficult to analyze as they often incorporate 

measurements from different modes of operation. Average confinement time 

in JET is about 1 second and during the measurement a transition between 

L-mode and H-mode often occurs. Providing that a satisfactory (long and 

stationary) data set can be obtained, future work soould concentrate on iden­

tifying scaling properties of the tokamak plasma and the dimensionality of 

the dynamics in different modes. Prediction from our sandpile study is that 

L-mode dynamics should be high dimensional (SOC like) whereas H-mode 

should exhibit low dimensionality. 

• Mono-scaling of the solar wind fluctuation for quantities investigated in Chap­

ter 6 extends to maximum temporal scale of I'V 26 hours. It is an open question 

why we do not detect a scale break for the temporal scales where coherent 

structures become dominant. Studies of fluctuations from the solar region 

(corona) could shed some light on this interesting iss\ie. 

• Further research of space plasmas could also include analysis of the spatial 

data. This could be facilitated by obtaining measurements from few spacecraft 

(WIND, ACE, CLUSTER II) and should provide a point of contact with 

analytical turbulence studies where results are given in terms of the spatial 

quantities (structure functions). 
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• Analytical studies could focus on determining the connection between mono­

scaling found for energy densities of solar wind fluctuations and MHD equa­

tions for the plasma. A Fokker-Planck equation, obtained for the rescaled 

PDF, can be solved numerically with given initial and boundary conditions. 
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Appendix A 

Fokker-Planck DIodel of solar 

wind fluctuations 

Let P(t5x, r) be a homogeneous function that satisfies scaling (2.27). Our aim is 

to find functional form of the coefficients A(t5x) and B(t5x) for which P(t5x, r) is a 

solution of a F-P equation (6.1). Using (2.27) we can now rewrite (6.1) to read: 

a ( dPs ) Ps dA(t5x) A(t5x) dPs 
- to+! Ps + 8xs d(8xs ) = to d(8x) + t2Ck d(t5xs ) 

1 dB(8x) dPs B{t5x) dPs 
+ t 20 d(8x) d{8xs) + ~ d{8xs)· (A.I) 

If all terms in the rhs of (A.I) are to contribute and for P(t5xs ) to remain a function 

of t5xs only we must have: 

~~~~) = a(8xs ) and ~~~! = b(t5xs ). (A.2) 

Both A(8x) and B{t5x) must then be of form: 

A{8x) = ao{8x)11 and B{t5x) = bo{t5x)", (A.3) 

where ao and bo are constants. Changing variables to the rescaled t5xs and substi­

tuting (A.3) into (A.2) we express exponents 1] and v in terms of the rescaling index 

a derived from the data. We then get: 

1 
1] = 1- - and 

a 

125 

1 
v = 2 -~, (A.4) 



which allows to write the final power law form of A(6x) and B(6x): 

A(6x) = ao(6x)1-~ and B(6x) = bo(6x)2-~. (A.5) 

Substituting these expressions into F-P equation (6.1) we obtain (6.2) from Section 

4. Using these results the term d~~:)) on the rhs of (A.l), for example, becomes: 

dA(6x) = (1 -~) ao(6x)-~. 
d(6x) a 

(A.6) 

Performing similar algebra on all terms in (A.I) we arrive to equation: 

(A.7) 

Integrated once trivially we obtain equation (6.3) 

(A.8) 

where C is the constant of integration. 
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Appendix B 

Langevin equation for solar 

wind fluctuations 

Consider the following Langevin type of equation: 

d(8x) dt = (3(8x) + 'Y(8x)~(t), (B.1) 

where the random variable ~(t) is assumed to be 8-correlated, i.e., 

(B.2) 

Introducing a new variable z = f;x 1/'"'/(8x')d(8x'), equation (B.1) can be written 

as: 

dz (3(z) 
dt = r(z) + ~(t), where r(z) = 'Y(z)' (B.3) 

One can immediately obtain a F-P equation that corresponds to the Langevin equa­

tion (B.3) and reads: 

8P(z, T) ~ (r( )P( )) = D 8
2 
P(z, T) 

8T + 8z z Z, T 0 82 Z ' (BA) 

where Do = a2 /2. The probability is an invariant of the variable change so that 

P(8x)d(8x) = P(z)dz and we can then rewrite (BA) for P(8x, T): 

8P 8 [( d'Y(8x) ) 2 8P ] 
8T = 8(8x) Do,",/(8x) d(8x) - (3(8x) P + Do'"'/ 8(8x) . (B.5) 
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Comparing (B.5) with the F-P equation (6.2) we can identify: 

(B.6) 

and then we must demand that: 

Do d"y2(8x) (3(') _ (' )1-.1 
- - uX - ao uX '" . 
2 d(8x)2 (B.7) 

In summary we have shown that the F-P equation given by (6.2) is equivalent to 

the stochastic Langevin equation (6.6) where coefficients {3 and 'Y are given by: 

r;.0 1 1 'Y = -(8x) -2"" 
Do 

(B.8) 

and 

(B.g) 
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