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Abstract We obtain equidistribution results for the holonomies of periodic orbits of Anosov
flows lying in a prescribed homology class. We apply this to frame flows.

1 Introduction

It is well-known that the periodic orbits of hyperbolic flows display considerable asymptotic
regularity. For example, there is a uniformasymptotic formula for their counting functions (the
so-called Prime Orbit Theorem) and they are equidistributed with respect to the measure of
maximal entropy for the flow.Under appropriate conditions, they also exhibit equidistribution
in their lifting properties and this is the theme of this paper. More precisely, we will consider
the equidistribution of holonomies restricted to periodic orbits in a given homology class.

Without the restriction in homology, this problem was studied by Parry and Pollicott in
[11] andChapter 8 of themonograph [12] for hyperbolic flows. From a different point of view,
Sarnak and Wakayama [16] studied the same problem for finite volume quotients of rank 1
locally symmetric spaces and obtained error terms. Therewas renewed interest in the problem
due to the work of Margulis et al. in [9], where there results were extended to geometrically
finite quotients. The more delicate problem of equidistribution in a homology was initially
studied by Kimoto and Wakayama [8] for finite volume quotients of real hyperbolic space
(with an error term). More recently, a paper by Oh and Pan [10] considers the same for
convex co-compact quotients of rank 1 locally symmetric spaces as part of an extensive
study of mixing properties and horocyclic actions on abelian covers. In this paper, we shall
complement this work by taking a more dynamical viewpoint, and consider Anosov flows.
Results for geodesic flows and frames flows over compact negatively curved manifolds will
then appear as a special case.
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R. Sharp

We will now be more precise. Let G be a compact connected Lie group and let N be
a principal G-bundle over a compact manifold M . Let ψt : N → N be a C1 flow that
commutes with the G action and let φt : M → M be the quotient flow. Suppose that
φt : M → M is a transitive Anosov flow. (A natural example is where φt is the geodesic flow
over a compact d-dimensional manifold with negative sectional curvatures andψt : N → N
is the corresponding frame flow. In this case, G = SO(d − 1). We will discuss this further
in Sect. 7 below.)

Let γ be a periodic orbit for φt . We shall write l(γ ) for its period. Associated to γ we have
both its homology class [γ ] ∈ H1(M, Z) and its holonomy class h(γ ), which is a conjugacy
class in G. The latter is defined as follows. Write π : N → M for the bundle map. Let x
be a point on γ and let x̃ be a point in π−1(x). Then there is a well-defined g(̃x) ∈ G such
that ψl(γ )(̃x) = x̃ g(̃x). If ỹ is another lift of x then g(ỹ) is conjugate to g(̃x) and h(γ ) is
conjugacy class this defines.

Let P(φ) denote the set of prime periodic orbits of φt : M → M and let PT (φ) = {γ ∈
P(φ) : l(γ ) ≤ T }. If φ is topologically weak-mixing then it is well-known that

#PT (φ) ∼ ehT

hT
, as T → ∞,

where ∼ means that the ratio of the two sides converges to one.
We will say that φt : M → M is homologically full if the map from P(φ) to H1(M, Z)

defined by γ �→ [γ ] is a surjection. For α ∈ H1(M, Z), write PT (φ, α) = {γ ∈
PT (φ) : [γ ] = α}. If φ is homologically full then, for each α, #PT (φ, α) grows expo-
nentially fast (with polynomial correction depending on the first Betti number of M) but the
growth rate

h∗ := lim
T→∞

1

T
log #PT (φ, α) > 0

(which is independent of α) may be strictly smaller than h. For a more precise statement, see
Proposition 3.1 below.

We are interested in the distribution of the holonomies h(γ ) for γ in a fixed homology
class. Under natural hypotheses, we shall show that they are equidistributed with respect to
the (normalised) Haar measure on G. We say that F : G → C is a class function if it is
constant on each conjugacy class.

Definition 1.1 Letψt : N → N andφt : M → M be as above.We say thatφt has homology-
equidistributed holonomy if, for each α ∈ H1(M, Z) and continuous class function F : G →
C,

1

#PT (φ, α)

∑

γ∈PT (φ,α)

F(h(γ )) →
∫

F dHaar, as T → ∞.

Our main results are the following. The first deals with the case where G is semisimple
and, in addition to the assumptions on φt , requires only that ψt is transitive.

Theorem 1.2 Let G be a compact connected semisimple Lie group. Let N be a principal
G-bundle over M and let ψt : N → N be a C1 flow that commutes with the G-action. Let
φt : M → M be the quotient flow. Assume that

(i) ψt is transitive;
(ii) φt is a homologically full transitive Anosov flow.
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Equidistribution of holonomy in homology classes…

Then φt has homology-equidistributed holonomy.

The next result holds when G is no longer assumed to be semisimple but requires an
additional a priori condition on the distribution of holonomy of null-homologous periodic
orbits.

Theorem 1.3 Let G be a compact connected Lie group. Let N be a principal G-bundle over
M and let ψt : N → N be a C1 flow that commutes with the G-action. Let φt : M → M be
the quotient flow. Assume that

(i) ψt is transitive;
(ii) φt is a homologically full transitive Anosov flow;
(iii) we have

eial(γ )χ(h(γ )) = 1 ∀γ ∈ P(φ, 0),

for a ∈ R and χ : G → T
1 a one-dimensional representation of G, only when a = 0

and χ is trivial.

Then φt has homology-equidistributed holonomy.

We say that φt : M → M has time-reversal symmetry if there is a fixed point free
involution ι : M → M such that φt ◦ ι = ι ◦ φ−t . This holds for geodesics flows, where
M = SV is the unit-tangent bundle over a manifold V and ι is the map that reverses unit
tangent vectors: ι(x, v) = (x,−v). In this case, the conclusion of Theorem 1.3 holds subject
to a simpler hypothesis on the holonomies.

Theorem 1.4 If φt : M → M has time-reversal symmetry then Theorem 1.3 still holds if we
replace (iii) by the condition that we have

χ(h(γ )) = 1 ∀γ ∈ P(φ, 0),

for χ : G → T
1 a one-dimensional representation of G, only when χ is trivial.

Remark 1.5 The above theorems still hold if, instead of homology, we consider any regular
abelian cover of M and ask about the holonomies of periodic orbits in a given Frobenius
class for the cover. In this case, b is replaced by the rank of the cover.

We now briefly outline the contents of the paper. In Sect. 2, we recall some material about
Lie groups and representations that will be needed later. In Sect. 3, we discuss Anosov flows
in greater detail and introduce the L-functions that we shall use to prove our results. In Sect. 4,
we introduce symbolic dynamical systems as a tool for analysing the L-functions. In Sect. 5,
we proof the equidistribution results srtated about and in Sect. 6 we give a brief discussion
of the special case of frame flows.

2 Lie groups and representations

We will need a small amount of theory relating to compact Lie groups and their represen-
tations. Let G be a compact connected Lie group. We shall be interested in its space of
irreducible unitary representations. More precisely, let U(d) denote the group of d × d uni-
tary matrices. Then a d-dimensional unitary representation is a continuous homomorphism
R : G → U(d). The character χ of R is its trace χ(g) = Trace(R(g)) and we write R = Rχ .
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If Rχ is one-dimensional, in which case U(1) = T
1, then it is equal to its character. (Here

and throughout, we use the notation T
k = R

k/Z
k .) A d-dimensional representation Rχ is

irreducible ifC
d has no Rχ (G)-invariant closed subspaces, apart from {0} andC

d itself. Two
such representations R and R′ are isomorphic if R′(g) = U−1R(g)U , for all g ∈ G, for
some unitary matrix U , in which case they have the same character.

We say that a continuous function F : G → C is a class function if it is constant on
conjugacy classes. Let C(G) denote the set of continuous class functions onG. The following
is part of the Peter–Weyl theorem.

Proposition 2.1 The set of finite linear combinations of characters of irreducible unitary
representations of G is uniformly dense in C(G).

The structure of compact connected Lie groups may be described by the following result.
Recall that a Lie group is simple if it has no non-trivial proper closed normal subgroups. Also
that the centre of a group G is the set {h ∈ G : hg = gh ∀g ∈ G} and that this is a normal
subgroup. Any connected component of the centre in a torus.

Proposition 2.2 [15, Theorem 6.4.2] Let G be a compact connected Lie group. Then G is
isomorphic to

(Tm × G1 × · · · × Gm)/Z ,

where T
m is the connected component of the centre of G, the factors G1, . . . ,Gn are simple

Lie groups, and Z is a finite subgroupof the centre of the product. Furthermore, this expression
is unique up to the order of the simple factors.

A Lie group is called semisimple if its Lie algebra is semisimple (i.e. if the Lie algebra
is a direct sum of simple Lie algebras). In our situations, a compact connected Lie group
G is semisimple if and only if m = 0 in the decomposition in Proposition 2.2, and this is
equivalent to G having finite centre.

Lemma 2.3 Let G be a compact connected Lie group. Then G is semisimple if and only if
G has no non-trivial one-dimensional unitary representations.

Proof Consider the decomposition of G in Propostion 2.2. If m = 0 this reduces to (G1 ×
· · · × Gm)/Z . It is an easy fact that since each Gi is a simple Lie group, we have Gi =
[Gi ,Gi ], which is to say Gi has no non-trivial characters. Clearly, this extend to the product
G1 × · · · × Gn . However, if χ : (G1 × · · · × Gn)/Z → T

1 is a non-trivial character then it
lifts to a non-trivial character on G1 × · · · × Gn . On the other hand, if m ≥ 1 then G has a
non-trivial character. 
�

3 Anosov flows and L-functions

We begin by discussing some generalities about flows. A continuous flow ρt : X → X on a
compact metric space X is called transitive if it has a dense orbit and is called topologically
weak-mixing if the only continuous solution f : X → C to f (ρt x) = eiat f (x) is given by
a = 0 and f constant.

We now consider a situationwithmore structure. LetG be a compact connected Lie group.
and let N be a principal G-bundle over a smooth compact Riemannian manifold M . (This
means that N is a fibre bundle over M equipped with a smooth action N × G → N which
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Equidistribution of holonomy in homology classes…

preserves and acts freely and transitively on each fibre. Furthermore, we can identify M with
the quotient space N/G.) Suppose that ψt : N → N is a C1 flow on N which commutes
with the G-action. Then ψt induces a well-defined flow φt : M → M . We assume that ψt is
transitive; this implies that φt is transitive. In addition, we will assume that φt is an Anosov
flow.

A C1 flow φt : M → M on a smooth compact Riemannian manifold M is called Anosov
if there is a continuous Dφ-invariant splitting T M = E0 ⊕ Es ⊕ Eu , where E0 is the line
bundle generated by the flow and where there exist constants C > 0 and λ > 0 such that

(i) ‖Dφt (v)‖ ≤ Ce−λt‖v‖, for all v ∈ Es and t ≥ 0; and
(ii) ‖Dφ−t (v)‖ ≤ Ce−λt‖v‖, for all v ∈ Eu and t ≥ 0.

We will use γ to denote a typical periodic φ-orbit and write l(γ ) for its period. As in
the introduction, let P(φ) denote the set of prime periodic φ-orbits, where a periodic orbit
γ = {φt (x) : 0 ≤ t ≤ l(γ )} is prime if φt (x) �= x for all 0 < t < l(γ ).

We will be interested in the first homology groups, H1(M, Z) and H1(M, R) =
H1(M, Z) ⊗Z R. H1(M, Z) is isomorphic to Z

b × A, where b ≥ 0 is the first Betti num-
ber of M and where A is a finite abelian group. Each γ ∈ P(φ) defines a homology class
[γ ] ∈ H1(M, Z) and we write [γ ]TF ∈ Z

b for its torsion-free part. We say that φt is homo-
logically full if the map [·] : P(φ) → H1(M, Z) is a surjection.

An Anosov flow fails to be topologically weak-mixing if and only if it is the constant
suspension of a diffeomorphism [13]. As a consequence, if φt is homologically full, then it is
automatically topologically weak-mixing (since, for example, a suspension flow has no null
homologous periodic orbits) [17].

As above, let PT (φ) = {γ ∈ P(φ) : l(γ ) ≤ T } and, for α ∈ H1(M, Z), let PT (φ, α) =
{γ ∈ PT (φ) : [γ ] = α}. The following was proved in [17]. (More precise results with error
terms appear in [14].)

Proposition 3.1 Let φt : M → M be a homologically full transitive Anosov flow. Then there
exists 0 < h∗ ≤ h , ξ ∈ H1(M, R) and a constant C > 0 such that, for each α ∈ H1(M, Z),

#PT (φ, α) ∼ Ce−〈ξ,αTF〉 eh
∗T

T 1+b/2 , as T → ∞,

where αTF is the torsion-free part of α.

The quantities h∗ and ξ appearing in the asymptotic may be characterised in the following
ways. For F ∈ C(M, R) we define its pressure P(F) by

P(F) = sup

(

hφ(m) +
∫

F dm

)

,

where the supremum is taken over φ-invariant probability measures m with entropy hφ(m).
Letω be a closed 1-formonM , giving rise to a (deRham) cohomology class [ω] ∈ H1(M, R),
and let Z : M → T M be the vector field generating the flow. Define β : H1(M, R) → R

by β([ω]) = P(ω(Z)). Then β is strictly convex and has a finite minimum occurring at ξ ∈
H1(M, R). Ifm is aφ-invariantmeasure thenwe define its asymptotic cycle�m ∈ H1(M, R)

by the duality �m([ω]) = ∫

ω(Z) dm. Then we have h∗ = β(ξ) = sup{hφ(m) : �m = 0}.
See [17] for further details.

Proposition 3.1 was proved by considering L-functions indexed by the character group
of H1(M, Z), i.e. T

b × ̂A. In order to study the holonomy induced by ψt , we shall consider
augmented L-functions which take into account the representations of G. We will follow
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the approach of [11] and Chapter 8 of [12]. To simplify the exposition, we shall assume
that A is trivial, so our character group for homology will just be T

b and [γ ]TF = [γ ].
Given the results of [17], the presence of torsion creates no extra difficulties. Let Rχ be an
m-dimensional (m ≥ 1) irreducible unitary representation of G with character χ . We will
consider the L-function

L(s, t, χ) =
∏

γ∈P(φ)

(

det
(

I − Rχ (h(γ ))e−sl(γ )+2π i〈t,[γ ]〉+〈ξ,[γ ]〉))−1
,

where t ∈ T
b. We will analyse these functions in Sects. 5 and 6.

4 Shifts of finite type

In this section we introduce the symbolic dynamical systems, shifts of finite type, which may
be used to model Anosov flows. We begin with some definitions. For k ≥ 2, let A be a k × k
matrix with entries 0 and 1. We define the two-sided shift of finite type associated to A to be
the space

� = {x = (xi )
∞
i=−∞ ∈ {1, . . . , k}Z : A(xi , xi+1) = 1 ∀i ∈ Z},

equipped with the shift map σ : � → � defined by (σ x)i = xi+1. Similarly, we define the
one-sided shift of finite type to be the space

�+ = {x = (xi )
∞
i=0 ∈ {1, . . . , k}Z+

: A(xi , xi+1) = 1 ∀i ∈ Z
+},

equipped with the shift map σ : �+ → �+ defined by (σ x)i = xi+1. We note that there is
an obvious correspondence between the periodic orbits for σ : � → � and σ : �+ → �+.

Define an equivalence relation ∼n on � by x ∼n y if xi = yi for |i | ≤ n and, for
0 < θ < 1, define a metric dθ by dθ (x, y) = θn if x ∼n y but x �n+1 y. This makes � into
a compact metric space. For a metric space Y , let Fθ (�, Y ) denote the space of dθ -Lipschitz
functions f : � → Y . We will be particularly interested in the cases Y = R or C, or, more
generally,Cm ,m ≥ 1. These are Banach spaceswith respect to the norm ‖·‖θ := ‖·‖∞+|·|θ ,
where | f |θ is the best choice of Lipschitz constant for f . We make similar definitions on
�+, except that, when defining ∼n , the condition |i | ≤ n is replaced by 0 ≤ i ≤ n.

We say that two functions f, g ∈ Fθ (�, C) are cohomologous if there is a continuous
function u : � → C such that f = g + u ◦ σ − u. Write f n(x) = f (x) + f (σ x) + · · · +
f (σ n−1x). If f and g are cohomologous then f n(x) = gn(x) whenever σ nx = x . We also
say that two functions κ, λ ∈ Fθ (�,G) are cohomologous if there exists ζ ∈ C(�,G) such
that κ = (ζ ◦σ)−1λζ . Write κn(x) = κ(σ n−1x) · · · κ(σ x)κ(x). If κ and λ are cohomologous
then κn(x) and λn(x) are conjugate in G whenever σ nx = x . Again, the same holds with �

replaced by �+.
We define the pressure P( f ) of a function f ∈ C(�, R) or C(�+, R) by

P( f ) = sup

(

hσ (ν) +
∫

f dν

)

,

where the supremum is taken over σ -invariant probability measures on � or �+. It is also
characterised by the limit

P( f ) = lim
n→∞

1

n
log

∑

σ n x=x

e f n(x).
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For f ∈ Fθ (�
+, C), we define the transfer operator L f : Fθ (�

+, C) → Fθ (�
+, C) by

(L f w)(x) =
∑

σ y=x

e f (y)w(y).

If f is real-valued then the spectral radius of L f is equal to eP( f ) and, moreover, eP( f ) is a
simple eigenvalue and the rest of the spectrum is contained in a disc of strictly smaller radius.
More generally, if Im f is cohomologous to a constant a ∈ R, then eP(Re f )+ia is a simple
eigenvalue forL f and the rest of the spectrum is contained in a disc of strictly smaller radius,
in which case, we define eP( f ) = eP(Re f )+ia . We may then use eigenvalue perturbation
theory to extend f �→ eP( f ) as an analytic function on a larger domain D ⊂ Fθ (�

+, C).
The definition of transfer operatormay be extended to include twisting by unitarymatrices.

For a function U ∈ Fθ (�
+,U(m)), m ≥ 1, we define the twisted transfer operator L f,U :

Fθ (�
+, C

m) → Fθ (�
+, C

m) by

(L f,U )w(x) =
∑

σ y=x

e f (y)U (y)w(y).

We will discuss these operators further in the next section.

5 Symbolic dynamics for Anosov flows

The Anosov flow φt : M → M may be modelled by a suspension flow over � and this in
turn may be transferred to a suspension semiflow over σ : �+ → �+. More precisely, we
have the following [1]. Given a strictly positive function r ∈ Fθ (�, R), we define

�r = {(x, s) ∈ � × R : 0 ≤ s ≤ r(x)}/ ∼,

where (x, r(x)) ∼ (σ x, 0), and the suspension flow σ r
t : �r → �r by σ r

t (x, s + t) modulo
the identifications. We note that there is an obvious correspondence between the periodic
orbits of σ r

t and σ and that if a periodic σ r -orbit corresponds to σ nx = x then this orbit has
period rn(x).

Given φt , we can find a mixing shift of finite type σ : � → � and strictly positive
function r ∈ Fθ (�

+, R) (for some choice of 0 < θ < 1) so that there is a surjective Hölder
continuous semi-conjugacy π : �r → M between σ r

t and φt that is one-to-one on a residual
set. This induces a surjection from the set of prime σ -periodic orbits to P(φ). In addition to
r , we can choose a locally constant function f : � → Z

b (which we may arrange to only
depend on two co-ordinates, f (x) = f (x0, x1)) and a function κ ∈ Fθ (�

+,G) such that, if
{x, σ x, . . . , σ n−1x} (with σ nx = x) is mapped to γ then

(i) rn(x) = l(γ );
(ii) f n(x) = [γ ];
(iii) κn(x) is in the conjugacy class h(γ ).

We now pass to the one-sided shift σ : �+ → �+. The function f is clearly defined
as a (locally constant) function f : �+ → Z

b. Furthermore, we may choose a function
r ′ ∈ Fθ1/2(�, R) that is cohomologous to r andwhich only depends on the future coordinates,
i.e. r ′((xi )∞i=−∞) = r ′((xi )∞i=0) ([12], Proposition 1.2). Thus we may regard r ′ as an element
of Fθ1/2(�

+, R) and, when σ nx = x , we have (r ′)n(x) = rn(x) (where we are using the
obvious correspondence between periodic points of the one-sided and two-sided shifts). Also,
there exists κ ′ ∈ Fθ1/2(�,G) that is cohomologous to κ andwhich only depends on the future
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coordinates ([12], Appendix II). Although this cohomology does not give equality of κ ′
n(x)

and κn(x), for σ nx = x , if Rχ is a unitary representation of G with character χ then

χ(κ ′
n(x)) = Trace(Rχ (κ ′

n(x))) = Trace(Rχ (κn(x))) = χ(κn(x)),

whenever σ nx = x . From now on, we will suppress the primes and the square root, and
suppose that r ∈ Fθ (�

+, R) and κ ∈ Fθ (�
+,G).

We note that κ : �+ → G induces a skew-product system σ̃ : �+ × G → �+ × G
defined by σ̃ (x, g) = (σ x, κ(x)g). The next lemma follows immediately from the transitivity
of ψt : N → N .

Lemma 5.1 σ̃ : �+ × G → �+ × G is transitive.

There correspondence between periodic σ -orbits and periodic φ-orbits is not a bijection.
However, the discrepancy caused by the overcounting has small growth relative to the leading
asymptotics [1]. In fact, it follows from the analysis of [17] that, if we define a symbolic
L-function

Lσ (s, t, χ) = exp
∞
∑

n=1

1

n

∑

σ n x=x

χ(κn(x))e
−srn(x)+〈ξ+2π i t,ψn(x)〉,

then L(s, t, χ)/Lσ (s, t, χ) is non-zero and analytic for Re(s) > h∗ − ε. Thus, to get the
results we require, it will be sufficient to study the functions Lσ (s, t, χ).

Since
∣

∣

∣

∣

∣

∑

σ n x=x

χ(κn(x))e
−srn(x)+〈ξ+2π i t, f n(x)〉

∣

∣

∣

∣

∣

≤ m
∑

σ n x=x

e−Re(s)rn(x)+〈ξ, f n(x)〉,

wehave that Lσ (s, t, χ) converges to a non-zero analytic function for P(−Re(s)r+〈ξ, f 〉) <

0, i.e. for Re(s) > h∗. In order to make progress, we need to extend it to a larger domain and
this in turn depends on the spectrum of twisted transfer operators.

Let Rχ be an m-dimensional irreducible representation of G and write U = Rχ ◦ κ :
�+ → U(m). The following is Theorem 8.1, Theorem 8.3 and Proposition 8.3 of [12] (cf.
also Proposition 3.7 of [10]).

Lemma 5.2 Let f = u + iv ∈ Fθ (�
+, C) and let ρ(L f,U ) denote the spectral radius of

L f,U : Fθ (�
+, C

m) → Fθ (�
+, C

m).

(i) We have ρ(L f,U ) ≤ eP(u). Furthermore, if ρ(L f,U ) = eP(u) then there exists w ∈
Fθ (�

+, C
m), w �= 0, and a ∈ R such that

L f,Uw = eP(u)+iaw.

(ii) If m > 1 then ρ(L f,U ) < eP(u).

Proof Part (i) is proved using adaptations of the theory developed earlier in [12]. It may be
useful to give a proof of part (ii). Without loss of generality, we may assume that P(u) = 0.
Suppose ρ(L f,U ) = 1. By (i), there exists w ∈ Fθ (�

+, C
m), w �= 0, and a ∈ R such that

L f,Uw = eiaw.

Using a standard convexity argument (as in [12]), it follows that

eiv(y)U (y)w(y) = eiaw(σ y),
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for all y ∈ �+. Rewriting, we have

eiv(y)−iaw(y) = U (y)−1w(σ y).

for all y ∈ �+. Since the set of pre-images
⋃

n≥0{x ∈ �+ : σ nx = z} of any point in z ∈ �+
is dense, we see from this argument that w is nowhere zero.

Now consider the function W : �+ × G → C
m defined by W (x, g) = Rχ (g−1)w(x).

Then

W (σ x, κ(x)g) = Rχ (g−1)Rχ (κ(x)−1)w(σ x)

= Rχ (g−1)eiv(y)−iaw(x)

= eiv(y)−iaW (x, g).

Iterating this argument, we have that, for each x ∈ �+, {W (σ nx, κn(x)) : n ≥ 0} is contained
in the compact set {eicW (x, 1) : c ∈ R}. By Lemma 5.1, σ̃ : �+×G → �+×G is transitive,
and so we can choose x ∈ �+ such that {(σ nx, κn(x)) : n ≥ 0} is dense in�+×G. It follows
that

{Rχ (g−1)w(x) : g ∈ G} ⊂ {eicw(x) : c ∈ R},
so the representation leaves invariant a 1-dimensional subspace, contradicting m > 1. 
�

Combining Lemma 5.2 with the arguments in Chapter 4 of [12], which show how the
transfer operator determines the analytic behaviour of Lσ (s, t, χ). We have the following.

Proposition 5.3 Let Rχ be an m-dimensional irreducible representation of G.

(i) If m > 1 the Lσ (s, t, χ), and hence L(s, t, χ), is non-zero and analytic in a neighbour-
hood of {s : Re(s) ≥ h∗} × T

b.
(ii) If m = 1 then Lσ (s, t, χ), and hence L(s, t, χ), is non-zero and analytic in a neigh-

bourhood of (h∗ + iτ, t) unless L−(h∗+iτ)r+〈ξ+2π i t, f 〉,χ◦κ has 1 as an eigenvalue.

We end the section by noting that ifL−(h∗+iτ)r+〈ξ+2π i t, f 〉,χ◦κ has 1 as an eigenvalue then

e−iτrn(x)+2π i〈t, f n(x)〉χ(κn(x)) = 1

whenever σ nx = x .

6 Equidistribution results

In this section we will prove Theorems 1.2, 1.3 and 1.4. We will work with higher order
logarithmic derivatives of the L-functions. Write ν = [b/2] and define

η(s, t, χ) := ∂ν+1

∂sν+1 log L(s, t, χ)

=
∞
∑

n=1

∑

γ∈P(φ)

nν(−l(γ ))ν+1χ(h(γ )n)e(−sl(γ )+2π i〈t,[γ ]〉+〈ξ,[γ ]〉)n .

It will now be convenient to introduce a setQ(φ, α) consisting of all, not necessarily prime,
φ-periodic orbits with homology class α. For α ∈ H1(M, Z), we also define

ηα(s, χ) =
∫

Tb
e−2π i〈t,α〉e−〈ξ,α〉η(s, t, χ) dt
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=
∞
∑

n=1

∑

γ n∈Q(φ,α)

nν(−l(γ ))ν+1χ(h(γ )n)e−snl(γ ),

where γ n is the periodic obtained by traversing the prime periodic orbit γ n times.
We will now prove our equidistribution results. By Proposition 2.1, it is enough to work

with a class function of the form

F =
n

∑

i=0

aiχi ,

where the χi are characters of irreducible unitary representations, with χ0 = 1 and a0 =
∫

F dHaar. We define

ηα(s, F) =
n

∑

i=0

aiηα(s, χi ) =
∞
∑

n=1

∑

γ n∈Q(φ,α)

nν(−l(γ ))ν+1F(h(γ )n)e−snl(γ ).

6.1 Case 1: G semisimple

In this case, G has no non-trivial one-dimensional representations. When Rχ in a m-
dimensional representation with m > 1, part (i) of Proposition 5.3 gives that η(s, t, χ)

is non-zero and analytic of a neighbourhood of {s : Re(s) ≥ h∗} × T
b and hence ηα(s, χ)

is analytic in a neighbourhood of {s : Re(s) ≥ h∗}. Furthermore, the analysis of [17] shows
that ηα(s,1) is analytic in a neighbourhood of {s : Re(s) ≥ h∗} \ {h∗}. We also have the
following result, which follows immediately from Lemma 3 of [17].

Lemma 6.1 There exists C > 0 (independent of α and F) such that the following hold.

(i) If b is even then

lim
ς→h∗

(

ηα(ς + iτ, F) − (−1)ν+1Ca0
ς + iτ − h∗

)

exists for almost every τ ∈ R and is locally integrable. Moreover, the difference is
dominated by a locally integrable function for ς > h∗.

(ii) If b is odd then

lim
ς→h∗

(

ηα(ς + iτ, F) − (−1)ν+1Cπ1/2a0
(ς + iτ − h∗)1/2

)

exists for almost every τ ∈ R and is in the Sobolev space W 1,1
loc (R). Moreover, the

difference is dominated by a locally integrable function for ς > h∗.

When b is even we can use the Wiener–Ikehara Tauberian theorem and when b is odd we
can use a version of the Agmon–Delange Tauberian theorem from [7] to deduce that

∞
∑

n=1

∑

γ n∈QT (φ,α)

nνl(γ )1+b/2F(h(γ )n) ∼ Ce−〈ξ,α〉
(∫

F dHaar

)

eh
∗T ,

as T → ∞, where C > 0 is independent of α. It easily follows, since non-prime periodic
orbits have a slower exponential growth rate that

∑

γ∈PT (φ,α)

l(γ )1+b/2F(h(γ )) ∼ Ce−〈ξ,α〉
(∫

F dHaar

)

eh
∗T ,
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as T → ∞. Decomposing F into real and imaginary parts, and then these into positive and
negative parts, we can use standard partial summation techniques to conclude that

∑

γ∈PT (φ,α)

F(h(γ )) ∼ Ce−〈ξ,α〉
(∫

F dHaar

)

eh
∗T

T 1+b/2 ,

as T → ∞. Hence Theorem 1.2 holds by comparing this with the asymptotic for PT (φ, α),
i.e. the case F = 1.

6.2 Case 2: G not semisimple

If G is not semisimple then it has non-trivial one-dimensional representations (characters).
Let χ : G → T

1 be such a non-trivial character. We need to show that, under the hypotheses
of Theorem 1.3, L(s, t, χ) is non-zero and analytic on a neighbourhood of {s : s ≥ h∗}×T

b.
If Re(s) > h∗ then we automatically have convergence to a non-zero analytic function, so
we only need to avoid a singularity at (h∗ + iτ, t) for any τ ∈ R and t ∈ T

b. This amounts
to showing that L−(h∗+iτ)r+〈ξ+2π i t, f 〉,χ does not have 1 as an eigenvalue. In view of the
comment after Proposition 5.3, it is enough to show that

e−iτ l(γ )+2π i〈t,[γ ]〉χ(h(γ )) = 1

cannot hold for all γ ∈ P(φ). If it were to hold then, in particular, considering null homolo-
gous periodic orbits, we would have

e−iτ l(γ )χ(h(γ )) = 1

for all γ ∈ P(φ, 0). Applying hypothesis (iii) of Theorem 1.3, this implies that τ = 0 and
χ = 1, a contradiction. The proof now continues as in the semisimple case.

To end the section, we prove Theorem 1.4. Consider again the equation

e−iτ l(γ )+2π i〈t,[γ ]〉χ(h(γ )) = 1 ∀γ ∈ P(φ),

where χ : G → T
1 is a non-trivial character. If φt has time-reversal symmetry, for each

γ ∈ P(φ), we can consider its time-reversed twin ι(γ ), which satisfies l(ι(γ )) = l(γ ),
[ι(γ )] = −[γ ] and h(ι(γ )) = h(γ )−1. Thus we obtain

e−2iτ l(γ ) = 1 ∀γ ∈ P(φ).

Since φt is weak-mixing, this can only hold when τ = 0. Substituting back, we get

e2π i〈t,[γ ]〉χ(h(γ )) = 1 ∀γ ∈ P(φ)

and then, restricting to null homologous periodic orbits,

χ(h(γ )) = 1 ∀γ ∈ P(φ, 0).

Now the hypothesis of Theorem 1.4 gives χ = 1, a contradiction as before. The proof then
continues in the same way as above.

7 Frame flows

Let V be a compact d-dimensional Riemannian manifold with negative sectional curvatures.
Let M = SV be the unit-tangent bundle and let φt : M → M be the geodesic flow; this is
a homologically full transitive Anosov flow. Let N be the bundle of d-dimensional frames
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over V and letψt : N → N be the frame flow:ψt parallel transports (e1, . . . , ed) ∈ N along
the geodesic determined by e1. Then the map (e1, . . . , ed) �→ e1 makes N into a principal
SO(d − 1)-bundle over M so that ψt factors to φt .

The frame flow ψt leaves invariant a measure which is locally the product of the (nor-
malised) Riemannian volume on M and the Haar measure on SO(d − 1). When we discuss
ergodicity of ψt it will be with respect to this measure.

We note that if d ≥ 4 then SO(d − 1) is semisimple. (In fact, it is simple when d is even.)

Theorem 7.1 Let V be a compact negatively curved Riemannian manifold of dimension
d ≥ 4 such that the frame flow is ergodic. Then φt has homology-equidistributed holonomy.

Proof If ψt : N → N is ergodic then it is transitive. The other hypotheses of Theorem 1.2
are automatically satisfied and so the result holds. 
�
Remark 7.2 If V is a compact manifold that admits C3 metrics of negative curvature then
those metrics with ergodic frame flow form an open and dense set [2]. Moreover, if V has a
Riemannian metric with sectional curvatures in [−c2,−c1] for 0 < c1 < c2. then the frame
flow is known to be ergodic under the following circumstances:

(1) if V has constant negative curvature [3];
(2) if d is odd and d �= 7 [4];
(3) if d is even, d �= 8 and c1/c2 > 0.93 [5];
(4) if d = 7 or 8 and c1/c2 > 0.99023 . . . [6].

However, if V is a compact negatively curved Kähler manifold with d ≥ 4 (e.g. a quotient
of complex hyperbolic space) then the frame flow is not ergodic due to the presence of an
invariant complex structure. Examples are given by quotients of complex hyperbolic space or
other rank 1 locally symmteric spaces of non-constant curvature. In these settings, homology-
equidistribution of holonomy with respect to the appropriate (smaller) holonomy group was
proved in [8] (see also [10]).

If d = 3 then the frame bundle is a principle G-bundle over SV with G = SO(2) ∼= T
1.

Since the frame flow is ergodic d = 3 and the geodesic flow has time-reversal symmetry, we
have the following corollary of Theorem 1.4.

Theorem 7.3 Let V be a compact negatively curved Riemannian manifold of dimension 3
such that the frame flow is ergodic. Suppose that {h(γ ) : γ ∈ P(φ, 0)} is not contained in a
proper closed subgroup of SO(2). Then φt has homology-equidistributed holonomy.

Remark 7.4 (Convex co-compact quotients) Let φt : � → � be a (weak-mixing) hyperbolic
flow on a set � contained in a manifold M . We may still use the analysis of [17] to obtain an
asymptotic counting result for periodic orbits in a prescribed homology class in H1(M, Z)

provided we assume that every class in H1(M, Z) is represented by a periodic orbit. (Wemay
also obtain results with respect to H1(�, Z) provided this is assumed to have finite rank.) In
particular, this holds for the geodesic flow over a convex co-compact quotient of a pinched
negative curvature complete simply connected manifold, where � is the non-wandering set.
Thus we may obtain similar equidistribution results from the frame flow in this setting.
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