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Abstract 

Rolling contact fatigue (RCF) cracks are a widespread problem that impairs the 

service life of railway rails and wheels, with an associated high cost of labour and 

capital expenditure for remediation. Severe RCF cracks cause serious safety issues as 

they can turn down at a larger propagation angle into the rail potentially leading to a 

rail break. Rail grinding can effectively eliminate RCF cracks if they are detected 

when they are small enough to be removed. Alternating current field measurement 

(ACFM) is one of the electromagnetic (EM) techniques that can be used for defect 

detection and sizing in the rail industry. ACFM has been reported to be more 

accurate in providing length and depth information than conventional UT for small 

RCF cracks and is less sensitive to lift-off than eddy current methods.  

The aim of the present research is to analyse the response of ACFM signals to single 

and multiple RCF cracks in railway rails using experimental measurements and FE 

based modelling tools, focusing on the influences of crack vertical angle and 

multiple cracks (number, spacing, size, uniformity) on the ACFM signal to improve 

the accuracy of dimension predictions.  

 

A novel method (using the Bz signal) is proposed to determine the vertical angle of 

the RCF cracks, which then allows the crack vertical depth to be determined from 

the pocket length (standard output from ACFM measurements) and therefore the 

appropriate amount of rail grinding to remove the RCF cracks. It was found that the 

vertical angle influences the pocket length determined from the measured ΔBxmax/Bx 

value when the cracks are shallow (vertical angles < 30°), therefore greater accuracy 

can be obtained when compensating the ΔBxmax/Bx value using the determined 

vertical angle. It is shown that the variations of crack surface length, crack inner 

spacing and crack number for multiple cracks also influence the ΔBxmax/Bx values 

determined for multiple cracks. The influences of asymmetrical crack shapes on 

crack sizing are discussed, in general it has been found that for accurate sizing of 

RCF cracks using a single ACFM scan the cracks should be regular, where the 

assumption of semi ellipse shapes is appropriate. 

 

The methods developed in the project were assessed using calibration samples 

(machined cracks with different sizes and vertical angles) and rails removed from 

service containing single and multiple RCF cracks. It was found that the new 

approach proposed in this work allowed the vertical angle to be predicted well for 

single and multiple RCF cracks (difference to measurements < 14.3 %). In addition 

the error in pocket length prediction is greatly decreased when using the sizing 

method including compensation determined from the crack vertical angle. 
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1. Introduction 

1.1 Background 

Rolling contact fatigue (RCF) cracks are a widespread problem that impairs the 

service life of railway rails and wheels, with an associated high cost of labour and 

capital expenditure for remediation [1, 2]. RCF cracks initiate on the surface of rails, 

propagating at shallow angles into the rail where, at a characteristic depth, they can 

turn down potentially leading to the rail failure [3]. The economic cost of rail fatigue 

fracture amounts up to 2 billion euros per year in the European Union alone [2]. 

Extensive research has been carried out on RCF mitigation in the UK since 2000, 

after the Hatfield derailments, caused by RCF cracks, resulted in casualties and 

economic loss exceeding £1 billion [4].  

 

With the increase of axle load and train speed, RCF cracks are and will continue to 

be a major cause for, from a railway maintenance point of view, rail grinding [5]. 

Rails are regularly inspected using various non-destructive testing (NDT) techniques 

(e.g. visual, ultrasonic and electromagnetic) for defect detection and sizing before 

rail grinding is carried out. Visual inspection (VI) is a widely used NDT approach in 

the rail industry, where an experienced rail inspector walks along the rail track to 

assess the surface condition subjectively by eye and the visibility of surface breaking 

defects can be enhanced by dye penetrant or magnetic particle imaging (MPI). With 

the development of photography and image processing technology, various visual 

camera-based inspection systems have been installed on trains for crack detection, 

missing component detection and corrugation inspection [6, 7]. 

 

Ultrasonic testing (UT) is the most frequently used NDT technique either employed 

on an inspection train/vehicle or mounted on a manually operated trolley, known as 

Sperry Sticks in the rail industry [8]. Conventional UT sensors have a relatively low 

probability of detection (PoD) for surface-breaking or sub-surface cracks and 

multiple transducers need to be employed at various angles to enhance detection of 

surface-breaking and near-surface defects [9]. New techniques (e.g. ultrasonic 

phased arrays, laser ultrasonics, long-range ultrasonics, etc.) based on ultrasound 
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have been also developed and used for rail inspection to maximise the possibility of 

crack detection and sizing [10-12].     

 

Electromagnetic (EM) based NDT, for example magnetic flux leakage (MFL) and 

eddy current (EC) methods are usually employed in the test trains as a 

complementary technique to UT [8, 13]. These hybrid systems are superior when 

inspecting for surface-breaking or sub-surface cracks in comparison to UT in 

isolation. However the MFL signal is sensitive to the train speed and is adversely 

influenced by noise signals when the speed exceeds 32 km/h [8]; the eddy current 

technique is strongly affected by the sensor lift-off and this means that EC sensors 

need to be installed at a close and constant position to the rail surface [14]. 

 

Alternating current field measurement (ACFM) is an electromagnetic technique 

developed in the UK for crack detection and sizing. ACFM can provide information 

on the surface length and depth of small cracks and it relatively insensitive to lift-off 

variations allowing detection through coating, paint or contamination [15]. ACFM 

sensors are already used in a walking stick system for rail inspection and have also 

been reported to show the capability to make measurements when moving at high 

speed over a rail [16, 17]. Whilst crack detection and sizing can be carried out for 

single cracks, and some empirical correlations have been developed for multiple 

cracks further work is required to improving these approaches. 

 

1.2 Motivation 

RCF cracks usually initiate at the rail surface, caused by the lateral and longitudinal 

traction between rails and wheels from repeated loading. This results in RCF cracks 

propagating at a shallow angle (normally less than 30°) into the rail [3, 18, 19], 

known as the vertical angle as shown in Figure 1.1, until they reach a critical depth 

(typically around 5 mm) before turning down at a larger vertical angle and 

potentially leading to a rail break. They also extend at an angle to the rail running 

direction, the horizontal angle, typically occurring at about 30°-75° [1, 3, 20]. RCF 

cracks usually present in the form of clusters, with a range of spacings (0.8-20 mm) 

between individual cracks in a cluster [3, 20]. 
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Despite the fact that significant research has been carried out to study the RCF crack 

dimensions and its relationship with ACFM signals [3, 20-22], there are still several 

aspects that cannot be determined, for example the vertical propagation angle cannot 

be measured. From a rail maintenance point of view, it is more important to know 

the crack vertical depth, which varies depending on the crack vertical angle and 

crack pocket length (as shown in Figure 1.1), as this determines the amount of rail to 

be ground off to eliminate the RCF cracks before they grow to a severe size.  

 

In addition, RCF cracks often appear in the form of clusters with cracks that are 

closely spaced, leading to an interaction between ACFM signals from each crack. 

Sizing for crack clusters using an algorithm based on ACFM predictions for single 

cracks inevitably leads to errors [21]. The relationships between ACFM signals and 

multiple cracks are not fully understood. To improve the ACFM capability for 

multiple cracks inspection, the response of ACFM signals to the variations of crack 

surface length, crack spacing, crack number and crack vertical angle should be 

investigated. 

 

 

Figure 1.1 Schematic diagram of a single semi-elliptical surface-breaking crack 

propagating at an angle (vertical angle) into the material. 

 

1.3 Aims and objectives 

The aim of the present research is to analyse the response of ACFM signals to single 

and multiple RCF cracks in railway rails using experimental measurements and 
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modelling. The research focuses on the influence of crack vertical angle and multiple 

cracks on the ACFM signal to improve the accuracy of dimension predictions for 

RCF cracks. The main objectives of the research are as following: 

• Modelling the response of ACFM signals to variations in vertical angle of 

RCF cracks using an FEM model [23] and establishing the relationship 

between the ACFM signals and crack vertical angle. 

• Measuring single calibration cracks with different vertical angles using a 

commercial ACFM probe sensor (TSC Inspection Systems) to verify the 

modelling results. 

• Modelling the response of ACFM signals to the variations in crack surface 

length, crack inner spacing, crack number and crack vertical angle for 

uniformly sized crack clusters; investigating the influence of non-uniformly 

sized cracks in clusters on ACFM signals. 

• Measuring calibration samples containing multiple cracks with different 

crack arrangements using a commercial ACFM probe sensor (TSC Inspection 

Systems) to verify the modelling results. 

• Case study on dimension prediction of single and multiple RCF cracks in 

railhead samples taken from service; compare and analyse the predicted and 

actual dimensions through destructive inspection (i.e. X-ray tomography and 

progressive milling), thus giving suggestions to improve real rail inspection 

using ACFM sensors.  

 

1.4 Thesis structure 

The structure of the present thesis is summarised as follow: 

 

Chapter 1 provides a brief background of the research, including the requirement of 

RCF crack inspection and NDT techniques used in rail inspection. The motivation of 

the research and the aim and objectives are also given in this chapter. 

 

Chapter 2 contains a literature review on RCF in rails and NDT techniques currently 

used for rail inspection both in industrial context and in academic research. 
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Emphasis is placed on the introduction of the ACFM technique and its application 

for crack detection both in modelling and experimental research. 

 

Chapter 3 presents the modelling and experimental procedure used in the project. It 

describes the FEM model and assumptions used in this study, and introduces the 

samples used for calibrations and in the case study. The experimental procedure, 

including manual/robotic measurements and destructive inspection, are also 

presented with the analysis methods. 

 

Chapter 4 presents the results of the study about the influences of the crack vertical 

angle on ACFM signals. The influences of crack vertical angle on Bx and Bz signals 

are analysed and the method of using the Bz signal to determine the vertical angle of 

RCF cracks is proposed. 

 

Chapter 5 gives the results of ACFM response to uniformly sized RCF crack clusters. 

The relationships between the Bx signals with the variations in crack surface length, 

crack inner spacing, crack number and crack vertical angle for crack clusters are 

investigated. The influences of crack shapes on ACFM signals are also presented in 

this chapter. 

 

Chapter 6 discusses the ACFM responses to non-uniformly sized crack clusters 

(uniformly sized crack cluster with the middle crack being larger), which represents 

the crack arrangement in the sample take from service. The ACFM responses to the 

variations in crack surface length, crack spacing and crack number are modelled and 

investigated. 

 

Chapter 7 presents case studies of using ACFM signals to predict the dimensions of 

single and multiple RCF cracks on railhead samples taken from service. The 

predicted results are analysed in comparison to the actual dimensions, obtained 

through destructive inspections. Suggestions to improve the capability of ACFM 

sensors for RCF cracks sizing are proposed. 

 

Chapter 8 presents the conclusions and key findings of the present research. The 

implications of the results are considered.  
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Chapter 9 presents the further work to improve the accuracy of ACFM prediction 

and its applications in the rail industry are also addressed.   
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2. Literature review 

2.1 RCF initiation and propagation 

RCF cracks initiate and propagate in rails due to a combination of various factors:  

loading from vehicle wheels, e.g. bending stresses, wheel-contact stresses, shear 

stresses; rail lay-out and rail geometry, e.g. high and low rails, curve diameter; rail 

metallurgy, e.g. inclusions, hardness; and operating conditions, e.g. temperature, 

lubrication, humidity [24-26]. Any irregularities in the form of stresses acting on the 

rails, locally exceeding the material ductile limit, can accelerate the propagation of 

RCF cracks [27]. The rail maintenance strategy (rail inspection and grinding) is also 

involved with the formation and propagation of RCF cracks. The crack propagates 

into the rail at a certain rate (magic wear rate [28]) then the loss of metal by both 

natural wear and grinding must be at least equal to this rate so that the crack can be 

removed [4]. Despite improvements in steel manufacture and railway maintenance to 

ensure the rail steel quality and defects removal, RCF is still a critical problem due to 

the increasing requirements of rail speed and axle load on the UK rail system [29]. 

 

The resultant of high stresses between rail and wheel deforms the microstructure at 

the rail surface and sub-surface in the direction of the applied stress, with repeated 

loading, unloading and changing stresses [30]. This plastic deformation can 

accumulate until the ductility is exhausted; in rails with a microstructure of pro-

eutectoid ferrite and pearlite this often results in higher strains in the pro-eutectoid 

ferrite which initiates cracking, as shown in Figure 2.1 [27, 31-33]. Although the 

resistance of the rail steel to deformation is progressively increasing due to the work 

hardening caused by the strains, it is not enough to prevent crack formation and 

therefore, it is the properties developed in the work hardened rail that governs the 

resistance to RCF cracks [1, 34-36]. 
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Figure 2.1 SEM images of a sectioned rail sample taken from service showing (a) 

microstructure having been plastically deformed under the rail surface with cracks 

initiated along thin and strained ferrite bands (arrowed); (b) detail of RCF cracks and 

subsequent surface micro-spalling [27]. 

 

Railway rails are subjected to highly complex loading conditions. A brief review of 

the loadings and stresses in rails is introduced below so that the stresses causing RCF 

crack initiation and propagation can be identified and discussed. 

 

2.1.1 Bending stresses 

The bending stress consists of vertical and lateral components corresponding to the 

vertical and the lateral loadings from the wheel, respectively [37]. The bending stress 

induced by the lateral force contributes to RCF but the bending stresses caused by 

the vertical loading dominate the later stages of fatigue crack growth and hence rail 

failure [25]. The vertical loading comes from the static axle load, which is normally 

8-22.5 tonnes, and it is magnified due to the dynamic effect of a moving train. The 

motion of the sleepers, the weight of the rails, defects and irregularities in the 

running interface also influence the magnitude of the bending stress [38].  

 

The bending stress can be computed based on the beam-on-elastic-foundation theory, 

which indicates that the maximum tensile stress at the rail surface occurs at a 

distance from the wheel position, rather than in the contact area with the wheel, a 

phenomenon designated as reverse bending.  Figure 2.2 illustrates the stress state in a 

longitudinal section of a rail with a wheel rolling on it [39].  
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Figure 2.2 (a) Schematic diagram of a wheel rolling over a rail showing the 

movement direction and the crack propagation; (b) the stress distributions of bending, 

shear, contact stresses and bulk stresses in the longitudinal section of the rail [39]. 

 

A modelling study on growth of multiple RCF cracks driven by rail bending was 

carried out using the boundary element technique [40]. The study focused on the 

interaction between adjacent cracks that were at the beginning of the propagation 

phase caused by the bending stress. The multiple cracks usually show less stress 

intensity factors (40-55%) compared to the value predicted for a single crack. For 

multiple cracks, the area between adjacent cracks is usually relieved of stress in the 

running direction but the rail material at both ends of the multiple cracks can be 

highly stressed. The stresses between cracks are too low to drive the growth of 

cracks as the material is discontinuous and the stress is unable to transfer between 

adjacent cracks. However, this conclusion is only achieved in the consideration of a 

single bending stress being presented. The contact stresses between rail-wheel, the 

inclusions in the rail material and the residual stresses can contribute to the initiate 

and propagation of RCF cracks. 

 

2.1.2 Shear stresses 

Shear stress is generated in the contact area at the interface between the rail and the 

wheel as a result of the rail/wheel traction. Due to the acceleration and deceleration, 
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for train starts and stops, a small relative slip, i.e. creep, between the rail and wheel 

is generated in the axial direction of the rail, while the lateral movement of the wheel 

gives transverse creep during the train curving or hunting [38].  

 

These creep forces or traction can facilitate RCF formation as they generate high 

tangential stresses between the rail and train interface layer, which is a mixture of 

rust, dust, wear debris and environmental contaminants. Controlling the traction is 

therefore a process of interfacial layer optimization and creep minimizing [32]. The 

traction force is governed by the vertical loading from the wheel and the friction 

coefficient of the interface. It can be dramatically reduced by using a lubricant at the 

interface, compared to a dry surface, and therefore effectively controls the wear rate 

of the rail at the rail gauge side. Note that the friction coefficient should be larger 

than 0.3 at the top of the rail surface to ensure efficient braking and steering [32, 41]. 

 

Shear stress is also induced because of the relative movement at the crack surfaces, 

as shown in Figure 2.2 (b). This plays an important role in vertical crack propagation 

with a major fracture mode II (shearing mode: a shear stress acting parallel to the 

plane of the crack and perpendicular to the crack front) as the wheel rolling over the 

rail surface.  

 

2.1.3 Rail-wheel contact stresses 

The forces between the rail and wheel at the contact patch can induce extremely high 

contact stresses that dominate the formation of the surface-breaking RCF cracks and 

the early stage of crack propagation. A RCF crack initiates at the rail surface and its 

propagation can roughly follow two stages, as shown in Figure 2.3 [39]. The cracks 

initially grow at a shallow angle of 10-40° into the rail at stage 1, where the contact 

stress field dominates the crack propagation; the crack can change its propagation 

direction after reaching a critical depth (usually 5 mm [42]) either downwards at a 

steep angle of 60-80° potentially causing rail break, or upwards to the rail surface 

causing surface spalling [39]. Note that crack propagation and its size are influenced 

by the presence of lubricant, water or grease [43, 44]. 
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The rail-wheel contact stresses depend on the dynamic axle loads, contact area 

profile, presence of welds or other discontinuities, train braking or steering, etc. and 

it decreases rapidly as the crack propagates in the depth direction. The Hertzian 

model is the most well-known calculation for the wheel-rail contact stresses, which 

was established based on elastic contact. It accurately describes the local stresses for 

the most common wheel-rail contact problems in terms of the Hertzian contact, 

conformal contact, non-Hertzian elastic contact, elastoplastic contact and the 

influence of roughness [45-49]. The rail-wheel contact stresses are decided by the 

wheel diameter, the wheel load, the transverse rail profile and the transverse wheel 

profile. Doubling of the wheel load, for example, can increase the contact stress by 

27 % and a tripling of load increases the contact stress by 44 % [32].  

 

 

Figure 2.3 Schematic diagram showing two stages of RCF crack propagation, 

governed by contact stresses and bulk stresses, respectively. 

 

In the UK, a Whole Life Rail Model (WLRM) [50, 51], funded by the Rail Safety & 

Standards Boards (RSSB), was developed to understand and predict the various 

stages of RCF crack growth from early surface initiation, shallow growth and final 

vertical growth. The model can analyse the rail-wheel forces and vehicle behaviours 

through site-specific dynamic simulations for a range of vehicle and wheel profiles; 

the magnitude of the critical forces responsible for generating RCF can also be 

obtained. The model can be used to determine the rail inspection intervals by 

evaluating the interaction between the wear and RCF crack growth and if the crack 

has not yet initiated, the model can be used to assess the likelihood of crack initiation, 
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based on an algorithm that RCF and wear are functions of the Contact Patch Energy 

(each has a different threshold and rate of accumulation) [50-52]. 

 

2.1.4 Residual stresses 

Residual stresses can be found in any location within the rail due to the 

manufacturing process and welding of rails during production or in-situ welding 

during installation in the field and can be high enough to cause rail failure with the 

presence of cracks [37]. Residual stresses generated during the manufacturing 

process, because of heating treatment and roller straightening, are generally 

characterised with tensile residual stress in the railhead and the centre of the rail foot 

but compressive residual stress is observed in the web and the foot ends. This 

situation can be altered because the running wheel passing over the rail surface 

generating plastic deformation, leads to compressive residual stress in the centre of 

the railhead [46, 53, 54]. 

 

Residual stress introduced during rail welding usually presents with compressive 

stress in the centre of the railhead and tensile stress at the area near the gauge and 

field sides. The rail web is usually subjected to tensile residual stress while the rail 

foot is compressed by the welding residual stress [55, 56]. Report [57] shows that 

rail grinding also contributes to the build-up of residual stresses due to the heat 

supplied during the maintenance process.  

 

FEM modelling has been carried out to investigate the residual stress state in the rail 

with consideration of manufacturing process, welding process and loading in service 

[46, 53, 54, 58]. X-ray and neutron diffraction are also reported as non-destructive 

methods to measure the residual stresses in rails [59, 60]. Improvements in the 

manufacturing process (roller straightening) and welding methods in terms of 

cooling rate have been developed to reduce residual stresses [57, 61]. 

 

2.1.5 Thermal stresses 

Thermal stresses are generated in rails mainly because of the difference between 

ambient temperature and the rail neutral temperature (the temperature at which there 

is no thermal stresses in the rail), which can be set during the rail installation. When 
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the ambient temperature is higher than the neutral temperature, for example during 

hot days in the summer, the rail is compressed as it is prevented, by adjacent rail 

sections, from expanding in the axial direction. This stress may be relieved by 

buckling in the rail with the risk of derailment [25, 39].  

 

When the ambient temperature is lower than the neutral temperature, a tensile 

thermal stress is induced and it acts as a component of static loading with the wheel 

loads and residual stresses. Research shows that the tensile thermal stress reaches a 

maximum in cold winter nights thus increasing the possibility of rail fracture, with 

the highest rail fracture possibility in the first cold night at the beginning of the 

winter [25]. 

 

2.2 RCF defects in rails 

Various defects can occur in the railhead, in the web, in the foot of in-service rail due 

to: quality control in manufacturing, e.g. kidney defect initiated from hydrogen 

shatter cracks; inappropriate installation and use, e.g. wheel-burn defect; and 

exhaustion of the resistance to fatigue damage of the rail steel, e.g. RCF cracks [2, 

25]. The defects in rails can be identified according to their position as follow [25]: 

 

• Railhead - typical railhead cracks with surface origin caused by the rolling 

contact fatigue are gauge corner cracks (head checks), spalling, shelling and 

squats, as shown in Figure 2.4 [1, 25]; railhead cracks with internal origin are 

kidney-shaped cracks, as shown in Figure 2.5 [4].  

 

• Rail web - vertical longitudinal cracks (known as piping) and horizontal 

cracks in the web are usually caused by inappropriate manufacturing; rail 

web cracks also occur at the fishbolt holes used for rail section joints instead 

of welding. All these web cracks can lead to rail fracture, as shown in Figure 

2.5 [25]. 

 

• Rail foot - rail foot cracks can be longitudinal and transverse, as shown in 

Figure 2.6 [25]. Since the location of rail foot is difficult for inspection these 

cracks frequently caused rail fracture. 
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• Welds and switches - modification of material properties happens when rails 

are welded and welding residual stresses, rail straightness and alignment 

influence the loading at welds, therefore cracks are easily initiated and 

propagate at welds, as shown in Figure 2.6 [25]; Cracks at switches are 

influenced by the geometry of the switch rails with a high possibility of 

formation at the high bending stresses zone of the switch rail with an 

asymmetric profile [25]. 

 

Improvements in rail quality and management have greatly reduced rail failure 

caused by inappropriate manufacturing and installation but defects associated with 

RCF have been increasing over decades due to the high axle load and high train 

speed, for example causing the Hatfield disaster in 2000 [2, 14]. Although in the 

network the total number of broken rails decreased from 171 (year 2010/11) to 98 

(year 2014/15), the length of rolling contact fatigue cracks in plain line classified as 

heavy and severe (needs immediately remediation) increased from 438.7 km (year 

2009/10) to 793.0 km (year 2014/15) [62]. RCF cracks are of academic and 

industrial interest in terms of control, inspection and removal.  

 

 

Figure 2.4 Typical RCF defects: (a) and (b) well defined gauge corner cracking and 

head checking [1]; (c) spalling originating at gauge corner cracks; (d) squat defect on 

the running surface [25]. 



 
 

15 

 

 

Figure 2.5 (a) Rail fracture caused by the kidney-shaped crack [4]; (b) longitudinal 

vertical web crack; (c) horizontal web crack; (d) rail web cracks occurring at fishbolt 

holes [25].  

 

 

Figure 2.6 (a) Transverse rail foot crack initiating at a corrosion pit; (b) side view of 

a fracture due to a longitudinal crack in the foot; (c) fracture of an alumina-thermite 

weld due to the weld crack in the foot; (d) fracture caused by a crack initiated at a 

cutout in the foot [25].  
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2.2.1 Gauge corner cracking (head checking)  

Gauge corner cracking (GCC) or head checking (HC) are names for surface-breaking 

RCF cracks that appear at the gauge corner of the railhead, mostly for the outer rails 

of curves or sometimes on tangent rails, as described in section 1.2 and shown in 

Figure 2.4 [1]. These fine and regularly spaced cracks are dangerous to the integrity 

of the rail, as they can steeply turn into the rail causing transverse cracks, which 

potentially lead to fracture of the rail; or they can propagate upward, sometimes 

connecting with adjacent cracks, to cause spalling. They always propagate in the 

direction of plastic deformation in the subsurface when the wheel passes.  

A simple method has been reviewed in [4] to distinguish GCC and HC, referring that 

surface-breaking cracks originating within an area up to 10 mm from the gauge side 

are GCC while cracks present further towards the rail crown are HC. In UK, RCF 

cracks are classified as ‘light’, ’moderate’, ‘heavy’ and ‘severe’ according to the 

visible crack surface length, as shown in Figure 2.7 [70]. This guidance diagram, 

used by Network Rail, shows only a general correlation between the crack surface 

length and the crack vertical depth, therefore, vertical depth cannot be accurately 

determined by measuring the surface length of RCF cracks. 

 

 

Figure 2.7 The visual length-depth guidance diagram for RCF cracks currently in use 

by Network Rail, UK [70]. 
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The research [3] reporting on RCF crack shapes and propagation characteristics 

based on an extensive survey of experimental data in rails removed from service 

showed that the investigated RCF cracks data all fit in the UK rail system guidance 

diagram (Figure 2.7). Figure 2.8a shows a series of RCF cracks on a railhead sample 

taken from service being vertically sectioned to investigate crack profiles and Figure 

2.8b shows the reconstruction of these cracks on a transverse plane [3]. It shows that 

the crack shape can vary for these cracks with the crack subsurface extending 

beyond the surface-breaking component (crack 6). It should be noted that some 

heavy and severe cracks (crack 1 and crack 5) propagate beyond the angled straight 

line turning to a ‘S shape’ or ‘mirror S-shape’ (shown as the surface-breaking 

component) [3]. In general for light and moderate categorised cracks, it was shown 

that the crack shape can be represented by a semi-ellipse (elliptical ratio from 1 to 

1.75) and this approximation provides a more simple way for modelling studies on 

RCF cracks [71, 72]. Figure 2.9 shows the reconstructed three dimensional views of 

a moderate (surface length of 12.92 mm) and a light (surface length of 4.93 mm) 

RCF crack overlaid with the semi-ellipses used to approximate them. The 

approximate semi-ellipses are with surface length of 14 (pocket length of 4.2 mm) 

and 4.9 mm (pocket length of 1.9 mm), respectively [22]. 

 

 

Figure 2.8 (a) Multiple axially aligned, vertical sections (along black lines) through a 

series of seven RCF cracks on a used rails; (b) the multi-slice axial sectioning and 

analysis of crack shapes on each slices allowed reconstructions of crack shapes on a 

transverse plane for the seven cracks and six sections from (a) [3]; probable traffic 

direction from left to right.  
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Figure 2.9 Semi-ellipse shapes used to approximate a (a) moderate and (b) a light 

RCF cracks, where the cracks were observed using X-ray tomography in samples 

removed from a rail [22]. 

 

The Rail Surface Condition Alert (RASCAL) program reported an investigation on 

RCF crack morphology for standard metallurgy and head hardened rail samples, 

provided by BNSF and Canadian Pacific Railways [73]. The cross-sectioning work 

reported that the crack morphology for the standard and head hardened rails to be 

very different; the standard rails showed the conventional inclined cracks caused by 

plastic flow and fatigue, but the head-hardened rails were relatively less plastically 

deformed, with cracks propagating at small horizontal angles to the running direction 

and being almost vertical into the railhead (< 1 mm in depth) [73]. A study [74] 

shows the MPI visualizing of the formation of head checks on different rail grade 

after a total load of 60 MGT; the rail grade (R260) with the lowest hardness has the 

longest head checks (0.8 mm) and the largest crack spacing (1.0 mm), whereas the 

hardest rail grade (370LHT) in the test has the shortest in the crack length and the 

smallest in the crack spacing. Other tests confirm that head checks are finer, shorter 

and have smaller crack spacing by increasing rail hardness [75]. Therefore, the rail 

steel grade has an influence on the crack characteristics including the crack size, 

crack shape and crack spacing. 
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2.2.2 Shelling (spalling) 

Shelling is usually identified as the loss of horizontal large chunks of metal at the rail 

gauge corner as a result of either subsurface cracks linking up with other cracks such 

that the metal above is separated from the rail, or gauge corner collapse due to the 

excessive loading and shear stresses, as shown in Figure 2.10 [1].  

The shelling develops because of poorly restrained high rails, well-lubricated rail 

with a particularly high-stress gauge corner shape and even some rails in a dry 

environment. Shells from gauge corner collapse usually occur at the high rails on 

heavy haul railroads. However some tangent rails with local cross level (this is a 

measurement of the difference in elevation between the top surface of the two rails at 

any point in the railway track) errors or poor wheel-rail profile matching rails with 

even light axle loads being reported to show shelling defects [1]. 

Spalling is a similar defect as shelling that occurs at the gauge side of the rail, 

leading to material separating from the rail; extended shelling is sometimes 

misleadingly designated as spalling [37, 63]. Spalling is known as some shallow chip 

of rail material falling out due to surface initiated crack development and linkage 

with other similar shallow cracks in the gauge corner area, as shown in Figure 2.4. It 

is also reported that spalling frequently occurs in cold climates as rail steel stiffness 

increases (i.e. elastic modulus increases as temperature decreases; elastic modulus is 

a measure of the stiffness of a solid material, defining the relationship between stress 

and strain in a material) [63]. 

 

 

Figure 2.10 Examples of shelling (large chunks of metal falling out) from gauge 

corner collapse [1]. 
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2.2.3 Squats 

Rail squats are surface or sub-surface initiated defects propagating longitudinally and 

laterally caused by RCF generally arising on the crown, rather than the gauge corner, 

of the railhead. It is characterised as a shallow depression normally on tangent and 

gently curved rails, but recent research shows that rail squats can be found in almost 

every type of rail in either passenger or heavy haul traffic for low, medium and high 

speed trains all over the world [64]. The depression is caused by sub-surface crack 

propagation reducing the strength of the material, and the accumulation of dirt and 

debris in the depression gives the appearance of a dark spot, as shown in Figure 2.11 

[1]. 

 

It can be observed from the cross section of a squat (shown in Figure 2.11b) that it 

consists of two major cracks: one short leading crack (in the travel direction) and the 

other longer trailing crack propagating in the opposite direction. These cracks 

normally occur at 10-30° to the horizontal and propagate 3-5 mm below the rail 

surface [1, 65-67]. Small cracks from branching at the end of the trailing crack will 

prevent an ultrasonic signal from detecting the deepest crack (the shadowing effect, 

see section 2.3.2); these cracks may turn downwards causing a transverse fracture of 

the rail. 

 

 

Figure 2.11 (a) A rail squat showing with the dark spot containing dirt and debris; (b) 

cross section of a rail squat showing a leading crack (left hand side) and trailing 

crack (right hand side) propagating in an opposite direction with small branching [1]. 

 

Two different mechanisms of squat formation have been reported and therefore, two 

types of squat are considered [66-68]: 
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1. The classic squat defect is formed because of plastic deformation (ratchetting) 

of the surface layer from wheel-rail traction (slip). The propagation of the 

sub-surface cracks is influenced by hydraulic entrapment (water or liquid 

lubricant) with tensile and shear modes of crack growth. 

2. Squat type defects defined as studs, which can develop without any 

significant plastic deformation of the rail surface. The initiation and 

propagation of studs are closely associated with the formation of white-

etching layer (WEL), due to thermal damage caused by wheel-rail slip. There 

is no evidence that hydraulic entrapment is required for crack propagation in 

this case. 

 

Details of differences and similarities between squats and studs can be found in [69], 

which reviewed historical work on squats and recent findings on studs. This also 

provided the basis for research [67] on studs with original observations from track 

and metallurgical examinations of specimens.  

 

2.3 NDT techniques for rail inspection 

Non-destructive testing of rails is very important to railway risk management and 

maintenance planning. Rail defects such as RCF cracks are dangerous, as shown in 

Figure 2.7, such that if the RCF cracks exceed 20 mm in length and the propagated 

depth is beyond 5 mm there is a high possibility that the cracks are rapidly increasing 

in depth and will not be removable by rail maintenance procedures. This will cause 

serious safety problems, therefore control of RCF cracks requires the identification 

of cracks in their early stage of propagation, when they are relatively small in size 

and can easily be removed by rail grinding. 

 

Rail grinding is the effective treatment for rail maintenance to increase rail life by 

removal of surface damage from the rail [2]. The priority of rail grinding is 

sometimes driven by the severity of RCF cracks and this information can be acquired 

by NDT techniques including visual inspection, ultrasonic related inspection and 

electromagnetic related inspection, etc. The main NDT methods for inspecting rail 

defects are discussed below: 
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2.3.1 Visual inspection 

Visual inspection (VI) is usually implemented by an experienced worker walking 

along the rail tracks physically looking for defects. Manual visual inspection for 

RCF cracks can be improved by using dye penetrate or magnetic particle imaging 

that enhances the visibility of the fine and closely spaced cracks. VI is also used for 

rail manufacturing for protrusions, hot marks, seams and scratches, etc [2]. 

 

With advancements in photography and computer processing, automated visual 

systems are being developed by installing high speed cameras onto trains for 

inspection of rails to meet the demand for high speed and high efficiency inspection. 

SNCF (National society of French railways) inspects the rail network using a high 

speed camera (frame rates in excess of 250 frames per second) installed on a train 

with speed varies from 60 km/h to 320 km/h depending on the type of inspection 

carried out and the resolution required (high inspecting speed can be achieved by 

increasing the length of the rail that each image can cover). This inspection is 

performed at high speed every 15 days for visual surface defects [9]. Figure 2.12 

shows the principle of automated visual inspection for rail track [9]. It shows that the 

high speed inspection system is based on the use of high-speed cameras which can 

record videos or images of the track when the train moves over it; images are then 

analysed automatically using algorithms designed for identification of rail 

components or surface defects [9, 14]. The performance of the system is mainly 

dependant on the resolution of the image, for example identification of small defects 

on the railhead is of interest, and the processing algorithm associated with the data 

storage and the computing time when high speed inspection is required. However, 

higher resolution of the image means a greater amount of data processing and 

storage and thus more computational time is needed to complete the analysis. As a 

results the inspection speed needs to be compromised to keep in pace with data 

analysis. VI cannot provide any information about the presence of any internal 

defects; the relationship between crack surface length and crack vertical depth is not 

guaranteed, therefore the RCF crack depth information from VI is not accurate. 
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Figure 2.12 Automated visual inspection for rail track using high speed cameras; 

cameras are set up to different positions and different angles achieving full coverage 

of rail track components [9]. 

 

Automated visual based systems for real-time inspection have been developed to not 

only detect defects such as cracks, flakes and corrugation on the railhead but also the 

irregularities relating to the ballast, fasteners, rail anchors and turnout components 

[76-79]. For example, a real-time visual inspection system (VIS) [7] was developed 

for discrete surface defects (appear in a random manner without common texture or 

shape features, unlike RCF cracks that have periodic texture features). The system is 

made up of a high speed and high resolution camera and four LED lights as the 

illumination. The inspection procedure including rail image acquisition, rail track 

extraction, image contrast enhancement and defect localization with an algorithm 

(longitudinal and transversal position localization, defect recognition). The VIS can 

detect small discrete defects (with defect area between 80-314 mm2) with an 

accuracy of 80.41 % and large discrete defects (with defect area > 314 mm2) with an 

accuracy of 93.1 %. The processing time for a single rail image is less than 20 ms 

allowing the detection speed to be about 216 km/h based on the setup of VIS that can 

obtain a single image covering 1.2 m of a rail [7]. A visual inspection based on the 

geometrical defect locating algorithm was also proposed for railhead surface defect, 

such as RCF defects [80]. The algorithm can locate a series of RCF defects and 

identify the length and width of the defect area (rectangle). This may represent either 

multiple light to moderate gauge corner cracks with small inner spacing or large 

portion of shelling and squat, of which the defective area can be considered 

approximately as a consecutive region on the rail surface. Discrete individual RCF 

cracks however cannot be distinguished due to the fine crack width. 
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The rail track inspection with automated visual system is also used for finding 

missing clips [81]  and measuring the rail gauges [82]. The images algorithms have 

been optimized [7, 83] to improve the PoD and to reduce the processing time for 

high speed inspection.      

 

2.3.2 Ultrasonic testing 

Ultrasonic testing is the most widely used NDT technique in railway inspection for 

defect detection. The ultrasonic probes can be either installed on a manual push-

trolley or used for high speed inspection by being installed on a train/vehicle running 

over the rail [8]. For the conventional ultrasonic technique, piezoelectric transducers 

generate high frequency acoustic waves and transmit them into the sample with the 

help of couplant (usually water in rail inspection) between the transducers and 

sample surface. Discontinuities present at the surface or within the tested component 

reflect or scatter the ultrasonic waves and the transducer receives the “echo”. The 

result can be obtained by analysing the amplitude of this “echo” corresponding to the 

crack characteristics and the “echo” travel time which is proportional to the location 

of the crack [84]. The refracted angles in the transducer are usually 0, 37, 45 and 70° 

so that the PoD for rail defects is a maximum and array ultrasonic transducers are 

positioned to cover the whole area of the railhead for longitudinal defects [8, 14]. 

 

Ultrasonic transducers have been developed for rail inspection conducted by Sperry 

trains (UTU1 and UTU2 models) in many countries [9]. The UTU1 model had a 

problem of too many false readings due to an inappropriate detection threshold and 

detection criteria, but the UTU2 model has resolved these problems and has a greater 

probe array that can provide wider ultrasonic coverage. The system can achieve a 

success defect identification (specific defects or severity of defects have not been 

reported) rate of 90-95 % and can run at a speed up to 65 km/h. However a review in 

2008 [14] reported that the actual inspection speeds can decrease down to 15 km/h 

due to the detected defect needing to be verified by manual inspection. 

 

The UT technique used in rail inspection still suffers from several drawbacks: UT 

sensors must be calibrated before any tests, therefore, a calibrated sample with the 

same properties as the rail is needed; UT signals are sensitive to the rail surface 
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condition and small surface cracks (< 4mm in depth) are not detected because the 

noise signal from the near surface is large and complex and the systems generally 

ignore the noise signal to focus on internal inspection [1]; larger surface breaking or 

internal defects can be masked by small surface cracks and thus give a false signal of 

the structural integrity of the rail when using high-speed UT systems, known as the 

shadowing effect shown in Figure 2.13 [85]; different microstructures reflect 

different signals which decreases the accuracy of ultrasonic testing of rails, for 

example, the reflection and refraction data of ultrasonic inspection on used rails 

indicate the material properties are anisotropic and a calibrated system based on 

isotropic ‘new’ rail may not be effective in finding transverse defects in railheads 

[86]. 

 

 

Figure 2.13 Illustration of the shadowing effect [85]. 

  

Novel NDT techniques based on ultrasonics are being developed for high speed rail 

inspection. Ultrasonic phased array (PA), with adjustable refracted beam angle and 

focus, is sensitive to small cracks particularly for transverse cracks across the 

railhead [10, 87]. This is particularly beneficial for defects detection in alumina-

thermic rail welds, as in this case the ultrasonic beam can be steered to be 

perpendicular to the defects [14]. However the inspection speed using the PA system 

reported in [14] is about 5-6 km/h due to the large amount of data generated and data 

processing. Long-range ultrasonics (guided waves) is used to detect defects and 

welds that cause cross section change (typically 20 % of the railhead cross section 

area is required for detection) in long and narrow structures (pipes and rails) by 

employing surface waves such as Lamb, Plate and Rayleigh [14, 88-90]. A 

commercial long-range detecting vehicle, known as Prism, has been reported to be 

capable of detecting large transverse cracks (i.e. equivalent to 20% of the cross 

section of the railhead) at a maximum speed of 15 km/h [12].  
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Electromagnetic acoustic transducers (EMATs) have been developed based on the 

principle that a Lorentz force generated in a magnetic field has the ability to produce 

ultrasonic waves in materials. It is a non-contact (several millimetres above sample 

surface), non-couplant UT technique which is suitable for rail defects inspection. It is 

reported that EMATs can detect gauge corner cracking with 1.5-15 mm depth and 

could characterize cracks at speeds of up to 100 mph if data acquisition and analysis 

are improved [91-93]. A commercial hi-rail vehicle inspection system based on 

EMATs system has been developed in Canada and it can successfully detect 

different types of defects, including horizontal and vertical head split, bolt hole crack, 

defective weld and transverse defect (machined slot 12.7×16.1 mm) in a calibration 

track (150 metre) at speeds between 10-15 km/h [14, 94]. RCF defects such as head 

check and shelling can be detected by the system however the details of detect/sizing 

have not been reported. EMATs has been reported to determine the vertical depth for 

angled surface-breaking cracks by measuring the in-plane and out-of-plane velocity 

components of the Rayleigh wave in the vicinity of cracks [95]. In the procedure for 

charactering cracks, image analysis carried out first to determine whether the vertical 

angle is in the near-90º range or inclined to the surface; the vertical depth can be 

determined if the crack is near the 90º range by using the 90º depth calibration curve; 

FER (the ratio of the in-plane to the out-of-plane enhancements of the Rayleigh wave 

measured by the EMATs) then should be calculated for inclined cracks; The FER then 

can be used to estimate the vertical angle and a correct depth calibration curve can be 

selected to determine the depth [95]. In this research, however only two depth 

calibration curves (for 90º and 45º) have been studied and tests on natural inclined 

cracks have not been shown; the relationship between FER and vertical angle is non-

monotonic (i.e. one value of FER may correspond to two vertical angles) for vertical 

angle less than 40º. This may cause misestimate of the dimension RCF cracks, which 

vertical angle usually less than 30º.  

 

Laser ultrasonics is also a non-contact technique by generating ultrasound using a 

pulsed laser. Laser ultrasonics combined with the air-coupled acoustic transducers 

(LAHUT) was developed for detecting surface-breaking and internal cracks located 

in the railhead, web and foot. It is reported that the system was installed on a hi-rail 

vehicle designed for running over the rail at speeds between 8-15 km/h [11, 14, 96]. 
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In a test using the LAHUT for the inspection of vertical split head and rail foot 

cracks, the success rate is 100 % and 90 % for the vertical head split defects and rail 

base cracks, respectively at walking speed [97].  

 

2.3.3 Acoustic emission  

Deformation or cracking events, such as plastic deformation, crack initiation and 

propagation, etc. occurring from a materials surface or interior are usually 

accompanied by a sudden elastic strain release. Acoustic emission (AE) relates to the 

ultrasonic waves generated in this process. AE monitoring is employed to detect a 

broad frequency range of such ultrasonic waves between 20 kHz and 1 MHz and can 

be easily differentiated from conventional vibration (lower frequency up to kHz 

range) and from electrical noise (above 2MHz) [14, 98]. Therefore, AE techniques 

have been used to evaluate the structural integrity of large industrial structures such 

as bridges, oil tanks and the detection of gas and liquid leaking [14, 99]. 

 

Although AE is not a new technique, AE applied to real-time monitoring for crack 

propagation (crack growth) in rails is a relatively novel method. Kostryzhev et al. 

[100] experimentally verified that the AE signal shows a good response to crack 

growth in rail steels and the pattern of signal changes correspond to fracture mode. 

Ductile fracture gives a high duration, low frequency signal and low duration, high 

frequency signal corresponds to brittle fracture. Yilmazer et al. [101] pointed out that 

by developing more suitable filtering techniques for signal processing of acquired 

AE waveforms, rolling noise associated with the wheel may not be a barrier for 

crack growth detection in the field. Research [98, 102] using AE to measure the rail-

wheel interaction (influence by axle loads, wheel roundness, speed and tractions) for 

cumulative damage by wear and contact fatigue have also been reported. However, 

most of this research has been carried out in lab experiments, as AE signals are 

usually affected by environmental noise, mechanical noise and electric noise, etc. 

The most important research field therefore will be AE signal processing, i.e. how to 

filter the AE signal from noise signals by using optimised algorithm and advanced 

software [14]. 
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A review on NDT in rail in 2008 [14] reported that NoiseMon, based on an AE 

system developed for detection and evaluation of the noise between wheel-rail 

interfaces when the train moves along the rail, is promising for detection of rail 

breaks, squats, wheel burns, track alignment, gauging problems. The sensor is 

protected by foam windshields and placed in the aerodynamically dead area to 

reduce the influence of airflow on the received signals, therefore the inspection 

speed can be increased up to 160 km/h for certain defects. A research [103] in 2013 

reported that NoiseMon system has been employed to evaluate the acoustic track 

quality (ATQ), a measure of the surface roughness of the running rails, across over 

the Great Britain’s railway network; based on the analysis of MoiseMon data, the 

average ATQ value decreases 8 dB relative to 2004 because of a new preventative 

maintenance rail grinding strategy to address RCF; The result indicated that the 

majority of GB’s East and West Coast mainlines (ECML & WCML) have rails with 

roughness levels below the TSI roughness limit. However no research has been 

reported using the NoiseMon system for RCF cracks detection. More recent work 

[104, 105] using acoustic emission have been focused on online monitoring of 

railway axle bearing defects and wheelset defects; laboratory and field tests showed 

that the AE can effectively distinguish faulty axle bearings from defect-free bearings 

by using appropriate frequencies and signal processing methodologies, but for lightly 

to mildly damaged bearings (specific dimensions not provided), due to the low signal 

to noise ratio, AE is unable to detect the types of cracks present (wheel flat, lubricant 

contamination, outer race and inner race defects) [105]. 

 

2.3.4 Magnetic flux leakage  

MFL technique is used in the rail industry for detection of surface or near surface 

cracks especially for transverse cracks. MFL sensors can operate with permanent 

magnets or DC electromagnets that generate magnetic flux that can be coupled into 

the rail surface. It has similar principles with magnetic particle inspection (MPI) 

depend on detecting the magnetic flux change caused by surface or subsurface 

defects as the magnetic flux will leak from the surface breaking component of the 

defects. Instead of using magnetic powder to indicate the presence of defects (MPI), 

MFL employed a magnetometer to conduct quantitative measurement of the leakage 

field near a defect [106]. 
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MFL systems can be classified into two group, according to the magnetic flux 

distribution in relation to the positon of the defects: circumferential MFL used for 

detecting and sizing longitudinal defects; and axial MFL used for volumetric or 

metal-loss type defects, particular for defects with a circumferential extension [107]. 

In rail inspection, MFL sensors can detect transverse cracks such as RCF cracks but 

defects with an orientation parallel to the magnetic flux lines are not detectable as 

well as some internal cracks being far away from the sensor. It is also adversely 

affected by increasing inspection speed as the magnetic flux density decreases as the 

speed increases, consequently the signal is too weak to detect for small cracks; in 

addition, the magnetic field is also influenced by the generated eddy currents due to 

the relative movement of the probe and specimen, which induces variation in the 

MFL signals. A hybrid inspection system combining ultrasonic probes and MFL 

sensors has reported [8] and the inspection speed is normally at 32 km/h. The system 

was used to inspect the “coal territory” of North America-mountains, curves, 

severely worn rail and variable weather conditions; the system helps to find more 

defects at an earlier point in the defect’s growth cycle, results in over 50 % reduction 

of railhead defects; an analysis of defects detected by the system on one freight 

railroad showed that 20 % of the defects can only indicated by the use with induction 

[8].    

 

Research [107] based on a 2D FEM model was carried out to investigate the 

responses of MFL signals to probe velocity (0-30 m/s) and the relationships between 

the x-component of the MFL signals and the defect depths (4-8 mm; vertical slot into 

a conductive specimen). Figure 2.14 shows the results where MFL signals decrease 

as the probe speed increases whilst they increase as the crack depth increases. The 

asymmetrical signals caused by the probe speed (signal is symmetrical when the 

probe is static) can be used to indicate the probe movement direction.  

 

Further research [108] using 3D magnetic field sensing (i.e. by employing a three-

axis magnetic field sensor to include the y-axis, orthogonal to the testing surface and 

the applied field) for MFL signals was carried out to characterise a machined slot 

and a naturally occurring surface breaking crack (“L shaped” crack consisted of a 

horizontal, diagonal and a perpendicular sections) close to the gauge side of the 
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railhead. The x-component (parallel to the rail surface and the applied field) and the 

z-component (perpendicular to the rail surface) of the MFL signal give a good 

indication of the position of the perpendicular section of the crack and the ends of 

the crack, respectively. The y-component (parallel to the rail surface but orthogonal 

to the applied field) is useful in detecting the diagonally orientated section of the 

cracks. The sensor currently only tested with the sample in laboratory and it 

suggested that 3D magnetic field sensing can be used to improve the defect 

characterisation using the MFL signals, especially for defects with irregular surface-

breaking components. However the study focused on the locating of the crack and 

the information about the crack sizing was not provided.  

 

 

Figure 2.14 X-component of the MFL signals against (a) probe velocity; (b) crack 

depth for probe velocity at 30 m/s [107]. 

 

2.3.5 Eddy currents 

The technique of eddy currents is based on the principle of electromagnetism that an 

exciting coil with an alternating current can generate a magnetic field around the rail 

surface when placed perpendicular to the rail component; then the eddy currents are 

induced within the skin depth of the rail surface layer and the eddy currents also 

generate a secondary magnetic field opposite to the first magnetic field, as shown in 

Figure 2.15a [109]. The sensing coil can measure the impedance change of the 

system and any defects present at the surface or sub-surface of the rail can lead to a 

disturbance in the secondary magnetic field, causing the impedance deviate from Z1 

to Z2, as shown in Figure 2.15b [18].  
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As the eddy current technique, based on the skin effect, is sensitive to any changes at 

the surface or near-surface of the rail, it has been used in rail inspection system, as a 

supplementary technique to the conventional ultrasonic transducer for surface crack 

detection and sizing. The technique has better ability, compared with ultrasonics, of 

detecting defects such as RCF cracking, squats, shelling and surface corrugation [13, 

18, 110, 111]. A summary of the ability of eddy currents in detecting various surface 

defects of rails is shown in Table 2.1 but the details of accuracy were not given in 

[13] . 

 

A hybrid inspection system has been developed and used by Deutsche Bahn DB 

(German Rail) AG that combines ultrasonic techniques with eddy current sensors for 

surface and sub-surface defects inspection [13, 18, 112]. The system consists of 10 

ultrasonic probes at angles from -70° to 70° and 4 eddy current sensors located at the 

gauge side 25 mm of the railhead where RCF cracks usually occur (as shown in 

Figure 2.16 [13]). The inspection speeds can be up to 100 km/h with the eddy current 

signal remaining unaffected by speed [14]. The eddy current sensors have also been 

implemented on a grinding train focusing on the detection of head checking and 

providing position and depth information to on-line control of the rail grinding 

machine [113].  

 

In order to give accurate depth of the damage in rails, the inspection system was 

calibrated by grinding a rail with gauge corner defects at a relative low material 

removal rate; eddy current measurements and cross-sectional measurements were 

performed to determine the signal and associated amount of material removed. As a 

result a calibration curve was established which allows the crack depth determined 

on the basis of the detected eddy current signal [114]. The system was not able to 

identify cracks with crack spacing smaller than 2 mm as the calibration curve was 

based on single cracks. A statistical method of practical field measurements was 

used to compensate the signal allowing the assessment of multiple cracks. However, 

the research [115] mentioned that the crack propagating angle (vertical angle) is 

necessary for determination of the crack depth but the details of how vertical angle 

can be measured was not given, or whether an assumed value was used. The system, 

known as HC Grinding Scanner, has been continually developed under Speno 

International SA. 
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Figure 2.15 (a) Illustration of eddy current generation [109]; (b) variation of the 

sensing coil’s impedance due to the presence of a crack (vertical and horizontal axis 

represent the imaginary and real part of the impedance, respectively) [18]. 

 

Table 2.1 Sensitivity of eddy current sensors to defects summarised by German Rail 

(details of accuracy was not provided; belgrospi’s refers to indentations and cracks 

on crests of short wave corrugation) [13]. 

Category detectability Statement 

Head checking Very good Quantity, location, depth 

Wheel-burns Very good Location, extent 

Grinding marks Very good Quantity, location, period 

Rail joints Very good Location, kind 

Indentures Very good Quantity, location, period 

Squats Good Quantity, location 

Short/long pitch corrugation Good Location, period 

Welds Good Location, kind, lack of fusion 

Belgrospi’s Good Quantity, location 

 

Unlike conventional ultrasonic techniques, EC does not require any contact with the 

rail surface, which makes it suitable for high-speed inspection. However, as the 
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exciting coil is normally perpendicular to the inspected surface, the magnetic flux 

that can penetrate into the surface decreases rapidly as the senor lift off increases. 

The eddy current signal subsequently diminishes with sensor lift-off; lift-off of eddy 

current sensors is typically no more than 2 mm for rail defect inspection [14]. It is a 

drawback for analysing EC signals that calibration blocks are needed to estimate the 

detected crack characteristics.  

 

Instead of the empirical methods being used at present, the mathematical models for 

eddy current systems have allowed accurate predictions of the sensor responses to 

crack characterisation. Burke [116] reviewed the crack sizing modelling method (the 

swept-frequency method), which uses the absolute values of the change in the coil 

impedance due to the crack as a function of the coil position and frequency; the 

method measures over a range of frequency and uses an approximate solution to 

Maxwell’s equations for the determination of the crack depth. The method was 

tested for a range of single rectangular and semi-elliptical EDM slots (vertical angle 

of 90°) in Al alloy plates and results showed that the depth was determined within 

about 15 %; it was also tested for a range of fatigue cracks in compact tension 

specimens but the depth of smaller cracks was underestimated due to the crack-face 

contact effects (i.e. two crack surfaces connected and eddy currents flow through the 

connection rather than the crack tip, resulting in underestimate of the crack depth); 

no results about any crack vertical angle measurement or the performance predicting 

angled cracks were reported. Bentoumi, et al. [111] compared three signal processing 

algorithms for on-line evaluation of minor rail defects (shellings and welded joints) 

with a design of a double-coils and double-frequencies sensor in a subway train that 

give 8 complementary eddy current signals; the wavelet approach showed best 

results but wrongly classified a shelling defect as a welded joint. 
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Figure 2.16 A set of 4 eddy current sensors (arrowed) installed on the inspection 

train combined with the ultrasonic technique as the high speed inspection system 

used in German Rail [13]. 

 

2.3.6 Alternating current field measurement 

Alternating current field measurement (ACFM) is a novel electromagnetic technique 

based on the principle of skin effect that the alternating current flow concentrates in 

a thin layer at the surface of a conductive material and will be disturbed by the 

presence of cracks [117]. ACFM technique shares a similar principle with the eddy 

current technique that both are detecting the field change because of the induced 

current being disturbed by the presence of cracks, but instead of detecting the 

electrical impedance the sensing coil of ACFM directly detects the variations in the 

magnetic field. In addition, ACFM sensors are designed to generate a uniform 

current flow around the defect with the exciting coil being parallel with the inspected 

surface, while for conventional EC techniques a swirled current is usually generated 

around the defect due to the exciting coil being vertical to the inspected surface.  

This character of ACFM gives the signal a good tolerance to sensor lift-off as the 

current induced by the magnetic flux of a horizontal coil decreases slower when the 

sensor is lifted than that of the magnetic flux of a vertical coil, which is the case of 

the eddy current approach. It is reported that the signal strength of ACFM diminishes 

with the square of lift-off rather than its cube (the eddy current) and a maximum 

operating lift-off of 5 mm is allowed without significant signal loss when using 

ACFM sensors [15]. The ACFM technique is therefore a topic of interest for 

research and is an alternative to eddy currents for rail inspection. 
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The ACFM sensor is not only capable of detecting cracks, but can also provide 

accurate size information (experimental and modelling results for crack pocket 

length have been reported to be within 2.5 % difference for the single moderate 

crack and 2.0 % for the single light RCF crack, respectively [22]) for surface-

breaking crack if the sensor is placed parallel with the crack orientation (more results 

and discussions is given in chapters 4-7). Figure 2.17 shows the principle of ACFM 

operation and the signals used for crack dimension estimation [118]. As the ACFM 

sensor is positioned above the inspected surface, the horizontal coil with alternating 

current in the exciting sensor works as a solenoid and, therefore can induce a 

uniform current in the surface layer of the conductive material with no crack present. 

Any existence of a defect will disturb the current and force it to flow around the ends 

and down the faces of the crack; this causes the magnetic field generated by the 

induction current above the surface to become non-uniform and the ACFM sensor 

measures these variations in the field. 

 

The current flows clockwise and anti-clockwise when it passes the ends of the crack 

generating the peak and trough in the Bz signal, which can be used to give an 

estimation of crack surface length. The current that flows down the crack surface 

generates the trough in the Bx signal which can be used to estimate of the crack 

pocket length. 

 

 

Figure 2.17 Illustration of the ACFM principle where the uniform current is 

disturbed by the presence of the crack giving the Bx and the Bz signals which can be 

used for the crack pocket length and the crack surface length estimation [118]. 
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The theory of ACFM was developed by researchers at University College London 

(UCL) in the mid 1980’s, as driven by the need of oil companies to find a substitute 

for the A.C. potential drop (ACPD) method for estimating the depth of fatigue cracks 

during underwater weld inspection. Instead of maintaining very good electrical 

contact between the surface and the probe used in ACPD, ACFM can induce rather 

than inject uniform currents into the inspected surface. Based on the existing 

theoretical model of the uniform current flow distribution around semi-elliptical 

surface-breaking defects [117], researchers at UCL extended the analysis to calculate 

the associated magnetic fields above the surface. The length and depth of the crack 

can be determined by comparing the results of ACFM measurements with theoretical 

predictions. The ACFM technique is relatively insensitive to lift-off and material 

property (permeability) changes, and, as it does not rely on contact, it has been 

widely used in underwater, oil drilling, pipeline and rail industries, especially for 

inspecting through paint and other coatings or in welded structures without surface 

preparations. 

 

2.3.7 Summary 

Despite the fact that conventional NDT techniques used for rail inspection have been 

greatly improved and novel techniques have continued to emerge and be 

incorporated into the railway inspection system, there is no single NDT method that 

can meet the requirement of high-speed inspection without a compromise in 

reliability and efficiency. Ultrasonic techniques are still the main inspection method 

all over the world but hybrid inspection systems that combined ultrasonic techniques 

with induction methods can inspect rail internal defects at a high speed while 

effectively increasing the PoD of surface and sub-surface cracks. ACFM is one of 

the induction techniques being developed in the UK and numerous research 

programmes have shown the promise of utilization of ACFM in the rail industry. 

Table 2.2 briefly summarises the NDT techniques that are currently used in railway 

inspection [9, 14, 85]. 
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Table 2.2 Comparison of some NDT techniques used in the railway system [9, 14, 

85]. 

Method 
Defect 

detected 
Advantages limitations 

Visual inspection 

Surface 

defects, 

railhead 

profile, 

missing 

parts 

Convenient and can be 

automated with high 

speed (up to 320 

km/h); reliable in 

detecting big defects 

and missing parts 

Can only be applied 

to surface; cannot 

reliably detect 

small defects at 

high-speed 

Acoustic 

emission 

Rail breaks, 

wheel 

burns, 

squats, 

worn rail 

profile 

Experimental manual 

and high-speed 

systems 

Limited 

development; 

miss internal 

defects 

Ultrasonics 

Surface 

defects and 

internal 

defects in 

railhead, 

web and 

foot 

Can be automated (up 

to 70 km/h); can 

penetrate thick 

materials 

Misses surface 

cracks (<4 mm) 

and internal 

defects at high 

speed 

Electromagnetic 

acoustic 

transducers 

Surface 

defects and 

internal 

defects in 

railhead, 

web and 

foot 

Reliable for surface and 

internal cracks 

Low speed 

inspection (< 10 

km/h); sensitive 

to lift-off 

Laser ultrasonics 

Railhead, web 

and foot 

defects 

Reliable for internal 

defects 

Low speed 

inspection (< 10 

km/h); adversely 

affected by lift-

off; difficult to 

deploy at high 

speeds 

Long range 

ultrasonics 

Surface 

defects, 

railhead 

internal 

defects, rail 

web and 

foot defects 

Reliable for large 

transverse defects 

Low speed 

inspection (< 10 

km/h) 

Magnetic flux 

leakage 

Surface 

defects and 

sub-surface 

crack in 

railhead 

Reliable in detecting 

surface defects; 

high-speed 

inspection (up to 32 

km/h) 

Misses small cracks 

due to the high-

speed 
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Eddy current 

Surface and 

sub-surface 

crack 

Can be automated and 

used for high-speed 

inspection (up to 70 

km/h); reliable in 

detecting surface 

defects 

Sensitive to lift-off 

variations and 

cannot detect sub-

surface defect  

ACFM 

Surface 

breaking 

defect 

Reliable in detecting 

and sizing surface 

breaking cracks; 

high-speed 

inspection under 

development; less 

sensitive to lift-off 

than EC 

Cannot detect sub-

surface defect 

 

2.4 ACFM for crack detections 

Standard ACFM probes usually consist of a horizontal solenoid or yoke above the 

sample surface, with two orthogonal magnetic coils underneath but close to the 

surface allowing the measurement of the two components of the magnetic field. 

During operation the probe is moved over the inspected component, parallel to the 

expected orientation of defects to collect the data required for dimension estimation. 

Figure 2.18 shows a typical response from the ACFM pencil probe to a crack [119]. 

The trough in Bx gives an indication of pocket length and the positive and negative 

peaks in Bz indicate the crack surface length. The Bx signal is plotted against the Bz 

signal to give a distinctive butterfly pattern (shown in Figure 2.18) to indicate the 

presence of a crack as well as to eliminate the dependence on probe moving speed. 

 

The ACFM technique is available in the form of either a single pencil probe or 

multiple-element array probes. The pencil probe can detect the presence of surface-

breaking cracks at any orientation, however the probe should be moved in a direction 

within 0-30° to the crack surface-breaking component in order to accurately size the 

crack [120]. ACFM array probes can overcome this drawback by deploying various 

field inducers to cover other orientations at the surface. This is particular useful for 

situations when the presence and orientation of the crack is unknown [120]. ACFM 

array probes can also be customised to conform with the inspected component 

geometry so that the inspection time can be greatly reduced whilst increasing the 

PoD of defects.  
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Figure 2.18 A screen shot from the commercial ACFM software showing ACFM 

signal response to a defect [119]. 

 

2.4.1 Underwater inspection 

The first ACFM application was originally developed as a substitution of ACPD for 

sizing depth of cracks discovered by MPI for subsea welds on offshore installations 

[121]. In 1991, the first ACFM subsea instrument (the U11) was built after 

experimental demonstrations that ACFM was at least as good as MPI in detecting 

cracks whilst also providing crack depth information with an accuracy of ±15 % 

[121]. The ACFM technique was also shown to give a more accurate prediction on 

the depths of short (in length) and deep (in depth) surface cracks than ACPD in 

welded components [122]. The fact that ACFM does not require good visibility and 

can work through paint and rust means it was soon adopted by the offshore industry 

for not only ferritic steels but also duplex stainless steel and titanium [123]. 

 

The U11 was then upgraded to model U21 with developments in electronics, which 

greatly reduced the size and weight of the subsea unit. It was also improved with 

multiple sensors, motors and encoders included [121]. In 2002 the U31 system was 

created with much lower current consumption and again, a further reduction in the 

size and weight of both the subsea and topside units, which allowed much easier 

transportation of the ACFM equipment and deployment by smaller remotely 

operated underwater vehicles [121].  
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The development and application of the ACFM technique for subsea and topside 

weld inspection either manually or deployed by an underwater roving vehicle have 

been reported [124, 125]. An integrated system combining ACFM and 

electrochemical machining (ECM) was developed to inspect the welded component 

and then carry out removal of any defective zone; the system sampling/removal 

operation can be implemented at speeds up to 3 mm/min [126]. In order to interpret 

the results measured by ACFM probes, a software package, FACTS, which has all 

the analytical tools and databases of experimental results, was developed to calculate 

the fatigue crack growth behaviour using fracture mechanics while provide a user-

friendly interface for fatigue crack analysis [127]. The underwater inspection of 

ACFM was modelled using FEM and the results, verified by experimental 

measurements under seawater environment, show a detection accuracy higher than 

85 % with the maximum relative error for crack depth prediction less than 12 % 

[128]. For these applications the fatigue cracks usually have a large surface length to 

depth and grow perpendicular to the surface, making them very different from the 

RCF cracks seen in rails.   

 

2.4.2 Petroleum industry  

ACFM applications in the petroleum industry are mainly focused on inspecting for 

drill string thread and stress corrosion cracking (SCC) on pipeline string. Following 

the successful application of underwater ACFM, oil companies began to look for 

other areas where the technique would be beneficial. The inspection of the thread 

connection of the drill string, for example is one such area once inspected by MPI. 

However MPI is difficult to deploy in the complex geometry of the thread 

connection especially for the female box threads. ACFM inspection can be carried 

out using replaceable shoes to fit different thread geometries and the relative uniform 

geometry within the thread gives a relative uniform background signal allowing the 

software to detect and size automatically [121]. The array probe can also be used in 

such application in order to greatly decrease the inspection time with a single 360° 

scan [121].    

 

A software package, FADS, was developed to conduct precise calculation and 

prediction of performance by using the detected data from the ACFM sensor in terms 
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of fatigue and fracture mechanics analysis of the thread connection in the drill string 

[127]. It was reported, in 1996, that an ACFM system called ATI was developed to 

inspect pin and box threads of drill string components with sizing of defects greater 

than 8 mm in length and 0.75 mm in depth [121, 129]. An experimental study was 

carried out to investigate the influence of residual stress on ACFM crack 

measurements and the suggestion was given that the ACFM performance was 

compromised when the defects presented in, or near, large residual stress fields, for 

example the cold rolling area of the thread root, because the magnetic properties are 

changed or the crack surfaces contact before the actual crack tip giving a false 

reading [130].  

 

The ACFM technique also plays an important role in detecting defects in pipeline 

string and oil tanks. The advantage of ACFM probes being used to inspect material 

at high temperature, up to 1000 ºC, helps the fabrication of thick wall stainless steel 

pipeline; each weld run can be inspected using ACFM soon after completion rather 

than waiting for the weld component to cool down (to allow inspection with MPI or 

dye penetration); by using the ACFM inspection the weld time can be reduced from 

12 hours per weld to 2 hours per weld [123].  

 

SCC is the major threat to the integrity to oil and gas pipelines that can extend by 

connecting with neighbouring cracks to give a critical size causing product leakage 

or rupture. ACFM has been successfully applied to SCC inspection in pipelines as 

ACFM can detect through the coating without surface preparation and provide high 

inspection speed compared to MPI [118, 131]. Modelling work was carried out to 

study the performance of a feed-through ACFM probe (cylindrical in shape to 

encircle the pipe) for detecting axial cracks in the surface of pipe string; the array 

sensor (consisting of a coaxial excitation coil and a sensing array covered the whole 

circumference) produced a uniform induced current over the full circumference of 

the pipe string and simultaneously scanned the full circumference with 18 probes 

equally spaced at 20° [132]. ACFM array sensors have also been installed on 

swimming and wall-climbing robots to inspect weld defects and floor corrosion of 

oil storage tanks while the tank is in-service full of oil [133]. 
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2.4.3 Rail industry  

Following the successful application use in underwater inspection and oil industry 

applications, the ACFM technique was introduced to the railway system to inspect 

surface-breaking cracks that occur in rail axles, bogies and railheads with 

cooperation between Bombardier Transportation (vehicle operators) and TSC 

Inspection Systems (ACFM sensor manufacturers). The first application of ACFM in 

the rail industry was for rail axle inspection, following a fatal accident involving a 

failure of an axle [119]. The ACFM system can inspect painted axles without the 

need to strip and re-paint, which can greatly decrease the time and costs of 

inspection while helping to keep the integrity of the part by not removing the original 

coating. ACFM was shown to be a successful substitution of MPI in a series of blind 

trials, in which several NDT techniques used in the rail industry were used, where 

the results showed that the ACFM technique outperformed the conventional MPI and 

the advanced eddy current methods [119]. Normally axles can be inspected either on 

or off the vehicle by using an ACFM single probe and array probe, respectively. In 

one development a custom ACFM array probe was designed and deployed to inspect 

an in-service axle under the Earth Return Brush (ERB), a device to transfer the 

return current away from rotating components (roller bearings) and lead it directly to 

the axle, where it is difficult to inspect with conventional techniques [119]. 

 

Railway bogies are regularly inspected using a combination of VI, MPI and UT. In 

the case of MPI or even VI, it requires the bogies to be stripped of all paint and to be 

cleaned at the inspection areas. It is not possible to gain access to some areas of an 

in-service bogie, but ACFM can still inspect many areas that are not accessible for 

MPI and ACFM can also assess the defect depth quantitatively [119]. TSC 

developed ACFM equipment for use on bogies inspection both at overhaul and in-

service. Automated crack detection and sizing using the custom software was used in 

the experiment to inspect a crack of 5 mm length and 0.5 mm depth. ACFM gave 84 % 

PoD, 40 % greater than using MPI in which case the depth has to be subsequently 

determined by using eddy current inspection [15].   

 

The ACFM technique has been used for inspecting RCF cracks on railheads and has 

been intensively investigated to not only detect but with a particular emphasis on 
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sizing cracks. Conventional MPI inspection is unable to provide crack depth 

information and conventional ultrasonics is not sensitive to small surface cracks and 

the subsurface part of a deep crack may be shadowed by shallow cracks.  The ACFM 

technique can estimate the pocket length of small surface-breaking cracks, 

corresponding to the early stage of the RCF crack development, without any 

influence of the shadow effect, as current usually flow along the crack surface within 

the skin depth. The vertical depth prediction from ACFM relies on the assumption 

that the vertical angle is known or calibration to reference samples. However, RCF 

cracks on rails are often closely spaced and they normally extend at angles to the 

running direction as well as the rail surface. The subsurface portion of the cracks 

may extend to a greater width than the surface-breaking component and sometimes 

can be deeper than the surface length (elliptical ratio less than 1). The morphology of 

RCF cracks is complex (see the introduction in section 2.2.1 and more discussion 

about ACFM responses to RCF crack shapes will be shown in section 5.3) and there 

is poor correlation between the surface length and the depth, particularly as the 

cracks get larger. Therefore the morphology of RCF cracks is different to that of the 

fatigue cracks in subsea and pipe line applications ACFM was initially developed for, 

which tend to be have a high surface length to depth ratio. Therefore, the algorithm 

used for ACFM sizing, established for planer defects with semi-elliptical shapes and 

large aspect ratios, does not work for the case of RCF cracks. 

 

To overcome the problem in sizing RCF cracks, empirical corrections were added to 

the existing theoretical model for the consideration of different types and sizes of 

cracks [119]. This required a large amount of data in terms of crack information, 

therefore extensive calibration experiments with destructive methods were carried 

out to investigate the dimensions of real RCF cracks and to calibrate (then validate) 

the results of ACFM inspection. The algorithm with empirical corrections was used 

to determine the crack size in a number of rails and the accuracy has been 

significantly improved in comparison to using the old model, as shown in Figure 

2.19 [119]. This improved algorithm was integrated to the software which can 

automatically detect and report the deepest crack in the process of inspection using 

an ACFM array probe installed on a walking stick. It should be noted that if the rail 

steel grade or possible axle loading are changed then a different set of corrections 

might be needed as crack characteristics including crack shapes and crack spacings 
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(for multiple cracks) are influenced by the rail steel grade (see discussion in section 

2.2.1). A suggestion is that the FEM model may be used to provide a solution: the 

model is calibrated using one steel grade, then it can predict the ACFM signal 

responses to other steel grades effectively (by changing the steel magnetic properties) 

concerning different crack characteristics.   

 

 

Figure 2.19 Comparison of the size errors for RCF cracks estimated using a model 

with empirical corrections and the old model developed for planar semi elliptical 

fatigue cracks [119]. 

 

2.5 ACFM for RCF cracks detection and sizing 

In the Railway Research Centre at the University of Birmingham, experimental work 

has been conducted to investigate the ACFM capability for crack detection and 

sizing during high-speed inspection [17, 134-136]. The work showed that the ACFM 

sensor can accurately detect artificially induced surface-breaking defects without 

being affected by increasing speed when the ACFM sensor was installed above a 

rotary test piece at speeds up to 121.5 km/s. A 3.6 m-diameter spinning rig, 

constructed of curved rail segments, with rotating speeds up to 80 km/h was also 

used to simulate the ACFM performance in a condition close to reality. Eight 1.41 m 

long rails containing various shapes and sizes of artificial cracks, including vertical 

slots, clusters of angled slots and pocket defects, were installed on the rig and ACFM 

inspection was carried out. The recorded signals remain unaffected by increases in 
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speed at a constant lift-off (< 5 mm). The ACFM responses to clustered cracks 

however were found to be influenced by the spacing and the order of cracks (for 

irregular shaped cracks) within the cluster; in addition, no sizing algorithm was 

available for crack cluster prediction making the ranking of severity difficult and 

complicated. An issue identified in the spinning rail rig experiments was that the 

variations of sensor lift-off became significant (> 7 mm) as the speed increased and 

the signal could not be compensated due to the limitations in the design of the trolley 

(used to hold the sensor); at speeds up to 48 km/h, the ACFM sensor could 

successfully detect some of the cracks (> 2 mm in depth with lift-off varying 1-7 mm) 

but ranking of the crack severity was not possible. It was also suggested that errors 

may have arisen for the multiple angled cracks because the machined slot surface 

opening (> 0.7 mm) is relatively large compared to actual RCF cracks [134]. 

 

A robotic inspection system was developed at the University of Birmingham to 

detect and characterise RCF cracks in rails [137-139]. The system consisted of an 

automatic trolley, a robot arm and commercial ACFM equipment, as shown in 

Figure 2.20 [140]. The inspection system can scan the rail with speeds up to 20 km/h 

and can automatically return to the location of an identified crack to perform a 

slower (up to 20 mm/s) but more detailed re-scan to provide data for crack depth 

prediction. A laser sensor is used prior to the ACFM scan to measure the rail profile 

so that the robotic arm with the ACFM sensor moves at a consistent speed and 

allows the ACFM sensor to conform to the railhead at a constant lift-off, thereby 

minimising any errors in measurement. A combined threshold and signature match 

(CTSM) method was incorporated to optimise the data processing to improve the 

PoD at high speed with the presence of noise and several lift-off changes during the 

field test. The advantage of using robotic control is that the sensor orientation can be 

adjusted through calculating the crack horizontal angle to the rail running direction 

based on the minimum and maximum positions of the Bz contour map, in which case 

the Bx perturbation of the ACFM signal is the maximum and therefore can be used 

for crack pocket length estimation. Static measurements (where the crack locations 

are known) and dynamic measurements (the system approaching a given crack 

location) showed the system has high reliability with PoD > 90 % and accuracy 

(sizing error < 20 %). Sizing was carried out using algorithms developed at the 

University of Birmingham and discussed below. The drawback of the system is the 
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time required to complete the detailed scans (i.e. return to the location of an 

identified crack to perform a re-scan for crack depth information) and analyse the 

data if used in on-line rail inspection, but the system can be run autonomously and 

the data analysis can be quicker with improved computer processing capability.  

Trials in a laboratory and on rails with artificial defects have been reported [128]. 

 

 

Figure 2.20 The automatic robotic ACFM inspection system (1-Motion controller, 2-

Robotic arm, 3-ACFM sensor, 4-Laser sensor, 5-IUI software) [140]. 

 

A novel linear (1-D) ACFM array probe was developed for inspection of large metal 

surfaces [141]. Each element of the linear array consists of a linear sensing coil and a 

rhombic exciting coil arranged specifically for high sensitivity; the arrangement 

characterised by sequential switching allows the probe array to inspect large 

components with a length up to 2 meters. Structural optimization of the ACFM array 

probe (2-D) has been carried out with the installation of a double U-shape orthogonal 

inducer, which extends the inspected direction related to surface cracks and 

decreases the loss of magnetic flux in comparison to a single rectangular inducer 

[142]. The array probe is relative insensitive to lift-off up to 1 mm and experimental 

verifications showed that the probe has an accuracy of 5.5 % for sizing an artificial 

semi-elliptical crack with surface length of 47 mm and pocket length of 5 mm (crack 

machined vertically into the steel plate); the accuracy (average of 10 times results) 

was obtained by comparing the experimental measurements with the actual crack 

dimensions. A hybrid inspection system was also developed using an ACFM probe 
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and surface magnetic field measurement (SMFM), which is an eddy-current based 

technique that can enhance the reliability of the ACFM sensor in real-time rapid 

scanning [143]. The interpretation of signals then become important as hybrid 

signals will present when detecting and sizing the crack. The developed signal 

processing technique was reported to work satisfactorily for deep cracks (> 5 mm) 

and a scan speed of 20 mm/s can be achieved. 

 

The capability of the ACFM technique to monitor cracks growth was also reported 

[144]. ACFM array probes consisting of 8 sensing coils spaced at 10 mm was used to 

monitor crack growth in a weld in a high strength steel under four point bending at a 

frequency of 2 Hz and a stress range up to 200 MPa. The crack aspect ratio was 5 

(the crack was found to be 50 mm in length and 10 mm in depth) and the weld toe 

stress concentration factor was absent, therefore the crack initiation position was not 

known and the ACFM system was unable to monitor the crack until the crack depth 

was significant (e.g. > 1 mm deep). 

 

Evaluation of crack size using an ACFM pencil probe is most accurate when moving 

the probe along the single crack with the probe centre over the crack. However 

during inspection of real components the probe path inevitably deviates from the 

ideal position. The influence of scanning at different angles to the crack, scanning 

with the probe at an offset position to the crack centre, scanning with different lift-

off values and scanning with the probe tilted on the evaluation of crack depth using 

an ACFM pencil probe was analysed [145]. Results indicated that defect sensitivity 

and detectability would not be seriously affected by the lift-off up to 2 mm with the 5 

kHz probe (for a crack with 30 mm surface length and 2 mm depth); it was reliable 

to detect a crack (40 mm in length and 4 mm in depth) on scanning 10 mm away 

from the crack centre with a reduction of amplitude of 45 % at 0 mm lift-off; the 

angle between the probe travel direction and crack orientation could be 20° without 

there being a significant decrease in Bx signal; the probe tilted at an angle of 20° 

gave an accurate depth estimation (error of 1.3 %) for the crack with surface length 

of 40 mm and pocket length of 4 mm but the error increased to 20 % when the tilt 

angle was increased to 40°. The study was carried out based on investigation of 

single surface-breaking cracks that are vertical into the specimen only. 
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Modelling work has also been carried out at the University of Birmingham to study 

the ACFM response to RCF cracks occurring in rails [20-22]. A 3D FEM model was 

developed using Comsol Multiphysics to simulate experimental measurements on 

surface-breaking cracks using an ACFM pencil probe. The model was established 

based on three reasonable simplifications: by using a uniform current input field to 

represent the induced current on the rail surface generated by the magnetic field of 

the exciting coil; a simulated scan line (instead of the sensing coil) is used for data 

extraction mimicking the physical inspection using an ACFM pencil probe; the 

morphology of RCF cracks being considered as planar semi-ellipses with different 

ellipse ratios (the semi-major axis to the semi-minor axis), normally at 1-1.75. The 

semi-ellipse and elliptical ratios were determined through extensive investigations of 

RCF cracks in broken rails, discussed in section 2.2.1 [3]. Experimental 

measurements on single and multiple cracks on a calibration rail was used to verify 

the model and the model therefore can be used for different scenarios of ACFM 

inspection and RCF cracks arrangement. Single RCF cracks with ellipse ratios of 1, 

1.25, 1.5 and 1.7 have been studied using the model. Crack dimensions were chosen 

from the guidance diagram for crack classification used by Network Rail UK (Figure 

2.7). The result indicated that the ACFM sensor is able to differentiate and size 

cracks from the light to the moderate category of the classification system, as the Bx 

signal begins to saturate at longer surface length, as shown in Figure 2.21 [20]. Any 

mismatch between probe angle and crack orientation decreases the accuracy of the 

size estimation but an offset of ±10 was reported to have a minor influence on the 

Bx signals and hence crack sizing [20].  
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Figure 2.21 Normalised maximum Bx change with crack surface length for single 

RCF cracks with semi-elliptical ratios from 1 to 1.75 [20]. 

 

A further study has considered ACFM signal responses to multiple RCF cracks in a 

cluster [20, 21]. Figure. 2.22 shows that the Bx signals become deeper and wider 

when the crack number increases for a crack cluster with crack spacing of 1 mm, but 

the signal begins to saturate at a certain number of cracks (approximately 14-16 in 

Figure 2.22a). Furthermore, for closely spaced cracks (< 5 mm), the Bx signal will 

present a single trough whose depth is greater than that of the individual trough for a 

single crack with the same size (as shown in Figure 2.22b) for scanning at a lift-off 

of 0 mm. This will lead to an overestimation of the crack pocket length if the crack 

number in a cluster is not known and sizing based on the single crack algorithm is 

used. The Bx signal presents in the form of individual troughs for each crack within 

the cluster when the spacing is larger than 5 mm, for the other parameters studied 

(e.g. lift-off), but the depth predicted is still greater than that for an isolated crack of 

the same size as those in the cluster. Therefore, it is necessary to identify the crack 

number, the crack spacing and the crack surface length of crack clusters so that the 

pocket length of cracks in the cluster can be correctly sized. The modelling study 

was based on uniform sized cracks (semi-ellipse) in clusters with different crack 

spacing and crack number, however no research considering crack clusters with non-

uniformly sized cracks (different lengths and depths of individual cracks and 

different spacings between individual cracks) has been reported. 
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Figure 2.22 Normalised Bx signals with (a) crack number (crack spacing 1 mm); (b) 

crack spacing (4 cracks) for multiple cracks in a cluster where each crack has the 

same semi-ellipse (surface length 10 mm, pocket length 4 mm, width 0.5 mm, 

horizontal angle 32, vertical angle 25) [21]. 

 

It has been shown that the subsurface portion of a heavy or severe crack may 

propagate significantly beyond the surface-breaking component [3] (see discussion 

in section 2.2.1). A simulated ACFM scan over such crack was made along the 

surface-breaking component at 0 mm lift-off with the current flowing perpendicular 

to the surface component, and the result showed that the ACFM signal cannot detect 

the deepest part of the crack (i.e. not below the surface breaking component) with the 

Bx signal showing a similar level to that for a regular semi-ellipse crack with the 

same surface length. This indicated that large RCF cracks with complex shape may 

not be accurately estimated using ACFM and therefore accurate sizing should be 

limited to light to moderate cracks, which typically have semi-elliptical shapes [20]. 

 

A full ACFM probe model using a field generated by simulating the coils has also 

been developed (the modelling results discussion above have been for a uniform 

field model). The model more accurately simulates the field distribution generated 

by the exciting coil above the inspected sample and can be used to visualise how the 

generated field interacts with the sample and the crack, as shown in Figure 2.23 

[146]. The probe model has been used to size surface-breaking cracks (a 50×5 mm2 

and a 20×2 mm2 semi-elliptical EDM notch) in a welded steel sample. The 

modelling Bx shows a difference of approx. 1.1 % for the 50×5 mm2 notch and a 

difference of approx. 0.8 % for the 20×2 mm2 notch. Bx signal from a uniform field 

model agrees well with the experiment for the 50×5 mm2 notch but shows a 
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difference of approx. 3.2 % for the 20×2 mm2 notch. The probe model gives a better 

prediction for the smaller surface-breaking crack (20×2 mm2). However, the probe 

model can only evaluate the magnetic field where the sensing coil is located in a 

single model run and the geometry of the sensor needs to be re-located in order to 

simulate the physical probe measurement when the probe is moved along the 

surface-breaking component of the crack. In order to achieve continuous data, the 

model needs to be re-built and re-meshed which increases the solving time compared 

to the uniform field model if the crack is great in size and is locating in a component 

with complex structure. 

 

The uniform field model has been used to investigate the ACFM responses through 

conductive coatings such as flame-sprayed aluminium or zinc galvanising [146]. The 

results show that for the case of the coated plate with the crack breaking through the 

coating, the current flow concentrates in the coating layer which means less current 

flows along the cracks surface, leading to a decrease of magnetic strength over the 

middle of the crack, where the sensing coil can pick up the data to evaluate the crack 

pocket length. This causes the sizing algorithm to overestimate the crack depth. For 

the case where the crack breaks through to the sample surface but does not break 

through the coating, the model shows that the current flows over the crack and the 

crack is not detected if the coating is too thick (> 240 μm). The trough and peak of 

the Bz signal can still be present at a certain thickness of coating (400 μm) as some 

current can flow around the ends of the crack.  

 

 

Figure 2.23 (a) Mesh of the ACFM probe model showing the geometry of the 

exciting coils above the weld component with surface-breaking cracks; (b) Contour 

plots showing the generated surface current across a weld [146]. 
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Modelling the influences of induced frequency and lift-off have been carried out in 

order to design and build an ACFM prototype system with a U-shaped probe [147, 

148]. The modelling results show that the induced magnetic field attenuates with an 

increase in inducing frequency while the sensitivity and crack quantification error 

can be improved. The optimum frequency used in the U-shaped prototype was 

determined as 6 kHz to guarantee the effectiveness of signals while achieving a 

satisfactory sensitivity and accuracy; the sensitivity is adversely influenced by an 

increase of probe lift-off and when the lift-off is small (< 3 mm), a slight variation 

will cause a large change in the signal.  

 

As well as the modelling work being carried out to study how ACFM signals interact 

with RCF cracks, some research has focused on new approaches to the algorithms or 

“machine learning” for crack characterization using the ACFM signals [149-151]. A 

B-spline approach was proposed to filter noise in the raw ACFM signal obtained in a 

high-speed test for artificial notches. This approach can approximate a discrete signal 

using a continuous function while improving the ACFM signal reliability and the 

accuracy of characterisation by reducing the noise. The ACFM signal obtained 

through spinning rig tests (speed at 3.6 km/h) can be reproduced using a non-uniform 

B-spline approximation, which greatly reduced the noise in the raw signal and can be 

used to calculate the exact positions and the dimensions of artificial cracks on 

calibration rails [149]. A fuzzy learning approach was developed for estimating the 

depth and profile of fatigue cracks from ACFM signals. Three depth profiles were 

studied: semi-elliptical, symmetrical double-hump and asymmetric double-hump. 

The inversion technique showed accuracy and robustness in reconstructing the 

cracks of these shapes from both simulated and experimental ACFM signals [150]. A 

neural network was developed for characterization of multiple RCF cracks using 

simulated ACFM signals. The training signals for the neural network learning were 

obtained through the uniform field model in terms of the variations in crack number, 

crack spacing and crack size of clustered cracks. Validation showed that the neural 

network performed well in sizing uniformly sized crack clusters with an error of less 

than 20 % but the prediction errors for uneven clusters were slightly higher due to a 

lack of input data to train the neural network [151]. 
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2.6 Summary 

In this chapter the stresses causing RCF crack initiation and propagation in rails have 

been reviewed. The type and shape of RCF cracks occurring in the rail-wheel contact 

interface area have been reviewed with a focus on gauge corner cracking (GCG) and 

head checking (HC) cracks. The current state of rail NDT inspection methods were 

summarised and it has been shown that the ACFM technique shows advantages in 

detecting and sizing surface-breaking RCF cracks compared to other conventional 

methods such as ultrasonics and eddy currents. With the high sensitivity in 

inspecting small surface-breaking cracks as well as a good tolerance of sensor lift-off, 

ACFM can be used as instead of eddy currents or magnetic flux leakage to detect 

surface cracks in addition to ultrasonic methods for high-speed railway inspection. 

Therefore, the ACFM technique for crack detecting and characterization has been 

continuously developed experimentally and numerically not only for commercial 

application but also for the interpretation of ACFM signals for single or multiple 

RCF cracks. 

 

Current work has been focused on the ACFM responses for single RCF cracks, with 

limited results reported for multiple cracks, and the relationship between ACFM 

signals and crack vertical angle (required for the determination of crack vertical 

depth for angled cracks) has not been reported. As RCF cracks usually propagate at 

shallow angles into rails presenting in the form of clusters, it is significant for the 

development of crack characterisation using NDT as well as the application of the 

ACFM technique that ACFM responses to multiple RCF cracks concerning 

variations in crack surface length, crack spacing and crack vertical angle, etc., should 

be investigated, which will be discussed in the following chapters of the present 

work. 
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3. Modelling and experimental procedure 

The primary objectives of the current study are: to extend ACFM characterization for 

single RCF cracks to give information on the vertical propagation angle and hence 

the vertical depth, determined from the vertical angle and pocket length (shown in 

Figure 1.1) using an FEM model (Comsol Multiphysics); to model ACFM responses 

for multiple RCF cracks (uniformly and non-uniformly sized) together with the 

influence of crack vertical angle; to validate all modelling results using both artificial 

calibration cracks and railhead samples with real RCF cracks taken from service 

(where X-ray tomography and progress milling was carried out to investigate the 

crack profiles to compare to the model prediction). 

 

3.1 Model description 

3.1.1 Governing equations 

Mathematical models have been established to calculate the current flow and thus the 

electromagnetic field distribution around surface-breaking cracks. The assumptions 

of these models mainly are:  regular crack shapes (semi-ellipse or rectangle) and the 

skin depth of the electromagnetic field in the metal is relative small compared with 

the crack dimensions. The description of models and the solution of equations can be 

found in [152-154]. These mathematical models provide the theoretical foundation 

of more general FEM software (e.g. Comsol Multiphysics) for resolving of thin-skin 

electromagnetic problems. In the present project, a three dimensional FEM model 

was developed using the ac/dc module in Comsol Multiphysics [23]. The model is 

based on solving Maxwell’s equations using certain boundary conditions. The 

Maxwell’s equations, in differential form for general time-varying fields can be 

written as [23] 

t
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where E is the electric field intensity; D is the electric flux density; H is the magnetic 

field intensity; B is the magnetic flux density; J is the current density; ρ is the electric 

charge density. The constitutive relationships can be expressed as 

         PED  0                                                                     (6) 

    MHB  0                                                               (7) 

   EJ                                                                            (8) 

where ε0 is the permittivity of vacuum, μ0 is the permeability of vacuum and σ is the 

electric conductivity. P is the electric polarization vector, which describes how a 

material is polarized when E is present, and is generally a function of E. The 

magnetization vector M describes how a material is magnetized when a magnetic 

field H is present. 

 

For nonlinear materials, a generalized form of the constitutive relationships is used 

and the relationship for electric fields is  

       
rr DED  0
                                                            (9) 

the relationship for magnetic fields is  

                 
rr BHB  0

                                                         (10) 

and equation (8) can be generalized as 

   eJEJ                                                                  (11) 

where Dr is the displacement when no electric field is present and Br is the magnetic 

flux density when no magnetic field is present; Je is the externally generated current. 

 

The boundary conditions between two media in an electromagnetic problem can be 

expressed as  

        0212  EEn                                                               (12) 

  sDDn  212
                                                            (13) 

        sJHHn  212
                                                          (14) 

               0212  BBn                                                                (15) 

where ρs and Js are the surface charge density and surface current density, 

respectively, and n2 is the outward normal from medium 2. From these equations the 

interface condition for the current density can be derived  

         
t

JJn s







212

                                                        (16) 
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For an AC power electromagnetic problem, the relevant interface condition is 

equation (14). The magnetic field boundary condition is  

  
      

0HnHn                                                              (17) 

the surface current boundary condition is  

         
SJHn                                                                  (18) 

             
SJHHn  )( 21

                                                         (19) 

the perfect magnetic conductor boundary condition is  

                 0Hn                                                                      (20) 

the magnetic potential boundary condition is  

          
0AnAn                                                                   (21) 

the magnetic insulation boundary condition is  

         0 An                                                                        (22) 

and the continuity boundary condition is 

        021  HHn                                                              (23) 

 

3.1.2 Model setup 

The FEM model used in the study consists of a block representing a section of rail 

with cracks at the surface of, and propagating into, the rail block and an air block 

above the rail section. The model geometry with a single semi-elliptical crack and 

the standard Cartesian coordinates are shown in Figure 3.1a. The current flows in the 

y-direction, which is perpendicular to the crack surface length. A perpendicular 

current orientation is selected to give the maximum Bx and Bz signals and represents 

the standard experimental procedure where the ACFM sensor is oriented parallel to 

the crack. A uniform magnetic field is induced above the rail surface mimicking the 

operation of the physical ACFM sensor. The uniform field model (different with the 

probe sensor model discussed in section 2.5) is selected because it provides a good 

simulate to the experiments and greatly decreases the computing time and data 

processing procedure (see discussion in section 2.5). The uniform magnetic field is 

generated by applying surface current boundary condition along the front, up and 

rear surfaces of the air block shown in Figure 3.1a. This allows a uniform current 

distribution at the interface between the air and the rail block.  
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Figure 3.1b shows the details of the meshing of the whole model; areas of refined 

mesh are applied to the crack, the rail surface and the domain from which the signals 

are extracted. The maximum element size applied to the crack surface and the crack 

refined area, i.e. the refined mesh block with size of 25×25×5 mm3 under the rail 

surface, are 0.1 mm and 0.5 mm, respectively and both have an element growth ratio 

of 1.5. The total number of elements for the model is in the order of 1.5×106. Crack 

width of 0.1, 0.3, 0.5, 0.7 and 1 mm were modelled; results shows that the difference 

of Bx value is 0.15 when the width increases from 0.1 to 0.5 mm whilst the 

difference is 0.65 when the width changes from 0.5 to 0.7 mm. It is impossible to 

introduce an extremely narrow crack (RCF cracks are of the order of several microns 

wide) into the model due to meshing and solving problems; therefore the crack width 

selected in the modelling is 0.5 mm, based on a compromise between solvability and 

the signal sensitivity to changes in crack width. This has previously been shown to 

give good results when comparing model and actual measurements for semi-

elliptical cracks [20-22].  

 

The crack shapes and dimensions used in the model are based on semi-ellipse shapes 

with certain ellipse ratios (e.g. 1, 1.25, 1.5 and 1.75) that have been shown to 

approximate real light to moderate RCF cracks (based on the Network Rail 

classification diagram, Figure 2.7) in rails removed from service [3, 20, 22]. The rail 

material considered in the model was 260 grade rail steel. It was assumed that the 

steel has an electrical conductivity of 5 × 106 S/m and relative permeability of 50 [22, 

155]. The conductivity of air is assumed to be 50 S/m, as it aids the convergence of 

the model. The effect of varying the modelled permeability and conductivity values 

by 20% of their assumed values was relatively small: varying the permeability of 50 

by ± 10 resulted in a change of Bx value of ± 0.18, and changing the electrical 

conductivity by ± 1×106 changed Bx value by ± 0.19 [22]. 

.  
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Figure 3.1 (a) Model geometry (for a single semi-elliptical crack) with two refined 

mesh blocks for the crack area and area of data extraction; (b) meshing of the model 

with refined mesh on the crack surface, crack area, rail surface and the area of data 

extraction. 

 

In the present study, the full mesh boundary (FMB) condition is used rather than the 

impedance boundary (IB) condition, which was used in previous work [20, 22]. The 

impedance boundary condition can greatly reduce the meshing requirements and 

solving time by introducing current flowing only along the boundary, that is, the 

crack surface and the interface between air and rail surface. The IB method model 

was verified against experimental data for pocket length measurement, using the Bx 

signal, for cracks with vertical angles larger than or around 30° [20]. The FMB 

method meshes the whole domain with refined meshes for the area around the crack 

and the surface/near surface region. The FMB and IB models give comparable 

results for cracks with vertical angles larger than 30° but discrepancies are observed 

for shallow angle cracks (i.e. crack vertical angle less than 30°). The difference in 

using the FMB and IB conditions for shallow angle cracks will be discussed in 

section 4.1. 

 

As the ACFM sensor gives results in analogue to digital conversion (ADC) units 

while modelling results are in SI units, the normalised Bx (equation 24) and Bz 

(equation 25) are used to compare the experimentally and numerically determined 

signals. The normalised maximum ΔBx (equation 26) is used to determine the crack 

pocket length and the Bz trough-peak ratio (equation 27) is proposed in the present 

study to determine the crack vertical angle. Full details are given in section 4.3 
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where Bx0 and Bz0 are the background signals of the x and z-components of the 

magnetic fields, respectively; the Bxmin is the minimum value of the Bx signal; the 

Bz0 takes a value of 0 % and the maximum value recorded by the measurement line, 

Bzmax, denotes the signal strength of 100 %; Bztrough is the value at the trough of the 

Bz signal and Bzpeak is the value at the peak of the Bz signal.  

 

3.1.3 Current and Magnetic field  

Figure 3.2 shows a typical result from the model of how the current and magnetic 

field distribute around a semi-elliptical surface-breaking crack. For a single surface-

breaking crack, as shown in Figure 1.1 and Figure 3.2, ACFM can give an estimation 

of the physical length of propagation of the crack into the material, known as the 

pocket length, by measuring the perturbations in the x-component of the magnetic 

field (the Bx signal, extracted along the measurement path that is parallel to the 

crack opening). As observed in Figure 3.2a, the Bx trough is generated because the 

current flowing down and along the crack surface leads to a decrease in the current 

flow through the crack, therefore reducing the strength of the magnetic field above 

the middle of the crack. The Bx signal can be used to effectively estimate the pocket 

length for surface-breaking cracks with a semi-elliptical shape whose surface length 

is less than 20 mm and pocket length is less than 10 mm [20, 156], as discussed in 

section 2.5. 

 

It is shown in Figure 3.2b that the current flows clockwise or anticlockwise around 

the ends of the crack, generating a fluctuation in the z-component of the magnetic 

field, Bz. The Bz signal (extracted along the measurement path that is parallel to the 

crack opening) is used to determine the crack surface length by measuring the 
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perturbations (trough to peak position along the x-axis) provided that the ACFM 

sensor is oriented along the crack such that current flows perpendicular to the crack. 

It has been shown that the distance between the Bz trough and peak gives a 

reasonable measurement of the crack surface length and that parameters such as 

sensor lift-off and crack elliptical ratio (surface length to twice pocket length) have 

only a small effect on this measurement [140, 157].  

 

In the present study, the modelled Bz signals are also extracted from the magnetic 

field along a measurement line that is at 45° relative to the crack surface length and 

passes through the centre of the crack, at 0 mm lift off (as shown in Figure 3.2b). 

This mimics the ACFM sensor path across the centre of the crack used in the 

experiments, which is used because this path can best show the magnetic field 

variations caused by a change in the vertical propagation angle of the crack into the 

rail. The modelling results of using the Bz signal to indicate the crack vertical angle 

will be discussed in sections 4.2 and 4.3.  

 

 

Figure 3.2 Current disturbed by a surface-breaking crack (of 8 mm surface length, 

3.2 mm pocket length, 90° vertical angle) generating (a) Bx signal and (b) Bz signal; 

the contour plots show (a) the Bx magnetic field distribution and (b) the Bz magnetic 

field distribution around the crack; the dashed line parallel to the crack opening 
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indicates the path from which the Bx and Bz signals are extracted for crack pocket 

length and surface length determination respectively; the dashed line at 45° to the 

crack opening is the measurement line proposed in this study for crack vertical angle 

determination. 

 

3.2 Samples and ACFM measurements 

3.2.1 Calibration samples 

Single and multiple angled cracks (schematically shown in Figure 3.3) with semi-

elliptical shapes were electro discharge machined on a calibration plate and an 

unworn (new) rail, respectively to verify the modelling results for cracks with 

different vertical angles. A 5 kHz Amigo 255 pencil sensor, produced by TSC 

Inspection Systems, was manually used for the ACFM signal measurements. The 

orientation of the sensor was kept parallel to the surface-breaking component of the 

crack to ensure current flows perpendicular to the crack opening, in which case the 

field perturbation is a maximum. The sensor was held at 0 mm lift-off and moved by 

hand through the centre of the crack along a measurement line that is at 45° to the 

crack opening, as shown in Figure 3.3b. 

 

 

Figure 3.3 (a) Schematic diagram of the calibration plate with single angled artificial 

cracks and the unworn rail with an angled crack cluster, which have semi-ellipse 

shapes; (b) schematic diagram of the manually ACFM measurement procedure. 

 

The desired and final machined angled crack dimensions are shown Table 3.1. A 

crack cluster (formed of 4 cracks) with vertical angle of 25° on an unworn rail 

(machined in a previous study [20, 21]), termed crack cluster 7 in Table 3.1, was also 

experimentally inspected to verify the modelling results for vertical angle of multiple 
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cracks. There was significant variation between the designed and actual crack sizes 

and angles for cracks 2-4 due to the initial difficulties in machining the semi-ellipse 

shape and angled cracks. For cracks 5 and 6 the actual crack width is larger than the 

desired width (0.5 mm), at 1.5 mm (for 20° vertical angle) and 4 mm (for 10° 

vertical angle) due to machining difficulties for shallow cracks.  For these cracks the 

measurement line passes through the centre of the crack opening of the crack face 

approached by the ACFM sensor. The widths of these calibration cracks (except for 

cracks 5 and 6) were 0.5 mm, measured parallel to the plate surface. This matches 

the crack width used in the modelling. 

 

The asymmetry of crack profiles was also measured by inserting a fine copper wire 

into the crack slot from the middle point (0 mm) of the crack surface-breaking 

component and every 1 mm to the left (gives negative value) and right (gives 

positive value) covering the whole surface length. The measurement of the length 

that the copper wire inserted into the crack slot can indicate the pocket length. Table 

3.2 shows pocket lengths measured at the middle point and at ±3 mm away from the 

middle point for cracks 1-6. It can be seen that the machined calibration cracks have 

asymmetric profiles into the steel plate and the influence on ACFM signals is 

discussed in sections 4.2.2 and 5.3.  

 

The pocket length (P) refers to the maximum extent of the crack in its subsurface 

propagation direction and the vertical angle (θ) is the intersection angle between the 

material surface and the crack’s subsurface propagation direction, as shown in Figure 

1.1. Cracks are located far enough from each other as well as the plate edges to avoid 

any effect of interactions between neighbouring cracks and the edges on the ACFM 

signals. The results of model validation tests for the Bx and the Bz signals are shown 

in chapter 4. 
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Table 3.1 Designed and measured (in brackets when different from designed) crack 

dimensions for experimental validation of vertical angle (length measurement errors 

< 0.1 mm; angle measurement errors < 1°). 

Crack (cluster) 1 2 3 4 5 6 7 

Surface length (S), mm 8.0 
8.0 

(9.5) 

8.0 

(11.5) 

8.0 

(12.0) 
8.0 8.0 

10.0 

(11.0) 

Pocket length (P), mm 3.2 
3.2 

(5.0) 

3.2 

(5.0) 

3.2 

(4.0) 
3.2 3.2 

4.0 

(3.0) 

Horizontal angle (α), ° 45 
45 

(36) 

45 

(25) 

45 

(19) 
45 45 32 

Vertical angle (θ), ° 90 
50 

(61) 

30 

(51) 

20 

(41) 

20 

(21) 

10 

(12) 

25 

(30) 

Crack number 1 1 1 1 1 1 4 

Inner spacing (I), mm - - - - - - 4 

 

Table 3.2 Pocket length measured at the middle point (of the surface breaking 

component) and ±3 mm away from the middle point showing the asymmetric shape 

of calibration cracks (length measurement errors < 0.1 mm). 

Crack 1 2 3 4 5 6 

Pocket length at +3 mm  1.9 3.6 3.3 2.9 2.3 2.4 

Pocket length at middle point  3.2  4.7 4.6  3.8 3.2 3.1 

Pocket length at -3 mm 2.0 3.3 2.8 2.0 1.5 1.4 

 

To validate the pocket length predictions using the modelling results for multiple 

cracks, a calibration plate with different sized crack clusters (cracks machined 

vertically into the plate), as shown in Figure 3.4, was electro discharged machined. 

The shape of the cracks is semi ellipse and the designed dimensions for these clusters 

are listed in Table 3.3. As all these cracks are machined vertical into the plate 

(vertical angle of 90°), the dimensions were more accurately controlled. The pencil 

ACFM sensor with frequency of 5 kHz (produced by TSC Inspections) was also 

used in the manually ACFM measurement on multiple cracks. All measurements 

were carried out at 0 mm lift-off and the scanning procedure is similar to that in the 

single crack case, schematically shown in Figure 3.3b. The modelling results for 

multiple cracks and experimental validation are discussed in chapter 5. 
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Figure 3.4 Schematic diagram of the calibration plate with vertical crack clusters. 

 

Table 3.3 Designed crack dimensions used for the multiple cracks validation; all 

cracks in the clusters are the same size except for clusters 14 and 15 where the 

central crack is larger with surface length of 15 mm and pocket length of 6 mm 

(length measurement errors < 0.1 mm; angle measurement errors < 1°). 

Crack cluster 8 9 10 11 12 13 14 15 

Surface length (S), mm 5.0 7.0 11.0 15.0 21.0 14.0 5.0 10.0 

Pocket length (P), mm 2.0 2.0 4.4 5.0 6.0 7.0 2.0 4.0 

Elliptical ratio (R) 1.25 1.75 1.25 1.5 1.75 1 1.25 1.25 

Inner spacing (I), mm 3.0 3.0 5.0 4.0 7.0 5.0 8.0 8.0 

Crack number (N) 3 7 3 5 7 7 7 7 

Horizontal angle (α),  45 45 45 45 45 45 45 45 

Vertical angle (θ),  90 90 90 90 90 90 90 90 

 

3.2.2 Samples taken from service 

A single RCF crack (crack 16) and two RCF crack clusters (crack clusters 17 and 18) 

on rails taken from service (high rail from BNSF, Canada; manufacture year of 1972) 

were selected to be the subject of the case study in the present project. Figure 3.5 

shows these cracks after MPI inspection (samples were first white painted and then 

the magnetic particle ink was sprayed to the sample surface; a magnetic yoke was 

used to magnetize the sample and magnetic particles can accumulate on the crack 

surface breaking component to enhance the crack appearance). Table 3.4 gives the 

crack dimensions. Crack clusters 17 and 18 can be considered as two separate 
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clusters because the spacing between these two clusters is larger than 13 mm and the 

crack spacing needs to avoid the influence of adjacent cracks (for signal from the 

ACFM pencil probe) is normally 10 mm. There is a discontinuous crack (underlined 

by a blue line shown in Figure 3.5 and it can be seen from the sample cross section 

in Figure 3.9 that this crack disappears between clusters 17 and 18 due to the 

discontinuity) located between crack clusters 17 and 18. This crack will be 

influenced by the two clusters therefore is not investigated. Single crack 16 and 

crack cluster 17 and 18 were scanned by the ACFM probe sensor before destructive 

inspection (progressive milling) to investigate their inner dimensions into the rail 

(vertical angle and pocket length).  

 

For the single crack 16, the sensor was held manually at 0 mm lift off and moved 

along the surface-breaking component for pocket length and across the centre of the 

crack at an angle of 45° to the crack opening (with an orientation parallel to the 

crack surface-breaking component) for vertical angle measurement. The crack 

clusters 17 and 18 were selected to be grid scanned using the ACFM probe sensor 

installed on a robotic arm (LR-Mate 200iD, FANUC UK Limited). The robotic arm 

allowed accurate control of lift off distance (0 mm in present study) between the 

single pencil probe and the railhead through the use of a laser range sensor (a 

commercial ACFM walking stick or array probe configuration would give constant 

lift off but was not available). Figure 3.6a shows the robotic arm used in the trial. 

The robotic arm was used to carry out 21 parallel scans (each scan 1 mm apart) 

forming the grid scanning area. The ACFM pencil sensor was held at 0 mm lift-off to 

the rail surface at 45° to the running direction (which is similar to the average 

horizontal angle of the inspected cracks). Figure 3.6b shows the ACFM pencil sensor 

installed on the robotic arm with the laser range sensor scanning over the RCF crack 

cluster.  

 



 
 

66 

 

 

Figure 3.5 Images of sample taken on rails removed from service showing single and 

multiple cracks inspected by manual and robotic ACFM, respectively. 

 

Table 3.4 Summary of the crack dimensions measured on real RCF cracks (average 

values are shown for crack clusters 17 and 18 with the range of values shown in 

bracket; length measurement errors < 0.1 mm; angle measurement errors < 1°). 

Crack (cluster) 16 17 18 

Surface length (S), mm 12.6 11.6 (10.5-14.3) 12.7 (10.8-15.6) 

Horizontal angle (α), ° 53.2 43.3 (29.7-52.8) 43 (41.6-46.7) 

Inner spacing (I), mm - 3.9 (2.7-4.8) 4.4 (1.9-6.1) 

Crack number (N) 1 4 4 

 

 

Figure 3.6 (a) The robotic arm used in the trial; (b) The ACFM probe sensor was 

moved along the running direction with an angle of 45° relative to the crack opening 

(such that the probe is parallel to most of the components of the RCF cracks) by 

robotic arm and the laser ranging sensor was used to maintain a constant ACFM 

sensor lift-off. 
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The Bx and Bz signals obtained from the grid scan were used to construct the 

magnetic field mappings of the x-component and z-component fields (i.e. contour 

plot using experimental signals, as numerically shown in Figure 3.2). The mappings 

provide a more complete image of the magnetic field distribution over the cracks 

compared to the signal obtained from a single scan, especially for crack clusters, and 

facilitate determination of crack surface lengths, pocket lengths and vertical angles. 

In addition, the mappings can indicate the positions of maximum or minimum values 

of magnetic field in relation to the crack surface-breaking component. This is useful 

for cracks with asymmetrical shapes as the maximum or minimum values are not 

necessarily beneath the centre position of the crack surface-breaking component. 

 

3.3 X-ray tomography and progressive milling 

After ACFM measurements the rail samples (the single crack 16 and the crack 

clusters 17 and 18) taken from service were destructive inspected (progressive milled) 

to investigate crack profiles and therefore provide the actual dimensions of crack 

pocket length, vertical angle and vertical depth for comparison with the predicted 

results. Figure 3.7 shows the progressive milling procedure for crack clusters. The 

milling direction is parallel to the running direction and milling started at 9 mm away 

from the gauge side, which corresponded to the start of the cracks and a total 29 mm 

was milled off (each milling removed 1 mm of the material) until all inspected 

cracks have been removed.  

 

The single crack 16 was also inspected using X-ray tomography. Figure 3.8a shows 

the sectioning and imaging direction for the single crack 16. The direction is parallel 

with the main crack opening component such that the real maximum pocket length 

can be achieved from the tomography results. Figure 3.8b shows an X-ray 

tomography image for crack 16, indicating the maximum pocket length of 6.0 mm 

(errors < 0.12 mm) with a vertical angle of 25.7° (errors < 0.1°). Figure 3.9 shows an 

example of the cross section image of crack clusters 17 and 18 when the railhead 

sample was milled vertically to remove 16 mm from the gauge side. 
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Figure 3.7 Progressive milling of crack clusters 17 and 18 on the sample taken from 

service. 

 

 

Figure 3.8 (a) Single crack 16 removed from the railhead sample and the imaging 

and the milling direction; (b) X-ray tomography image for crack 16 showing the 

position of the maximum pocket length of 6.0 mm (errors < 0.12 mm) and the 

vertical angle of 25.7° (errors < 0.1°). 

 

 

Figure 3.9 Cross section for crack clusters 17 and 18 showing the profile of the crack 

propagating into the rail when the rail sample was milled to remove 16 mm from the 

gauge side. 
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The results of measurements on these RCF cracks in the rails taken from service and 

the comparison with the predictions of crack dimensions, i.e. crack vertical angle, 

crack pocket length and crack vertical depth, together with the results of progressive 

milling are discussed in the case study in chapter 7. 

 

3.4 Summary 

This chapter introduces the FEM model used to study the ACFM responses to single 

and multiple RCF cracks and how it can be used to approximate the physical ACFM 

measurements. Modelling results in the study will be verified by experimental 

measurement on calibration cracks using an ACFM pencil probe and details of the 

calibration cracks are provided in this chapter. Cracks on rails taken from service 

were investigated as case studies to show the accuracy using the modelling results in 

the study. The inspection methods of MPI, ACFM measurement, X-ray tomography, 

progressive milling are introduced in this chapter. 
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4. Influence of the vertical angle on ACFM signals 

4.1 Introduction 

RCF cracks have been reported to initially grow at a vertical angle of 10°-30° until 

they reach a critical depth of 5 mm before they probably turn down causing rail 

break, or turn up to the rail surface resulting in a spall [3]. From a rail maintenance 

point of view for light to moderate cracks (categorized by Network Rail, as shown in 

Figure 2.7 [20]), it is important to know the vertical crack depth, which varies 

depending on the crack pocket length and vertical angle, as this determines the 

amount of rail to be ground off to eliminate the RCF cracks before they grow to a 

severe size. It has been found that the Bx signal from ACFM inspection can be used 

to determine the pocket length of cracks in the light to moderate category, whereas 

cracks with larger surface length (e.g. in the heavy to severe category) lead to 

saturation in the minimum Bx value [20]. In addition, the visual length-depth 

guidance diagram (Figure 2.7) cannot give the explicit length and depth relationships 

for RCF cracks due to the variability in vertical propagation angles and surface 

length to depth ratios [20].  

 

Currently for EM-based techniques, the determination of crack vertical depth 

requires an assumed propagation angle into the rail since no method to detect the 

crack vertical angle using EM signals has been reported previously. Other NDT 

studies on surface-breaking cracks are limited to cracks that propagate vertically, i.e. 

where vertical depth is equal to pocket length, or use an assumption about the angle 

of propagation to determine the vertical depth to which the crack has penetrated [20, 

158-160]. A common method used for angled crack characterization is ultrasonic 

detection, for example using tip reflections for long cracks [161, 162] or analysing 

the various components of Rayleigh waves in the vicinity of small cracks with 

pocket lengths less than 5 mm [95, 163, 164]. Improvements in ultrasonic array post-

processing can give more accurate sizing than methods which rely on tip diffraction 

for small cracks, for example use of the half-skip total focussing method was 

reported to improve the depth estimation of small back wall surface-breaking cracks 

compared to standard time-of-flight measurements, including for angled cracks, 

although shallow angle cracks were not assessed [165]. Generally, however, 
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ultrasonic detection used in the rail industry is inaccurate for the small surface-

breaking cracks (< 4 mm in depth) occurring in clusters that correspond to rolling 

contact fatigue (RCF) cracks in the early stage of development. In addition some 

severe internal defects can be masked by small surface cracks (shadowing effect), 

thus giving an underestimated size [1, 14]. 

 

The present chapter reports the relationship between the ACFM Bz signal and the 

vertical angle of RCF cracks, which then allows the crack vertical depth to be 

determined via a simple calculation using the pocket length determined from the Bx 

signal. Section 4.2 presents an analysis of the sensitivity of the Bx signal to crack 

vertical angles in the range 10°-90°. Section 4.3 quantitatively discusses the 

relationship between the Bz signal and the vertical angle, in which the reasons for 

the Bz magnetic field being sensitive to crack vertical angle are explained. The Bz 

trough-peak ratio is proposed as a measure for the crack vertical angle in section 4.4. 

The modelling results are also experimentally verified using single and multiple 

machined cracks in calibration samples.  

 

4.2 Influence of crack vertical angle on Bx signals 

4.2.1 Comparison between model boundary conditions 

In the present study, the full mesh boundary (FMB) condition is used for the 

consideration of crack vertical angle determination rather than the impedance 

boundary (IB) condition, which was used in previous work [20, 22]. The IB 

condition can greatly reduce the meshing requirements and solving time by 

introducing current flowing only along the boundary, that is, the crack surface and 

the interface between air and rail surface. The IB method model was verified against 

experimental data for pocket length measurement, using the Bx signal, for cracks 

with vertical angles larger than or around 30° [20]. The full mesh boundary method 

meshes the whole domain with refined meshes for the area around the crack and the 

surface/near surface region. 

 

Figure 4.1 shows the differences in the modelled Bx signal using these two boundary 

conditions for cracks with surface length of 8 mm and pocket length of 3.2 mm at 

different vertical angles. The results show that the Bx signals for vertical angles of 
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30° to 90° are similar for both boundary conditions (less than 0.53 difference). 

However, at shallow vertical angles, 20° and 10°, the results diverge, with the IB 

model Bx values remaining the same as for higher angles whilst the Bx values for 

the FMB model increase. When using the IB condition the current flow is completely 

bound to the material and crack surfaces regardless of the variation in vertical angle, 

therefore the current path for the estimation of pocket length remains the same. 

However, for the FMB condition the current path can deviate from the surfaces and 

take a shorter path back to the surface when that distance is similar to the skin depth. 

Therefore the trough in the Bx magnetic field (i.e. the negative-valued area of the x-

component of the magnetic field shown in the middle of the crack in Figure 3.2a) 

moves away from the crack surface-breaking component on the side where the crack 

is propagating into the rail.  

 

As the ACFM measurement scan is taken at 45° to the crack surface component 

through its centre, the measurement line does not cross the lowest point of the 

negative-valued area of Bx and the minimum Bx value recorded (i.e. normalised 

minimum Bx) during the scan therefore is not the minimum value of the negative-

valued area (it visualised in Figure 4.4 that the measurement line does not cross the 

minimum value of the negative-valued are of Bx). This effect is significant at 

shallow vertical angles, because the Bx magnetic field moves further as vertical 

angle decreases from 30° to 10° than from 90° to 30°. It is shown in Tables 4.2 and 

4.3 that the distance, Yl or Yr, from the Bz magnetic field to the crack surface-

breaking component is longer when vertical angle decreases from 30° to 10° than 

from 90° to 30°; it is although the Bz magnetic field, the Bx magnetic field will show 

the same result. In addition, the minimum value of Bx magnetic field largely 

decreases in magnitude at shallow vertical angles. Therefore, the normalised 

minimum Bx for vertical angle less than 30° is greatly increased. Comparison of the 

modelled results to experimental data for Bx signals against vertical angles is given 

in section 4.2.2. 
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Figure 4.1 Bx responses to the crack vertical angle (cracks with surface length of 8 

mm and pocket length of 3.2 mm) using the impedance boundary condition and full 

mesh boundary condition. 

 

4.2.2 Sensitivity of Bx signals to crack vertical angle 

In Figure 4.2 the normalised minimum Bx values for the measured dimensions of 

calibration cracks 1-6 obtained via modelling with IB and FMB conditions are 

shown. The experimental results for the calibration cracks with measured dimensions 

are also shown in Figure 4.2. It can be seen that the Bx does not show a regular 

relationship with the change of vertical angle, as discussed previously [20]. 

Modelling results with FMB are closer to the experimental results than those 

modelled with IB for all investigated vertical angles. The small offset between the 

model and experimental values are caused by the machined cracks having a slightly 

asymmetrical shape, as indicated in table 3.2. 

 

As described in section 4.2.1 there is no significant change between Bx signals 

modelled with IB and FMB conditions when the vertical angle is between 30° and 

90°. When the vertical angle changes to 20° the minimum normalised Bx values 

changes from 92.0 % (for IB) to 93.0 % (for FMB), which corresponds to a change 

in estimated pocket length of 0.91 mm, an underestimation of 28.6 %, based on the 

sizing algorithms previously developed for vertical cracks [20]. For the crack with a 
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vertical angle of 10°, the predicted pocket length would be 1.6 mm, an 

underestimation of 50 %. Obviously Bx signals modelled using FMB condition can 

give a better fitting with experimental results with respect to the change of vertical 

angle. However, the Bx signal is insensitive to the vertical angle changing from 90° 

to 30° and therefore it cannot be used to determine the vertical angle as, in practice, 

both the crack pocket length and vertical angle are unknown. 

 

 

Figure 4.2 Modelling Bx signals for measured cracks 1-6 using IB and FMB and the 

experimental Bx signals for measured cracks with dimensions given in Table 3.1 

(shown with the standard error). 

 

4.3 Influence of crack vertical angle on Bz signals 

4.3.1 Sensitivity of Bz signals to crack vertical angle 

The Bz magnetic field is generated because of current rotation at the ends of the 

crack, as shown in figure 3.2a. This rotation is influenced by the vertical angle of the 

crack since the extent of current flow rotation decreases when the crack angle 

becomes shallow, i.e. lower values of vertical angle. The decrease in the rotation of 

current flow at the ends of the crack has two effects: a decrease in current intensity 

(peak and trough values of the Bz signal) and a shift in the maximum current 
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intensity position, i.e. the current flow path gradually becomes more linear at the 

crack ends (see Figure 4.3a). 

 

 

Figure 4.3 Current streamline flowing around a crack (8 mm surface length, 3.2 mm 

pocket length) with different vertical angles (a) the plan view showing the rotation of 

the streamlines at the crack ends being reduced for the smaller vertical angle cracks; 

(b) the lateral view showing the current intensity shifting at the surface with change 

in vertical crack angle (O represents the location of the crack opening and A 

indicates the location of the greatest current intensity at the surface). 

 

Figure 4.3b shows a lateral view of the current flowing down and around the cracks 

with different vertical angles. For a single non-vertical crack with a semi-elliptical 

shape, the current flows along the crack surface and when it flows back to the sample 

surface, it takes a shorter pathway rather than being completely bound to the crack 

surface, as discussed earlier for the Bx signal. This causes the greatest current 

intensity behind the crack to move further from the crack opening, i.e. the shallower 

the crack vertical angle, the longer the distance between O and A, as shown in Figure 

4.3b. Therefore, the negative-valued area and the positive-valued area of the Bz 

magnetic field will move away from the crack opening as the vertical angle 

decreases. 

 

In order to investigate how the Bz magnetic field changes with the crack vertical 

angle, the concept of centre of gravity is introduced to consider the two influencing 

factors: the current intensity and the current intensity displacement. Figure 4.4 
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illustrates the Bz values and the coordinate system used in computing the Bz centre 

of gravity, which can be expressed in terms of X and Y components: 

 

zr r zl l

CG

zr zl

B X B X
X

B B





                                                     (28) 

zr r zl l

CG

zr zl

B Y B Y
Y

B B





                                                       (29) 

where Bzr, Bzl are the maximum and the minimum values of the z-component of the 

magnetic field, respectively; Xr, Yr are the coordinate values corresponding to the 

position of Bzr; Xl, Yl are the coordinate values for Bzl. 

 

 

Figure 4.4 Schematic diagram of the parameters used for computing the centre of 

gravity of the Bz magnetic field (top view of the crack). 

 

Table 4.1 and Table 4.2 give the computed results of the Bz centre of gravity using 

equations 28 and 29 for different vertical angles (θ) for cracks with surface lengths 

(S) of 8 mm and 21 mm. Each surface length contains two conditions of pocket 

length (P) corresponding to ellipse ratios of 1.75 and 1. The coordinate values are a 

few orders of magnitude higher than the magnetic field values so the centre of 

gravity is dominated by the coordinate values, particularly YCG is increased (i.e. YCG 

gradually moves in the Y direction) due to an increase in Yr and Yl (due to a decrease 

in vertical angle), although both the Bzr and the Bzl values decrease with the smaller 

vertical angle. 
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As the effect of changes in vertical angle are symmetric with respect to the Y axis, 

XCG should have a value of 0 for each vertical angle but the computed results show 

some deviations from the Y axis; this is mainly caused by measuring error (due to 

meshing) when determining the Xr and the Xl values, but this has only a small effect 

on the final Bz trough-peak ratio, which is used to indicate the crack vertical angle, 

see section 4.4. YCG is the most important parameter; it increases with a decrease in 

vertical angle, and therefore can be used to show the asymmetrical distribution of the 

Bz magnetic field. However, some of the coordinate values are insensitive to the 

different vertical angles probably because the modelling mesh is insufficiently fine 

to differentiate these minute displacements, so the YCG values show no difference 

between 70° and 90° for cracks with surface length of 8 mm and 21 mm. The 

asymmetrical coordinate values at the same vertical angle (e.g. Yr and Yl for 50° 

vertical angle in Table 4.2) is probably also caused by measuring error; the 

maximum difference of 5.4 % between the Yr and the Yl coordinate values causes a 

change of 2.7 % in YCG, which, however, will not significantly influence the 

determination of the vertical angle through YCG values. 

 

The computed results of YCG in Tables 4.1 and 4.2 suggest that the Bz magnetic field 

can be used to imply the variations in crack vertical angle for cracks with surface 

lengths of 8 mm and 21 mm. However, the YCG values show deviations for the larger 

crack (pocket length of 10.5 mm); for example, see the 10° case in Table 4.2 where 

YCG has a value of 16.20 for a pocket length of 6 mm compared to 19.60 for pocket 

length of 10.5 mm. This is because, the pocket length increases as the surface length 

and the influence of pocket length on the YCG value at a shallow angle becomes 

greater. Therefore, the YCG value is not only sensitive to vertical angle for small 

cracks (surface length of 8 mm based on the results presented) but also sensitive to 

longer crack pocket length (of larger cracks, e.g. 21 mm) at shallower vertical angles 

(30°-10°). 
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Table 4.1 The computed results of the Bz centre of gravity for cracks with 8 mm 

surface length (S) and two pocket lengths (P): 2.3 mm and 4.0 mm 

Crack θ 

Bzl, 

10-6 T 

Bzr, 

10-6 T 

Xl, 

10-3 m 

Xr, 

10-3 m 

Yl, 

10-3 m 

Yr, 

10-3 m 

XCG, 

10-4m 

YCG, 

10-4 m 

S 8 

P 2.3 

10° -3.56 3.55 -3.48 3.51 0.98 0.98 0.10 9.80 

30° -8.03 8.02 -3.48 3.51 0.58 0.58 0.13 5.80 

50° -9.09 9.08 -3.79 3.77 0.35 0.35 -0.12 3.50 

70° -9.36 9.36 -3.79 3.77 0 0 -0.10 0 

90° -9.46 9.45 -3.79 3.77 0 0 -0.12 0 

S 8 

P 4.0 

10° -7.05 7.05 -3.48 3.48 0.98 0.98 0 9.80 

30° -11.17 11.18 -3.48 3.51 0.58 0.58 0.17 5.80 

50° -11.68 11.68 -3.79 3.82 0.35 0.35 0.15 3.65 

70° -11.85 11.85 -3.79 3.81 0 0 0.10 0 

90° -11.91 11.91 -3.79 3.81 0 0 0.10 0 

 

Table 4.2 The computed results of the Bz centre of gravity for cracks with 21 mm 

surface length (S) and two pocket lengths (P): 6.0 mm and 10.5 mm. 

Crack θ 

Bzl, 

10-6 T 

Bzr, 

10-6 T 

Xl, 

10-3 m 

Xr, 

10-3 m 

Yl, 

10-3 m 

Yr, 

10-3 m 

XCG, 

10-4m 

YCG, 

10-4m 

S 21 

P 6.0 

10° -21.70 21.70 -8.32 8.30 1.62 1.62 -0.10 16.20 

30° -29.03 29.03 -8.46 8.46 0.69 0.69 0 6.90 

50° -29.77 29.79 -8.52 8.50 0.35 0.37 -0.07 3.60 

70° -29.9 29.9 -8.64 8.67 0.18 0.18 0.15 0.18 

90° -30.01 29.99 -8.89 8.86 0 0 -0.18 0 
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S 21 

P 10.5 

10° -31.88 31.88 -8.42 8.40 1.96 1.96 -0.10 19.60 

30° -36.43 36.47 -8.61 8.59 0.8 0.81 -0.05 8.05 

50° -36.86 36.88 -8.75 8.76 0.35 0.37 0.07 3.60 

70° -37.03 37.01 -8.91 8.92 0.18 0.18 0.03 0.18 

90° -37.04 37.05 -9.03 9.00 0 0 -0.14 0 

 

4.3.2 Use of Bz signals for vertical angle determination 

Figure 4.5 shows the distribution of the Bz magnetic field above the semi-ellipse 

cracks with vertical angles of 90° and 10°. As the Bz centre of gravity shifts away 

from the centre of the crack surface breaking component onto the side where the 

crack propagates in the material with the change in vertical angle, the Bz signal 

extracted from a measurement line (as shown in Figure 4.5b) across the centre of the 

crack at a certain angle, taken as 45° in the present study, can detect the asymmetry 

in the Bz magnetic field; Figure 4.6 shows the Bz signal taken along this 

measurement line changing with crack vertical angle. 

 

The Bz signal is symmetrical when the crack is vertical, as the maximum and 

minimum possible values of the z-component of the magnetic field and the distances 

from them to the measurement line are the same, as shown in Figure 4.5a. Therefore 

the Bz centre of gravity is at the origin (centre of the surface crack length) when the 

vertical angle is 90°. With a decrease in the vertical angle the Bz signal becomes 

more asymmetrical. The peak value of the Bz signal decreases as the Bz centre of 

gravity moves away from the measurement line. This results from the decrease in the 

maximum value of the z-component of the magnetic field (i.e. the decrease in current 

intensity) and the greater distance from this point to the measurement line (i.e. the 

shift in the current intensity), as shown in Figure 4.5b. 

 

The trough of the Bz signal deepens at a smaller vertical angle as the distance from 

the negative area of the magnetic field dominates the Bz minimum values except for 

the case where the vertical angle is 10°. The negative area of the magnetic field 

approaches the measurement line leading to the lower minimum Bz value, although 
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its absolute values decrease, which should deepen the Bz trough. However, as the 

vertical angle decreases to a shallower angle (e.g. 10°), the crack surface is closer to 

the rail surface and the current rotation at the ends of the crack is weak, which causes 

a larger decrease in the absolute values of the field. The negative area of the 

magnetic field is still approaching the measurement line but the magnetic field 

decays rapidly, therefore, the Bz trough value which is detected by the measurement 

line for the vertical angle of 10° is higher (see the trough in Figure. 4.6 for the 10° 

crack vertical angle). 

 

 

Figure 4.5 Contour plot of the z-component of the magnetic field above a semi-

elliptical crack with vertical angle of (a) 90° and (b) 10°; arrows indicate both the 

negative and positive-valued area moving away from the crack opening component 

as vertical angle decreases; the measurement line parallel with the crack opening is 

used to obtain the Bx and Bz signals that can be used to estimate the crack pocket 

length and surface length respectively; the measurement line at an angle of 45° to the 

crack opening is for recording the Bz signals to determine the vertical angle. 
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Figure 4.6 The Bz signal, for a crack with surface length of 8 mm, pocket length of 

3.2 mm and different vertical angles, showing the asymmetry caused by the smaller 

vertical angles. 

 

4.4 Crack vertical angle determination 

4.4.1 Bz trough-peak ratio 

In order to quantify the change in the Bz signal with the crack vertical angle, the Bz 

trough-peak ratio (see equation 27) of the Bz signal taken along the measurement 

line, which is 45° relative to the crack surface-breaking component, is proposed. In 

addition, although it is easy to observe from contour plots (e.g. Figure 4.5) that the 

Bz magnetic field changes with vertical angle, contour plots are established based on 

theoretical modelling and it is not possible to obtain them experimentally with a 

single pass of a single ACFM probe, and is time consuming if using a grid scan to 

generate a contour plot. The Bz trough-peak ratio can represent the magnitude of the 

trough value to the peak value in the Bz signal along a single measurement line, thus 

showing the asymmetric Bz magnetic distribution caused by the crack vertical angle. 

 

Figure 4.7 shows the modelling and experimental Bz trough-peak ratio obtained 

from the 45° measurement line (45° with respect to the crack surface length) for 

single (cracks 1-6) and multiple (crack cluster 7) calibration cracks with a range of 
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vertical angles between 12° and 90°. Modelling has been carried out for the 

calibration cracks. Five measurements have been carried out for each of the 

experimental point (therefor the error bars shown in Figure 4.7). The experimental 

measurements agree with the modelling results for the calibration cracks in that they 

show the same tendency that the ratio decreases as the crack becomes shallower. The 

Bz trough-peak ratio changes correspondingly with the vertical angle and it changes 

rapidly when the vertical angle is smaller than 30° due to the strong asymmetry in 

the Bz magnetic field. 

 

For the single cracks, the experimental Bz trough-peak ratios are lower than the 

modelling results with a mean difference of 6.2 %, indicating that the magnitude of 

trough and peak values for measured signals are more asymmetrical than the 

modelling results except for the 90° case. This is because the machined calibration 

cracks are slightly asymmetrical themselves. Consequently, the actual Bz magnetic 

field deviates from the centre of the crack, increasing the difference between the 

trough and the peak values meaning the actual Bz trough-peak ratios are slightly 

lower than the model results (this will be discussed in more detail in section 5.3). For 

the crack cluster 7, the experimental Bz peak-trough value is lower than the 

modelling result by 9.5 %. As the crack cluster 7 is machined on an unworn rail, 

with the cracks in the curved gauge side, the ACFM probe sensor does not conform 

fully to the rail surface (the flat base of the sensor is quite long, i.e. 12 mm and 

prevents true conformal contact), leading the trough and peak values to be more 

asymmetrical than the result with the flat steel plate. 
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Figure 4.7 Model and experimental results of the Bz trough-peak ratios against 

different vertical angles for single and multiple cracks. The experimental results 

show standard errors for both measured vertical angles and the Bz trough-peak ratios. 

 

4.4.2 Bz trough-peak ratios for vertical angle measurement of semi-elliptical cracks 

Cracks with surface lengths of 8 mm, 15 mm and 21 mm, which are categorized as 

“light”, “moderate” and “heavy”, respectively, by Network Rail (see Figure 2.7) 

have been modelled to investigate the influences of crack dimensions on the 

relationship between Bz trough-peak ratios and the crack vertical angles. Each crack 

has been studied with the maximum and minimum elliptical ratios reported for RCF 

cracks of 1 and 1.75. 

 

The Bz trough-peak ratio is a reflection of the asymmetrical distribution of the Bz 

magnetic field caused by the vertical angle, as discussed above. Cracks with the 

same surface length but different ellipse values show the same Bz trough-peak ratio 

when the vertical angle is between 30° to 90°, as shown in Figure 4.8. As the cracks 

become shallower, at vertical angles less than 30°, the Bz trough-peak ratios are no 

longer the same for the same surface length. The Bz trough-peak ratio values for the 

small elliptical ratio, i.e. the longer pocket length, are lower than for the higher 

elliptical ratio. The variations are caused by the different pocket lengths of the cracks, 

as cracks with a longer pocket length give a shorter distance from the negative area 
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of the magnetic field to the measurement line, leading to the difference between the 

highest and lowest values along the measurement line becoming much greater. 

However, this effect becomes less obvious with an increase of surface length, as for 

the results for the 21 mm surface length cracks. The longer surface length causes a 

large shift in the Bz magnetic field along the surface length when compared to the 

displacement perpendicular to the surface length with changing vertical angle. 

Therefore, the distance from the measurement line to the Bz maximum and 

minimum value is greater, which decreases the difference caused by the variations of 

the pocket length between the highest and lowest values along the measurement line.   

 

 

Figure 4.8 Bz trough-peak ratios against crack vertical angle along the 45° 

measurement line for semi-elliptical cracks from light to heavy category with 

elliptical ratios 1:1 and 1:1.75 (S denotes the surface length, P denotes the pocket 

length and R denotes the elliptical ratio). 

 

4.4.3 Angle of measurement line to the crack surface-breaking component 

The Bz trough-peak ratio along the 45° measurement line has been shown to record 

differences caused by variations in vertical angle, through modelling and 

experimental validation in section 4.4.1. However from the contour plot of the Bz 

magnetic field (Figure 4.5), it would be expected that the Bz trough-peak ratio is 
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rather sensitive to the angle of the measurement line, i.e. the angle at which the 

sensor is scanned across the crack opening component. To investigate the sensitivity, 

the ACFM sensor was moved by hand at 0 mm lift-off through the centre of the 

crack surface-breaking component at different measurement angles with the sensor 

orientated such that current flows perpendicular to the crack surface-breaking 

component. The measurement angle in the model was varied between 0° to 85° with 

respect to the crack surface length and experimental measurements were carried out 

at angles of 15°, 25°, 45°, 75° to compare with the modelling results.   

 

Figure 4.9 shows the Bz trough-peak ratios against measurement angle for cracks 

with surface lengths of 8 and 15 mm (elliptical ratio of 1.25). For the crack at an 

angle of 90°, the distances from the measurement line to the negative and positive 

valued areas of Bz at any measurement angle are similar, therefore the Bz trough-

peak ratio values remain at -1. As the measurement angle increases, the negative and 

positive valued areas of the Bz magnetic field move away from the measurement line. 

The distance to the positive valued area is greater than to the negative valued area, 

leading to the difference between the minimum and maximum values along the 

measurement line becoming larger. This explains why the Bz trough-peak ratios 

decrease with an increase in the measurement angle, as shown in Figure 4.9. 

 

Experimental results, with error bars, for the calibration cracks with vertical angles 

of 21° and 12° (cracks 5 and 6, respectively) are also shown in Figure 4.9a. The 

figure indicates that it is difficult to distinguish the crack vertical angle using the Bz 

trough-peak ratio for measurement lines at low angles with respect to the crack 

surface-breaking component. The Bz trough-peak ratio starts to saturate at larger 

measurement angle, e.g. 75° and 65° for the crack with surface lengths of 8 and 15 

mm, respectively. Results at greater measurement angles will make it easier to 

distinguish the crack vertical angle in the model results, however in experimental 

inspection with the ACFM sensor, the Bz trough-peak ratio measured via a 

measurement line at greater angles is more influenced by noise, as the magnitude of 

the maximum and minimum values along the measurement line are rather small. An 

optimization study to determine the best measurement line angle for the Bz trough-

peak ratio could be carried out with regard to different crack surface lengths, 
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however, in this study 45° was selected as giving a sufficiently large signal-to-noise 

ratio and Bz trough-peak ratio to allow the crack vertical angle to be determined. 

 

 

Figure 4.9 Bz trough-peak ratio against the measurement angle ranging from 0° to 85° 

for cracks with surface length of (a) 8 and (b) 15 mm (with elliptical ratio of 1.25); 

experimental results for calibration cracks with surface length of 8 mm and vertical 

angle of 10° and 20° are also shown (S denotes the surface length and VA denotes the 

vertical angle). 

 

4.4.4 Sensor lift-off 

The ACFM technique is less sensitive to changes in lift-off than eddy current testing, 

as the signal strength diminishes proportional to the square of the lift-off, rather than 

the cube, which is the case for the eddy current technique. This facilitates the use of 

ACFM even through coatings, paint or contamination. However, the accurate 

quantification of the crack vertical angle using ACFM Bz signals may be adversely 

affected by variations in lift-off due to the signal magnitude changing. Therefore the 

influence of lift-off needs to be determined so that correct estimation of the crack 

vertical angle can be achieved. 

 

For a lift-off sensitivity experiment, the ACFM pencil sensor was held at a certain 

lift-off and moved by hand through the centre of the crack opening component at a 

measurement angle of 45°. A constant lift-off was achieved using cardboard spacers 

with different thicknesses, i.e. 1, 2, 3, 4, and 5 mm, as cardboard has no effect on the 

ACFM signal. 
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Figure 4.10 shows the results of the Bz trough-peak ratio against sensor lift-off for a 

crack with surface length of 8 mm and pocket length of 3.2 mm. The experimental 

results, shown with error bars, are for cracks with vertical angles of 10° and 20°. The 

experimental results match well with the model results. It is shown in Figure 4.10 

that the sensor lift-off has only a small influence on the Bz trough-peak ratio for 

cracks with vertical angles from 90° to 50°; for example, the Bz trough-peak ratio for 

the case of vertical angle of 50° changes from -1.24 at 0 mm lift-off to -1.14 at 5 mm 

lift-off, a difference of 8.06 %. This difference will cause an over estimation of less 

than 10° for the vertical angle according to the model results at 0 mm lift-off shown 

in Figure 4.7. However, the impact of sensor lift-off on the Bz trough-peak ratio 

becomes larger when the crack vertical angle changes from 30° to 10°. A maximum 

difference of 30.5% is observed for the 10° vertical angle crack when the lift-off 

changes from 0 mm to 5 mm, which will cause an over estimation of 30° for the 

vertical angle. 

 

 

Figure 4.10 Bz trough-peak ratio against the sensor lift-off for a crack with surface 

length of 8 mm and pocket length of 3.2 mm; experimental results with error bars for 

the same calibration crack with vertical angle of 10° and 20° are also shown (VA 

denotes the vertical angle).  
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4.4.5 Bz trough-peak ratio for clusters of uniformly sized cracks 

Real RCF cracks are usually variable in size and are present in the form of clusters, 

for example, it has been observed within a cluster of RCF cracks in a rail taken from 

service that the maximum difference in the surface length can be 9 mm and that for 

the pocket depth it can be as large as 5.2 mm [21]. Modelling work has been carried 

out for uniformly sized crack clusters to investigate how Bz trough-peak ratios 

respond to the variations in surface length and spacing between adjacent cracks. This 

is a starting point after which further investigation into the relationship between Bz 

trough-peak ratios and crack clusters with non-uniform sized cracks will be 

discussed in chapter 6. 

 

Figure 4.11a shows the distribution of the Bz magnetic field above the uniformly 

sized crack cluster with surface length of 15 mm and pocket length of 4.3 mm. 

Cracks are at a vertical angle of 30° and are uniformly spaced 8 mm apart. Figure 

4.11b gives the Bz signals recorded along the measurement line at 45° (marked on 

Figure 4.11a) for the crack cluster with uniformly changed vertical angles. The 45° 

measurement line passes across the centre of each of the surface-breaking 

component of cracks. As vertical angle becomes shallower, the magnitude of the Bz 

trough-peak ratio is greater, as shown in Figure 4.8, which indicates the difference 

between the trough and peak values is greater at shallower vertical angles. This 

explains that multiple peaks and troughs are observed in signals for shallow vertical 

angles while signals become flat at large vertical angles. 

 

 

Figure 4.11 (a) Plan view of contour plots of the Bz magnetic field above the 

uniformly sized crack cluster with vertical angle of 30°; (b) Bz signals along the 



 
 

89 

 

measurement line at 45° marked on (a) for the uniformly size crack cluster with 

different vertical angles. Cracks are with surface length of 15 mm and pocket length 

of 4.3 mm; inner spacing between adjacent cracks is 8 mm. 

 

The first trough and the last peak along the 45° measurement line can be used to 

determine the Bz trough-peak ratio for crack clusters to indicate variations in vertical 

angles. It is inevitable that the peak and trough values will be influenced by that of 

adjacent cracks. The influence depends on the size of the cracks and the spacing 

between them. Figure 4.12a shows the Bz trough-peak ratio for uniformly sized 

clusters with surface lengths of 8 mm, 15 mm and 21 mm. The inner spacing is 8 

mm and the elliptical ratios are 1 and 1.75. It can be seen in Figure 4.12a that the Bz 

trough-peak ratio shows a similar trend for crack clusters to that for the single crack 

with different surface length (as shown in Figure 4.8), but the magnitude of the Bz 

trough-peak ratio is smaller than that for the single crack, as the minimum and 

maximum values of the Bz signal are influenced by the adjacent troughs and peaks. 

Figure 4.12b shows the influence of inner spacing, i.e. 4, 6, 8, 10 mm, on the Bz 

trough-peak ratio for a uniformly sized cluster with surface length of 15 mm 

(elliptical ratio 1.75). When the inner spacing between cracks is greater, the 

influence of adjacent cracks on the Bz trough-peak ratio for the crack cluster 

decreases and the Bz trough-peak ratio for the case with inner spacing of 10 mm is 

the closest of those investigated for the same sized single crack (shown by the 

inverted triangle in Figure 4.8). 

 

 

Figure 4.12 Bz trough-peak ratio for uniformly sized clusters when (a) the surface 

length for the crack cluster changes (b) the inner spacing between each crack 



 
 

90 

 

changes (S denotes the surface length, P denotes the pocket length, R denotes the 

elliptical ratios and IS denotes the inner spacing). 

 

Therefor the use of the relationship between the Bz trough-peak ratio and the single 

crack vertical angle will lead to an overestimation of the vertical angle for cracks of 

the same uniform size within clusters and therefore, a different relation between the 

Bz trough-peak ratio with the surface length and the inner spacing should be 

considered with regard to the determination of vertical angle for uniformly sized 

crack clusters (see discussion in section 5.2) 

 

4.5 Summary 

This chapter presented the relationship between the ACFM Bx and Bz signals and 

the vertical angle for RCF cracks using model predictions and experimental 

measurements. The Bz trough-peak ratio is proposed to determine the vertical angle 

of single and multiple RCF cracks. The main conclusions are as follows 

 

• The Bx signal is insensitive to crack vertical angle in the range 30°-90°.  

However, when the vertical angle is less than 30°, the Bx signal increases 

because the Bx trough moves further away from the centre of the crack 

opening, therefore the minimum Bx value recorded for a single line scan is 

not the actual minimum value of the Bx magnetic field. 

 

• The effect of crack vertical angle on the Bx signal, and hence pocket length 

measurement, for cracks with vertical angles less than 30° has been 

determined; errors of 50 % in crack pocket length value (under estimate) 

result for a crack of 3.2 mm pocket length and a 10° vertical angle of 

propagation if basing the pocket length estimate on sizing methods applicable 

to vertical cracks. 

 

• A Bz trough-peak ratio, for measurement through the crack centre along a 

line at 45° to the crack surface length, has been defined to indicate the 

asymmetrical distribution of the Bz magnetic field. It has been shown that the 

Bz trough-peak ratio varies with the crack vertical angle, with this variation 
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also being influenced by crack surface length. The results show that the crack 

vertical angle can be determined from the measured Bz trough-peak ratio, 

provided the crack surface length is known.   

• The angle of the measurement line has a significant influence on the Bz 

trough-peak ratio. It is difficult to distinguish the crack vertical angle using 

the Bz trough-peak value when the measurement angle is less than 20°; the 

Bz trough-peak ratio starts to saturate at larger measurement angles, e.g. 75° 

and 65° for a crack with surface length of 8 and 15 mm, respectively.  

 

• The Bz trough-peak ratio is insensitive to the sensor lift-off for cracks with 

vertical angles between 90° to 50°. However, the influence of lift-off 

becomes larger when the crack vertical angle is between 30° to 10°. A 

maximum difference in signal of 30.5% in value is observed for the 10° 

vertical angle crack when lift-off changes from 0 mm to 5 mm, which will 

cause an over estimation of 30° in the vertical angle. 

 

• The Bz trough-peak ratio along the measurement line at an angle of 45° to 

the crack surface-breaking component can be used to detect the vertical angle 

for uniformly sized crack clusters, but it is different to that for the same sized 

single cracks, as the signal is influenced by adjacent cracks. Change of 

surface length and the inner spacing of cracks in the cluster will also 

influence the relationship between the Bz trough-peak ratio and the crack 

vertical angle. 
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5. Sizing RCF cracks using ACFM signals 

5.1 Bx responses to single RCF cracks 

The trough value of the Bx signal obtained from the measurement line for a single 

RCF crack is affected by the variation in the crack vertical angle, as discussed in 

section 4.2 (see Figures 4.1 and 4.2). This may cause the pocket length determination 

from the Bx signal for a single RCF crack to be inaccurate if the crack vertical angle 

is not known. Figure 5.1 shows the ΔBxmax/Bx0 value recorded along measurement 

lines that are parallel (0°) with and at 45° to the crack surface-breaking component 

for three single RCF cracks (surface length of 8, 15 and 21 mm, respectively with the 

same elliptical ratio) with different vertical angles. These values can be compared 

with the minimum values of the x-component of the magnetic field (i.e. the 

minimum value in the blue valued area of the contour plot shown in Figure 3.2a) 

which are also shown in this figure. 

 

Figure 5.1 shows that the ΔBxmax/Bx0 value obtained from the 0° measurement line 

(used for pocket length determination) significantly decreases, by 62.4 %, as the 

vertical angle changes from 30° to 10° for the crack with 8 mm surface length, 

whereas there is only a 15.8 % decrease in ΔBxmax/Bx0 as the vertical angle changes 

between 90° to 30°. For larger cracks with surface length of 15 and 21 mm, the 

ΔBxmax/Bx0 value also drops more significantly when the vertical angle changes from 

30° to 10° compared to that for 90° to 30°. The decrease in the vertical angle means 

the difference between the minimum value of the x-component of the magnetic field 

and the minimum value recorded along the measurement line is greater due to the 

negative valued area of the x-component of the magnetic field moving further from 

the crack surface position, as discussed in section 4.2. Figure 5.1 also shows that this 

deviation is more significant when it comes to larger cracks, e.g. the deviation 

between the minimum value of the Bx magnetic field and the value recorded along 

the 0° measurement line is 9.0 % for the crack with 21 mm surface length at a 

vertical angle of 10°, but is only 2.4 % for the crack with 8 mm surface length. The 

minimum Bx value from the Bx magnetic field is lower than that obtained from the 

measurement line (therefore the ΔBxmax/Bx0 value is higher, as shown in Figure 5.1) 

because it eliminates the effect of the shift in the minimum current intensity position 
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(negative valued area) of Bx and only the decrease in the current density is 

considered (see discussion in section 4.3.1). 

 

 

Figure 5.1 Normalised maximum ΔBx obtained from the 45°, 0° measurement lines 

and the contour plot of the Bx magnetic field for single RCF cracks with surface 

length of 8, 15 and 21 mm (elliptical ratio of 1.75) and varying vertical angle. 

 

To predict the pocket length of single cracks using the Bx signal obtained from 0° 

and 45° measurement lines, the crack vertical angle should be determined first as 

cracks with vertical angles of 30°-10° will cause significant errors based on the 

results shown in Figure. 5.1. The deviation of the ΔBxmax/Bx0 value caused by 

shallow vertical angles depends on the surface length and pocket length and should 

be compensated when sizing the pocket length using the signal obtained from a 

single ACFM measurement line (i.e. the 0° or 45° measurement line). 

 

In the case of multiple cracks, the change in the ΔBxmax/Bx0 value caused by the 

variation of crack vertical angle depends not only on crack surface length but the 

crack arrangement in the cluster, e.g. crack inner spacing and crack number. 

Therefore, for accurately sizing of the pocket length of angled multiple cracks, the 

influences of the crack angle, the crack surface length, the crack inner spacing and 

the crack number on the Bx signals need to be investigated and compensations 
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should be considered when using the sizing algorithm developed for cracks with 

different vertical angles. This is discussed in section 5.2. 

 

5.2 Bx responses to uniformly sized crack clusters 

RCF cracks often appear in the form of clusters with cracks that are closely spaced, 

leading to an interaction between ACFM signals from each crack. Sizing for crack 

clusters using an algorithm based on predictions for single cracks inevitably leads 

errors, as shown in [21]. The crack vertical angle also influences the pocket length 

prediction using Bx signals obtained from either the single ACFM measurement or 

the minimum values of the x-component of the magnetic field. In this section, 

modelling work on the ACFM responses to uniformly sized RCF crack clusters, 

considering variations in crack surface length, crack spacing, crack number and 

crack vertical angle is presented, which provides a starting point for the study of 

sizing non-uniform crack clusters using ACFM (discussed in chapter 6). This is an 

extension study for sizing multiple RCF cracks following initial ACFM modelling 

on multiple cracks carried out for a limited number of crack arrangement conditions 

in [21]. In the previous study variations in crack vertical angle were not considered. 

 

The initial uniformly sized crack cluster considered in this work consists of 4 cracks 

with surface length of 12 mm and inner spacing of 4 mm. These values are close to 

the averages for the crack clusters taken from service (crack clusters 17 and 18 

shown in Table 3.4); crack clusters with inner spacing of 4 mm and crack number of 

4 were also considered in previous studies [20, 21]. Two vertical angles (10° and 90°) 

were selected for the modelling work, as RCF cracks with vertical angle at 10°-30° 

have been reported [3, 18, 19] and a model of cracks with 90° vertical angle can give 

representative values for cracks with vertical angles between 30° and 90° (as 

discussed in section 4.2.1); 10° was selected to determine the maximum expected 

error if vertical angle is not considered in the prediction of the crack pocket length 

using the Bx signal. The signals are extracted from a measurement line across the 

centre of every crack in the cluster at an angle of 45° to the surface-breaking 

component. 
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5.2.1 Variation of crack surface length 

The cracks modelled are semi elliptical in shape with ratios (half surface 

length/pocket length) from 1 to 1.75 and surface lengths from 3 to 40 mm in order to 

cover the whole range of RCF cracks included in the UK classification system [70]. 

Figure 5.2 shows the modelling results for normalised ΔBxmax with the variation in 

surface length when the vertical angle for the cracks in the cluster is 90° and 10° and 

results for single RCF cracks (with vertical angle of 90°) from [20] are also 

compared in Figure 5.2a. 

 

The normalised maximum ΔBx value for the cluster increases steeply as the surface 

length increases from 3 mm but begins to saturate when the surface length is 27 mm, 

whilst for single cracks the maximum ΔBx value begins to saturate at a smaller crack 

size, less than approximately 20 mm surface length. This means for uniformly sized 

cracks in the clusters presented in this study, the ACFM Bx signal can be effectively 

differentiated for cracks from the light to the heavy category based on the modelling 

results in Figure 5.2a (assuming an elliptical shape). As shown in Figure 5.2b, cracks 

with a vertical angle of 10° decrease the maximum ΔBx with an average difference 

of 30.1 % for all elliptical ratios and surface lengths when compared with that for 90° 

cracks due to the reduced current density and the shift in the minimum value of the 

Bx magnetic field for shallower angles.  

 

The difference in the normalised maximum ΔBx caused by the vertical angle of 90° 

and 10° are listed and compared in Table 5.1 for each crack surface length of the 

crack cluster (elliptical ratio of 1). The maximum ΔBx are obtained from the 45° 

measurement line across the centre of the surface-breaking component of the crack 

cluster and the minimum value of the Bx magnetic field, respectively. The deviation 

in the normalised maximum ΔBx decreases with the larger crack surface length and 

begins to saturate at a surface length of 33 mm. For accurate sizing of pocket lengths 

of crack clusters, the maximum ΔBx should be compensated, for example as shown 

in Table 5.1, a maximum compensation of 7.8 should be considered when predicting 

the pocket length from the 45° measurement line for the crack cluster with a surface 

length of 15 mm (elliptical ratio of 1). It is shown that for all crack lengths (for 45º 

measurement line) the compensation is about 7.8 except the smallest cracks (surface 
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length of 3 mm). This makes the prediction of the compensation easier because it is 

not necessary to calculate all surface lengths cases.  

 

For cracks with a vertical angle of 90°, the minimum value of the Bx magnetic field 

(the negative valued area in the contour plot) is above the centre of the crack surface-

breaking component so the maximum ΔBx obtained from these two methods (i.e. 

from the 45° measurement line and from the minimum value of the Bx magnetic 

field) are similar, however when cracks become shallower (vertical angle of 10°), the 

minimum Bx value recorded along the 45° measurement line (across the centre of 

the surface-breaking component) is not the minimum value of the negative valued 

area, as the negative valued area shifts away from the centre of the crack surface 

component. Therefore, the maximum ΔBx diverges at a vertical angle of 10° for 

these two measurements, with the maximum ΔBx from the minimum value of the 

magnetic field being larger than that from the 45° measurement 

 

 

Figure 5.2 Modelling results for Bx signal response to variations of surface length 

when the crack vertical angle is (a) 90° and (b) 10°; the calibration curves for single 

cracks with semi ellipse shape from the literature [20] are also shown in (a); VA 

denotes the vertical angle and R denotes the elliptical ratio (uniformly sized crack 

clusters with inner spacing of 4 mm). 
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Table 5.1 Normalised maximum ΔBx obtained from the 45° measurement line and 

the minimum value of the magnetic field for crack clusters with vertical angle of 90° 

and 10° when the crack surface length varies (SL denotes surface length; VA denotes 

vertical angle; elliptical ratio 1). 

SL, mm 3 9 15 21 27 33 39 

VA, ° 90 10 90 10 90 10 90 10 90 10 90 10 90 10 

ΔBxmax (45° 

measurement line), % 

3.3 

 

1.2 

 

17.5 

 

10.8 

 

28.6 

 

20.8 

 

34.5 

 

26.6 

 

37.0 

 

29.2 

 

37.8 

 

30.0 

 

37.8 

 

30.1 

 

Deviation, % 63.6 38.3 27.3 22.9 21.1 20.6 20.4 

ΔBxmax (minimum 

value in the magnetic 

field), % 

3.3 

 

1.3 

 

17.6 

 

11.5 

 

28.7 

 

21.9 

 

34.5 

 

28.0 

 

37.1 

 

30.7 

 

37.8 

 

31.8 

 

37.9 

 

31.9 

 

Deviation, % 60.1 34.7 23.7 18.8 17.3 15.9 15.8 

 

5.2.2 Variation of crack inner spacing 

The inner spacing (distance between adjacent cracks in a cluster) of RCF crack 

clusters has been reported to vary from 0.8 mm to 20 mm [1, 21], for different rail 

grades, rail radius of curvature and traffic types. Closely spaced cracks result in 

interactions between the ACFM signals for each crack. It has been reported that 

individual troughs for each crack in a cluster are not seen if the inner spacing is less 

than 5 mm and the ΔBxmax/Bx0 value for closely spaced (1 mm) cracks is 

significantly greater (52.4 %) than for an single crack of the same size; these results 

were from modelling the ACFM signal response for a cluster of uniform sized 

(surface length 10 mm) cracks with a lift off of 0 mm [20, 21]. The study [151] 

developed a neural network to predict the pocket length of crack clusters based on 

ACFM signals; a large number of simulations were carried out to investigate the 

effect of crack inner spacing on the Bx signal responses. However, only cracks with 

vertical angles of 25° and 30° have been considered using the IB condition in these 

studies (see section 4.2.1 for a discussion on the significance of the boundary 

conditions used for modelling shallow angle cracks). The results for crack vertical 

angles of 30-90º will be the same and the 25º result is expected to be similar to that 

for the 30º result as the difference in angle is small. Therefore the influence of 

changing vertical angle to include shallow angles (< 30º) on the Bx responses to 

multiple cracks has not yet been ascertained, and should be considered to determine 

the compensation required when sizing the pocket length for shallow angled multiple 

RCF cracks.  
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A uniformly sized crack cluster (4 cracks with surface length 12 mm) with crack 

inner spacing from 2 to 20 mm and crack vertical angles of 90º and 10 º has been 

investigated. In Figure 5.3 it can be seen that the ΔBxmax/Bx0 value decreases as the 

crack inner spacing increases but it begins to saturate at a spacing of 12 mm for both 

vertical angle cases; in addition the shallower vertical crack angle (10°) decreases the 

ΔBxmax/Bx0 value when compared with the results for vertical angle of 90°. As 

shown in Figure 5.3 for the crack cluster with surface length of 12 mm when the 

ratio of surface length to inner spacing is smaller than a value of 1, the Bx signals 

remain at the same levels for increasing crack spacing for all elliptical ratios (with 

the value being determined by the elliptical ratio). Clustered cracks spaced at this 

distance can be considered as behaving like single cracks as far as ACFM inspection 

is concerned because the cracks are spaced far enough apart that the adjacent crack 

has no influence on the Bx signal. When the surface length to inner spacing ratio is 

larger than 1, the ΔBxmax/Bx0 value is significantly increased due to the smaller inner 

spacing. Modelling results show that the ΔBxmax/Bx0 values remain constant when 

the ratio of surface length to inner spacing ≤ 1 for other surface lengths (e.g. 6 mm, 

15 mm and 20 mm) investigated in this study. It is believed that the ratio of surface 

length to inner spacing dominates the influence of inner spacing on the ΔBxmax/Bx0 

value for a crack cluster and it can be used to indicate whether the inner spacing is 

great enough to eliminate the influence of the adjacent crack on the Bx signal. 

 

 

Figure 5.3 Modelling of Bx signals response to the variations of inner spacing for 

uniformly sized crack clusters with surface length of 12 mm when the vertical angle 

is (a) 90° and (b) 10°; VA denotes the vertical angle and R denotes the elliptical ratio. 
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Table 5.2 lists the normalised maximum ΔBx obtained from the 45° measurement 

line and the minimum value of the magnetic field for crack clusters (elliptical ratio of 

1) with vertical angle of 90° and 10° when the crack inner spacing varies from 2 to 

20 mm. The difference between 10º and 90º cracks should be considered when using 

the ACFM signal to characterise the pocket length of the crack cluster. It should be 

noted that there is little difference in the effect for the different measurements (i.e. 

along the 45° measurement line compared to the minimum value in the Bx magnetic 

field) as the crack size (surface length and pocket length) remains the same, which 

gives a relatively fixed distance from the 45° measurement line to the minimum 

value of the Bx magnetic field. However, the difference is expected to change if the 

crack size changes, then the difference should be calculated to obtain the 

compensation with regard to the new surface length.  

 

Table 5.2 Normalised maximum ΔBx obtained from the 45° measurement line and 

the minimum value of the magnetic field for crack cluster with vertical angle of 90° 

and 10° when the crack inner spacing varies (IS denotes inner spacing; VA denotes 

vertical angle; elliptical ratio 1). 

IS, mm 2 4 6 8 12 16 20 

VA, ° 90 10 90 10 90 10 90 10 90 10 90 10 90 10 

ΔBxmax (45° 

measurement 

line), % 

28.2 18.1 23.4 15.9 18.5 13.5 14.5 11.1 12.1 9.5 11.8 9.3 11.8 9.3 

Deviation, % 35.8 32.0 27.0 23.4 21.5 21.2 21.2 

ΔBxmax 

(minimum 

value in the 

magnetic 

field), % 

28.3 

 

18.9 

 

23.5 

 

16.7 

 

18.6 

 

14.2 

 

14.7 

 

11.5 

 

12.2 

 

9.7 

 

11.9 

 

9.6 

 

11.9 

 

9.6 

 

Deviation, % 33.2 28.9 23.7 21.8 20.5 19.3 19.3 

 

5.2.3 Variation of crack number 

The number of cracks presenting in the cluster can also vary and hence influence the 

Bx signal for crack pocket length prediction [21]. The previous study [21] showed 

the effect of crack number for crack clusters with an inner spacing of 1 mm; the 

ACFM neural network [151] developed for crack cluster pocket length prediction 

was based on a large number of simulations focusing on crack numbers up to 17 with 

the crack inner spacing from 1 to 12 mm. However the crack vertical angle also has 
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an influence on the change caused by the crack number and should be considered. 

The effect of changing the number of cracks within a uniformly sized cluster with 4 

mm spacing for vertical angles of 90° and 10° have been modelled and the results are 

shown in Figure 5.4. The cracks in the cluster have a surface length of 12 mm and 

inner spacing between each crack is 4 mm (surface length to spacing ratio of 3).  

 

The ΔBxmax/Bx value increases when the crack number increases up to 6 then the 

value begins to saturate for all elliptical ratios studied. The ΔBxmax/Bx value for the 

cluster with the shallow vertical angle (10°) is significantly lower than that for the 90° 

vertical angle, as the negative area of the magnetic field is smaller and it shifts from 

the crack surface-breaking component; the Bx signal recorded along the 

measurement line across the centre of the crack is not the minimum value of the 

magnetic field. Further increases in the number of cracks in the cluster have no 

obvious effect on the magnitude of the Bx signal along the measurement line. 

 

Figure 5.5 shows the effect of crack number variation within a uniformly sized 

cluster with surface length of 15 mm and 3 mm spacing (surface length to spacing 

ratio of 5) for vertical angles of 90° and 10°. Cracks with different elliptical ratios 

have the similar tendency in the ΔBxmax/Bx value changing with crack number that 

the ΔBxmax/Bx value increases rapidly as the crack number increases and begins to 

saturate at a certain crack number, e.g. the ΔBxmax/Bx value in Figure 5.5 saturates at 

a crack number of 9 for crack clusters with vertical angles of 90° and 10°.  

 

 

Figure 5.4 Modelling of Bx signals response to the variations of crack number for a 

uniformly sized crack cluster with surface length of 12 mm and inner spacing of 4 
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mm when vertical angle is (a) 90° and (b) 10°; VA denotes the vertical angle and R 

denotes the elliptical ratio. 

 

 

Figure 5.5 Modelling of Bx signals response to the variations of crack number for a 

uniformly sized crack cluster with surface length of 15 mm and inner spacing of 3 

mm when vertical angle is (a) 90° and (b) 10°; VA denotes the vertical angle and R 

denotes the elliptical ratio. 

 

Figure 5.6 shows the ΔBxmax/Bx value for crack clusters with 15 mm surface length 

but with different inner spacing (3-6 mm), which gives surface length to spacing 

ratios from 5 to 2.5. It can be seen that the influence of the crack number on the Bx 

signal depends on the ratio between crack surface length and crack inner spacing 

within a cluster; the ΔBxmax/Bx value saturates at a larger value of crack number 

when the ratio of the crack surface length to the crack inner spacing increases, e.g. in 

Figure 5.6, the ΔBxmax/Bx value saturates at crack number of 9 for the cluster with 

surface length of 15 mm and inner spacing of 3 mm (surface length to spacing ratio 

of 5) while the ΔBxmax/Bx value saturates at crack number 4 or 5 for the cluster with 

surface length of 15 mm and inner spacing of 6 mm (surface length to spacing ratio 

of 2.5). 

 



 
 

102 

 

 

Figure 5.6 Modelling of Bx signals response to the variations of crack number for 

uniformly sized crack cluster with surface length of 15 mm and inner spacings of 3-6 

mm (i.e. surface length to spacing ratio of 5 to 2.5) when vertical angle is 90° and 

elliptical ratio is 1; S denotes the surface length and I denotes the inner spacing. 

 

5.2.4 Pocket length prediction for calibration crack clusters 

Calibration crack clusters (crack clusters 8-13 in Figure 3.4) were used to verify the 

modelling results for the Bx responses to uniformly sized crack clusters with 

variations in crack surface length, crack inner spacing and crack number (as 

discussed in section 5.2.1-5.2.3). Crack clusters 8 to 13 have surface lengths from 5-

21 mm, pocket lengths 2-7 mm (elliptical ratio 1-1.75), inner spacings of 2-7 mm 

and crack numbers 3-7, which represent the typical arrangements of RCF crack 

clusters found in the railway network.  

 

Table 5.3 lists the ΔBxmax/Bx values measured using the ACFM pencil sensor for 

each of the crack clusters, together with the predicted pocket length for crack clusters 

8 to 13. The prediction was made using a lookup table based on the modelling results 

(similar with the results from the model used in this research) for uniformly sized 

crack clusters [151] where the measured ΔBxmax/Bx value and the known surface 

length, inner spacing and crack number are the required inputs. The relative errors 

compared with the actual pocket lengths are also shown in the table. The results 

show that the predicted pocket lengths generally agree with the actual values with an 

average deviation of less than 10 %. The predicted pocket length is underestimated 
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for all the crack clusters due to the machined cracks having a slightly asymmetrical 

shape (discussed in section 4.2.2). This causes the Bx trough along the measurement 

line, which is at 45 ° across the centre of the crack, to not be the minimum value in 

the x-component of the magnetic field.  

 

These results are based on the ACFM measurements for calibration crack clusters 

with a vertical angle of 90° and the modelling results are for uniformly sized crack 

clusters with a vertical angle of 30° [151], however it has been shown that the Bx 

signal shows relatively small deviation (e.g. less than 6.2 % for the crack cluster with 

surface length of 15 mm) when the vertical angle changes from 90° to 30°. For crack 

clusters with vertical angle between 30° to 10°, the pocket length prediction should 

be modified because of the change in signal caused by the vertical angle, which 

depends on the crack surface length, the inner spacing and the crack number as 

shown in the previous sections. For example, for a multiple crack cluster, the crack 

vertical angle should be determined using the Bz trough-peak ratio proposed in the 

present study, then the amount of compensation for pocket length prediction can be 

determined according to the vertical angle range (90° to 30° or 30° to 10°) for 

different surface length, inner spacing and crack number arrangements. The details 

of how this can be carried out will be discussed in chapter 7 (Case study chapter). 

 

Table 5.3 The results of pocket length prediction for calibration crack clusters based 

on the relationships between Bx signals and crack surface length, inner spacing and 

crack number for crack clusters with vertical angle of 90°. 

Crack clusters 8 9 10 11 12 13 

Measured ΔBxmax/Bx values, % 6.1 9.4 17.6 24.1 20.8 22.4 

Stand error of the measurement, % 0.4 0.7 0.4 0.4 0.5 0.7 

Predicted pocket length, mm 1.8 1.8 4.1 4.7 5.5 6.5 

Actual pocket length, mm 2.0 2.0 4.4 5.0 6.0 7.0 

Relative error, % 10.0 10.0 6.8 6.0 8.3 7.1 

 

5.3 Influence of crack shapes on ACFM signals 

The shape of RCF cracks can generally be approximated by a semi ellipse with 

specific elliptical ratios (from 1 to 1.75) when they are in the light to moderate 
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category (see Figure 2.7). However, RCF cracks can deviate from this regular shape 

and become non-planar with complex shapes, for example it has been observed that 

the subsurface portion of a RCF crack, whose surface length belongs to the moderate 

category, extends significantly beyond the surface-breaking component [3]. This 

may cause the vertical angle and pocket length prediction from a single ACFM scan 

to be inaccurate since the non-surface breaking component is not detected or the 

effect of asymmetrical shapes taken into account [20]. Therefore, it is important to 

investigate the influence of an asymmetrical shape on the crack vertical angle and 

pocket length predictions from a single ACFM scan. 

 

Cracks in a rail sample taken from the service (shown in Figure 3.7) were 

progressive milled to investigate their crack profiles. Figure 5.7 shows the 3D 

profiles of RCF cracks using the data from progressive milling. The x and the y axes 

are orthogonal axes and the x axis represents the crack surface length. The z axis is 

the actual vertical depth of these cracks. The crack profiles were reconstructed based 

on the assumption that the crack surface length is linear. It can be seen that crack 

surfaces are non-planer (i.e. the vertical angle varies along the crack length); some 

portion of the crack sub-surface extension is not surface-breaking (as shown in 

Figure 5.7a, b and c, etc.) and can propagate into the rail significantly further than 

the surface breaking component, as shown in Figure 5.7f. 
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Figure 5.7 3D profiles of RCF cracks in the rail sample taken from service where x 

and y axes are orthogonal axes and the x axis represents the crack surface length; the 

z axis is the actual vertical depth of these cracks; the arrows represent the length and 

position of the RCF crack determined from the progressive milling stage. 

 

Four crack profiles were imported into Comsol Multiphysics using interpolation and 

a modelling study on the influence of asymmetrical crack shapes on pocket length 

and vertical angle predictions for ACFM inspection was carried out. In the modelling 

work, all the crack profiles were modified to have the same surface length of 15 mm 

and maximum pocket length of 6 mm to allow the effect of crack shape only to be 

compared. The crack profiles were considered to be planar so that the influence of 

crack profile alone could be determined; actual RCF cracks are non-planar and the 

2D profile is an idealised representation for modelling simplicity. Figure 5.8 shows 

the reconstructed crack profiles used in the model, denoted as A-D. Shape A is 

slightly asymmetrical but could be approximated as a semi ellipse. Shape D is also 

slightly asymmetrical and has a relatively flat bottom profile. Shape B indicates that 
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there is a subsurface portion of the crack extending beyond the surface breaking 

component, as reported in the literature [3]. 

 

A perfect semi-elliptical crack with the same surface and pocket length dimensions 

was also modelled. The Bx signal was determined using a measurement line parallel 

with the crack surface-breaking component, as shown in Figure 3.2a. The Bz signal 

was determined from the measurement line across the centre of the surface-breaking 

component at an angle of 45° representative of the experimental inspection 

procedure using the ACFM probe sensor. 

 

 

Figure 5.8 2D crack profiles developed from the measured dimensions from 

progressive milling. 

 

Figure 5.9 shows the modelling results on how the ΔBxmax/Bx value and the Bz 

trough-peak ratio responds to different crack profiles for vertical angles changing 

from 90° to 10°. The results for shape A are close to the ΔBxmax/Bx value and Bz 

trough-peak ratio obtained from the perfect semi ellipse, indicating that this slight 

asymmetrical profile does not influence the determination of pocket length and 
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vertical angle significantly. Shape D, with a slightly asymmetric shape and flat 

bottom also shows similar results except for the Bz trough-peak ratio when the 

vertical angle is 10°, where a difference of 10.1 % in value is seen compared to the 

semi ellipse shape. This gives an approximately 5º underestimate of vertical angle 

prediction (i.e. predicted vertical angle is less than 5º). Shape B and shape C are 

significantly asymmetrical, which causes an asymmetrical distribution of the x-and 

the z-component of the magnetic field with regard to the y axis. For the Bz trough-

peak ratio, the maximum (peak) and minimum (trough) values along the single 

measurement line are asymmetrical. This can be seen by the small difference in Bz 

trough-peak ratio for the 90° (vertical) crack compared to the semi ellipse case, with 

this difference becoming magnified as the vertical angle decreases. The ΔBxmax/Bx 

value of shape C for a vertical angle of 30º gives a value 23.4 % lower than that for 

the semi elliptical shape and therefore indicates an underestimation of pocket length 

of 3.3 mm; the Bz trough peak value of shape C for a vertical angle of 30 º gives a 

value 66.7 % lower than that for the semi elliptical shape, indicating a underestimate 

of vertical angle of more than 20º. 

 

 

Figure 5.9 Influences of asymmetrical crack profiles on the (a) ΔBxmax/Bx value and 

the Bz trough-peak ratio for cracks with shapes A-D. 

 

The asymmetrical crack profile therefore results in an error in crack sizing when 

using the ACFM signals obtained through a single ACFM scan, e.g. the predicted 

vertical angle will be smaller than reality if using an assumed semi ellipse shape for 

the predictions; therefore the vertical depth of the crack will be also underestimated 

assuming the pocket length is known (from the Bx signal). The measured ΔBxmax/Bx 
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value and Bz trough-peak ratio can be compared with those for a crack with the 

semi-elliptical shape; this is a way to show that the crack profile is asymmetric and 

hence a different measurement (e.g. full grid scan) is needed (discussed in section 

3.2.2).  

 

The ΔBxmax/Bx values and Bz trough-peak ratios in Figure 5.9 indicate that for 

accurate sizing of RCF cracks using a single ACFM scan the cracks should be 

regular, where the assumption of semi ellipse shapes is appropriate. Literature [3, 22] 

suggests that RCF cracks in the light category can be approximate as semi ellipses 

and most of RCF cracks in the moderate category also can be approximated as semi 

ellipses but it is in this category that the crack shapes start to become asymmetric. 

Figure 5.10 shows the normalised Bx signal recorded using the measurement line 

that is parallel to the crack surface-breaking component (as shown in Figure 3.2a). 

The results shows that the signals for shapes B and C are different with that for the 

semi ellipse due to the significantly asymmetrical crack shapes. It should be noticed 

that the Bx signal can be used to indicate the asymmetrical cracks shapes, i.e. the Bx 

trough shifts towards right and left for the shapes B and C because the crack shape 

extends to the right and left mostly for cracks B and C respectively, leading to the 

minimum valued area shifting from the centre of the crack surface when compared to 

the semi ellipse shape. 

 

It is possible that the shape asymmetry can be quantified by using the magnitude of 

the normalised Bx (y axis in Figure 5.10) and the position of the signal trough (x axis 

in Figure 5.10), then the amount of error caused by the asymmetry when compared 

to an assumed semi ellipse can be derived from modelling results for the influences 

of different crack shapes, such as shown in Figure 5.9. Therefore corrections can be 

determined when characterising RCF cracks using individual ACFM scans (i.e. scan 

for the Bx signal parallel to the surface breaking component and at 45º for the Bz 

signal). It is reported that a wavelet network has been developed using the ACFM 

probe output signals to reconstruct the fatigue crack profiles [166], which is similar 

with the concept that using the magnitude of Bx and the position of the single trough 

to indicate the crack profile. 
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Figure 5.10 Normalised Bx signals recorded along the measurement line that is 

parallel to the crack surface-breaking component for different cracks shapes. 

 

5.4 Summary 

In this chapter, the influences of crack vertical angle on characterising single and 

multiple RCF cracks based on a single ACFM scan have been discussed. The 

variations of crack surface length, crack inner spacing and crack number for multiple 

cracks were modelled to investigate the influences of vertical angle (10° and 90°) on 

the ΔBxmax/Bx values determined for multiple cracks. To determine the pocket 

length for multiple cracks, the influence of the vertical angle should be considered 

and the ΔBxmax/Bx value needs to be compensated when the vertical angle is 

between 30° to 10°, which can be determined using the Bz trough-peak ratio along a 

45° measurement line, as discussed in chapter 4. The asymmetrical crack shape also 

has an effect on the determination of pocket length and vertical angle. For accurate 

sizing of RCF cracks using a single ACFM scan the cracks should be regular (RCF 

cracks in light category and most cracks in moderate category, but it is in the 

moderate category that the crack shapes start to become asymmetric), where the 

assumption of semi ellipse shapes is appropriate. 

 

The influence of crack vertical angle on pocket length sizing for multiple cracks 

could be included (via a compensation level) in the proposed neural network 
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prediction approach where the database was established for multiple cracks with a 

vertical angle of 30° [151]. The neural network approach has been reviewed in 

section 2.5.  
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6. Sizing for non-uniformly sized crack clusters 

6.1 Introduction 

Real RCF cracks are generally present in the form of clusters, and some can have 

varying surface lengths, as shown in Figure 6.1. Figure 6.1a shows a cluster of four 

RCF cracks where the two on the left are about 20 mm in surface length but the two 

on the right are only about 10 mm in surface length; the spacing between the cracks 

is similar at about 10 mm. Figure 6.1b shows more closely spaced cracks with cracks 

at the left of the rail section being much shorter than the cracks at the right; some 

shorter cracks can be seen between adjacent large cracks; the surface length ranges 

from 2.3 to 21.7 mm and the crack spacing ranges from 0.8 to 3.8 mm. Regular sized 

RCF crack clusters are more common for rails subjected to mainly one type of traffic 

and variations in crack cluster patterns can reflect situations where the rail 

experienced a different mix of traffic [3]. 

 

 

Figure 6.1 MPI images showing non-uniformly distributed RCF cracks at gauge side 

along the rail running direction. 

 

Consideration of ACFM signal responses to crack pocket length and vertical angle 

for uniformly sized crack clusters has been discussed in chapter 5, which is a good 

starting point from where an investigation on non-uniformly sized crack clusters can 

be developed. As shown in Figure 6.1, RCF cracks within a cluster can vary in 

surface length and it is important to detect and size the deepest crack for the cluster. 

A scenario where the crack cluster is formed of 7 cracks (8 mm inner spacing), with 

the middle one being larger than the others is considered in this chapter (crack 

clusters 14 and 15 shown in Figure 3.4). This crack arrangement has been considered 

because the crack number (7) at this spacing (8 mm) gives a saturated signal (i.e. an 
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increase in crack number does not change the signal) based on the results discussed 

in section 5.2.3, which allows the influence of the larger crack within the cluster to 

be discussed. Modelling and experimental work are discussed in this chapter for the 

non-uniformly sized crack clusters to investigate how Bx and Bz signals respond to 

the variations in surface length and spacing of cracks within the crack clusters; the 

difference to signals from uniformly sized crack clusters is discussed and it is shown 

that the signal can be compensated when sizing the non-uniform crack clusters based 

on the modelling results for uniformly sized crack clusters. 

 

6.2 Model verification 

Crack clusters 14 and 15 (as shown in Figure 3.4 and Table 3.3) were used to 

validate the modelling results on the non-uniformly sized crack clusters. Crack 

clusters 14 and 15 are comprised of cracks with a surface length of 5 mm and 10 mm, 

respectively and the middle cracks of both clusters are larger than the others, in both 

cases with a surface length of 15 mm. All cracks have an elliptical ratio of 1.25 and 

the inner spacing between the cracks is 8 mm.  

 

Figure 6.2 and 6.3 shows a comparison between the modelling ACFM signals and 

the experimental measurements for crack clusters 14 and 15, respectively. The 

modelled normalised Bx for crack cluster 14 agrees with the experimental signal 

with a deviation of less than 1.1 % (with a standard error of 0.26). The Bx troughs 

show similar patterns between the model and the experiment; only five peaks and 

troughs can be seen in the signal, which is due to the indications from the small 

cracks (surface length of 5 mm) adjacent to the larger crack (surface length of 15 

mm) being absent as the Bx trough of the large crack masks the signals for these 

smaller cracks. This will lead to an underestimation of the crack number from the 

signal. Although deviations between the modelled and measured signals for the 

smaller cracks in cluster 15 (as shown in Figure 6.3a), the Bx deviation for the 

middle larger crack is 0.9 % (with a standard error of 0.38), which means there is 

good agreement between the model and the experiment. 

 

For the modelled Bz signals for cluster 14, as shown in Figure 6.2b, multiple peaks 

and troughs are observed with the middle larger trough and peak corresponding to 
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the larger crack in the cluster. The experimental trough and peak values for the larger 

crack agree with the model and it can be distinguished from the troughs and peaks 

for the smaller cracks. However, for cluster 15 (shown in Figure 6.3b), the 

experimental trough and peak for the larger crack is influenced by those of the 

adjacent cracks, which is due to the “smaller” cracks being more similar in size 

(surface length of 10 mm). The measured signal for cluster 15 is more asymmetric 

than that for cluster 14 due to the non-uniformity of the steel plate microstructure 

(see section 2.2.1 for details of influences of different microstructures). The signals 

for both the model and the experiment are obtained from the 45° measurement line, 

as shown in Figure 6.4a, which crosses the centre of each surface-breaking 

component of the cracks, therefore signals for the larger crack can be influenced by 

the adjacent cracks. In experimental inspection using a single ACFM scan, 

particularly for real RCF cracks that are not as uniform as in the calibration clusters, 

the results will show far more complex signals than the modelling results. Therefore, 

it is expected that it will be difficult to distinguish the trough and the peak values 

from the 45° measurement line for any larger crack in a crack cluster, which will be 

a problem if determining the vertical angle of the larger crack is the priority. 

 

 

Figure 6.2 Comparison of modelling and experimental (a) Bx signals and (b) Bz 

signals for crack cluster 14. 
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Figure 6.3 Comparison of Modelling and experimental (a) Bx signals and (b) Bz 

signals for crack cluster 15. 

 

A 135° measurement line, as shown in Figure 6.4a, has also been used to determine 

the Bz trough-peak ratio for the larger crack within crack clusters. Figure 6.4b shows 

the Bz signals along the 135° measurement line for the non-uniformly sized crack 

cluster changing with the vertical angle. This measurement line crosses the centre of 

the larger crack therefore only one pair of trough and peak signals is observed, 

facilitating the recognition of the trough and peak values for the larger crack in the 

cluster. It also shows the variations of peak and trough values for different crack 

vertical angles and therefore can be used to determine the vertical angle in the 

present scenario.  

 

 

Figure 6.4 (a) Plan view of contour plots of the Bz magnetic field above crack 

clusters (surface length of 10 mm and pocket length of 4 mm) with the larger crack 

(surface length of 15 mm and pocket length of 6 mm) in the middle for vertical angle 
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of 90°; (b) Bz signals along a 135° measurement line from (a) for the crack cluster 

against vertical angle. 

 

Figure 6.5 shows the modelling comparison for the ΔBxmax/Bx value and the Bz 

trough-peak ratio for the crack with surface length of 15 mm (pocket length of 6 mm) 

when it presents in the form of a single crack, in a uniformly sized cluster (inner 

spacing of 8 mm) and in a non-uniformly sized cluster (inner spacing of 8 mm) 

where the other cracks are smaller (as shown for cluster 15 in Figure 6.4a), against 

crack vertical angle. Note that the Bz trough-peak ratio for the non-uniformly sized 

cluster is determined by using the 135° measurement line, as discussed in Figure 6.4 

and the Bz trough-peak ratio is computed by Bzpeak/Bztrough; other values are all 

determined using the 45° measurement line.  

 

The ΔBxmax/Bx values measured for the uniformly sized cluster with vertical angle 

of 90º using 45º and 135º measurement lines are 17.9 % and 17.6 %, respectively; 

the ΔBxmax/Bx values for vertical angle of 10º are 13.5 % and 13.3 %, respectively. 

There is no big difference in the Bx signals recorded between the 45º and 135º 

measurement lines for the uniformly sized crack cluster. The Bz trough-peak ratio 

also shows similar values measured using 45º and 135º measurement lines for 

uniformly sized crack clusters (a difference less than 10 % for a cluster with vertical 

angle of 10º). These results are based on uniformly sized crack clusters with surface 

length of 15 mm and inner spacing of 8 mm. Differences caused by using the 45º and 

135º measurement lines in the ΔBxmax/Bx value and the Bz trough-peak ratio depend 

on the surface length and inner spacing; the difference becomes greater when the 

crack cluster has a longer surface length or smaller inner spacing. 

 

In Figure 6.5, for the ΔBxmax/Bx value, the non-uniformly sized crack cluster (cluster 

15) leads to an overestimate of the pocket length for the larger crack at all vertical 

angles, e.g. for a vertical angle of 30°, the ΔBxmax/Bx value for the larger crack in 

the non-uniformly sized cluster is 13.5 % while that for the single larger crack is 

12.8 %, leading to an overestimate of the crack pocket length of about 1.1 mm. As 

shown in Figure 6.5a, the pocket length overestimation depends on the size of the 

other cracks in the cluster, indicated in the ΔBxmax/Bx value for the uniformly sized 

cluster, in which the size of the other cracks increase to be equal to that of the larger 
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crack. For the Bz trough-peak ratio, the non-uniformly sized crack cluster leads to a 

large overestimation of the crack vertical angle for the larger crack, e.g. when the 

larger crack has a vertical angle of 20° in the cluster it will be overestimated to about 

55° based on the Bz trough-peak curve for the single crack. This is mainly caused by 

the different measurement angles (135° for the non-uniformly sized crack cluster and 

45° for the uniformly sized crack cluster). 

 

A larger crack in a non-uniformly sized crack cluster will be overestimated for both 

the pocket length and vertical angle if the sizing is based on the algorithm for a 

single crack; it will be underestimated for the pocket length and will be 

overestimated for the vertical angle if sized based on the algorithm for a uniformly 

sized crack cluster. Therefore it is important to investigate the Bx and Bz responses 

to non-uniformly sized crack clusters and the difference caused by the crack size, 

crack inner spacing and crack vertical angle should be analysed so that the larger 

crack can be accurately sized. Details will be discussed in following sections. 

 

 

Figure 6.5 (a) The ΔBxmax/Bx value; (b) the Bz trough-peak ratio for a crack with 

surface length of 15 mm (pocket length of 6 mm) present in the form of a single 

crack, a uniformly sized crack cluster and a non-uniformly sized crack cluster where 

the other surrounding cracks are smaller (surface length of 10 mm, as shown for the 

cluster 15), against crack vertical angle. 
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6.3 Variation of surface length in the non-uniformly sized cluster 

Figure 6.6 shows the variations in the Bx and Bz signals for the larger crack (surface 

length of 15 mm and pocket length of 6 mm) within a non-uniformly sized crack 

cluster (inner spacing of 8 mm) when the surface length of the other cracks change 

from 3 mm to 15 mm. The results are compared with that for the larger crack in the 

form of a single crack. The crack cluster has 7 cracks and each of the cracks are 8 

mm spaced. The Bz trough-peak ratio is determined by the peak and trough values 

along the 135° measurement line except for the single crack case (there is no 

difference in magnitude measured using 45º and 135º measurement lines for a single 

crack).  

 

 

Figure 6.6 (a) The ΔBxmax/Bx value; (b) the Bz trough-peak ratio for the crack with 

surface length of 15 mm (pocket length of 6 mm) present in the form of a single 

crack and a non-uniformly sized crack cluster when surface length of other cracks 

changes from 3 to 15 mm, against crack vertical angle (SL denotes the surface 

length).  

 

As the surface length becomes greater, the influence of the adjacent cracks on the Bx 

and the Bz signals for the larger crack increases due to the increase in the surface 

length to inner spacing ratio. The results show that the pocket length and vertical 

angle prediction using the curves for single cracks will lead to over estimation in 

values. This, consequently, will give an over estimation of the vertical depth if the 

crack vertical angle or pocket length is known, respectively. An over estimation of 

the crack depth although not causing a serious safety issue, is undesirable as, from 
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railway maintenance point of view, it increases the grinding depth therefore 

accelerating the replacement of the rails and reducing the service life. 

 

6.4 Variation of inner spacing in the non-uniformly sized cluster 

The non-uniformly sized crack cluster with the larger crack (as shown for cluster 15) 

in the middle has also been modelled to study the responses of the Bx and the Bz 

signals on the variation in inner spacing. The inner spacings considered ranged from 

2 mm to 18 mm as this covers the range observed on samples taken from service, as 

discussed in section 1.2. 

 

Figure 6.7 shows the Bx and Bz signals for the larger crack (surface length of 15 mm 

and pocket length of 6 mm) within the non-uniformly sized crack cluster when the 

inner spacing varies, against different vertical angle. The Bz trough-peak ratio is 

determined by the peak and trough values along the 135° measurement line except 

for the single crack case (there is no difference in magnitude measured using 45º and 

135º measurement lines for a single crack). The results are also compared with that 

for the larger crack when it presents in the form of a single crack, so that any 

overestimation in pocket length and vertical angle for the larger crack in the non-

uniformly sized crack cluster can be quantitatively analysed. The overestimated 

ΔBxmax/Bx0 value decreases with an increase in the inner spacing and it begins to 

saturate when the inner spacing is about 14 mm (close to 15 mm, which is the 

surface length of the larger crack in the cluster). This agrees that the Bx signal 

beginning to plateau when the surface length to inner spacing ratio is smaller than 1, 

as discussed in section 5.2.2. With the increase in inner spacing, the influence of 

adjacent cracks on the larger crack signal decreases therefore the Bz trough-peak 

ratio is closer to that for the single crack. The Bz trough-peak ratio gives a small 

difference for different inner spacings at vertical angles of 50°-90°, shown in Figure 

6.7b. As the vertical angle becomes shallower, i.e. less than 50° (which includes the 

typical vertical angles of RCF cracks in rails, 10°-30°), the Bz trough-peak ratio can 

be distinguished by different crack inner spacing.  

 



 
 

119 

 

 

Figure 6.7 (a) The ΔBxmax/Bx value; (b) the Bz trough-peak ratio for a crack with 

surface length of 15 mm (pocket length of 6 mm) present in the form of a single 

crack and a non-uniformly sized crack cluster when crack inner spacing varies from 

2 to 18 mm, against crack vertical angle (IS denotes the inner spacing).  

 

6.5 Variation of crack number in the non-uniformly sized cluster 

The influence of crack number variation on the ΔBxmax/Bx0 value and Bz trough-

peak ratio for the larger crack (surface length of 15 mm and pocket length of 6 mm) 

in the non-uniformly sized crack cluster, against different vertical angles was also 

investigated. The crack number was increased equally on either side of the larger 

crack from 3 to 9; it has been observed in real RCF crack clusters that a larger crack 

typically exists between two or more relatively smaller cracks, or vice versa, as 

shown in Figure 6.1b. The Bz trough-peak ratio is determined by the peak and trough 

values along the 135° measurement line except for the single crack case. 

 

Figure 6.8 shows that increasing the crack number from 3 to 9 does not change the 

ΔBxmax/Bx0 value or the Bz trough-peak ratio significantly although all values for 

the cluster are different from that for the single crack thus leading to the 

overestimation of the pocket length and vertical angle if sizing based on the 

algorithm for single cracks. 
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Figure 6.8 (a) The ΔBxmax/Bx value; (b) the Bz trough-peak ratio for a crack with 

surface length of 15 mm (pocket length of 6 mm) present in the form of a single 

crack and a non-uniformly sized crack cluster when the crack number varies from 3 

to 9, against crack vertical angle (N denotes the crack number).  

 

6.6 Summary 

This chapter has discussed the responses of the Bx signal (the ΔBxmax/Bx value) and 

the Bz signal (the Bz trough-peak ratio) for non-uniformly sized crack clusters. A 

larger crack (greater in surface length and pocket length) present in the centre of the 

crack cluster with smaller cracks (e.g. crack clusters 14 and 15 shown in Figure 3.4) 

was considered to represent RCF crack clusters occurring in rails caused by mixed 

traffic. Calibration crack clusters were inspected and the results compared with the 

modelling outputs. The Bz trough-peak ratio along a 135° measurement line was 

proposed to determine the vertical angle of the larger crack in the non-uniformly 

sized crack cluster as this minimised interference in the signal from the neighbouring 

cracks. The influences of crack surface length, crack inner spacing, crack number 

and crack vertical angle on the Bx and Bz signals for the non-uniformly sized crack 

cluster were quantitatively analysed and the results compared to that for a single 

crack of the same dimensions as the central larger crack in the cluster.   
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7. Case study: Sizing for RCF cracks taken from service 

7.1 Single cracks 

As shown in Figure 3.5, RCF crack 16 on the sample taken from service was 

selected to be ACFM inspected and progressive milled, as the case study for single 

RCF cracks inspection, and the predicted and the measured crack vertical angle and 

crack pocket length were compared. Figure 7.1 shows the normalised Bx and Bz 

signals measured by the ACFM pencil probe sensor for the single RCF crack 16. The 

Bx and Bz signals were determined using six measurements and the average value 

was taken to estimate the pocket length and vertical angle. The background signal 

(the value of 100 % for the Bx signal and the value of 0 % for the Bz signal) was 

constant (± 0.7 % for Bx signals and ± 6.2 % for Bz signals) for all 6 measurements 

at the beginning of each scan but varied after the scan since the scan line was carried 

out over the gauge corner (curved profile) of the rail and the measurements were 

made by hand, therefore the conformity of the sensor to the rail curvature was not 

reproducible. As the background value for ΔBxmax/Bx and Bz trough-peak ratio 

computations was determined using the data from the beginning of each scan (i.e. 

from the background on the left of the trough), the divergence of background signals 

after the scan does not influence the values need for pocket length and vertical angle 

predictions.   

 

 

Figure 7.1 The experimental normalised (a) Bx and (b) Bz signals for the single RCF 

crack 16 shown in Figure 3.5. 
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The single RCF crack was progressive milled to investigate the actual dimensions 

(pocket length and vertical angle). The milling direction is shown in Figure 3.8a. 

Figure 7.2 shows the MPI images of each progressive milling stage (1 mm spacing) 

and the corresponding pocket length and the vertical angle measured from each 

image for the crack. The figure indicates that the maximum pocket length is 6.1 mm 

(errors < 0.1 mm) with a vertical angle of 28.1° (errors < 1°) occurring at the milling 

stage of +3 mm. This is similar to the result obtained by X-ray tomography (see 

Figure 3.8) which indicates a maximum pocket length of 6.0 mm (errors < 0.12) mm 

with a vertical angle of 25.7° (errors < 0.1°).  

 

 

Figure 7.2 Images of each progressive milling stage for RCF crack 16; the milling 

stages from the crack centre (visual) milling stage are given in ± mm (PL denotes the 

pocket length and VA denotes the vertical angle; length measurement errors < 0.1 

mm and angle measurement errors < 1°). 

 

The actual crack dimensions are compared with the predicted results based on the Bx 

signal compensated for vertical angle (discussed in section 5.1). The results are listed 

in Table 7.1 and the ΔBxmax/Bx0 and the Bz trough-peak ratio with standard errors 

were obtained from the ACFM measurements on crack 16 (shown in Figure 7.1). 

The predicted pocket length and vertical angle were obtained by comparison to the 

modelling results for a single RCF crack in Figure 2.21 (from a previous study) and 
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Figure 4.8 (from the present study), respectively, assuming an elliptical ratio of 1. 

Actual crack dimensions (crack pocket length, crack vertical angle and crack vertical 

depth) are all based on measurements of images obtained from the progressive 

milling. It was found that the maximum vertical angle is 42.1° but at this location the 

pocket length is only 2.3 mm, which gives a vertical depth of 1.5 mm, less than the 

measured maximum vertical depth of 2.9 mm at the milling stage of +3 mm where 

the pocket length is 6.1 mm and the vertical angle is 28.1º. Therefore the maximum 

vertical depth does not necessarily coincide with the maximum pocket length.  

 

The average vertical angle is 24.5°, which compares well with the predicted vertical 

angle of 21.0°. The predicted vertical angle is smaller than measured, with a 

deviation of 14.3 %, which may be due to the crack being located at the curved 

gauge side of the rail (shown in Figure 3.8b) leading to the trough and peak values of 

the Bz signals to be more asymmetrical than that if the crack were in a sample with a 

flat surface. The predicted pocket length (using an uncorrected prediction for a single 

crack with a 90º vertical angle) is significantly smaller than the actual value (relative 

difference of 54.1 %) because the crack vertical angle is shallower and this causes 

the ΔBxmax/Bx0 value to be smaller than that for a larger vertical angle for a crack 

with the same pocket length (see discussion in section 5.1). If the corrected 

prediction is made to account for the vertical angle (21.0°) of the crack then the 

predicted pocket length is 5.0 mm, greatly decreasing the relative difference from 

54.1 % to 17.4 %. As the pocket length and the vertical angle are both 

underestimated, the crack vertical depth is underestimated by about 35.4 %. The 

asymmetrical shape of crack 16 also gives a deviation between the predicted and the 

actual pocket length as discussed in section 5.3 and may account for the errors 

between the actual and predicted crack dimensions. 
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Table 7.1 Results of predicted dimensions for the single RCF crack 16 and the 

comparison to the actual crack dimensions. 

RCF crack 16 
Measured and 

predicted error 

ΔBxmax/Bx0 with standard difference 7.90 0.34 % 

Bz trough-peak ratio with standard difference -1.75 0.12 % 

Predicted pocket length (uncorrected) 2.8 mm 0.1 mm 

Predicted vertical angle 21.0° 1° 

Predicted vertical depth 1.0 mm 0.1 mm 

Actual maximum pocket length 6.1 mm 0.1 mm 

Actual average vertical angle 24.5° 1° 

Actual maximum vertical depth 2.9 mm 0.1 mm 

Relative difference for pocket length 54.1 % - 

Relative difference for vertical angle 14.3 % - 

Relative difference for vertical depth 64.3 % - 

Compensation for pocket length 2.6 % 0.1 % 

Predicted pocket length (compensated) 5.0 mm 0.1 mm 

Relative difference for pocket length 

(compensated) 
17.4 % - 

Predicted vertical depth (compensated) 1.8 mm 0.1 mm 

Relative difference for vertical depth 

(compensated) 
35.4 % - 

 

Although the vertical angle is underestimated, the relative difference is small (a 

difference in angle of 3.5º) and the main reason for the deviation is because the 

modelling results are based on a rail model with a flat surface and the trough and 

peak values of the Bz signal are more asymmetrical for a curved rail surface. The 

compensation method used for the pocket length sizing algorithm greatly decreases 

the difference in the predicted pocket length (54.1 % to 17.4 %) but the asymmetrical 

crack shape still causes some error for pocket length. Hence it has been shown that to 

accurately size a semi-elliptical single RCF crack, the vertical angle of the crack 

should be determined from the Bz trough-peak ratio then appropriate compensation 



 
 

125 

 

for the pocket sizing algorithm can be made to eliminate the effect of the crack 

vertical angle on the Bx signals. 

 

7.2 Multiple cracks 

RCF crack clusters 17 and 18 (shown in Figure 3.5) on the sample taken from 

service were selected as the case study for sizing multiple cracks using ACFM 

signals. Crack clusters 17 and 18 were grid scanned using the ACFM pencil sensor 

controlled by a robotic arm. They were then progressive milled to investigate the 

actual crack pocket length, crack vertical angle and crack vertical depth into the rail. 

MPI images after each milling stage were taken (e.g. as shown in Figure 3.9) and the 

crack dimensions were recorded and are listed in Tables 7.2 and 7.3. The milling 

stages are represented in mm indicating the distance from the rail gauge side of each 

stage (milling starts at 9 mm away from the gauge side, where the crack begins to be 

observed from the cross section of the rail). Cracks 1 and 4 in cluster 17 are 

discontinuous as they cannot be observed at the milling stage 14 and 17 mm, 

respectively. 

 

Table 7.2 Summary of crack dimensions for each of the cracks in crack cluster 17 

(milling stage refers to the distance from the rail gauge side; PL denotes pocket 

length, VA denotes vertical angle and VD denotes vertical depth; the values shown 

with a ‘*’ refer to when the crack was not surface-breaking; length measurement 

errors < 0.1 mm; angle measurement errors < 1°).  

Milling 

stage, 

mm 

Crack cluster 17 

1 2 3 4 

PL, 

mm 
VA, ° 

VD, 

mm 

PL, 

mm 
VA, ° 

VD, 

mm 

PL, 

mm 
VA, ° 

VD, 

mm 

PL, 

mm 
VA, ° 

VD, 

mm 

9 0.7 18.9 0.2 1.9 17.2 0.6       

10 1.3 25.3 0.5 2.3 19.1 0.8 1.4 26.5 0.6    

11 1.5 26.3 0.7 2.6 18.6 0.8 1.8 21.6 0.7 0.4 25.3 0.2 

12 1.6 30.7 0.8 3.3 19.8 1.1 2.7 24.7 1.1 1.2 28.3 0.6 

13 1.6 27.0 0.7 3.9 25.8 1.7 3.4 25.2 1.5 2.3 17.2 0.7 

14 - - - 4.2 22.2 1.6 4.2 29.7 2.1 2.6 21.8 1.0 

15 2.3 20.6 0.8 4.7 18.1 1.5 4.5 24.2 1.8 3.0 21.0 1.1 

16 3.4 19.9 1.1 6.1 16.6 1.8 4.8 20.0 1.7 3.1 17.6 1.0 
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17 3.5 18.1 1.1 7.0 12.3 1.5 4.5 16.6 1.3 - - - 

18 4.8 15.3 1.3 4.4* 12.1 0.9* 4.4 16.8 1.3 1.3 24.2 0.5 

19 6.2 12.0 1.3    3.0* 17.4 0.9* 2.4 15.6 0.7 

20       2.63* 15.5 0.70* 3.61 16.2 1.0 

21       2.53* 14.7 0.64* 3.01 11.3 0.6 

22       2.00* 12 0.42* 3.00 12 0.6 

 

Table 7.3 Summary of crack dimensions for each of the cracks in the crack cluster 18 

(milling stage refers to the distance from the rail gauge side; PL denotes pocket 

length, VA denotes vertical angle and VD denotes vertical depth; the values shown 

with a ‘*’ refer to when the crack was not surface-breaking; length measurement 

errors < 0.1 mm; angle measurement errors < 1°).  

Milling 

stage, 

mm 

Crack cluster 18 

5 6 7 8 

PL, 

mm 
VA, ° 

VD, 

mm 

PL, 

mm 
VA, ° 

VD, 

mm 

PL, 

mm 
VA, ° 

VD, 

mm 

PL, 

mm 
VA, ° 

VD, 

mm 

9 0.50 22.4 0.2       1.86 20.1 0.6 

10 1.56 19.4 0.5 1.2 17.0 0.4 1.1 19.9 0.4 2.8 20.9 1.0 

11 2.30 24.2 1.0 2.0 24.1 0.8 2.0 24.8 0.8 3.8 19.2 1.2 

12 2.42 24.1 1.0 2.9 23.5 1.2 2.4 24.2  1.0 4.6 20.1 1.6 

13 3.58 21.1 1.3 3.3 22.4 1.3 3.3 22.1 1.2 5.4 18.4 1.7 

14 3.98 18.7 1.3 3.4 22.6 1.3 4.2 17.4 1.3 5.7 17.9 1.8 

15 4.32 19.5 1.4 3.7 26.7 1.7 4.3 19.2 1.4 7.0 14.6 1.8 

16 4.37 15.0 1.1 4.0 22.9 1.6 4.6 16.9 1.4 7.6 14.1 1.9 

17 4.69* 14.8 1.4* 4.1 25.7 1.8 5.6 13.1 1.3 7.6 14.4 1.9 

18 3.81* 15.3 1.7* 6.1 9.3 10. 5.9 18.8 1.9 8.7 11.9 1.8 

19    4.9* 10.0 1.1* 6.8 17.3 2.0 8.7 13.6 2.0 

20       5.2 15.3 1.4 9.8 10.9 1.9 

21       3.8* 13.8 1.4* 11.6 9.0 1.8 

 

Figure 7.3 shows a map of the x and the z components of the magnetic field 

reconstructed from the ACFM grid scanning signals. Cracks are assumed to be 

straight and are represented as black lines in the figure indicating the crack 

arrangement for clusters 17 and 18. From the magnetic field mapping, the minimum 

value of the Bx magnetic field (for pocket length) and the minimum and maximum 

values of the Bz magnetic field (for vertical angle) can be accurately determined, 
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This scenario represents scanning with an array probe [119] or robotic system [137, 

138] with appropriate signal analysis.  

 

 

Figure 7.3 (a) Bx and (b) Bz signal maps using grid scanning with an ACFM pencil 

sensor (crack positions are superimposed on the map by black lines). 

 

Table 7.4 shows the predicted crack dimensions compared with the actual 

dimensions for crack clusters 17 and 18. The ΔBxmax/Bx0 values and the Bz trough-

peak ratios were obtained from the magnetic field maps constructed from the ACFM 

signals. The pocket lengths and vertical angles are predicted using the measured 

ΔBxmax/Bx values and the Bz trough-peak ratios by comparison to the modelling 

results for multiple cracks with a uniform size (taken as the average surface length 

and average inner spacing from the MPI data) as discussed in sections 4.4.5 and 5.2, 

and an assumed semi-ellipse ratio of 1 (which, from the rail maintenance point of 

view, can give a prediction of the maximum pocket length and vertical depth to 

ensure the cracks are removed completely). The actual pocket length and vertical 

angle are taken as the average of the maximum values for each crack in the cluster. 

The vertical angle prediction gives a maximum relative difference to the average 

dimension of less than 13.6 % for the inspected crack clusters. The relative 

differences are even smaller (7.0 % and 4.6% for clusters 17 and 18, respectively) if 

compared with the actual maximum vertical angle (30.7° and 26.7° for clusters 17 

and 18, respectively). The pocket length prediction gives relatively large difference 

(24.1 % for cluster 17 and 37.0 % for cluster 18) taking the influence of crack 

vertical angle, crack shape and the non-uniformity of cracks into account.  
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Compensation values of 3.8 % and 4.3 % are required for crack clusters 17 and 18 

respectively for the ΔBxmax/Bx0 value to account for the predicted vertical angle of 

33° for RCF crack cluster 17 and 28° for RCF crack cluster 18. For crack cluster 17 

the compensation was used with model results for cracks with surface length of 11.6 

mm and inner spacing of 3.9 mm, and for crack cluster 18 cracks with surface length 

of 12.7 mm and inner spacing of 4.4 mm were used. The compensation greatly 

decreases the pocket length prediction difference for both of the inspected crack 

clusters however for cluster 18, a relatively large difference is still observed (24.7 %), 

and this is probably due to the cluster being comprised of large cracks with an 

elliptical ratio of 0.87. The crack sizing algorithm and the compensation are based on 

modelling results for semi-ellipse cracks with an elliptical ratio from 1 to 1.75 and 

will be less accurate if used for single cracks or crack clusters with an elliptical ratio 

out of this range. 

 

The actual vertical depths are computed from the actual pocket length and vertical 

angle. The results in Table 7.2 and Table 7.3 show that the position of the maximum 

vertical depth does not coincide with the positions where the maximum pocket 

length or the maximum vertical angle are seen. The predicted vertical depth is 

derived from the predicted pocket length and vertical angle (i.e. the maximum 

values), therefore errors will exist for the predicted vertical depth. For cracks studied 

in this work, these errors are even greater when compensation for pocket length 

prediction based on the predicted vertical angle is used. The vertical depth is 

overestimated but from a railway maintenance point of view, overestimations are 

safer as then the crack will be completely removed from the railway rails, but will 

reduce the overall life of the rail. The results may be specific to these cracks only 

and it is probably due to the different elliptical shape (vertical depth is not 

overestimated for the single crack discussed in section 7.1). Further work 

investigating whether the vertical angle compensation results in increased 

conservatism in vertical depth prediction should be carried out. 
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Table 7.4 Results of predicted dimensions for RCF crack clusters 17 and 18 and the 

comparison to the actual crack dimensions. 

RCF crack cluster 17 18 

Measured and 

predicted 

error 

ΔBxmax/Bx0 19.54 % 22.22 % 0.26 % 

Bz trough-peak ratio -1.30 -1.38 0.14 % 

Predicted pocket length 4.1 mm 4.6 mm 0.1 mm 

Predicted vertical angle 33.0° 28.0° 1° 

Predicted vertical depth 2.2 mm 2.2 mm 0.1 mm 

Actual pocket length 5.4 mm 7.3 mm 0.1 mm 

Actual vertical angle 28.6° 24.2° 1° 

Actual maximum vertical depth 1.8 mm 2.0 mm 0.1 mm 

Relative difference for pocket length 24.1 % 37.0 % - 

Relative difference for vertical angle 13.3 % 13.6 % - 

Relative difference for vertical depth 18.1 % 9.1 % - 

Compensation for pocket length 3.8 % 4.3 % 0.1 % 

Predicted pocket length (compensated) 4.8 mm 5.5 mm 0.1 mm 

Relative difference for pocket length 

(compensated) 
11.1 % 24.7 % - 

Predicted vertical depth (compensated) 2.6 mm 2.6 mm 0.1 mm 

Relative difference for vertical depth 

(compensated) 
31.3 % 23.1 % - 

 

7.3 Summary 

This chapter has presented case studies for single and multiple RCF cracks using the 

sizing method based on the modelling results for crack vertical angle and crack 

pocket length. The vertical angle is determined prior to the pocket length and the 

amount of compensation for pocket length prediction can be calculated based on the 

obtained vertical angle.  

 

For the single RCF crack with surface length of 12.6 mm, pocket length of 6.1 mm 

and vertical angle of 24.5°, ACFM measurement gives a predicted vertical angle of 
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21° (relative difference 14.3 %) and a compensation of 2.6 % is added to the 

ΔBxmax/Bx0 value, decreasing the relative difference of pocket length from 54.1 % to 

17.4 %. The prediction of vertical depth using the compensation is 1.8 mm, 

decreasing the difference from 64.3 % to 35.4 %. 

 

For crack clusters 17 (average surface length 11.6 mm, average inner spacing of 3.9 

mm and pocket length of 5.4 mm) and 18 (average surface length 12.7 mm, average 

inner spacing of 4.4 mm and pocket length of 7.3 mm), the difference for vertical 

angle prediction is less than 13.6 % and the pocket lengths using the compensation 

are 4.8 mm and 5.5 mm decreasing the difference from 24.1 % to 11.1% and from 

37.0 % to 24.7 % for clusters 17 and 18, respectively. However, the vertical depth 

prediction using the compensation increases the error for these cracks but it is safer 

as the crack will be completely removed from a railway maintenance point of view. 

Further work investigating whether the vertical angle compensation results in 

increased conservatism in vertical depth prediction should be carried out. 

 

There are some deviations between the actual and predicted dimensions for single 

and multiple RCF cracks as the sizing algorithm is based on the modelling results for 

regular semi-elliptical cracks with elliptical ratio from 1 to 1.75. Cracks with 

asymmetrical crack shapes or with elliptical ratios out of this range (1 to 1.75) will 

lead to the dimension sizing being inaccurate. In addition, the slight differences in 

crack surface lengths in clusters 17 and 18 also give errors when using the results of 

the model for uniformly sized crack clusters. 
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8. Conclusions 

Alternating current field measurement can be used to non-destructively detect and 

characterise rolling contact fatigue cracks in railway rails, as ACFM signals (Bx and 

the Bz signals) are sensitive to changes in crack surface length and pocket length for 

light to moderate cracks (classified by Network Rail, Figure 2.7). This work focused 

on ACFM responses to variations in crack vertical angle for single RCF cracks and 

to variations in surface length (elliptical ratio), inner spacing and crack number for 

uniformly and non-uniformly sized multiple RCF cracks.  

 

A novel method using the Bz trough-peak ratio (from the Bz signal) has been 

proposed to predict the crack vertical angle. The predicted vertical angle can then be 

used with the predicted pocket length (obtained from the Bx signal) to give the 

vertical depth the cracks have propagated to. This is important for railway 

maintenance for elimination of the RCF cracks from railway rails. It has been found 

that crack vertical angle also influences the Bx signals used for pocket length 

determination and this has been quantitatively investigated for single and multiple 

RCF cracks. Appropriate compensation of the Bx signals can be implemented, based 

on the determined vertical angle, when sizing the pocket length of RCF cracks. Case 

studies on single and multiple RCF cracks on rail samples taken from service have 

shown that the Bz trough-peak ratio can be used for crack vertical angle 

determination and the compensation determined from the vertical angle can decrease 

the error in pocket length prediction. The main conclusions of the research are as 

follows: 

 

For the crack vertical angle determination using ACFM signals: 

 

• The Bx signal is sensitive to crack vertical angle when the vertical angle is 

less than 30°. The Bx signal from a single scan measurement increases as the 

vertical angle becomes shallower because the Bx trough moves further away 

from the centre of the crack opening, therefore the minimum Bx value 

recorded is not the actual minimum value of the Bx magnetic field. The effect 

of crack vertical angle on the Bx signal, and hence pocket length 

measurement, for cracks with vertical angles less than 30° has been 
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determined; errors of 50 % in crack pocket length value (under estimate) 

result for a crack of 3.2 mm pocket length and a 10° vertical angle of 

propagation if basing the pocket length estimate on sizing methods applicable 

to vertical cracks. 

 

• The Bz trough-peak ratio, from ACFM single scan measurement through the 

crack centre along a line at 45° to the crack surface length, has been shown to 

vary with the crack vertical angle, with this variation also being influenced 

by crack surface length. The modelling results and measurement on 

calibration cracks (crack 1-7) show that the crack vertical angle can be 

determined from the measured Bz trough-peak ratio, provided the crack 

surface length is known.   

 

• The angle of the ACFM measurement line has a significant influence on the 

Bz trough-peak ratio. It is difficult to distinguish the crack vertical angle 

using the Bz trough-peak value when the measurement angle is less than 20°; 

the Bz trough-peak ratio starts to saturate at larger measurement angles, e.g. 

75° and 65° for a crack with surface length of 8 and 15 mm, respectively. The 

Bz trough-peak ratio is insensitive to the sensor lift-off for cracks with 

vertical angles between 90° to 50°. However, the influence of lift-off 

becomes significant when the crack vertical angle is between 30° to 10°. A 

maximum difference of 30.5% in value is observed for a 10° vertical angle 

crack when the lift-off changes from 0 mm to 5 mm, which will cause an 

over estimation of 30° in the vertical angle. 

 

• The Bz trough-peak ratio along the measurement line at an angle of 45° to 

the crack surface-breaking component can be used to determine the vertical 

angle for uniformly sized crack clusters, but it is different to that for the same 

sized single cracks, as the signal is influenced by the adjacent cracks in the 

cluster. Changes in surface length and inner spacing also influence the 

relationship between the Bz trough-peak ratio and the crack vertical angle. 

 

For characterisation of single and uniformly sized RCF cracks using ACFM signals: 
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• The influence of crack vertical angle on ΔBxmax/Bx values for single RCF 

cracks with surface lengths of 8, 15 and 21 mm has been quantitatively 

analysed and compared for three data extraction methods, i.e. ΔBxmax/Bx 

extracted from the 0° measurement line, the 45° measurement line and the 

minimum value directly from the x-component of the magnetic field (i.e. 

from full model results that would represent grid scans). The ΔBxmax/Bx 

values from these three methods decrease significantly when the crack 

vertical angle is less than 30°; the differences in ΔBxmax/Bx values from the 

three methods are greater at shallower vertical angle and it becomes greater 

for cracks with larger surface lengths, e.g. the deviation between the 

minimum value of the Bx magnetic field and the value recorded along the 0° 

measurement line is 9.0 % for a crack with 21 mm surface length at a vertical 

angle of 10°, but for the crack with 8 mm surface length it is only 2.4 %. 

 

• Responses of ACFM signals to uniformly sized crack clusters when the crack 

surface length (3 to 40 mm), crack inner spacing (2 to 20 mm), crack number 

(3 to 9) and crack vertical angle (90° and 10°) varied have been investigated. 

Deviations in the ΔBxmax/Bx value caused by the vertical angle change from 

90° to 10° are observed and the deviation decreases for larger crack surface 

lengths but begins to saturate when the surface length is about 33 mm; the 

ΔBxmax/Bx0 value decreases as the crack inner spacing increases but begins to 

saturate at a spacing of 12 mm for both crack vertical angles of 90° and 10°. 

The ratio of surface length to inner spacing is more important than the 

influence of inner spacing on the ΔBxmax/Bx0 value for a crack cluster and it 

can be used to indicate whether the inner spacing is great enough to eliminate 

the influence of the adjacent crack on the Bx signal; the ΔBxmax/Bx value 

increases when the crack number increases up to 6 then the value begins to 

saturate. The ΔBxmax/Bx value for the cluster with the shallow vertical angle 

(10°) is significantly lower than that for the 90° vertical angle and it saturates 

at a larger value of crack number when the ratio of the crack surface length to 

the crack inner spacing increases 
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• Calibration crack clusters (clusters 8-13) were used to verify the modelling 

results for the Bx responses to uniformly sized crack clusters (vertical angle 

of 90°) with variations in crack surface length, crack inner spacing and crack 

number. The results show that the predicted pocket lengths generally agree 

with the actual values with an average deviation of less than 10 %. The 

predicted pocket length is underestimated for all crack clusters due to the 

machined cracks having a slightly asymmetrical shape to the centre of the 

crack. 

 

• For crack clusters with a shallow vertical angle, the pocket length prediction 

should be compensated for the difference in signal caused by the shallow 

vertical angle, the amount of which depends on the crack surface length, the 

inner spacing and the crack number. For example, for sizing a multiple crack 

cluster, the crack vertical angle should be determined using the Bz trough-

peak ratio proposed in the present study, then the amount of compensation 

for pocket length prediction can be considered according to the vertical angle 

range (90° to 30° or 30° to 10°) for the different surface length, inner spacing 

and crack number arrangements. 

 

• Any asymmetry in the crack profile results in an error in crack sizing when 

using the ACFM signals obtained through a single ACFM scan, e.g. the 

predicted vertical angle will be smaller than reality if using an assumed semi 

ellipse shape for the predictions. The study indicated that for accurate sizing 

of RCF cracks using a single ACFM scan the cracks should be regular, where 

the assumption of semi ellipse shapes is appropriate. For cracks with irregular 

shapes, the Bx signal from the measurement line parallel to the crack surface 

length can be used to indicate the asymmetry; corrections can be determined 

according to the modelling results on influences of different crack shapes 

when characterising RCF cracks using a single ACFM scan. 

 

For characterisation of non-uniformly sized crack clusters using ACFM signals: 
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• Calibration crack clusters 14 and 15 were used to validate the modelling 

results on non-uniformly sized crack clusters (same sized and spaced cracks 

with a larger crack in the middle). The Bx troughs show similar patterns 

between the model and the experimental measurements for the cluster with 

the larger crack in the middle of the cluster (deviations less than 1.1 % and 

0.9 % for cluster 14 and 15 respectively). For the Bz trough-peak ratio, 

although the maximum and minimum modelling values from the 45° 

measurement line agree with the experiments, the troughs and peaks for the 

larger cracks are adversely influenced by those of the adjacent cracks. In the 

experimental inspection using a single ACFM scan, particularly for real RCF 

cracks that are not as uniform as the calibration clusters, the signal has a far 

more complex pattern than the modelling results show for calibration clusters. 

Therefore, it is expected that it will be difficult to distinguish the trough and 

the peak values from the 45° measurement line for any larger crack in the 

crack cluster if determining the vertical angle of the larger crack is the 

priority. 

 

• A 135° measurement line was used to determine the Bz trough-peak ratio for 

the larger crack within the crack clusters. This measurement line crosses the 

centre of the larger crack and only one set of trough and peak values is 

observed, facilitating recognition of the trough and peak values for the larger 

crack in the cluster. It also showed the variations of peak and trough values 

for different crack vertical angles and therefore can be used to determine the 

vertical angle in the present scenario.   

 

• Modelling results show that the ΔBxmax/Bx value and the Bz trough-peak 

ratio from the 135° measurement line for the larger crack in the non-

uniformly sized crack cluster is different from that for the single crack or the 

uniformly sized crack cluster. The Bx and Bz responses to the non-uniformly 

sized crack cluster and the difference caused by the crack size, crack inner 

spacing and crack vertical angle should be analysed so that the larger crack 

can be accurately sized for the studied scenario. 
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For the case study on sizing RCF cracks in rails taken from service: 

 

• The single RCF crack (crack 16) in the rail taken from service was inspected 

manually by moving the ACFM pencil probe sensor at 0 mm lift-off along 

the surface-breaking component for pocket length and across the centre of the 

crack at an angle of 45° to the crack opening (sensor with an orientation 

parallel to the crack surface-breaking component) for vertical angle. The 

ACFM predictions were compared with the actual crack dimensions 

measured from progressive milling. The vertical angle prediction shows a 

relative difference of 14.3 % (predicted value of 24.5° to measured value of 

21°); this gives a compensation of pocket length prediction of 2.6 %, 

decreasing the pocket length relative difference from 54.1 % to 17.4 % and 

vertical depth relative difference from 64.3 % to 35.4 %. 

 

• The remaining errors between the predicted and actual crack dimensions for 

single RCF cracks are due to the model being based on cracks in a sample 

with a flat surface, whilst the trough and peak values of the Bz signal are 

more asymmetrical for the curved rail surface; in addition the asymmetrical 

crack shape also causes some error for predicted pocket length.  

 

• To accurately size a semi-elliptical single RCF crack, the vertical angle of the 

crack should be determined from the Bz trough-peak ratio then the 

appropriate compensation for pocket sizing determined to eliminate the effect 

of the crack vertical angle on the Bx signals. 

 

• Crack clusters 17 and 18 in the rail taken from service were grid scanned 

using the ACFM pencil probe sensor installed on a robotic arm. The 

ΔBxmax/Bx0 values and the Bz trough-peak ratio were obtained from the 

magnetic field map constructed from the ACFM signals from grid scanning. 

The vertical angle predictions are reasonable as the maximum relative 

difference to the actual dimension is less than 13.6 % for the inspected crack 

clusters. Compensation values of 3.8 % and 4.3 % were required to be added 

to the original values of ΔBxmax/Bx0 for crack clusters 17 and 18 respectively, 



 
 

137 

 

greatly decreasing the pocket length prediction difference for both of the 

inspected crack clusters (from 24.1 % to 11.1 % and from 37.0 % to 24.7 %, 

respectively).  

 

• For cluster 18, a significant difference was still observed (24.7 %) as the 

cluster is comprised on ‘heavy’ cracking and the determined elliptical ratio is 

0.87, outside the range considered in developing the crack sizing algorithm 

(elliptical ratios from 1 to 1.75).  

 

• For the crack shape examined in these clusters, the crack vertical depth was 

overestimated because the prediction was based on the predicted vertical 

angle and pocket length whilst the actual cracks showed a variation in 

vertical angles and pocket lengths, with the maximum crack depth not being 

located at the same position as the maximum crack vertical angle or pocket 

length. 
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9. Future work 

Following the work carried out in the present study, further research can be 

continued both in modelling and experimental ways to improve the accuracy of using 

the ACFM probe sensor for RCF cracks characterisation in railway rails. The 

following are suggested for further study:  

 

In the area of modelling of ACFM responses to RCF cracks: 

 

• Modelling on the influences of sensor frequency in order to decide the 

optimized frequency that works best for sizing small surface-breaking cracks. 

Increase in sensor frequency will attenuate the induced magnetic field but the 

sensitivity and crack quantification error can be improved. The resolution of 

the ACFM depends on the sensor frequency, sensor geometry and how cracks 

distribution in the crack cluster. 

 

• The signal sensitivity to the measurement angle (measurement line related to 

the crack surface opening) has discussed in section 4.4.3. The measurement 

line along 45° relative to the crack opening is used to determine the crack 

vertical angle based on the laboratory measurement, but this angle is 

expected to vary in the practical railway inspection due to the variation of 

crack horizontal angle. Initial modelling study on measurement angle shows 

that it is difficult to distinguish the vertical angle at small measurement 

angles and large measurement angles give small signal to noise ratio. An 

optimization study should be carried out to determine the best measurement 

angle or the measurement angle range for the vertical angle determination. 

 

• The relative position between the measurement line and crack surface 

opening also influences the signal responses to crack dimensions. In this 

study the measurement line across the crack opening centre was studied but 

in reality this could be vary due to the non-uniformly arrangement of multiple 

RCF cracks. The sensitivity of the position of the measurement line in 

relation to the crack surface opening should be carried out numerically and 

should be verified by experiments.  
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• Establish a complete 3D railhead model (including a curved surface at the rail 

gauge side), to extend the current modelling, which considers a block with a 

flat surface (taken as the rail surface). Since RCF cracks are located near the 

gauge side of the rail and the curved surface can influence the ACFM signals 

(as the sensor cannot match completely with the curved surface), it is 

necessary to establish a complete railhead model to investigate how much the 

curved surface influences the ACFM signals. 

 

• Include real crack shapes and more complex crack arrangements in the 

modelling. The present work focuses on modelling of regular cracks with 

semi-elliptical shapes and (mostly) uniformly sized crack clusters. Study of 

cracks with real shapes (obtained from progressive milling) and with real 

crack arrangements (as shown on the railhead sample with MPI) could be 

carried out to improve the ACFM prediction on RCF cracks taken from 

service. 

 

• Bending and branching RCF cracks can be considered in the modelling. RCF 

cracks will bend and branch as they propagate into the rail (particularly after 

5 mm depth). The change in propagation direction of RCF cracks will 

influence the detected ACFM signals and it would be beneficial to determine 

how well the ACFM signals could detect this. A few initial models were 

considered and it was found that the problem is complex as the magnetic flux 

path is influenced by the 3D crack shape such that under certain conditions 

the deeper branching crack may not be detected (preferred flux path around 

the sides of the crack). 

 

In the area of experiments using the ACFM pencil probe sensor: 

 

• Grid scanning to construct the magnetic field mapping; check the actual 

minimum Bx value from the mapping to see if this can eliminate the effect of 

shallow vertical angle on the Bx signal in the case using a single scan 

measurement. 
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• Sensor lift-off control. The ACFM measurements carried out in the study 

were done using a sensor lift-off of 0 mm for understanding of signal 

responses to crack dimensions. Measurement using different sensor lift-off 

values controlled by a robotic arm could be investigated, as the sensor will 

typically be a certain (non-zero) lift-off to the rail surface in rail inspection 

(particularly high speed inspection). 

 

• More multiple RCF cracks (different dimensions and arrangements) on 

samples taken from service should be inspected and corresponding modelling 

carried out to verify the measurements made in this work (e.g. to study 

whether the vertical angle compensation results in increased conservatism in 

vertical depth prediction, as discussed in section 7.2). 

 

• ACFM measurements on heavy and severe RCF cracks (surface length 

greater than 20 mm, seen in Figure 2.7). RCF cracks in the light and 

moderate category have been studied in the present work. ACFM responses 

to heavily cracking cracks should be studied and the limitation in using 

ACFM for sizing crack dimensions should be identified. The influence of 

crack asymmetry and crack branching should be investigated and related to 

the proposed modelling activity (for branching cracks). 
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