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On Basis Variables for Efficient Error Detection
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Abstract—The development of dependable software invariably
entails the design and location of error detection mechanisms.
This software artefact type captures predicates over program
variables in order to facilitate error detection. To ease the design
of detectors, it is important to have (i) knowledge of the set of
variables to be included in a predicate and (ii) an understanding
of the structure of the predicate. In this paper, we address these
problems by relating a previously defined software metric to
the variables that feature in efficient error detection predicates.
Specifically, based on fault injection analysis of three software
systems, we show that error detection predicates based on the
25% wmost important variables in a software module provide
a similar level efficiency to those predicates that are based on
all variables and variables with high importance value appear
at lower depths in the generated decision tree, thus implying
that these variables provide the most information with regard to
system failure and, hence, should be protected to provide proper
software function. The implication of these results is that, in
order to develop efficient error detection predicates, it is sufficient
to only have knowledge of a basis set of important variables,
simplifying the design of efficient detectors.

Keywords-Error; Detection; Injection; Machine Learning; Metric

I. INTRODUCTION

As modern society has become reliant on software-intensive
computer systems, not just for convenience, but to prevent
the loss of assets and human life, software dependability has
become a concern for all software engineers. A dependable
software system must contain two types of artefact, error
detection mechanisms (EDMs) and error recovery mechanisms
(ERMs) [1]. The purpose of an EDM is to detect the presence
of an erroneous software state during the execution of a
software system by evaluating a particular error detection
predicate. If a software state is found to be erroneous during
the execution of a software system, i.e., an error detection
predicate is violated, then an EDM is said to have detected an
error. Following the detection of an error, an ERM will attempt
to restore the software system to a state that does not threaten
its proper functioning, i.e., it will attempt to recover from the
error. This error detection and recovery process ensures that
errors are not allowed to propagate and make recovery more
difficult [2]. Examples of EDMs include self checks and parity
codes, whilst examples of ERMs include exception handlers
and retry mechanisms.

The effectiveness of an EDM depends on two properties: (i)
its location in a software system and (ii) the detection predicate
it implements [3]. The location of an EDM relates to the
program statement that it is protecting, whilst the implemented

detection predicate is a boolean expression defined over a set
of program variables. It has been shown that, for some program
statements, the associated error detection predicate is non-
trivial, with the properties for this non-triviality being accuracy
and completeness [4]. Much research has aimed to address
the EDM location problem [5], [6]. In contrast, the EDM
design problem, especially for practical software systems, has
received less attention. Generally software engineers rely on
experience or formal specifications to design error detection
predicates, resulting in EDMs that may or may not provided
the required coverage [7], [8], [9]. To address the EDM
design problem, research in [10] provided a machine learning
approach for the design of efficient error detection predicates.
However, despite the approach yielding efficient EDMs, it is
known to be computationally expensive.

In this paper we consider the relationship between two
published works with a view to better understanding the design
of efficient EDMs. Specifically, work in [11] developed a
metric suite to assess the vulnerability of software. This work
was the first to address the EDM design problem from a
variable-centric perspective. The approach produces a total
ordering, known as an importance ranking, on the set of
variables in a particular software module, according to the
impact that these variables have on the software system as
a whole. On the other hand, a machine learning approach for
efficient EDM generation was proposed in [10]. This approach
uses fault injection data to generate efficient predicates, which
are represented as tree structures. It would be beneficial for a
software engineer to understand how the importance ranking
is reflected in these trees, as this can lead to the development
of templates for designing efficient error detection predicates.

A. Contributions
In this paper we make the following specific contributions:

« Analyse the decision trees generated by [10] with respect
to the total ordering obtained using the importance metric
proposed in [11].

e Show that program variables with higher importance are
represented at the lower depths of the associated decision
trees, implying that efficient error detection predicates
should be composed of important variables.

« Evidence that the efficiency of predicates generated using
the important variables in a module is commensurate
with those generated based on all variables, lowering the
requirement for software knowledge and the complexity
of implemented error detection predicates.



The overarching contribution of this paper is to demonstrate
the correlation between the importance metric proposed in [11]
and the error detection predicates from the approach detailed
in [10]. The error detection predicates generated can be used
in the design of efficient EDMs. Our contributions provide
a basis for (i) understanding the structure of efficient error
detection, and (ii) developing a template for the design of
efficient EDMs. Critically, the results presented in this paper
support the notion that a basis set of important variables can
capture the correctness of a software system, paving the way
for of low cost techniques for EDM design and location.

B. Paper Structure

The remainder of this paper is structured as follows. In
Section II we provide a survey recent work relating to the
EDM design problem. In Section III we outline the assumed
system, fault and data models. In Section IV we provide
a brief summary of the importance metric and describe the
machine learning approach for analysing its effectiveness. In
Section V we detail the experimental setup used to evaluate
the importance metric and generate efficient error detection
predicates. In Section VI we present and discuss the results of
our analysis. Section VII concludes the paper with a summary
and a discussion of future work.

II. RELATED WORK

In this section we provide a brief survey of research relating
to the design of EDMs, with a focus on approaches that can
be contrasted with the metric suite proposed in [11].

A. Formal Specifications, Heuristics and Experience

It is possible to design error detection predicates based on a
formal specification [12], [13] However, it has been shown
that many classes of efficient error detection predicates can
not easily be designed in this way [9]. It is often the case
that experience and heuristics are used in guiding the design
and placement of EDMs [7], [14], [15]. In [16] and [17] a
concept know as influence, which quantifies error propagation
between communicating modules, was proposed to ensure that
error propagation could be confined to single processors.

B. Experimental Evaluation

Experimental approaches for the design of EDMs have often
focused on evaluating existing EDMs, typically with respect
to measures such as coverage and latency [18], [19]. This is
typically done with a view to the evaluation informing EDM
design. As in the estimation of the importance metric, fault
injection is often used to estimate software measures that
can be difficult to establish. Fault injection also allows more
analytical analyses to be undertaken. For example, in [20] it
was shown that such techniques can be used to find optimal
combinations of EDMs in hardware. However, when designing
EDMs for deployment in software it is generally the case that
a proposed EDM will be experimentally evaluated to ensure
that experimental measures reach a particular threshold. When
all thresholds are met, an EDM can be accepted. Otherwise,

the EDM must be redesigned and evaluated once more. This
cycle of evaluation and redesign is repeated until all thresholds
for the chosen experimental measures have been met.

C. Static and Dynamic Analysis

One approach to the design of efficient EDMs is the use of
static analysis. This approach was used in [21] to automatically
derive detection predicates to prevent the propagation of data
errors. Static analysis is know to be complete, though it
is limited by the potential for false positives. Contrastingly,
work in [22] and [23] used dynamic traces of application
execution to derive application-specific error detectors. This
is not unlike approaches such as [24] and [25], which use
machine learning to aid the design of error detection predicates
and program invariants respectively. The systematic design of
error detection predicates in the context of finite-state software
is considered in [3], [4] and [26]. However, the consideration
of finite-state software systems limits the practicality of these
approaches in the context of practical software systems.

The intention of the importance metric proposed in [11] is
to provide a means for the design of error detection predicates
using data that is likely to be available during the development
of a dependable software system, obviating the need for much
of the analysis described above. However, if this intention is
to be realised then the capability of the importance metric
to identify critical variables must be rigorously validated. In
this paper we use the machine learning approach proposed
in [10] for this purpose, as this has been shown to yield error
detection predicates that have high accuracy and completeness,
thus allowing us to determine whether the variables identified
by the importance metric feature in those error detection
predicates with the highest accuracy and completeness.

III. MODELS

This section details the adopted system, fault and data models,
including relevant motivating assumptions.

A. System Model

To evaluate the effectiveness of the importance metric, as it
was proposed in [11], we adopt a generic model of modular
software systems. A software system S is considered to be
a set of interconnected modules M ...M,,. A module M|
contains a set of non-composite variables Vj, and a sequence
of actions Agi ... Ag;. The variables in Vk have a specific
domain of values. Each action in Ag; ... Ay; may read or
write to a subset of variables in J,, Vj.

We assume a software system to be grey box. This means
that access to source code is permitted, but knowledge of
functionality, implementation details and structure is not, i.e.,
white box access with black box knowledge. The decision
to adopt this grey box view is motivated by the fact that
the importance metric is variable centric, which means that
white box access is necessary. The adopted system model is
commensurate those adopted in [10] and [11].



B. Fault Models

In this paper we assume a transient data value fault model,
which occurs when the variables of a software system hold
erroneous values. A transient fault model is generally used to
model hardware faults in which bit flips occur in memory areas
that causes instantaneous changes to values held in memory.
A transient data value fault model is often assumed during
dependability analysis due to the fact that it can be used to
mimic more severe fault models, making it an appropriate base
fault model [27].

IV. VARIABLE IMPORTANCE AND ERROR DETECTION
PREDICATE GENERATION

The objective of this paper is to determine whether there is a
correlation between the total ordering on the set of variables
generated using the importance metric defined in [11] and the
efficient detection predicates generated in [10]. The intention
of the importance metric is to identify program variables
whose correctness, in the sense of holding correct values, is
critical to proper software function. In other words, it seeks to
identify program variables whose corruption will likely result
in a software system failure. Intuitively, if these variables hold
correct values then the software will function as intended,
which implies that efficient error detection predicates are
functions of these important variables. Specifically, following
their identification, it would be sensible for the variables
identified by the importance metric to be incorporated by
the error detection predicates implemented by EDMs. For
clarity and completeness we provide a brief overview of the
importance metric. The importance metric is composed of two
sub-metrics, known as spatial and temporal impact.

A. Spatial Impact

Given a software system whose functionality is logically
distributed over a set of distinct modules, the spatial impact
of variable v in module A for a run r, denoted o, ), is the
number of modules that get corrupted in r. The spatial impact
of a variable v of module M, denoted o, )z, is:

ou,m = mazx{oy yr},Vr (1)

As such, o, pr captures the diameter of the affected area when
variable v in module A is corrupted. A higher o, 3 value
is an indication of greater error propagation. Greater error
propagation impedes recovery, hence low values are desirable.

B. Temporal Impact

Given a software system whose functionality is logically
distributed over a set of distinct modules, the temporal impact
of variable v in module M for a run r, denoted T; A 18 the
number of time units over which at least one module remains
corrupted in . The temporal impact of a variable v of module
M, denoted 7, ps, is:

To,M = maz{T, rr}, V7 )

As such, 7, ps captures the period that the software system
state remains affected when variable v in module M is
corrupted. A higher 7, 5 value indicates that a failure is
more likely. This metric captures the duration for which an
erroneous state persists, hence low values are desirable.

C. Variable Importance

The importance metric is defined for variable v in module M
with variable-specific failure rate f as:

I - 1 ( 1 ( Oy, M
oM (1 - f)2 2 Omax
Equations 1-3 allow a partial ordering over the variables of a
module to be established. The intention of this approach is for
this ordering to be used to identify program variables that must
be protected to safeguard proper software function. However,
despite the characteristics of the importance metric, there is
little existing evidence to demonstrate that the variables it
identifies are the important variables the approach purports to
identify. This paper validates this capability of the importance
metric by comparing the variable ordering it generates with
the variables captured by efficient error detection predicates
for a set of target systems. We now provide an overview of
the methodology used in the generation of these efficient error
detection predicates.

) 3)

Tma.r

D. Error Detection Predicate Generation

In [10] it was shown that decision tree induction can be
used to generate efficient error detection predicates. These
predicates focused on the detection of erroneous software
states that led to failures. In this paper, decision tree induction
is used as a mechanism for the evaluation of the importance
metric, with the ordering generated by the importance metric
being analysed with respect to the, independently generated,
decision trees / error detection predicates. This validity of
this evaluation is ensured by (i) the mutual focus on failure-
inducing states, (ii) the independence of the error detection
predicate generation mechanism from the importance metric
and (iii) the manner in which decision trees are constructed in
the generation of error detection predicates. We now provide
an overview of machine learning and decision tree induction
in the context of error detection predicate generation.

A primary goal for machine learning is to provide actionable
knowledge from large collections of data. In the domain of
generating predicates for efficient EDMs, data is assumed to
be a single relation consisting of n input attributes. These
attributes define an n-dimensional space, commonly known
as the Instance Space, I, where every point in I is a possible
state of the modelled process. In supervised learning a machine
learning algorithm is tasked with learning an approximation, f ,
of an unknown function f, referred to as the target function,
given a training data set, T C I, consisting of the N pairs
(x4, f(x;)). If the function is discrete then the task is referred
to as classification. In the case of learning a function from
data generated during fault injection, the function is known to
be binary. This is because a software state either leads to a



VarOne

VarTwo VarThree

VarFour VarSix

TRUE (249)

TRUE (148) TRUE (119)

FALSE (126)

VarSeven

FALSE (59)

TRUE (52)

TRUE (49)

Fig. 1: Example decision tree generated under C4.5.

system failure or a successful execution. The task of learning
a binary function is referred to as concept learning, which is
a special case of classification.

Decision tree induction learns a disjunction of conjunctive
rules describing a concept, e.g., application specific failure
in the case of learning error detection predicates for failure-
inducing states. The decision tree constructed by the algorithm
consists of two node types, namely decision nodes and leaf
nodes. A decision node contains an input attribute value. Each
edge from a decision node is labelled with one of the unique
values in the domain of the attribute labelling the decision
node. A leaf node is labelled using one of the classification
labels. Each path of the tree from the root node to a leaf
node is interpreted as a set of conjunctive expressions that
lead to the classification label at the associated leaf node.
The learning algorithm performs a greedy search of the space
of all possible trees choosing decision node attributes that
maximise the reduction in entropy of the class label. The
C4.5 decision tree induction algorithm was used to learn the
decision tree [28]. Figure 1 shows an example of the type
of tree generated by the decision tree induction algorithm in
the context of generating efficient EDMs. In Figure 1, non-
leaf nodes are labelled with variables, edges are labelled with
potential variable states and leaf nodes are labelled with a
failure classification, where true indicates failure and false
indicates non-failure. A predicate is derived by interpreting
this structure as a conjunction of disjunctions.

V. EXPERIMENTAL SETUP

In this section we describe the experimental setup used to
estimate the importance metric and derive error detection
predicates. Further details of the error detection predicate
generation process can be found in Section VI

A. Target Systems and Test Cases

The target systems subject to experimentation in this paper
are the FlightGear Flight Simulator (FG), Mp3Gain (M3)
and 7-Zip (7Z). 7Z is a high-compression archiver capable

of file archiving and encryption [29]. FG is an open
source flight simulator [30]. M3 is an open-source volume
normalisation software for MP3 files [31]. These target
systems were selected based on them being complex, modular
and commonly used enough to be representative of practical
software systems. All source code for 7Z and M3 are available
under the GNU General Public License. All source code for
7Z is available under the GNU Lesser General Public License.

7Z Test Cases: An archiving procedure was executed in all
test cases. A set of 25 files were input, each of which was
compressed to form an archive and then decompressed in
order to recover the original content. The temporal impact
of faults was measured with respect to the number of files
processed, e.g., if a fault were injected during the processing
of file 15 and persisted until the end of a test case, then its
temporal impact would be 10. To create a varied system load,
the experiments associated with each instrumented variable
were repeated for 25 distinct test cases, where each test case
involved a distinct set of 25 input files.

FG Test Cases: A takeoff procedure was executed in all test
cases. This procedure executed for 2700 iterations of the main
simulation loop, where the first 500 iterations correspond
to an initialisation period and the remaining 2200 iterations
correspond to pre-injection and post-injection periods. A
control module was used to provide consistent a consistent
input vector at each iteration of the simulation.

MG Test Cases: A volume normalisation procedure was exe-
cuted in all test cases. The procedure took a set of 25 mp3
files of varying sizes and normalised the volume across each
file. The temporal impact of injected faults was measured
with respect to the number of files processed. To create a
varied load, the experiments for each instrumented variable
were repeated for 3 distinct test cases, where each test case
used a distinct set of 25 input files.

B. Instrumentation

Instrumented modules in each target system were chosen
randomly from all modules used in the execution of the test
cases. All variables in each module were instrumented. To
estimate the importance metric, all code locations where an
variable could be read were instrumented for fault injection.

Fault injection data sets relating to the software state at
the entry and exit points of each module were compiled in
order to generate error detection predicates for the evaluation
of importance metric. For this purpose an instrumentation
location was a point where a fault could be injected or the
software state be sampled within a module. As fault injection
had to be performed before software state was sampled, three
fault injection data sets were generated for each instrumented
module. A description of the fault injection data sets used in
this paper can be found in Table I.



TABLE I: Summary of fault injection datasets

Dataset | Target Module Injection Sample
Name System Name Location Location
7Z-A1 7-Zip FHandle Entry Entry
7Z-A2 7-Zip FHandle Entry Exit
7Z-A3 7-Zip FHandle Exit Exit
7Z-B1 7-Zip LDecode Entry Entry
7Z-B2 7-Zip LDecode Entry Exit
7Z-B3 7-Zip LDecode Exit Exit
FG-Al FlightGear | Gear Entry Entry
FG-A2 FlightGear | Gear Entry Exit
FG-A3 FlightGear | Gear Exit Exit
FG-B1 FlightGear | Mass Entry Entry
FG-B2 FlightGear | Mass Entry Exit
FG-B3 FlightGear | Mass Exit Exit
MG-A1 | MP3Gain GAnalysis | Entry Entry
MG-A2 | MP3Gain GAnalysis | Entry Exit
MG-A3 | MP3Gain GAnalysis | Exit Exit
MG-B1 | MP3Gain RGain Entry Entry
MG-B2 | MP3Gain RGain Entry Exit
MG-B3 | MP3Gain RGain Exit Exit

C. Failure Specification

In order to evaluate the importance metric a definition of
failure for each target system must be established. This is to
allow the failure rate associated with each program variable
under fault injection to be determined.

7Z Test Cases: A test case execution was considered a failure
if the set of archive files and recovered files were different
from those generated by the corresponding golden run.

FG Test Cases: A failure in the execution of a test case
fell into at least one of three categories; speed failure,
distance failure and angle failure. A run was a speed failure
if the aircraft failed to reach a safe takeoff speed after
passing through critical speed and velocity of rotation. A run
was a distance failure if the takeoff distance exceeds that
specified by the aircraft manufacturer, where the distance
was increased by 10 meters for every additional 200lbs over
aircraft base-weight. A run was an angle failure if a Pitch Rate
of 4.5 degrees was exceeded or the aircraft stalled in climb out.

MG Test Cases: A test case execution was considered a
failure if the set of normalised output files differed from those
generated by the corresponding golden run.

D. Fault Injection

A reproducible fault-free run of each target system for a given
test case was created, capturing information about the state
of the target system during execution. Bit flip faults were
injected at each bit-position for instrumented variables. Each
injected run entailed a single bit-flip in a variable at one of
these positions, i.e. no multiple injections were performed.
For FG each single bit-flip experiment was performed at 3
distinct injection times uniformly distributed across the 2200
simulation loop iterations that follow system initialisation, i.e.
600, 1200 and 1800 control loop iterations after initialisation.

For 7Z and M3, each single bit-flip experiment was performed
at 25 distinct injection times uniformly distributed across the
25 time units associated with each test case. The state of all
modules used in the execution of all test cases was monitored
and recorded during each fault injection experiment. The data
logged during fault injection experiments was then compared
with the associated reference run, with any deviations being
deemed erroneous and contributing to variable importance.

VI. RESULTS

In this section we present the results of our experimentation.
We assess the correlation between the importance of a variable
and its depth in associated decision trees. We then compare
the error detection predicates that can be generated when all
variables in a module are considered with those that can be
generated when only important variables are considered.

A. Importance and Decision Tree Depths

To asses the effectiveness of the predicates generated, 10-fold
cross validation was used in the analysis of each data set. This
meant that data set was partitioned into 10 stratified samples.
For each cross validation run, one of the partitions was used as
the test sample, whilst the other nine were used as the training
set. In effect, this meant that 10 predicates were generated for
each data set. As there were three data sets compiled for each
software module, there were a total of 30 predicates generated
for each module.

Tables II-VII show the importance rank and values of the
ten most important variables for each module. These values
were calculated using the approach described in Section IV
and the experimental conditions described in Section V. To
assess the correlation between the importance of a variable
and its depth in a given decision tree, Tables II-VII show the
minimum tree depth at which a variable was used to label a
decision node in any predicate for a module. The root of a
decision tree is assumed to have a depth of 1. The decision
was taken to use this as a basis for comparison with the
importance rank because decision tree induction selects the
variable whose value can be viewed as providing the most
information regarding system failure. This is commensurate
with the aims of the importance metric.

To appreciate why the minimum decision tree depth is
appropriate, as opposed to a measure such as average tree
depth, consider Figure 1. VarTwo is used to label decision
nodes at depths of 2 and 4. In the former case, this allows 249
instances of failure to be discerned using a simple predicate,
ie., (VarOne < 43.32) A (VarTwo < 523)), whilst the
latter allows only 49 instances of failure to be discerned
using a more complex predicate, i.e., ((VarOne > 43.32) A
(VarThree < 0.99) A (VarSiz > 522) A (VarTwo < 10)).
The selection of a decision node attribute that maximise the
reduction in entropy of the class label means that nodes at
a lower depth will capture more failure information, hence
the pattern in our VarTwo example will always be observed.
This reasoning is the basis for the decision to use minimum
decision tree depth in our evaluation.



TABLE 1II: Importance rank, importance metric values and
minimum decision tree depth for 7Z1 variables.

Importance | Variable Importance | Minimum
Rank Identifier Metric Depth
1 seekInStreamS | 0.144847 1

2 wMode 0.144692 2

3 res 0.089422 2

4 oSize 0.019299 3

5 moveMethod 0.019297 3

6 CFlp 0.019290 3

7 pos 0.011976 3

8 lengthR 0.004837 2

9 pHandle 0.004818 3

10 cSize 0.004818 3

TABLE III: Importance rank, importance metric values and
minimum decision tree depth for 722 variables.

Importance | Variable Importance | Minimum
Rank Identifier Metric Depth
1 processedPosition | 0.009893 1

2 remainLen 0.009865 1

3 distance 0.004867 2

4 posState 0.004859 2

5 ttt 0.004851 2

6 matchByte 0.004843 3

7 probLit 0.004840 3

8 dicPos 0.004839 3

9 range 0.004828 4

10 kMatchLen 0.004826 3

Observe from Tables II-VII that there is a pattern between
the importance ranking and the minimum tree depth of the
variables in each module. Variables with a higher importance
rank generally feature at the lower levels on the decision trees
generated during decision tree induction. It is interesting to
note the relationship between the value of the importance
metric and the minimum decision tree depth observed for
the highest ranked variables. For example, the two highest
ranked variables in Tables Il and V have importance metric
values that are notably greater than the other variables in their
respective tables. This is mirrored in the minimum decision
tree depth, which shows that these variables are the only ones
that feature at the root of the decision trees generated for their
respective software modules. We observe that those variables
in Tables II-VII that do not feature in any error detection
predicate, such as inf and done in Table VI, have a relatively
low importance. Indeed, every variable with an importance
ranking of 1-5 features in an error detection predicate.

B. Efficient Error Detection and Important Variables

The results presented highlight the relationship between the
importance rank and the depth at which variables feature
in the decision trees forming error detection predicates. The
implication is that variables with a higher importance value
will feature in efficient error detection predicates. However,
this does not imply that EDMs based only on important
variables will be efficient. To determine whether efficient

TABLE IV: Importance rank, importance metric values and
minimum decision tree depth for FG1 variables.

Importance | Variable Importance | Minimum
Rank Identifier Metric Depth
1 compressLength | 0.730128 1

2 GroundSpeed 0.433243 1

3 SteerAngle 0.053254 1

4 compressSpeed 0.047487 2

5 MaxCompLen 0.033166 2

6 RollingForce 0.012226 2

7 kSpring 0.011150 3

8 DGearU 0.008924 4

9 WheelSlip 0.007813 2

10 tForce 0.007436 4

TABLE V: Importance rank, importance metric values and
minimum decision tree depth for FG2 variables.

Importance | Variable Importance | Minimum
Rank Identifier Metric Depth
1 Weight 1.048938 1

2 EmptyWeight 1.048938 1

3 bixx 1.008410 2

4 bixy 1.008410 2

5 bixz 1.008410 2

6 bizz 1.008160 2

7 biyz 1.008160 3

8 biyy 1.007966 2

9 Mass 0.772751 3

10 PmTotalWeight | 0.739576 3

EDMs can be constructed using only important variables, we
now evaluate a new set of error detection predicates.

Table VIII shows the evaluation of the predicates generated
using all variables in each software module, whilst table
Table IX shows the evaluation of the predicates generated
using only the most important 25% of the variables in each
module. Table VIII relates to the error detection predicates
that were previously generated and compared to the ranking
established by the importance metric. In Tables VIII and IX
the FPR and TPR columns give the mean false positive
and true positive rates taken across all 10 cross validations.
A false positive here corresponds to the situation where a
predicate incorrectly detects a state as being failure-inducing,
whilst a true positive corresponds to a predicate correctly
identifying a failure-inducing state. The AUC column shows
the area under the ROC curve. This measure is based on
a plot in two dimensions where each model is a point
defined by the coordinates (1 — specificity, sensitivity),
where 1 — speci ficity = % is referred to as the false
positive rate [32]. Under different parameterisations a single
classification algorithm will produce multiple points on a plot.
The area under the curve (AUC) found by joining these points
at (0,0) and (1, 1) is a common measure of expected accuracy.
The AUC column aggregates the performance of the generated
predicates with respect to true positive rate and false positive
rate. An AUC close to 1 is desirable in the design of error
detection predicates, though may not always be achievable due



TABLE VI: Importance rank, importance metric values and
minimum decision tree depth for MG1 variables.

Importance | Variable Importance | Minimum
Rank Identifier Metric Depth
1 selfWrite 0.078022 1

2 bitridx 0.076758 1

3 whiChannel | 0.076429 2

4 gainA 0.047655 2

5 curFrame 0.047588 2

6 inf 0.009824 -

7 cuFile 0.109399 3

8 wrdpntr 0.009807 4

9 inbuffer 0.009804 -

10 done 0.009768 -

TABLE VII: Importance rank, importance metric values and
minimum decision tree depth for MG2 variables.

Importance | Variable Importance | Minimum
Rank Identifier Metric Depth
1 sampleWin 1.337695 1

2 batchSample 0.988386 1

3 curSamples 0.925374 2

4 first 0.923418 2

5 op 0.639785 3

6 linpre 0.296414 -

7 rinpre 0.286144 -

8 totsamp 0.285156 -

9 cursamples 0.250678 -

10 cursamplepos | 0.248757 -

to theoretical constraints [33]. An AUC of 0.5 is indicative
of random performance. The Var column gives the AUC
variance in 10-fold cross validation to provide a measure of
how detection efficiency varied in cross validation.

Observe from Tables VIII and IX that the difference in the
performance of the predicates generated using all variables
in each module and those generated using only the most
important 25% of variables in each module is small. The
largest difference in AUC, which is an aggregated measure for
false positives and true positives, when comparing these results
can be seen in the predicates associated with data set FG-Al.
For this data set the predicates generated using all variables
have an AUC of 0.99488, whilst those generated using only
important variable have an AUC of 0.97422. Observe also
that the absolute AUC values for predicates generated using
important variables are consistently high, with the maximum
and minimum of these values being 0.99471 and 0.88886
respectively. The consistently high AUC values, which are
indicative of high true positive and low false positive rates,
demonstrate that error detection predicates generated using
important variables can safeguard proper software function.
The results presented indicate that the importance metric
identifies variables whose correctness is central to the proper
functioning of software. Comparisons with the decision trees
generated suggest that the program variables identified by the
importance metric are those that capture the most information
with respect to system failure. The evaluation of a further set

TABLE VIII: Evaluation of the error detection predicates
generated through decision tree induction using all variables.

Dataset | FPR TPR AUC Variance
77-A1 0.03884 | 0.99797 | 0.97957 | 3E-08
T7-A2 0.01696 | 0.99795 | 0.99050 | 1E-08
77-A3 0.02099 | 0.99876 | 0.98889 | 1E-08
77-B1 0.00052 | 0.94356 | 0.97152 | 3E-04
77-B2 0.00000 | 0.96916 | 0.98458 | 1E-09
77-B3 0.03554 | 0.96541 | 0.96494 | 9E-10
FG-Al 0.00090 | 0.99066 | 0.99488 | 7E-08
FG-A2 0.00657 | 0.98075 | 0.98709 | 3E-06
FG-A3 0.00618 | 0.98786 | 0.99084 | 3E-06
FG-B1 0.00874 | 0.79298 | 0.89212 | 1E-32
FG-B2 0.01457 | 0.95842 | 0.97193 | 1E-06
FG-B3 0.00429 | 0.82234 | 0.90903 | 6E-08
MG-A1 | 0.00912 | 0.99389 | 0.99239 | 1E-09
MG-A2 | 0.00303 | 0.99384 | 0.99541 | 7E-08
MG-A3 | 0.00853 | 0.99893 | 0.99520 | 1E-32
MG-B1 | 0.03694 | 0.97408 | 0.96857 | 1E-32
MG-B2 | 0.00000 | 0.97405 | 0.98703 | 1E-32
MG-B3 | 0.00000 | 0.97283 | 0.98642 | 1E-30

TABLE IX: Evaluation of the error detection predicates gener-
ated through decision tree induction using important variables.

Dataset | FPR TPR AUC Variance
77-A1 0.04488 | 0.99576 | 0.97544 | 4E-06
77-A2 0.03571 | 0.99520 | 0.97975 | 2E-06
77-A3 0.03320 | 0.99369 | 0.98025 | 2E-06
77-B1 0.00993 | 0.93083 | 0.96045 | 3E-03
77-B2 0.00428 | 0.95866 | 0.97719 | 2E-08
77-B3 0.03789 | 0.95466 | 0.95839 | 5E-09
FG-Al 0.04024 | 0.98867 | 0.97422 | 6E-08
FG-A2 0.00657 | 0.98075 | 0.98709 | 2E-06
FG-A3 0.03616 | 0.98604 | 0.97494 | 2E-09
FG-B1 0.01519 | 0.79291 | 0.88886 | 1E-30
FG-B2 0.02407 | 0.95700 | 0.96647 | 1E-06
FG-B3 0.00588 | 0.82107 | 0.90760 | 8E-04
MG-A1 | 0.04191 | 0.99331 | 0.97570 | 1E-09
MG-A2 | 0.01244 | 0.99362 | 0.99059 | 7E-08
MG-A3 | 0.00902 | 0.99843 | 0.99471 | 1E-32
MG-B1 | 0.03694 | 0.97408 | 0.96857 | 1E-32
MG-B2 | 0.00494 | 0.97346 | 0.98426 | 2E-06
MG-B3 | 0.00459 | 0.97261 | 0.98401 | 2E-06

of error detection predicates, generated using only sufficiently
important variables, demonstrated a negligible difference in
efficiency when compared with predicates generated using all
variables. This provides a strong indication that the correctness
aspect of a software system can be captured by a basis set of
program variables.

Using decision tree induction for the generation of error
detection predicates enables a simple transition from decision
tree to first-order predicate. However, as with many systematic
approaches for the generation of error detection predicates, the
technique is computationally expensive and requires a form
of analysis not commonly performed in the development of
dependable software systems. The importance metric makes
use of information that is commonly available in dependable
analysis, which means it can be computed quickly during
development. This means that, where software development



constraints prevent more costly forms of software analysis,
the importance metric can be used to identify variables that
should be captured by error detection predicates.

VII. CONCLUSION

The identification of program variables that must be captured
by error detection predicates is a challenge for the design of
EDMs. In this paper we demonstrated that the importance
metric proposed in [11] can identify variables that must be
protected to ensure proper software function. Specifically, the
variables identified by error detection predicates generated
using the methodology proposed in [10] were compared
with those identified by the importance metric in order to
demonstrate a correlation. Further, a new set of error detection
predicates, based on the variables identified by the importance
metric, were generated to show that efficient error detection
predicates can be designed using a basis set of important
variables. The implication of these results for the design of
error detection mechanisms is that efficient error detection
predicates can be designed based on variables identified by
the importance metric.
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