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Abstrat

A Brain Computer Interfae (BCI) is a devie that uses the brain ativity of

the user as an input to the system to selet the desired output on a omputer,

giving the person a di�erent pathway to establish ommuniations with the

surrounding environment. There are many types and uses of BCIs. They

an be de�ned by whih tehnique is used to reord the brain ativity of the

user and whih variety of stimuli is used to trigger a onsistent response from

the user, following the signal proessing methodology seleted to produe a

response on the omputer. Eah one of the seleted hoies will determine the

reliability and e�ieny of the BCI system. However, even with this �exibility,

the performane of BCI systems used for assistive tehnology or rehabilitation

proesses still remains behind other systems and the perentage of people

unable to use one of these systems remains too high.

The main objetive of this thesis is to improve the lassi�ation performane

and reliability of the urrent eletroenephalogram (EEG) based BCI systems.

Firstly, a novel paradigm based on emotional faes is used with the aim of

enhaning a stronger response from the user, therefore a higher amplitude

of brain ativity. Two types of emotional faes have been used during this

work. Initially, emotional shemati faes or emotions were used. Posteriorly,

human emotional faes were introdued into the experiments. Additionally,

the evolution of the phase synhronisation over time is studied to ahieve a

deeper understanding of the latent ommuniation mehanisms of the di�er-

ent parts of the human brain. Wavelet families and their ability to retain

temporal and frequeny information simultaneously have been used to study

the phase relationships between the EEG signals when a spei� task is being

performed. This study has led to the identi�ation of a redued number of

disrete states with a quasi-stable phase synhronisation of the order of milli-

seonds, named synhrostates. Those synhrostates present swithing patterns

over time, learly distintive for eah one of the tasks performed by the user. In

order to establish a lassi�ation protool the temporal stability of eah task-

spei� synhrostate was studied by means of the synhronisation index and

posteriorly translated into onnetivity network maps based on graph theory.

From this onnetivity network, a series of onnetivity metris was obtained

and used to feed a variety of lassi�ation algorithms. This proess led to

auraies of 83% for a two-tasks lassi�ation problem and rose to a 93%

averaged auray for a four- tasks problem.





Chapter 1

Introdution

1.1 Motivation

The human brain plays a entral role in the ontrol of the human body. It is the

entre of the emotions, senses and is responsible for the prinipal biologial and

physial funtions. However, damage to the brain, either through a physial

trauma suh as a driving aident or a disease (e.g. ardiovasular disorders,

Amyotrophi Lateral Slerosis (ALS) or brainstem stroke) an ause a wide

range of physial, ognitive, and behavioural/emotional impairments that may

be either temporary or permanent [6℄. World wide statistis regarding brain

injury are disheartening. Aording to the World Health Organization (WHO),

brain injury is the leading ause of death and disability in hildren and young

adults around the world. Brain injury is a publi health onern that demands

ongoing study, inreased e�orts to prevent ourrene, researh to advane

medial options and therapeuti interventions.

There are several areas where researh an assist in the improvement of

medial treatments and rehabilitation therapies. It an be from a psyho-

logial approah [7, 8℄, rehabilitation [9℄ or providing the brain with a new,

non-musular, ommuniation and ontrol hannel [10, 11℄. The siene and

tehnology of devies and systems responding to neural proesses in the brain

that generate motor movements and ognitive proesses that modify the mo-

tor movements are alled Brain Computer Interfaes (BCI) [12℄. All other

assistive tehnology methods depend on the brain's natural output pathways

of peripheral nerves and musles and take some of the outputs that the person

still retains, using them to replae the missing funtions. In ontrast, BCIs

provide the brain with ompletely new output routes, using the brain ativity

of the patient as an input to the system to selet a desired output on the

1
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omputer [13℄. The prinipal target population is those patients displaying a

severe impairment in their motor ativity, unable to ommuniate through nor-

mal musle-bases pathways giving them the opportunity to ontrol a roboti

prostheti, form omplete sentenes so as to ommuniate with the external

world or move a wheelhair. In a nutshell, inreasing their quality of life and

o�ering them a limited but vital new form of ommuniation.

BCI researh has made onsiderable progress reently, partiularly in the

last deade, when BCI researh has been extended to di�erent arenas suh as

entertainment and marketing [14℄. However, this methodology still presents

some limitations. BCI studies generally take plae in a highly ontrolled en-

vironment, either a laboratory or a hospital, where the BCI user assumes a

spei� position, in a plae free of distrations, for a short amount of time and

with a redued number of devies interfering with the reorded signals. In ad-

dition, BCI displays an ineradiable variability due to the patient's tendeny

to perform better one day than others or even between one trial to the next

[15℄. Finally, BCI an funtion as an exellent ommuniation and ontrol in-

strument for many patients, but not for all users. Atually, 20% of BCI users

are not pro�ient with a typial BCI system [16℄. The phenomenon has been

alled �BCI Illiteray� for some researh groups [17, 18, 19℄. This is due to a

user's natural behaviour. While the funtional divisions of the brain are om-

mon for all, there are individual variations in brain struture. Furthermore,

it an be a onsequene of the low amplitude brain signals that are undetet-

able to a partiular neuroimaging methodology, as in an eletroenephalogram

(EEG) or beause the partiipant's musular artifats are too numerous.

Extensive e�orts have been made to overome this problem through various

mehanisms, improving tehnology for reording devies, new methodologies

to re�ne signal proessing, inrease the training period for the BCI user or

modifying the instrutions that patients have to follow. Some of these options

have funtioned for some previously illiterate users. By ontrast, some people

still remain unable to manage a BCI system [20℄. Our aim is �nd a ombination

of novel paradigms and new proessing algorithms to develop more aurate

BCI systems and also inrease the range of people that an use them without

extensive and extenuated training periods.

Over the last deade the number of studies has inreased that are foused on

the understanding of onnetivity patterns, how the exhange of information

happens, for normal and disrupted brain behaviour [21℄. The study of onne-

tions within the brain has resulted in the onlusion that brain organisation

is non-random [22℄. For example, the absene of some onnetion patterns or
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the disproportionate presene of them between spei� brain regions an be a

manifestation of some disorders suh as autism or attention hyperativity dis-

order (ADHD) [23℄. Brain network siene has also been employed in the study

of maturation, epilepsy or shizophrenia among others [24, 25℄. Connetivity

an be inferred from a variety of tehniques as funtional magneti resonane

imaging (fMRI), eletroenephalography (EEG) or magnetoenephalography

(MEG) among others. fMRI provides a high spatial resolution ompared with

EEG or MEG. By ontrast, EEG and MEG o�er a larger temporal resolu-

tion whih is required to quantify the temporal evolution of the relationships

between di�erent areas of the brain [21℄.

The study of onnetivity needs a mathematial framework; graph theory is

the methodology that has been inreasingly utilised in reent years [26℄. Graph

theory provides a way to not only apture the topology of the network under

study, but also allows the researher to quantify the multivariate relationships

among these brain regions [21, 22℄.

Deeper understanding about how the di�erent regions of the brain interat

under di�erent situations will lead to the researhers being suessful in more

personalised brain mapping, potentially leading to a more e�ient BCI systems

and lower BCI illiteray rates.

1.2 Aims and objetives

The main aim of this thesis is to improve the performane of the urrent

EEG-based BCI systems, primarily through the inrement of the lassi�ation

auray rates. Motivated by the fat that more pratial and e�ient sys-

tems an alleviate the situation of isolation of many patients with any type

of brain injury, di�erent omponents of BCI systems will be examined and

onsequently, novel variations developed to pursue this end.

The primary omponents of BCI systems are: the brain ativity reording

system (EEG in this partiular ase), the stimuli used to indue a spei�

response in the user, then a series of proessing steps to �nally reveal a small

set of features that will be used to ontrol an external devie (e.g. a pros-

theti arm, wheelhair or PC ursor). This study introdues novelties in two

of these omponents: the stimuli used that is responsible for generating a spe-

i� response in the user named evoked potential and the signal proessing

omponent.

The fous of this work is �nding quantitative metris from the temporal
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dynamis of the brain onnetivity that an be used as features to ontrol

a wheelhair, speller or similar devies. In order to ahieve this objetive

the spei� stimuli and the adequate proessing to alulate the onnetivity

dynamis are a fundamental prerequisite in order to ahieve higher auray

rates, hene more e�ient BCI systems.

As a novel stimulus, the use of emotional faes is proposed for the �rst

time as a base for a motor imaginary BCI system. Emotional faes have

been widely used in other researh. For instane, psyhologial experiments

[27, 28℄, to lassify Parkinson's disease from healthy ontrol patients [29℄ or

Autism Spetrum Disorder patients from typially developed hildren [30℄.

However, emotional faes have never been used as stimuli in a motor imagery

BCI. Subsequently, a set of omplex signal proessing algorithms has been

employed to aurately determine and haraterise the onnetivity between

di�erent regions of the brain giving further insight into the integration proess

within the brain and when a spei� stimulus is utilised. The algorithm,

involving wavelet transformation, pattern reognition tehniques and graph

theory, will be detailed in the following hapters.

1.3 Challenges

The hoie of tehnique to reord the brain ativity has a series of assoiated

di�ulties. Spei�ally, in this partiular study, the eletion of the EEG as

the reording method has an assoiated lak of spatial auray, but is om-

pensated by its temporal resolution at the milliseond level. Furthermore, the

low amplitude of brain signals due to the attenuation ourring in reahing

the salp, the presene of artifats or the volume ondution problem fore the

sientist to interpret these signals very arefully.

Another ompliation added to the study is the omplexity of the human

brain and its interonnetions; these, in onjuntion with our restrited know-

ledge of the physiology behind the brain, makes it even more hallenging to

map its onnetivity.

A major hinderane to this projet is the need to �nding volunteers to par-

tiipate in the designed experiments aiming to ahieve enough EEG registers

to be a statistially signi�ant study.
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1.4 Contributions

The main ontributions of this researh work are listed below:

� Validate the use of emotional faes, both shemati and human, as stimuli

for a motor imagery EEG based BCI system.

� Establish the presene of quasi-stable states of the order of milliseonds,

named synhrostates, during the exeution of motor imagery tasks. These

states are based on the instantaneous phase di�erene between EEG ele-

trodes for a spei� band of interest.

� Show that these states are onsistent for both the averaged population

and for eah individual belonging to the ohort.

� Show that the temporal swithing transition of these synhrostates is

di�erent for eah task, reporting that the synhrostate phenomenon is

task-spei�. Therefore, they an be used for lassi�ation purposes.

� Validate the use of the graph theory metris from the synhrostates as

features for lassi�ation between di�erent motor imagery tasks with high

lassi�ation performane.

1.5 �Newton fund� programme

During the researh projet period I was awarded a Newton Fund programme

sholarship sponsored by the British Counil. The aims of this programme are

among others, to build stronger links between UK and China researh entres,

develop individual apaity through an international training and reate a

deeper understanding of both ultures.

The awarded sholarship had a duration of four months and the host insti-

tution was the Department at Bioengineering of Tsinghua University Medial

Shool. The ollaborative projet between both universities has, as the main

purpose, the study of new lassi�ation algorithms of di�erent tasks from high

density intraranial EEG (iEEG). Further details regarding this projet are

explained in Appendix C.

1.6 Outline

Following this introdutory hapter, a brief overview of the literature review
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performed is arried out in hapter 2. It inludes biologial aspets of brain

funtioning, a summary of the main reording tehniques of brain ativity and

an overview of BCI systems and their lassi�ation. It also reviews the urrent

state of the art of EEG signal proessing tehniques and their disadvantages

that motivated the introdution of the proposed methodology. Furthermore, it

explains the motivation behind the use of emotional faes as stimuli. Chapter 3

overs the proposed algorithm to study the phase synhronisation in the EEG

signals whih leads to the phenomena alled synhrostates. Their stability

over time is studied in hapter 4 using a synhronisation index as a meas-

ure. Furthermore this hapter also explains how onnetivity metris an be

derived from the synhrostates obtaining quantitative measures of brain net-

works. Chapter 5 deals with the details of the lassi�ation proess between

di�erent motor imagery tasks using the omplex network metris derived from

synhrostates. Chapter 6 presents a validation of the method desribed in

hapters 3 to 5 for a more omplex system using human emotional faes as

stimuli and four di�erent tasks to lassify. Finally, the onlusions drawn from

this thesis, how well the objetives were met and future work are detailed in

hapter 7. Following the main hapters the relevant appendies and referenes

are listed.

1.7 Publiations

Aepted papers for publiation:

1. L. Santamaria, C. James, �Use of graph metris to lassify motor imagery

based BCI �, The International Conferene for Students on Applied Engin-

eering (ICSAE), Newastle, United Kingdom, Otober 2016, pp 469-474.

(Awarded with the best poster prize in the ategory of bioengineering).

2. L. Santamaria, C. James, �Classi�ation in emotional BCI using phase

information from the EEG�, 38th Annual International Conferene of the

IEEE Engineering in Mediine and Biology Soiety (EMBC) , Florida,

USA, pp. 371 - 374, August 2016.

3. L. Santamaria, C. James, �Classi�ation in Emotional EEG- based BCI

Using Connetivity Measures�, WMG Dotoral Researh and Innovation

Conferene, Coventry, United Kingdom, pp. 14, June 2016.
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4. L. Santamaria, C. James, �Single Phase Loking Value Classi�ation Al-

gorithm for Motor Imagery based BCI �, 2nd WIN Conferene, Coventry,

United Kingdom, pp. 57, January 2016.

5. L. Santamaria, C. James, �Eletroenephalogram analysis in emotional

BCI �, 8th IEEE EMBS UK and RI Postgraduate Conferene in Biomed-

ial Engineering and Medial Physis (PGBiomed), pp. 45-46, July 2014.

Papers under preparation or under review:

1. L. Santamaria and C. James, �Existene of Synhrostates during Motor

Imagery Tasks.� (in preparation)

2. L. Santamaria and C. James, �Using brain onnetivity metris from syn-

hrostates to perform motor imagery disrimination in EEG based BCI

systems.� (in preparation)



Chapter 2

Literature Review

This hapter introdues a theoretial bakground regarding the origins and

physiology behind the eletroenephalography (EEG) signals. This introdu-

tion to the EEG overs the basi omponents of the brain and its funtions,

inluding details of the main tehniques urrently used to reord brain ativity.

A disussion of the state of the art of brain onnetivity tehniques is also in-

luded. Among the existing mehanisms to register brain ativity, EEG is one

of the most aessible and a�ordable options, whih makes it perfetly suit-

able for the purpose of this work in lassifying mental states and tasks. The

study and analysis of EEG signals an be time or frequeny orientated. Some

ommonly utilised methodologies that are used in both domains are desribed

within this hapter.

This hapter fouses on the use of phase synhrony to study the interation

of di�erent parts of the brain; the urrently available methods used to study

these interonnetions and also highlights the fat that these tehniques are

unable to preserve the information of the temporal evolution of phase. This

gap of knowledge inspired this researh on phase di�erenes along brain areas

aross the time domain.

The struture of the hapter is as follows: Setion 2.1 is a brief introdution

to the brain and its omponents followed by a list of the prinipal tehniques

to measure brain ativity in Setion 2.2. Setion 2.3 fouses on EEG as the

tehnique used during this researh to reord brain ativity. Setion 2.4 in-

ludes information about di�erent BCI approahes emphasising MI-based BCI.

Also, in this setion, a novel paradigm is desribed, based on shemati emo-

tional faes and is used during this work as a stimulus to enhane a stronger

response in partiipants than established paradigms already used for this pur-

pose. Setion 2.5 inludes information regarding brain onnetivity performing

8
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a reount of some reent �ndings and justi�es our approah of using soure

level onnetivity analysis. Finally, Setion 2.6 brie�y introdues some theor-

etial onepts regarding omplex brain networks based on graph theory as a

onept related to the researh onduted on phase synhrony.

2.1 The brain: introdution

The human brain, loated in the head and proteted by the skull, is the

main organ of the human nervous system. This approximately three-pound

weight organ is the entre of emotions, interpreter of the senses and ontroller

of the main biologial and physial funtions [31, 32, 33℄. The brain and the

rest of the human nervous system are omposed of many di�erent types of

ells. However, the primary working funtional unit is the neuron. Neurons

are eletrially exitable ells that transmit information by eletro-hemial

signalling. Eah neuron an be onneted to up to 10,000 of its neighbours

transmitting information to eah other via the estimated 100 trillion synapti

onnetions existing in our brain [34℄.

A typial neuron needs both eletrial and hemial stimulation for the ex-

itation proesses due to the voltage gradient haraterising the neuron mem-

branes. In normal onditions the neuron remains in the resting potential state,

meaning that the interior of the neuron ontains a greater number of negat-

ively harged ions than the area outside of the ell does. When the neuron is

triggered by an eletrial signal, the membrane of the neuron opens its gates

allowing the positive ions to pass through it, generating a hange in voltage

and beoming temporarily positively harged. This generated impulse is alled

an ation potential [35℄. This pulse travels along the neuron's axon by reating

similar voltage hanges from segment to segment within the axon. The neural

signals not only travel via eletrial hanges along the neuron, but they an also

ommuniate aross neurons via hemial transmission. This is possible thanks

to a speial onnetion alled a synapse (see Figure 2.1). This onnetion is a

gap between the end of one neuron axon and the dendrite of one neuron nearby

[36℄. The main funtion of this gap is to allow neurotransmitters to jump to

the next neuron, hene spreading the information from neuron to neuron [35℄.

A neurotransmitter is a speial hemial that relays signals aross the synapses

between neurons. These hemials travel aross the synapti spae between

the end of an axon to the dendrites of the reeiving neuron starting the proess

all over again in the reeiving neuron. Figure 2.1 exempli�es the movements of

neurotransmitters between di�erent neurons during the synapse. It is notie-
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able that di�erent neurons release di�erent neurotransmitters and in the same

manner, eah dendrite is partiularly sensitive to a neurotransmitter [35℄.

(a) Components of a neuron and how the eletrial signal or ation potential travel along

the neuron ells.

(b) Detail of the synapse showing how the neurotransmitters pass

aross two neuron ells by the named synapti gap.

Figure 2.1: Neuron struture and funtioning of the ation potential and synapse. Pitures

taken from [35℄.
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The transmission of information between neurons in the nervous system is

based on hanges in the membrane potential. The exhange of ions in the

neuron membrane is governed by the ation potential that produes eletrial

ativity. This eletrial ativity an be registered, measured and displayed and

is known as brain ativity [35℄.

An eletroenephalogram is the time series of data of those eletrial sig-

nals generated by interommuniation aross neurons and their onnetions

reorded by speial eletrodes [37℄. Those eletrodes an be plaed internally,

diretly on the brain surfae, or externally when plaed on the salp. All the

possible eletrode loations share the same objetive, measuring the poten-

tials produed by synapse onnetion between neurons during the exitation.

The array of eletrodes plaed on the salp measure the potential di�erene

between dipoles formed by axons and dendrites and a seleted referene [38℄.

At the same time that the eletrial urrents are initiated by the ation po-

tential of one neuron an assoiated eletromagneti �eld is generated. Similar

to the eletrial urrent, the orientation of the magneti �eld pattern re�ets

the diretion of the ation potential [39℄. This magneti �eld an be also

aptured by magnetoenephalography (MEG) and an also be used to study

brain ativity. Attending their di�erent sensitivities to soure orientation and

loation it an be said that both tehniques, EEG and MEG, omplement

eah other. These tehniques to measure brain ativity are explained in the

following setion.

In addition to these eletrial and magneti urrents there is another series

of physiologial and funtional e�ets related to the inrease or derease in

neural ativity. These phenomena an also be registered and they are known

as indiret measures of the brain ativity. They are based on the study of

hanges in blood �ow instead of diretly measuring the eletrial or magneti

urrent aross neurons when information is transmitted. In partiular, fun-

tional magneti resonane imaging (fMRI) is a tehnique based on the level of

blood oxygenation [40℄. Spei�ally, it studies the magneti properties of the

haemoglobin.

The inrease in blood �ow due to neuronal ativity is also aompanied by

a gain in oxy-haemoglobin onentration in a partiular ativated region of the

brain. However, although there is an inrease in oxygen onsumption, there is

an exess in oxygen supply ausing the ratio between oxy/deoxy-haemoglobin

tissue onentration to rise whih an be registered, measured and translated

into 3D images [41℄. What remains vague is the understanding of how tissue

oxygenation is related to neuronal ativity.
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2.2 Measuring Brain Ativity

Being able to understand brain funtions is one of the prominent hallenges

in neurosiene. One of the aspets of this arduous researh is exploring how

the brain and nervous system ontrol the enormous quantity of proesses in-

volved with daily funtions suh as ognition, pereption and motor ations.

Modern tehnology has provided the sienti� ommunity with several teh-

niques to measure brain ativity; eah one exploiting di�erent priniples and

reording various lasses of proesses. For this reason, the seletion of a teh-

nique that surpasses the rest will depend on several riteria:

� The appliation or aim of the study.

� Spatial resolution needed.

� Temporal resolution required.

� Budget.

The variety of mehanisms with whih to measure brain ativity an be di-

vided into two major groups. The �rst of these is those diretly measuring the

eletrial ativity of the brain and assoiated with the variations of the post-

synapti potentials as mentioned in the previous setion. The main methodo-

logies within this group are EEG and MEG. The main advantage of this group

is its temporal resolution, in the region of milliseonds. Spatial resolution,

onversely, is rather poor as only a few hundred simultaneous data positions

an be aquired.

The seond group of tehniques inludes all methods for indiretly reord-

ing neuronal ativity. Some examples of these proedures are fMRI, position

emission tomography (PET) or near infrared spetrosopy (NIRS). Its main

feature and antagonisti with the �rst group, is the high spatial resolution.

Attempts to use onventional fMRI tehniques for high temporal resolution

needs fail overall due to the tehnial limitations of the sanner. In addition

there is a limitation in the haemodynami response to prolonged episodes of

stimulation [42℄.

Table 2.1 shows a omparison of the di�erent methods with whih to meas-

ure neural ativity of the brain. The following setion desribes brie�y the

basi priniples of eah one of the tehniques mentioned.
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Table 2.1: List of the prinipal tehniques of measuring brain ativity. Inluding their main

features, advantages and disadvantages [16℄.

Tehnique

Physial

Property

Diret/

Indiret

measure

Spatial

resolution

Temporal

resolution

Advantages Disadvantages

PET Blood �ow Indiret good low

signal not a�eted by

small movements of

the subjet

expensive, need of

injet traers

SPECT Blood �ow Indiret good low

slightly less expensive

than PET

expensive

need of traers

fMRI Blood �ow Indiret

exellent

(~1mm to 1m)

relatively good

(in the order of

seonds)

widely available,

predominant

neuroimaging

tehnique

expensive, need of an

expert to manage the

equipment

MEG

Magneti

Potential

Diret

relatively low

(~ 1m)

good (in the

order of

milliseonds)

enables muh deeper

imaging and is more

sensitive than EEG as

skull is almost

transparent to

magneti waves

expensive equipment

due to need of

superondutivity

EEG

Eletrial

Potential

Diret

low (in the order

of entimetres)

high (tens to

hundreds of

milliseonds),

wearable, a�ordable,

easy to use, widely

available

requires areful

plaement of

eletrodes diretly on

salp to avoid noise

2.2.1 Indiret measures of neural ativity

The use of neuroimaging tehniques to gain unobtrusive aess to the brain

are relatively reent and has ontinued to thrive from tehnial and methodo-

logial standpoints. Lately, as a onsequene of the advanements within the

area and a redution of assoiated osts, the number of funtional magneti

resonane imaging (fMRI) sanners in hospitals around the world has inreased

enormously; as a result it has beome the more popular modality to approah

the brain in ation. fMRI is the neuroimaging tehnique more ommonly used,

but not the only one. Others, suh as positron emission tomography (PET),

single photon emission omputed tomography (SPECT) or the predeessor

of fMRI, magneti resonane imaging (MRI) are widely used as medial and

researh tools.

PET

PET is a nulear imaging tehnique that uses brain stimulation whih leads

to an inrease in erebral blood �ow (CBF) whih in turn re�ets the ativation

of a population of neurons. PET studies blood �ow and metaboli ativity in

the brain helping to visualise biologial hanges taking plae. The onept

of radioative traers was introdued in the late 50s by David E. Kuhl, Luke

Chapman and Roy Edwards and this tehnique was �rst applied in humans in

1963 [43℄.
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Figure 2.2: Basi priniple of PET: ollision between a positron and eletrode where both

partiles annihilate eah other. The result of the ollision is the emission of the two high-

energy protons that will be deteted by the PET san sensors. Adapted �gure from [44℄.

In a PET san, a small amount of radioative traer is injeted into a vein,

arriving in the brain a few seonds later. The traer is usually a substane, suh

as a type of sugar like gluose, that an be metabolised by ells in the body and

is labelled with a radioative isotope. This partile is highly unstable and after

being injeted into the bloodstream starts to deay after a few seonds. This

means the isotope beomes less radioative over time. During this proess it

emits positrons from the nuleus that annihilate on ontat with eletrons after

travelling a short distane within the body. The �nal result of this ollision is

the emission of two high-energy photons travelling in nearly opposite diretions

(Figure 2.2).

A PET san onsists of a set of detetors that surround the objet to be

imaged. When the two high-energy photons or gamma rays leave the subjet's

body they are sensed by two detetors positioned 180 degrees from eah other

in the sanner. The san is able to onvert these rays into an eletrial signal

than an be fed to subsequent eletronis. Finally, using standard tomographi

tehniques, the omputer output is a three dimensional image of a volume from

the brain [45, 46℄.

The onept is that blood is more onentrated in ativated brain areas than

in the inativated ones, meaning that the sanner will detet more gamma rays

oming from those parts that are working more. This is translated into the
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image as a range of olours depending on the ativity shown in these regions.

Reddish olours indiate high brain ativity and by ontrast, bluish olours

means little to no brain ativity as an be seen in �gure 2.3.

Figure 2.3: Example of a PET san image of a human brain. The reddish olours mean high

brain ativity and the bluish olours are assoiated with those parts of the brain with little

to no brain ativity. (Soure: publi domain).

One of the advantages of PET, unlike other imaging tests, is its ability

to detet irregularities in body funtion aused by diseases whih often our

before anatomial hanges an be observed. In addition, the quality of the

PET san is not a�eted by small movements of the subjet. Consequently,

the subjet does not need to remain as still as they would for a MRI or EEG

reording. On the other hand, its limited spatial resolution an result in images

that are not very lear. Furthermore the use of radioative traers always

involves some risk.

SPECT

SPECT is based on the same priniples as PET to produe its images. How-

ever, important di�erenes in instrumentation and radiohemistry are ditated

by the physis of photon emission. In a SPECT san the photons emitted from

the radio-traer in the body are deteted as independent events. Detetions of

photons are performed by a speial amera, namely a gamma amera; ompris-

ing one or multiple detetor heads. In front of the amera rystal a ollimator

is plaed, featuring a large number of holes allowing photons to enter only in

the diretion parallel to the holes. Photons arriving at the ollimator in other
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diretions have a high probability of being absorbed by the material of the

ollimator [47℄. Those photons that �nally reah the rystal will interat with

it resulting in an ionisation of the rystal that an be translated to an eletri

pulse detetable by the eletronis of the gamma amera.

Figure 2.4: Shemati diagram of SPECT sanner data aquisition. For eah projetion

the amera aquires an image at that angle and at that spei� time. Afterwards, all the

olleted images are used to reonstrut the three-dimensional objet. Image adapted from

[48℄.

A SPECT sanner performs a series of planar projetions aquired by ro-

tating the gamma amera at di�erent angles around the patient. At eah of

the projetion angles one stati image is aquired for that angle for a spei�

time as shown in �gure 2.4. Afterwards, all of the images stored in a matrix

format are used by the omputer to reonstrut the 3D image of the ativity

distribution within the brain. This is done by the utilisation of mathematial

image reonstrution algorithms [48℄.

SPECT has inferior image quality than PET as the spatial resolution is
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limited by the san tehnology. By ontrast, SPECT produes a 3D image with

an improved image ontrast than with PET sanners. In addition, SPECT

radioisotopes have longer lives (from hours to days), opening the possibility of

investigating relatively longer-lasting tasks as walking [49℄.

MRI

In MRI the primary element used to generate almost all linial images

omes from the nulei of the tissue's hydrogen atoms. A traditional MRI

sanner ontains a very strong eletromagnet that an generate a powerful

magneti �eld inside the sanner.

Hydrogen nulei onsist of an odd number of protons that arry a positive

eletrial harge. The presene of harged partiles spinning around produes

a small magneti moment. These proton moments are generally random in

orientation. However, when they are plaed inside an external magneti �eld,

as in an MRI sanner, many of the free hydrogen nulei align themselves in

the same (denominated parallel) or opposite (antiparallel) diretion than the

external soure. In order to �ip over, the protons have to absorb some energy

from the radio waves oming from the MRI san. This partiular movement

of the group of protons is alled preession (Figure 2.5). The speed of the

preession, or the number of times the protons preess per seond is named

the frequeny of Lamor and it is proportional to the external applied magneti

�eld strength, represented in Figure 2.5 as ω
0

and B

0

respetively.

In an MRI study the patient essentially beomes a magnet with a magneti

vetor aligned at a spei� angle to the external magneti �eld. The partiipant

is plaed in a ylindrial oil that surrounds the head. Following the appliation

of a strong stati magneti �eld, the brain's hydrogen nulei onsequently align

with the magneti �eld, resulting in a magneti moment parallel to the applied

�eld. The magneti fore of the patient annot be measured as it is in the

same diretion as the external �eld. For this reason, a radio-frequeny (RF)

pulse with a very spei� frequeny and duration of milliseonds is applied

perpendiular to the external �eld.

As soon as the external RF pulse is swithed o�, the protons start to realign

themselves, returning a lower energy state and the protons relax. Protons on-

tinue this proess until they ome bak to their original state, releasing the

energy they have absorbed during the preession proess. This generated en-

ergy is named a MR (magneti resonane) signal and an be measured by the

eletromagneti detetors of the MRI san. In addition the protons start to

preess out of frequeny. As a result of this proess the longitudinal magnetisa-
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tion gradually inreases (named T1 reovery) and the transverse magnetisation

does the opposite, by gradually dereasing (a proess alled T2 deay). The

rate at whih T1 and T2 our vary depending on the type of tissue. The

duration, repetition, timing and amplitude over whih the RF pulse sequenes

are varied to produe a signal whih an be analysed in di�erent ways in order

to �weight� the image. The resulting image has ontrast if it ontains areas of

high signal intensity (white), low signal intensity (blak) and intermediate sig-

nal intensity (grey). The intensity of the signal generated by a tissue depends

on its water and fat ontent, the proton density and the presene of any blood

�ow [50℄.

Figure 2.5: MRI priniples: e�et of an external magneti �eld B

o

. Inside a magneti �eld

a proton preesses in a parallel diretion to the �eld B

o

with a preession speed ω
0

.

The magneti resonane signal generated from the sum of the magnetisation

vetor is termed free indution deay . Generally this signal is not measured in

MRI; instead it is more ommon pratie to generate the magneti resonane

signal in the form of ehoes. In order to produe a 3D image the ehoes must

be reorded for eah dimension using three separate magneti �eld gradients:

a slie-seletion gradient, a phase-enoding gradient and a frequeny-enoding

gradient. Data olleted from the three axis are reonverted into a volume

image using mathematial tehniques suh as a 2D Fourier Transform and

spatial enoding. The majority of standard MRI examinations take 20-30

minutes to omplete, with eah sequene of ehoes lasting around 5 minutes

eah. Additionally an extra 10-15 minutes are needed in order to re-onstrut

the 3D image [50℄.
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The advantages of MRI ompared to PET or SPECT are lear: lower ost,

higher spatial resolution and no need for radioative isotopes. There are how-

ever some disadvantages. For instane, it is not suitable for patients with metal

implants in their body or for those su�ering from laustrophobia. Additionally,

the patient has to remain as still as possible during the reording proess in

ontrast to reordings taken by PET sanners.

fMRI

fMRI is a widely used tehnique to study brain funtion. This methodology

began with the disovery of nulear magneti resonane (NMR) followed by

MRI [40℄. However, it was not until the early 1990s when its potential for

neuroimaging was disovered. Essentially, MRI and fMRI di�er from eah

other in that MRI is used to produe strutural images of subjet's brains useful

for anatomial and morphometri studies while a fMRI views the metaboli

funtion. The funtional methodology alulates the levels of oxygen in the

blood in the brain. By ontrast, MRI studies water moleule's hydrogen nulei.

Due to these di�erenes, the features of both tehniques are distintive. For

instane, MRI views the di�erene between tissue types at high resolution with

respet to spae. On the other hand, fMRI views those di�erenes with respet

to time. In other words, MRI has a high spatial resolution whereas fMRI has

better temporal resolution.

The fMRI method exploits magneti di�erenes between oxygenated and

de-oxygenated blood alled blood oxygenation level dependene (BOLD). Ba-

sially, haemoglobin in the blood beomes strongly paramagneti in its de-

oxygenated state, therefore it an be used as a natural ontrast agent, eradi-

ating the need to injet a traer. In this way, highly oxygenated brain regions -

ativated areas - produe a larger magneti resonane signal than lower oxygen

onentration regions - low to no ativity - [51℄.

The temporal evolution of the BOLD under the presene of a brief stim-

ulus is a dynami proess that an be represented by mathematial models.

After the stimulus onset the BOLD signal presents an initial dip linked to an

inrease in deoxy-haemoglobin onentration. Afterwards, the BOLD signal

rises onsiderably as the ratio of oxy/deoxy-haemoglobin inreases. The inre-

ment is diretly proportional to the neural ativity performed by the subjet

[41℄. If the stimulus lasts for long enough, the BOLD signal will reah a plat-

eau otherwise the signal will return to the original baseline when the stimulus

is eliminated.

Consequently, the BOLD e�et an be used to detet the inreasing neural
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ativity at the moment that a subjet is performing a partiular task. A

typial use of fMRI for the detetion of a task is having a person inside the

sanner performing a series of ognitive tasks (paradigms). At the same time,

a set of images of the brain are olleted, normally every 2 or 3 seonds whih

aumulates an enormous quantity of brain volumes by the end of the san.

The signal intensity of eah pixel an be assoiated with a spei� task using

statistial analysis [41℄. Several approahes have been proposed for the ana-

lysis of fMRI data, with the aim of produing an image able to identify those

regions, showing a signi�ant hange in response to a spei� task. One of the

simplest methods for a two state fMRI experiment, is a simple subtration of

the averaged images aquired for the task, minus the averaged images for when

the task is 'o�'. Using this method, the null hypothesis annot be tested, so

instead of a subtration, it is more ommon to use a Student's t-test. This

method weights the di�erene in means, giving larger t-test sores to large dif-

ferenes [52℄. Other more omplex methods used in fMRI analysis are based on

orrelation tehniques or the widely used general linear model [53℄. Figure 2.6

represents a sheme of a typial fMRI experiment and the assoiated BOLD

signal evolution.

Figure 2.6: Change in a BOLD signal during a fMRI experiment. (A) A stimulus is presented

to the partiipant, triggering the neural ativity. (B) The inrement of the neural ativity

is followed by a rise in blood �ow, blood volume and oxygen. (C) The ombination of these

events alters the level of deoxyhemoglobina, whih a�ets the MR signal (D). [41, 54℄.

fMRI has beome a predominant tehnique in the �eld of neuroimaging

researh as it provides an exellent spatial resolution (average resolution of 3-4

mms) and relatively good temporal resolution (in the order of seonds) [55℄.

The fat that it is non-invasive and the use of haemoglobin as a natural traer

are also fators that have ontributed to its standardisation.
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2.2.2 Diret measures of neural ativity

Diret measures of brain ativity suh as EEG or MEG present, in general,

lower spatial resolution (in the order of ms) than the tehniques explained in

the previous setion. On the other hand, they allow a higher temporal resol-

ution (in the order of tens of ms) whih diretly measures the brain funtion

and generally speaking, they are easier to use. The tehnique to selet depends

of the needs and the resoures of the researh as all of them have advantages

and disadvantages over eah other. For the present study, both temporal and

spatial resolution would be highly favourable. Furthermore the system should

be eonomially viable and with the possibility of being portable for real-time

appliations. For this reason EEG was the tehnology hosen to perform the

brain ativity reording aross this study. A further explanation of this pro-

edure is developed in the next setions of this hapter.

MEG

In the human body there are several eletri urrents of a diverse nature but

all of them indue eletromagneti �elds. Some of those eletrophysiologial

urrents are well-known as they are strong and easy to measure. For example,

the ones indued by the heart or the musles. On the other hand, other organs

from the human body also produe ioni urrent �ows of less intensity [56℄.

This is true in the ase of the brain, where the neurons are stronger generators

of ioni �ows as mentioned at setion 2.1.

When the neurons are ativated synhronously as a onsequene of a stim-

ulus, eletrial urrents are generated induing magneti �elds (see setion 2.1

for more detailed information about the origin of this magneti �eld). Those

magneti �elds generated by the exhange of information between neurons pass

almost una�eted through brain tissue and the skull. This is due to the per-

meability of biologial tissues whih is almost equal to empty spae [57℄. The

magneti �eld, however, diminishes with distane, resulting in an extremely

small signal reahing the salp. This handiap has been solved with tehnology

using sensors based on superondutivity [58℄. These superonduting devies

are plaed as lose as possible to the subjet's head and are normally housed in

a helmet-shaped ontainer for ease of use. Magneti �eld hanges are deteted

by these speial sensors and transformed into voltage hanges.

The use of these remarkably e�ient detetors requires an extremely old

environment; ooling at -269°C, whih is ahieved using liquid helium. About

70 litres of liquid helium are neessary on a weekly basis to keep the system at
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optimum performane. Thermal isolation is obviously a hallenge in terms of

seurity and makes the system immobile. In addition, the extreme sensibility

of the sensors makes the devie very sensitive to any other magneti �elds

nearby. Consequently, MEG sanners are typially plaed in magnetially

shielded rooms.

There is an added problem of how to ompute what area of the brain is

ative. By analysing the spatial distributions of magneti �elds, it is possible to

estimate the intraranial loalisation of the generator soure and superimpose

it on an MRI san. The steps to ahieve a MEG image are shematially

desribed in �gure 2.7.

Figure 2.7: Sequene of steps to loalise soures of brain ativity using MEG [58℄.

MEG has better temporal resolution than indiret measurement tehniques

and has plenty of advantages in a linial setting. It provides high reliability
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and greater auray of the estimated dipoles as it is not a�eted by volume

ondution. Therefore, soure estimation is easier than is found with EEG.

For this reason, it is widely used when there is a need to identify and loalise

spei� a�eted areas of the brain. For example, the mapping out of epilepti

ativity areas -one the most suessful linial appliations of MEG - or when

determining the dominant language area is needed [59℄. The main disadvantage

of MEG is the elevated ost assoiated with the instrumentation needed.

In addition, it possesses some advantages over other diret tehniques suh

as EEG. For example:

� the magneti �elds are not a�eted by tissue ondutivity as is the ase

with EEG

� subjet preparation is redued

� the measures are absolute and not dependent on the hoie of a referene

� better spatial resolution of the soure loation (2-3 mm) than EEG (4-

7mm)

EEG

The EEG is the reoding of the brain's eletrial ativity. As mentioned in

setion 2.1, neurons when ativated, produe ioni urrents at the level of el-

lular membranes (refer to Figure 2.1). It an be di�erentiated by two types of

ativation: one really fast depolarisation of the neuronal membranes induing

an ation potential and slow hanges, originated by synapti ativation. This

proess generates an impulse that an be propagated along axons and dend-

rites without being attenuated in its amplitude. This signal an be reorded

when impating with the eletrodes plaed on the head.

They are several proedures to reord the eletrial ativity of the brain.

They an be divided into two subgroups, invasive and non-invasive tehniques.

Invasive methodologies inlude the eletroortiography (ECoG). The term

invasive is due to the neessity of a form of surgery, alled a raniotomy, in order

to plae the eletrodes diretly into the brain avity. Within the brain avity

the eletrodes an be plaed diretly on the brain tissue (named parenhymal

monitoring), below the layers overing the brain (subdural monitoring) or into

one out of four ventriles (intra-ventriular monitoring) [60℄. In this study

the variation of EEG adopted to reord brain ativity is one that plaes the



24 CHAPTER 2. LITERATURE REVIEW

eletrodes on the surfae of the subjet's salp. This will be explained in detail

in the setion 2.3.

ECoG also known as intraranial eletroenephalography (iEEG) is based

on the use of eletrodes diretly from the exposed surfae of the brain to

reord its eletrial ativity. The standard proedure is the olloation of 16

eletrodes plaed in a grid, but this number an vary from 4 to 256 depending

on the appliation [61℄. During ECoG, eletrial stimulation is frequently used

to map ritial areas suh as the area of epilepti seizure onset. This stimulus

is an eletrial pulse applied during 1 to 5 seonds with an intensity of 0.5

to 2 mA and a voltage of 1 to 15V [62℄. Among ECoG linial appliations

the main one is in the treatment and detetion of epilepsy, but also is used in

researh appliations suh as BCI systems [63℄.

2.3 Eletroenephalography: bakground

The existene of eletrial ativity in the brain was disovered more than

a entury ago by Rihard Carton [64℄. However, it was not until the early

1920s when EEG was reorded from the human salp for the �rst time [65℄.

Nowadays, EEG has beome the most prevalent method for reording brain

ativity for BCI systems.

Salp EEG reording displays the di�erene in eletrial potentials between

two di�erent sites on the head, superimposing the erebral ortex that is loser

to the reording eletrode. The problem of the extremely low amplitude values

of the signals attenuated by the several brain layers whih they have to ross

until reahing the salp is solved by the use of ampli�ers. Modern tehnologies

allow on-line �ltering of the signals and other ontrols to regulate the signal

output. Furthermore, data displays that follow aquisition, o�er a wide range

of options to represent the data for EEG interpretation. Figures 2.8 and 2.9

illustrate some types of EEG reorders available on the market. Figure 2.8

shows a simple Bluetooth based system with two hannels plus another two

hannels for ground and referene. Figure 2.9 shows a more omplex system

of up to 256 hannels omposed by an EEG ap (A) and EEG ampli�er (B).

2.3.1 EEG eletrodes

Plaement of the eletrodes has been standardised by using a 10-20 system that

uses anatomial landmarks on the skull. The name is based on the perentages

used to determine the eletrode installation. A total measure is divided into 10

or 20 perent segments. This system uses the distane between the subjet's

nasion and inion as a referene for longitudinal measurements, and the distane
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between the subjet's entral oronal plane, the distane between both ears, for

lateral measurements as is explained in �gure 2.10. Nasion is the intersetion

of the frontal bone with the two nasal bones. It an be easily deteted as its

loation is the depressed area between the eyes. Inion is the most prominent

projetion of the protuberane loated on the lower rear of the human skull.

Figure 2.8: Example of EEG portable system to reord EEG with 2 hannels system plus

ground and referene hannels.

Eah site has a name, a letter identifying the lobe and a number to identify

the hemisphere. Even numbers orrespond to the right hemisphere and odd

numbers to the left hemisphere. The designations; F

p

(frontopolar), F (frontal),

T (temporal), O (oipital), C (entral), and P (parietal) are utilised in the

10�20 system as shown in �gure 2.10 [66℄.

Furthermore the letter 'z' makes referene to the entral hannels. For

example, the name C

z

orresponds to the position at 50% of the nasio-inion

distane and at 50% of the distane between pre-auriular points. This means

it is the exat entre point of the salp. The letter C indiates �entral� and

'z' makes referene to the 0% lateral o�set from the Central oronal line.

Modern reording systems provide a ap where the eletrode loations are

already predetermined for ease of use as shown in �gure 2.9. These modern

systems require an inreased number of eletrodes and as a onsequene they

are plaed on the 10-10 system, meaning that the distane between them is

redued to 10%.
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(A)

(B)

Figure 2.9: Figure (A) shows a g.te g.GAMMAsys with 64 eletrodes applied and (B) shows

a g.te g.HIamp ampli�er [67℄. The ap and ampli�er are interonneted and linked via a

USB to a omputer.

Nowadays the variety of tehnologies used to develop EEG sensors overs

a wide range, from wet and dry eletrodes to wireless EEG sensors. However,

all of them pursue the same objetive: to be preise.

The term �wet eletrodes� is related to the need to use onduting eletrode

gel to attah it to the salp. The materials used for their onstrution are

several: silver/silver-hloride (Ag/AgCl), tin (Sn), gold (Au) or platinum (Pt)

[68℄. The Ag/AgCl eletrodes are onsidered the golden standard and they

are used almost universally in linial and researh appliations. The use

of eletrially ondutive gel redues the skin-eletrode impedane leading to
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higher quality signals [69℄. However, the need to use a gel inreases the time

needed to plae the eletrodes and an exess of it may reate shorts between

sensors if it spreads out.

Figure 2.10: EEG 10-20 system eletrode plaement to show how the eletrodes should be

plaed using perentage values of the size of the person's salp. Referene points are marked

in both views: nasion-inion and A

1

-A

2

. (A) Side-view of a person's head with the 10-20

oordinates overlaid. (B) Top-down view of a person's head with the eletrode oordinates

overlaid [70℄.

By ontrast, dry eletrodes are designed to be e�ient without the need

for ondutive gel. The absene of gel is substituted by moisture on the skin,

mainly sweat [69℄. Numerous variations of dry sensors exist on the market.

For instane: stainless steel diss or miro-fabriated silion strutures. This

type of eletrode is used mainly in researh as they present some problems of

usability for normal linial appliations due to their instability as they are

muh more di�ult to seure to the patient than wet eletrodes [69℄.

There is another model of eletrode that, ontrary to a wet or dry eletrode,

does not require diret physial ontat with the skin. Some examples of

these non-ontat sensors an be found in the literature [71, 69℄. They are

omprised of a set of apaitive eletrodes with a wireless transmitter to send

data to a omputer. These systems have the advantage of being insensitive

to skin onditions and require zero preparation. However, their preision and

reliability still have not been proven.

For this researh, the eletrodes used are ative Ag/AgCl ring eletrodes

from g.Te [67℄ implanted in the g.GAMMAap previously mentioned and

shown in �gure 2.9.
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2.3.2 Clinial brain wave bands

Hans Berger was the �rst investigator to disover a rhythmi brain wave in

the range of 8-12Hz that he named the α band [65℄. Sine his disovery, it

has been demonstrated that, irrespetive of the nature of the observed signal,

most of the brain's ativity has multiple frequenies that evolve over time. The

most important are: the delta, theta, alpha, beta and gamma bands. They

are identi�ed aording to their frequeny and they possess di�erent features

that are desribed in table 2.2.

Table 2.2: Summary of the main EEG brain wave bands and their features [72℄.

Name

Frequeny

range (Hz)

Features

Delta (δ)
0.5-4

Ours in sleep or a vegetative state of

the brain, slow and high amplitude

waves.

Theta (θ)
4-8

Ours during light sleep, quiet foused

meditation. They have been observed

during memory retrieval.

Alpha (α)
8-12

Mediate level of onsiousness, relaxed,

awareness of the body, predominant with

losed eyes, prominent above visual areas.

Beta (β)
12-30

Related to onsiousness, busy or

anxious thinking and ative

onentration. Low voltage waves.

Gamma (γ)
>30

With high level information proessing,

for learning and memory.

2.3.3 Artifats

Reording eletrial ativity from the brain is subjet to non-erebral inter-

ferene due to the high sensitivity of EEG systems. Those soures, named

artifats, an have a non-physiologial origin. For example, eletrial devies

operating nearby or physiologial interferene signals originated from the sub-

jet's heart and musle movements. Small movements suh as blinking or

frowning an introdue large spikes in the EEG signals and may deeive the

interpreter to believe that the apparent soures are abnormal [73℄. In [74℄, the

authors performed a omparative study of the e�et of blinking on the signal

to noise ratio (SNR) for salp EEG and iEEG simultaneously. This shows that

peak amplitudes in EEG hannels losest to the eyes related to blink artifats

that were also reorded from the same anatomial region in iEEG.
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Another soure of noise is the plaement of the eletrodes; if the referenes

to plae the ap or eletrodes are not aurate, the reorded EEG signal will

be a�eted by noise. In the same way, if one eletrode is unseure it an move

during the experiment ausing large artifats. In addition to these types of

noise, skin-eletrode noise must be onsidered whih strongly orrelates with

the skin impedane. The e�et is redued with the use of the gel in the

ase of wet eletrodes but the issue still remains under-addressed in the ase

of dry eletrodes, although e�orts have been made to negate this e�et [69℄.

Reognition and elimination of the artifats in EEG reordings is an arduous

task, but essential for the development of pratial systems [73℄.

In the last deade several methodologies have been proposed to improve

the SNR of EEG measurements, espeially those omprising di�erent signal

proessing tehniques designed to redue the noise using a range of temporal

averaging shemes. For example median and weighted averaging, trimmed

estimators, wavelet-based de-noising methods or spatial �lters [75℄. In order

to e�etively hoose the most appropriate method to deal with noise, several

aspets need to be onsidered in relation to the properties of the data and the

researh questions being asked [76℄.

2.4 Brain Computer Interfaes (BCI)

A BCI is a ommuniation system that is non-dependent of the brain's normal

output pathways. These systems provide its users with an alternative method

of interation with the world. Sine the EEG was �rst desribed by Hans

Berger in 1929 [65℄, BCI systems have made inredible progress. A variety of

methods to monitor and reord brain ativity are available and inlude PET,

fMRI, MRI, MEG or EEG. Refer to setion 2.2 for further details regarding

their basi funtion priniples. Figure 2.11 depits a lassi�ation of BCIs,

also named a Brain Mahine Interfae [11℄.

The main onept of the BCI system is that the human brain reats to a

spei� stimulus generating a spei� evoked potential (EP) and the onsistent

response to this stimulus an be used to ontrol a devie or for any other

purpose. An evoked potential, also known as event related potential or evoked

response, is haraterised by a series of �utuations in the EEG that are time-

loked to an event, inluding the onset of a stimulus or the exeution of a

physial response [77℄. Beyond BCI, EP an be used to assess hearing or sight,

espeially in hildren, to diagnose disorders of the opti nerve or detet other
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problems a�eting the brain and spinal ord.

Figure 2.11: Classi�ation of the di�erent BCIs aordingly to di�erent riteria: position of

eletrodes reording the brain ativity aording to the nature of the input signals of the

BCI and aording on how they are proessed [11, 78℄.

EP represents the standard tehnique in ognitive neurosiene to invest-

igate the temporal dynamis of ognitive proesses. Through the eletrode

plaements on the salp, the brain ativity is reorded before, during and after

the stimulus onset. During the reording, several repliations of the experi-

mental onditions are onduted, named trials. Time-loked signal averaging

is a neessary step to extrat EP from the raw data. At eah reording hannel
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and at idential times, from the beginning to the end of the trial, the signal is

averaged aross of all the trials reorded.

2.4.1 EP omponents

An EP onsists of a series of positive and negative de�etions, whih will be

denominated as omponents if they respond to a spei� stimulus. These

omponents are named by their polarity, positive (P) or negative (N), followed

by a number referring to their lateny (milliseonds). For example, the most

popular omponent, P300, indiates a positive omponent for whih peaks

our at around 300ms after the stimulus is presented to the user. Another

widely used omponent is the N170, a negative peak around 170ms after the

stimulus onset. Some more examples are: P100, P200, N270 or N400 [79℄.

Amplitude (of the order of μV) is usually de�ned as the di�erene between the

mean pre-stimulus baseline voltage and the largest positive-going peak of the

EP waveform within a time window determined by the stimulus modality, task

onditions, subjet age, and other fators. Lateny is typially de�ned as the

time from stimulus onset to the point of maximum positive amplitude within

this same time window [79℄.

2.4.2 BCI paradigms

A paradigm is the mental or ontrol task that the BCI users have to perform

to indue a spei� hange in their brain ativity. Reently, several mental

tasks have been presented as appropriate as ontrol strategies for this purpose.

For instane mental rotation, auditory imagery, motor imagery, mental sub-

tration, silent singing or spatial navigation. BCI paradigms an be divided

into two main lasses:

1. Exogenous, re�exive, synhronous or evoked paradigms are those whih

have need of an external stimulus to produe a response in the brain that

an be deteted by the BCI system. The presene of a stimulus redues

the training time. In some ases eliminating it, ompletely as the response

is indued automatially. However, it an indue false positives as the user

has to fous attention on the stimulus or the absene of it.

� P300 : As mentioned before, P300 is one of the EP omponents. Its
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name indiates a positive hange in the amplitude of the signal ahiev-

ing its maximum value around 300ms after stimulus onset. The �rst

studies regarding task relevane e�ets of the P300 omponent were

developed using the oddball paradigm, whih onsists of two stimuli

(ommonly additive stimuli) in a random sequene where one ours

less frequently than the other [77℄. However the atual origin of the

P300 is unlear. It is suggested that it is related to the end of og-

nitive proessing, to memory updating after information evaluation

or to information transfer to onsiousness. P300 has several appli-

ations. However, the most ommonly used is the P300 Speller. The

�rst mention of a P300 based BCI speller was in 1998, when Farwell

and Donhin, proposed the FD-Speller [80℄. It onsisted of a mat-

rix of 6x6 ells displayed on the sreen to represent 26 letters and a

few ommands. The rows and olumns where randomly highlighted,

when the olumn or row with the target ell was intensi�ed, a P300

was eliited. An example of this matrix of letters is shown in the

�gure 2.12.

Figure 2.12: Example of a typial matrix used in a P300 BCI Speller. When the row/olumn

where the target is highlighted, in this ase letter D, the P300 is triggered [81℄.

� Steady-State Evoked Potentials (SSEP): these are a brain responses

indued by a onstant stimulation, usually repeatedly �ikering a

light at a onstant frequeny, approximately between 6 and 100Hz.

Viewing this �ashing light at a partiular frequeny stimulates the

visual pathway. Consequently this frequeny is radiated throughout

the brain. The response manifests itself as an inrease in amplitude

of the stimulated frequeny, for example, if the stimulus it is presen-

ted on the sreen �ashing at a 5Hz frequeny. Then the user's brain

should produe frequenies at 5Hz, 10Hz, 15Hz, et. Typial appli-
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ations of SSEP in BCI systems are with the ontrol of a omputer

ursor [82℄ or the ontrol of a simple omputer program [83℄.

2. Endogenous, self-generated, asynhronous or spontaneous paradigms are

when the user voluntarily performs the mental task that ativates a par-

tiular area of the brain. The advantage of these paradigms is that they

only appear when the user wants them to, reduing the possibility of false

positives as there are no external stimuli to trigger a response. By on-

trast, these systems are subjet to the user's ability to ontrol their brain

ativity. Consequently prior training is needed.

� Slow ortial potentials (SCPs): These are slow event-related, diret-

urrent shifts in the EEG, originating from the large ell assemblies

in the upper ortial layer. They last from 0.3s up to several seonds.

Despite not being osillatory in nature, they our as a onsequene

of external or internal events. It has been demonstrated that SCPs'

negative shifts re�et the depolarisation of the large ortial ell as-

semblies, dereasing their exitation threshold. It is the ase, for

instane, for patients with epilepsy where large negative shifts have

been deteted seonds before a seizure [84℄. SCPs are used in a wide

range of treatments, suh as hyperativity disorder [85℄, inluding

BCI system appliations [86℄.

� Motor Imagery (MI): This paradigm relies on the fat that when a

person physially moves a limb and imagines moving it without atu-

ally performing any motor ation it produes the same brain ativity.

When the stimulus is presented, a synhronisation of the ative area

ours �rstly as a large event denominated as an event related de-

synhronisation (ERD) followed by an event related synhronisation

(ERS) , please refer to �gure 2.13. This event is loked to a spei�

frequeny band: μ rhythm (8-12 Hz) and β rhythm (12-30Hz). This

paradigm produes an asynhronous ontinuous output signal that is

optimal for appliations suh as motor ontrol. Wolpaw and his team

were the �rst to use the onept of MI applied to BCI systems [87℄.

They demonstrated for �rst the time that individuals an learn to use

the μ rhythm to ontrol movement of a ursor on a omputer sreen.

They managed to translate the distributions of µ rhythm amplitudes

to a series of parameters able to ontrol the ursor movements with
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ontrol and high auray. Sine then, the auray and diversi�-

ation of MI based BCI has experiened an enormous improvement.

Nowadays, systems exist with the apaity to di�erentiate between a

relaxation state, imagination of left hand, right hand, feet or tongue

movements.

Figure 2.13: ERD/ERS proess ourring after the stimulus onset during a MI paradigm

[88℄.

2.4.3 Emotional faes

There are di�erent approahes to improve the performane of a BCI system.

Most researh fouses on more aurate signal proessing and lassi�ation

tehniques. However, another interesting method to improve BCI performane

is ahieved by means of optimising the user's ontrol strategies [89℄. Reently,

various mental tasks have been identi�ed as suitable ontrol strategies for

using BCIs. For example, Millán et al. [90℄ and Galán et al. [91℄ implemented

asynhronous BCI protools in whih partiipants suessfully ontrolled a

wheelhair, a robot or a keyboard by the use of six di�erent mental strategies to

hoose between: relaxation, left and right hand motor imagery, ube rotation,

subtration and word assoiation. This study also highlighted the importane

of the hoie of mental tasks in order to get good performane from the BCI

strategy. To perform the lassi�ation step, �rstly a multiple disriminant

analysis is used to selet the relevant EEG features and then, the authors used

the statistial Gaussian lassi�er algorithm. Friedrih et al. have ompleted

several studies omparing the e�et and stability of seven di�erent tasks on
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lassi�ation performane for BCI [92, 89℄. They seleted tasks from di�erent

domains: mental rotation (imagine 3D L shape �gure to rotate), auditory

imagery of a melody (familiar tune without artiulating the words), mental

subtration (suessive elementary subtration by a presented �xed number),

spatial navigation through a familiar environment (your house or your room),

imagery of familiar faes or motor imagery of the right and left hand. All of

the mental tasks used in this work and their di�erent ombinations, obtained

average auraies omparable to the standard task left and right imagined

movements using linear disriminant analysis as the lassi�er and ommon

spatial patterns to ompute the most disriminative features for lassi�ation

[89℄. In addition all of them were stable aross sessions on di�erent days.

A novel P300-based BCI speller using faes as stimuli in onjuntion with

eyeless faes and eye only images was developed in the study presented in

[93℄, resulting in a signi�ant inrease in performane when ompared to the

onventional P300-based BCI with stimuli of an intensi�ation pattern. In

this ase, the feature extration was made by extrating 8 spatio-temporal

feature vetors from 8 �ash sub-trials to later feed a linear disriminant analysis

lassi�er. In the same manner, a novel stimulus for gazed-BCI is presented in

[94℄ named the �oloured dummy fae pattern�. It is suggested that di�erent

olours and faial expressions ould help users to loate the target and evoke

larger ERPs. Bayesian linear disriminant analysis, an extension of linear

disriminant analysis, was used in this researh to lassify between the di�erent

�oloured dummy faes�.

Faes provide larger information with regard to diverse aspets suh as

intention, emotional state, age, gender or identity that make them play a vi-

tal role on a daily basis in soial ommuniations [95℄. The proess of faial

emotion reognition is a omplex task that omprises pereptual and memory

skills, identi�ation and analysis of the partiular emotion in the fae in view.

In summary, faial emotion reognition requires integration of attention, per-

eption, learning and memory [27℄. Over the last deade fae proessing and

reognition has been studied extensively. Basar et al. reported that di�er-

ent responses our in di�erent frequeny bands when the partiipants were

exposed to a piture of a loved person versus a piture of an unknown person

[27℄. Baumgartner et al. showed that EEG ativity over the left hemisphere

inreases in happy onditions ompared to negative emotional onditions [28℄.

Some investigations have been based on the study of di�erent types of fun-

tional brain onnetivity using emotions as stimuli to lassify Parkinson's dis-

ease from healthy ontrol patients [29℄ or Autism Spetrum Disorder from
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typial developed hildren [30℄. These important results open the door for

biomarker appliations that an trak emotional impairments.

Based on these �ndings regarding fae emotion proessing and pereption, it

an be thought that the use of faes as stimuli may inrease the lassi�ation

auraies of MI-based BCI. In addition it is likely to help in traing the

ognition patterns underlying MI tasks linked to a spei� stimulus.

Another question to onsider is the suitability of stimuli for patients with

di�erent types of disability. ALS patients have impairments in working memory

but no prior studies have reported any impairments regarding faial pereption

and strutural enoding. In addition patients with di�erent levels of ognitive

impairments may experiene bene�ts from the use of emotional faes as stimuli

[93℄.

2.5 Brain onnetivity

The human brain is a remarkably omplex system of units interating with eah

other to inorporate and proess both internal and external stimuli. This mar-

vel of neural wiring ranges from links between individual neurons to �bres that

meander through vast brain regions. Suh a omplex system annot be stud-

ied by investigating individual units separately. These assemblies of speialised

neurons in�uene eah other through a series of synapti onnetions [96℄. The

use of eletroenephalography to attempt to measure the funtional interativ-

ity between di�erent ortial regions has a long history [97, 98, 99, 100℄. A

wide variety of methods has been used to unover the underlying onnetiv-

ity patterns aross the brain in human [101℄ and non-human subjets [102℄.

Di�erent methods are based on oherene, whih is assumed to orrespond

to synhronised ativity between eletrial ativities aross the di�erent brain

regions in a spei� frequeny band [103℄. Other tehniques investigate the dy-

namis of the ross-orrelation of the time series between a pair of eletrodes.

This interation aross ortial regions has the name of synhronisation in

time sale and its dynami is an essential instrument to understand how the

human brain performs a ognitive task given a partiular stimulus [104℄. Dir-

et evidene supporting synhrony as a basi mehanism for brain integration

has been reently proven with studies based on visual binding [105℄, proving

that loal integration -within neighbouring ortial areas- and large sale in-

tegration - onerning neural assemblies whih are farther apart in the brain-

an be interpreted as a biologial mehanism of integration.
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There are several distintions to onsiderer related to onnetivity, the �rst

one is between funtional integration and segregation. Funtional integration

refers to the study of how the brain regions work together to proess inform-

ation and e�et responses whereas segregation suggests that a ortial area is

speialised for some aspet of pereptual or motor proessing and this speial-

isation is anatomially segregated within the ortex [106℄.

Another di�erentiation an be made between funtional and e�etive on-

netivity. Funtional onnetivity is de�ned as the statistial assoiation or

dependeny between two or more distint time-series [107℄. It re�ets the stat-

istial dependeny among remote neurophysiologial events [106℄. It is simply a

statement about the observed orrelations against the null hypothesis; it does

not provide any diret information on how orrelation is mediated between

these brain regions. To deal with this issue the onept of e�etive onnetiv-

ity was developed. It is a more abstrat notion than funtional integration but

should be understood as a time-dependent experiment with the simplest pos-

sible neuron-like diagram that ould produe the same temporal relationship

between the reorded neurons in a ell assembly [108, 103℄. It is the diret or

indiret in�uene that one neural system exerts over another and onsequently

it depends on some model to de�ne this in�uene [107℄.

2.5.1 Analysing onnetivity

The study of time varying funtional onnetions will give us a pathway to

understand and quantitatively measure, brain onnetions happening aross

the brain when a spei� task is used as a stimulus.

E�etive onnetivity an be explained by means of dynami ausal mod-

elling (DCM). It models a network of disrete neuronal soures based on

Bayesian tehniques. It relies on a biophysial model of neuronal dynamis

(neural-mass or ondutane-based models) [109℄ and requires a priori de�ni-

tion of a large dataset of parameters [106℄. Another drawbak of this approah

is that ruial di�erenes among a variety of analyses rest with the models on

whih they are based [107℄. DCM an be onverted into a linear state-spae

model by solving the series of Bayesian equations, whih is known as Granger

ausality [110℄. Granger ausal modelling (GCM) is explained in terms of lin-

ear vetor autoregressive (VAR) models of stohasti time series data [111℄.

The multivariate VAR is de�ned as a set of k EEG hannels as:
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X (t) =

p
∑

j=1

A (j)X (t− j) + E (t) (2.1)

where:

� X (t) = [X1 (t) , X2 (t) , . . . , Xk (t)]
T
is a vetor of k signal values at eah

time t,

� E (t) = [E1 (t) , E2 (t) , . . . , Ek (t)]is a vetor of noises at eah time t,

� A (j) =
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for j=1,...., p are the model paramet-

ers,

� p is alled the model order.

The model order seletion is important in order to obtain an appropriate �tting

quality. If the order is too low, the resulting spetra an lak the neessary

details for a orret analysis of the EEG onnetivity. On the other hand,

high model orders tend to reate unwanted noise in the spetrum. Several

riteria have been proposed to selet the appropriate model order suh as

Akaike's information riterion or Bayesian-Shwart's riterion [112℄. In the

same manner, there are several algorithms of model parameter estimations

di�ering in their ability to detet spei� features of the spetrum of stability

for shorter data segments [112, 113, 114℄.

The disadvantage of this tehnique is that it assumes that the EEG sig-

nals are stationary and it annot provide information regarding phase oup-

ling between eletrode pairs. EEG signals are dynami, and therefore non-

stationary. This issue an be solved by applying windowing tehniques. How-

ever, these windows should be short enough to treat the data within eah of

them as stationary. This approah performs well for shorter data epohs, how-

ever, the statistial signi�ane of the estimates dereases with a shortening of

the window size [112℄.

Funtional synhronisation based on EEG signals an be measured in the

time or frequeny domains. EEG signals are non-stationary and the mutual

in�uene of brain regions, hene EEG hannels, do not always show a time

invariant behaviour [115℄. Several solutions have been proposed to address
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this issue. Aross them, one method to analyse the EEG signal in the time

domain, espeially suitable for the study of spontaneous ativity, is the de-

nominated mirostate analysis [116℄. Mirostates are de�ned by topographies

of eletri potentials reorded in a multihannel array over the salp whih

remain stable for a few milliseonds (80-120 ms) before transitioning sharply

into a new di�erent mirostate [117, 118℄. The advantage of this tehnique is

that it simultaneously onsiders the signal from all the EEG eletrodes to re-

ate a more global representation of a funtional state [118℄. Researhers have

been using the onept of mirostates for a vast diversity of studies sine it was

�rst mentioned by Lehmann in his seminal paper [119℄. For example, in study-

ing the impat on negative soial information amongst depressed people [120℄,

the resting state from shizophreni patients [121℄ or those with Alzheimer's

disease [122℄. In addition, some investigations have been undertaken for aware-

ness, motor inhibition or grasping objets [123, 124, 125℄. In [126℄, a test-retest

reliability study to assess the e�ieny of the resting-state EEG mirostates

analyses in healthy subjets over time was performed. The onlusions were

�rm, this tehnique has a high test-retest reliability. In addition the onsist-

eny of the most frequently used lustering algorithms (k-means lustering and

TAAHC) in extrating mirostates maps was determined.

On the other hand, in the frequeny domain, the lassial methods to meas-

ure synhronisation are orrelation and oherene. Coherene is a squared

orrelation oe�ient that estimates the onsisteny of relative amplitude and

phase between two pairs of signals in eah frequeny band [127℄. EEG o-

herene depends mostly on the onsisteny of the alulated phase di�erene

between hannels [128℄. Transferring the equation 2.1 to the frequeny domain,

the power spetrum an be alulated as [112℄:

S (f) = X (f)X∗ (f) =
(

A−1 (f)E (f)
) (

A−1 (f)E (f)
)

∗

= (2.2)

(H (f)E (f)) (H (f)E (f))
∗

= H (f)E (f)E∗ (f)H∗ (f) = H (f)V H∗ (f) ,

where V is the noise ovariane matrix andH (f) =
(
∑p

m=0A (m) e−2πimf△t
)−1

.

The oherene an be alulated by obtaining the ross-spetra of two signals

i and j from equation 2.2 [112℄:

Kij =
Sij (f)

√

Sii (f)Sjj (f)
. (2.3)
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EEG oherene is a sensitive measure that may yield important information

about network dynamis and funtional integration aross brain regions. This

metri is typially omputed by �rst taking the Fourier Transform (FT) of the

EEG signals reorded in two eletrode sites and then taking the imaginary and

real parts to alulate the phase of the transformed signals. EEG oherene has

been widely used in researh for a diverse range of topis suh as the detetion

of Alzheimer's Disease, ognition, Parkinson's Disease or mental fatigue among

others [129, 130, 131, 132℄. However, the need to use FTs to alulate the

oherene means that the temporal information of the phase dynamis is not

preserved so therefore give an averaged synhronisation measure over a seleted

time window at eah frequeny band. Some investigations have solved this

issue working with Short Time Fourier Transforms (STFT) [133℄. However,

stationarity is still required within eah time interval for whih oherene is

alulated onverting the seletion of the time window length as a ruial

step to ahieve aurate results [109℄. An alternative method for alulating

oherene is the use of the Continuous Wavelet Transform (CWT). It is more

�exible than STFTs but requires a-priori information about the oupling range

in time and frequeny in order to selet optimal parameters [109℄. This method

has been applied to EEG and MEG signals for lassi�ation of autism disorder

[134℄, learning study [135℄, brain omputer interfaes [135, 136℄, performing a

mathematial task versus a resting state or Alzheimer's Disease [137, 138℄.

Alternatively, with the aim of investigating the phase synhronisation at a

�ner sale than by means of oherene there is a series of non-linear methods

based on deterministi haos [109℄, namely phase synhrony . Phase synhrony

index or the phase loking value (PLV) use wavelet oherene to measure the

phase loking between two EEG signals. Synhrony measures depend only

on the phase between signals, even when the amplitudes remain statistially

independent [139℄.

Many other variations of these onnetivity measures have been desribed:

entropy and orrelation entropy oe�ients, partial and direted partial o-

herene, direted transfer funtions, diret direted transfer funtions, full fre-

queny direted transfer funtions, multivariate autoregressive (MVAR) mod-

els, omega omplexity, mutual information or state spae based synhrony

[140, 141℄.

The aim of this work is not to study the underlying neuroanatomy of pa-

tients, but to investigate the transient dynamis of the information integration

proess aross the di�erent brain areas in a task-spei� way. To this end, it

is absolutely neessary to estimate the evolution of phase relationships along
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with the task performane at di�erent frequeny bands and EEG eletrodes.

Deeper understanding of this integration proess during a ognitive task may

be useful in desribing brain organisation [134℄.

2.5.2 Connetivity and volume ondution

Volume ondution is an undesired e�et when an eletri urrent passing

through any biologial matter from a soure is reorded at the sensor. It has

been argued that volume ondution in the head an lead to a high salp

orrelation in the absene of signi�antly orrelated soures [142℄.

Usually, the head is desribed by 3 or 4 onentri spherial layers, repres-

enting the brain, the skull, the salp and the erebro-spinal �uid (CSF). In eah

of these layers, the ondutivity is assumed linear, isotropi, and homogeneous.

Eletrial urrents spread nearly instantaneously throughout any volume, like

membranes, skin, tissues, et. Sudden synhronous synapti potentials on the

dendrites of a ortial pyramidal ell result in a hange in the amplitude of

the loal eletrial potential referred to as an �Equivalent Dipole� [143℄. The

signal reorded at the eletrodes is smaller in amplitude sine it has to travel

through various media to be deteted by the sensors. The potential reorded

at the salp is inversely proportional to the distane from the soure. Under

this premise, any small hange in distane may ause a large hange in the

reorded signals. In addition, the polarity and shape of the eletrial potential

depends on the solid angle between the soure and the eletrode where it is

reorded. The volume ondution an a�et the synhronisation reorded from

the EEG eletrodes plaed on the salp, being orrupted or masked by linear

mixing.

Volume ondution involves near zero phase delays between any two points

within the eletrial �eld as olletions of dipoles osillate in time [144℄. Zero

phase delay is one of the important properties of volume ondution and it is for

this reason that measures suh as the ross-spetrum, oherene, bi-oherene

and oherene of phase delays are so ritial in measuring brain onnetivity

independent of volume ondution [23℄. Based on this idea, some works have

reently been developed to mitigate the e�et of volume ondution in the

measure of phase synhronisation [145, 146, 147, 134℄. In this partiular ase

and based on these studies, it an be onluded that the synhrony derived

from phase di�erene is not a�eted by the volume ondution e�et as it does

not report zero phase delay.
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2.6 Graph Theory

The study of strutural and funtional onnetivity within the living brain and

the hanges of the onnetivity pro�les over time an be done by means of a

mathematial framework named network theory [148℄. The use of network or

graph theory relies on the de�nition of regions within the brain ating as nodes

in a graph or network. The network is formed by nodes and edges. In this

ase the nodes are the EEG eletrodes. The edges represent the onnetions

between nodes and their representation is known as the adjaeny matrix of

the network. The struture of this matrix desribes the ommuniation pattern

of the brain network.

Various theoretial aspets of brain onnetivity have been investigated

in reent years. For instane, rih lub organisation [149℄ and segregation

and integration [150℄. Complex network measures have been used to explore

and understand the brain network from EEG and fMRI signals reorded from

patients with neurologial onditions and to ompare it against healthy pa-

tients. Conditions suh as Alzheimer's disease [151℄, autism spetrum disorder

[134, 30℄, attention de�it hyperativity disorder (ADHD) [152℄ or develop-

mental hanges due to premature birth have been studied in this way [153℄.

The review revealed the potential of using graph theory for haraterising

group di�erenes within the brain. The present work aims to use the priniples

and bene�ts of graph theory applied to EEG reordings to obtain quantitative

metris for further analysis to help in the haraterisation of a more aurate

MI-based BCI.

2.7 Summary

This hapter is a brief introdution to some tehnial onepts related to this

thesis; making its reading more omprehensive. The hapter began by dis-

ussing the most omplex organ in the human body, the brain. Furthermore,

the formation of ation potentials is explained and some tehniques to measure

brain ativity are brie�y mentioned. Among those tehniques, we have foused

on EEG as it was the methodology hosen to reord the data used in this thesis.

The idea of synhrony is key to understanding patterns of onnetivity appear-

ing aross the neural assemblies and is highlighted in this hapter. In addition,

a detailed review of the urrent tehniques to measure synhrony in EEG is

listed. During the review proess the inability of state of the art tehniques to

preserve temporal information of the phase synhrony was notieable, whih
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is fundamental information on how neural onnetions are onstruted in a

stimulus-spei� way.

The onept of BCI, the base of this work, and state of the art EEG-based

BCI is introdued in this hapter with speial attention to MI-based BCI.

The novelty of using faes as stimuli for the proposed MI-BCI is motivated by

the fat that fae stimuli may lead to a stronger response aross partiipants

[93℄. Finally a brief introdution to graph theory has been provided in this

hapter as a new and promising new approah for evaluating brain networks

quantitatively. In the next hapter the proposed methods to measure phase

synhrony without loss of temporal information is provided.



Chapter 3

Studying phase synhronisation:

synhrostates

Complex systems suh as the brain annot be explained as individual units

by themselves. For this reason, to understand brain ognition it is essential

to study the onnetions aross those individual units to give a sense of a

global onnetivity. In hapter 2, the need to investigate time varying phase

synhronisation when a stimulus-based ognitive task is performed was high-

lighted. The method used to ahieve this objetive was �rstly explained in

[134℄ and applied in the study of autism disorder in hildren. The main idea of

the developed methodology is to use the time and frequeny information from

the wavelet transform to understand the phase variations aross time. One

these dynamis are obtained, this identi�es the possible existene of spei�

patterns assoiated with a spei�-stimulus-based MI task. There have been

some attempts to study onnetivity in the temporal domain by means of the

onept of mirostates leading to unique eletri potential patterns. These pat-

terns and their transitions are task spei�. This onept of temporal swithing

of quasi-spatial stable states an be oupled to the idea that information pro-

essing between di�erent areas of the brain within a similar dynami funtional

state, is failitated by the phase synhronised ativity of the di�erent neural

groups. This allows us to obtain a more omplete temporal-frequeny repres-

entation of the EEG onnetivity when a ognitive task is being performed.

This fous on the transitions of phase synhrony provides a new perspetive

to gain a deeper understanding of the brain onnetivity and its dynamis.

Based on this idea of mirostates and their temporal swithing patterns,

instead of using eletri potentials based topographies, the proposed method

44
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divides the temporal line into a small number of states whih are pre-de�ned

by a lustering algorithm. This small number of states is phase synhronized

and stable in time in the order of milliseonds before swithing to the next

state. The outome of this methodology will help us understand the temporal

sequene desribing the temporal evolution of onnetivity linked to spei�

tasks and stimuli. Consequently, it an yield a more aurate and reliable

methodology for task lassi�ation on MI-based BCI uses.

In order to establish this �nite number of states, namely synhrostates [154℄,

two main steps are needed. Firstly, the extration of temporal and frequeny

information is a fundamental stage of the algorithm to establish the temporal

evolution of the onnetivity from the EEG reordings. The next step forward

is to try to understand the underlying patterns hidden in these phase di�erene

sets of measures. For this purpose a lustering algorithm to determine the

existene and number of synhrostates is applied. Throughout this hapter

both methodologies are explained in detail together with the experimental

protool followed to obtain the EEG reording dataset.

3.1 Experimental protool

So far, most of the researh on MI based BCI is foused on �nding new signal

proessing algorithms to enhane their performane. In this work, the aim is

not only to �nd a novel signal proessing methodology but also to disover

a more user-friendly and feasible stimulus that will help to redue the BCI

illiteray rate ahieving omparable performane with lassi paradigms. Fae

pereption involves some spei� proprieties not existing in other visual objet

pereptions. In addition, reent studies have demonstrated that fae perep-

tion an enhane stronger responses aross subjets [93℄ and ahieve exellent

performane when applied together to evoked EEG responses in BCI spellers'

appliations [155, 156℄. After all these �ndings, the present study is devoted

to investigating the e�et of fae pereption for the �rst time on MI based BCI

fusing stimuli of shemati emotional faes.

3.1.1 Subjets

Ten healthy volunteers, 8 males and 2 females, with an age range between 20

and 53 years (mean age of 31 ± 10.01) partiipated in the experiment. They

were right handed with one exeption and their sight was normal or orreted to

normal. The reruitment was arried out by means of publi announements,
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no seletion riteria were used and no monetary ompensations were o�ered

to the partiipants. Written onsent was signed by eah partiipant after they

were informed of the nature of the study. The University of Warwik Ethial

ommittee approved the study (REGO-2014-821). In partiular, the orres-

ponding ethial ommittee for the studies undertaken within the Siene and

Mediine Faulties involving human partiipants at the University of Warwik

is named Biomedial & Sienti� Researh Ethis Committee (BSREC).

3.1.2 Experimental montage and equipment

During the experiment partiipants were seated in a omfortable hair in a

quiet room. A keyboard onneted to a laptop was plaed over their legs so

they ould use their left and right index �ngers to press the appropriate keys

during the task. In addition, a omputer monitor was plaed on a desk in front

of them where the series of emotional faes was shown. This monitor was also

onneted to the laptop as the main part of the whole set up array ontrolling

the timing and saving of the EEG reordings.

For reording the EEG signals, 62 ative g.LADYbird eletrodes already

mounted in an eletrode ap (g.GAMMACap) were used. The ap and the

laptop were onneted by an EEG ampli�er (g.HIamp) all from g.Te [67℄.

Eletrodes on the ap were positioned aordingly to the 10-20 oordinates as

shown in �gure 2.10. To help the reording of the brain ativity, a ondutive

gel was plaed between the eletrode and the user's salp.

The ampli�er and the ues program were managed by Simulink

©

with in-

home spei� libraries. Data were aquired at a sampling frequeny of 256Hz

and referened online by subtrating the averaged referenes from two ele-

trodes plaed on the earlobes. Furthermore, an online noth �lter (50Hz) and

online Butterworth band pass �lter (0.5-100Hz) were used to attenuate the

e�ets of the power line and musle artifats respetively, both available from

the reording equipment's Simulink libraries. EEG reordings were saved to a

Matlab

©

�le.

3.1.3 Experimental task

The stimuli used for this experiment are based on the shemati emotional

faial expressions used by Babiloni and his team at [157℄, a study about on-

sious pereption of emotional faial expressions. Simple shemati faes were

used, widely known as emotions, over a blak bakground. The emotions,
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with a green bakground olour, ould represent two types of emotions: hap-

piness or sadness. These emotions are expressed by the funtion of the line

desribing the mouth: an up-right urve for happy and down-right line for sad

expression.

Figure 3.1: Time-sheme of a typial trial. The sequene of the stimuli was as follows: (1)

masked stimulus lasting between 1.25 to 1.75; (2) target stimulus (50% probability for eah

type of emotion) appearing on the entre of the sreen for 0.5s; (3) blak sreen with a

random duration of 1.25 or 3s where the partiipants were asked to perform the imaged

movement of their right or left hand aording to the emotion shown just before; (4) ross

over a white irle indiating the end of the trial and where the partiipants have to press

the 'm' or 'z' keys in onsonane with the emotion, hene imagined movement, depited by

the shemati fae.

The temporal sheme of the protool for a typial trial is shown in �gure

3.1. It was as follows: a masked fae lasting from 1.25s to 1.75s on the sreen,

a target stimulus for half a seond showing one of the possible emotions -happy

or sad- with equal probability of appearane; a blak sreen with a random

duration of 1.25 or 3s to avoid habitual predition and �nally a ross lasting

one seond to indiate to the partiipant the end of the trial and the beginning

of the new one. Partiipants were asked to imagine the movement of squeezing

a ball with their right hand or left hand during the duration of the blak

sreen without atually performing any atual motor movement. The hand to

perform the imaged movement was determined by the emotion shown by the

shemati fae, happiness means right hand and sadness left hand. In order

to keep the attention of the partiipant to a maximum level they were asked

to press the key 'z' or 'm' aordingly to the fae they visualised previously,
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happy and sad respetively. The tasks were divided into 4 bloks of 78 trials

eah, 312 trials in total, with around 5 minutes break between them as shown

in �gure 3.2.

The reation time for eah partiipant was reorded. It was measured as

the time elapsed from the appearane of the ross, indiating the end of the

trial and until the orresponding key is pressed. In order to verify the alert-

ness of the partiipants during the experiment and any possible di�erenes

between happy and sad fae responses a t-test was performed. The reation

times and the number of hits, indiated by the right key being pressed for

eah ondition, were tested omparing aross onditions without �nding any

relevant di�erene. Therefore, the response of the partiipants was similar for

both onditions. The averaged number of hits, over 85% for both tasks, also

indiates good onentration from the partiipants.

Figure 3.2: Experimental bloks sequene. The omplete experiment was divided into four

bloks of 78 trials eah with same number of ourrenes for both emotions, happiness and

sadness. The breaks between bloks were around �ve minutes eah and were ditated by

the user. .

3.1.4 Pre-proessing

EEG trials were divided into the two onditions, thinking right hand and left

hand respetively. A �rst seletion of trials was done by eliminating those ones

with amplitudes over a 200μV threshold, a normal threshold used for EEG pre-

proessing. Afterwards a visual inspetion of the whole dataset of trials and

partiipants was performed and those trials a�eted by blinking or any other

kind of musle movement were eliminated beause were onsidered artifats.

Finally artifat-free trials were divided into one seond length epohs for eah

ondition lasting from 100ms before stimuli onset to 900ms after.
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3.2 Methodology

Synhronisation was originally introdued to desribe two oupled harmoni

osillators into the physis �eld. Some examples an be extrated from daily

life, suh as two pendulum loks moving in a ommon beam will �nish syn-

hronised. The idea of synhrony is also applied to the medial area. For

example, to ontrol abnormal respiration of a patient by foring synhron-

isation with a ventilator moving at a spei� frequeny or for the study and

omprehension of shizophrenia [158℄. Despite the fat that the onept of syn-

hronisation was earlier greatly highlighted by experimental results with miro

eletrodes plaed on animals, it was not until 1999 that a pratial method was

proposed for the measurement of frequeny-spei� synhronisation between

two neuroeletri signals [139℄. Given two signals s1 (t)and s2 (t) and their

orresponding instantaneous phase ϕs1 (t) and ϕs2 (t), it an be said that they

are loked if:

ϕs1 (t)− ϕs2 (t) = constant (3.1)

Two major approahes to extrating the instantaneous phase are the Hilbert

transform and the omplex Wavelet transform. Both methods transform real

values from the time domain funtions into omplex values. Those methods

based on Hilbert transforms obtain the analytial form of the signal. For a

given signal, its analyti signal is a omplex funtion of the time de�ned as

[159℄:

ŝ1 (t) = s1 (t) + j ∗ s̃1 (t) = |ŝ1 (t)| ejϕ(t), (3.2)

where s̃1 (t) is the Hilbert transform of the signal alulated as indiated in

3.3 and |ŝ1 (t)| is the magnitude or envelope de�ned by 3.4.

s̃1 (t) =
1

π

+∞
ˆ

−∞

s1 (τ)
1

t− τ
dτ, (3.3)

|ŝ1 (t)| =
√

s21 (t) + s̃21 (t). (3.4)

From equation 3.2, the estimation of the instantaneous phase is performed

by ϕ1 (t) = arctan (s̃1 (t) /s1 (t)) [160℄. However, a �ne bandpass �ltering of the



50 CHAPTER 3. STUDYING PHASE SYNCHRONISATION: SYNCHROSTATES

signal around the frequeny of interest is needed. On the other hand, omplex-

valued wavelet methods provide phase information in the time and frequeny

domains , therefore they are more suitable for non-stationary signals. This is

partiularly true for the sope of this work, where the temporal transitions of

phase synhronisation are being studied in di�erent frequeny bands. There

are several omplex wavelet families suh as the omplex Gaussian, omplex

Morlet, omplex Frequeny B-Spline or Complex Shannon. Another approah

similar to wavelet transform, also preserving time and frequeny information,

has been reently used in [21℄. This new time-varying phase estimation method

is based on the Redued Interferene Rihazek (RID-Rihazek) distribution

belonging to Cohen's lass. The main di�erene between this novel method

when ompared to the CWT is that the phase estimations area is uniformly

distributed. For the proposed method here the well-known properties and

extended use of the CWT based on omplex Morlet mother wavelet is seleted

[154℄.

3.2.1 Instantaneous phase di�erene

The �rst step in quantifying the phase synhronisation between two signals

onsists of the estimation of the instantaneous phase of eah individual signal

for eah time and frequeny of interest [105℄. One those phase di�erenes

are alulated for eah ase, the phase di�erene between two signals an be

alulated [21℄. If the instantaneous phase di�erene between the two signals,

s1 (t)and s2 (t) remains onstant for a period of time it an be said that these

two signals are in synhrony. The proposed method to alulate the instant-

aneous phase for eah of the EEG eletrodes used is the CWT, as mentioned

above.

Aross the di�erent mother omplex wavelets the Morlet wavelet is one of

the most frequently used to work with biologial signals. For example, in

the study of erebral �ow auto-regulation [161℄ or EEG signals [162℄. Another

reason to use the omplex Morlet wavelet is that it gives a good time loation in

the time domain. In addition, it an obtain the amplitude and phase of neural

ativity simultaneously. Therefore, it is able to investigate the synhronisation

between neural ativities simultaneously reorded at two di�erent sites [163℄.

The omplex Morlet wavelet funtion is de�ned as illustrated in the equation

3.5. A reent investigation of the use of harmoni wavelet funtion, whih

is similar to the ordinary disrete wavelet transform, was performed to study

phase synhronisation whih obtained similar results to when a Morlet wavelet
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is used. However, this is not as widely tested as the omplex Morlet Wavelet

for the study of phase synhronisation [164℄. The omplex Morlet wavelet

funtion is de�ned by equation 3.5. The values of the bandwidth parameter,

Fb, and entral frequeny, Fc, were seleted following the riteria adopted in

[154℄, being 1Hz and 1.5Hz respetively.

ψM (t) =
1√
πFb

e2jπFcte
− t2

Fb . (3.5)

The methodology followed here is based on the proposed method in the

study of Autism Disorders by Wasifa et al. [154℄. In order to alulate the

instantaneous phase of eah signal in this ase, eah eletrode used for reording

the EEG signal, the omplex Morlet wavelet is applied to eah one of them.

The result of this omputation is a omplex series of funtions of time (t) and

sales (s) for eah one of the N available hannels, WT (s, t). The relationship

between the sales and their orresponding approximated frequenies an be

alulated by3.6:

f =
Fc

s ∗Δ , (3.6)

where Δ is the sampling period and f is the pseudo frequeny assoiated to

the sale s [165℄. The phase of a omplex signal an be determined by the

inverse tangent between its imaginary and real part. If the imaginary part

of WT i (s, t) is expressed by Im [WT i (s, t)] and real part as Re [WT i (s, t)] the

instantaneous phase ϕi (s, t) of WT i (s, t) an be omputed by equation (3.7).

ϕi (f, t) = arctan

(

Im (W T i (s, t))

Re (W T i (s, t))

)

. (3.7)

One the instantaneous phase di�erene is obtained for eah EEG han-

nel, the next step is to alulate the instantaneous phase di�erene between

eah pair of eletrodes, time sample and frequeny bin. The phase di�erene

between two hannels, i and j , an be obtained following the equation in (3.8).

△ϕi,j (s, t) = |ϕi (s, t)− ϕj (s, t) |. (3.8)

When applying equation (3.8) for a time instant t

1

and a sale s

1

for eah

pair of EEG hannels, the result is a symmetri square matrix. The main

diagonal is zero as it represents the phase di�erene of a hannel with itself.

Figure 3.3 illustrates an example of these matries for a spei� time t

1

and

sale s

k

. The aim is to study the instantaneous phase di�erene over time

for a spei� band of interest. Consequently, an averaging step aross all
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the frequeny matries within the band of interest an be done, yielding an

averaged di�erene of phases whih is only a funtion of time. If the set

of frequeny bins or sales for a frequeny band of interest F is de�ned by

F = {s1, s2, ..., sP} then the averaged di�erene of phases an be alulated by

(3.9).

△ϕF (t) =
1

P

P
∑

i=1

△ϕ (si, t) (3.9)

Figure 3.3: Struture of an instantaneous phase di�erenes matrix at time t

1

and sale s

k

.

Adapted from [154℄.

A graphi shemati representation of this averaging step is illustrated on

the top part of the �gure 3.4. Subsequently, this averaging step should be

repeated for eah time instant t = {t1, t2, ..., tn}. The result of repeating this

averaging proedure is a set of matries {△ϕF (t1) ,△ϕF (t2) , ...,△ϕF (tn)}
desribing the omplete frame of the temporal evolution of the phase di�erene.

Eah of these symmetri matries has dimensions of N by N, N being the

number of hannels as mentioned previously. Figure 3.4 illustrates a graphi

summary of the averaging proess for a time instant t and a frequeny band F

for eah pair of eletrodes and the result of repliating the proess for eah time

t with the temporal range of interest. The result is a set of square symmetri

matries for eah time instant t for a spei� frequeny band of interest F and

for eah pair of EEG hannels than an be seen on the bottom of the �gure.
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Figure 3.4: Sheme of the two �nal steps to alulate the instantaneous phase di�erene over

time. The upper part represents the average step in order to alulate the phase di�erenes

in a spei� band of interest F at a time t △ϕF (t). The repetition of this step for eah time

instant t = {t1, t2, ..., tn} is shown at the bottom of the �gure. The �nal result is a set of

symmetrial square matries for eah time instant t giving the omplete information of the

phase di�erenes over time for eah EEG hannel pair. N is the number of EEG hannels.

Adapted from [154℄.
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3.2.2 Clustering

One the phase di�erene matries along a spei� frequeny band and time

interval are obtained, the next logial step is to investigate if there is any

underlying pattern in the phase di�erenes. In order to disover signi�ant

patterns of features in the phase synhronisation obtained from the algorithm

desribed in the previous setion, a pattern reognition tehnique is needed.

The k-means [166℄ lustering algorithm is the most widely used partitional

lustering algorithm. It has appliations aross a broad range of data min-

ing problems [167℄ as it is one of the simplest and most e�ient lustering

algorithms that exists in the �eld of data lustering.

k-means lustering assumes that the number of underlying lusters is known.

It starts by randomly hoosing k points as the initial entroids. Posteriorly

eah point of the initial dataset is assigned to the losest entroid based on a

spei� proximity measure, widely known as a ost funtion. One the lusters

are formed, the entroids for eah one of the lusters are updated. These two

steps will be iteratively repeated until the entroids do not hange any more

or a hosen onvergene riterion is ahieved.

The ost funtion seleted for this partiular study is based on the Eulidean

distane as dissimilarity measure. Some other proximity measures whih an

also be used are Manhattan distane or Cosine similarity [168℄. The hoie an

signi�antly a�et the entroid assignment and the quality of the �nal seletion.

In this ase Eulidean distane was seleted as it is the most popular hoie

and onsequently the more tested option [169℄.

J (θ, U) =

N
∑

i=1

k
∑

j=1

uij‖xi − θj‖2 (3.10)

The ost funtion used within this hapter is de�ned as equation 3.10, where

θ =
[

θT1 , . . . , θ
T
k

]T
are the luster representatives or simply representatives or-

responding to points of the given dimensional spae, ‖.‖ stands for the Eu-

lidean distane, xi is the i th element of the dataset χ = {x1, x2, . . . , xN} and

u

ij

=1 if xi lies loser to θj ; otherwise u
ij

=0 [170℄. In this ase the dataset χ

is the omplete range of instantaneous phase di�erenes for eah pair of EEG

eletrodes as a funtion of time and averaged over a partiular frequeny band

of interest alulated as explained in setion 3.2.1.

The two major fators that an a�et the k-means algorithm and on-

sequently may have an impat on its performane are: the hoie of the initial

entroids and the estimation of the number of lusters. k-means annot guaran-

tee the onvergene to a global minimum of the ost funtion, returning instead
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the lusters orresponding to the loal minima [170℄. To avoid this initialisa-

tion issue, several initialisation methodologies have been proposed. Hartigan

and Wong proposed a method based on the nearest neighbour density, Milligan

used the results obtained by means of agglomerative hierarhial lustering or

the popular k-means++ whih arefully selets the initial entroids following

a simple-probability approah [169℄. In this work, the riterion adopted to

irumvent this handiap is to establish a number of random initialisations for

eah one of the luster numbers seleted to run the lustering algorithm. The

best results of the k-means algorithm for eah hoie of k are seleted from the

n di�erent random initialisations. The number of random initialisations were

seleted as 10, 50 and 100. The hoie of 3 di�erent numbers of randomisations

were onsidered to study the in�uene of the initial entroids estimation on

the �nal result of the lustering algorithm.

Table 3.1: k-means lustering algorithm pseudoode.

k-means lustering algorithm

1. Selet number of lusters range, m=[2 10℄

2. Repeat for eah m

i

� Repeat for eah n

j

(n=1 to 10, 1 to 50 or 1 to 100)

- Random initialisation of initial entroids

- Form lusters by assigning eah point to its losest entroid (ost funtion J (θ, U))
- Re-ompute the entroids

� Until onvergene riterion is met

� Selet and storage the minima of J (θ, U)
3. Plot J (θ, U) versus m
4. Selet the m

i

value showing the most signi�ant �knee�.

In order to deal with the seond problem, the seletion of the number of

lusters, an initial range of possible lusters m = [mmin, mmax] that an de�ne

perfetly the data set χ is de�ned [170℄. This initial range is set between 2

and 10 lusters. For eah one of this possible range of lusters, the algorithm

is randomly initialised n times, alulating and saving the minimum value of

the ost funtion J (θ, U). The simplest way to estimate the right number

of lusters is by plotting the stored values of the ost funtion against the

orresponding number of lusters m. If the plotted graphis shows a signi�ant

loal hange, popularly known as signi�ant �knee�, at a lustering number m

i

,

it an be said that the optimal number of lusters for the studied dataset will

be m

i

. The absene of a signi�ant �knee� on the graph is a lear indiator

of the non-lustering struture of the partiular dataset [170℄. Another issue

than an emerge when using this methodology to determine the right number

of lusters is the possibility that more than one loal hange or �knee� an
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appear in the graphi of the ost funtion versus the number of lusters m. In

this ase the onvention followed within the mahine learning literature is to

selet the earliest and most prominent �knee� as the likely one to determine

the right number of lusters [134, 154℄. The steps of the k-means lustering

algorithm desribed in this setion are listed in table 3.1.

Prior to the appliation of the inremental lustering algorithm to the in-

stantaneous phase di�erenes dataset, a proess of unwrapping needs to be

done. It is demonstrated that the phase is irular in nature, onsequently

phase di�erenes are irular too. The wavelet based instantaneous phase dif-

ferenes should always be between ± π to avoid this problem [134℄. In addition,

a normalisation proess is performed aross all of the eletrode pairs by means

of the maximum and minimum values of the instantaneous phase di�erene.

As a result of the normalisation proess, all the transformed values will be

within the range [0,1℄. After these unwrapping and normalisation steps, the

instantaneous phase di�erenes are ready to feed into the lustering algorithm.

The dataset χ is formed from all the instantaneous phase di�erenes as al-

ulated in 3.9, χ = {△ϕF (t1) ,△ϕF (t2) , . . .△ϕF (tn)}. One this dataset is

unwrapped and normalized it is lustered along eah time instant t to invest-

igate the possible underlying patterns within a spei� frequeny band. The

lustering algorithm results yield a right number of lusters k , those minimising

the ost funtion, and for eah one of these lusters, information regarding the

entroids and luster labels is saved. The luster labels with a length of n,

one label for eah time instant t , hold information about the state transitions.

Whereas the entroids give the averaged information for eah one of the k

states de�ned by the lustering algorithm [134℄.

Using this information, two types of graphis an be drawn. On one side, the

lustering labels for the k di�erent states explaining the dataset an be plotted

versus the time instants t = {t1, t2, . . . , tn} to explain in whih temporal instant

eah state ourred and the transitions of suh states along time. On the other

hand, the lustering entroids an be used to translate the unique states into

topographi maps. To outline these head topographies, �rstly an average of

the phase di�erene matries is alulated. As it is a symmetrial matrix the

average an be done equally, taking a row or olumn average. Eah value

of this averaged step will be assigned a olour after a normalisation proess

by means of maximum and minimum values. The assignation of the olours

is magenta tones for higher values, meaning larger averaged phase di�erene,

and orange for values showing a lower phase di�erene with the rest of the

eletrodes.
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3.3 Results

The EEG data were olleted from 10 partiipants, 8 males and 2 females with

an age range between 20 and 53 years (mean age of 31 ± 10.01) during a motor

imagery task with emotional shemati fae as stimuli. Data were reorded

from 62 EEG hannels at a 256Hz sampling frequeny. Reordings were online

averaged and �ltered with a noth �lter (50Hz) and a Butterworth �lter (0.5-

100Hz). The motor imagined tasks was squeezing the ball with the right or

left hand when the shemati fae showed happiness or sadness respetively as

shown in �gure 3.1. Posteriorly, the omplete dataset was visually inspeted

to eliminate those trials with artifats, baseline orreted and divided into

epohs for the two task onditions, Thinking Right and Thinking Left. The

epoh length was 1s, starting from 100ms pre-stimulus to 900ms post-stimulus.

The following step, one all the epohs with artifats are rejeted, is to

obtain the instantaneous phase di�erene between eah one of the pair of ele-

trodes used for the register of the EEG as indiated in setion 3.2.1. The

CWT is applied to the dataset and the instantaneous phase for eah ele-

trode is obtained as the argument between the imaginary and real parts of the

transformed signal. The phase di�erene between a partiular eletrode for

eah time instant and frequeny bin is obtained by subtrating the instantan-

eous phase of this eletrode from the rest of the eletrodes. This proedure

yields a square symmetri matrix as shown in �gure 3.3. These matries are

then averaged aross the number of trials under onsideration.

The study of MI tasks, in aordane with the literature, is always per-

formed in a spei� frequeny band way. For this reason the set of instantan-

eous phase matries is averaged aross all the frequeny bins within a hosen

frequeny band of interest as indiated in 3.9. Repeating this averaging step

for eah time instant of the epoh length results in a set of time-dependant

matries as shown in �gure 3.4. The frequeny bands seleted to perform the

desribed algorithm are the alpha (α), beta (β), theta (θ) and gamma (γ)

bands. Refer to table 2.2 for more information regarding these frequenies.

The δ band is not onsidered for this setion as it does not present useful in-

formation for motor imagery tasks as it gradually diminishes with the age of

the subjet. However, it is an important biomarker of a funtional de�it of

erebral oordination and therefore as a state of funtional disonnetion in

patients su�ering from shizophrenia [171℄.

The results in this setion are presented �rstly as an average aross parti-

ipants and seondly as individuals belonging to a population. For the �rst
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ase, the averaged instantaneous phase matries for eah partiipant were al-

ulated by averaging aross trials. Posteriorly, a seond average was performed

aross all subjets and time instants within a frequeny band of interest. For

the seond ase only those averaged aross trials are needed. After this step

the proedure for both ases is the same, running the k-means lustering al-

gorithm explained in setion 3.2.2. The method of using a population average

and also onsidering this as an individual partiipant gives a wider point of

view regarding the temporal evolution of the phase di�erenes and their inter-

relation.

The lustering algorithm applied to the dataset yielded a small number of

lusters explaining the underlying phase information along the length of the

epoh of the EEG data. The partiularity of this �nite number of lusters is

that they remain stable in the order of milliseonds, they are phase synhron-

ised, and suddenly hange to a new, ompletely di�erent on�guration where

they remain stable again. This is learly identi�ed when the luster labels are

plot versus the time instants t . This transition plot re�ets the time evolution

of the states resulting from the lustering, when they remain stable and when

they swith to the next state. These semi-stable states were named synhro-

states, desribed for the �rst time by Wasifa et all at [134℄. During this work

the nomenlature developed in that study will be followed.

3.3.1 Averaged population

In order to selet the optimal number of states underlying the dataset the

inremental k-means algorithm was run for an inremental number of lusters.

Figure 3.5 illustrates the results of performing the lustering algorithm in order

to alulate the optimal number of lusters k for the four frequeny bands

under onsideration (θ, α, β and γ bands) and the two onditions or MI tasks

performed by the omplete population (Thinking R and Thinking L for the

right and left hand imagined movements respetively). The value of the ost

funtion, J, is dependent on the number of lusters and the dataset under

onsideration. A higher value indiates a less ompat luster. At this point it

is worth mentioning that the absolute value of the ost funtion J (θ, U) is not

relevant. The value however, of the number of lusters m at whih the ost

funtion presents a minimum value is the important parameter indiating the

optimal number of underlying lusters [23℄.
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Figure 3.5: Determination of the optimal number of underlying lusters k for an averaged

population. The di�erent plots show the lustering algorithms for the four frequeny bands

onsidered for this study. For eah frequeny band the algorithm was run for eah one of

the onditions or MI tasks, Thinking R and Thinking L.

The eletion of the optimal number of lusters will be determined by the

�rst and most signi�ant loal minima or �knee� shown in the piture and as

disussed in setion 3.2.2. Aording to this seletion riterion, the number of

unique states for the α, β and γ bands are determined by the �rst loal minima

of the ost funtion J (θ, U) at k=3. In the ase of the θ band, the knee is

not as lear as in the other three frequeny bands studied. The �rst minimum

ours for k=2, however it an be argued that the most lear knee ours

at k=4. A higher number of lusters will inrease the omplexity of a dataset

that an be explained with only two lusters. The larger the number of lusters

used, the more likely that at least one of the �physial� lusters will be split

into two or more �sub-lusters� [170℄. Under this onsideration, the optimal

number of lusters for θ band is set to k=2. This almost negligible variation

in the number of states aross the frequeny bands, between 2 and 3, may

be explained by the fat that they represent di�erent bakground proesses
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exeuting in parallel but that may not be related to these partiular ognitive

task [134℄.

The existene of a �nite number of synhrostates with a small variability

aross frequeny bands, between 2 and 3 for both onditions, may lead to the

on�rmation of the existene of synhrostates for the explored bands.

One the optimal number of lusters has been deided, the luster entroid

points for the seleted k are used to generate head plot topographies for the

di�erent states determined by the lustering algorithm. This will graphially

illustrate how the eletrodes having a similar di�erene in phase are onneted

aross di�erent brain regions. The values are normalised between 0 and 1 for

visualisation purposes; where values near to 1 (magenta tones) mean a higher

phase di�erene for this eletrode with respet to the rest of the eletrodes. By

ontrast, lower values (loser to 0, orange olours), indiate that the eletrode

has smaller phase di�erene to the rest of the eletrodes. In order to obtain

these phase di�erene ontour style topographies, �rstly it is neessary to re-

due the luster entroid matrix dimensions for eah state into an averaged

phase di�erene; for example row-wise. This highlights the fat that these

topographies are not the standard qualitative EEG plots showing an averaged

power over the salp. Both graphis are ompletely di�erent onepts. A

standard qualitative EEG plot re�ets the eletrial amplitude in voltage. By

ontrast, topographies illustrated in this hapter represent the averaged di�er-

ene of phase within a spei� frequeny band, represented by the entroids

resulting from the lustering algorithm.

In order to determine the in�uene of the number of randomisations from

the results of the lustering algorithm, three di�erent initialisation times were

seleted n=10, 50, 100. The optimal number of lusters remained the same for

the three di�erent values under test for the averaged population. However, the

lustering entroids hange with the number of initialisations as an be seen

from �gures 3.6 and 3.7 showing the lustered synhrostates topographies for

the α band with 10 and 100 random initialisations of the lustering algorithm.

A similar result is observed for the β band in �gures 3.8 and 3.9. It an be seen

that when a lower number of initialisations of the lustering algorithm is used,

n=10, the di�erenes among the topographies of the three di�erent states are

larger, with one of the states representing those averaged phase di�erenes

loser to zero (orange olours). The other two states hold the higher gross

phase di�erene values (magenta tones).
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Figure 3.6: Clustered synhrostates topographies showing the averaged phase di�erenes

aross the di�erent areas of the brain related to a stimulus -spei� task for the α band and

n=10 random initialisations of the lustering algorithm. The headplots are illustrated for

two di�erent MI-tasks, Thinking R and Thinking L.

Figure 3.7: Clustered synhrostates topographies showing the averaged phase di�erenes

aross the di�erent areas of the brain related to a stimulus -spei� task for the α band and

n=100 random initialisations of the lustering algorithm. The headplots are illustrated for

two di�erent MI-tasks, Thinking R and Thinking L.
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On the other hand, when 100 randomisations of the algorithm are performed

those di�erenes among the states within the same stimulus tend to beome

more diluted. Finally, the ase with 50 random initialisations of the k-means

lustering algorithm generated similar topographi plots to when the number of

initialisations is set to 100. As the optimal number of synhrostates resulted in

the same number aross the four frequeny bands, for all the randomisations,

adding to the fat that the omputational ost of using 50 or 100 di�erent

initial values for the representatives was onsiderably more expensive to lead

the same number of optimal lusters and that the aim of this work is to study

the temporal evolution of the states rather than the topography head maps,

the seletion of n=10 for the rest of the alulations was lear.

Figure 3.8: Clustered synhrostates topographies showing the averaged phase di�erenes

aross the di�erent areas of the brain related to a stimulus -spei� task for the β band and

n=10 random initialisations of the lustering algorithm. The headplots are illustrated for

two di�erent MI-tasks, Thinking R and Thinking L.

Regarding the synhrostates results, from �gure 3.6 it is evident that the

topographies of all the synhrostates are very similar for the two di�erent

stimulus based tasks in the α band. A similar result is observed for the β band

in �gure 3.8 and the γ band in �gure 3.10 where the synhrostates plots for

both onditions are analogous. A result that an be expeted as both tasks,

Thinking R and Thinking L, are basially within the same ategory. There
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is a similarity for all frequeny bands regarding the distribution of the phase

di�erene values between the three synhrostates with one of the states having

the lower values as mentioned before. Between the other two states, it may

be appreiated that one of them ontains slightly more magenta tones olours

than the other (state 1 for the α band and state 3 for the β and γ bands). It

is notieable that the synhrostates topographi plots for the γ and β bands

are pratially a repliation, only di�ering slightly in some of the magenta

tones numerial values. This is onsistent with �ndings in [154, 172℄. The

small di�erene aross frequeny bands may be due to the variability aross

trials, mental state of the subjets or any other similar bakground proess

independent of the tasks.

Figure 3.9: Clustered synhrostates topographies showing the averaged phase di�erenes

aross the di�erent areas of the brain related to a stimulus -spei� task for the β band and

n=100 random initialisations of the lustering algorithm. The headplots are illustrated for

two di�erent MI-tasks, Thinking R and Thinking L.

3.3.1.1 Exploring transition features of synhrostates

The exploration performed on the synhrostates led to a �nite number of syn-

hrostates for all frequeny bands. The topographi maps of the averaged

phase di�erene lustered synhrostates were similar aross the two task on-

ditions and between the various ranges of frequeny bands studied. In this

setion an examination of the time transitions for eah one of the three syn-
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hrostates linked to a spei� stimulus is performed. In addition, the number

of times that eah one of these states ours for eah band and task ondition

is alulated. In order to perform this investigation, the luster labels resulting

from eah ondition and frequeny band are plotted versus time for the whole

length of the epoh, ranging from 100ms before the stimuli onset to 900ms

afterwards. In the same way, based on the luster labels, the number of tem-

poral instants for eah state are listed for di�erent groups of time windows.

Firstly the number of ourrenes for the 1s length are omputed. Then the

time interval is divided into three smaller windows: 100ms pre-stimulus, 500ms

representing the time when the orresponding stimulus is shown on the sreen

and the last, 400ms where the partiipant is asked to perform the imagined

movement. The third group of time intervals is foused on the �rst 500ms

after the stimulus onset, this elapsed time is grouped into 100ms sub-intervals.

As an illustrative example of the last two ases, we refer to �gures 3.11 and

3.12 for the three time windows whose divisions are indiated by the red lines

and �gure 3.13 for the last ase where the extra dotted red lines indiate the

100ms time sub-intervals.

Figure 3.10: Clustered synhrostates topographies showing the averaged phase di�erenes

aross the di�erent areas of the brain related to a stimulus -spei� task for the γ band and

n=10 random initialisations of the lustering algorithm. The headplots are illustrated for

two di�erent MI-tasks, Thinking R and Thinking L.
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The previously mentioned �gures, 3.11, 3.12 and 3.13 represent the swith-

ing pattern over time for the α, β and γ bands respetively. For all three

�gures, the top graphs refer to the Thinking R ondition and the bottom one,

to the Thinking L ondition. Contrary to the results of the head-plot maps,

the transition patterns over time are learly di�erent between the two stimuli

and also aross the di�erent frequeny bands. These �ndings ratify the theory

that the synhrostates are stimuli-spei� in nature [172℄.

Figure 3.11: Temporal evolution of the lustered synhrostates for the α band for both

onditions, Thinking R (top) and Thinking L (bottom). The red lines indiate the time

instants of the stimulus onset and o�set respetively.

Figure 3.12: Temporal evolution of the lustered synhrostates for β the band for both

onditions, Thinking R (top) and Thinking L (bottom). The red lines indiate the time

instants of the stimulus onset and o�set respetively.
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Figure 3.13: Temporal evolution of the lustered synhrostates for γ band for both ondi-

tions, Thinking R (top) and Thinking L (bottom). The ontinuous red lines indiate the time

instants of the stimulus onset and o�set respetively and the dotted red lines re�ets 100ms

intervals within the 500ms that the stimulus is shown on the sreen to the partiipants.

It an be seen from these �gures that the synhrostates remain stable for a

few milliseonds and suddenly hange to the next state. This abrupt transition

between the di�erent states is in agrement with the results onerning the

behaviour of mirostates in [126℄. In [23℄ it is suggested that time duration

patterns for eah synhrostate may be indiative of the time required for the

brain system to perform a subtask, assuming beforehand that a task an be

split into a set of subtasks.

Comparing the transition plots (�gures 3.11, 3.12 and 3.13) aross the

ranges of frequeny bands analysed in this work, the redued number of hanges

between states is notieable in the α band versus the other two range of fre-

quenies. It is on�rmed when the number of transitions aross synhrostates

is omputed, as an be observed from table 3.2. In the α band, (�gure 3.11)

both onditions start in di�erent states, 2 and 3 for Thinking R and L ondi-

tions respetively. The di�erent initial states, for the di�erent emotional faes,

is in line with previous �ndings [134℄, where fae pereption tasks were studied

from patients su�ering from Autism Spetrum Disorder and a ontrol group.

It may be explained by the di�erent proessing pathways aross partiipants of

the image prior to the stimulus onset or it may be beause of any other under-

lying proess ourring in parallel and not related to the task. However, the β

and γ bands transition patterns start at state 3 for both onditions. However,
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the transition sheme between frequenies soon diverges, remaining onsider-

ably di�erent over time. In the same manner, there is a marked di�erene

between onditions within a spei� frequeny band. In the α and γ bands, it

an be seen from sub-tables 3.2b and 3.2 than the state were both onditions

spend more time is the seond one. In ontrast for the β band the maximum

ourrene state varies between both stimulus-linked onditions, being state 1

for Thinking L and state 3 for Thinking R.

Table 3.2: Number of ourrenes for eah one the three synhrostates for the α, β and γ
bands with two di�erent onditions, Thinking R and Thinking L when the omplete length

of the epoh is onsidered.

(a) α band

ondition

state

1

state

2

state

3

Thinking R
103 117 36

Thinking L
30 129 97

(b) β band

ondition

state

1

state

2

state

3

Thinking R
89 68 99

Thinking L
103 70 83

() γ band

ondition

state

1

state

2

state

3

Thinking R
44 154 58

Thinking L
66 133 57

Table 3.3 illustrates the same idea as Table 3.2, but this time the number of

ourrenes for eah synhrostate, ondition and frequeny band are ounted

by dividing the length of the one seond epoh into three di�erent intervals to

study the synhrostate transition sheme evolution before the stimulus onset

(-100ms to 0ms), during the time interval the stimulus lasted on the sreen

(0ms to 500ms) and during the period of time given to the user to perform the

orresponding imagined hand movement (500ms to 900ms). It is remarkable

that for the pre-stimulus interval, the transitions are almost zero with the ex-

eption of the γ band Thinking R ondition where the transitions alternatively

hange between states 2 and 3. This behaviour may be explained by the de-

mand for omplex proessing being lower during the pre-stimulus period than

afterwards when a ognitive task is performed by the user.

Table 3.4 shows the number of times that eah one of the three synhrostates

our in intervals of 100ms from the stimulus onset (0ms) to the stimulus o�set

(500ms). It is notieable that usually only two out of three synhrostates are

present in eah one of the 100ms intervals for both onditions and frequeny

bands.
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Table 3.3: Number of ourrenes for eah one the three synhrostates for the α, β and γ
bands with two di�erent onditions, Thinking R and Thinking L when the epoh length

is divided into three di�erent time intervals: -100ms to 0ms, from 0ms to 500ms, 500ms

to 900ms. The seond time interval is the total duration of the presene of the stimulus

-shemati emotional fae- is in the sreen.

-100 to 0ms 0ms to 500ms 500ms to 900ms

(a) α band

ondition

state

1

state

2

state

3

Thinking R
0 25 0

Thinking L
0 0 25

ondition

state

1

state

2

state

3

Thinking R
0 91 36

Thinking L
30 26 71

ondition

state

1

state

2

state

3

Thinking R
103 0 0

Thinking L
0 103 0

(b) β band

ondition

state

1

state

2

state

3

Thinking R
20 0 5

Thinking L
0 0 25

ondition

state

1

state

2

state

3

Thinking R
32 13 82

Thinking L
71 23 33

ondition

state

1

state

2

state

3

Thinking R
37 55 11

Thinking L
32 47 24

() γ band

ondition

state

1

state

2

state

3

Thinking R
1 10 14

Thinking L
3 21 1

ondition

state

1

state

2

state

3

Thinking R
17 75 35

Thinking L
20 56 51

ondition

state

1

state

2

state

3

Thinking R
26 69 8

Thinking L
43 55 5

Table 3.4: Number of ourrenes for eah one the three synhrostates for the α, β and γ
bands with two di�erent onditions, Thinking R and Thinking L when the the period of the

stimulus on the sreen is divided into 100ms intervals.

α band β band γ band

(a) 0ms to 100ms

ondition\state 1 2 3

Thinking R 0 26 0

Thinking L 0 0 26

ondition\state 1 2 3

Thinking R 9 0 17

Thinking L 2 7 17

ondition\state 1 2 3

Thinking R 0 18 8

Thinking L 3 23 0

(b) 100ms to 200ms

ondition\state 1 2 3

Thinking R 0 25 0

Thinking L 6 0 19

ondition\state 1 2 3

Thinking R 11 0 14

Thinking L 19 5 1

ondition\state 1 2 3

Thinking R 0 16 9

Thinking L 9 16 0

() 200ms to 300ms

ondition\state 1 2 3

Thinking R 0 9 17

Thinking L 10 2 14

ondition\state 1 2 3

Thinking R 0 0 26

Thinking L 23 0 3

ondition\state 1 2 3

Thinking R 3 11 12

Thinking L 2 18 6

(d) 300ms to 400ms

ondition\state 1 2 3

Thinking R 0 8 18

Thinking L 12 5 9

ondition\state 1 2 3

Thinking R 0 0 26

Thinking L 13 0 13

ondition\state 1 2 3

Thinking R 14 6 6

Thinking L 6 0 20

(e) 400ms to 500ms

ondition\state 1 2 3

Thinking R 0 24 1

Thinking L 2 19 4

ondition\state 1 2 3

Thinking R 12 13 0

Thinking L 14 11 0

ondition\state 1 2 3

Thinking R 0 24 1

Thinking L 0 0 025
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3.3.2 Individual subjets

The results presented in the previous setions, topographi maps and trans-

itions between synhrostates plots, are based on the averages aross parti-

ipants' phase di�erenes. The aim of this setion is to explore the inter-

subjet variability regarding the optimal number of synhrostates aross the

diversity of frequeny bands under srutiny. The proedure is exatly the same

to the one followed for the averaged population ase. For eah one of the par-

tiipants, the phase di�erene matries were obtained as explained in 3.2.1.

Then, the iterative inremental k-means lustering algorithm was applied to

the set of matries for eah individual instead of on the averages as before. The

lustering algorithm explained in setion 3.2.2 is run for the ten partiipants,

both onditions and the four frequeny bands. The results for eah one of

these ombinations is analysed based on statistial methods suh as median

and quartile ranges to illustrate the variability in a box plot.

Figure 3.14 shows the number of optimal synhrostates for eah one of the

10 partiipants in the study for both onditions and all frequeny bands. The

box plot indiates with a red ross the exluded outliers. The blue box re�ets

the inter-quartile ranges. The solid red line in the middle of the blue box is the

median and the blak dashed lines indiate the maximum and minimum values

for eah ase. It an be seen from the �gure that the number of synhrostates

remains between 3 and 6 for this assembly of subjets, for both onditions

and three out of four of the frequeny bands. In the ase of the θ band

the �nite range of synhrostates lies between 3 and 6 for the Thinking R

ondition but a redued range for the Thinking L, between 2 and 4. Aording

to these numbers, it an be said that the variability in the optimal number

of synhrostates for the individual subjets when ompared with the averaged

ase results is not signi�ant. These slight variations an lead to the idea

that the number of synhrostates is subjet-spei�. Although this may be

explained by the fat that the proessing pathways for eah individual are

di�erent.

The redued number of synhrostates for eah individual partiipant is in

aordane with the results ahieved for the averaged population ase. There-

fore it reinfores the theory of synhrostates.

3.3.3 Volume ondution e�et and artefats

Volume ondution is an undesired e�et that an a�et the EEG reording

analysis in an undesirable way as mentioned previously in setion 2.5.2. Even
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if the EEG reordings have been arefully inspeted to rejet all possible trials

a�eted with artifats and the partiipants were asked to blink, if possible, in

a spei� time range within eah trial to minimise its e�et, it is still worth

verifying their non-existene before going further in this researh.

Figure 3.14: Variability in the optimal number of synhrostates for eah subjet during two

MI-tasks, Thinking R and Thinking L. The groups were formed of 10 subjets and were

repliated in the four frequeny bands (α, β, γ, θ).

The strongest physiologial artifats stem from eye blinks, eye movements

and musle movements. Blinking and eye movements are assoiated with low

frequenies (below 7Hz) and musle movement with high frequenies (over

30Hz). The methodology applied in this hapter is based on the omplex Mor-

let wavelet transform whih performs a �ltering proess in the frequeny range

seleted beforehand. It means that this artifat e�et is probably minimised,

partiularly in the α and β bands and after a omplex Morlet wavelet is applied.

The topographi head maps presented throughout this hapter, as well as

the transition plots between synhrostates, are assembled over the order of

milliseonds. Aording to the literature, artifats our generally over a time

range of seonds. Putting together these two ideas, if artifats were present

in the data, all of the lustered synhrostates would be a�eted by this phe-

nomenon and onsequently all the states should present equal phase relation

aross the salp eletrodes [23℄ whih is not the ase as the �gures in this

hapter demonstrated. If artifats annot be present in suh a small time win-

dow it an be onsidered that synhrostates are not a�eted by this unwanted
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e�et.

In addition, as mentioned in setion 2.5.2, volume ondution is linked to

zero phase delays between any two points aross the salp. Following previous

studies that investigate how to minimise the volume ondution e�et when

measuring phase synhronisation [147, 145, 146, 154, 134℄, this study is only

based on non-zero phase di�erenes. These studies are based on the idea that

if an intermediate point between two soures is not at phase zero it annot be

explained by volume ondution.

3.4 Conlusion

The existene of a �nite number of unique phase di�erene patterns, denom-

inated synhrostates, was onsistent for both an averaged population and for

individuals belonging to the population. These synhrostates remain stable

of the order of milliseonds, then suddenly and abruptly hange to the next

one. The swithing pattern aross the di�erent synhrostates over time gives

information regarding the evolution of the phase synhrony aross the di�erent

regions of the brain over time. The optimal number of synhrostates varies

slightly aross individual subjets, but is within a small range, from 3 to 6.

This may be explained by the inter-variability aross individuals as the pro-

essing pathways hange among them. Therefore, the similarity in the results

obtained from the averaged group and the individual subjets gives onsisteny

to the theory of synhrostates.

The topographial maps of the lustered synhrostates showed di�erenes

between frequeny bands and onditions. In addition to the head-plot map,

graphis illustrating the temporal transition between the synhrostates were

displayed. These resultant transition patterns are unique for eah of the on-

ditions onsidered in this study. These �ndings showing a notieable di�er-

entiation between both MI tasks (imagined movements of the right and left

hands) leading to the idea that these dissimilarities an be translated to a more

quantitative metri and subsequently applied to a lassi�ation problem.

The onept of synhrostates, �rstly introdued by Wasifa et al. at [134℄ is

similar of the well-extended onept of mirostates [116, 125, 120, 123, 119℄.

The physial explanation to the quasi-stable states, or temporary stable states,

given by [23℄ is by assuming that a ognitive task suh as the one presented in

this work an be subdivided into smaller tasks. The time duration of eah one

of these states may mean the neessary time for the brain system to perform
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eah one of the mentioned subtasks, as long as the task an be divided into

subtasks.

One the temporal transitions of the synhrostates has been determined for

one of the motor tasks, a further step needs to be done to quantify their tem-

poral stability. The following hapter explores the possibilities that neural net-

works o�er and enable us to understand the ommuniation proesses between

di�erent areas of the brain and establish a quantitative system to evaluate

synhrostates.



Chapter 4

Network analysis from

synhrostates

The logial step that follows in the analysis of synhrony based on synhro-

states is investigating their temporal stability. As studied in Chapter 3 of

this thesis, the existene of synhrostates and their temporal transitions have

been demonstrated for two MI tasks. However, their temporal stability needs

to be more deeply studied and in a more quantitative manner. In order to

ahieve a �ner understanding of the synhrostates topographial maps and

transitions patterns between the di�erent synhrostates, a series of omplex

networks metris, will be employed throughout this hapter. These omplex

network measures an yield a quantitative pathway to allow us to work with

ognitive funtionalities.

The transformation from synhrostates form towards omplex network meas-

ures needs an intermediate step, a weighted measure of onnetivity represent-

ing the temporal stability intervals (transition patterns) in onjuntion with

the phase di�erene values (head-plot maps). This matrix is ommonly known

as the adjaeny matrix in graph-theory nomenlature and in this ase will be

represented by the synhronisation index. This index will provide information

regarding the stability of the synhrostates as opposed to the inremental k-

means algorithm that only provides information about the optimal number of

synhrostates and their temporal swithing transition.

An introdution to the onept and formulation of the synhronisation in-

dex will be provided in the oming setion 4.1. Setion 4.2 will introdue

some of the terminology used for omplex networks, ommonly investigated

network measures and a brief overview of some underlying priniples. Finally

the analysis proedure, results and onlusions will be explained.

73
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4.1 Synhronisation Index

One the phase di�erene based lusters have been identi�ed for eah stimuli,

their temporal stability needs to be quanti�ed. This is beause the lustering

algorithm annot provide information relative to how long the stability of eah

one of the unique lusters lasts. This an be done by means of a synhronisation

index whih has been used before in the study of erebral blood �ow auto-

regulation [161, 173℄ and Autism Disorders [134℄.

Using the de�nition of synhronisation index given by [161℄, this parameter

an be understood as an inverse irular statistial analogue of variane and

is desribed by equation 4.1 [134℄,

ΥP (F ) =
1

N

√

√

√

√

[

∑

t

cos (△ϕF (t))

]2

+

[

∑

t

sin (△ϕF (t))

]2

, (4.1)

where N is the number of time points assoiated with a spei� synhrostate,

△ϕF (t) is the phase di�erene matries averaged aross a spei� frequeny

band obtained as explained in setion 3.2.1. The synhronisation index ΥP (F )

lies in the interval [0,1℄. Higher values of the index means that the phase dif-

ferenes in the spei� frequeny band F are in synhrony as they present

low variation over time, hene, they an be onsidered synhronised. This

index quanti�es the averaged temporal stability of the synhrostates in that

frequeny band, whih is information that the lustering algorithm annot

provide. In addition, this index is apable of apturing the band-spei� tem-

poral behaviour in ontrast to oherene based measures [23℄.

4.2 Network analysis

After obtaining the synhronisation index for eah pair of EEG hannels, syn-

hrostate, ondition and frequeny band these an be translated into a omplex

network. This proess ontributes by providing more information and new per-

spetives regarding the evolution of phase synhrony over time and aross the

di�erent areas of the brain. Network theory is a hot topi area in modern

siene and it has been suessfully applied to suh diverse topis as �avours

in reipes, soial interations or biomedial appliations [22℄.

A network based on a graph theory approah is a olletion of nodes and

the links onneting those nodes, named edges. Figure 4.1 is a simple example
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of di�erent types of existing graph models, illustrating the di�erene between

undireted versus direted graphs or a weighted network based on a graph

theory onept. A weighted network, in the ase of a soiologial study an

represent the strength of a friendship where stronger a�etion will be re�eted

as a thiker link. When this onept is translated to the EEG area, the nodes

are represented by the eletrodes used to reord the brain ativity. The links

or edges enoding a weight and a diretion of onnetion are haraterised by

the synhronisation index matrix.

Figure 4.1: Representation of two types of basi general graphs. Nodes are represented by

irles and edges by lines. (A) An example of an undireted graph with 5 nodes and 6 edges.

(B) A representation of a direted and weighted graph. The thikness of the onnetions or

edges indiates the weight, while the diretion is represented by arrows.

Networks an be haraterised at di�erent levels ranging from properties

explaining the whole network at the global sale to properties of the network

omponents at a loal sale. The networks measured and used throughout this

study an be divided into individual network measures, measures of funtional

segregation and measures of funtional integration [174℄.

4.2.1 Individual network measures

These measures are foussed on assessing the importane of individual nodes

over the whole network. There are many measures of entrality. In this setion

only two of them are explained: degree and density.

The degree of an individual node is one of the most ommon measures used

in graphs and many other graph metris are based on the onept of degree.

Therefore, degree is likely, the most fundamental network measure. It an

be de�ned as the number of onnetions that link a node to the rest of the

network [148℄. Depending on the types of network graph, it an be obtained in
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di�erent ways. For instane, in a direted graph, the onept of degree an be

divided into in- and out-degree, this being the number of links with diretions

towards or from the node respetively. In the ase of binarised graphs, the

degree is simply the sum of the links. For weighted graphs the degree an be

onsidered as the sum of the weights of the weighted links [22℄.

Density is the ratio of the atual number of edges presented in the graph

as a proportion of the total number of edges possible. It an be seen as the

probability of existene of an edge between a randomly hosen pair of nodes

[175℄. It is the simplest estimator of the physial ost of a network[174℄, and

help us to understand the physial ost of a network as its wiring ost whih

is diretly proportional to the number of onnetions, length and their ross-

setional area. As these metris are di�ult to measure in a large-sale brain

network, most studies approximate the physial ost by using the density value

[176℄.

4.2.2 Measures of funtional segregation

Segregation metris in a network refer to loal onnetivity and are usually

assoiated to pairs of nodes. A omplete summary of the available range

of measures of funtional segregation an be found in [174℄. Here only the

onepts of transitivity and modularity will be explained as both will be used

within this work.

Figure 4.2: Sample graph illustrating the onept of modules in a struture.
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Transitivity (T) re�ets the ratio of losed triangles or triplets in the net-

work to the total number of losed triangles possible [175℄. The onept is

similar to the average lustering oe�ient, the di�erene being that, the nor-

malisation proess to obtain the transitivity value is done olletively instead

of individually. Transitivity of a network an be alulated as

T =

∑

iǫN 2ti
∑

iǫN ki (ki − 1)
, (4.2)

where N is the set of all nodes in the network and ki is the degree of a node i

and ti the number of triangles around a node i [174℄.

Modularity (Q) of a network is a re�etion of the natural segregation within

a network. The underlying aim is to try to determine how well a network an

be separated into individual modules or ommunities as an be seen from �gure

4.2 [22℄. Modularity shows how well a given separation into modules performs.

The de�nition of these modules is not always unique. In addition, this metri

does not inlude information regarding how many modules exist [175℄. The

modularity an be de�ned expliitly by 4.3 [175℄,

Q =
1

l

∑

ij

[

aij −
kikj
l

]

δmimj
, (4.3)

where mi is the module ontaining the node i, δmimj
= 1 when mi = mj and 0

otherwise, l is number of links and aij = 1 when a link between i and j exists

and aij = 0 otherwise [174℄.

4.2.3 Measures of funtional integration

Measures of funtional integration, also known as global measures, look at the

network as a whole and in marosale. These measures try to estimate the

ease with whih brain regions ommuniate and the apaity of a whole integ-

ration of the network [174℄. Charateristi path length and global e�ieny

are two ommon measures of integration and both will be used within this

investigation.

The path of a network is a set of distint nodes and links representing

potential routes of information �ow between pairs of brain regions [174℄. Path

length onsequently estimates the minimum number of edges that must be

rossed from one to another so giving an idea of the potential for funtional

integration between brain regions. For instane, random and omplex networks

have short mean path lengths, by ontrast, regular networks have long mean
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path lengths [175℄. Based on these two onepts the Charateristi Path Length

(CPL) of a node an be de�ned as the average shortest path-length between the

node and all other nodes in the network [177℄. The equation to alulate the

CPL for an unweighted network is given in 4.4 [22℄. The mean measure of the

CPL taken over all nodes of the network is referred to as a global harateristi

path length.

CPL =
1

n

∑

iǫN

∑

jǫN,j 6=i dij

n− 1
, (4.4)

GE =
1

n

∑

iǫN

∑

jǫN,j 6=i d
−1
ij

n− 1
, (4.5)

where dij is the shortest distane between nodes i and j belonging to N, the

set of all nodes in the network. Global E�ieny (GE) is alulated similarly

to the CPL and also based on the shortest paths. In this ase, however, the

average is omputed by seleting the reiproals of the shortest paths as given

in equation 4.5 [174℄.

Based on the onept of paths and path lengths another network metri

an be found, eentriity . This yields two important measures of omplex

networks, radius and diameter . The eentriity of a given node is de�ned as

the longest of all the shortest paths onneting it to the remaining nodes in the

network [22℄. Consequently, a global measure of eentriity an be obtained

by the average of all nodal eentriity values. One, this value is obtained the

diameter and radius of the network an be determined as the maximum and

minimum values of the global eentriity respetively.

4.2.4 Small-word brain onnetivity

The �rst time the term small-world appeared was in a soial-network researh

study onduted by Milgram [178℄. It was related to the idea that a person

ould reah any other person through a relatively short hain of aquaintanes,

known as the �six degrees of separation�. Subsequently, Watt and Strogatz

de�ned and desribed the underlying priniples of small-networks problems

[177℄. Small-world networks are de�ned as networks that are more lustered

than random networks but not as muh as ompletely ordered ones [22℄. It

an be seen that networks representing small-world properties may be simul-

taneously segregated and integrated networks [174℄, sharing properties of both

types of networks. Small-world networks generally present large loal lus-
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tering as ompletely ordered networks and short path lengths, typially har-

ateristially represented in random networks [177℄. Network small-worldness

has been quanti�ed by a small oe�ient, σv, alulated by omparing luster-

ing and the path length of a given network with a random network having the

same degree on average as desribed by 4.6. With this de�nition, a small-world

network will have σ > 1, numerator also >1 and denominator ~1 [179℄.

σ =
clusteringbrain/clusteringrandom

lengthbrain/lengthrandom
, (4.6)

There is not a lear riterion to lassify a network as a small-world network.

Several proposals have been proposed to measure �small-worldness� [180, 181℄.

It has been demonstrated that small-world phenomena are found in several real

life networks as they are found in the brain [22℄. The human brain is prone to

exhibit some of the features typial of small-world phenomena mentioned be-

forehand. In a reent study where small-world was applied to a neural network

mahine learning algorithm, it has been proven that small-world networks have

in�uene in ahieving greater rates of information proessing [182℄. For their

peuliar harateristis, small-world phenomena have beome a hot topi in

the researh of the human brain.

4.3 Results

The phase di�erene matries result in a �nite number of lustered synhro-

states after running the algorithm desribed in hapter 3 for eah ondition,

Thinking R and Thinking L and for the frequeny band studied. This pro-

edure provides information regarding the temporal evolution and transition

patterns of the synhrostates. However, it does not provide details about their

temporal stability. In order to irumsribe this issue and gain more knowledge

of the meaning of synhrostates, omplex networks based on graph theory are

used. The transformation into omplex brain networks was done using the

lustering results of the averaged population for eah ondition and frequeny

band. The nodes of the network were the EEG eletrodes and the synhron-

isation index ΥP (F ), alulated as indiated by equation 4.1, were used as the

weighted edges onneting eah pair of nodes.
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(a) No threshold (b) Threshold of 60%

Figure 4.3: Example of the synhronisation Index ΥP (F )matries for lustered synhrostate

1, the Thinking R ondition and the γ band. The left matrix is without threshold (a) and

the right one is the result of using a threshold of 60% as an example of the e�et of using

threshold (b).

Figure 4.3 depits an example of the results of transformation from the

synhrostates into synhronisation index matries. This partiular image is

of the synhrostate 1, Thinking R ondition and γ band under two di�erent

irumstanes; the normal synhrostate index matrix and when a threshold

is applied to it. Therefore only a perentage of the data is used for further

alulations. The omplex networks resulting from the synhronisation matrix

will vary depending on the perentage of the threshold used.

Afterwards, one the synhronisation index matries ΥP (F ) have been ob-

tained for eah ondition and frequeny band, they an be used as the weighted

values for the edges between pairs of nodes. This will ontribute to a further

understanding of how well onneted the di�erent pairs of eletrodes or nodes

are aross the areas of the brain and also about the temporal stability of eah

state. All the brain onnetivity plots and values of the networks metris have

been obtained using the EEGNET [183℄ free software. Complex network �g-

ures have been plotted using a 5% threshold for ease of visualisation, meaning

only 5% of the most highly onneted edges are onsidered to plot the graph-

is. The olours and sizes of the nodes are based on their degree, meaning that

a bigger diameter of the node ontains a higher number of links onneted to

this node. In the same way, reddish olours of the nodes signify more links

onneted to the node; Bluish, a lower number of links onneted to it. Simil-

arly, the edges thiknesses are based on the weighted values of the synhrostate

index matries. Consequently, thiker lines onneting eletrode pairs mean
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higher values than thinner ones of the adjaeny matrix. The results of these

omplex network plots are shown on �gures 4.4, 4.5 and 4.6 for the α, β and γ

bands respetively. Eah one of the �gures ontain the head plots of the three

lustered synhrostates resulting from the inremental k-means algorithm and

both onditions, Thinking R and Thinking L. From the �gures, it an be seen

that two hannels, Tp9 and Tp10, are loated outside of the physial area of

the brain. This is due to the plotting funtion of the software used, EEGNET,

that performs a 2D projetion diretly over the head outline.

It an be observed that the synhrostates present lear di�erenes among

them, aross onditions and frequeny bands, aording to the �ndings de-

sribed in hapter 3. From omparison aross frequeny bands, it an be said

that the γ band onnetivity plots are less dense than for the other two bands.

This agrees with the literature regarding MI based BCI, where the α and β

bands are those most ommonly used for representing higher ativity during a

MI task.

Figure 4.4: Brain onnetivity plots from the three lustered synhrostates for both ondi-

tions, Thinking R and Thinking L, the α band and a threshold of the 5% highest onneted

edges.
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Figure 4.5: Brain onnetivity plots from the three lustered synhrostates for both ondi-

tions, Thinking R and Thinking L, the β band and a threshold of the 5% highest onneted

edges.

Figure 4.6: Brain onnetivity plots from the three lustered synhrostates of both ondi-

tions, Thinking R and Thinking L, the γ band and a threshold of the 5% highest onneted

edges.



83 CHAPTER 4. NETWORK ANALYSIS FROM SYNCHROSTATES

For the α band, state 3 displays some similarities for both onditions, where

the stronger onnetions are between parietal and frontal eletrodes. States

2 are learly di�erentiated in both ases. For the Thinking R task there is

a lear dense region in the right hemisphere, with parietal eletrodes show-

ing a higher degree. This an be seen from the presene of reddish, larger

irles. By ontrast, the Thinking L ondition is not as densely onneted

with most eletrodes presenting bluish olours, indiating that the number of

links onneting these eletrodes is smaller.

Table 4.1: Network metris for the eah of the lustered synhrostates for the two onditions,

Thinking R and Thinking L, and the α band.

Network measures

Thinking R Thinking L

state 1 state 2 state 3 state 1 state 2 state 3

CPL 4.4539 3.3924 4.3540 4.0154 3.2635 3.3616

G.E. 0.1404 0.0823 0.1422 0.126 0.1047 0.1145

Diameter 11 10 10 9 7 7

Highest degree 9 7 11 7 11 9

Density 0.0682 0.0624 0.0672 0.0624 0.0624 0.06272

Num. of edges 129 118 127 118 118 127

Modularity (Q) 0.6917 0.6496 0.6812 0.6539 0.5763 0.57

Transitivity (T) 0.8213 0.7401 0.7009 0.7984 0.6246 0.6443

Num. of omponents 14 28 16 23 29 27

For the β band state 1 and Thinking R ondition, the nodes with a higher

number of links, are those plaed in the frontal area of the brain. This ontrasts

with the Thinking L ondition where the higher nodes are distributed between

the frontal, parietal and oipital areas of the left hemisphere. State 2 exhibits

a lower number of onnetions for both onditions when ompared with the

other two states. State 3, the Thinking R ondition, shows two dominant

eletrodes in the frontal area sharing onnetions with the parietal area of the

right hemisphere.

However, the onnetivity graphs (�gures 4.4-4.6) annot o�er any measur-

able and evident onlusions regarding the di�erenes aross synhrostates, so

a more quantitative methodology is needed. To this end, a series of onnetiv-

ity metris is alulated. Together with the omplex network head plots, the

measures mentioned in setion 4.2 are obtained one more for eah synhro-

state, MI task and frequeny band by means of the EEGNET software [183℄.

The measures were obtained using a binarised network with a 5% threshold.

As mentioned before this type of network only report a onnetion if the weight

value is above the threshold, otherwise it is reported as an absene of onne-

tion [175℄. The estimation of the right threshold is a ruial parameter as this



84 CHAPTER 4. NETWORK ANALYSIS FROM SYNCHROSTATES

fator diretly a�ets the resulting network. There has been a long debate on

how to �x the threshold with no onsensus on the solution for the optimal way

to set this threshold [184℄. A range of thresholds from 3 to 10% was examined

as they are the most widely used in the literature. However, as the main on-

ern is to standardise the omparison aross the di�erent synhrostates and

onditions, a threshold of 5% was seleted.

Tables 4.1 to 4.3 represent a list of the measures obtained with in the

Matlab

(C)

-based tool EEGNET for the α, β and γ bands respetively. Note-

worthy is the fat that EEGNET alulates the perentage of the highest on-

neted edges from those elements of the adjaeny matrix that are di�erent

from zero, not from the total number of nodes. The metris are in agreement

with the onnetivity head plots. For instane, the G.E. value from table 4.1

for the Thinking R ondition is a maximum for State 3 whereas for the Think-

ing L ondition it is State1. In addition, modularity values for the Thinking

R ondition remain almost stead, ontrasting with the values of the Thinking

L ondition yielding values of a order lower. In both ases the dominant state

with maximum values is State 1, this may mean that for both ases State 3

is the one re�eting the minimal speialised segregate proessing [134℄. The

diameter is remarkably lower for the Thinking L ondition than for the R on-

dition and it is also notieable that for both MI tasks, States 2 and 3 present

the same value whih is smaller than the one for state 1. A smaller diameter

indiates a more robustly onneted network.

From the β band, table 4.2, a similar situation is shown when the CPL

metri is observed. States 2 and 3 give the maximum values for the Thinking

R ondition, whih re�et a maximum information integration ability for these

two states. However, for the Thinking L ondition, the state showing onsider-

ably lower values of CPL and T is State 3, when ompared with the other two

whih may indiate that the minimum integration information takes plae in

this state for the Thinking L MI task. The behaviour of the diameter value for

the Thinking L ondition is similar to that found in the α band, with States

2 and 3 yielding the same value whih is lower when ompared with State

1. However, for the other ondition the states presenting lower and idential

values are States 1 and 2.

It an be seen from table 4.3 that State 1 presents the maximum CPL for

Thinking R ondition and the minimum value for the other one with a no-

tieable di�erene in values. Similar behaviour an be seen from the global

e�ieny metri, but with inverse values. Also notieable is that the di�er-

enes between diameter values aross states and between onditions are learly
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redued in omparison with the other two frequeny bands.

It is evident from �gure 4.4, orresponding to the α band, that State 2 of

the Thinking L ondition, assoiated with sad faes, shows a lear di�erene

to the rest of the network parameters from the whole set of synhrostates. Its

lowest transitivity, minimum CPL, a high G.E. and minimum diameter lead

to the theory that partiipants need higher attention and proessing informa-

tion to understand and distinguish a sad fae or the left hand MI task. This

on�rms that the proess of information integration is task spei� in nature

[23℄. Similar behaviour is shown for State 3 of the Thinking L ondition in the

β band (table 4.2) and State 1 again for the γ band (table 4.3).

Table 4.2: Network metris for eah of the lustered synhrostates for the two onditions,

Thinking R and Thinking L, and the β band.

Network measures

Thinking R Thinking L

state 1 state 2 state 3 state 1 state 2 state 3

CPL 4.0947 4.3663 4.3553 4.4131 4.2138 3.8054

G.E. 0.1487 0.1435 0.1461 0.1208 0.1673 0.1337

Diameter 10 10 11 12 9 9

Highest degree 12 9 9 8 7 9

Density 0.0672 0.0629 0.0672 0.0619 0.0672 0.0672

Num. of edges 127 119 127 117 127 127

Modularity (Q) 0.6384 0.6728 0.7043 0.6996 0.6969 0.64

Transitivity (T) 0.7127 0.8088 0.8 0.8643 0.8013 0.7508

Num. of omponents 19 18 16 21 14 20

Table 4.3: Network metris for eah of the lustered synhrostates for the two onditions,

Thinking R and Thinking L, and the γ band.

Network measures

Thinking R Thinking L

state 1 state 2 state 3 state 1 state 2 state 3

CPL 4.4850 3.4989 3.6708 2.9444 4.2125 4.4462

G.E. 0.0997 0.072755 0.0953 0.0371 0.0534 0.1056

Diameter 10 8 9 8 9 9

Highest degree 7 9 8 6 6 9

Density 0.0571 0.0576 0.0576 0.0523 0.0523 0.0571

Num. of edges 108 109 109 99 99 108

Modularity (Q) 0.7141 0.643081 0.6762 0.7852 0.7956 0.7103

Transitivity (T) 0.8942 0.8099 0.8127 1.0486 1.143 0.8793

Num. of omponents 24 32 27 32 29 24

4.4 Conlusions

In the previous hapter, the presene of synhrostates was deteted for the �rst

time during the exeution of di�erent MI tasks. In this hapter the ombination
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of synhrostates and their temporal stability, by means of a synhronization

index, gave us more insights about the brain funtions of segregation and

integration within the human brain for a spei� task. This ombination, used

for �rst time for the study of MI tasks an pontentially lead to a more person-

spei� haraterisation of the brain and its funtioning and onsequently, to

a more personalised BCI systems.

Aordingly, the �ndings from the translation of synhrostates information

into omplex brain networks for both imagined tasks has been on�rmed that

the information integration in the brain is task-spei�. These results are in

line with previous �ndings [134℄, hene, validating the use of the synhrostate

information to perform a omparison between two MI tasks. The di�erenes

of the values aross the synhrostates and between onditions of the main

network metris, suh as modularity, transitivity or CPL, may be useful as

biomarkers to di�erentiate between both motor imagery tasks to ontrol a

MI-based BCI. However, extended analysis needs to be done regarding the

possibility of using graph theory metris as lassi�ation features for individual

partiipants. The next hapter investigates the ability of onnetivity network

metris to distinguish between the two proposed motor tasks.

Some reent studies have been undertaken using graph theory metris, espe-

ially small-world and motif properties, to analyse the dynami brain networks

of the brain based on EEG reordings [21, 185, 186℄. In addition, some more

investigations based on spetral power analysis in onjuntion with a network

approah, trying to identify time-frequeny dynamis [187, 188℄. The main

di�erene with respet to these studies and the present one is that this work

explores the temporal evolution of lustered synhrostates linked to a spei�

ognitive task.



Chapter 5

Classi�ation of MI tasks from

synhrostates

In hapter 3 the onept of synhrostates assoiated to a spei� stimulus was

introdued together with their transition patterns over time and head map

topographies. In order to gain more insight into their temporal stability, in

hapter 4, the synhronisation index was used as a mehanism to translate

the information from the lustered synhrostates into omplex networks based

on graph theory. Both onnetivity head maps and network metris, applied

to synhrostates, give more quantitative information regarding the informa-

tion �ow aross the di�erent areas of the brain. The graph theory metris

for eah synhrostate demonstrated that it is a good indiator of how the

underlying onnetivity works, how the loal and global segregated and integ-

rated information is distributed over the synhrostates for a spei� task and

frequeny band.

Network metris and onnetivity plots have reently been used to explore

and understand how the brain works within pathologial onditions and to try

to use this information to �nd distintive features to di�erentiate them from

ontrol populations [151, 152, 153, 30℄. In addition, some initial explorations

have been undertaken regarding the use of graph theory metris to ontrol

BCI systems. For example, Stefano Filho et al. presented a MI-BCI system

based on motif as a graph theory metri to feed a lassi�ation algorithm

[189, 190℄. A MI-based BCI online game has been produed, based on a graph

lifting transform where the partiipant has to use left and right MI movements

in athing a oin [191℄. Based on these �ndings, and always working from

the synhrostates approah, the possibility of using graph theory metris to

disern between the two MI tasks is explored within this hapter. Aiming

87
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to determine the best ombination of graph metris, lassi�ers and frequeny

bands, a diverse range of ases is onsidered. Firstly, the feature seletion

riterion used is explained, afterwards a set of lassi�er algorithms is seleted.

Finally, the performane of the di�erent options are listed. Figure 5.1 shows

the steps involved in the proess followed from the original EEG reordings

dataset to the onnetivity metris to feed the lassi�ers based on the lustered

synhrostates from the phase di�erenes.

Figure 5.1: Graphial �owhart overing all of the steps followed from EEG reordings to

the lassi�ation step.

5.1 Dataset

The EEG reordings onsidered were obtained from 10 healthy volunteers when

performing two MI tasks using shemati emotional faes as stimuli as ex-

plained in setion 3.1. The aim of this hapter is to investigate the theory that

graph theory metris derived from the translation of synhrostates into brain

omplex networks an be e�iently used as features to lassify between the

two tasks.

Network measures were obtained from the wavelet phase response and aver-

aged aross trials for eah one of the partiipants for eah of the stimuli within

a spei� frequeny band. The resulting lustered synhrostates from the in-

remental k -means algorithm for eah subjet were translated into onnetivity

measures using the synhronisation index as weighted edges onneting eah
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pair of eletrodes. The number of synhrostates varies slightly aross parti-

ipants as an be seen from �gure 3.14 within a �nite number of synhrostates.

It an be seen from the transition plots in �gures 3.11-3.13 or from table 3.2

that in the averaged population ase, some of the states our more than oth-

ers. Extrapolating this onept to individual subjets of the population, the

maximum and minimum number of ourrene states will be used from here

on in for this hapter as an equitable seletion riterion aross partiipants.

Seleted maximum and minimum ourring synhrostates for eah partiipant

are onverted to networks as shown in �gure 5.2 the for β band. The literat-

ure has demonstrated that MI leads to attenuation/aentuation short-lasting

peaks in the α and β bands, widely known as μ and β rhythms in the MI-based

BCI area [192, 193℄. Therefore, here the α and β bands brain onnetivity

metris are used to aomplish the lassi�ation algorithm desribed in this

hapter.

Figure 5.2: Synhrostates transition plots for both onditions in the β band and the trans-

lation to brain onnetivity plots for the maximum and minimum number of ourrene

synhrostates for eah ondition with a threshold of the 5% highest onneted edges.

5.2 Separability riterion

One of the most important properties of a lassi�ation system is its ability

to �nd the most informative features desribing the objets that are lassi�ed

beause this guarantees as ompat a deision rule as possible. In the ma-

hine learning literature there is a wide range of feature seletion tehniques,

eah with their own pros and ons in solving this issue. Two main, di�erent

approahes, an be highlighted, salar feature seletion and feature vetor se-

letion. The former is independent of the lassi�er used where the features are

ranked using a spei� sore metri. Some examples of this methodology are

the t-test, reeiver operating urve (ROC) or the Fisher's disriminant ratio
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(FDR) [170℄. By ontrast, feature vetor seletion is lassi�er dependent and

the aim is to �nd the optimal ombination of features to selet the optimal

sub-set of features. This an be done exhaustively, onsidering all possible om-

binations of available features and for eah one of this ombination, the lass

separability is omputed. This searh is omputationally expensive so normally

a suboptimal searh tehnique is used. Some examples of suh tehniques are

sequential bakward seletion, sequential forward seletion, �oating forward

feature seletion or plus-l-takeaway-r feature seletion [194℄. The separability

riterion preferred to represent the di�erene between the analysed lasses in

this work is FDR. This separability riterion has been seleted for two main

reasons. Firstly, it is independent of the lassi�ation algorithm seleted. This

is an essential feature in this ase where a set of di�erent lassi�ers will be

ompared. Seondly, the result of applying this algorithm will give us a de-

tailed list of the most disriminative features, those with a higher FDR value

and not only the optimal number of them. In this ase, the FDR is applied to

a two lass problem but it an be extended to problems with any number of

lasses [195℄.

FDR is a measure of the distane between two normal distributions inspired

by the z-sore. The z-sore is a statistial value representing the number of

standard deviations by whih the value of a data point is above or below the

mean value (μ) of the total population being observed. The z-sore of a raw

sore x is de�ned by z = (x− µ) /σ, where σv is the standard deviation of the

population. It is widely used in normalisation proesses, as the resulting data

retain the same properties as the original data but their mean is zero and the

standard deviation is 1. Therefore, two or more datasets with di�erent units

an be ompared [196, 197℄.

FDR =
(µ1 − µ2)

2

(σ2
1 + σ2

2)
(5.1)

FDR is de�ned by using the mean {µ1, µ2} and variane {σ1, σ2} of eah

lass as desribed in 5.1. FDR has large values when the mean di�erene

between the two populations is large with a small within-lass variane. Fea-

tures presenting a higher FDR value will be more ompat and distantly lo-

ated. This meaning that there is a better disriminant power. On the other

hand, if there is little di�erene between two populations, FDR presents a sore

lose to 0 [140℄. Prior to omputing the FDR for eah of the obtained features,

a data normalisation step is performed to avoid bias from larger values within

the set of features. Normalisation sales the feature vetors so they lie between
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the minimum and maximum value for eah feature.

5.3 Classi�er algorithms

The brain omplex network measures an be used as features to feed a las-

si�ation algorithm to di�erentiate between the two MI tasks. The aim of

this study is to explore the diverse features and lassi�ation algorithms to

identify the best ombination in order to ahieve higher performane between

the Thinking R and Thinking L onditions. The eletion of the right features

pool and lassi�er type is ruial in order to obtain signi�ant and onsistent

lassi�ation auray rates.

Supervised learning an be divided into parametri and non-parametri

learning. The basi assumption of parametri learning is that the only un-

known fators are the parameters of the probability densities involved. On the

other hand, non-parametri methods are learning tehniques for whih prior

knowledge of the onditional distribution is not available or not used expliitly

[194℄. Both types have advantages and disadvantages and the hoie will be

dataset dependent. The limited number of partiipants in this study makes

it more suitable for the use of non-parametri learning methods for o�ering a

higher �exibility in omparison with the parametri lassi�ers [198℄. For this

partiular work three di�erent approahes are used: nearest neighbour las-

si�ation, disriminant analysis and support vetor mahines. The three of

these are explained in the following sub-setions.

5.3.1 k-nearest neighbours lassi�er

This lassi�ation tehnique is very popular due to its simpliity, exellent

empirial performane and the ability to handle binary and multi-lass data

[199, 200, 201℄. Nearest neighbour estimation has no training phase. In order

to lassify a vetor z

new

the k samples from the training dataset losest to the

new value are seleted. Following this, a majority voting is performed and

the lass with the maximum number of votes oming from these k samples is

assigned to the new value z

new

. In order to selet the k nearest neighbours,

a distane measure is needed. In this ase, the Eulidean distane measure is

hosen. The eulidean distane is the most ommonly used distane metri,

partiularly for ontinuous datasets. This is as opposed to other metris suh as

the Hamming distane whih are more ommonly utilised for disrete variables

[168, 202℄. Therefore, it is one of the most reliably tested distane metris.
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One drawbak of this algorithm is the seletion of the optimal value of k. If it

is too small, the lassi�ation results will be a�eted by noise. By ontrast, if

it is too large, the omputational ost will inrease [194℄. In this ase the value

seleted for the algorithm is k=3 as a good ompromise between omputational

ost and auray rates.

5.3.2 Disriminant analysis based lassi�ation tehniques

Linear disriminant analysis (LDA) lassi�ers are based on the assumption

that the samples in the training dataset an be lassi�ed orretly by means

of linear deision boundaries [194℄. LDA assumes a normal distribution of

the data with an equal ovariane matrix for both lasses {C1, C2}. If the

samples of the two lass sets C1 and C2 are de�ned as {x11, x12, . . . , x1m} ǫC1

and {x21, x22, . . . , x2n} ǫC2 the the simplest representation of a linear disrim-

ination funtion is given by 5.2,

y (X) = w
T
X+ w0, (5.2)

where w is a weight vetor, y is the predited lass label and w0 is a bias.

Using the vetor notation and a least squares error learning estimation to

train the vetor w, the optimal solution of equation 5.2 is given in the form of

the pseudo-inverse of the input features as an be appreiated in 5.3 [203℄.

wopt =
(

XTX
)

−1

XT y. (5.3)

For onventional LDA the lassi�ation for an input x is based on the

omparison of y (x) and a threshold or deision boundary. A simple deision

boundary an be set as: if y is greater than zero, the objet is assigned to

lass C1 and onsequently, if y is less than zero the input is assigned to lass

C2. If the data are not linearly separable aross lasses, the least squares

error based LDA will not perform properly. Maybe a more omplex deision

boundary is neessary. Quadrati disriminant analysis (QDA) lassi�ers are

used for heterogeneous variane and ovariane matries. QDA produes a

higher dimensional spae where the deision funtion is quadrati, inluding

the original features, their ross produt and the quadri features [194℄. For

instane, in the simplest ase of two lasses the QDA transforms the spae into

a �ve-dimensional spae {x1, x2, x1x2, x21, x22}. Both methods will be ompared

in this hapter.
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5.3.3 Support Vetor Mahine

Support Vetor Mahine (SVM) lassi�ers have been suessfully used in MI

based BCI appliations [204, 205, 206, 207℄ due to their exellent empirial

performane and beause the number of parameters that must be set for the

algorithm is related to the number of training objets instead of the number

of attributes [198℄. In opposition to disriminant analysis, the SVM selets

one partiular solution; the one that separates the lasses with maximal mar-

gin. For example, the distane from the nearest training points. Maximising

the marginal solution approah is proven to ahieve the highest generalisa-

tion ability [194, 182℄. In order to �nd the deision boundary that maximises

this margin an optimisation routine is needed. In the ase of linear deision

boundaries the equation is de�ned by 5.2. If the values of y lie between [−1, 1],

then this means that the optimisation problem should �nd the solution to

| wT
X+w0 |= 1. Using the geometrial de�nition of distane between a point

X and a hyperplane (w, w0) given by 5.4,

distance =
| wT

X+ w0 |
‖ w ‖ , (5.4)

it an be seen that the maximisation of the margin is redued to the minimisa-

tion of ‖ w ‖. Suh a minimisation proess an be done by means of Lagrange

multipliers as explained in [194℄.

In the ase that the data are not linearly separable it an be mapped into a

higher dimensional spae. The idea is that if the data annot be separated by

a linear funtion they may be separated by a quadrati or ubi funtion by

means of more general kernel funtions. The fat of replaing the inner produt

in 5.2 by a kernel funtion is known as a kernel trik [194, 198℄. Inreasing

the order of the kernel also inreases the omputational ost of the algorithm

and an lead to overlapping lasses. In this work linear and seond order

polynomial (quadrati and ubial) SVM algorithms will be used.

5.3.4 Cross-validation and performane measure

In order to avoid the problem of over-�tting the lassi�er and reduing the

sensitivity regarding the seletion of training and testing sets, a ross-validation

tehnique is needed. In this partiular ase, having a redued size dataset, a

leave one out ross-validation method is the most suitable to overome the

issue of over-�tting. It has been empirially demonstrated that this method

has better bias-variane trade-o� than those based on k-fold ross validation
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for small datasets [208℄. There is always a slight bias when using a bootstrap

validation suh as leave one out, but in pratie, it is not meaningful [209℄. It is

the most extreme ase of a k-fold validation sheme where eah observation of

the data is left out for validating the model and the remaining n-1 observations

are used to train the algorithm. Posteriorly, the auray obtained for eah

one of the data-points is averaged to obtain the lassi�er auray. All the

lassi�ation algorithms and performane measures for all of the lassi�ation

algorithms have been alulated by means of the free mahine learning tool for

Matlab

©

alled PRTools [194℄ .

The performane of eah of the lassi�er methodologies used throughout

this thesis are alulated using the standardised measures of auray (acc),

the true positive rate (TPr) or sensitivity and the true negative rate (TNr)

or spei�ity. TP and TN are orret lassi�ation, by ontrast false positive

(FP ) and false negative FN are miss-lassi�ations. FP is when the outome

is inorretly predited as positive when it is atually negative and FN is the

opposite, when the outome is labelled as negative when it is atually positive.

Aording to this nomenlature, TPr is de�ned as TP divided by the total

number of positives (TP + FN). Consequently, TNr is FP divided by the

total number of negatives (FP + TN). Finally the overall lassi�ation suess

rate or auray is de�ned as the number of orret lassi�ations (TP + TN)

divided by the total number of lassi�ations (TP + TN + FN + FP )[210℄.

All these measures are listed in equation 5.5,

Accuracy =
TP + TN

TP + TN + FP + FN

Specifity = TNr =
TN

TN + FP
(5.5)

Sensitivity = TPr =
TP

TP + FN
.

5.4 Results

The dataset of features for lassi�ation between the two MI tasks, Thinking R

and Thinking L, is omposed of two states (maximum and minimum number

of ourrene states) and nine omplex network measures (refer to setion

4.2 for more details) giving a total of 18 possible features. The individual

and olletive disriminative power of all of them will be determined by the

FDR. However, it maybe be worth exploring whih synhrostate (minimum
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or maximum number of ourrenes) and whih network parameter among

the nine seleted graph metris is the ombination with the highest power of

disrimination, hene a larger auray rate [30℄. In order to ahieve the greater

ombination of features, the omplete range of 18 features was split into three

di�erent ases as listed in table 5.1. Dividing the whole dataset into di�erent

groups, not only gives information about the optimal ombination of features

that an be obtained but also provides an insight regarding the behaviour of

the max and min synhrostates. Therefore, a deeper understanding about

brain funtions and synhrostates will be gained. For the �rst ase (named

ase I) all vetors of features (18 in total) were onsidered. In the next two

groups (ase II and ase III), only the maximum and minimum state network

measures were onsidered respetively (9 features in eah ase). In addition to

these situations, synhrostates from two frequeny bands were onsidered, the

α and β bands.

Table 5.1: List of the di�erent ases for lassi�ation based on a range of ombination

between the maximum and minimum number of ourrene states and network measures

for eah ondition (Thinking R and Thinking L).

Cases Combination

ase I both synhrostates metris

ase II maximum state metris

ase III minimum state metris

5.4.1 Results with 5% threshold

In hapter 4 the onnetivity plots from the synhrostates and the network

metris were alulated using a 5% threshold, meaning that only the highest

5% of the edges matrix, based on the synhronisation index for eah synhro-

state were used. In this setion, the performane of the di�erent lassi�ation

algorithms is shown when this threshold is applied. Afterwards, in the next

setion a omparison of auray rates of the lassi�ers when no threshold is

used is performed.

5.4.1.1 α band results

As mentioned in setion 5.2, FDR is the separability riterion seleted to elab-

orate a ranking of the di�erent features aording to a desending order of

disriminative power. The results of this dereasing order step for ases I to

III are illustrated in �gures 5.3 to 5.5 respetively. The names of the features
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are listed on the horizontal axis of the �gures, ending in min or max referring

to the minimum and maximum ourrene state respetively. The orrespond-

ing FDR value for eah one of the features is shown on the vertial axis of the

whole set of �gures. The set of �gures is transformed into line harts to aid

easy visualisation, this is to failitate the aim of grouping these features into

smaller sets aording to their FDR values.

Figure 5.3: FDR ordered values for the network metris seleted for ase I, all possible

ombinations are onsidered, and the α band.

From �gure 5.6 it an be seen that the set of features for ases I and II an

be divided into �ve groups and for ase III only four groups were formed. The

fewer number of groups formed means that features will have loser disrimin-

ative ability as their FDR values lay loser to eah other. It is also notieable

that the FDR values for ase III are onsiderably higher than those for ase

II when the maximum ourrene synhrostate features are used. It an also

be seen that the top four features for all the ases are learly separated from

the rest of the features within the same range. It is notieable that the FDR

values for the bottom half of the ase III features present a remarkably low

FDR value in omparison with the top half, meaning that their ability to dis-

riminate between the two MI tasks should be lower. Maximum values for

ase I are similar to those for ase III as it is a ombination of both ases. For

ase I, the �rst group is formed for the top feature, the following groups are
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integrated by 2, 4, 9 and 18 features respetively. Following the same riterion,

the �rst group of ase II is formed by the top 2 features, then 3, 5, 8 and 9

features. Finally, for ase III, only the minimum state features are used, the

four groups have the top 1, 3, 4 and 9, respetively.

Figure 5.4: FDR ordered values for the network metris seleted for ase II, only maximum

state network metris are onsidered, and the α band.

Figure 5.5: FDR ordered values for the network metris seleted for ase III, only minimum

ourrene state network metris are onsidered, and the α band.
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Performane for the six di�erent lassi�ers using the leave-one-out valid-

ation method for ase I is illustrated in �gure 5.7. It an be seen that for

linear disriminant analysis, the fat of adding more features to the lassi�er

means lower performane. This agrees with the theory, that a higher number

of features an lead to over-�tting [194℄. It an be seen that the three di�erent

kernels of the SVM algorithms performed similarly, obtaining the best auray

when only one feature, having the highest FDR value, is used. The auray

ahieved in this situation is 74% (71% TNr and 76% TPr). In general, the

nearest neighbour (3-nn) algorithm showed the worst auray rates, whih

an be expeted as it is the simplest lassi�er from the ones seleted. The

highest performane among all the lassi�ers is for the quadrati disriminant

lassi�er (qd) when the top four features are used. This highest auray is

83% (83% TNr and TPr). The top four features used to train the qd lassi�er

are diameter, density, number of edges within the 5% threshold and CPL for

all metris from the minimum number of ourrene synhrostates as an be

seen in �gure 5.3.

Figure 5.6: Grouped features by their FDR values ranking for ases I to III.

For ase II, only the graph network metris orresponding to the maximum

number of ourrene synhrostates are onsidered. The performane of the

di�erent lassi�ers for this ase are evident in �gure 5.8. It an be seen that

the overall performane of the whole set of lassi�ers is lower that the rates

ahieved by ase I when all of the features were under onsideration. The

auray perentages are between 50% and 60% for all types of lassi�ers and

groups. This result was expeted as the values of the FDR ranking were
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onspiuously lower that those presented for ase I or ase III as an be learly

seen from �gure 5.6. It is notieable that the performane rates for the three

types of SVM lassi�ers are quite unbalaned, obtaining a spei�ity or true

negative rate onsiderably higher than the sensitivity. The same behaviour is

shown for the disriminant analysis lassi�ers for the �rst and seond group

of features, ontaining 2 and 3 metris respetively. All the lassi�ers, with

the exeption one more of the nearest neighbour algorithm, show the highest

auray when the top two features were used. The performane rates for this

ase were onstant aross all of the lassi�ers, reahing an auray rate of

73% with 89% for TNr and merely 58% for TPr. The top two features used

were density and the number of edges remaining after the threshold limit used,

in onordane with the top four features of ase I.

Figure 5.7: Comparison of the performane of six di�erent lassi�ers for ase I in the α
band. Features grouped aordingly to their FDR values. For eah group of features the

auray (a), the true negative rate (TNr) and the true positive rate (TPr) are shown.

The lassi�ers from top to bottom and left to right: 3-nearest neighbour, linear disriminant

lassi�er, quadrati disriminant lassi�er, SVM linear kernel, SVM kernel order 2 and SVM

kernel order 3.
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Figure 5.8: Comparison of the performane of six di�erent lassi�ers for ase II in the α
band. Features grouped aordingly to their FDR values. For eah group of features the

auray (a), the true negative rate (TNr) and the true positive rate (TPr) are shown.

The lassi�ers from top to bottom and left to right: 3-nearest neighbour, linear disriminant

lassi�er, quadrati disriminant lassi�er, SVM linear kernel, SVM kernel order 2 and SVM

kernel order 3.

The last situation under onsideration, ase III, only uses the minimum

state graph metris to train the lassi�ers. As mentioned before, the �rst

three groups of features orresponding to the top 1, top 3 and top 4 features

are the same for ase I than for ase III: diameter, density, number of edges

and CPL of the minimum number of ourrene synhrostates. Consequently,

the performanes of these three groups are the same in both ases. Therefore,

the highest auray is shown by the qd option, being 83% with 83% for

both, TNr and TPr. The last group of features, when the whole set of them

- 9 measures in total- are used to feed the lassi�ation algorithm, performed

worse than the other ases for all of the algorithms. This an be attributed

one more to the over-�tting e�et whih is espeially marked for the qd

lassi�er where the auray dropped to a poor 48%, highlighting the fat that

the performane obtained for all lassi�ers, exept the 3-nn lassi�er, when the
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top feature, is used is basially the same for all the whole variety of algorithms

used (74% auray, 71% TNr and 76% TPr). This auray is not as great as

the 83% obtained when the top four features are utilised to feed the algorithm

but it an also be argued that the omputational ost of using only one feature

instead of four is onsiderably lower.

Figure 5.9: Comparison of the performane of six di�erent lassi�ers for ase III in the α
band. Features grouped aordingly to their FDR values. For eah group of features the

auray (a), the true negative rate (TNr) and the true positive rate (TPr) are shown.

The lassi�ers from top to bottom and left to right: 3-nearest neighbour, linear disriminant

lassi�er, quadrati disriminant lassi�er, SVM linear kernel, SVM kernel order 2 and SVM

kernel order 3.

This summarises the omparative study for lassifying two MI tasks us-

ing network metris from the maximum and minimum synhrostates in the α

band. The exploration of these three di�erent senarios yielded a profound

understanding of whih ombinations from the assembly of features and syn-

hrostates onsidered have the higher disriminative ability. The maximum

auray rate of 83% aompanied by a TNr and TPr of 83% indiates that
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this methodology is a valid resoure to distinguish between the two MI tasks

to ontrol a BCI.

Aording to the results shown in �gures 5.7, 5.8 and 5.9, it an be on-

�rmed that for most of the ases, inreasing the number of features to feed

the algorithm auses a derease in the general performane of the lassi�ers.

In addition, it an be said that the more omplex lassi�ers, for instane the

SVM of kernels 2 and 3, do not lead to a higher performane rate in general,

being the disriminant analysis based algorithms that ahieved higher auray

rates.

Regarding the omparison between the maximum and minimum number of

ourrene states, the latter had better disriminant abilities than the max-

imum state for this frequeny band. The average performane for the max-

imum state remains at under 60% for most of the groups of features and

lassi�ers. Another harateristi present in the maximum number of features

ase, is the remarkable di�erene between the sensitivity and spei�ity rates,

making the lassi�ers unreliable for lassifying one of the two MI-tasks.

Figure 5.10: FDR ordered values for the network metris seleted for ase I (all possible

ombinations are onsidered) for the β band (left side). The right graph has same desendent

ranked values, but the features are grouped in agreement with their FDR values to feed the

lassi�ation algorithms.

5.4.1.2 β band results

The same methodology as the one explained in setion 5.4.1.1 is applied here,

but this time for the β band. Firstly the FDR values are ranked and ordered

for the three ases and the groups of features are used to feed the ensemble

of lassi�ation algorithms used. The results are represented in �gures 5.10

and 5.11. The graphs on the left side of �gure 5.11 represent the feature-FDR

value pairs ordered in a desending order to ease visualisation. Similarly, by

the proess desribed above, these values are transformed into a line graph to

group the features having similar FDR values, hene, similar disriminative
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apaities, to train the set of lassi�ers seleted. The lassi�ation algorithm

families were the same as those seleted for the α band.

Network metris features in ases I and II were divided into �ve groups, the

same number of divisions as in the α band. However, for ase III the number of

groups is bigger, rising to six instead of the four groups for the same senario

with the α band. Case I groups were formed by the highest FDR value feature,

followed by the top 2, 6, 11 and �nally all of the 18 features. For ase II, the

initial group is omposed of two features and the next groups by 3, 4, 7 and 9

respetively. Case III has the �rst and seond group in ommon with ase I,

with the top one and top two features belonging to the minimum number of

ourrene states. It is notieable that ase II shows similar FDR values than

in the α band. In ontrast, the highest values of the ranking are learly lower

in the β band where the maximum FDR value is 2.2; half that of the top value

of the previously studied frequeny band. One more similarity between both

frequeny bands for ase I is that the features obtained from the minimum

synhrostate have the highest and lowest values of FDR.

Figure 5.11: Figures (A) and (B) are the ranking of dereasingly-ordered FDR values for

ase II and (B) and (C) for ase III. The left hand side graphs, A and C, are the features for

the maximum (max) and minimum (min) synhrostates respetively. B and D graphs are

the same pair of the metri-FDR values, but grouped aordingly to feed the lassi�ation

algorithms.

Figures 5.12, 5.13 and 5.14 present the lassi�ation performane rates for

the ases I, II and III respetively. For ase I, with all the features inluded, the
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average performane for all lassi�ation algorithms is over 60% exept when

all the features are used due to the over-�tting e�et. The highest auray

rate ahieved is 80% for three di�erent lassi�ers when the top FDR value

feature is used. However, the performane varies aross the three algorithms.

For the qd option, the TNr is 100% and the TPr 60.1%. Similar behaviour

is found for the linear SVM. In ontrast, the SVM kernel order 2, presents

a more balaned performane with a perentage of 80% for TNr and TPr;

ontrary to the α band senario where the performane of both disriminant

analysis lassi�ers were higher than the SMV algorithms. For this situation,

the auray rates have similar values aross lassi�ers.

Figure 5.12: Comparison of the performane of six di�erent lassi�ers for ase I in the β
band. Features grouped aording to their FDR values. For eah group of features the

auray (a), the true negative rate (TNr) and the true positive rate (TPr) are shown

The lassi�ers from top to bottom and left to right: 3-nearest neighbour, linear disriminant

lassi�er, quadrati disriminant lassi�er, SVM linear kernel, SVM kernel order 2 and SVM

kernel order 3.

For ase II, �gure 5.13, when only features from the synhrostate with

maximum number of ourrenes are used to feed the algorithms, the best
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performane for all of the lassi�ers is ahieved when the top two features are

used. These top two features are density and the number of edges remaining

after the 5% threshold is applied; highlighting that these two features are

preisely the top two for ase II in α band. The highest auray perentage

is for the 3-nn lassi�er with an 85% (85% TNr and 85% TPr). Followed by

the three types of SVM algorithms with a 75% auray (90% TNr and 61%

TPr). This disrepany between true positive and negative rates shown for

the di�erent varieties of SVM was also present in the the α band for the same

ase. The poor performane of the qd algorithm is notieable when ompared

to the others with a maximum auray of 58% when top three features are

used.

Figure 5.13: Comparison of the performane of six di�erent lassi�ers for ase II in the β
band. Features grouped aording to their FDR values. For eah group of features the

auray (a), the true negative rate (TNr) and the true positive rate (TPr) are shown.

For ase III, shown in �gure 5.14, only the minimum state features are

onsidered. The performane for the two �rst groups is the same as for ase

I as the top two features used are the same in both ases. The SVM with
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order 2 kernel the algorithm ahieved the greatest performane with 80% of

auray and same values of TNr and TPr. Similar values were shown for the

linear SVM and qd algorithms. However, the unbalaned rate between true

positive and true negative makes them less suitable for this appliation.

Figure 5.14: Comparison of the performane of six di�erent lassi�ers for ase III in the

β band. Features grouped aording to their FDR values. For eah group of features the

auray (a), the true negative rate (TNr) and the true positive rate (TPr) are shown.

5.4.1.3 Summary

Table 5.2 shows a list with the best performane results for eah ase and

frequeny band onsidered during this setion. The lassi�ation algorithm

reahing the maximum auray rate for eah senario is also listed with the

number of features used to feed the algorithm. It an be seen that the per-

formane for both frequeny bands is in the same range and an be said to be

the same. However, the algorithm and number of features needed to ahieve

higher auray rates are learly di�erent. For ases I and III in the α band,

four features are used by only 1 in the β band, both being a small number of

features, the omputational ost will be lower for the last senario. By on-
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trast the winning lassi�er in the α band is the qd algorithm, it is a simpler

algorithm than the SVM with kernel order 2 that is the one seleted for the β

band. In general, it an be said from the results obtained that this method-

ology is a promising tool for distinguishing between the two MI-tasks under

onsideration.

Table 5.2: Summary of the best lassi�er performane for eah ase and frequeny band

when a 5% threshold is used. Note the bad performane of ase II with a TP

r

of only 58%.

α band β band

a TNr TPr
lassi�er

No.

Features

a TNr TPr
lassi�er

No.

Features

ase I 83% 83% 83%
qd 4

80% 80% 80%

SVM

order 2

1

ase II 73% 89% 58%

SVM

(all)

2
85% 85% 85%

3-nn 2

ase III 83% 83% 83%
qd 4

80% 80% 80%

SVM

order 2

1

5.4.2 Results without threshold

This uses the same dataset and the same proedure of feature seletion and

lassi�ation algorithms than the previous setion but no threshold is applied

before the alulation of the network metris. In this ase, only two of the nine

network measures used in setions 5.4.1.1 and 5.4.1.2 present a FDR value dif-

ferent from zero and so an be used as a feature to feed the algorithms. These

two features for both frequeny bands under onsideration were modularity

and transitivity. As explained in table 5.1, three ases will be studied. Case I

inludes the features for both states, the maximum and minimum number of

ourrenes of synhrostates. Case II onsiders only the features for the max-

imum state and ase III for minimum state. In addition, two more senarios

are inluded using only eah of the network metris from both states. This

means that ase IV omprises only modularity values from both states and

ase V only transitivity values to try to understand whih features have the

largest apability of diserning between the two MI-tasks.

5.4.2.1 α band results

Figure 5.15 showsase I for the α band when no threshold is used. The general

performane is substantially lower when ompared with the threshold ase.

Espeially notieable for the range of SVM used is that the majority of the

auray rates are under 50%. The two highest performanes are for the linear

disriminant algorithm with 60.8% (70% TNr and 51.3% TPr) with only one
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feature used and quadrati disriminant algorithmwith 66.3% auray (67.2%

TNr and 65.4% TPr) and three features used. The feature used to feed the

ld algorithm was the modularity of the maximum state. This feature plus the

transitivity of the maximum and minimum states were the network metris

used to feed the qd algorithm.

Figure 5.15: Comparison of the performane of six di�erent lassi�ers for ase I in the α
band when no threshold is applied. Features grouped aording to their FDR values. For

eah group of features the auray (a), the true negative rate (TNr) and the true positive

rate (TPr) are shown.

Figure 5.16 illustrates the rest of the ases, from II to V, when no threshold

is applied. The results are no more enouraging than for ase I, with the highest

auraies around 60% for all lassi�ers and the average under 40%. In parti-

ular, this highlights the poor performane of ase V, when only transitivity is

used as a feature. Consequently, it an be said that the modularity (ase IV)

has a larger ability to distinguish between both onditions than transitivity

does. In addition, from �gure 5.16, it an be said that the max state metris

have more powerful disriminating apaities than the min state.
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Figure 5.16: Comparison of the performane of six di�erent lassi�ers for ases II to V in the α band when no threshold is applied. For eah group of

features the auray (a), the true negative rate (TNr) and the true positive rate (TPr) are shown.
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5.4.2.2 β band results

Figure 5.17 shows the ase I, when all the features and synhrostates are on-

sidered. It an be seen that the performane is similar aross lassi�ers and

learly superior to those results obtained from ase I for the α band (�gure

5.15). The highest performane is ahieved for the ld algorithm with 75.1%

auray (67.3% TNr and 81.9% TPr) when three features are used. The three

features used to train the algorithm are transitivity and modularity of the min-

imum state and transitivity of the maximum state. The same lassi�er, ld

algorithm, with only one feature -transitivity minimum synhrostate- obtained

an auray rate of 70.1% (71.2% TNr and 69% TPr). The lowest auray,

one more, is for the 3-nn lassi�er with a maximum auray of 58% (57.3%

TNr and 58.8% TPr) when the top FDR value feature is used.

Figure 5.17: Comparison of the performane of six di�erent lassi�ers for ase I in the β
band when no threshold is applied. Features grouped aordingly to their FDR values. For

eah group of features the auray (a), the true negative rate (TNr) and the true positive

rate (TPr) are shown.
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The best result is obtained with 3 features, similar to the α band for ase

I. However, the network metris are not the same, when in the α band the

highest FDR values were for the modularity and transitivity of the maximum

synhrostates in the β band. Conversely, the top features belong to the min-

imum state. This behaviour is similar to the situation when a threshold is

utilised previously to alulate the network metris, where the minimum state

always o�ers a higher disriminative ability.

As mentioned before, the auray of the results for the β band are learly

improved in omparison to those obtained from the α band. Nevertheless, the

auray rates are inferior when ompared to the senario when a threshold is

applied with perentages of auray whih are over 80%.

The rest of the ases, from II to V, are shown in �gure 5.18. In opposition

to the results for the α band for ases II to V (�gure 5.16), transitivity (ase V)

has higher auray rates than modularity (ase IV). Case IV, only modularity

of the maximum and minimum synhrostates present a top auray of 65%

(54.8% TNr and 75.2% TPr) using only the feature from the minimum state.

By ontrast, ase V ahieved the highest performane overall with 77.2% a-

uray (70% TNr and 84.2% TPr). This performane was obtained when two

features were used to feed the ld algorithm. In general, it an be said that the

performane between all of the lassi�ers for ases IV and V remained onstant

aross the di�erent groups of features.

Similar behaviour is demonstrated in ases II and III (top two ases in

�gure 5.18) where the minimum ourring state metris (ase III) performed

remarkably better than the maximum state (ase II). From the �gure it an

be seen that ase II is the worst ase among the �ve studied in the β band,

presenting auraies between 20 and 30% for the vast majority of the lassi�ers

and groups of features. The highest auray for ase III is ahieved by the ld

lassi�er with a perentage of 70.1% (71.2% TNr and 69% TPr) as mentioned

before. One more, the performane aross lassi�ers for this senario when

only one feature was used were similar, ranging from 65% to 70.1%, with the

exeption of the 3-nn lassi�er with only 58% auray (57.3% TNr and 58.8%

TPr).
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Figure 5.18: Comparison of the performane of six di�erent lassi�ers for ases II to V in the β band when no threshold is applied. For eah group of

features the auray (a), the true negative rate (TNr) and the true positive rate (TPr) are shown.
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5.4.2.3 Summary

Table 5.3 shows a list with best performane results for eah ase and frequeny

band onsidered during this setion, similar to the table presented in setion

5.4.1.3. The lassi�ation algorithm reahing the maximum auray rates

for eah senario is also listed with the number of features used to feed the

algorithm. The performane when no threshold is used is remarkably lower

than when it is applied as an be seen when ompared to tables 5.2 and 5.3.

Similar to the previous senario, the performane of the β band is higher than

in the α band, espeially for ase V where the performane in one band is

half that of the performane of the other. This highlights that the number of

features and lassi�ers is similar for both frequeny bands, needing only one

feature to ahieve the highest auray rate in most of the ases and being the

disriminant analysis the lassi�ation algorithm with higher suess.

Table 5.3: Summary of the best lassi�er performane for eah ase and frequeny band

when no threshold is used.

α band β band

a TNr TPr

lassi�er

No.

Features

a TNr TPr

lassi�er

No.

Features

ase I 66.3% 67.2% 65.4%

qd 3

75.1% 67.3% 82.9%

ld 3

ase II 60.8% 70.3% 51.3%

ld 1

44.5% 47.2% 41.8%

3-nn 1

ase III 52.8% 41.7% 63.9%

ld 1

70.1% 71.2% 69%

ld 1

ase IV 60.8% 70.3% 51.3%

ld 1

65% 54.8% 75.2%

ld 1

ase V 35.5% 35.8% 35.3%

ld 1

77.2% 70.3% 84.2%

ld 2

5.5 Disussion

The aim of this hapter was to investigate the possibility of using omplex

brain networks from the synhrostates to distinguish between two MI-tasks, the

imagined movement of the right and left hands. In the proess of probing this

theory, the idea of de�ning whih synhrostate and network metri possess the

most disriminant properties to di�erentiate between both onditions emerged.

Finally, omparison between the two typial frequeny bands was performed

within this hapter in onjuntion with a omparison of lassi�er performane

using a threshold or not.

The maximum and minimum number of ourrene states was used to ex-

trat a set of network measures based on graph theory. Afterwards, these

networks metris were used to feed six di�erent lassi�ation algorithms to

di�erentiate between the two onditions. Maximum auray rates of over

80% for both bands when a 5% threshold is applied and over 70% when no
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threshold is used before alulating the network metris, indiating that this

is a promising tehnique to lassify MI-tasks.

Regarding whih synhrostates have better disriminative abilities, it an

be said that the minimum number of synhrostates in general obtained better

lassi�ation performane for all senarios. There was only one exeption,

where the maximum number of synhrostates presented better results than

the minimum state, this is for the α band when no threshold is applied.

Using a threshold of 5% inreased the general performane of the lassi�-

ation algorithms for all possible ombinations under onsideration, with the

highest auray for the α band of 83% (83% TNr and 83 TPr) and 85% a-

uray for the β band with the same values for TNr and TPr. By ontrast,

the highest auray when no threshold is applied is 66.3% (67.2% TNr and

65.4% TPr) for the α band and 77.2% auray (70% TNr and 84.2% TPr) for

the β band. It an also be said that results of the β band were higher than the

performane in the α band for both situations (threshold and no threshold) as

an be seen from tables 5.2 and 5.3. The use of the threshold also inreased

the number of features with a FDR value di�erent from zero. For this reason,

when it is used, the number of network metris used to feed the lassi�ation

algorithms was nine in total. However, when the omplete adjaeny matrix

of the synhronisation index was used to alulate the metris for eah syn-

hrostate, only two measures were found with FDR values di�erent from zero,

modularity and transitivity. Maybe this is one of the reasons that led to a

lower performane rate for the lassi�ers when no threshold is applied.

The features with a higher disrimination apability when a 5% threshold is

used, ommon to both frequeny bands, are density and the number of edges

within the threshold. In the other senario, when the whole weighted matrix

is used, for the α band the top feature is modularity of the maximum state

and the top auray rate for the β band was ahieved when the transitivity

of both states was used.

Regarding the lassi�ers, not one of them performed learly better than

the others, being disriminant analysis algorithms in some ases and the SVM

lassi�ers in others. Even if in table 5.2 it seems that SVM algorithms ahieved

better results and in table 5.3 disriminant analysis lassi�ers, the auray

rates remained within a small range aross lassi�ers in most of the ases,

making the seletion of only one of them di�ult.

Several examples an be found in the literature of investigations trying to

lassify MI-tasks to ontrol BCI based on EEG and mahine learning as men-

tioned within this work [211, 212, 213℄. The main di�erenes in the researh
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generated until now in MI-based BCI are that in this work, �rstly the extra-

tion of synhrostates based on phase di�erenes is done for eah subjet and

frequeny band. Seondly, the maximum and minimum ourring synhro-

states are seleted and used to alulate omplex network metris by means of

a synhronisation index. These network metris based on graph theory suh

as density, diameter, CPL, GE, modularity or transitivity are beoming a hot

topi in neural engineering as they have strong features to haraterise several

ombinations of brain onnetivity suh as segregation and integration.

5.6 Conlusion

In this hapter the study of onnetivity network metris has been proposed,

derived from the maximum and minimun ouring synhrostates, for the las-

si�ation between two motor imagery tasks. The lassi�ation algorithms gave

state of the art results for small datasets [214℄. Connetivity metris, always

from the synhrostates perspetive, have demostrated the ability to quantify

the underlaying funtional onnetions between the di�erent areas of the brain

during motor imagery tasks.

This novel appliation of synhrostates led to a new lassi�ation method-

ology for motor imagery based BCI systems, and it an be the base for new

appliations. However, even if the results are promising further investigations

should be done. Mainly, a larger number of partiipants should be used to

redue to a minimum any possible mislassi�ation e�ets.



Chapter 6

Synhrostates: emotions from

human faes

The results obtained in hapter 3 demonstrated the existene of quasi-stable

states in the order of milliseonds when partiipants are performing an MI task

based on a shemati faes paradigm. This phenomenon was named synhro-

states. The number and the swithing patter among synhrostates are spei�

for eah one of the motor imagery tasks and frequeny band. Furthermore in

hapter 4, researh regarding their temporal stability was performed by means

of a synhronisation index and omplex network analysis.

The aim of this hapter is validating the existene of synhrostate phenom-

ena using images of human faes as stimuli instead of shemati emotional faes

to indiate to the partiipants whih motor imagery task they should perform.

The use of human fae images is aligned with the idea stated in hapter 3 that

emotions an enhane a stronger response aross subjets and onsequently

an be used as a novel paradigm in motor imagery based BCIs. Furthermore,

the number of ognitive tasks has been inreased from two to four with the

intention of testing and validating the presene of synhrostates over a larger

amount of motor imagery tasks.

Following the same steps desribed in hapters 3 and 4, the phase inform-

ation will be analysed for the di�erent tasks and frequenies. The temporal

evolution and stability of the task-spei� synhrostates will be explored in

the di�erent areas of the brain by using omplex network metris.

116
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6.1 Experimental protool

Emotions play a vital role in the ommuniation and interation between hu-

mans. The ability to reognise the emotional state of the surrounding people

is a natural step in human ommuniation. The reognition of a faial emotion

is a highly omplex task utilising a wide range of skills. Emotional reognition

requires attention, pereption, learning and memory skills. Numerous studies

have been performed using EEG as a basis for automati emotion reognition

in the past few deades. It has been proven that EEG signals an highlight

important information regarding emotional states [215℄. This information as-

soiated with the emotions an be used as stimuli in brain omputer interfaes.

For instane, this is the ase for novel BCI speller systems that using faes as

stimulus ahieved a onsiderable inremental improvement in their perform-

ane when ompared to onventional BCI spellers [93, 156℄

6.1.1 Subjets

Fifteen healthy volunteers, 10 males and 5 females, with an age range between

24 and 39 years partiipated in the experiment. The partiipants in this exper-

iment were di�erent from those who joined the previous experiment explained

in hapter 3 to avoid any familiarity with the experimental set-up and so,

avoid a possible in�uene in the lassi�ation results. Their sight was normal

or orreted to normal. The reruitment was arried out by means of publi

announements, no seletion riteria were used and no monetary ompensa-

tions were o�ered to the partiipants. Written onsent was signed by eah

partiipant after they were informed of the nature of the study. They fully

understood all of the proesses and were omfortable with them. The Univer-

sity of Warwik Ethial ommittee, named Biomedial & Sienti� Researh

Ethis Committee (BSREC), approved this study (REGO-2014-821).

6.1.2 Experimental montage and equipment

The experimental montage and the equipment desribed in setion 3.1.2 are

also used for this experiment. Please refer to the relevant setion for more

information about the EEG ap and eletrodes used for reording the data.

6.1.3 Paradigm

The stimuli for the experiments were taken from a widely used database of
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human faial expression images [216, 217℄. The Karolinska Direted Emotional

Faes (KDEF) database is a set of 4900 pitures in total of human faial

expressions of emotion. Forty faes were seleted from 5 female and 5 male

subjets, representing 4 emotions eah: happiness, sadness, neutrality and

surprise.

The subjets and emotions were seleted as being the most voted for from

a ranking performed by thirty people. The partiipants in the ranking were

shown the total number of frontal pitures from the database after being nor-

malised using Matlab

(C)

software. They had to selet the emotion expressed

by the person in the piture and voted (from 1 to 5 -really good-) on how lear

the emotion was. More details about the seletion proedure an be found in

Appendix A.

The experiment was onduted in 4 bloks of 80 trials eah. In eah blok 20

happy, 20 neutral, 20 sad and 20 surprised faes were presented at random. The

temporal sheme of a typial trial is as follows: a srambled fae is presented

on the sreen for half a seond, followed by one of the seleted emotion images

lasting on the sreen for 0.5 seonds. Afterwards, a blak sreen is presented

to the partiipant for 3 seonds. During this time, the partiipant is asked

to perform the imagined tasks assoiated to the emotions shown just before

on the sreen. Finally a ross is presented lasting for 1 seond indiating the

end of the trial. The motor imagery tasks that partiipants were asked to

perform were: imagined movement of the right hand when a happy fae is

shown, left hand movement when a sad fae is presented. This seletion was

spei�ally hosen to follow the same riteria as in the experiment performed

in hapter 3. In addition, for emotions of surprise the partiipants were asked

to perform the imagined movement of both feet. Finally when a neutral fae is

shown the partiipants were requested to relax, and not do perform any type of

movement. Further details regarding the sequene and temporal sheme of the

experimental set up an be found in appendix B. The movement of both feet,

together with the movement of left and right hands are the typial movements

assoiated with MI based BCI systems [218℄. Regarding the disrimination

between right and left foot imagery, there are some studies overing the topi,

whih uniformly show poor results with auraies of around 60% [219℄. For

this reason, in this thesis, the movement of both feet was seleted.

6.1.4 Pre-proessing

EEG data are aquired at 512 Hz from 62 hannels + 2 referene hannels
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plaed on the earlobes. The ontinuous EEG data are divided into the four

onditions: right and left hand movements, feet and relax. A �rst seletion of

trials was done by eliminating those with amplitudes over a 200μV threshold,

following the same riterion as in hapter 3. Afterwards a visual inspetion

of the whole dataset of trials and partiipants was performed and those trials

a�eted by blinking or any other kind of musle movement were eliminated and

onsidered as artifats. Finally, artifat-free trials were divided into one seond

length epohs for eah ondition lasting from 100ms before stimulus onset to

900ms after and baseline orreted. Due to the low amount of artifat-free

trials, one of the male partiipants was disarded from future analysis.

6.2 Synhrostates from the averaged population

Similar to the proess desribed in hapter 3, the study of temporal evolution

of the phase is developed �rst in the averaged population and posteriorly, the

variability within the subjet is studied. In order to obtain the synhrostates

from the averaged population the phase di�erene matrix for eah individual

subjet has to be alulated as desribed in setion 3.2.1. Afterwards, the av-

erage of the phase matries of eah subjet at eah time instant and frequeny

band is formulated. The resultant averaged matries are lustered by means

of the k-means algorithm as desribed in setion 3.2.2.

Figure 6.1 shows the results of the inremental k-means algorithm for a

number of lusters between 2 and 10 for all the frequeny bands of interest (θ,

α, β and γ) and for the four di�erent motor imaginary tasks from the averaged

population (R hand, L hand, Feet and Relax).

The top row (blue olour) represents the ost funtion for the four imaginary

tasks in the θ band. It an be seen that the �rst lear dominant knee ours

when the number of lusters is two for all of the ases. Although in some of

the ases, the ost funtions have �utuations, inreasing or dereasing, the

earliest knee will be the only one to onsider as previously disussed in setion

3.2.2. It means that for the averaged group of 14 people the number of unique

synhrostates is k=2 for the θ band.

In the next row of the �gure the results of the α band-ost funtions are

illustrated (red olour). It an be seen that the optimal number underlying

the phase di�erene matries is k=3 for the four di�erent situations under

onsideration. This is the same number of synhrostates obtained for the α

band for the right and left hand imagined movements experiment designed
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and explained in hapter 3. The same situation is not sustained for the β band

(blak olour), where only the R hand ase presents a number of lusters similar

to the previous study, k=3. Being only k=2 for the other three onditions (L

hand, Feet and Relax). Finally the last row (green olour) shows the results of

the algorithm for the γ band. It an be learly seen that the optimal number

of luster is k=4 for all situations.

Figure 6.1: k-means lustering ost funtion results for the four onditions under analysis

(R hand, L hand and feet movements and the no-movement or relax task). The upper row

(blue olour) orresponds to the θ band. It an be seen that the optimal number of lusters

is 2 for eah one of the tasks. Seond row from the top, red olour, represents the ost

funtion for the α band where a minimum an be found orresponding to 3 lusters for all

the ases. Third row, in blak, represent the results for the β band. In this ase the number

of lusters seleted for the R hand movement task is 3, being only 2 for the other three tasks.

Finally the last row, green olour, represent the γ band results where a lear minimum an

be found for a number of lusters equal to 4 in eah one of the performed tasks.

As disussed in previous hapters, the α and β bands will be further studied,

as they are the typial frequeny bands used for BCI system investigations

aording to the literature. In addition, it has been demonstrated that the β

band is related to fae proessing and ognition [134℄. In this hapter, further

researh on the γ band is also performed as reent disussions argued that the

γ band is indued by di�erent sensory stimuli or ognitive tasks. Therefore,

the γ band synhronisation is an elementary and fundamental proess in the

funtioning of the brain [220℄.

Figure 6.2 shows the head plots of the inreasing k-means algorithm syn-

hrostates from the averaged group in the α band. At �rst glane, it an be

appreiated that the topographies of the di�erent states are very similar along
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Figure 6.2: Topographies from the synhrostates of the averaged population for the α band.
Columns represent the synhrostate (1 to 3 in this partiular ase) and rows indiate the

performed task. From the top to the bottom: R hand imagined movement, L hand, Feet and

Relax. On the right side, the emotion linked to eah one of the tasks is indiated: happiness,

sadness, surprise and neutral respetively.

the di�erent stimuli presented to the partiipants. A similar result is shown

by the other frequeny bands, β and γ, as an be seen from �gures 6.3 and 6.4

respetively. The synhrostates of the four di�erent tasks are similar within a

frequeny band, whih is in line with the results found in hapter 3 for the
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Figure 6.3: Topographies from the synhrostates of the averaged population for the β band.
Columns represent the synhrostate number, up to 3 for the R hand movement and 2 for

the rest of onditions. Rows indiate the performed task. From the top to the bottom: R

hand imagined movement, L hand, Feet and Relax. On the right side, the emotion linked

to eah one of the tasks is indiated: happiness, sadness, surprise and neutral respetively.

shemati emotional faes stimuli. Another important observation is that the

synhrostates head plots of the α band losely resemble those obtained in the β

band. This behaviour is ompatible with a previous study [134℄. In the ase of

the γ band the synhrostates topographies still present some similarities, but
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the fat that the number of lusters is larger than in the other two frequeny

bands makes a possible omparison di�ult from just visual observation of the

graphs.

Following the same steps explained in hapter 3, the temporal evolution of

the synhrostates swithing patterns are studied to understand the di�erenes

aross stimuli and between frequeny bands. Figures 6.6 to 6.7 illustrate the

time-ourse plots for the α, β and γ bands respetively for the four stimuli.

From the �gures, it an be said that the overall transition patterns between

frequeny bands and also between the four stimuli are markedly di�erent. This

demonstrates the spei� nature of the phase synhrostates.

From the topographies of state 1 in �gures 6.2 and 6.3, it an be argued that

the averaged phase di�erene for these synhrostates remains almost uniformly

distributed aross all the eletrodes. The same behaviour an be found in states

1 and 4 in the γ band (�gure 6.4). This may be explained by looking at the

temporal swithing pattern of the synhrostates (�gures 6.6 to 6.7). From

these time plots it an be seen that the averaged population remain for most

of the time in the state 1, therefore, it an be said that the averaged population

resides at a state of phase homogeneity for a longer period of time.

Observing the transition plots for the α band ( �gure 6.6) it an be observed

that for the movement related tasks, R hand, L hand and feet, the transition

starts in state 1, but for the relax task, it starts in state 2. The di�erent initial

states, for the di�erent emotional faes, is in line with previous �ndings [134℄,

where fae pereption tasks were studied from patients su�ering from Autism

Spetrum Disorder and a ontrol group. One more, as explained in hapter 3,

it may be explained by the di�erent proessing pathways aross partiipants

of the image prior to the stimulus onset or it may be beause of any other

underlying proess ourring in parallel and not related to the task. The solid

red line indiates the stimuli onset and the dotted red lines are set to 300 and

600 milliseonds to help the visualisation proess. This highlights the similar

behaviour of the time ourse plots for all the stimuli between 100 and 300

milliseonds approximately, hanging quikly between states at almost the

same instant in time. It may be indiative of a similar proessing pathway of

the brain when analysing the image presented on the sreen and the working

memory proess to remember the tasks linked to eah fae, even for the neut-

ral fae/ relax task. Afterwards, the transitions are slower, remaining longer

in one state. This highlights the di�erenes between the tasks. It is in line

with the argument that the synhrostates are task-spei�. The time period
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between 300 and 600 milliseonds (between the dotted lines) shows a stable

transition for the imagination of the feet movement and relax tasks, staying

in state 1 and 2 respetively. Contrarily, the right and left hand imagined

movement's transition plots remain swithing between state 1 and 2 during

this time period. It an be seen that the number of swithes aross states is

onsiderably lower for the relax task than for the other three onditions. This

an be expeted as the partiipants were asked not to perform any movements.

Consequently the brain proessing �ow should be lower.

Figure 6.4: Topographies from the synhrostates of the averaged population for the γ band.
Columns represent the synhrostate number, from 1 to 4 for all onditions. Rows indiate

the performed task. From the top to the bottom: R hand imagined movement, L hand,

Feet and Relax. On the right side, the emotion linked to eah one of the tasks is indiated:

happiness, sadness, surprise and neutral respetively.
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Figure 6.5: Temporal evolution of the lustered synhrostates for the β band for the four

onditions: R hand (top left), L hand (top right), Feet (bottom left) and Relax (bottom

right). The solid red line indiates the time instants of the stimulus onset and the dotted

red lines are plaed at 300 and 600 milliseonds after the stimuli onset.

Figure 6.6: Temporal evolution of the lustered synhrostates for the α band for the four

onditions: R hand (top left), L hand (top right), Feet (bottom left) and Relax (bottom

right). The solid red line indiates the time instants of the stimulus onset and the dotted

red lines are plaed at 300 and 600 milliseonds after the stimuli onset. It seems that the

period that elapses between the stimulus onset and 300 milliseonds, the temporal swithing

for all the ases presents similar pattern.

From �gure 6.5 it an be observed that the L hand task swithing pat-

tern transitions are quiker than in the others, remaining for most of the time
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in state 1, in ontrast to the other three tasks where the most visited state

is state 2. It is notieable that during the period of time between the two

red dotted lines, from 300 to 600 milliseonds, the four stimuli remain almost

ompletely stable in one state, number 2, for all the ases exept for L hand

tasks whih is state 1. In the γ band (�gure 6.7) the transitions our almost

onstantly and our in larger numbers than for the previous frequeny bands.

This quik transition, the larger number of them and the presene of one more

synhrostate an lead us to think that maybe the γ band synhronisation an

re�et more omplex tasks happening in parallel to the tasks presented to the

users. This is in line with the argument that γ band synhronisation is a fun-

damental proess that follows any elemental operation of ortial omputation

previously mentioned.

Figure 6.7: Temporal evolution of the lustered synhrostates for the γ band for the four

onditions: R hand (top left), L hand (top right), Feet (bottom left) and Relax (bottom

right). The solid red line indiates the time instants of the stimulus onset and the dotted

red lines are plaed at 300 and 600 milliseonds after the stimuli onset.

6.3 Variability aross subjets

The results presented so far, topographi maps and transitions between

synhrostates plots, are based on the averages aross partiipants. The aim

of this setion is to explore the inter-subjet variability regarding the optimal

number of synhrostates aross the diversity of frequeny bands under srutiny.

The di�erenes in the phase matries for eah partiipant were lustered by

the k-means algorithm as explained in setion 3.2.2 for eah ondition and
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frequeny band. Finally, statistial measures suh as median and quartile

ranges are used to illustrate the variability of the number of synhrostates as

explained in setion 3.3.2.

Figure 6.8: Variability in the optimal number of synhrostates for eah subjet during four

di�erent tasks: R hand, L hand, Feet and Relax. In brakets, the emotion stimulus linked

to eah task. The group was formed by 15 subjets and was repliated in four frequeny

bands (α, β, γ, θ).

The number of synhrostates aross subjets varies between 2 and 5, 2 to

4 or 2 and 3 depending on the task and frequeny band as an be seen from

�gure 6.8. This is in line with the results desribed in setion 3.3.2, sustaining

the existene of task-spei� synhrostates. One more, it an be mentioned

that the small variation between the number of synhrostates an be due to

the fat that the proessing pathways are unique for eah person and they an

be in�uened by several fators.

6.4 Variability due to other fators

Changing some parameters during the EEG reording suh as the number

of eletrodes or sampling frequeny may a�et the �nal result on the head plots

topographies or in the temporal resolution of the synhrostates transitions. It

is likely that a higher sampling frequeny an trae with more detailed granu-

larity the phase evolution of the signals. In the same manner, a larger number

of eletrodes will probably lead to more onsistent results than a redued

amount of EEG hannels.

However, there is also a small �utuation due to the variability from trial
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to trial and from person to person, leading to a small variation in the number

of synhrostates (see �gure 6.8). This variation is redued enough to onsider

the presene of synhrostates validated aross partiipants. In this work, a

number of di�erent random initialisations of the k-means lustering algorithm

have been used in the aim of obtaining more onsistent results. Also the

sampling frequeny was inreased from 256Hz in the �rst study (hapter 3) to

512Hz to gain in time-sale granularity.

The dependene on the type of experiment has been tested with two dif-

ferent sets of partiipants and two di�erent types of stimuli, shemati and

human faes, with regulated reording equipment and in a ontrolled environ-

ment. In addition, similar results were previously deteted in autisti hildren

and a ontrol group [134℄. However, the presene of synhrostates using other

types of stimuli, di�erent from the proessing of emotional faes, has not being

tested yet as it is not within the sope of this thesis.

6.5 Network analysis

Synhrostates have been de�ned as states where the phase di�erene aross

eletrodes remained onstant over time, spei�ally of the order of milliseonds.

To study their stability in a time ontext and keeping the information related to

their phase di�erene values at the same time, the synhronisation index is se-

leted as the suitable measure. Afterwards, one the synhronisation matries

are formulated for eah one of the synhrostates and frequeny bands of in-

terest, those matries an be translated into omplex network measures. The

aim of this proess, fully desribed in hapter 4, is to gain further informa-

tion about the behaviour of the phase synhronisation amongst di�erent areas

of the brain. Therefore, a deeper insight into the temporal dynamis of the

onnetivity patterns for a spei� task an be obtained.

6.5.1 Synhronisation index

The synhronisation index for eah synhrostate, task ondition and fre-

queny band has been alulated aording to 4.1. The ross eletrode plots

resulted from the synhronisation index in the α band are shown in �gure 6.9.

Similar to the proess desribed in setion 4.1, the values losest to 1 (reddish

olour on the graph) indiate a larger degree of synhronisation.

After the analysis of the results from hapter 4, it was determined that

those states having the largest number of ourrenes were the most stable and

probably will arry vital information. In the same manner, the states with the

lowest number of ourrenes were also inluded in the onnetivity analysis as
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they may hold some spei� information related to the brain onnetivity. In

line with the nomenlature followed in hapter 5 the maximum and minimum

number of ourrenes will from now be named the 'max' and 'min' states

respetively.

Figure 6.9: Synhronisation Index ΥP (F ) matries for the three synhrostates obtained for

the α band and task ondition.

6.5.2 Network measures

The synhronisation index obtained for the max and min states for eah

ondition and frequeny band will be used as a weighted adjaeny matrix in-

diating the degree of onnetivity between nodes or EEG eletrodes. This will

ontribute to a further understanding about how well onneted the di�erent

pairs of eletrodes are or nodes aross the areas of the brain and also about
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the temporal stability of eah state. The proess is desribed in hapter 4.

Figures 6.10 - 6.12 show the resulting onnetivity maps for the max (left

olumn) and min (right olumn) states for eah ondition and frequeny band:

the α, β and γ bands respetively. The rows represent the di�erent tasks:

(from top to bottom) R hand, Left hand, Feet and Relax linked to happy,

sad, neutral and surprised fae stimuli respetively. The resulting onnetivity

graphs for the max and the min states are shown with only 5% of the strongest

onnetions retained for further analysis. This was performed to maintain a

similar average degree distribution between subjets, sine the betweenness

entrality an be a�eted by the degree of a network [221℄. A similar threshold

was seleted to perform the analysis as detailed in hapter 4. A range of

thresholds from 3 to 10% was examined as they are the most widely used

in the literature. However, those thresholds were not found to signi�antly

hange the properties of the examined onnetivity networks.

Following the same riteria than as in previous hapters, the olours and

sizes of the nodes are based on their degree, meaning that a bigger diameter of

the node ontains a higher number of links onneted to this node. Similarly, a

reddish olours of the nodes, signi�es more links onneted to the node; Bluish,

a lower number of links onneted to it. Furthermore, the edge thiknesses are

based on the weighted values of the synhrostate index matries. Consequently,

thiker lines onneting eletrode pairs mean higher values than thinner ones in

the adjaeny matrix. As mentioned in hapter 4, the nodes situated outside of

the brain ontour orrespond to the nodes labelled as Tp9 and Tp10, situated

by the ears. This is due to the way EEGNET software plots the onnetivity

graphs.

An interesting observation from Figures 6.10 to 6.12 is that the relax task for

all frequeny bands shows, in general, the less loalised onnetivity ompared

to the other tasks linked to an imagined movement. In addition, the strength

of the edges represented by the thikness of the onnetions between nodes is

lower in relation to the other three stimuli. It may mean that the number of

proesses ongoing within the brain when this stimulus is presented to the user is

lower, onsequently the need of speialised information integration operations

are less that those needed for a motor imaginary task.

From the onnetivity �gures it an also be notied that there is a lear dif-

ferene between the max and min states for the motor related tasks, espeially

in the α and γ bands. The min state is the one presenting more segmented

onnetivity in relation to the max state. This may mean that most of the

speialised information integration operations our during the min state.
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Figure 6.10: Brain onnetivity plots from the maximum and minimum number of o-

urrenes synhrostates in the α band for all four onditions: R hand movement, L hand

movement, Feet movement and relax. The olours and sizes of the nodes are based on their

degree: bigger diameters and reddish olours of the node meaning a larger number of links.

The edge thikness is based on the weighted values of the synhrostate index matries.
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Figure 6.11: Brain onnetivity plots from the maximum and minimum number of o-

urrenes synhrostates in the β band for all four onditions: R hand movement, L hand

movement, Feet movement and relax. The olours and sizes of the nodes are based on their

degree: bigger diameters and reddish olours of the node meaning a larger number of links.

The edge thikness is based on the weighted values of the synhrostate index matries.
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Figure 6.12: Brain onnetivity plots from the maximum and minimum number of o-

urrenes synhrostates in the γ band for all four onditions: R hand movement, L hand

movement, Feet movement and relax. The olours and sizes of the nodes are based on their

degree: bigger diameters and reddish olours of the node meaning a larger number of links.

The edge thikness is based on the weighted values of the synhrostate index matries.
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Therefore, min state quantitative haraterisation may lead to a higher power

of disrimination between tasks. This is aording to the results found in the

previous hapters. This phenomenon is not as lear in the β band where the

di�erenes between max and min states are less intuitive from a visual point

of view.

It an be said that there are some similarities in the α band (�gure 6.10)

between the min states for the three motor imaginary tasks (the top three

topographies of the right olumn), speially between L hand and both feet

movements. This behaviour annot be observed in the other frequeny bands.

This may be explained by the in�uene of other proesses ourring simultan-

eously in the brain that an be frequeny spei� [134℄. Therefore, a�eting

di�erently to the range of frequenies observed.

From the above onnetivity plots, as mentioned in hapter 4, objetive in-

formation annot be obtained, only some visual onjetures and a more quant-

itative evaluation mehanism is needed to yield any solid onlusions. For this

reason, in addition to the onnetivity network topographies showed in �gures

6.10 to 6.12 a set of onnetivity metris was also obtained for eah frequeny

band, ondition and max/min synhrostates. For a more exhaustive explana-

tion about the meaning and formulation of eah one of the graph theory based

measures please refer to hapter 4. Tables 6.1 and 6.2 show two examples of

the network measures alulated for the α and γ bands respetively.

Table 6.1: Example of two network metris, harateristi path length (CPL) and global

e�ieny (G.E.), for the max and min synhrostates for the four onditions (R hand, L

hand, Feet, Relax) for the α band.

measures

R hand L hand Feet Relax

max state min state max state min state max state min state max state min state

CPL 4.402 4.29 3.515 3.868 4.451 4.50 4.017 4.52

G.E. 151*10

-3

165*10

-3

130*10

-3

129*10

-3

156*10

-3

136*10

-3

114*10

-3

143*10

-3

Table 6.2: Example of two network metris, modularity and transitivity, for the max and

min synhrostates for the four onditions (R hand, L hand, Feet, Relax) for the γ band.

measures

R hand L hand Feet Relax

max state min state max state min state max state min state max state min state

Q 61.4*10

-2

71.8*10

-2

63.7*10

-2

70.0*10

-2

66.4*10

-2

71.6*10

-2

70.9*10

-2

70.3*10

-2

T 66.5*10

-2

86.9*10

-2

61.4*10

-2

80.6*10

-2

59.9*10

-2

84.3*10

-2

70.0*10

-2

69.3*10

-2

From table 6.1 it an be seen that the max state for the L hand and Feet

movement tasks present higher GE values and lower CPL than their orres-

ponding min states, meaning that the min states for L hand and feet onditions

have a larger information integration ability than their max states. However,
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for the R hand tasks the max state boasts this feature. Furthermore, despite

some states leading the integration apaity of the brain for the spei� task,

all of the motor tasks have a similar value of those features, meaning that all of

them perform to a omparable level of integration proess. This an explained

by the notion that at the end, although di�erent stimuli have been shown to

the partiipant, all belong to the same ognitive task. It means that similar

information integration spei� to this task and stimuli is performed. This

behaviour also explains the similarities between the head plot topographies for

the di�erent states within a frequeny band.

Also notieable are the higher values of the transitivity in table 6.2 of the

min state ompared with the max state for the motor imaginary tasks (feet and

R and L hands), This is not the ase for the Relax ondition, where min and

max states show similar values for both onnetivity metris. These results

orroborate the previously mentioned regarding the proposition that the min

state an lead the segregated speialised proessing.

6.6 Four lass lassi�ation from synhrostates

In hapter 5 the possibility of using onnetivity network metris from the

synhrostates to di�erentiate between two motor imaginary tasks, right and

left hand, has been learly demonstrated. In this setion the pursued aim is

similar, using the metris from the max and min synhrostates as features to

lassify between di�erent tasks to ontrol a BCI system. However, two main

di�erenes an be highlighted. Firstly, from a two lass lassi�ation problem,

right and left hand, it has inreased to a four lass problem: right hand, left

hand, feet and no movement or a relax task. The other important di�erene

is the type of stimuli used, previous hapter results are based on shemati

emotional faes as stimuli, now the emotions are transmitted by images of

human faes.

The steps involved in the lassi�ation proess are detailed in hapter 5.

Brie�y, the individual and olletive disrimination power of the features om-

ing from the max and min synhrostates are determined by the FDR. Three

ases will be onsidered: only min state features, only max state features and

all together. Following the same nomenlature as in hapter 5, the di�erent

ases will be named ase I (all features), ase II (max state features) and ase

III (min state features). In addition to the α and β bands studied in hapter 5,

γ band has also been inluded in this study. Nevertheless, only the onnetiv-

ity metris when a threshold is used will be onsidered as they demonstrate

having a stronger disriminative apaity. The number of and type of lassi�-
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ers remain idential to the previous study. Please refer to setion 5.3 for more

details.

6.6.1 Results for the α band

The FDR separability riterion results for ases I to III are illustrated in �gures

6.13-6.15 respetively. The whole set of features is divided into smaller subsets

aording to their FDR values. These redued groups of features will be used

later on to feed the di�erent lassi�ation algorithms. For ase I, �gure 6.13,

the number of groups after the grouping proess is 9.

The �rst group is formed by the top one feature, degree network metri

from max synhrostate. The following groups are formed by 2 features, the

GE value and also from the max synhrostate and modularity (Q) of the min

synhrostate. The next four groups are formed by only one feature, followed

by 3 and 2 features groups and the last ensemble inludes all the available

features.

Figure 6.13: Grouped features by their FDR values ordered in dereasing order for ase I,

all network measures are onsidered, and the α band.

Following the same riteria, the proess of dividing into smaller sets of

features to feed the lassi�ers is applied to ases II and III where only the max

and min synhrostates network measures are onsidered respetively. The

number of groups for ase II is 6 as an be seen from �gure 6.14. The �rst

one is formed by the top one feature whih is the same as in ase I. The next

two sets are also formed by only one feature, followed by groups of 3 and 2

elements respetively. Finally, the 6

th

group that inludes all features.

Case III's situation, that only onsiders the network metris obtained from

the min synhrostate, is illustrated in �gure 6.15. The number of groups that

resulted in this partiular ase is only 5 and exept for the last one that inludes

all of the range of features, the rest are formed from a single metri. A big

gap is notieable between the FDR values of the top four features and the rest.
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This means that their ability to disriminate between the di�erent MI tasks

will be remarkably lower than for the top four features.

Figure 6.14: Grouped features by their FDR values ordered in dereasing order for ase II,

only max synhrostate network measures are onsidered, and the α band.

It an been observed from �gures 6.13, 6.14 and 6.15 that the onnetivity

measures with higher FDR values, hene, a larger disriminative power, are

modularity, transitivity, global e�ieny or the degree of the network. This is

in line with the expeted behaviour as ommented in previous setions of this

hapter.

Figure 6.15: Grouped features by their FDR values ordered in dereasing order for ase III,

only min synhrostate network measures are onsidered, and the α band.

The di�erent subsets of features for ases I to III were used to feed six di�er-

ent lassi�ers using leaving-one-out validation following the riteria established

in hapter 5. For illustrative purposes, only the top two lassi�ers showing the

highest performane among the di�erent ases and frequeny bands are presen-

ted in this setion. Figure 6.16 illustrates the performane of the algorithms.

The �rst one is a linear disriminant analysis lassi�er (ld, top graph) and
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the seond one is a quadrati disriminant lassi�er, (qdbottom graph). This

behaviour is similar to the previous hapter, being also those two algorithms

whih ahieved the best performanes lassifying between two MI tasks. It an

be seen that the higher average auray for the linear disriminant algorithm

is obtained when the top three features are used, being 90% with true positive

values of 100% for the R and L hand tasks, and 84% for the non-task situation

and 76% for the feet task.

Figure 6.16: Comparison of the performane of the top two lassi�ers for ase I in the α
band. Features grouped aording to their FDR value are fed to the di�erent lassi�ation

algorithms. For eah one of the formed subsets, the average auray (a) and the true

positive (TP) for eah one of the four tasks (R hand, relaxing or no-task, L hand and feet)

are illustrated. The upper graph shows the performane results for the linear disriminant

analysis lassi�er (ld) and the bottom graph shows the results obtained for the quadrati

disriminant lassi�er (qd).
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Similar results are obtained for the �rst two groups of features when the

quadrati disriminant algorithm is used , the bottom graph of �gure 6.16,

ahieving a maximum averaged auray of 93% when the top three features

are used with a true positive rate of 92%, 100%, 100% and 82% for R hand,

no-task, L-hand and feet respetively. The addition of more features to both

lassi�ers leads to a lower averaged performane that one more, an be at-

tributed to the over-�tting phenomenon. It an be seen that for the linear

disriminant algorithm, that the worst performane is obtained for the last MI

tasks, onsisting of imagining moving both feet. This behaviour is not present

when the quadrati disriminant algorithm is used and where the true positive

rate between the four tasks is more balaned. Maybe this is due to the lower

general averaged performane of this lassi�er when ompared to the linear

disriminant lassi�er.

Figure 6.17: Comparison of the performane of the top two lassi�ers for ase II (left olumn)

and ase III (right olumn) in the α band. Features grouped aording to their FDR value

are feed to the di�erent lassi�ation algorithms. For eah one of the formed subsets the

average auray (a) and the true positive (TP) for eah one of the four tasks (R hand,

relaxing or no-task, L hand and feet) are illustrated. The upper row shows the performane

results for the linear disriminant analysis lassi�er (ld) and the bottom row shows the

results obtained for the quadrati disriminant lassi�er (qd).

The performane for ase II and ase III is displayed in �gure 6.17. The left

olumn of the �gure illustrates ase II, when only network metris orrespond-

ing to the max synhrostate are onsidered. The right olumn, onsequently

re�ets the performane obtained for ase III, when only the min synhrostate
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onnetivity measures are used to feed the lassi�ation algorithm. The higher

performane obtained in this ase for the linear disriminant algorithm is sim-

ilar to that in ase I, 90% with TP rates of 96%, 94%, 92% and 78% for R

hand, non-task, L hand and feet respetively. This averaged auray is sored

when three features are used to feed the algorithm. The top two features are

the same as for ase I so it is logial to think that the level of auray should

be similar. One more the MI task of moving both feet is the one obtaining the

lower performanes. Similar numbers resulted from the seond lassi�er un-

der study, quadrati disriminant, with an averaged auray of 90.5% (92%,

82%, 92%, 96%) when the top three features are used. In this ase the poorest

performane is linked to the non-task (resting) situation.

Finally, performane results for ase III are visibly lower than the two pre-

vious ases. This behaviour an be explained by the lower values of the FDR

when ompared to the values of ase II, see �gures 6.14 and 6.15. In this ase,

for both lassi�ers, the greatest performane ahieved is when the top feature,

modularity is used to feed the algorithm. The averaged auray obtained is

72% and 77% for linear and quadrati lassi�ers respetively.

The results obtained for the α band after lassifying the four di�erent tasks

are onsiderably higher than those obtained in setion 5.4.1.1 when only two

tasks were lassi�ed (highest auray of 93% versus 83% respetively). This

an be explained through the FDR values whih are almost double for the

4-tasks lassi�ation problem than for the 2-tasks problem as an be seen from

�gures 6.13 and 5.7 respetively. The higher results shown in this setion may

be explained by other fators suh as the larger number of partiipants or that

a higher number of tasks to perform during the same experiment indued an

inrement in the onentration of the partiipants. Another di�erene with

respet to the 2-tasks lassi�ation problem is that the onnetivity measures

obtained from the min synhrostates present lower FDR values, hene poorer

disriminative abilities than the measures from the max synhrostates. This

is in line with the previous existing literature where the maximum number of

ourring state network metris have better disriminative apabilities than

the minimum number of ourring state metris [30, 134℄.

6.6.2 Results the β band

Following the same steps used for the α band the FDR values of the di�erent

network metris obtained from the max and min synhrostates are arranged

in desending order to subdivide the whole set into smaller groups to feed
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the di�erent lassi�ers as depited in �gures 6.18 to 6.20. The same number

of ases are studied for the β band, starting from ase I, where all available

features are inluded (�gure 6.18). Only metris of the max synhrostates are

onsidered for ase II (�gure 6.19) and only measures of min synhrostates for

ase III (�gure 6.20).

Figure 6.18: Grouped features by their FDR values ordered in dereasing order for ase I,

all network measures are onsidered, and β band.

The number of groups formed for ase I is eight, one less than for the α

band, as an be seen in �gure 6.18. The �rst four groups are formed by a

single feature: CPL max, diameter (D) max, transitivity (T) min and T max

respetively. The suessive groups are formed by 6, 8, 13 and all possible

features respetively. Similar to the previous setion, the top two features are

from the max synhrostate set of metris. In addition, it is notieable that the

FDR values are onsiderably lower than in the α band whih means that the

power of disrimination of the β band is in general, worse than that of the α

band.

Figure 6.19: Grouped features by their FDR values ordered in dereasing order for ase II,

only max synhrostate network measures are onsidered, and the β band.
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For ase II the number of groups has inreased from six in the α band to

seven in the β band as illustrated in �gure 6.19. The �rst three groups are

formed of only one feature, with the same features as in ase I: CPL max, D

max and T max. The subsequent subgroups are formed by 5, 6, 8 and the

whole set of features respetively. Figure 6.20 shows the last situation, ase

III. The number of groups resulting in ase III is only four: 1, 3, 5 and all

features respetively. Similar to ase III of α the band, the FDR values in this

senario are signi�antly lower than for ase II and ase I.

Figure 6.20: Grouped features by their FDR values ordered in dereasing order for ase III,

only min synhrostate network measures are onsidered, and the β band.

Figures 6.21 and 6.22 show the lassi�ation performane rates for ase I

and ase II and III respetively for the 4-tasks lassi�ation problem. For ase

I, the highest averaged auray for both lassi�ers is obtained with only one

feature, the one presenting the largest FDR value, CPL max. The auray

rate is 73% with true positive rates of 100%, 70%, 70% and 52% for R hand,

non-task, L hand and feet respetively for the linear disriminant algorithm

and 82.5% (100%, 100%, 50%, 80%) for the quadrati disriminant lassi�er.

This performane is substantially lower than in the same ase for the α band

where the averaged auray was over 90%. This behaviour is in line with the

lower FDR values for this frequeny band as ommented beforehand.

In addition, the true positive rates for both lassi�ers are learly unbal-

aned. Both algorithms show strength in deteting some tasks espeially R

hand movement with 100% of hits, but are really bad for others suh as feet

or L hand movements with rates near the hane level. It an be seen that

the over-�tting phenomenon is more pronouned in this ase than in the same

senario of the α band. For both lassi�ers the performane drops to 50% or

less when more than 9 features are used.



143 CHAPTER 6. SYNCHROSTATES: EMOTIONS FROM HUMAN FACES

Figure 6.21: Comparison of the performane of the top two lassi�ers for ase I in the β
band. Features grouped aording to their FDR value are fed to the di�erent lassi�ation

algorithms. For eah one of the formed subsets, the average auray (a) and the true

positive (TP) for eah one of the four tasks (R hand, relaxing or no-task, L hand and feet)

are illustrated. The upper graph shows the performane results for the linear disriminant

analysis lassi�er (ld) and the bottom graph shows the results obtained for the quadrati

disriminant lassi�er (qd).

For ase II, illustrated in the left row of �gure 6.22, the �rst two groups

are formed by the same features than for ase I, onsequently the performane

of the lassi�ers is the same as in ase I, 73% and 82.5% for linear and quad-

rati algorithms respetively. The seond lassi�er, quadrati disriminant,

shows slightly higher averaged auraies in general than linear disriminant

algorithm, with the exeption of the last group. When all of the features are

used to feed the quadrati disriminant algorithm, it annot lassify orretly
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any feature but feet movement whih reveals a true positive rate of 100%. Sim-

ilar to the other ases studied so far the two tasks obtaining lower lassi�ation

performane are, in general, the neutral fae linked to the non-task or relax

situation and the movement of the feet.

Figure 6.22: Comparison of the performane of the top two lassi�ers for ase II (left olumn)

and ase III (right olumn) in the β band. Features grouped aording to their FDR value

are fed to the di�erent lassi�ation algorithms. For eah one of the formed subsets, the

average auray (a) and the true positive (TP) for eah one of the four tasks (R hand,

relaxing or no-task, L hand and feet) are illustrated. The upper row shows the performane

results for the linear disriminant analysis lassi�er (ld) and the bottom row shows the

results obtained for the quadrati disriminant lassi�er (qd).

Finally, ase III presents the slightly lower performane than in ase II and

ase I, with 71% of the averaged auray for both lassi�ation algorithms.

Similar to ase I and II the true positive rates for the di�erent tasks are un-

balaned. But in this ase the performane is extremely poor for the non-task

senario. These results an be explained by the fat that the synhrostates are

task and frequeny spei� as has been demonstrated earlier in this thesis. In

addition, the onnetivity plots and onsequently, onnetivity measures show

lear di�erenes aross states and frequenies. This means that they proess

di�erent information, for example the minimum number of ourrenes state

performs a more speialised proessing, leading to a di�erent lassi�ation

performane aording to the tasks and frequeny band being exeuted.
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6.6.3 Results for the γ band

The FDR results for the last frequeny under study are shown in �gures 6.23 to

6.25 for ases I to III respetively. For ase I, only seven groups were formed,

being the �rst four individual feature groups formed with the top highest

values of the FDR. The rest of the groups for ase I were omposed of 9, 13

and all sets of features respetively. Three out of the top four are features from

the min synhrostates: T, degree and CPL. This behaviour is the opposite to

the other two frequeny bands where the max synhrostate presented higher

FDR values than the min synhrostate network metris, therefore a larger

disriminative ability. This in line with the �ndings for the previous hapter

for the α and β band, when the stimuli presented to the user were shemati

emotional faes. The mehanisms to proess shemati emotional faes and

real human emotional faes are obviously not the same. However, the aim is

to reognise the emotion shown on the sreen and translate it to an imagined

movement. The fat that onnetivity metris from the min synhrostate of

the γ band for human faes presents higher disrimination power similar to the

α and β band in the shemati emotional faes problem may indiate that some

of the proessing pathways are shared for both paradigms, but at a di�erent

frequeny level. Maybe this is beause the proessing of human emotional

faes is a more omplex proess.

Figure 6.23: Grouped features by their FDR values ordered in dereasing order for the γ
band. and ase I, when all available network metris are onsidered.

Case II presents the lowest peak among all of the top FDR values from all

of the studied senarios with a value of 3.6 versus 8.28 for the ase III. As

mentioned previously, this means that the ability to disriminate between the

di�erent tasks of the max synhrostate is lower than the min synhrostate for
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this frequeny band. The number of groups formed for this partiular ase is

six: top one feature, top two features, followed by a group of 4 features, 5 , 6

and the whole set of network metris as an be seen from the �gure 6.24.

Figure 6.24: Grouped features by their FDR values ordered in dereasing order for the γ
band. and ase II, when only max state network metris are onsidered.

Finally, ase III (�gure 6.25) presents FDR values of the same order as ase

II of the β band (see �gure 6.19). The groups resulting from this seletion

riterion are also six, as in ase II. The three �rst groups are one feature

subsets: T min, degree min and CPL min. These three groups are the same

�rst three groups as for ase I. The next groups are integrated by 5, 7 and all

features.

Figure 6.25: Grouped features by their FDR values ordered in dereasing order for the γ
band. and ase III, when only min state network metris are onsidered.
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Figure 6.26: Comparison of the performane of the top two lassi�ers for ase I in the γ
band. Features grouped aording to their FDR value are fed to the di�erent lassi�ation

algorithms. For eah one of the formed subsets, the average auray (a) and the true

positive (TP) for eah one of the four tasks (R hand, relaxing or no-task, L hand and feet)

are illustrated. The upper graph shows the performane results for the linear disriminant

analysis lassi�er (ld) and the bottom graph shows the results obtained for the quadrati

disriminant lassi�er (qd).

Classi�ation results for the three ases are shown in �gures 6.26 and 6.27.

The average performane for ase I (�gure 6.26) is similar to ase I for the β

band as the values of FDR for both ases are similar in range. The similarities

are present also in the behaviour of the lassi�ation algorithms. The highest
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auray is obtained with only one feature and the additional metris used

to feed the lassi�ers only provokes a progressive dereasing of the averaged

auray. However, the top features are di�erent, CPL max for ase I, for the

β band and T min for ase I for the γ band. The best performane rate for

the linear disriminant lassi�er is 83.4% with true positive rates of 76%, 96%,

62%, 100% respetively. In the ase of the quadrati disriminant algorithm,

the averaged performane is slightly higher at 84.5% with true positive rates of

80%, 84%, 78% and 96%. For ase II, represented in the left olumn of �gure

6.27, the auray results are notably low for both lassi�ers with averaged

auraies under 50%. Finally, in ase III, illustrated in the right olumn of

�gure 6.27, the greatest results are the same as for ase I as the �rst three

groups are formed by the same features. The highest auraies are 83.4% and

84.5% for the linear and quadrati disriminant algorithms respetively.

Figure 6.27: Comparison of the performane of the top two lassi�ers for ase II (left olumn)

and ase III (right olumn) in the γ band. Features grouped aordingly to their FDR value

are fed to the di�erent lassi�ation algorithms. For eah one of the formed subsets, the

average auray (a) and the true positive (TP) for eah one of the four tasks (R hand,

relaxing or no-task, L hand and feet) are illustrated. The upper row shows the performane

results for the linear disriminant analysis lassi�er (ld) and the bottom row shows the

results obtained for the quadrati disriminant lassi�er (qd).

6.7 Conlusions

The existene of synhrostates de�ned as quasi-stable periods of the phase

di�erene has been identi�ed for MI tasks based in emotional human fae
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images. The study has been performed as an averaged population and as

individuals belonging to a group. From the group results it an be seen that

the phase topographies of the di�erent synhrostates within the same frequeny

band present similarities. However, the temporal swithing pattern aross the

di�erent synhrostates showed the di�erenes among stimuli within a frequeny

band. These di�erenes have been quanti�ed by means of onnetivity network

measures based on graph theory. For eah MI task performed by the user and

frequeny band of interest, di�erent network metris have been alulated to

re-a�rm the �ndings of the previous hapters, that the information interpreted

from the brain, is task-spei�.

The study of eah subjet of the ohort of partiipants resulted, as in hapter

3, in a small variation of the optimal number of synhrostates due to the

variability inter-trials and inter-subjets. However, the existene of a redued

number of synhrostates aross the partiipants is onsistent and ompatible

with previous results.

The di�erenes observed in the onnetivity network measures have been

further used to lassify between four di�erent MI tasks with auraies of 93%

using only three features or less to feed the lassi�ers. Simpler lassi�ers suh

as linear and quadrati disriminant analysis performed similarly or even bet-

ter than more omplex kernels. The exellent lassi�ation auray ahieved

for the multi-lass problem presented in this hapter is superior to the per-

formane ahieved in the previous hapter, when shemati emotional faes

were used as stimuli. This inrement in the performane an be explained by

the use of human faes instead of emotions. However, a deeper study with a

larger population and using both types of stimuli should be performed in order

to quantitatively measure any improvement regarding the use of human fae

images.

Another onlusion that an be obtained from the lassi�ation proess is

that for the α and β bands, the set of features oming from the maximum

number of ourrenes poses a onsiderably higher disriminative ability than

the minimum number of synhrostates metris.

In general, it an be said aording to the �ndings presented in this hapter

that:

� A redued number of synhronised states exist during the performane of

di�erent motor imaginary tasks.

� These states have di�erent swithing patterns demonstrating that they
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are task-spei�.

� The ombination of these states with a synhronisation index gave us a

deeper understanding of the brain segregation and integration funtions.

� The information from these synhrostates and their temporal stability an

be measured and quanti�ed by a set of onnetivity network metris.

� There is a set of network metris perfetly apable of identifying and

haraterising the underlying mehanisms assoiated to a ognitive task.

The validation of this of this proedure over a larger number of partiipants and

with a di�erent variety of stimuli, would result in a signi�ant move-forward

in the world of neurosiene.



Chapter 7

Conlusions

BCI systems are still a hallenging topi of study in neural-engineering. Des-

pite being used in assistive devies for people with motor impairments, for

instane, BCI-based wheelhairs, or in the rehabilitation proess after a stroke

the amount of people unable to use this assistive tehnology or that need a

long period of training is exessively high [222℄. In order to inrease the reliab-

ility of BCI systems, it is neessary to deepen understanding of how the brain

reats to a spei� stimulus over time. To ful�l this aim, this work has foused

on the temporal resolution harateristi of EEG based BCI to determine the

phase synhronisation variation over a period of time between the di�erent

areas of the brain when a spei� stimulus is presented to the user. Phase syn-

hronisation is an important key to understanding the underlying mehanisms

of the brain in exhanging information aross the di�erent regions.

This work has identi�ed the existene of a �nite number of unique phase dif-

ferent patterns, named synhrostates that share similarities with the onept

of mirostates [119℄. These synhrostates remain stable in the order of milli-

seonds, suddenly and abruptly hanging to the next one during the proessing

of a spei� stimulus. The swithing pattern aross the di�erent synhrostates

provides information regarding the evolution of the phase synhrony aross the

di�erent regions of the brain over time. This information leads to a greater

understanding of the information exhange ourring in the brain. A higher

understanding of the information exhange dynamis of the brain will help

the speialist to reate more aurate and personalised BCIs. Despite the fat

that the topographial maps of the lustered synhrostates demonstrated that

those synhrostates remain topographially similar within a frequeny band,

their ourrene and swithing pattern is learly dependent on the stimulus
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presented to the user. This means that the information proessing pathways

within the di�erent regions of the brain are task-spei� and eah task an be

divided into smaller sub-tasks represented by the synhrostates. The presene

of synhrostates was identi�ed using emotional shemati faes linked to the

imaginary movement of right and left hand and also with human emotional

faes images as a stimulus representing four di�erent tasks: right hand, left

hand, feet and non-task or relaxing task.

In order to quantify the di�erenes among the task-spei� synhrostates

and onsequently establish a possible method to aurately identify the variety

of motor imaginary tasks performed by the user, they were translated into a

onnetivity network based on graph theory. This step added a further and

deeper understanding of the funtion integration and segregation features of

the synhrostate phenomenon, therefore a better understanding of the inform-

ation proessing of the human brain linked to a spei� task. Connetivity

network measures not only added a deeper knowledge regarding the underly-

ing mehanism of the brain, but also provided a mehanism of lassi�ation

between the di�erent motor imaginary tasks. The network metris obtained

from the maximum and minimum number of ourrenes of the states were

used to feed a wide range of lassi�ation algorithms among di�erent super-

vised learning tehniques: disriminant analysis and support vetor mahines

with di�erent levels of kernel omplexity and nearest neighbours with k=3.

The performane results obtained for the two task problem, right and left

hand, were as high as 83% aurate with 83% sensitivity and spei�ity for

the α band.

Results for the four tasks problem were of 93% of averaged auray with

sensitivity of 92%, 100%, 100% and 82% respetively for the right hand, non-

task, left hand and feet respetively for the α band. The proposed method of

lassi�ation of a multi-lass MI based BCI system gives exellent auray

rates and exeeds some of the ontemporary proposed systems [223℄.

In parallel to the development of this methodology based on onnetivity

metris obtained from synhrostates and with the aim of inreasing the reli-

ability of the MI-based BCI systems, a novel stimulus was introdued, faes

showing di�erent emotions. Nowadays, there is a wide variety of stimuli used

in onjuntion with EEG reordings and BCI systems: sounds, images, videos,

navigation, letters, arrows in stati position or moving aross the sreen, et.

However, the use of emotional faes as a stimulus for a MI based BCI has been

introdued for the �rst time in this work. Firstly, shemati emotional faes,

popularly known as emotions used in soial networks, were used as stimuli.
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Partiipants were asked to perform the imaged movement of the right hand

when a happy fae appeared on the sreen and a sad fae were assoiated to the

imaged movement of the left hand. After the high auray results obtained in

the lassi�ation proess, the next logial step was to demonstrate that the hu-

man fae images displaying emotions an provoke the same or higher reation

to the BCI users. In summary, the use of emotional faes has been validated;

Both shemati and human an be used as stimuli for MI-based BCI systems.

The number of eletrodes, the sampling frequeny, nature of the partiipants

or the performane of the partiipants on a partiular day are, among others,

fators that an in�uene in the e�etiveness of any BCI system. However,

to minimise those e�ets, the standard protools to reord and pre-proess

the EEG signals for MI tasks have been followed. In addition, two di�erent

sets of experiments were undertaken with di�erent partiipants and di�erent

sampling frequenies to avoid any possible bias.

Furthermore, the presene of synhrostates was identify for �rst time during

a fae proessing task with autisti hildren (6-13 years old) using 128 han-

nels. In this thesis, the age of the partiipants ranged from 20 to 53 years and

the number of eletrodes was redued to 62. Further researh has to be done

regarding the minimum number of eletrodes that an be used without losing

essential information, nevertheless, it an be said that the presene of synhro-

states is onsistent for a wide range of subjets and number of eletrodes.

Two main aims were addressed in this thesis, the validation of faes show-

ing di�erent emotions as stimuli for a MI based BCI and the study of phase

synhronisation information to inrease the performane of the urrent BCI

systems. The lassi�ation results for both experimental set-ups indiates that

both aims were suessfully aomplished and always onsidering the limita-

tion of the small datasets used. In addition, in order to prove and quantify the

improvement of using emotional faes, a further study omparing the lassi�-

ation performane using emotional faes versus more traditional stimuli should

be performed.

7.1 MI-based BCI systems: state of the art

One of the main aims of this thesis was to design a novel BCI system with

improved performane in omparison to the state of the art MI-based BCI

systems. In this setion, a omparison with some of the latest lassi�ation

algorithms for two and multi-lass problems is performed.
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A great number of algorithms have been proposed for feature extration

and lassi�ation of EEG data. In [224℄, the authors performed a omparison

between six di�erent feature seletion algorithms (orrelation-based feature

seletion, minimum redundany-maximum relevane, ReliefF, onsisteny, de-

ision tree C4.5 and a geneti algorithm approah) and �ve ommonly used

lassi�ers (probabilisti neural network, SVM, radial basis funtion network,

linear disriminant analysis and k-nearest neighbours) for a two-lass prob-

lem. The MI-tasks to lassify were the right and left hand from the publily

available dataset IIIB from the BCI Competition III [225℄. The highest per-

formanes were over 90%, learly superior to the performane desribed in

hapter 5. However, the number of features needed to obtain this performane

ranged between 11 and 99. These numbers are extremely high ompared with

the range of 1 to 4 features used in the proposed algorithm. Another study,

using the same dataset from the BCI Competition III [225℄, proposed a novel

algorithm ombining a ross-orrelation tehnique for feature extration and

a modi�ed SVM as the lassi�er [226℄. The averaged performane rate was

95.72%, using a total of 235 feature vetors for eah partiipant. One more,

an elevated number of features was needed to ahieve higher auraies.

The ommon spatial pattern (CSP) is a tehnique based on spatial �ltering

that has been proven as being e�etive in lassifying multihannel EEG signals

[227℄. However, this tehnique o�ers limited performane when the number of

training samples is redued [228℄. To address this issue in [214℄, an adaptation

named �subband regularized CSP� was proposed. The mean performane was

82.69% for the two tasks problem when at least more than 100 training samples

per lass were used.

On the other hand, some other adaptations to the traditional CSP methods

have been proposed to extend its use from a two-lass problem to a multi-lass

situation. For example, in [218℄ a �one versus one� and �one versus the rest�

CSPs are proposed in ombination with a hierarhial SVM to lassify between

left hand, right hand, both feet and tongue movements of nine subjets. In

this ase the averaged lassi�ation auray was 64.4%. Higher auray was

ahieved in [229℄, with a mean lassi�ation performane of 82.39% for a three-

lass problem (right hand, left hand and both feet). The authors proposed a

method alled �a omposite kernel support vetor mahine based stationary-

CSP�. In the �rst step, the eletrodes are divided into �ve groups aordingly

with their neurologial anatomy (frontal, entral, temporal, parietal and o-

ipital). Seondly, a stationary CSP is used to extrat the features for eah of

the �ve regions. Finally these features are fed to a omposite kernel SVM, a
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non-linear supervised method based on omposite kernels. This approah only

highlights the relevant brain regions for a partiular task, disarding the least

informative regions in eah iteration of the lassi�ation algorithm. A similar

averaged auray rate was shown in [230℄, 83.06%, for a four-lass problem

(right and left hands, tongue and both feet). One more, the CSP approah

was seleted for the feature extration step. For lassi�ation, the authors om-

pared three strategies: a Gaussian mixture model, linear disriminant analysis

and the ridge regression algorithm. The ridge regression algorithm being the

tehnique ahieving the best results.

In summary, reent lassi�ation methods for a two- MI tasks lassi�ation

ahieve performanes ranging from just over 80% to more than 95%. The

auray of the proposed method in this thesis for a two lass problem is within

this performane range. By ontrast, for the multi-lass ase, the performane

of the proposed method, based on human faes showing di�erent emotions

learly exeeds the state of the art lassi�ation methodologies. However, a

larger number of partiipants is needed in order to onsolidate the results

shown for the proposed method and determine the level of improvement of

using emotional faes as stimuli for MI-based BCI systems.

7.2 Limitations and future work

This work has given more evidene of the existene of synhrostates linked to a

spei� MI-task and the ability to translate their information into onnetivity

metris to establish a lassi�ation proedure. To extrapolate this lassi�ation

mehanism to a linial situation, a more extensive EEG data olletion should

be obtained with a wider variety of partiipants to obtain a more generalisable

and de�nitive result. One of the limitations of this work is the olletion of

partiipants for the experiments. This methodology an be used in the future

with a larger EEG dataset to lassify between more MI tasks suh as right and

left foot or tongue among others.

Another logial step derived from the results obtained in this thesis is pur-

suing an online lassi�ation. In order to ahieve this aim, the idea an be

studied of performing the lustering of the phase synhronisation, trial by trial

instead of on the grand average. Also, in line with this objetive, it an be

studied if there is an optimal assortment of eletrodes than an help the luster-

ing proess to be more e�ient. For example, re-organising them by areas, all

eletrodes from the frontal area together, the oipital area eletrodes grouped
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and so on, might improve the omputational ost of the lustering algorithm.

The lustering algorithm hosen in this work has been the k-means algorithm,

whih is a hard lustering method as one data point only belongs to one of

the lusters. The idea of using another type of algorithm, not as rigid as those

based in fuzzy logi or neural networks may also failitate the proess. Some

reent investigations have demonstrated that the use of fuzzy logi improves

the performane of BCI systems in terms of auray and system stationarity

[231℄. Therefore, this tehnique ould also be used to improve the lassi�ation

performane of the synhrostates-based method proposed in this thesis.

As an outome of this work, a Matlab-based toolbox is being developed with

the aim of failitating the use of this mehanism to other researhers interested

in this topi. The toolbox will allow users to estimate phase synhronisation

for eah one of the frequeny bands, the optimal number of synhrostates and

the topographi maps of the resulting synhrostates.



Appendix A

Fae Database Seletion

Figure A.1: Example of a female (top row) and a male (bottom row) emotional faes of

the Karolinska Direted Emotional Faes (KDEF) database [217℄ used for the experimental

design detailed in hapter 6. The seleted emotions for the experiment were happiness (left),

neutral, sadness and surprise (right).
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Figure A.2: Example of the interfae reated for the seletion proess of the emotions and the

ators performing suh emotions. Partiipants have to selet whih emotion in performing

the ator/atress between seven possible: angry, sad, afraid, disgusted, happy, neutral and

surprised. One they have seleted the appropriated emotion they should rank how well the

emotion is transmitted from 1 (not too good, not lear) to 5 (really good, lear). The proess

goes through all the frontal images of the dataset, a total of 490 images. After disarding

those images whih onduted a high number of errors, the top 4 emotions were seleted

and following the same riteria 5 female and 5 male images for eah emotion were seleted

from the same ator/atress.



Appendix B

Temporal sheme of a typial trial

Figure B.1: Bloks sheme of the experimental design developed in hapter 6. Eah parti-

ipant performed a total of 4 bloks of tasks. There is a variable break period between trials

aording to the partiipant needs. For eah blok there are a total of 20 trials for eah one

of the 4 possible tasks, meaning 80 trials per blok, with a total of 320 trials per partiipant.

The details regarding time and sequene of a typial trial are shown in the �gure B.2
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Figure B.2: Temporal sheme of a typial trial for the experiment developed in hapter

6. The starting of the trial is marked by a masked fae lasting on the sreen for 500ms.

Afterwards, the image of an ator/atress showing one of the four emotions: happy, sad,

neutral or surprised fae is shown. The images of the emotions are shown in a random

order with equal probability eah. After 500ms a grey sreen (Matlab default �gure olour)

indiates the period to perform the tasks assoiated with the emotion previously shown. This

is imagined movement of the right hand for a happy faes, imagined movement of left hand

for sad faes, surprised faes are linked to the imagined movement of the feet and neutral

faes means no movement at all, just doing nothing. The end of the trial is illustrated by a

blak ross in the middle of the sreen lasting for 1000ms.



Appendix C

Newton fund

This ollaboration projet between University of Warwik (UK) and Tsinghua

University (China) was funded by the British Counil via the �Newton Fund�.

It has an objetive to study novel lassi�ation algorithms from high density

iEEG. In addition, it emerged the idea of exploring the onnetivity patterns

between the di�erent areas of the brain in the β band instead of the widely used

high γ band, aimed at �nding alternative features for motor tasks lassi�ation.

C.1 Dataset

Twenty partiipants with intratable epilepsy form the dataset for this researh

study. The eletrode plaement were plaed aordingly to the patient's linial

needs. The performed task bloks of 20 seonds eah interleaved with resting

period of 8 seonds. Eah task blok onsisted of the movement of either tongue

or hand indiated by a piture on the sreen. An auditory ue indiates the

start of the movement that was repeated four times per blok. At the end of

the experiment partiipants performed 10 repetitions of eah task blok. More

details of the dataset and the paradigm an be found in [232℄.

C.2 Time frequeny analysis

Firstly, a preliminary investigation is performed to determine whih hannels

and frequeny bands an be the most sensitive to hanges between the resting

state and the motor task period. The power spetrum of eah partiipant,

hannel and task for both periods, resting (one seond before stimuli onset)

and motor ation (0.3 to 1.3 seonds after stimuli onset) were ontrasted. The

signi�ane of the modulation of the movement period versus resting was to

quantify by means of a t-test . Partiipants showed a signi�ant di�erene
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between both period during high γ band and also during α and β bands as an

be seen from �gure C.1. This is in line with previous studies [232℄.

Figure C.1: Power spetrum showing signi�ant di�erenes between resting and motor task

states after a t-test. The upper right graph shows the power spetrum of the hand movement

from hannel 68. Bottom spetrum graph is the resulted t-test of tongue movement from

hannel 85 for the same partiipant. Eletrode loation for this partiipant is illustrated in

the top left orner. It an be seen that high γ and α/β band showed the highest di�erenes

for both tasks.

C.3 Classi�ation

One the power spetrum is obtained for eah partiipant and task, the next

step is trying to �nd a lassi�ation method to distinguish between two motor

tasks -hand and tongue. The seleted method is based on Pearson orrelation

[233℄, whih is a measure of the linear dependene or orrelation between two

variables. The lassi�ation proess of a trial is as follows: the average of the

power spetrum values of eah one of the tasks is averaged without inluding

the trial to be lassi�ed. Afterwards the trial is orrelated with the averaged

model of hand and tongue of power spetrum and labelled as the task it had

the highest orrelation sore with. This is performed in a spei� frequeny

band, ounting in total six di�erent anonial bands: 4-8Hz, 8-13Hz, 13-24Hz,

24-35Hz, 60-90Hz, 110-130Hz [234℄. Performane of eah one of the studied fre-

queny bands is illustrated in �gure C.2. It an be seen that the performane

for the 60-90Hz frequeny band is, on average, higher than the others present-
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ing auraies over 90% in half of the partiipants. However, the performane

of partiipant number 13 and partiipant number 14 remained speially low

for all the frequeny bands under study.

Figure C.2: Classi�ation performane using Pearson orrelation of two motor task, hand

and tongue. Classi�ation is performed in six di�erent frequeny bands, listed from top left

orner to right bottom orner: 4-8Hz, 8-13Hz, 13-24Hz, 24-35Hz, 60-90Hz and 110-130Hz.

Eah graph shows the true positive (TP) rate in blue olour and true negative (TN) rate

in yellow olour for eah one of the twenty partiipants. It an be seen that for the two

sub-bands within γ band, the performane is the highest among the di�erent studied bands.

C.4 Future work

A logial further step after the �ndings of the previous setion is to improve the

lassi�ation algorithm to inrease the auray rate for eah one of the parti-

ipants. In addition, identify the number of hannels required for an optimal

lassi�ation and in whih area of the brain these eletrodes are loated, that

will lead to improved algorithms, therefore their e�ieny will be inreased.

Additionally, in line with the sope of the main work of this thesis, the

possibility of using onnetivity measures as a biologial markers to lassify

the two motor tasks will also be investigated.



Appendix D

Matlab ode

1 function DiffphaseN=Synchrostates(dataset,FileName,freq_band ,fs)
2 %constants
3 Nchannels=size(dataset,1);Ntrials=size(dataset,3);N samples=size(dataset,2);
4 % instantenous phase CMW
5 [phase,scales]=InstantaneousPhase(dataset,freq_band ,fs);
6 disp( 'instantaneous phase calculated' );
7 % diff phase
8 DiffphaseN=InstantaneousPhaseDiff(phase,scales);
9 % save diff phase file

10 save([FileName '_DiffPhase_' freq_band '.mat' ], 'DiffphaseN' );
11

12 function [ph2,scales]=InstantaneousPhase(data,freqband,fs)
13 fc=1.5;
14 % frequency bands
15 fbands.theta=8:-1:4;fbands.alpha=12:-1:9;
16 fbands.beta=30:-1:13;fbands.gamma=40:-1:31;
17 % chosen freq band
18 switch freqband
19 case 'theta'
20 fband=fbands.theta;
21 case 'alpha'
22 fband=fbands.alpha;
23 case 'beta'
24 fband=fbands.beta;
25 case 'gamma'
26 fband=fbands.gamma;
27 otherwise
28 disp( 'not valid' ); return ;
29 end
30 scales=zeros(1,length(fband));
31 for i=1:length(fband)
32 scales(i)=round(fc/(fband(i) * (1/fs)));
33 end
34 % phase
35 ph2=zeros(Ntrials,Nchannels,length(scales),Nsamples );
36 for trial=1:Ntrials
37 parfor ch=1:Nchannels
38 d=data(ch,:,trial);coeff=cwt(d,scales, 'cmor1-1.5' );
39 ph2(trial,ch,:,:)=angle(coeff); %angles between +-pi
40 end
41 end
42 end
43 function DiffphaseN=InstantaneousPhaseDiff(ph2,scales)
44 %% Instantaneous phase Difference
45 difff=zeros(length(scales),Nchannels,Nchannels);
46 temp=zeros(Ntrials,Nchannels,Nchannels);
47 Diffphase=zeros(Nsamples,Nchannels,Nchannels);
48 for t=1:Nsamples
49 for trial=1:Ntrials
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50 parfor f=1:length(scales)
51 ch=squeeze(ph2(trial,:,f,t)); %vector of channels
52 for i=1:Nchannels
53 difff(f,i,:)=abs(bsxfun(@minus, ch, ch(i)));
54 end
55 end
56 temp(trial,:,:)=mean(difff,1); %average across freq
57 end
58 Diffphase(t,:,:)=mean(temp,1); % average across trials
59 per=(t * 100/Nsamples);
60 disp([ 'percentage: ' num2str(per)]);
61 end
62 % Normalize
63 DiffphaseN=Diffphase./(2 * pi);
64 end
65 end

1 function [theta,bel,J,iter]=k_means_book(X,theta)
2 %function taken from
3 %Introduction to Pattern Recognition: A MATLAB based appro ach,
4 %S. Theodoridis, A. Pikrakis, K. Koutroumbas, D. Cavouras,
5 %Academic Press, 2010. ISBN: 9780123744869
6 [ ¬,N]=size(X);[l,m]=size(theta);e=1;iter=0;
7 while (e 6=0)
8 iter=iter+1;
9 theta_old=theta;

10 dist_all=[];
11 for j=1:m
12 dist=sum(((ones(N,1) * theta(:,j)'-X').^2)');
13 dist_all=[dist_all; dist];
14 end
15 [ ¬,bel]=min(dist_all);
16 J=sum(min(dist_all));
17

18 for j=1:m
19 if (sum(bel==j) 6=0)
20 theta(:,j)=sum(X'. * ((bel==j)' * ones(1,l))) / sum(bel==j);
21 end
22 end
23 e=sum(sum(abs(theta-theta_old)));
24 end

1 function [results]=cost_function_kmeans(alpha2,nruns,opt)
2 [l, ¬]=size(alpha2); %number of initializations
3 results=struct();
4 switch opt
5 case 1
6 for m=2:10
7 J_temp=inf;theta2=[];label2=[];
8 for t=1:nruns
9 rand( 'seed' ,100 * t);

10 theta_ini=rand(l,m);
11 [theta1,label1,J1, ¬]=k_means_book(alpha2,theta_ini);
12 if (J_temp>J1)
13 J_temp=J1;theta2=theta1;label2=label1;
14 end
15 end
16 results(m-1).J=J_temp;results(m-1).clusters=theta2;
17 results(m-1).labels=label2;
18 disp([ 'cluster number: ' num2str(m)]);
19 end
20 case 2
21 for m=2:10
22 J_temp=inf;theta2=[];label2=[];
23 for t=1:nruns
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24 theta_ini=randn(l,m);
25 [theta1,label1,J1, ¬]=k_means_book(alpha2,theta_ini);
26 if (J_temp>J1)
27 J_temp=J1;theta2=theta1;label2=label1;
28 end
29 end
30 results(m-1).J=J_temp;results(m-1).clusters=theta2;
31 results(m-1).labels=label2;
32 disp([ 'cluster number: ' num2str(m)]);
33 end
34 otherwise
35 disp( 'error' );
36 return
37 end
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