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Abstra
t

A Brain Computer Interfa
e (BCI) is a devi
e that uses the brain a
tivity of

the user as an input to the system to sele
t the desired output on a 
omputer,

giving the person a di�erent pathway to establish 
ommuni
ations with the

surrounding environment. There are many types and uses of BCIs. They


an be de�ned by whi
h te
hnique is used to re
ord the brain a
tivity of the

user and whi
h variety of stimuli is used to trigger a 
onsistent response from

the user, following the signal pro
essing methodology sele
ted to produ
e a

response on the 
omputer. Ea
h one of the sele
ted 
hoi
es will determine the

reliability and e�
ien
y of the BCI system. However, even with this �exibility,

the performan
e of BCI systems used for assistive te
hnology or rehabilitation

pro
esses still remains behind other systems and the per
entage of people

unable to use one of these systems remains too high.

The main obje
tive of this thesis is to improve the 
lassi�
ation performan
e

and reliability of the 
urrent ele
troen
ephalogram (EEG) based BCI systems.

Firstly, a novel paradigm based on emotional fa
es is used with the aim of

enhan
ing a stronger response from the user, therefore a higher amplitude

of brain a
tivity. Two types of emotional fa
es have been used during this

work. Initially, emotional s
hemati
 fa
es or emoti
ons were used. Posteriorly,

human emotional fa
es were introdu
ed into the experiments. Additionally,

the evolution of the phase syn
hronisation over time is studied to a
hieve a

deeper understanding of the latent 
ommuni
ation me
hanisms of the di�er-

ent parts of the human brain. Wavelet families and their ability to retain

temporal and frequen
y information simultaneously have been used to study

the phase relationships between the EEG signals when a spe
i�
 task is being

performed. This study has led to the identi�
ation of a redu
ed number of

dis
rete states with a quasi-stable phase syn
hronisation of the order of milli-

se
onds, named syn
hrostates. Those syn
hrostates present swit
hing patterns

over time, 
learly distin
tive for ea
h one of the tasks performed by the user. In

order to establish a 
lassi�
ation proto
ol the temporal stability of ea
h task-

spe
i�
 syn
hrostate was studied by means of the syn
hronisation index and

posteriorly translated into 
onne
tivity network maps based on graph theory.

From this 
onne
tivity network, a series of 
onne
tivity metri
s was obtained

and used to feed a variety of 
lassi�
ation algorithms. This pro
ess led to

a

ura
ies of 83% for a two-tasks 
lassi�
ation problem and rose to a 93%

averaged a

ura
y for a four- tasks problem.





Chapter 1

Introdu
tion

1.1 Motivation

The human brain plays a 
entral role in the 
ontrol of the human body. It is the


entre of the emotions, senses and is responsible for the prin
ipal biologi
al and

physi
al fun
tions. However, damage to the brain, either through a physi
al

trauma su
h as a driving a

ident or a disease (e.g. 
ardiovas
ular disorders,

Amyotrophi
 Lateral S
lerosis (ALS) or brainstem stroke) 
an 
ause a wide

range of physi
al, 
ognitive, and behavioural/emotional impairments that may

be either temporary or permanent [6℄. World wide statisti
s regarding brain

injury are disheartening. A

ording to the World Health Organization (WHO),

brain injury is the leading 
ause of death and disability in 
hildren and young

adults around the world. Brain injury is a publi
 health 
on
ern that demands

ongoing study, in
reased e�orts to prevent o

urren
e, resear
h to advan
e

medi
al options and therapeuti
 interventions.

There are several areas where resear
h 
an assist in the improvement of

medi
al treatments and rehabilitation therapies. It 
an be from a psy
ho-

logi
al approa
h [7, 8℄, rehabilitation [9℄ or providing the brain with a new,

non-mus
ular, 
ommuni
ation and 
ontrol 
hannel [10, 11℄. The s
ien
e and

te
hnology of devi
es and systems responding to neural pro
esses in the brain

that generate motor movements and 
ognitive pro
esses that modify the mo-

tor movements are 
alled Brain Computer Interfa
es (BCI) [12℄. All other

assistive te
hnology methods depend on the brain's natural output pathways

of peripheral nerves and mus
les and take some of the outputs that the person

still retains, using them to repla
e the missing fun
tions. In 
ontrast, BCIs

provide the brain with 
ompletely new output routes, using the brain a
tivity

of the patient as an input to the system to sele
t a desired output on the

1
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omputer [13℄. The prin
ipal target population is those patients displaying a

severe impairment in their motor a
tivity, unable to 
ommuni
ate through nor-

mal mus
le-bases pathways giving them the opportunity to 
ontrol a roboti


prostheti
, form 
omplete senten
es so as to 
ommuni
ate with the external

world or move a wheel
hair. In a nutshell, in
reasing their quality of life and

o�ering them a limited but vital new form of 
ommuni
ation.

BCI resear
h has made 
onsiderable progress re
ently, parti
ularly in the

last de
ade, when BCI resear
h has been extended to di�erent arenas su
h as

entertainment and marketing [14℄. However, this methodology still presents

some limitations. BCI studies generally take pla
e in a highly 
ontrolled en-

vironment, either a laboratory or a hospital, where the BCI user assumes a

spe
i�
 position, in a pla
e free of distra
tions, for a short amount of time and

with a redu
ed number of devi
es interfering with the re
orded signals. In ad-

dition, BCI displays an ineradi
able variability due to the patient's tenden
y

to perform better one day than others or even between one trial to the next

[15℄. Finally, BCI 
an fun
tion as an ex
ellent 
ommuni
ation and 
ontrol in-

strument for many patients, but not for all users. A
tually, 20% of BCI users

are not pro�
ient with a typi
al BCI system [16℄. The phenomenon has been


alled �BCI Illitera
y� for some resear
h groups [17, 18, 19℄. This is due to a

user's natural behaviour. While the fun
tional divisions of the brain are 
om-

mon for all, there are individual variations in brain stru
ture. Furthermore,

it 
an be a 
onsequen
e of the low amplitude brain signals that are undete
t-

able to a parti
ular neuroimaging methodology, as in an ele
troen
ephalogram

(EEG) or be
ause the parti
ipant's mus
ular artifa
ts are too numerous.

Extensive e�orts have been made to over
ome this problem through various

me
hanisms, improving te
hnology for re
ording devi
es, new methodologies

to re�ne signal pro
essing, in
rease the training period for the BCI user or

modifying the instru
tions that patients have to follow. Some of these options

have fun
tioned for some previously illiterate users. By 
ontrast, some people

still remain unable to manage a BCI system [20℄. Our aim is �nd a 
ombination

of novel paradigms and new pro
essing algorithms to develop more a

urate

BCI systems and also in
rease the range of people that 
an use them without

extensive and extenuated training periods.

Over the last de
ade the number of studies has in
reased that are fo
used on

the understanding of 
onne
tivity patterns, how the ex
hange of information

happens, for normal and disrupted brain behaviour [21℄. The study of 
onne
-

tions within the brain has resulted in the 
on
lusion that brain organisation

is non-random [22℄. For example, the absen
e of some 
onne
tion patterns or
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the disproportionate presen
e of them between spe
i�
 brain regions 
an be a

manifestation of some disorders su
h as autism or attention hypera
tivity dis-

order (ADHD) [23℄. Brain network s
ien
e has also been employed in the study

of maturation, epilepsy or s
hizophrenia among others [24, 25℄. Conne
tivity


an be inferred from a variety of te
hniques as fun
tional magneti
 resonan
e

imaging (fMRI), ele
troen
ephalography (EEG) or magnetoen
ephalography

(MEG) among others. fMRI provides a high spatial resolution 
ompared with

EEG or MEG. By 
ontrast, EEG and MEG o�er a larger temporal resolu-

tion whi
h is required to quantify the temporal evolution of the relationships

between di�erent areas of the brain [21℄.

The study of 
onne
tivity needs a mathemati
al framework; graph theory is

the methodology that has been in
reasingly utilised in re
ent years [26℄. Graph

theory provides a way to not only 
apture the topology of the network under

study, but also allows the resear
her to quantify the multivariate relationships

among these brain regions [21, 22℄.

Deeper understanding about how the di�erent regions of the brain intera
t

under di�erent situations will lead to the resear
hers being su

essful in more

personalised brain mapping, potentially leading to a more e�
ient BCI systems

and lower BCI illitera
y rates.

1.2 Aims and obje
tives

The main aim of this thesis is to improve the performan
e of the 
urrent

EEG-based BCI systems, primarily through the in
rement of the 
lassi�
ation

a

ura
y rates. Motivated by the fa
t that more pra
ti
al and e�
ient sys-

tems 
an alleviate the situation of isolation of many patients with any type

of brain injury, di�erent 
omponents of BCI systems will be examined and


onsequently, novel variations developed to pursue this end.

The primary 
omponents of BCI systems are: the brain a
tivity re
ording

system (EEG in this parti
ular 
ase), the stimuli used to indu
e a spe
i�


response in the user, then a series of pro
essing steps to �nally reveal a small

set of features that will be used to 
ontrol an external devi
e (e.g. a pros-

theti
 arm, wheel
hair or PC 
ursor). This study introdu
es novelties in two

of these 
omponents: the stimuli used that is responsible for generating a spe-


i�
 response in the user named evoked potential and the signal pro
essing


omponent.

The fo
us of this work is �nding quantitative metri
s from the temporal
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dynami
s of the brain 
onne
tivity that 
an be used as features to 
ontrol

a wheel
hair, speller or similar devi
es. In order to a
hieve this obje
tive

the spe
i�
 stimuli and the adequate pro
essing to 
al
ulate the 
onne
tivity

dynami
s are a fundamental prerequisite in order to a
hieve higher a

ura
y

rates, hen
e more e�
ient BCI systems.

As a novel stimulus, the use of emotional fa
es is proposed for the �rst

time as a base for a motor imaginary BCI system. Emotional fa
es have

been widely used in other resear
h. For instan
e, psy
hologi
al experiments

[27, 28℄, to 
lassify Parkinson's disease from healthy 
ontrol patients [29℄ or

Autism Spe
trum Disorder patients from typi
ally developed 
hildren [30℄.

However, emotional fa
es have never been used as stimuli in a motor imagery

BCI. Subsequently, a set of 
omplex signal pro
essing algorithms has been

employed to a

urately determine and 
hara
terise the 
onne
tivity between

di�erent regions of the brain giving further insight into the integration pro
ess

within the brain and when a spe
i�
 stimulus is utilised. The algorithm,

involving wavelet transformation, pattern re
ognition te
hniques and graph

theory, will be detailed in the following 
hapters.

1.3 Challenges

The 
hoi
e of te
hnique to re
ord the brain a
tivity has a series of asso
iated

di�
ulties. Spe
i�
ally, in this parti
ular study, the ele
tion of the EEG as

the re
ording method has an asso
iated la
k of spatial a

ura
y, but is 
om-

pensated by its temporal resolution at the millise
ond level. Furthermore, the

low amplitude of brain signals due to the attenuation o

urring in rea
hing

the s
alp, the presen
e of artifa
ts or the volume 
ondu
tion problem for
e the

s
ientist to interpret these signals very 
arefully.

Another 
ompli
ation added to the study is the 
omplexity of the human

brain and its inter
onne
tions; these, in 
onjun
tion with our restri
ted know-

ledge of the physiology behind the brain, makes it even more 
hallenging to

map its 
onne
tivity.

A major hinderan
e to this proje
t is the need to �nding volunteers to par-

ti
ipate in the designed experiments aiming to a
hieve enough EEG registers

to be a statisti
ally signi�
ant study.
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1.4 Contributions

The main 
ontributions of this resear
h work are listed below:

� Validate the use of emotional fa
es, both s
hemati
 and human, as stimuli

for a motor imagery EEG based BCI system.

� Establish the presen
e of quasi-stable states of the order of millise
onds,

named syn
hrostates, during the exe
ution of motor imagery tasks. These

states are based on the instantaneous phase di�eren
e between EEG ele
-

trodes for a spe
i�
 band of interest.

� Show that these states are 
onsistent for both the averaged population

and for ea
h individual belonging to the 
ohort.

� Show that the temporal swit
hing transition of these syn
hrostates is

di�erent for ea
h task, reporting that the syn
hrostate phenomenon is

task-spe
i�
. Therefore, they 
an be used for 
lassi�
ation purposes.

� Validate the use of the graph theory metri
s from the syn
hrostates as

features for 
lassi�
ation between di�erent motor imagery tasks with high


lassi�
ation performan
e.

1.5 �Newton fund� programme

During the resear
h proje
t period I was awarded a Newton Fund programme

s
holarship sponsored by the British Coun
il. The aims of this programme are

among others, to build stronger links between UK and China resear
h 
entres,

develop individual 
apa
ity through an international training and 
reate a

deeper understanding of both 
ultures.

The awarded s
holarship had a duration of four months and the host insti-

tution was the Department at Bioengineering of Tsinghua University Medi
al

S
hool. The 
ollaborative proje
t between both universities has, as the main

purpose, the study of new 
lassi�
ation algorithms of di�erent tasks from high

density intra
ranial EEG (iEEG). Further details regarding this proje
t are

explained in Appendix C.

1.6 Outline

Following this introdu
tory 
hapter, a brief overview of the literature review
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performed is 
arried out in 
hapter 2. It in
ludes biologi
al aspe
ts of brain

fun
tioning, a summary of the main re
ording te
hniques of brain a
tivity and

an overview of BCI systems and their 
lassi�
ation. It also reviews the 
urrent

state of the art of EEG signal pro
essing te
hniques and their disadvantages

that motivated the introdu
tion of the proposed methodology. Furthermore, it

explains the motivation behind the use of emotional fa
es as stimuli. Chapter 3


overs the proposed algorithm to study the phase syn
hronisation in the EEG

signals whi
h leads to the phenomena 
alled syn
hrostates. Their stability

over time is studied in 
hapter 4 using a syn
hronisation index as a meas-

ure. Furthermore this 
hapter also explains how 
onne
tivity metri
s 
an be

derived from the syn
hrostates obtaining quantitative measures of brain net-

works. Chapter 5 deals with the details of the 
lassi�
ation pro
ess between

di�erent motor imagery tasks using the 
omplex network metri
s derived from

syn
hrostates. Chapter 6 presents a validation of the method des
ribed in


hapters 3 to 5 for a more 
omplex system using human emotional fa
es as

stimuli and four di�erent tasks to 
lassify. Finally, the 
on
lusions drawn from

this thesis, how well the obje
tives were met and future work are detailed in


hapter 7. Following the main 
hapters the relevant appendi
es and referen
es

are listed.
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Chapter 2

Literature Review

This 
hapter introdu
es a theoreti
al ba
kground regarding the origins and

physiology behind the ele
troen
ephalography (EEG) signals. This introdu
-

tion to the EEG 
overs the basi
 
omponents of the brain and its fun
tions,

in
luding details of the main te
hniques 
urrently used to re
ord brain a
tivity.

A dis
ussion of the state of the art of brain 
onne
tivity te
hniques is also in-


luded. Among the existing me
hanisms to register brain a
tivity, EEG is one

of the most a

essible and a�ordable options, whi
h makes it perfe
tly suit-

able for the purpose of this work in 
lassifying mental states and tasks. The

study and analysis of EEG signals 
an be time or frequen
y orientated. Some


ommonly utilised methodologies that are used in both domains are des
ribed

within this 
hapter.

This 
hapter fo
uses on the use of phase syn
hrony to study the intera
tion

of di�erent parts of the brain; the 
urrently available methods used to study

these inter
onne
tions and also highlights the fa
t that these te
hniques are

unable to preserve the information of the temporal evolution of phase. This

gap of knowledge inspired this resear
h on phase di�eren
es along brain areas

a
ross the time domain.

The stru
ture of the 
hapter is as follows: Se
tion 2.1 is a brief introdu
tion

to the brain and its 
omponents followed by a list of the prin
ipal te
hniques

to measure brain a
tivity in Se
tion 2.2. Se
tion 2.3 fo
uses on EEG as the

te
hnique used during this resear
h to re
ord brain a
tivity. Se
tion 2.4 in-


ludes information about di�erent BCI approa
hes emphasising MI-based BCI.

Also, in this se
tion, a novel paradigm is des
ribed, based on s
hemati
 emo-

tional fa
es and is used during this work as a stimulus to enhan
e a stronger

response in parti
ipants than established paradigms already used for this pur-

pose. Se
tion 2.5 in
ludes information regarding brain 
onne
tivity performing

8
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a re
ount of some re
ent �ndings and justi�es our approa
h of using sour
e

level 
onne
tivity analysis. Finally, Se
tion 2.6 brie�y introdu
es some theor-

eti
al 
on
epts regarding 
omplex brain networks based on graph theory as a


on
ept related to the resear
h 
ondu
ted on phase syn
hrony.

2.1 The brain: introdu
tion

The human brain, lo
ated in the head and prote
ted by the skull, is the

main organ of the human nervous system. This approximately three-pound

weight organ is the 
entre of emotions, interpreter of the senses and 
ontroller

of the main biologi
al and physi
al fun
tions [31, 32, 33℄. The brain and the

rest of the human nervous system are 
omposed of many di�erent types of


ells. However, the primary working fun
tional unit is the neuron. Neurons

are ele
tri
ally ex
itable 
ells that transmit information by ele
tro-
hemi
al

signalling. Ea
h neuron 
an be 
onne
ted to up to 10,000 of its neighbours

transmitting information to ea
h other via the estimated 100 trillion synapti



onne
tions existing in our brain [34℄.

A typi
al neuron needs both ele
tri
al and 
hemi
al stimulation for the ex-


itation pro
esses due to the voltage gradient 
hara
terising the neuron mem-

branes. In normal 
onditions the neuron remains in the resting potential state,

meaning that the interior of the neuron 
ontains a greater number of negat-

ively 
harged ions than the area outside of the 
ell does. When the neuron is

triggered by an ele
tri
al signal, the membrane of the neuron opens its gates

allowing the positive ions to pass through it, generating a 
hange in voltage

and be
oming temporarily positively 
harged. This generated impulse is 
alled

an a
tion potential [35℄. This pulse travels along the neuron's axon by 
reating

similar voltage 
hanges from segment to segment within the axon. The neural

signals not only travel via ele
tri
al 
hanges along the neuron, but they 
an also


ommuni
ate a
ross neurons via 
hemi
al transmission. This is possible thanks

to a spe
ial 
onne
tion 
alled a synapse (see Figure 2.1). This 
onne
tion is a

gap between the end of one neuron axon and the dendrite of one neuron nearby

[36℄. The main fun
tion of this gap is to allow neurotransmitters to jump to

the next neuron, hen
e spreading the information from neuron to neuron [35℄.

A neurotransmitter is a spe
ial 
hemi
al that relays signals a
ross the synapses

between neurons. These 
hemi
als travel a
ross the synapti
 spa
e between

the end of an axon to the dendrites of the re
eiving neuron starting the pro
ess

all over again in the re
eiving neuron. Figure 2.1 exempli�es the movements of

neurotransmitters between di�erent neurons during the synapse. It is noti
e-
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able that di�erent neurons release di�erent neurotransmitters and in the same

manner, ea
h dendrite is parti
ularly sensitive to a neurotransmitter [35℄.

(a) Components of a neuron and how the ele
tri
al signal or a
tion potential travel along

the neuron 
ells.

(b) Detail of the synapse showing how the neurotransmitters pass

a
ross two neuron 
ells by the named synapti
 gap.

Figure 2.1: Neuron stru
ture and fun
tioning of the a
tion potential and synapse. Pi
tures

taken from [35℄.
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The transmission of information between neurons in the nervous system is

based on 
hanges in the membrane potential. The ex
hange of ions in the

neuron membrane is governed by the a
tion potential that produ
es ele
tri
al

a
tivity. This ele
tri
al a
tivity 
an be registered, measured and displayed and

is known as brain a
tivity [35℄.

An ele
troen
ephalogram is the time series of data of those ele
tri
al sig-

nals generated by inter
ommuni
ation a
ross neurons and their 
onne
tions

re
orded by spe
ial ele
trodes [37℄. Those ele
trodes 
an be pla
ed internally,

dire
tly on the brain surfa
e, or externally when pla
ed on the s
alp. All the

possible ele
trode lo
ations share the same obje
tive, measuring the poten-

tials produ
ed by synapse 
onne
tion between neurons during the ex
itation.

The array of ele
trodes pla
ed on the s
alp measure the potential di�eren
e

between dipoles formed by axons and dendrites and a sele
ted referen
e [38℄.

At the same time that the ele
tri
al 
urrents are initiated by the a
tion po-

tential of one neuron an asso
iated ele
tromagneti
 �eld is generated. Similar

to the ele
tri
al 
urrent, the orientation of the magneti
 �eld pattern re�e
ts

the dire
tion of the a
tion potential [39℄. This magneti
 �eld 
an be also


aptured by magnetoen
ephalography (MEG) and 
an also be used to study

brain a
tivity. Attending their di�erent sensitivities to sour
e orientation and

lo
ation it 
an be said that both te
hniques, EEG and MEG, 
omplement

ea
h other. These te
hniques to measure brain a
tivity are explained in the

following se
tion.

In addition to these ele
tri
al and magneti
 
urrents there is another series

of physiologi
al and fun
tional e�e
ts related to the in
rease or de
rease in

neural a
tivity. These phenomena 
an also be registered and they are known

as indire
t measures of the brain a
tivity. They are based on the study of


hanges in blood �ow instead of dire
tly measuring the ele
tri
al or magneti



urrent a
ross neurons when information is transmitted. In parti
ular, fun
-

tional magneti
 resonan
e imaging (fMRI) is a te
hnique based on the level of

blood oxygenation [40℄. Spe
i�
ally, it studies the magneti
 properties of the

haemoglobin.

The in
rease in blood �ow due to neuronal a
tivity is also a

ompanied by

a gain in oxy-haemoglobin 
on
entration in a parti
ular a
tivated region of the

brain. However, although there is an in
rease in oxygen 
onsumption, there is

an ex
ess in oxygen supply 
ausing the ratio between oxy/deoxy-haemoglobin

tissue 
on
entration to rise whi
h 
an be registered, measured and translated

into 3D images [41℄. What remains vague is the understanding of how tissue

oxygenation is related to neuronal a
tivity.



12 CHAPTER 2. LITERATURE REVIEW

2.2 Measuring Brain A
tivity

Being able to understand brain fun
tions is one of the prominent 
hallenges

in neuros
ien
e. One of the aspe
ts of this arduous resear
h is exploring how

the brain and nervous system 
ontrol the enormous quantity of pro
esses in-

volved with daily fun
tions su
h as 
ognition, per
eption and motor a
tions.

Modern te
hnology has provided the s
ienti�
 
ommunity with several te
h-

niques to measure brain a
tivity; ea
h one exploiting di�erent prin
iples and

re
ording various 
lasses of pro
esses. For this reason, the sele
tion of a te
h-

nique that surpasses the rest will depend on several 
riteria:

� The appli
ation or aim of the study.

� Spatial resolution needed.

� Temporal resolution required.

� Budget.

The variety of me
hanisms with whi
h to measure brain a
tivity 
an be di-

vided into two major groups. The �rst of these is those dire
tly measuring the

ele
tri
al a
tivity of the brain and asso
iated with the variations of the post-

synapti
 potentials as mentioned in the previous se
tion. The main methodo-

logies within this group are EEG and MEG. The main advantage of this group

is its temporal resolution, in the region of millise
onds. Spatial resolution,


onversely, is rather poor as only a few hundred simultaneous data positions


an be a
quired.

The se
ond group of te
hniques in
ludes all methods for indire
tly re
ord-

ing neuronal a
tivity. Some examples of these pro
edures are fMRI, position

emission tomography (PET) or near infrared spe
tros
opy (NIRS). Its main

feature and antagonisti
 with the �rst group, is the high spatial resolution.

Attempts to use 
onventional fMRI te
hniques for high temporal resolution

needs fail overall due to the te
hni
al limitations of the s
anner. In addition

there is a limitation in the haemodynami
 response to prolonged episodes of

stimulation [42℄.

Table 2.1 shows a 
omparison of the di�erent methods with whi
h to meas-

ure neural a
tivity of the brain. The following se
tion des
ribes brie�y the

basi
 prin
iples of ea
h one of the te
hniques mentioned.
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Table 2.1: List of the prin
ipal te
hniques of measuring brain a
tivity. In
luding their main

features, advantages and disadvantages [16℄.

Te
hnique

Physi
al

Property

Dire
t/

Indire
t

measure

Spatial

resolution

Temporal

resolution

Advantages Disadvantages

PET Blood �ow Indire
t good low

signal not a�e
ted by

small movements of

the subje
t

expensive, need of

inje
t tra
ers

SPECT Blood �ow Indire
t good low

slightly less expensive

than PET

expensive

need of tra
ers

fMRI Blood �ow Indire
t

ex
ellent

(~1mm to 1
m)

relatively good

(in the order of

se
onds)

widely available,

predominant

neuroimaging

te
hnique

expensive, need of an

expert to manage the

equipment

MEG

Magneti


Potential

Dire
t

relatively low

(~ 1
m)

good (in the

order of

millise
onds)

enables mu
h deeper

imaging and is more

sensitive than EEG as

skull is almost

transparent to

magneti
 waves

expensive equipment

due to need of

super
ondu
tivity

EEG

Ele
tri
al

Potential

Dire
t

low (in the order

of 
entimetres)

high (tens to

hundreds of

millise
onds),

wearable, a�ordable,

easy to use, widely

available

requires 
areful

pla
ement of

ele
trodes dire
tly on

s
alp to avoid noise

2.2.1 Indire
t measures of neural a
tivity

The use of neuroimaging te
hniques to gain unobtrusive a

ess to the brain

are relatively re
ent and has 
ontinued to thrive from te
hni
al and methodo-

logi
al standpoints. Lately, as a 
onsequen
e of the advan
ements within the

area and a redu
tion of asso
iated 
osts, the number of fun
tional magneti


resonan
e imaging (fMRI) s
anners in hospitals around the world has in
reased

enormously; as a result it has be
ome the more popular modality to approa
h

the brain in a
tion. fMRI is the neuroimaging te
hnique more 
ommonly used,

but not the only one. Others, su
h as positron emission tomography (PET),

single photon emission 
omputed tomography (SPECT) or the prede
essor

of fMRI, magneti
 resonan
e imaging (MRI) are widely used as medi
al and

resear
h tools.

PET

PET is a nu
lear imaging te
hnique that uses brain stimulation whi
h leads

to an in
rease in 
erebral blood �ow (CBF) whi
h in turn re�e
ts the a
tivation

of a population of neurons. PET studies blood �ow and metaboli
 a
tivity in

the brain helping to visualise biologi
al 
hanges taking pla
e. The 
on
ept

of radioa
tive tra
ers was introdu
ed in the late 50s by David E. Kuhl, Luke

Chapman and Roy Edwards and this te
hnique was �rst applied in humans in

1963 [43℄.
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Figure 2.2: Basi
 prin
iple of PET: 
ollision between a positron and ele
trode where both

parti
les annihilate ea
h other. The result of the 
ollision is the emission of the two high-

energy protons that will be dete
ted by the PET s
an sensors. Adapted �gure from [44℄.

In a PET s
an, a small amount of radioa
tive tra
er is inje
ted into a vein,

arriving in the brain a few se
onds later. The tra
er is usually a substan
e, su
h

as a type of sugar like glu
ose, that 
an be metabolised by 
ells in the body and

is labelled with a radioa
tive isotope. This parti
le is highly unstable and after

being inje
ted into the bloodstream starts to de
ay after a few se
onds. This

means the isotope be
omes less radioa
tive over time. During this pro
ess it

emits positrons from the nu
leus that annihilate on 
onta
t with ele
trons after

travelling a short distan
e within the body. The �nal result of this 
ollision is

the emission of two high-energy photons travelling in nearly opposite dire
tions

(Figure 2.2).

A PET s
an 
onsists of a set of dete
tors that surround the obje
t to be

imaged. When the two high-energy photons or gamma rays leave the subje
t's

body they are sensed by two dete
tors positioned 180 degrees from ea
h other

in the s
anner. The s
an is able to 
onvert these rays into an ele
tri
al signal

than 
an be fed to subsequent ele
troni
s. Finally, using standard tomographi


te
hniques, the 
omputer output is a three dimensional image of a volume from

the brain [45, 46℄.

The 
on
ept is that blood is more 
on
entrated in a
tivated brain areas than

in the ina
tivated ones, meaning that the s
anner will dete
t more gamma rays


oming from those parts that are working more. This is translated into the
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image as a range of 
olours depending on the a
tivity shown in these regions.

Reddish 
olours indi
ate high brain a
tivity and by 
ontrast, bluish 
olours

means little to no brain a
tivity as 
an be seen in �gure 2.3.

Figure 2.3: Example of a PET s
an image of a human brain. The reddish 
olours mean high

brain a
tivity and the bluish 
olours are asso
iated with those parts of the brain with little

to no brain a
tivity. (Sour
e: publi
 domain).

One of the advantages of PET, unlike other imaging tests, is its ability

to dete
t irregularities in body fun
tion 
aused by diseases whi
h often o

ur

before anatomi
al 
hanges 
an be observed. In addition, the quality of the

PET s
an is not a�e
ted by small movements of the subje
t. Consequently,

the subje
t does not need to remain as still as they would for a MRI or EEG

re
ording. On the other hand, its limited spatial resolution 
an result in images

that are not very 
lear. Furthermore the use of radioa
tive tra
ers always

involves some risk.

SPECT

SPECT is based on the same prin
iples as PET to produ
e its images. How-

ever, important di�eren
es in instrumentation and radio
hemistry are di
tated

by the physi
s of photon emission. In a SPECT s
an the photons emitted from

the radio-tra
er in the body are dete
ted as independent events. Dete
tions of

photons are performed by a spe
ial 
amera, namely a gamma 
amera; 
ompris-

ing one or multiple dete
tor heads. In front of the 
amera 
rystal a 
ollimator

is pla
ed, featuring a large number of holes allowing photons to enter only in

the dire
tion parallel to the holes. Photons arriving at the 
ollimator in other
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dire
tions have a high probability of being absorbed by the material of the


ollimator [47℄. Those photons that �nally rea
h the 
rystal will intera
t with

it resulting in an ionisation of the 
rystal that 
an be translated to an ele
tri


pulse dete
table by the ele
troni
s of the gamma 
amera.

Figure 2.4: S
hemati
 diagram of SPECT s
anner data a
quisition. For ea
h proje
tion

the 
amera a
quires an image at that angle and at that spe
i�
 time. Afterwards, all the


olle
ted images are used to re
onstru
t the three-dimensional obje
t. Image adapted from

[48℄.

A SPECT s
anner performs a series of planar proje
tions a
quired by ro-

tating the gamma 
amera at di�erent angles around the patient. At ea
h of

the proje
tion angles one stati
 image is a
quired for that angle for a spe
i�


time as shown in �gure 2.4. Afterwards, all of the images stored in a matrix

format are used by the 
omputer to re
onstru
t the 3D image of the a
tivity

distribution within the brain. This is done by the utilisation of mathemati
al

image re
onstru
tion algorithms [48℄.

SPECT has inferior image quality than PET as the spatial resolution is
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limited by the s
an te
hnology. By 
ontrast, SPECT produ
es a 3D image with

an improved image 
ontrast than with PET s
anners. In addition, SPECT

radioisotopes have longer lives (from hours to days), opening the possibility of

investigating relatively longer-lasting tasks as walking [49℄.

MRI

In MRI the primary element used to generate almost all 
lini
al images


omes from the nu
lei of the tissue's hydrogen atoms. A traditional MRI

s
anner 
ontains a very strong ele
tromagnet that 
an generate a powerful

magneti
 �eld inside the s
anner.

Hydrogen nu
lei 
onsist of an odd number of protons that 
arry a positive

ele
tri
al 
harge. The presen
e of 
harged parti
les spinning around produ
es

a small magneti
 moment. These proton moments are generally random in

orientation. However, when they are pla
ed inside an external magneti
 �eld,

as in an MRI s
anner, many of the free hydrogen nu
lei align themselves in

the same (denominated parallel) or opposite (antiparallel) dire
tion than the

external sour
e. In order to �ip over, the protons have to absorb some energy

from the radio waves 
oming from the MRI s
an. This parti
ular movement

of the group of protons is 
alled pre
ession (Figure 2.5). The speed of the

pre
ession, or the number of times the protons pre
ess per se
ond is named

the frequen
y of Lamor and it is proportional to the external applied magneti


�eld strength, represented in Figure 2.5 as ω
0

and B

0

respe
tively.

In an MRI study the patient essentially be
omes a magnet with a magneti


ve
tor aligned at a spe
i�
 angle to the external magneti
 �eld. The parti
ipant

is pla
ed in a 
ylindri
al 
oil that surrounds the head. Following the appli
ation

of a strong stati
 magneti
 �eld, the brain's hydrogen nu
lei 
onsequently align

with the magneti
 �eld, resulting in a magneti
 moment parallel to the applied

�eld. The magneti
 for
e of the patient 
annot be measured as it is in the

same dire
tion as the external �eld. For this reason, a radio-frequen
y (RF)

pulse with a very spe
i�
 frequen
y and duration of millise
onds is applied

perpendi
ular to the external �eld.

As soon as the external RF pulse is swit
hed o�, the protons start to realign

themselves, returning a lower energy state and the protons relax. Protons 
on-

tinue this pro
ess until they 
ome ba
k to their original state, releasing the

energy they have absorbed during the pre
ession pro
ess. This generated en-

ergy is named a MR (magneti
 resonan
e) signal and 
an be measured by the

ele
tromagneti
 dete
tors of the MRI s
an. In addition the protons start to

pre
ess out of frequen
y. As a result of this pro
ess the longitudinal magnetisa-
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tion gradually in
reases (named T1 re
overy) and the transverse magnetisation

does the opposite, by gradually de
reasing (a pro
ess 
alled T2 de
ay). The

rate at whi
h T1 and T2 o

ur vary depending on the type of tissue. The

duration, repetition, timing and amplitude over whi
h the RF pulse sequen
es

are varied to produ
e a signal whi
h 
an be analysed in di�erent ways in order

to �weight� the image. The resulting image has 
ontrast if it 
ontains areas of

high signal intensity (white), low signal intensity (bla
k) and intermediate sig-

nal intensity (grey). The intensity of the signal generated by a tissue depends

on its water and fat 
ontent, the proton density and the presen
e of any blood

�ow [50℄.

Figure 2.5: MRI prin
iples: e�e
t of an external magneti
 �eld B

o

. Inside a magneti
 �eld

a proton pre
esses in a parallel dire
tion to the �eld B

o

with a pre
ession speed ω
0

.

The magneti
 resonan
e signal generated from the sum of the magnetisation

ve
tor is termed free indu
tion de
ay . Generally this signal is not measured in

MRI; instead it is more 
ommon pra
ti
e to generate the magneti
 resonan
e

signal in the form of e
hoes. In order to produ
e a 3D image the e
hoes must

be re
orded for ea
h dimension using three separate magneti
 �eld gradients:

a sli
e-sele
tion gradient, a phase-en
oding gradient and a frequen
y-en
oding

gradient. Data 
olle
ted from the three axis are re
onverted into a volume

image using mathemati
al te
hniques su
h as a 2D Fourier Transform and

spatial en
oding. The majority of standard MRI examinations take 20-30

minutes to 
omplete, with ea
h sequen
e of e
hoes lasting around 5 minutes

ea
h. Additionally an extra 10-15 minutes are needed in order to re-
onstru
t

the 3D image [50℄.
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The advantages of MRI 
ompared to PET or SPECT are 
lear: lower 
ost,

higher spatial resolution and no need for radioa
tive isotopes. There are how-

ever some disadvantages. For instan
e, it is not suitable for patients with metal

implants in their body or for those su�ering from 
laustrophobia. Additionally,

the patient has to remain as still as possible during the re
ording pro
ess in


ontrast to re
ordings taken by PET s
anners.

fMRI

fMRI is a widely used te
hnique to study brain fun
tion. This methodology

began with the dis
overy of nu
lear magneti
 resonan
e (NMR) followed by

MRI [40℄. However, it was not until the early 1990s when its potential for

neuroimaging was dis
overed. Essentially, MRI and fMRI di�er from ea
h

other in that MRI is used to produ
e stru
tural images of subje
t's brains useful

for anatomi
al and morphometri
 studies while a fMRI views the metaboli


fun
tion. The fun
tional methodology 
al
ulates the levels of oxygen in the

blood in the brain. By 
ontrast, MRI studies water mole
ule's hydrogen nu
lei.

Due to these di�eren
es, the features of both te
hniques are distin
tive. For

instan
e, MRI views the di�eren
e between tissue types at high resolution with

respe
t to spa
e. On the other hand, fMRI views those di�eren
es with respe
t

to time. In other words, MRI has a high spatial resolution whereas fMRI has

better temporal resolution.

The fMRI method exploits magneti
 di�eren
es between oxygenated and

de-oxygenated blood 
alled blood oxygenation level dependen
e (BOLD). Ba-

si
ally, haemoglobin in the blood be
omes strongly paramagneti
 in its de-

oxygenated state, therefore it 
an be used as a natural 
ontrast agent, eradi
-

ating the need to inje
t a tra
er. In this way, highly oxygenated brain regions -

a
tivated areas - produ
e a larger magneti
 resonan
e signal than lower oxygen


on
entration regions - low to no a
tivity - [51℄.

The temporal evolution of the BOLD under the presen
e of a brief stim-

ulus is a dynami
 pro
ess that 
an be represented by mathemati
al models.

After the stimulus onset the BOLD signal presents an initial dip linked to an

in
rease in deoxy-haemoglobin 
on
entration. Afterwards, the BOLD signal

rises 
onsiderably as the ratio of oxy/deoxy-haemoglobin in
reases. The in
re-

ment is dire
tly proportional to the neural a
tivity performed by the subje
t

[41℄. If the stimulus lasts for long enough, the BOLD signal will rea
h a plat-

eau otherwise the signal will return to the original baseline when the stimulus

is eliminated.

Consequently, the BOLD e�e
t 
an be used to dete
t the in
reasing neural
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a
tivity at the moment that a subje
t is performing a parti
ular task. A

typi
al use of fMRI for the dete
tion of a task is having a person inside the

s
anner performing a series of 
ognitive tasks (paradigms). At the same time,

a set of images of the brain are 
olle
ted, normally every 2 or 3 se
onds whi
h

a

umulates an enormous quantity of brain volumes by the end of the s
an.

The signal intensity of ea
h pixel 
an be asso
iated with a spe
i�
 task using

statisti
al analysis [41℄. Several approa
hes have been proposed for the ana-

lysis of fMRI data, with the aim of produ
ing an image able to identify those

regions, showing a signi�
ant 
hange in response to a spe
i�
 task. One of the

simplest methods for a two state fMRI experiment, is a simple subtra
tion of

the averaged images a
quired for the task, minus the averaged images for when

the task is 'o�'. Using this method, the null hypothesis 
annot be tested, so

instead of a subtra
tion, it is more 
ommon to use a Student's t-test. This

method weights the di�eren
e in means, giving larger t-test s
ores to large dif-

feren
es [52℄. Other more 
omplex methods used in fMRI analysis are based on


orrelation te
hniques or the widely used general linear model [53℄. Figure 2.6

represents a s
heme of a typi
al fMRI experiment and the asso
iated BOLD

signal evolution.

Figure 2.6: Change in a BOLD signal during a fMRI experiment. (A) A stimulus is presented

to the parti
ipant, triggering the neural a
tivity. (B) The in
rement of the neural a
tivity

is followed by a rise in blood �ow, blood volume and oxygen. (C) The 
ombination of these

events alters the level of deoxyhemoglobina, whi
h a�e
ts the MR signal (D). [41, 54℄.

fMRI has be
ome a predominant te
hnique in the �eld of neuroimaging

resear
h as it provides an ex
ellent spatial resolution (average resolution of 3-4

mms) and relatively good temporal resolution (in the order of se
onds) [55℄.

The fa
t that it is non-invasive and the use of haemoglobin as a natural tra
er

are also fa
tors that have 
ontributed to its standardisation.
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2.2.2 Dire
t measures of neural a
tivity

Dire
t measures of brain a
tivity su
h as EEG or MEG present, in general,

lower spatial resolution (in the order of 
ms) than the te
hniques explained in

the previous se
tion. On the other hand, they allow a higher temporal resol-

ution (in the order of tens of ms) whi
h dire
tly measures the brain fun
tion

and generally speaking, they are easier to use. The te
hnique to sele
t depends

of the needs and the resour
es of the resear
h as all of them have advantages

and disadvantages over ea
h other. For the present study, both temporal and

spatial resolution would be highly favourable. Furthermore the system should

be e
onomi
ally viable and with the possibility of being portable for real-time

appli
ations. For this reason EEG was the te
hnology 
hosen to perform the

brain a
tivity re
ording a
ross this study. A further explanation of this pro-


edure is developed in the next se
tions of this 
hapter.

MEG

In the human body there are several ele
tri
 
urrents of a diverse nature but

all of them indu
e ele
tromagneti
 �elds. Some of those ele
trophysiologi
al


urrents are well-known as they are strong and easy to measure. For example,

the ones indu
ed by the heart or the mus
les. On the other hand, other organs

from the human body also produ
e ioni
 
urrent �ows of less intensity [56℄.

This is true in the 
ase of the brain, where the neurons are stronger generators

of ioni
 �ows as mentioned at se
tion 2.1.

When the neurons are a
tivated syn
hronously as a 
onsequen
e of a stim-

ulus, ele
tri
al 
urrents are generated indu
ing magneti
 �elds (see se
tion 2.1

for more detailed information about the origin of this magneti
 �eld). Those

magneti
 �elds generated by the ex
hange of information between neurons pass

almost una�e
ted through brain tissue and the skull. This is due to the per-

meability of biologi
al tissues whi
h is almost equal to empty spa
e [57℄. The

magneti
 �eld, however, diminishes with distan
e, resulting in an extremely

small signal rea
hing the s
alp. This handi
ap has been solved with te
hnology

using sensors based on super
ondu
tivity [58℄. These super
ondu
ting devi
es

are pla
ed as 
lose as possible to the subje
t's head and are normally housed in

a helmet-shaped 
ontainer for ease of use. Magneti
 �eld 
hanges are dete
ted

by these spe
ial sensors and transformed into voltage 
hanges.

The use of these remarkably e�
ient dete
tors requires an extremely 
old

environment; 
ooling at -269°C, whi
h is a
hieved using liquid helium. About

70 litres of liquid helium are ne
essary on a weekly basis to keep the system at
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optimum performan
e. Thermal isolation is obviously a 
hallenge in terms of

se
urity and makes the system immobile. In addition, the extreme sensibility

of the sensors makes the devi
e very sensitive to any other magneti
 �elds

nearby. Consequently, MEG s
anners are typi
ally pla
ed in magneti
ally

shielded rooms.

There is an added problem of how to 
ompute what area of the brain is

a
tive. By analysing the spatial distributions of magneti
 �elds, it is possible to

estimate the intra
ranial lo
alisation of the generator sour
e and superimpose

it on an MRI s
an. The steps to a
hieve a MEG image are s
hemati
ally

des
ribed in �gure 2.7.

Figure 2.7: Sequen
e of steps to lo
alise sour
es of brain a
tivity using MEG [58℄.

MEG has better temporal resolution than indire
t measurement te
hniques

and has plenty of advantages in a 
lini
al setting. It provides high reliability
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and greater a

ura
y of the estimated dipoles as it is not a�e
ted by volume


ondu
tion. Therefore, sour
e estimation is easier than is found with EEG.

For this reason, it is widely used when there is a need to identify and lo
alise

spe
i�
 a�e
ted areas of the brain. For example, the mapping out of epilepti


a
tivity areas -one the most su

essful 
lini
al appli
ations of MEG - or when

determining the dominant language area is needed [59℄. The main disadvantage

of MEG is the elevated 
ost asso
iated with the instrumentation needed.

In addition, it possesses some advantages over other dire
t te
hniques su
h

as EEG. For example:

� the magneti
 �elds are not a�e
ted by tissue 
ondu
tivity as is the 
ase

with EEG

� subje
t preparation is redu
ed

� the measures are absolute and not dependent on the 
hoi
e of a referen
e

� better spatial resolution of the sour
e lo
ation (2-3 mm) than EEG (4-

7mm)

EEG

The EEG is the re
oding of the brain's ele
tri
al a
tivity. As mentioned in

se
tion 2.1, neurons when a
tivated, produ
e ioni
 
urrents at the level of 
el-

lular membranes (refer to Figure 2.1). It 
an be di�erentiated by two types of

a
tivation: one really fast depolarisation of the neuronal membranes indu
ing

an a
tion potential and slow 
hanges, originated by synapti
 a
tivation. This

pro
ess generates an impulse that 
an be propagated along axons and dend-

rites without being attenuated in its amplitude. This signal 
an be re
orded

when impa
ting with the ele
trodes pla
ed on the head.

They are several pro
edures to re
ord the ele
tri
al a
tivity of the brain.

They 
an be divided into two subgroups, invasive and non-invasive te
hniques.

Invasive methodologies in
lude the ele
tro
orti
ography (ECoG). The term

invasive is due to the ne
essity of a form of surgery, 
alled a 
raniotomy, in order

to pla
e the ele
trodes dire
tly into the brain 
avity. Within the brain 
avity

the ele
trodes 
an be pla
ed dire
tly on the brain tissue (named paren
hymal

monitoring), below the layers 
overing the brain (subdural monitoring) or into

one out of four ventri
les (intra-ventri
ular monitoring) [60℄. In this study

the variation of EEG adopted to re
ord brain a
tivity is one that pla
es the
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ele
trodes on the surfa
e of the subje
t's s
alp. This will be explained in detail

in the se
tion 2.3.

ECoG also known as intra
ranial ele
troen
ephalography (iEEG) is based

on the use of ele
trodes dire
tly from the exposed surfa
e of the brain to

re
ord its ele
tri
al a
tivity. The standard pro
edure is the 
ollo
ation of 16

ele
trodes pla
ed in a grid, but this number 
an vary from 4 to 256 depending

on the appli
ation [61℄. During ECoG, ele
tri
al stimulation is frequently used

to map 
riti
al areas su
h as the area of epilepti
 seizure onset. This stimulus

is an ele
tri
al pulse applied during 1 to 5 se
onds with an intensity of 0.5

to 2 mA and a voltage of 1 to 15V [62℄. Among ECoG 
lini
al appli
ations

the main one is in the treatment and dete
tion of epilepsy, but also is used in

resear
h appli
ations su
h as BCI systems [63℄.

2.3 Ele
troen
ephalography: ba
kground

The existen
e of ele
tri
al a
tivity in the brain was dis
overed more than

a 
entury ago by Ri
hard Carton [64℄. However, it was not until the early

1920s when EEG was re
orded from the human s
alp for the �rst time [65℄.

Nowadays, EEG has be
ome the most prevalent method for re
ording brain

a
tivity for BCI systems.

S
alp EEG re
ording displays the di�eren
e in ele
tri
al potentials between

two di�erent sites on the head, superimposing the 
erebral 
ortex that is 
loser

to the re
ording ele
trode. The problem of the extremely low amplitude values

of the signals attenuated by the several brain layers whi
h they have to 
ross

until rea
hing the s
alp is solved by the use of ampli�ers. Modern te
hnologies

allow on-line �ltering of the signals and other 
ontrols to regulate the signal

output. Furthermore, data displays that follow a
quisition, o�er a wide range

of options to represent the data for EEG interpretation. Figures 2.8 and 2.9

illustrate some types of EEG re
orders available on the market. Figure 2.8

shows a simple Bluetooth based system with two 
hannels plus another two


hannels for ground and referen
e. Figure 2.9 shows a more 
omplex system

of up to 256 
hannels 
omposed by an EEG 
ap (A) and EEG ampli�er (B).

2.3.1 EEG ele
trodes

Pla
ement of the ele
trodes has been standardised by using a 10-20 system that

uses anatomi
al landmarks on the skull. The name is based on the per
entages

used to determine the ele
trode installation. A total measure is divided into 10

or 20 per
ent segments. This system uses the distan
e between the subje
t's

nasion and inion as a referen
e for longitudinal measurements, and the distan
e
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between the subje
t's 
entral 
oronal plane, the distan
e between both ears, for

lateral measurements as is explained in �gure 2.10. Nasion is the interse
tion

of the frontal bone with the two nasal bones. It 
an be easily dete
ted as its

lo
ation is the depressed area between the eyes. Inion is the most prominent

proje
tion of the protuberan
e lo
ated on the lower rear of the human skull.

Figure 2.8: Example of EEG portable system to re
ord EEG with 2 
hannels system plus

ground and referen
e 
hannels.

Ea
h site has a name, a letter identifying the lobe and a number to identify

the hemisphere. Even numbers 
orrespond to the right hemisphere and odd

numbers to the left hemisphere. The designations; F

p

(frontopolar), F (frontal),

T (temporal), O (o

ipital), C (
entral), and P (parietal) are utilised in the

10�20 system as shown in �gure 2.10 [66℄.

Furthermore the letter 'z' makes referen
e to the 
entral 
hannels. For

example, the name C

z


orresponds to the position at 50% of the nasio-inion

distan
e and at 50% of the distan
e between pre-auri
ular points. This means

it is the exa
t 
entre point of the s
alp. The letter C indi
ates �
entral� and

'z' makes referen
e to the 0% lateral o�set from the Central 
oronal line.

Modern re
ording systems provide a 
ap where the ele
trode lo
ations are

already predetermined for ease of use as shown in �gure 2.9. These modern

systems require an in
reased number of ele
trodes and as a 
onsequen
e they

are pla
ed on the 10-10 system, meaning that the distan
e between them is

redu
ed to 10%.
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(A)

(B)

Figure 2.9: Figure (A) shows a g.te
 g.GAMMAsys with 64 ele
trodes applied and (B) shows

a g.te
 g.HIamp ampli�er [67℄. The 
ap and ampli�er are inter
onne
ted and linked via a

USB to a 
omputer.

Nowadays the variety of te
hnologies used to develop EEG sensors 
overs

a wide range, from wet and dry ele
trodes to wireless EEG sensors. However,

all of them pursue the same obje
tive: to be pre
ise.

The term �wet ele
trodes� is related to the need to use 
ondu
ting ele
trode

gel to atta
h it to the s
alp. The materials used for their 
onstru
tion are

several: silver/silver-
hloride (Ag/AgCl), tin (Sn), gold (Au) or platinum (Pt)

[68℄. The Ag/AgCl ele
trodes are 
onsidered the golden standard and they

are used almost universally in 
lini
al and resear
h appli
ations. The use

of ele
tri
ally 
ondu
tive gel redu
es the skin-ele
trode impedan
e leading to
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higher quality signals [69℄. However, the need to use a gel in
reases the time

needed to pla
e the ele
trodes and an ex
ess of it may 
reate shorts between

sensors if it spreads out.

Figure 2.10: EEG 10-20 system ele
trode pla
ement to show how the ele
trodes should be

pla
ed using per
entage values of the size of the person's s
alp. Referen
e points are marked

in both views: nasion-inion and A

1

-A

2

. (A) Side-view of a person's head with the 10-20


oordinates overlaid. (B) Top-down view of a person's head with the ele
trode 
oordinates

overlaid [70℄.

By 
ontrast, dry ele
trodes are designed to be e�
ient without the need

for 
ondu
tive gel. The absen
e of gel is substituted by moisture on the skin,

mainly sweat [69℄. Numerous variations of dry sensors exist on the market.

For instan
e: stainless steel dis
s or mi
ro-fabri
ated sili
on stru
tures. This

type of ele
trode is used mainly in resear
h as they present some problems of

usability for normal 
lini
al appli
ations due to their instability as they are

mu
h more di�
ult to se
ure to the patient than wet ele
trodes [69℄.

There is another model of ele
trode that, 
ontrary to a wet or dry ele
trode,

does not require dire
t physi
al 
onta
t with the skin. Some examples of

these non-
onta
t sensors 
an be found in the literature [71, 69℄. They are


omprised of a set of 
apa
itive ele
trodes with a wireless transmitter to send

data to a 
omputer. These systems have the advantage of being insensitive

to skin 
onditions and require zero preparation. However, their pre
ision and

reliability still have not been proven.

For this resear
h, the ele
trodes used are a
tive Ag/AgCl ring ele
trodes

from g.Te
 [67℄ implanted in the g.GAMMA
ap previously mentioned and

shown in �gure 2.9.
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2.3.2 Clini
al brain wave bands

Hans Berger was the �rst investigator to dis
over a rhythmi
 brain wave in

the range of 8-12Hz that he named the α band [65℄. Sin
e his dis
overy, it

has been demonstrated that, irrespe
tive of the nature of the observed signal,

most of the brain's a
tivity has multiple frequen
ies that evolve over time. The

most important are: the delta, theta, alpha, beta and gamma bands. They

are identi�ed a

ording to their frequen
y and they possess di�erent features

that are des
ribed in table 2.2.

Table 2.2: Summary of the main EEG brain wave bands and their features [72℄.

Name

Frequen
y

range (Hz)

Features

Delta (δ)
0.5-4

O

urs in sleep or a vegetative state of

the brain, slow and high amplitude

waves.

Theta (θ)
4-8

O

urs during light sleep, quiet fo
used

meditation. They have been observed

during memory retrieval.

Alpha (α)
8-12

Mediate level of 
ons
iousness, relaxed,

awareness of the body, predominant with


losed eyes, prominent above visual areas.

Beta (β)
12-30

Related to 
ons
iousness, busy or

anxious thinking and a
tive


on
entration. Low voltage waves.

Gamma (γ)
>30

With high level information pro
essing,

for learning and memory.

2.3.3 Artifa
ts

Re
ording ele
tri
al a
tivity from the brain is subje
t to non-
erebral inter-

feren
e due to the high sensitivity of EEG systems. Those sour
es, named

artifa
ts, 
an have a non-physiologi
al origin. For example, ele
tri
al devi
es

operating nearby or physiologi
al interferen
e signals originated from the sub-

je
t's heart and mus
le movements. Small movements su
h as blinking or

frowning 
an introdu
e large spikes in the EEG signals and may de
eive the

interpreter to believe that the apparent sour
es are abnormal [73℄. In [74℄, the

authors performed a 
omparative study of the e�e
t of blinking on the signal

to noise ratio (SNR) for s
alp EEG and iEEG simultaneously. This shows that

peak amplitudes in EEG 
hannels 
losest to the eyes related to blink artifa
ts

that were also re
orded from the same anatomi
al region in iEEG.
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Another sour
e of noise is the pla
ement of the ele
trodes; if the referen
es

to pla
e the 
ap or ele
trodes are not a

urate, the re
orded EEG signal will

be a�e
ted by noise. In the same way, if one ele
trode is unse
ure it 
an move

during the experiment 
ausing large artifa
ts. In addition to these types of

noise, skin-ele
trode noise must be 
onsidered whi
h strongly 
orrelates with

the skin impedan
e. The e�e
t is redu
ed with the use of the gel in the


ase of wet ele
trodes but the issue still remains under-addressed in the 
ase

of dry ele
trodes, although e�orts have been made to negate this e�e
t [69℄.

Re
ognition and elimination of the artifa
ts in EEG re
ordings is an arduous

task, but essential for the development of pra
ti
al systems [73℄.

In the last de
ade several methodologies have been proposed to improve

the SNR of EEG measurements, espe
ially those 
omprising di�erent signal

pro
essing te
hniques designed to redu
e the noise using a range of temporal

averaging s
hemes. For example median and weighted averaging, trimmed

estimators, wavelet-based de-noising methods or spatial �lters [75℄. In order

to e�e
tively 
hoose the most appropriate method to deal with noise, several

aspe
ts need to be 
onsidered in relation to the properties of the data and the

resear
h questions being asked [76℄.

2.4 Brain Computer Interfa
es (BCI)

A BCI is a 
ommuni
ation system that is non-dependent of the brain's normal

output pathways. These systems provide its users with an alternative method

of intera
tion with the world. Sin
e the EEG was �rst des
ribed by Hans

Berger in 1929 [65℄, BCI systems have made in
redible progress. A variety of

methods to monitor and re
ord brain a
tivity are available and in
lude PET,

fMRI, MRI, MEG or EEG. Refer to se
tion 2.2 for further details regarding

their basi
 fun
tion prin
iples. Figure 2.11 depi
ts a 
lassi�
ation of BCIs,

also named a Brain Ma
hine Interfa
e [11℄.

The main 
on
ept of the BCI system is that the human brain rea
ts to a

spe
i�
 stimulus generating a spe
i�
 evoked potential (EP) and the 
onsistent

response to this stimulus 
an be used to 
ontrol a devi
e or for any other

purpose. An evoked potential, also known as event related potential or evoked

response, is 
hara
terised by a series of �u
tuations in the EEG that are time-

lo
ked to an event, in
luding the onset of a stimulus or the exe
ution of a

physi
al response [77℄. Beyond BCI, EP 
an be used to assess hearing or sight,

espe
ially in 
hildren, to diagnose disorders of the opti
 nerve or dete
t other
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problems a�e
ting the brain and spinal 
ord.

Figure 2.11: Classi�
ation of the di�erent BCIs a

ordingly to di�erent 
riteria: position of

ele
trodes re
ording the brain a
tivity a

ording to the nature of the input signals of the

BCI and a

ording on how they are pro
essed [11, 78℄.

EP represents the standard te
hnique in 
ognitive neuros
ien
e to invest-

igate the temporal dynami
s of 
ognitive pro
esses. Through the ele
trode

pla
ements on the s
alp, the brain a
tivity is re
orded before, during and after

the stimulus onset. During the re
ording, several repli
ations of the experi-

mental 
onditions are 
ondu
ted, named trials. Time-lo
ked signal averaging

is a ne
essary step to extra
t EP from the raw data. At ea
h re
ording 
hannel
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and at identi
al times, from the beginning to the end of the trial, the signal is

averaged a
ross of all the trials re
orded.

2.4.1 EP 
omponents

An EP 
onsists of a series of positive and negative de�e
tions, whi
h will be

denominated as 
omponents if they respond to a spe
i�
 stimulus. These


omponents are named by their polarity, positive (P) or negative (N), followed

by a number referring to their laten
y (millise
onds). For example, the most

popular 
omponent, P300, indi
ates a positive 
omponent for whi
h peaks

o

ur at around 300ms after the stimulus is presented to the user. Another

widely used 
omponent is the N170, a negative peak around 170ms after the

stimulus onset. Some more examples are: P100, P200, N270 or N400 [79℄.

Amplitude (of the order of μV) is usually de�ned as the di�eren
e between the

mean pre-stimulus baseline voltage and the largest positive-going peak of the

EP waveform within a time window determined by the stimulus modality, task


onditions, subje
t age, and other fa
tors. Laten
y is typi
ally de�ned as the

time from stimulus onset to the point of maximum positive amplitude within

this same time window [79℄.

2.4.2 BCI paradigms

A paradigm is the mental or 
ontrol task that the BCI users have to perform

to indu
e a spe
i�
 
hange in their brain a
tivity. Re
ently, several mental

tasks have been presented as appropriate as 
ontrol strategies for this purpose.

For instan
e mental rotation, auditory imagery, motor imagery, mental sub-

tra
tion, silent singing or spatial navigation. BCI paradigms 
an be divided

into two main 
lasses:

1. Exogenous, re�exive, syn
hronous or evoked paradigms are those whi
h

have need of an external stimulus to produ
e a response in the brain that


an be dete
ted by the BCI system. The presen
e of a stimulus redu
es

the training time. In some 
ases eliminating it, 
ompletely as the response

is indu
ed automati
ally. However, it 
an indu
e false positives as the user

has to fo
us attention on the stimulus or the absen
e of it.

� P300 : As mentioned before, P300 is one of the EP 
omponents. Its
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name indi
ates a positive 
hange in the amplitude of the signal a
hiev-

ing its maximum value around 300ms after stimulus onset. The �rst

studies regarding task relevan
e e�e
ts of the P300 
omponent were

developed using the oddball paradigm, whi
h 
onsists of two stimuli

(
ommonly additive stimuli) in a random sequen
e where one o

urs

less frequently than the other [77℄. However the a
tual origin of the

P300 is un
lear. It is suggested that it is related to the end of 
og-

nitive pro
essing, to memory updating after information evaluation

or to information transfer to 
ons
iousness. P300 has several appli
-

ations. However, the most 
ommonly used is the P300 Speller. The

�rst mention of a P300 based BCI speller was in 1998, when Farwell

and Don
hin, proposed the FD-Speller [80℄. It 
onsisted of a mat-

rix of 6x6 
ells displayed on the s
reen to represent 26 letters and a

few 
ommands. The rows and 
olumns where randomly highlighted,

when the 
olumn or row with the target 
ell was intensi�ed, a P300

was eli
ited. An example of this matrix of letters is shown in the

�gure 2.12.

Figure 2.12: Example of a typi
al matrix used in a P300 BCI Speller. When the row/
olumn

where the target is highlighted, in this 
ase letter D, the P300 is triggered [81℄.

� Steady-State Evoked Potentials (SSEP): these are a brain responses

indu
ed by a 
onstant stimulation, usually repeatedly �i
kering a

light at a 
onstant frequen
y, approximately between 6 and 100Hz.

Viewing this �ashing light at a parti
ular frequen
y stimulates the

visual pathway. Consequently this frequen
y is radiated throughout

the brain. The response manifests itself as an in
rease in amplitude

of the stimulated frequen
y, for example, if the stimulus it is presen-

ted on the s
reen �ashing at a 5Hz frequen
y. Then the user's brain

should produ
e frequen
ies at 5Hz, 10Hz, 15Hz, et
. Typi
al appli
-
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ations of SSEP in BCI systems are with the 
ontrol of a 
omputer


ursor [82℄ or the 
ontrol of a simple 
omputer program [83℄.

2. Endogenous, self-generated, asyn
hronous or spontaneous paradigms are

when the user voluntarily performs the mental task that a
tivates a par-

ti
ular area of the brain. The advantage of these paradigms is that they

only appear when the user wants them to, redu
ing the possibility of false

positives as there are no external stimuli to trigger a response. By 
on-

trast, these systems are subje
t to the user's ability to 
ontrol their brain

a
tivity. Consequently prior training is needed.

� Slow 
orti
al potentials (SCPs): These are slow event-related, dire
t-


urrent shifts in the EEG, originating from the large 
ell assemblies

in the upper 
orti
al layer. They last from 0.3s up to several se
onds.

Despite not being os
illatory in nature, they o

ur as a 
onsequen
e

of external or internal events. It has been demonstrated that SCPs'

negative shifts re�e
t the depolarisation of the large 
orti
al 
ell as-

semblies, de
reasing their ex
itation threshold. It is the 
ase, for

instan
e, for patients with epilepsy where large negative shifts have

been dete
ted se
onds before a seizure [84℄. SCPs are used in a wide

range of treatments, su
h as hypera
tivity disorder [85℄, in
luding

BCI system appli
ations [86℄.

� Motor Imagery (MI): This paradigm relies on the fa
t that when a

person physi
ally moves a limb and imagines moving it without a
tu-

ally performing any motor a
tion it produ
es the same brain a
tivity.

When the stimulus is presented, a syn
hronisation of the a
tive area

o

urs �rstly as a large event denominated as an event related de-

syn
hronisation (ERD) followed by an event related syn
hronisation

(ERS) , please refer to �gure 2.13. This event is lo
ked to a spe
i�


frequen
y band: μ rhythm (8-12 Hz) and β rhythm (12-30Hz). This

paradigm produ
es an asyn
hronous 
ontinuous output signal that is

optimal for appli
ations su
h as motor 
ontrol. Wolpaw and his team

were the �rst to use the 
on
ept of MI applied to BCI systems [87℄.

They demonstrated for �rst the time that individuals 
an learn to use

the μ rhythm to 
ontrol movement of a 
ursor on a 
omputer s
reen.

They managed to translate the distributions of µ rhythm amplitudes

to a series of parameters able to 
ontrol the 
ursor movements with
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ontrol and high a

ura
y. Sin
e then, the a

ura
y and diversi�
-

ation of MI based BCI has experien
ed an enormous improvement.

Nowadays, systems exist with the 
apa
ity to di�erentiate between a

relaxation state, imagination of left hand, right hand, feet or tongue

movements.

Figure 2.13: ERD/ERS pro
ess o

urring after the stimulus onset during a MI paradigm

[88℄.

2.4.3 Emotional fa
es

There are di�erent approa
hes to improve the performan
e of a BCI system.

Most resear
h fo
uses on more a

urate signal pro
essing and 
lassi�
ation

te
hniques. However, another interesting method to improve BCI performan
e

is a
hieved by means of optimising the user's 
ontrol strategies [89℄. Re
ently,

various mental tasks have been identi�ed as suitable 
ontrol strategies for

using BCIs. For example, Millán et al. [90℄ and Galán et al. [91℄ implemented

asyn
hronous BCI proto
ols in whi
h parti
ipants su

essfully 
ontrolled a

wheel
hair, a robot or a keyboard by the use of six di�erent mental strategies to


hoose between: relaxation, left and right hand motor imagery, 
ube rotation,

subtra
tion and word asso
iation. This study also highlighted the importan
e

of the 
hoi
e of mental tasks in order to get good performan
e from the BCI

strategy. To perform the 
lassi�
ation step, �rstly a multiple dis
riminant

analysis is used to sele
t the relevant EEG features and then, the authors used

the statisti
al Gaussian 
lassi�er algorithm. Friedri
h et al. have 
ompleted

several studies 
omparing the e�e
t and stability of seven di�erent tasks on
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lassi�
ation performan
e for BCI [92, 89℄. They sele
ted tasks from di�erent

domains: mental rotation (imagine 3D L shape �gure to rotate), auditory

imagery of a melody (familiar tune without arti
ulating the words), mental

subtra
tion (su

essive elementary subtra
tion by a presented �xed number),

spatial navigation through a familiar environment (your house or your room),

imagery of familiar fa
es or motor imagery of the right and left hand. All of

the mental tasks used in this work and their di�erent 
ombinations, obtained

average a

ura
ies 
omparable to the standard task left and right imagined

movements using linear dis
riminant analysis as the 
lassi�er and 
ommon

spatial patterns to 
ompute the most dis
riminative features for 
lassi�
ation

[89℄. In addition all of them were stable a
ross sessions on di�erent days.

A novel P300-based BCI speller using fa
es as stimuli in 
onjun
tion with

eyeless fa
es and eye only images was developed in the study presented in

[93℄, resulting in a signi�
ant in
rease in performan
e when 
ompared to the


onventional P300-based BCI with stimuli of an intensi�
ation pattern. In

this 
ase, the feature extra
tion was made by extra
ting 8 spatio-temporal

feature ve
tors from 8 �ash sub-trials to later feed a linear dis
riminant analysis


lassi�er. In the same manner, a novel stimulus for gazed-BCI is presented in

[94℄ named the �
oloured dummy fa
e pattern�. It is suggested that di�erent


olours and fa
ial expressions 
ould help users to lo
ate the target and evoke

larger ERPs. Bayesian linear dis
riminant analysis, an extension of linear

dis
riminant analysis, was used in this resear
h to 
lassify between the di�erent

�
oloured dummy fa
es�.

Fa
es provide larger information with regard to diverse aspe
ts su
h as

intention, emotional state, age, gender or identity that make them play a vi-

tal role on a daily basis in so
ial 
ommuni
ations [95℄. The pro
ess of fa
ial

emotion re
ognition is a 
omplex task that 
omprises per
eptual and memory

skills, identi�
ation and analysis of the parti
ular emotion in the fa
e in view.

In summary, fa
ial emotion re
ognition requires integration of attention, per-


eption, learning and memory [27℄. Over the last de
ade fa
e pro
essing and

re
ognition has been studied extensively. Ba
sar et al. reported that di�er-

ent responses o

ur in di�erent frequen
y bands when the parti
ipants were

exposed to a pi
ture of a loved person versus a pi
ture of an unknown person

[27℄. Baumgartner et al. showed that EEG a
tivity over the left hemisphere

in
reases in happy 
onditions 
ompared to negative emotional 
onditions [28℄.

Some investigations have been based on the study of di�erent types of fun
-

tional brain 
onne
tivity using emotions as stimuli to 
lassify Parkinson's dis-

ease from healthy 
ontrol patients [29℄ or Autism Spe
trum Disorder from
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typi
al developed 
hildren [30℄. These important results open the door for

biomarker appli
ations that 
an tra
k emotional impairments.

Based on these �ndings regarding fa
e emotion pro
essing and per
eption, it


an be thought that the use of fa
es as stimuli may in
rease the 
lassi�
ation

a

ura
ies of MI-based BCI. In addition it is likely to help in tra
ing the


ognition patterns underlying MI tasks linked to a spe
i�
 stimulus.

Another question to 
onsider is the suitability of stimuli for patients with

di�erent types of disability. ALS patients have impairments in working memory

but no prior studies have reported any impairments regarding fa
ial per
eption

and stru
tural en
oding. In addition patients with di�erent levels of 
ognitive

impairments may experien
e bene�ts from the use of emotional fa
es as stimuli

[93℄.

2.5 Brain 
onne
tivity

The human brain is a remarkably 
omplex system of units intera
ting with ea
h

other to in
orporate and pro
ess both internal and external stimuli. This mar-

vel of neural wiring ranges from links between individual neurons to �bres that

meander through vast brain regions. Su
h a 
omplex system 
annot be stud-

ied by investigating individual units separately. These assemblies of spe
ialised

neurons in�uen
e ea
h other through a series of synapti
 
onne
tions [96℄. The

use of ele
troen
ephalography to attempt to measure the fun
tional intera
tiv-

ity between di�erent 
orti
al regions has a long history [97, 98, 99, 100℄. A

wide variety of methods has been used to un
over the underlying 
onne
tiv-

ity patterns a
ross the brain in human [101℄ and non-human subje
ts [102℄.

Di�erent methods are based on 
oheren
e, whi
h is assumed to 
orrespond

to syn
hronised a
tivity between ele
tri
al a
tivities a
ross the di�erent brain

regions in a spe
i�
 frequen
y band [103℄. Other te
hniques investigate the dy-

nami
s of the 
ross-
orrelation of the time series between a pair of ele
trodes.

This intera
tion a
ross 
orti
al regions has the name of syn
hronisation in

time s
ale and its dynami
 is an essential instrument to understand how the

human brain performs a 
ognitive task given a parti
ular stimulus [104℄. Dir-

e
t eviden
e supporting syn
hrony as a basi
 me
hanism for brain integration

has been re
ently proven with studies based on visual binding [105℄, proving

that lo
al integration -within neighbouring 
orti
al areas- and large s
ale in-

tegration - 
on
erning neural assemblies whi
h are farther apart in the brain-


an be interpreted as a biologi
al me
hanism of integration.



37 CHAPTER 2. LITERATURE REVIEW

There are several distin
tions to 
onsiderer related to 
onne
tivity, the �rst

one is between fun
tional integration and segregation. Fun
tional integration

refers to the study of how the brain regions work together to pro
ess inform-

ation and e�e
t responses whereas segregation suggests that a 
orti
al area is

spe
ialised for some aspe
t of per
eptual or motor pro
essing and this spe
ial-

isation is anatomi
ally segregated within the 
ortex [106℄.

Another di�erentiation 
an be made between fun
tional and e�e
tive 
on-

ne
tivity. Fun
tional 
onne
tivity is de�ned as the statisti
al asso
iation or

dependen
y between two or more distin
t time-series [107℄. It re�e
ts the stat-

isti
al dependen
y among remote neurophysiologi
al events [106℄. It is simply a

statement about the observed 
orrelations against the null hypothesis; it does

not provide any dire
t information on how 
orrelation is mediated between

these brain regions. To deal with this issue the 
on
ept of e�e
tive 
onne
tiv-

ity was developed. It is a more abstra
t notion than fun
tional integration but

should be understood as a time-dependent experiment with the simplest pos-

sible neuron-like diagram that 
ould produ
e the same temporal relationship

between the re
orded neurons in a 
ell assembly [108, 103℄. It is the dire
t or

indire
t in�uen
e that one neural system exerts over another and 
onsequently

it depends on some model to de�ne this in�uen
e [107℄.

2.5.1 Analysing 
onne
tivity

The study of time varying fun
tional 
onne
tions will give us a pathway to

understand and quantitatively measure, brain 
onne
tions happening a
ross

the brain when a spe
i�
 task is used as a stimulus.

E�e
tive 
onne
tivity 
an be explained by means of dynami
 
ausal mod-

elling (DCM). It models a network of dis
rete neuronal sour
es based on

Bayesian te
hniques. It relies on a biophysi
al model of neuronal dynami
s

(neural-mass or 
ondu
tan
e-based models) [109℄ and requires a priori de�ni-

tion of a large dataset of parameters [106℄. Another drawba
k of this approa
h

is that 
ru
ial di�eren
es among a variety of analyses rest with the models on

whi
h they are based [107℄. DCM 
an be 
onverted into a linear state-spa
e

model by solving the series of Bayesian equations, whi
h is known as Granger


ausality [110℄. Granger 
ausal modelling (GCM) is explained in terms of lin-

ear ve
tor autoregressive (VAR) models of sto
hasti
 time series data [111℄.

The multivariate VAR is de�ned as a set of k EEG 
hannels as:
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X (t) =

p
∑

j=1

A (j)X (t− j) + E (t) (2.1)

where:

� X (t) = [X1 (t) , X2 (t) , . . . , Xk (t)]
T
is a ve
tor of k signal values at ea
h

time t,

� E (t) = [E1 (t) , E2 (t) , . . . , Ek (t)]is a ve
tor of noises at ea
h time t,

� A (j) =









A11 (j) . . . A1k (j)
.

.

.

.

.

.

.

.

.

Ak1 (j) . . . Akk (j)









for j=1,...., p are the model paramet-

ers,

� p is 
alled the model order.

The model order sele
tion is important in order to obtain an appropriate �tting

quality. If the order is too low, the resulting spe
tra 
an la
k the ne
essary

details for a 
orre
t analysis of the EEG 
onne
tivity. On the other hand,

high model orders tend to 
reate unwanted noise in the spe
trum. Several


riteria have been proposed to sele
t the appropriate model order su
h as

Akaike's information 
riterion or Bayesian-S
hwart's 
riterion [112℄. In the

same manner, there are several algorithms of model parameter estimations

di�ering in their ability to dete
t spe
i�
 features of the spe
trum of stability

for shorter data segments [112, 113, 114℄.

The disadvantage of this te
hnique is that it assumes that the EEG sig-

nals are stationary and it 
annot provide information regarding phase 
oup-

ling between ele
trode pairs. EEG signals are dynami
, and therefore non-

stationary. This issue 
an be solved by applying windowing te
hniques. How-

ever, these windows should be short enough to treat the data within ea
h of

them as stationary. This approa
h performs well for shorter data epo
hs, how-

ever, the statisti
al signi�
an
e of the estimates de
reases with a shortening of

the window size [112℄.

Fun
tional syn
hronisation based on EEG signals 
an be measured in the

time or frequen
y domains. EEG signals are non-stationary and the mutual

in�uen
e of brain regions, hen
e EEG 
hannels, do not always show a time

invariant behaviour [115℄. Several solutions have been proposed to address
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this issue. A
ross them, one method to analyse the EEG signal in the time

domain, espe
ially suitable for the study of spontaneous a
tivity, is the de-

nominated mi
rostate analysis [116℄. Mi
rostates are de�ned by topographies

of ele
tri
 potentials re
orded in a multi
hannel array over the s
alp whi
h

remain stable for a few millise
onds (80-120 ms) before transitioning sharply

into a new di�erent mi
rostate [117, 118℄. The advantage of this te
hnique is

that it simultaneously 
onsiders the signal from all the EEG ele
trodes to 
re-

ate a more global representation of a fun
tional state [118℄. Resear
hers have

been using the 
on
ept of mi
rostates for a vast diversity of studies sin
e it was

�rst mentioned by Lehmann in his seminal paper [119℄. For example, in study-

ing the impa
t on negative so
ial information amongst depressed people [120℄,

the resting state from s
hizophreni
 patients [121℄ or those with Alzheimer's

disease [122℄. In addition, some investigations have been undertaken for aware-

ness, motor inhibition or grasping obje
ts [123, 124, 125℄. In [126℄, a test-retest

reliability study to assess the e�
ien
y of the resting-state EEG mi
rostates

analyses in healthy subje
ts over time was performed. The 
on
lusions were

�rm, this te
hnique has a high test-retest reliability. In addition the 
onsist-

en
y of the most frequently used 
lustering algorithms (k-means 
lustering and

TAAHC) in extra
ting mi
rostates maps was determined.

On the other hand, in the frequen
y domain, the 
lassi
al methods to meas-

ure syn
hronisation are 
orrelation and 
oheren
e. Coheren
e is a squared


orrelation 
oe�
ient that estimates the 
onsisten
y of relative amplitude and

phase between two pairs of signals in ea
h frequen
y band [127℄. EEG 
o-

heren
e depends mostly on the 
onsisten
y of the 
al
ulated phase di�eren
e

between 
hannels [128℄. Transferring the equation 2.1 to the frequen
y domain,

the power spe
trum 
an be 
al
ulated as [112℄:

S (f) = X (f)X∗ (f) =
(

A−1 (f)E (f)
) (

A−1 (f)E (f)
)

∗

= (2.2)

(H (f)E (f)) (H (f)E (f))
∗

= H (f)E (f)E∗ (f)H∗ (f) = H (f)V H∗ (f) ,

where V is the noise 
ovarian
e matrix andH (f) =
(
∑p

m=0A (m) e−2πimf△t
)−1

.

The 
oheren
e 
an be 
al
ulated by obtaining the 
ross-spe
tra of two signals

i and j from equation 2.2 [112℄:

Kij =
Sij (f)

√

Sii (f)Sjj (f)
. (2.3)
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EEG 
oheren
e is a sensitive measure that may yield important information

about network dynami
s and fun
tional integration a
ross brain regions. This

metri
 is typi
ally 
omputed by �rst taking the Fourier Transform (FT) of the

EEG signals re
orded in two ele
trode sites and then taking the imaginary and

real parts to 
al
ulate the phase of the transformed signals. EEG 
oheren
e has

been widely used in resear
h for a diverse range of topi
s su
h as the dete
tion

of Alzheimer's Disease, 
ognition, Parkinson's Disease or mental fatigue among

others [129, 130, 131, 132℄. However, the need to use FTs to 
al
ulate the


oheren
e means that the temporal information of the phase dynami
s is not

preserved so therefore give an averaged syn
hronisation measure over a sele
ted

time window at ea
h frequen
y band. Some investigations have solved this

issue working with Short Time Fourier Transforms (STFT) [133℄. However,

stationarity is still required within ea
h time interval for whi
h 
oheren
e is


al
ulated 
onverting the sele
tion of the time window length as a 
ru
ial

step to a
hieve a

urate results [109℄. An alternative method for 
al
ulating


oheren
e is the use of the Continuous Wavelet Transform (CWT). It is more

�exible than STFTs but requires a-priori information about the 
oupling range

in time and frequen
y in order to sele
t optimal parameters [109℄. This method

has been applied to EEG and MEG signals for 
lassi�
ation of autism disorder

[134℄, learning study [135℄, brain 
omputer interfa
es [135, 136℄, performing a

mathemati
al task versus a resting state or Alzheimer's Disease [137, 138℄.

Alternatively, with the aim of investigating the phase syn
hronisation at a

�ner s
ale than by means of 
oheren
e there is a series of non-linear methods

based on deterministi
 
haos [109℄, namely phase syn
hrony . Phase syn
hrony

index or the phase lo
king value (PLV) use wavelet 
oheren
e to measure the

phase lo
king between two EEG signals. Syn
hrony measures depend only

on the phase between signals, even when the amplitudes remain statisti
ally

independent [139℄.

Many other variations of these 
onne
tivity measures have been des
ribed:

entropy and 
orrelation entropy 
oe�
ients, partial and dire
ted partial 
o-

heren
e, dire
ted transfer fun
tions, dire
t dire
ted transfer fun
tions, full fre-

quen
y dire
ted transfer fun
tions, multivariate autoregressive (MVAR) mod-

els, omega 
omplexity, mutual information or state spa
e based syn
hrony

[140, 141℄.

The aim of this work is not to study the underlying neuroanatomy of pa-

tients, but to investigate the transient dynami
s of the information integration

pro
ess a
ross the di�erent brain areas in a task-spe
i�
 way. To this end, it

is absolutely ne
essary to estimate the evolution of phase relationships along
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with the task performan
e at di�erent frequen
y bands and EEG ele
trodes.

Deeper understanding of this integration pro
ess during a 
ognitive task may

be useful in des
ribing brain organisation [134℄.

2.5.2 Conne
tivity and volume 
ondu
tion

Volume 
ondu
tion is an undesired e�e
t when an ele
tri
 
urrent passing

through any biologi
al matter from a sour
e is re
orded at the sensor. It has

been argued that volume 
ondu
tion in the head 
an lead to a high s
alp


orrelation in the absen
e of signi�
antly 
orrelated sour
es [142℄.

Usually, the head is des
ribed by 3 or 4 
on
entri
 spheri
al layers, repres-

enting the brain, the skull, the s
alp and the 
erebro-spinal �uid (CSF). In ea
h

of these layers, the 
ondu
tivity is assumed linear, isotropi
, and homogeneous.

Ele
tri
al 
urrents spread nearly instantaneously throughout any volume, like

membranes, skin, tissues, et
. Sudden syn
hronous synapti
 potentials on the

dendrites of a 
orti
al pyramidal 
ell result in a 
hange in the amplitude of

the lo
al ele
tri
al potential referred to as an �Equivalent Dipole� [143℄. The

signal re
orded at the ele
trodes is smaller in amplitude sin
e it has to travel

through various media to be dete
ted by the sensors. The potential re
orded

at the s
alp is inversely proportional to the distan
e from the sour
e. Under

this premise, any small 
hange in distan
e may 
ause a large 
hange in the

re
orded signals. In addition, the polarity and shape of the ele
tri
al potential

depends on the solid angle between the sour
e and the ele
trode where it is

re
orded. The volume 
ondu
tion 
an a�e
t the syn
hronisation re
orded from

the EEG ele
trodes pla
ed on the s
alp, being 
orrupted or masked by linear

mixing.

Volume 
ondu
tion involves near zero phase delays between any two points

within the ele
tri
al �eld as 
olle
tions of dipoles os
illate in time [144℄. Zero

phase delay is one of the important properties of volume 
ondu
tion and it is for

this reason that measures su
h as the 
ross-spe
trum, 
oheren
e, bi-
oheren
e

and 
oheren
e of phase delays are so 
riti
al in measuring brain 
onne
tivity

independent of volume 
ondu
tion [23℄. Based on this idea, some works have

re
ently been developed to mitigate the e�e
t of volume 
ondu
tion in the

measure of phase syn
hronisation [145, 146, 147, 134℄. In this parti
ular 
ase

and based on these studies, it 
an be 
on
luded that the syn
hrony derived

from phase di�eren
e is not a�e
ted by the volume 
ondu
tion e�e
t as it does

not report zero phase delay.
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2.6 Graph Theory

The study of stru
tural and fun
tional 
onne
tivity within the living brain and

the 
hanges of the 
onne
tivity pro�les over time 
an be done by means of a

mathemati
al framework named network theory [148℄. The use of network or

graph theory relies on the de�nition of regions within the brain a
ting as nodes

in a graph or network. The network is formed by nodes and edges. In this


ase the nodes are the EEG ele
trodes. The edges represent the 
onne
tions

between nodes and their representation is known as the adja
en
y matrix of

the network. The stru
ture of this matrix des
ribes the 
ommuni
ation pattern

of the brain network.

Various theoreti
al aspe
ts of brain 
onne
tivity have been investigated

in re
ent years. For instan
e, ri
h 
lub organisation [149℄ and segregation

and integration [150℄. Complex network measures have been used to explore

and understand the brain network from EEG and fMRI signals re
orded from

patients with neurologi
al 
onditions and to 
ompare it against healthy pa-

tients. Conditions su
h as Alzheimer's disease [151℄, autism spe
trum disorder

[134, 30℄, attention de�
it hypera
tivity disorder (ADHD) [152℄ or develop-

mental 
hanges due to premature birth have been studied in this way [153℄.

The review revealed the potential of using graph theory for 
hara
terising

group di�eren
es within the brain. The present work aims to use the prin
iples

and bene�ts of graph theory applied to EEG re
ordings to obtain quantitative

metri
s for further analysis to help in the 
hara
terisation of a more a

urate

MI-based BCI.

2.7 Summary

This 
hapter is a brief introdu
tion to some te
hni
al 
on
epts related to this

thesis; making its reading more 
omprehensive. The 
hapter began by dis-


ussing the most 
omplex organ in the human body, the brain. Furthermore,

the formation of a
tion potentials is explained and some te
hniques to measure

brain a
tivity are brie�y mentioned. Among those te
hniques, we have fo
used

on EEG as it was the methodology 
hosen to re
ord the data used in this thesis.

The idea of syn
hrony is key to understanding patterns of 
onne
tivity appear-

ing a
ross the neural assemblies and is highlighted in this 
hapter. In addition,

a detailed review of the 
urrent te
hniques to measure syn
hrony in EEG is

listed. During the review pro
ess the inability of state of the art te
hniques to

preserve temporal information of the phase syn
hrony was noti
eable, whi
h
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is fundamental information on how neural 
onne
tions are 
onstru
ted in a

stimulus-spe
i�
 way.

The 
on
ept of BCI, the base of this work, and state of the art EEG-based

BCI is introdu
ed in this 
hapter with spe
ial attention to MI-based BCI.

The novelty of using fa
es as stimuli for the proposed MI-BCI is motivated by

the fa
t that fa
e stimuli may lead to a stronger response a
ross parti
ipants

[93℄. Finally a brief introdu
tion to graph theory has been provided in this


hapter as a new and promising new approa
h for evaluating brain networks

quantitatively. In the next 
hapter the proposed methods to measure phase

syn
hrony without loss of temporal information is provided.



Chapter 3

Studying phase syn
hronisation:

syn
hrostates

Complex systems su
h as the brain 
annot be explained as individual units

by themselves. For this reason, to understand brain 
ognition it is essential

to study the 
onne
tions a
ross those individual units to give a sense of a

global 
onne
tivity. In 
hapter 2, the need to investigate time varying phase

syn
hronisation when a stimulus-based 
ognitive task is performed was high-

lighted. The method used to a
hieve this obje
tive was �rstly explained in

[134℄ and applied in the study of autism disorder in 
hildren. The main idea of

the developed methodology is to use the time and frequen
y information from

the wavelet transform to understand the phase variations a
ross time. On
e

these dynami
s are obtained, this identi�es the possible existen
e of spe
i�


patterns asso
iated with a spe
i�
-stimulus-based MI task. There have been

some attempts to study 
onne
tivity in the temporal domain by means of the


on
ept of mi
rostates leading to unique ele
tri
 potential patterns. These pat-

terns and their transitions are task spe
i�
. This 
on
ept of temporal swit
hing

of quasi-spatial stable states 
an be 
oupled to the idea that information pro-


essing between di�erent areas of the brain within a similar dynami
 fun
tional

state, is fa
ilitated by the phase syn
hronised a
tivity of the di�erent neural

groups. This allows us to obtain a more 
omplete temporal-frequen
y repres-

entation of the EEG 
onne
tivity when a 
ognitive task is being performed.

This fo
us on the transitions of phase syn
hrony provides a new perspe
tive

to gain a deeper understanding of the brain 
onne
tivity and its dynami
s.

Based on this idea of mi
rostates and their temporal swit
hing patterns,

instead of using ele
tri
 potentials based topographies, the proposed method

44
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divides the temporal line into a small number of states whi
h are pre-de�ned

by a 
lustering algorithm. This small number of states is phase syn
hronized

and stable in time in the order of millise
onds before swit
hing to the next

state. The out
ome of this methodology will help us understand the temporal

sequen
e des
ribing the temporal evolution of 
onne
tivity linked to spe
i�


tasks and stimuli. Consequently, it 
an yield a more a

urate and reliable

methodology for task 
lassi�
ation on MI-based BCI uses.

In order to establish this �nite number of states, namely syn
hrostates [154℄,

two main steps are needed. Firstly, the extra
tion of temporal and frequen
y

information is a fundamental stage of the algorithm to establish the temporal

evolution of the 
onne
tivity from the EEG re
ordings. The next step forward

is to try to understand the underlying patterns hidden in these phase di�eren
e

sets of measures. For this purpose a 
lustering algorithm to determine the

existen
e and number of syn
hrostates is applied. Throughout this 
hapter

both methodologies are explained in detail together with the experimental

proto
ol followed to obtain the EEG re
ording dataset.

3.1 Experimental proto
ol

So far, most of the resear
h on MI based BCI is fo
used on �nding new signal

pro
essing algorithms to enhan
e their performan
e. In this work, the aim is

not only to �nd a novel signal pro
essing methodology but also to dis
over

a more user-friendly and feasible stimulus that will help to redu
e the BCI

illitera
y rate a
hieving 
omparable performan
e with 
lassi
 paradigms. Fa
e

per
eption involves some spe
i�
 proprieties not existing in other visual obje
t

per
eptions. In addition, re
ent studies have demonstrated that fa
e per
ep-

tion 
an enhan
e stronger responses a
ross subje
ts [93℄ and a
hieve ex
ellent

performan
e when applied together to evoked EEG responses in BCI spellers'

appli
ations [155, 156℄. After all these �ndings, the present study is devoted

to investigating the e�e
t of fa
e per
eption for the �rst time on MI based BCI

fusing stimuli of s
hemati
 emotional fa
es.

3.1.1 Subje
ts

Ten healthy volunteers, 8 males and 2 females, with an age range between 20

and 53 years (mean age of 31 ± 10.01) parti
ipated in the experiment. They

were right handed with one ex
eption and their sight was normal or 
orre
ted to

normal. The re
ruitment was 
arried out by means of publi
 announ
ements,
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no sele
tion 
riteria were used and no monetary 
ompensations were o�ered

to the parti
ipants. Written 
onsent was signed by ea
h parti
ipant after they

were informed of the nature of the study. The University of Warwi
k Ethi
al


ommittee approved the study (REGO-2014-821). In parti
ular, the 
orres-

ponding ethi
al 
ommittee for the studies undertaken within the S
ien
e and

Medi
ine Fa
ulties involving human parti
ipants at the University of Warwi
k

is named Biomedi
al & S
ienti�
 Resear
h Ethi
s Committee (BSREC).

3.1.2 Experimental montage and equipment

During the experiment parti
ipants were seated in a 
omfortable 
hair in a

quiet room. A keyboard 
onne
ted to a laptop was pla
ed over their legs so

they 
ould use their left and right index �ngers to press the appropriate keys

during the task. In addition, a 
omputer monitor was pla
ed on a desk in front

of them where the series of emotional fa
es was shown. This monitor was also


onne
ted to the laptop as the main part of the whole set up array 
ontrolling

the timing and saving of the EEG re
ordings.

For re
ording the EEG signals, 62 a
tive g.LADYbird ele
trodes already

mounted in an ele
trode 
ap (g.GAMMACap) were used. The 
ap and the

laptop were 
onne
ted by an EEG ampli�er (g.HIamp) all from g.Te
 [67℄.

Ele
trodes on the 
ap were positioned a

ordingly to the 10-20 
oordinates as

shown in �gure 2.10. To help the re
ording of the brain a
tivity, a 
ondu
tive

gel was pla
ed between the ele
trode and the user's s
alp.

The ampli�er and the 
ues program were managed by Simulink

©

with in-

home spe
i�
 libraries. Data were a
quired at a sampling frequen
y of 256Hz

and referen
ed online by subtra
ting the averaged referen
es from two ele
-

trodes pla
ed on the earlobes. Furthermore, an online not
h �lter (50Hz) and

online Butterworth band pass �lter (0.5-100Hz) were used to attenuate the

e�e
ts of the power line and mus
le artifa
ts respe
tively, both available from

the re
ording equipment's Simulink libraries. EEG re
ordings were saved to a

Matlab

©

�le.

3.1.3 Experimental task

The stimuli used for this experiment are based on the s
hemati
 emotional

fa
ial expressions used by Babiloni and his team at [157℄, a study about 
on-

s
ious per
eption of emotional fa
ial expressions. Simple s
hemati
 fa
es were

used, widely known as emoti
ons, over a bla
k ba
kground. The emoti
ons,
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with a green ba
kground 
olour, 
ould represent two types of emotions: hap-

piness or sadness. These emotions are expressed by the fun
tion of the line

des
ribing the mouth: an up-right 
urve for happy and down-right line for sad

expression.

Figure 3.1: Time-s
heme of a typi
al trial. The sequen
e of the stimuli was as follows: (1)

masked stimulus lasting between 1.25 to 1.75; (2) target stimulus (50% probability for ea
h

type of emotion) appearing on the 
entre of the s
reen for 0.5s; (3) bla
k s
reen with a

random duration of 1.25 or 3s where the parti
ipants were asked to perform the imaged

movement of their right or left hand a

ording to the emotion shown just before; (4) 
ross

over a white 
ir
le indi
ating the end of the trial and where the parti
ipants have to press

the 'm' or 'z' keys in 
onsonan
e with the emotion, hen
e imagined movement, depi
ted by

the s
hemati
 fa
e.

The temporal s
heme of the proto
ol for a typi
al trial is shown in �gure

3.1. It was as follows: a masked fa
e lasting from 1.25s to 1.75s on the s
reen,

a target stimulus for half a se
ond showing one of the possible emotions -happy

or sad- with equal probability of appearan
e; a bla
k s
reen with a random

duration of 1.25 or 3s to avoid habitual predi
tion and �nally a 
ross lasting

one se
ond to indi
ate to the parti
ipant the end of the trial and the beginning

of the new one. Parti
ipants were asked to imagine the movement of squeezing

a ball with their right hand or left hand during the duration of the bla
k

s
reen without a
tually performing any a
tual motor movement. The hand to

perform the imaged movement was determined by the emotion shown by the

s
hemati
 fa
e, happiness means right hand and sadness left hand. In order

to keep the attention of the parti
ipant to a maximum level they were asked

to press the key 'z' or 'm' a

ordingly to the fa
e they visualised previously,
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happy and sad respe
tively. The tasks were divided into 4 blo
ks of 78 trials

ea
h, 312 trials in total, with around 5 minutes break between them as shown

in �gure 3.2.

The rea
tion time for ea
h parti
ipant was re
orded. It was measured as

the time elapsed from the appearan
e of the 
ross, indi
ating the end of the

trial and until the 
orresponding key is pressed. In order to verify the alert-

ness of the parti
ipants during the experiment and any possible di�eren
es

between happy and sad fa
e responses a t-test was performed. The rea
tion

times and the number of hits, indi
ated by the right key being pressed for

ea
h 
ondition, were tested 
omparing a
ross 
onditions without �nding any

relevant di�eren
e. Therefore, the response of the parti
ipants was similar for

both 
onditions. The averaged number of hits, over 85% for both tasks, also

indi
ates good 
on
entration from the parti
ipants.

Figure 3.2: Experimental blo
ks sequen
e. The 
omplete experiment was divided into four

blo
ks of 78 trials ea
h with same number of o

urren
es for both emotions, happiness and

sadness. The breaks between blo
ks were around �ve minutes ea
h and were di
tated by

the user. .

3.1.4 Pre-pro
essing

EEG trials were divided into the two 
onditions, thinking right hand and left

hand respe
tively. A �rst sele
tion of trials was done by eliminating those ones

with amplitudes over a 200μV threshold, a normal threshold used for EEG pre-

pro
essing. Afterwards a visual inspe
tion of the whole dataset of trials and

parti
ipants was performed and those trials a�e
ted by blinking or any other

kind of mus
le movement were eliminated be
ause were 
onsidered artifa
ts.

Finally artifa
t-free trials were divided into one se
ond length epo
hs for ea
h


ondition lasting from 100ms before stimuli onset to 900ms after.
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3.2 Methodology

Syn
hronisation was originally introdu
ed to des
ribe two 
oupled harmoni


os
illators into the physi
s �eld. Some examples 
an be extra
ted from daily

life, su
h as two pendulum 
lo
ks moving in a 
ommon beam will �nish syn-


hronised. The idea of syn
hrony is also applied to the medi
al area. For

example, to 
ontrol abnormal respiration of a patient by for
ing syn
hron-

isation with a ventilator moving at a spe
i�
 frequen
y or for the study and


omprehension of s
hizophrenia [158℄. Despite the fa
t that the 
on
ept of syn-


hronisation was earlier greatly highlighted by experimental results with mi
ro

ele
trodes pla
ed on animals, it was not until 1999 that a pra
ti
al method was

proposed for the measurement of frequen
y-spe
i�
 syn
hronisation between

two neuroele
tri
 signals [139℄. Given two signals s1 (t)and s2 (t) and their


orresponding instantaneous phase ϕs1 (t) and ϕs2 (t), it 
an be said that they

are lo
ked if:

ϕs1 (t)− ϕs2 (t) = constant (3.1)

Two major approa
hes to extra
ting the instantaneous phase are the Hilbert

transform and the 
omplex Wavelet transform. Both methods transform real

values from the time domain fun
tions into 
omplex values. Those methods

based on Hilbert transforms obtain the analyti
al form of the signal. For a

given signal, its analyti
 signal is a 
omplex fun
tion of the time de�ned as

[159℄:

ŝ1 (t) = s1 (t) + j ∗ s̃1 (t) = |ŝ1 (t)| ejϕ(t), (3.2)

where s̃1 (t) is the Hilbert transform of the signal 
al
ulated as indi
ated in

3.3 and |ŝ1 (t)| is the magnitude or envelope de�ned by 3.4.

s̃1 (t) =
1

π

+∞
ˆ

−∞

s1 (τ)
1

t− τ
dτ, (3.3)

|ŝ1 (t)| =
√

s21 (t) + s̃21 (t). (3.4)

From equation 3.2, the estimation of the instantaneous phase is performed

by ϕ1 (t) = arctan (s̃1 (t) /s1 (t)) [160℄. However, a �ne bandpass �ltering of the
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signal around the frequen
y of interest is needed. On the other hand, 
omplex-

valued wavelet methods provide phase information in the time and frequen
y

domains , therefore they are more suitable for non-stationary signals. This is

parti
ularly true for the s
ope of this work, where the temporal transitions of

phase syn
hronisation are being studied in di�erent frequen
y bands. There

are several 
omplex wavelet families su
h as the 
omplex Gaussian, 
omplex

Morlet, 
omplex Frequen
y B-Spline or Complex Shannon. Another approa
h

similar to wavelet transform, also preserving time and frequen
y information,

has been re
ently used in [21℄. This new time-varying phase estimation method

is based on the Redu
ed Interferen
e Riha
zek (RID-Riha
zek) distribution

belonging to Cohen's 
lass. The main di�eren
e between this novel method

when 
ompared to the CWT is that the phase estimations area is uniformly

distributed. For the proposed method here the well-known properties and

extended use of the CWT based on 
omplex Morlet mother wavelet is sele
ted

[154℄.

3.2.1 Instantaneous phase di�eren
e

The �rst step in quantifying the phase syn
hronisation between two signals


onsists of the estimation of the instantaneous phase of ea
h individual signal

for ea
h time and frequen
y of interest [105℄. On
e those phase di�eren
es

are 
al
ulated for ea
h 
ase, the phase di�eren
e between two signals 
an be


al
ulated [21℄. If the instantaneous phase di�eren
e between the two signals,

s1 (t)and s2 (t) remains 
onstant for a period of time it 
an be said that these

two signals are in syn
hrony. The proposed method to 
al
ulate the instant-

aneous phase for ea
h of the EEG ele
trodes used is the CWT, as mentioned

above.

A
ross the di�erent mother 
omplex wavelets the Morlet wavelet is one of

the most frequently used to work with biologi
al signals. For example, in

the study of 
erebral �ow auto-regulation [161℄ or EEG signals [162℄. Another

reason to use the 
omplex Morlet wavelet is that it gives a good time lo
ation in

the time domain. In addition, it 
an obtain the amplitude and phase of neural

a
tivity simultaneously. Therefore, it is able to investigate the syn
hronisation

between neural a
tivities simultaneously re
orded at two di�erent sites [163℄.

The 
omplex Morlet wavelet fun
tion is de�ned as illustrated in the equation

3.5. A re
ent investigation of the use of harmoni
 wavelet fun
tion, whi
h

is similar to the ordinary dis
rete wavelet transform, was performed to study

phase syn
hronisation whi
h obtained similar results to when a Morlet wavelet
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is used. However, this is not as widely tested as the 
omplex Morlet Wavelet

for the study of phase syn
hronisation [164℄. The 
omplex Morlet wavelet

fun
tion is de�ned by equation 3.5. The values of the bandwidth parameter,

Fb, and 
entral frequen
y, Fc, were sele
ted following the 
riteria adopted in

[154℄, being 1Hz and 1.5Hz respe
tively.

ψM (t) =
1√
πFb

e2jπFcte
− t2

Fb . (3.5)

The methodology followed here is based on the proposed method in the

study of Autism Disorders by Wasifa et al. [154℄. In order to 
al
ulate the

instantaneous phase of ea
h signal in this 
ase, ea
h ele
trode used for re
ording

the EEG signal, the 
omplex Morlet wavelet is applied to ea
h one of them.

The result of this 
omputation is a 
omplex series of fun
tions of time (t) and

s
ales (s) for ea
h one of the N available 
hannels, WT (s, t). The relationship

between the s
ales and their 
orresponding approximated frequen
ies 
an be


al
ulated by3.6:

f =
Fc

s ∗Δ , (3.6)

where Δ is the sampling period and f is the pseudo frequen
y asso
iated to

the s
ale s [165℄. The phase of a 
omplex signal 
an be determined by the

inverse tangent between its imaginary and real part. If the imaginary part

of WT i (s, t) is expressed by Im [WT i (s, t)] and real part as Re [WT i (s, t)] the

instantaneous phase ϕi (s, t) of WT i (s, t) 
an be 
omputed by equation (3.7).

ϕi (f, t) = arctan

(

Im (W T i (s, t))

Re (W T i (s, t))

)

. (3.7)

On
e the instantaneous phase di�eren
e is obtained for ea
h EEG 
han-

nel, the next step is to 
al
ulate the instantaneous phase di�eren
e between

ea
h pair of ele
trodes, time sample and frequen
y bin. The phase di�eren
e

between two 
hannels, i and j , 
an be obtained following the equation in (3.8).

△ϕi,j (s, t) = |ϕi (s, t)− ϕj (s, t) |. (3.8)

When applying equation (3.8) for a time instant t

1

and a s
ale s

1

for ea
h

pair of EEG 
hannels, the result is a symmetri
 square matrix. The main

diagonal is zero as it represents the phase di�eren
e of a 
hannel with itself.

Figure 3.3 illustrates an example of these matri
es for a spe
i�
 time t

1

and

s
ale s

k

. The aim is to study the instantaneous phase di�eren
e over time

for a spe
i�
 band of interest. Consequently, an averaging step a
ross all
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the frequen
y matri
es within the band of interest 
an be done, yielding an

averaged di�eren
e of phases whi
h is only a fun
tion of time. If the set

of frequen
y bins or s
ales for a frequen
y band of interest F is de�ned by

F = {s1, s2, ..., sP} then the averaged di�eren
e of phases 
an be 
al
ulated by

(3.9).

△ϕF (t) =
1

P

P
∑

i=1

△ϕ (si, t) (3.9)

Figure 3.3: Stru
ture of an instantaneous phase di�eren
es matrix at time t

1

and s
ale s

k

.

Adapted from [154℄.

A graphi
 s
hemati
 representation of this averaging step is illustrated on

the top part of the �gure 3.4. Subsequently, this averaging step should be

repeated for ea
h time instant t = {t1, t2, ..., tn}. The result of repeating this

averaging pro
edure is a set of matri
es {△ϕF (t1) ,△ϕF (t2) , ...,△ϕF (tn)}
des
ribing the 
omplete frame of the temporal evolution of the phase di�eren
e.

Ea
h of these symmetri
 matri
es has dimensions of N by N, N being the

number of 
hannels as mentioned previously. Figure 3.4 illustrates a graphi


summary of the averaging pro
ess for a time instant t and a frequen
y band F

for ea
h pair of ele
trodes and the result of repli
ating the pro
ess for ea
h time

t with the temporal range of interest. The result is a set of square symmetri


matri
es for ea
h time instant t for a spe
i�
 frequen
y band of interest F and

for ea
h pair of EEG 
hannels than 
an be seen on the bottom of the �gure.
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Figure 3.4: S
heme of the two �nal steps to 
al
ulate the instantaneous phase di�eren
e over

time. The upper part represents the average step in order to 
al
ulate the phase di�eren
es

in a spe
i�
 band of interest F at a time t △ϕF (t). The repetition of this step for ea
h time

instant t = {t1, t2, ..., tn} is shown at the bottom of the �gure. The �nal result is a set of

symmetri
al square matri
es for ea
h time instant t giving the 
omplete information of the

phase di�eren
es over time for ea
h EEG 
hannel pair. N is the number of EEG 
hannels.

Adapted from [154℄.
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3.2.2 Clustering

On
e the phase di�eren
e matri
es along a spe
i�
 frequen
y band and time

interval are obtained, the next logi
al step is to investigate if there is any

underlying pattern in the phase di�eren
es. In order to dis
over signi�
ant

patterns of features in the phase syn
hronisation obtained from the algorithm

des
ribed in the previous se
tion, a pattern re
ognition te
hnique is needed.

The k-means [166℄ 
lustering algorithm is the most widely used partitional


lustering algorithm. It has appli
ations a
ross a broad range of data min-

ing problems [167℄ as it is one of the simplest and most e�
ient 
lustering

algorithms that exists in the �eld of data 
lustering.

k-means 
lustering assumes that the number of underlying 
lusters is known.

It starts by randomly 
hoosing k points as the initial 
entroids. Posteriorly

ea
h point of the initial dataset is assigned to the 
losest 
entroid based on a

spe
i�
 proximity measure, widely known as a 
ost fun
tion. On
e the 
lusters

are formed, the 
entroids for ea
h one of the 
lusters are updated. These two

steps will be iteratively repeated until the 
entroids do not 
hange any more

or a 
hosen 
onvergen
e 
riterion is a
hieved.

The 
ost fun
tion sele
ted for this parti
ular study is based on the Eu
lidean

distan
e as dissimilarity measure. Some other proximity measures whi
h 
an

also be used are Manhattan distan
e or Cosine similarity [168℄. The 
hoi
e 
an

signi�
antly a�e
t the 
entroid assignment and the quality of the �nal sele
tion.

In this 
ase Eu
lidean distan
e was sele
ted as it is the most popular 
hoi
e

and 
onsequently the more tested option [169℄.

J (θ, U) =

N
∑

i=1

k
∑

j=1

uij‖xi − θj‖2 (3.10)

The 
ost fun
tion used within this 
hapter is de�ned as equation 3.10, where

θ =
[

θT1 , . . . , θ
T
k

]T
are the 
luster representatives or simply representatives 
or-

responding to points of the given dimensional spa
e, ‖.‖ stands for the Eu
-

lidean distan
e, xi is the i th element of the dataset χ = {x1, x2, . . . , xN} and

u

ij

=1 if xi lies 
loser to θj ; otherwise u
ij

=0 [170℄. In this 
ase the dataset χ

is the 
omplete range of instantaneous phase di�eren
es for ea
h pair of EEG

ele
trodes as a fun
tion of time and averaged over a parti
ular frequen
y band

of interest 
al
ulated as explained in se
tion 3.2.1.

The two major fa
tors that 
an a�e
t the k-means algorithm and 
on-

sequently may have an impa
t on its performan
e are: the 
hoi
e of the initial


entroids and the estimation of the number of 
lusters. k-means 
annot guaran-

tee the 
onvergen
e to a global minimum of the 
ost fun
tion, returning instead
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the 
lusters 
orresponding to the lo
al minima [170℄. To avoid this initialisa-

tion issue, several initialisation methodologies have been proposed. Hartigan

and Wong proposed a method based on the nearest neighbour density, Milligan

used the results obtained by means of agglomerative hierar
hi
al 
lustering or

the popular k-means++ whi
h 
arefully sele
ts the initial 
entroids following

a simple-probability approa
h [169℄. In this work, the 
riterion adopted to


ir
umvent this handi
ap is to establish a number of random initialisations for

ea
h one of the 
luster numbers sele
ted to run the 
lustering algorithm. The

best results of the k-means algorithm for ea
h 
hoi
e of k are sele
ted from the

n di�erent random initialisations. The number of random initialisations were

sele
ted as 10, 50 and 100. The 
hoi
e of 3 di�erent numbers of randomisations

were 
onsidered to study the in�uen
e of the initial 
entroids estimation on

the �nal result of the 
lustering algorithm.

Table 3.1: k-means 
lustering algorithm pseudo
ode.

k-means 
lustering algorithm

1. Sele
t number of 
lusters range, m=[2 10℄

2. Repeat for ea
h m

i

� Repeat for ea
h n

j

(n=1 to 10, 1 to 50 or 1 to 100)

- Random initialisation of initial 
entroids

- Form 
lusters by assigning ea
h point to its 
losest 
entroid (
ost fun
tion J (θ, U))
- Re-
ompute the 
entroids

� Until 
onvergen
e 
riterion is met

� Sele
t and storage the minima of J (θ, U)
3. Plot J (θ, U) versus m
4. Sele
t the m

i

value showing the most signi�
ant �knee�.

In order to deal with the se
ond problem, the sele
tion of the number of


lusters, an initial range of possible 
lusters m = [mmin, mmax] that 
an de�ne

perfe
tly the data set χ is de�ned [170℄. This initial range is set between 2

and 10 
lusters. For ea
h one of this possible range of 
lusters, the algorithm

is randomly initialised n times, 
al
ulating and saving the minimum value of

the 
ost fun
tion J (θ, U). The simplest way to estimate the right number

of 
lusters is by plotting the stored values of the 
ost fun
tion against the


orresponding number of 
lusters m. If the plotted graphi
s shows a signi�
ant

lo
al 
hange, popularly known as signi�
ant �knee�, at a 
lustering number m

i

,

it 
an be said that the optimal number of 
lusters for the studied dataset will

be m

i

. The absen
e of a signi�
ant �knee� on the graph is a 
lear indi
ator

of the non-
lustering stru
ture of the parti
ular dataset [170℄. Another issue

than 
an emerge when using this methodology to determine the right number

of 
lusters is the possibility that more than one lo
al 
hange or �knee� 
an
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appear in the graphi
 of the 
ost fun
tion versus the number of 
lusters m. In

this 
ase the 
onvention followed within the ma
hine learning literature is to

sele
t the earliest and most prominent �knee� as the likely one to determine

the right number of 
lusters [134, 154℄. The steps of the k-means 
lustering

algorithm des
ribed in this se
tion are listed in table 3.1.

Prior to the appli
ation of the in
remental 
lustering algorithm to the in-

stantaneous phase di�eren
es dataset, a pro
ess of unwrapping needs to be

done. It is demonstrated that the phase is 
ir
ular in nature, 
onsequently

phase di�eren
es are 
ir
ular too. The wavelet based instantaneous phase dif-

feren
es should always be between ± π to avoid this problem [134℄. In addition,

a normalisation pro
ess is performed a
ross all of the ele
trode pairs by means

of the maximum and minimum values of the instantaneous phase di�eren
e.

As a result of the normalisation pro
ess, all the transformed values will be

within the range [0,1℄. After these unwrapping and normalisation steps, the

instantaneous phase di�eren
es are ready to feed into the 
lustering algorithm.

The dataset χ is formed from all the instantaneous phase di�eren
es as 
al-


ulated in 3.9, χ = {△ϕF (t1) ,△ϕF (t2) , . . .△ϕF (tn)}. On
e this dataset is

unwrapped and normalized it is 
lustered along ea
h time instant t to invest-

igate the possible underlying patterns within a spe
i�
 frequen
y band. The


lustering algorithm results yield a right number of 
lusters k , those minimising

the 
ost fun
tion, and for ea
h one of these 
lusters, information regarding the


entroids and 
luster labels is saved. The 
luster labels with a length of n,

one label for ea
h time instant t , hold information about the state transitions.

Whereas the 
entroids give the averaged information for ea
h one of the k

states de�ned by the 
lustering algorithm [134℄.

Using this information, two types of graphi
s 
an be drawn. On one side, the


lustering labels for the k di�erent states explaining the dataset 
an be plotted

versus the time instants t = {t1, t2, . . . , tn} to explain in whi
h temporal instant

ea
h state o

urred and the transitions of su
h states along time. On the other

hand, the 
lustering 
entroids 
an be used to translate the unique states into

topographi
 maps. To outline these head topographies, �rstly an average of

the phase di�eren
e matri
es is 
al
ulated. As it is a symmetri
al matrix the

average 
an be done equally, taking a row or 
olumn average. Ea
h value

of this averaged step will be assigned a 
olour after a normalisation pro
ess

by means of maximum and minimum values. The assignation of the 
olours

is magenta tones for higher values, meaning larger averaged phase di�eren
e,

and orange for values showing a lower phase di�eren
e with the rest of the

ele
trodes.
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3.3 Results

The EEG data were 
olle
ted from 10 parti
ipants, 8 males and 2 females with

an age range between 20 and 53 years (mean age of 31 ± 10.01) during a motor

imagery task with emotional s
hemati
 fa
e as stimuli. Data were re
orded

from 62 EEG 
hannels at a 256Hz sampling frequen
y. Re
ordings were online

averaged and �ltered with a not
h �lter (50Hz) and a Butterworth �lter (0.5-

100Hz). The motor imagined tasks was squeezing the ball with the right or

left hand when the s
hemati
 fa
e showed happiness or sadness respe
tively as

shown in �gure 3.1. Posteriorly, the 
omplete dataset was visually inspe
ted

to eliminate those trials with artifa
ts, baseline 
orre
ted and divided into

epo
hs for the two task 
onditions, Thinking Right and Thinking Left. The

epo
h length was 1s, starting from 100ms pre-stimulus to 900ms post-stimulus.

The following step, on
e all the epo
hs with artifa
ts are reje
ted, is to

obtain the instantaneous phase di�eren
e between ea
h one of the pair of ele
-

trodes used for the register of the EEG as indi
ated in se
tion 3.2.1. The

CWT is applied to the dataset and the instantaneous phase for ea
h ele
-

trode is obtained as the argument between the imaginary and real parts of the

transformed signal. The phase di�eren
e between a parti
ular ele
trode for

ea
h time instant and frequen
y bin is obtained by subtra
ting the instantan-

eous phase of this ele
trode from the rest of the ele
trodes. This pro
edure

yields a square symmetri
 matrix as shown in �gure 3.3. These matri
es are

then averaged a
ross the number of trials under 
onsideration.

The study of MI tasks, in a

ordan
e with the literature, is always per-

formed in a spe
i�
 frequen
y band way. For this reason the set of instantan-

eous phase matri
es is averaged a
ross all the frequen
y bins within a 
hosen

frequen
y band of interest as indi
ated in 3.9. Repeating this averaging step

for ea
h time instant of the epo
h length results in a set of time-dependant

matri
es as shown in �gure 3.4. The frequen
y bands sele
ted to perform the

des
ribed algorithm are the alpha (α), beta (β), theta (θ) and gamma (γ)

bands. Refer to table 2.2 for more information regarding these frequen
ies.

The δ band is not 
onsidered for this se
tion as it does not present useful in-

formation for motor imagery tasks as it gradually diminishes with the age of

the subje
t. However, it is an important biomarker of a fun
tional de�
it of


erebral 
oordination and therefore as a state of fun
tional dis
onne
tion in

patients su�ering from s
hizophrenia [171℄.

The results in this se
tion are presented �rstly as an average a
ross parti-


ipants and se
ondly as individuals belonging to a population. For the �rst
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ase, the averaged instantaneous phase matri
es for ea
h parti
ipant were 
al-


ulated by averaging a
ross trials. Posteriorly, a se
ond average was performed

a
ross all subje
ts and time instants within a frequen
y band of interest. For

the se
ond 
ase only those averaged a
ross trials are needed. After this step

the pro
edure for both 
ases is the same, running the k-means 
lustering al-

gorithm explained in se
tion 3.2.2. The method of using a population average

and also 
onsidering this as an individual parti
ipant gives a wider point of

view regarding the temporal evolution of the phase di�eren
es and their inter-

relation.

The 
lustering algorithm applied to the dataset yielded a small number of


lusters explaining the underlying phase information along the length of the

epo
h of the EEG data. The parti
ularity of this �nite number of 
lusters is

that they remain stable in the order of millise
onds, they are phase syn
hron-

ised, and suddenly 
hange to a new, 
ompletely di�erent 
on�guration where

they remain stable again. This is 
learly identi�ed when the 
luster labels are

plot versus the time instants t . This transition plot re�e
ts the time evolution

of the states resulting from the 
lustering, when they remain stable and when

they swit
h to the next state. These semi-stable states were named syn
hro-

states, des
ribed for the �rst time by Wasifa et all at [134℄. During this work

the nomen
lature developed in that study will be followed.

3.3.1 Averaged population

In order to sele
t the optimal number of states underlying the dataset the

in
remental k-means algorithm was run for an in
remental number of 
lusters.

Figure 3.5 illustrates the results of performing the 
lustering algorithm in order

to 
al
ulate the optimal number of 
lusters k for the four frequen
y bands

under 
onsideration (θ, α, β and γ bands) and the two 
onditions or MI tasks

performed by the 
omplete population (Thinking R and Thinking L for the

right and left hand imagined movements respe
tively). The value of the 
ost

fun
tion, J, is dependent on the number of 
lusters and the dataset under


onsideration. A higher value indi
ates a less 
ompa
t 
luster. At this point it

is worth mentioning that the absolute value of the 
ost fun
tion J (θ, U) is not

relevant. The value however, of the number of 
lusters m at whi
h the 
ost

fun
tion presents a minimum value is the important parameter indi
ating the

optimal number of underlying 
lusters [23℄.
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Figure 3.5: Determination of the optimal number of underlying 
lusters k for an averaged

population. The di�erent plots show the 
lustering algorithms for the four frequen
y bands


onsidered for this study. For ea
h frequen
y band the algorithm was run for ea
h one of

the 
onditions or MI tasks, Thinking R and Thinking L.

The ele
tion of the optimal number of 
lusters will be determined by the

�rst and most signi�
ant lo
al minima or �knee� shown in the pi
ture and as

dis
ussed in se
tion 3.2.2. A

ording to this sele
tion 
riterion, the number of

unique states for the α, β and γ bands are determined by the �rst lo
al minima

of the 
ost fun
tion J (θ, U) at k=3. In the 
ase of the θ band, the knee is

not as 
lear as in the other three frequen
y bands studied. The �rst minimum

o

urs for k=2, however it 
an be argued that the most 
lear knee o

urs

at k=4. A higher number of 
lusters will in
rease the 
omplexity of a dataset

that 
an be explained with only two 
lusters. The larger the number of 
lusters

used, the more likely that at least one of the �physi
al� 
lusters will be split

into two or more �sub-
lusters� [170℄. Under this 
onsideration, the optimal

number of 
lusters for θ band is set to k=2. This almost negligible variation

in the number of states a
ross the frequen
y bands, between 2 and 3, may

be explained by the fa
t that they represent di�erent ba
kground pro
esses



60 CHAPTER 3. STUDYING PHASE SYNCHRONISATION: SYNCHROSTATES

exe
uting in parallel but that may not be related to these parti
ular 
ognitive

task [134℄.

The existen
e of a �nite number of syn
hrostates with a small variability

a
ross frequen
y bands, between 2 and 3 for both 
onditions, may lead to the


on�rmation of the existen
e of syn
hrostates for the explored bands.

On
e the optimal number of 
lusters has been de
ided, the 
luster 
entroid

points for the sele
ted k are used to generate head plot topographies for the

di�erent states determined by the 
lustering algorithm. This will graphi
ally

illustrate how the ele
trodes having a similar di�eren
e in phase are 
onne
ted

a
ross di�erent brain regions. The values are normalised between 0 and 1 for

visualisation purposes; where values near to 1 (magenta tones) mean a higher

phase di�eren
e for this ele
trode with respe
t to the rest of the ele
trodes. By


ontrast, lower values (
loser to 0, orange 
olours), indi
ate that the ele
trode

has smaller phase di�eren
e to the rest of the ele
trodes. In order to obtain

these phase di�eren
e 
ontour style topographies, �rstly it is ne
essary to re-

du
e the 
luster 
entroid matrix dimensions for ea
h state into an averaged

phase di�eren
e; for example row-wise. This highlights the fa
t that these

topographies are not the standard qualitative EEG plots showing an averaged

power over the s
alp. Both graphi
s are 
ompletely di�erent 
on
epts. A

standard qualitative EEG plot re�e
ts the ele
tri
al amplitude in voltage. By


ontrast, topographies illustrated in this 
hapter represent the averaged di�er-

en
e of phase within a spe
i�
 frequen
y band, represented by the 
entroids

resulting from the 
lustering algorithm.

In order to determine the in�uen
e of the number of randomisations from

the results of the 
lustering algorithm, three di�erent initialisation times were

sele
ted n=10, 50, 100. The optimal number of 
lusters remained the same for

the three di�erent values under test for the averaged population. However, the


lustering 
entroids 
hange with the number of initialisations as 
an be seen

from �gures 3.6 and 3.7 showing the 
lustered syn
hrostates topographies for

the α band with 10 and 100 random initialisations of the 
lustering algorithm.

A similar result is observed for the β band in �gures 3.8 and 3.9. It 
an be seen

that when a lower number of initialisations of the 
lustering algorithm is used,

n=10, the di�eren
es among the topographies of the three di�erent states are

larger, with one of the states representing those averaged phase di�eren
es


loser to zero (orange 
olours). The other two states hold the higher gross

phase di�eren
e values (magenta tones).
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Figure 3.6: Clustered syn
hrostates topographies showing the averaged phase di�eren
es

a
ross the di�erent areas of the brain related to a stimulus -spe
i�
 task for the α band and

n=10 random initialisations of the 
lustering algorithm. The headplots are illustrated for

two di�erent MI-tasks, Thinking R and Thinking L.

Figure 3.7: Clustered syn
hrostates topographies showing the averaged phase di�eren
es

a
ross the di�erent areas of the brain related to a stimulus -spe
i�
 task for the α band and

n=100 random initialisations of the 
lustering algorithm. The headplots are illustrated for

two di�erent MI-tasks, Thinking R and Thinking L.
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On the other hand, when 100 randomisations of the algorithm are performed

those di�eren
es among the states within the same stimulus tend to be
ome

more diluted. Finally, the 
ase with 50 random initialisations of the k-means


lustering algorithm generated similar topographi
 plots to when the number of

initialisations is set to 100. As the optimal number of syn
hrostates resulted in

the same number a
ross the four frequen
y bands, for all the randomisations,

adding to the fa
t that the 
omputational 
ost of using 50 or 100 di�erent

initial values for the representatives was 
onsiderably more expensive to lead

the same number of optimal 
lusters and that the aim of this work is to study

the temporal evolution of the states rather than the topography head maps,

the sele
tion of n=10 for the rest of the 
al
ulations was 
lear.

Figure 3.8: Clustered syn
hrostates topographies showing the averaged phase di�eren
es

a
ross the di�erent areas of the brain related to a stimulus -spe
i�
 task for the β band and

n=10 random initialisations of the 
lustering algorithm. The headplots are illustrated for

two di�erent MI-tasks, Thinking R and Thinking L.

Regarding the syn
hrostates results, from �gure 3.6 it is evident that the

topographies of all the syn
hrostates are very similar for the two di�erent

stimulus based tasks in the α band. A similar result is observed for the β band

in �gure 3.8 and the γ band in �gure 3.10 where the syn
hrostates plots for

both 
onditions are analogous. A result that 
an be expe
ted as both tasks,

Thinking R and Thinking L, are basi
ally within the same 
ategory. There
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is a similarity for all frequen
y bands regarding the distribution of the phase

di�eren
e values between the three syn
hrostates with one of the states having

the lower values as mentioned before. Between the other two states, it may

be appre
iated that one of them 
ontains slightly more magenta tones 
olours

than the other (state 1 for the α band and state 3 for the β and γ bands). It

is noti
eable that the syn
hrostates topographi
 plots for the γ and β bands

are pra
ti
ally a repli
ation, only di�ering slightly in some of the magenta

tones numeri
al values. This is 
onsistent with �ndings in [154, 172℄. The

small di�eren
e a
ross frequen
y bands may be due to the variability a
ross

trials, mental state of the subje
ts or any other similar ba
kground pro
ess

independent of the tasks.

Figure 3.9: Clustered syn
hrostates topographies showing the averaged phase di�eren
es

a
ross the di�erent areas of the brain related to a stimulus -spe
i�
 task for the β band and

n=100 random initialisations of the 
lustering algorithm. The headplots are illustrated for

two di�erent MI-tasks, Thinking R and Thinking L.

3.3.1.1 Exploring transition features of syn
hrostates

The exploration performed on the syn
hrostates led to a �nite number of syn-


hrostates for all frequen
y bands. The topographi
 maps of the averaged

phase di�eren
e 
lustered syn
hrostates were similar a
ross the two task 
on-

ditions and between the various ranges of frequen
y bands studied. In this

se
tion an examination of the time transitions for ea
h one of the three syn-
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hrostates linked to a spe
i�
 stimulus is performed. In addition, the number

of times that ea
h one of these states o

urs for ea
h band and task 
ondition

is 
al
ulated. In order to perform this investigation, the 
luster labels resulting

from ea
h 
ondition and frequen
y band are plotted versus time for the whole

length of the epo
h, ranging from 100ms before the stimuli onset to 900ms

afterwards. In the same way, based on the 
luster labels, the number of tem-

poral instants for ea
h state are listed for di�erent groups of time windows.

Firstly the number of o

urren
es for the 1s length are 
omputed. Then the

time interval is divided into three smaller windows: 100ms pre-stimulus, 500ms

representing the time when the 
orresponding stimulus is shown on the s
reen

and the last, 400ms where the parti
ipant is asked to perform the imagined

movement. The third group of time intervals is fo
used on the �rst 500ms

after the stimulus onset, this elapsed time is grouped into 100ms sub-intervals.

As an illustrative example of the last two 
ases, we refer to �gures 3.11 and

3.12 for the three time windows whose divisions are indi
ated by the red lines

and �gure 3.13 for the last 
ase where the extra dotted red lines indi
ate the

100ms time sub-intervals.

Figure 3.10: Clustered syn
hrostates topographies showing the averaged phase di�eren
es

a
ross the di�erent areas of the brain related to a stimulus -spe
i�
 task for the γ band and

n=10 random initialisations of the 
lustering algorithm. The headplots are illustrated for

two di�erent MI-tasks, Thinking R and Thinking L.
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The previously mentioned �gures, 3.11, 3.12 and 3.13 represent the swit
h-

ing pattern over time for the α, β and γ bands respe
tively. For all three

�gures, the top graphs refer to the Thinking R 
ondition and the bottom one,

to the Thinking L 
ondition. Contrary to the results of the head-plot maps,

the transition patterns over time are 
learly di�erent between the two stimuli

and also a
ross the di�erent frequen
y bands. These �ndings ratify the theory

that the syn
hrostates are stimuli-spe
i�
 in nature [172℄.

Figure 3.11: Temporal evolution of the 
lustered syn
hrostates for the α band for both


onditions, Thinking R (top) and Thinking L (bottom). The red lines indi
ate the time

instants of the stimulus onset and o�set respe
tively.

Figure 3.12: Temporal evolution of the 
lustered syn
hrostates for β the band for both


onditions, Thinking R (top) and Thinking L (bottom). The red lines indi
ate the time

instants of the stimulus onset and o�set respe
tively.
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Figure 3.13: Temporal evolution of the 
lustered syn
hrostates for γ band for both 
ondi-

tions, Thinking R (top) and Thinking L (bottom). The 
ontinuous red lines indi
ate the time

instants of the stimulus onset and o�set respe
tively and the dotted red lines re�e
ts 100ms

intervals within the 500ms that the stimulus is shown on the s
reen to the parti
ipants.

It 
an be seen from these �gures that the syn
hrostates remain stable for a

few millise
onds and suddenly 
hange to the next state. This abrupt transition

between the di�erent states is in agrement with the results 
on
erning the

behaviour of mi
rostates in [126℄. In [23℄ it is suggested that time duration

patterns for ea
h syn
hrostate may be indi
ative of the time required for the

brain system to perform a subtask, assuming beforehand that a task 
an be

split into a set of subtasks.

Comparing the transition plots (�gures 3.11, 3.12 and 3.13) a
ross the

ranges of frequen
y bands analysed in this work, the redu
ed number of 
hanges

between states is noti
eable in the α band versus the other two range of fre-

quen
ies. It is 
on�rmed when the number of transitions a
ross syn
hrostates

is 
omputed, as 
an be observed from table 3.2. In the α band, (�gure 3.11)

both 
onditions start in di�erent states, 2 and 3 for Thinking R and L 
ondi-

tions respe
tively. The di�erent initial states, for the di�erent emotional fa
es,

is in line with previous �ndings [134℄, where fa
e per
eption tasks were studied

from patients su�ering from Autism Spe
trum Disorder and a 
ontrol group.

It may be explained by the di�erent pro
essing pathways a
ross parti
ipants of

the image prior to the stimulus onset or it may be be
ause of any other under-

lying pro
ess o

urring in parallel and not related to the task. However, the β

and γ bands transition patterns start at state 3 for both 
onditions. However,
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the transition s
heme between frequen
ies soon diverges, remaining 
onsider-

ably di�erent over time. In the same manner, there is a marked di�eren
e

between 
onditions within a spe
i�
 frequen
y band. In the α and γ bands, it


an be seen from sub-tables 3.2b and 3.2
 than the state were both 
onditions

spend more time is the se
ond one. In 
ontrast for the β band the maximum

o

urren
e state varies between both stimulus-linked 
onditions, being state 1

for Thinking L and state 3 for Thinking R.

Table 3.2: Number of o

urren
es for ea
h one the three syn
hrostates for the α, β and γ
bands with two di�erent 
onditions, Thinking R and Thinking L when the 
omplete length

of the epo
h is 
onsidered.

(a) α band


ondition

state

1

state

2

state

3

Thinking R
103 117 36

Thinking L
30 129 97

(b) β band


ondition

state

1

state

2

state

3

Thinking R
89 68 99

Thinking L
103 70 83

(
) γ band


ondition

state

1

state

2

state

3

Thinking R
44 154 58

Thinking L
66 133 57

Table 3.3 illustrates the same idea as Table 3.2, but this time the number of

o

urren
es for ea
h syn
hrostate, 
ondition and frequen
y band are 
ounted

by dividing the length of the one se
ond epo
h into three di�erent intervals to

study the syn
hrostate transition s
heme evolution before the stimulus onset

(-100ms to 0ms), during the time interval the stimulus lasted on the s
reen

(0ms to 500ms) and during the period of time given to the user to perform the


orresponding imagined hand movement (500ms to 900ms). It is remarkable

that for the pre-stimulus interval, the transitions are almost zero with the ex-


eption of the γ band Thinking R 
ondition where the transitions alternatively


hange between states 2 and 3. This behaviour may be explained by the de-

mand for 
omplex pro
essing being lower during the pre-stimulus period than

afterwards when a 
ognitive task is performed by the user.

Table 3.4 shows the number of times that ea
h one of the three syn
hrostates

o

ur in intervals of 100ms from the stimulus onset (0ms) to the stimulus o�set

(500ms). It is noti
eable that usually only two out of three syn
hrostates are

present in ea
h one of the 100ms intervals for both 
onditions and frequen
y

bands.
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Table 3.3: Number of o

urren
es for ea
h one the three syn
hrostates for the α, β and γ
bands with two di�erent 
onditions, Thinking R and Thinking L when the epo
h length

is divided into three di�erent time intervals: -100ms to 0ms, from 0ms to 500ms, 500ms

to 900ms. The se
ond time interval is the total duration of the presen
e of the stimulus

-s
hemati
 emotional fa
e- is in the s
reen.

-100 to 0ms 0ms to 500ms 500ms to 900ms

(a) α band


ondition

state

1

state

2

state

3

Thinking R
0 25 0

Thinking L
0 0 25


ondition

state

1

state

2

state

3

Thinking R
0 91 36

Thinking L
30 26 71


ondition

state

1

state

2

state

3

Thinking R
103 0 0

Thinking L
0 103 0

(b) β band


ondition

state

1

state

2

state

3

Thinking R
20 0 5

Thinking L
0 0 25


ondition

state

1

state

2

state

3

Thinking R
32 13 82

Thinking L
71 23 33


ondition

state

1

state

2

state

3

Thinking R
37 55 11

Thinking L
32 47 24

(
) γ band


ondition

state

1

state

2

state

3

Thinking R
1 10 14

Thinking L
3 21 1


ondition

state

1

state

2

state

3

Thinking R
17 75 35

Thinking L
20 56 51


ondition

state

1

state

2

state

3

Thinking R
26 69 8

Thinking L
43 55 5

Table 3.4: Number of o

urren
es for ea
h one the three syn
hrostates for the α, β and γ
bands with two di�erent 
onditions, Thinking R and Thinking L when the the period of the

stimulus on the s
reen is divided into 100ms intervals.

α band β band γ band

(a) 0ms to 100ms


ondition\state 1 2 3

Thinking R 0 26 0

Thinking L 0 0 26


ondition\state 1 2 3

Thinking R 9 0 17

Thinking L 2 7 17


ondition\state 1 2 3

Thinking R 0 18 8

Thinking L 3 23 0

(b) 100ms to 200ms


ondition\state 1 2 3

Thinking R 0 25 0

Thinking L 6 0 19


ondition\state 1 2 3

Thinking R 11 0 14

Thinking L 19 5 1


ondition\state 1 2 3

Thinking R 0 16 9

Thinking L 9 16 0

(
) 200ms to 300ms


ondition\state 1 2 3

Thinking R 0 9 17

Thinking L 10 2 14


ondition\state 1 2 3

Thinking R 0 0 26

Thinking L 23 0 3


ondition\state 1 2 3

Thinking R 3 11 12

Thinking L 2 18 6

(d) 300ms to 400ms


ondition\state 1 2 3

Thinking R 0 8 18

Thinking L 12 5 9


ondition\state 1 2 3

Thinking R 0 0 26

Thinking L 13 0 13


ondition\state 1 2 3

Thinking R 14 6 6

Thinking L 6 0 20

(e) 400ms to 500ms


ondition\state 1 2 3

Thinking R 0 24 1

Thinking L 2 19 4


ondition\state 1 2 3

Thinking R 12 13 0

Thinking L 14 11 0


ondition\state 1 2 3

Thinking R 0 24 1

Thinking L 0 0 025



69 CHAPTER 3. STUDYING PHASE SYNCHRONISATION: SYNCHROSTATES

3.3.2 Individual subje
ts

The results presented in the previous se
tions, topographi
 maps and trans-

itions between syn
hrostates plots, are based on the averages a
ross parti-


ipants' phase di�eren
es. The aim of this se
tion is to explore the inter-

subje
t variability regarding the optimal number of syn
hrostates a
ross the

diversity of frequen
y bands under s
rutiny. The pro
edure is exa
tly the same

to the one followed for the averaged population 
ase. For ea
h one of the par-

ti
ipants, the phase di�eren
e matri
es were obtained as explained in 3.2.1.

Then, the iterative in
remental k-means 
lustering algorithm was applied to

the set of matri
es for ea
h individual instead of on the averages as before. The


lustering algorithm explained in se
tion 3.2.2 is run for the ten parti
ipants,

both 
onditions and the four frequen
y bands. The results for ea
h one of

these 
ombinations is analysed based on statisti
al methods su
h as median

and quartile ranges to illustrate the variability in a box plot.

Figure 3.14 shows the number of optimal syn
hrostates for ea
h one of the

10 parti
ipants in the study for both 
onditions and all frequen
y bands. The

box plot indi
ates with a red 
ross the ex
luded outliers. The blue box re�e
ts

the inter-quartile ranges. The solid red line in the middle of the blue box is the

median and the bla
k dashed lines indi
ate the maximum and minimum values

for ea
h 
ase. It 
an be seen from the �gure that the number of syn
hrostates

remains between 3 and 6 for this assembly of subje
ts, for both 
onditions

and three out of four of the frequen
y bands. In the 
ase of the θ band

the �nite range of syn
hrostates lies between 3 and 6 for the Thinking R


ondition but a redu
ed range for the Thinking L, between 2 and 4. A

ording

to these numbers, it 
an be said that the variability in the optimal number

of syn
hrostates for the individual subje
ts when 
ompared with the averaged


ase results is not signi�
ant. These slight variations 
an lead to the idea

that the number of syn
hrostates is subje
t-spe
i�
. Although this may be

explained by the fa
t that the pro
essing pathways for ea
h individual are

di�erent.

The redu
ed number of syn
hrostates for ea
h individual parti
ipant is in

a

ordan
e with the results a
hieved for the averaged population 
ase. There-

fore it reinfor
es the theory of syn
hrostates.

3.3.3 Volume 
ondu
tion e�e
t and artefa
ts

Volume 
ondu
tion is an undesired e�e
t that 
an a�e
t the EEG re
ording

analysis in an undesirable way as mentioned previously in se
tion 2.5.2. Even
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if the EEG re
ordings have been 
arefully inspe
ted to reje
t all possible trials

a�e
ted with artifa
ts and the parti
ipants were asked to blink, if possible, in

a spe
i�
 time range within ea
h trial to minimise its e�e
t, it is still worth

verifying their non-existen
e before going further in this resear
h.

Figure 3.14: Variability in the optimal number of syn
hrostates for ea
h subje
t during two

MI-tasks, Thinking R and Thinking L. The groups were formed of 10 subje
ts and were

repli
ated in the four frequen
y bands (α, β, γ, θ).

The strongest physiologi
al artifa
ts stem from eye blinks, eye movements

and mus
le movements. Blinking and eye movements are asso
iated with low

frequen
ies (below 7Hz) and mus
le movement with high frequen
ies (over

30Hz). The methodology applied in this 
hapter is based on the 
omplex Mor-

let wavelet transform whi
h performs a �ltering pro
ess in the frequen
y range

sele
ted beforehand. It means that this artifa
t e�e
t is probably minimised,

parti
ularly in the α and β bands and after a 
omplex Morlet wavelet is applied.

The topographi
 head maps presented throughout this 
hapter, as well as

the transition plots between syn
hrostates, are assembled over the order of

millise
onds. A

ording to the literature, artifa
ts o

ur generally over a time

range of se
onds. Putting together these two ideas, if artifa
ts were present

in the data, all of the 
lustered syn
hrostates would be a�e
ted by this phe-

nomenon and 
onsequently all the states should present equal phase relation

a
ross the s
alp ele
trodes [23℄ whi
h is not the 
ase as the �gures in this


hapter demonstrated. If artifa
ts 
annot be present in su
h a small time win-

dow it 
an be 
onsidered that syn
hrostates are not a�e
ted by this unwanted
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e�e
t.

In addition, as mentioned in se
tion 2.5.2, volume 
ondu
tion is linked to

zero phase delays between any two points a
ross the s
alp. Following previous

studies that investigate how to minimise the volume 
ondu
tion e�e
t when

measuring phase syn
hronisation [147, 145, 146, 154, 134℄, this study is only

based on non-zero phase di�eren
es. These studies are based on the idea that

if an intermediate point between two sour
es is not at phase zero it 
annot be

explained by volume 
ondu
tion.

3.4 Con
lusion

The existen
e of a �nite number of unique phase di�eren
e patterns, denom-

inated syn
hrostates, was 
onsistent for both an averaged population and for

individuals belonging to the population. These syn
hrostates remain stable

of the order of millise
onds, then suddenly and abruptly 
hange to the next

one. The swit
hing pattern a
ross the di�erent syn
hrostates over time gives

information regarding the evolution of the phase syn
hrony a
ross the di�erent

regions of the brain over time. The optimal number of syn
hrostates varies

slightly a
ross individual subje
ts, but is within a small range, from 3 to 6.

This may be explained by the inter-variability a
ross individuals as the pro-


essing pathways 
hange among them. Therefore, the similarity in the results

obtained from the averaged group and the individual subje
ts gives 
onsisten
y

to the theory of syn
hrostates.

The topographi
al maps of the 
lustered syn
hrostates showed di�eren
es

between frequen
y bands and 
onditions. In addition to the head-plot map,

graphi
s illustrating the temporal transition between the syn
hrostates were

displayed. These resultant transition patterns are unique for ea
h of the 
on-

ditions 
onsidered in this study. These �ndings showing a noti
eable di�er-

entiation between both MI tasks (imagined movements of the right and left

hands) leading to the idea that these dissimilarities 
an be translated to a more

quantitative metri
 and subsequently applied to a 
lassi�
ation problem.

The 
on
ept of syn
hrostates, �rstly introdu
ed by Wasifa et al. at [134℄ is

similar of the well-extended 
on
ept of mi
rostates [116, 125, 120, 123, 119℄.

The physi
al explanation to the quasi-stable states, or temporary stable states,

given by [23℄ is by assuming that a 
ognitive task su
h as the one presented in

this work 
an be subdivided into smaller tasks. The time duration of ea
h one

of these states may mean the ne
essary time for the brain system to perform
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ea
h one of the mentioned subtasks, as long as the task 
an be divided into

subtasks.

On
e the temporal transitions of the syn
hrostates has been determined for

one of the motor tasks, a further step needs to be done to quantify their tem-

poral stability. The following 
hapter explores the possibilities that neural net-

works o�er and enable us to understand the 
ommuni
ation pro
esses between

di�erent areas of the brain and establish a quantitative system to evaluate

syn
hrostates.



Chapter 4

Network analysis from

syn
hrostates

The logi
al step that follows in the analysis of syn
hrony based on syn
hro-

states is investigating their temporal stability. As studied in Chapter 3 of

this thesis, the existen
e of syn
hrostates and their temporal transitions have

been demonstrated for two MI tasks. However, their temporal stability needs

to be more deeply studied and in a more quantitative manner. In order to

a
hieve a �ner understanding of the syn
hrostates topographi
al maps and

transitions patterns between the di�erent syn
hrostates, a series of 
omplex

networks metri
s, will be employed throughout this 
hapter. These 
omplex

network measures 
an yield a quantitative pathway to allow us to work with


ognitive fun
tionalities.

The transformation from syn
hrostates form towards 
omplex network meas-

ures needs an intermediate step, a weighted measure of 
onne
tivity represent-

ing the temporal stability intervals (transition patterns) in 
onjun
tion with

the phase di�eren
e values (head-plot maps). This matrix is 
ommonly known

as the adja
en
y matrix in graph-theory nomen
lature and in this 
ase will be

represented by the syn
hronisation index. This index will provide information

regarding the stability of the syn
hrostates as opposed to the in
remental k-

means algorithm that only provides information about the optimal number of

syn
hrostates and their temporal swit
hing transition.

An introdu
tion to the 
on
ept and formulation of the syn
hronisation in-

dex will be provided in the 
oming se
tion 4.1. Se
tion 4.2 will introdu
e

some of the terminology used for 
omplex networks, 
ommonly investigated

network measures and a brief overview of some underlying prin
iples. Finally

the analysis pro
edure, results and 
on
lusions will be explained.

73
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4.1 Syn
hronisation Index

On
e the phase di�eren
e based 
lusters have been identi�ed for ea
h stimuli,

their temporal stability needs to be quanti�ed. This is be
ause the 
lustering

algorithm 
annot provide information relative to how long the stability of ea
h

one of the unique 
lusters lasts. This 
an be done by means of a syn
hronisation

index whi
h has been used before in the study of 
erebral blood �ow auto-

regulation [161, 173℄ and Autism Disorders [134℄.

Using the de�nition of syn
hronisation index given by [161℄, this parameter


an be understood as an inverse 
ir
ular statisti
al analogue of varian
e and

is des
ribed by equation 4.1 [134℄,

ΥP (F ) =
1

N

√

√

√

√

[

∑

t

cos (△ϕF (t))

]2

+

[

∑

t

sin (△ϕF (t))

]2

, (4.1)

where N is the number of time points asso
iated with a spe
i�
 syn
hrostate,

△ϕF (t) is the phase di�eren
e matri
es averaged a
ross a spe
i�
 frequen
y

band obtained as explained in se
tion 3.2.1. The syn
hronisation index ΥP (F )

lies in the interval [0,1℄. Higher values of the index means that the phase dif-

feren
es in the spe
i�
 frequen
y band F are in syn
hrony as they present

low variation over time, hen
e, they 
an be 
onsidered syn
hronised. This

index quanti�es the averaged temporal stability of the syn
hrostates in that

frequen
y band, whi
h is information that the 
lustering algorithm 
annot

provide. In addition, this index is 
apable of 
apturing the band-spe
i�
 tem-

poral behaviour in 
ontrast to 
oheren
e based measures [23℄.

4.2 Network analysis

After obtaining the syn
hronisation index for ea
h pair of EEG 
hannels, syn-


hrostate, 
ondition and frequen
y band these 
an be translated into a 
omplex

network. This pro
ess 
ontributes by providing more information and new per-

spe
tives regarding the evolution of phase syn
hrony over time and a
ross the

di�erent areas of the brain. Network theory is a hot topi
 area in modern

s
ien
e and it has been su

essfully applied to su
h diverse topi
s as �avours

in re
ipes, so
ial intera
tions or biomedi
al appli
ations [22℄.

A network based on a graph theory approa
h is a 
olle
tion of nodes and

the links 
onne
ting those nodes, named edges. Figure 4.1 is a simple example
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of di�erent types of existing graph models, illustrating the di�eren
e between

undire
ted versus dire
ted graphs or a weighted network based on a graph

theory 
on
ept. A weighted network, in the 
ase of a so
iologi
al study 
an

represent the strength of a friendship where stronger a�e
tion will be re�e
ted

as a thi
ker link. When this 
on
ept is translated to the EEG area, the nodes

are represented by the ele
trodes used to re
ord the brain a
tivity. The links

or edges en
oding a weight and a dire
tion of 
onne
tion are 
hara
terised by

the syn
hronisation index matrix.

Figure 4.1: Representation of two types of basi
 general graphs. Nodes are represented by


ir
les and edges by lines. (A) An example of an undire
ted graph with 5 nodes and 6 edges.

(B) A representation of a dire
ted and weighted graph. The thi
kness of the 
onne
tions or

edges indi
ates the weight, while the dire
tion is represented by arrows.

Networks 
an be 
hara
terised at di�erent levels ranging from properties

explaining the whole network at the global s
ale to properties of the network


omponents at a lo
al s
ale. The networks measured and used throughout this

study 
an be divided into individual network measures, measures of fun
tional

segregation and measures of fun
tional integration [174℄.

4.2.1 Individual network measures

These measures are fo
ussed on assessing the importan
e of individual nodes

over the whole network. There are many measures of 
entrality. In this se
tion

only two of them are explained: degree and density.

The degree of an individual node is one of the most 
ommon measures used

in graphs and many other graph metri
s are based on the 
on
ept of degree.

Therefore, degree is likely, the most fundamental network measure. It 
an

be de�ned as the number of 
onne
tions that link a node to the rest of the

network [148℄. Depending on the types of network graph, it 
an be obtained in
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di�erent ways. For instan
e, in a dire
ted graph, the 
on
ept of degree 
an be

divided into in- and out-degree, this being the number of links with dire
tions

towards or from the node respe
tively. In the 
ase of binarised graphs, the

degree is simply the sum of the links. For weighted graphs the degree 
an be


onsidered as the sum of the weights of the weighted links [22℄.

Density is the ratio of the a
tual number of edges presented in the graph

as a proportion of the total number of edges possible. It 
an be seen as the

probability of existen
e of an edge between a randomly 
hosen pair of nodes

[175℄. It is the simplest estimator of the physi
al 
ost of a network[174℄, and

help us to understand the physi
al 
ost of a network as its wiring 
ost whi
h

is dire
tly proportional to the number of 
onne
tions, length and their 
ross-

se
tional area. As these metri
s are di�
ult to measure in a large-s
ale brain

network, most studies approximate the physi
al 
ost by using the density value

[176℄.

4.2.2 Measures of fun
tional segregation

Segregation metri
s in a network refer to lo
al 
onne
tivity and are usually

asso
iated to pairs of nodes. A 
omplete summary of the available range

of measures of fun
tional segregation 
an be found in [174℄. Here only the


on
epts of transitivity and modularity will be explained as both will be used

within this work.

Figure 4.2: Sample graph illustrating the 
on
ept of modules in a stru
ture.
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Transitivity (T) re�e
ts the ratio of 
losed triangles or triplets in the net-

work to the total number of 
losed triangles possible [175℄. The 
on
ept is

similar to the average 
lustering 
oe�
ient, the di�eren
e being that, the nor-

malisation pro
ess to obtain the transitivity value is done 
olle
tively instead

of individually. Transitivity of a network 
an be 
al
ulated as

T =

∑

iǫN 2ti
∑

iǫN ki (ki − 1)
, (4.2)

where N is the set of all nodes in the network and ki is the degree of a node i

and ti the number of triangles around a node i [174℄.

Modularity (Q) of a network is a re�e
tion of the natural segregation within

a network. The underlying aim is to try to determine how well a network 
an

be separated into individual modules or 
ommunities as 
an be seen from �gure

4.2 [22℄. Modularity shows how well a given separation into modules performs.

The de�nition of these modules is not always unique. In addition, this metri


does not in
lude information regarding how many modules exist [175℄. The

modularity 
an be de�ned expli
itly by 4.3 [175℄,

Q =
1

l

∑

ij

[

aij −
kikj
l

]

δmimj
, (4.3)

where mi is the module 
ontaining the node i, δmimj
= 1 when mi = mj and 0

otherwise, l is number of links and aij = 1 when a link between i and j exists

and aij = 0 otherwise [174℄.

4.2.3 Measures of fun
tional integration

Measures of fun
tional integration, also known as global measures, look at the

network as a whole and in ma
ros
ale. These measures try to estimate the

ease with whi
h brain regions 
ommuni
ate and the 
apa
ity of a whole integ-

ration of the network [174℄. Chara
teristi
 path length and global e�
ien
y

are two 
ommon measures of integration and both will be used within this

investigation.

The path of a network is a set of distin
t nodes and links representing

potential routes of information �ow between pairs of brain regions [174℄. Path

length 
onsequently estimates the minimum number of edges that must be


rossed from one to another so giving an idea of the potential for fun
tional

integration between brain regions. For instan
e, random and 
omplex networks

have short mean path lengths, by 
ontrast, regular networks have long mean
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path lengths [175℄. Based on these two 
on
epts the Chara
teristi
 Path Length

(CPL) of a node 
an be de�ned as the average shortest path-length between the

node and all other nodes in the network [177℄. The equation to 
al
ulate the

CPL for an unweighted network is given in 4.4 [22℄. The mean measure of the

CPL taken over all nodes of the network is referred to as a global 
hara
teristi


path length.

CPL =
1

n

∑

iǫN

∑

jǫN,j 6=i dij

n− 1
, (4.4)

GE =
1

n

∑

iǫN

∑

jǫN,j 6=i d
−1
ij

n− 1
, (4.5)

where dij is the shortest distan
e between nodes i and j belonging to N, the

set of all nodes in the network. Global E�
ien
y (GE) is 
al
ulated similarly

to the CPL and also based on the shortest paths. In this 
ase, however, the

average is 
omputed by sele
ting the re
ipro
als of the shortest paths as given

in equation 4.5 [174℄.

Based on the 
on
ept of paths and path lengths another network metri



an be found, e

entri
ity . This yields two important measures of 
omplex

networks, radius and diameter . The e

entri
ity of a given node is de�ned as

the longest of all the shortest paths 
onne
ting it to the remaining nodes in the

network [22℄. Consequently, a global measure of e

entri
ity 
an be obtained

by the average of all nodal e

entri
ity values. On
e, this value is obtained the

diameter and radius of the network 
an be determined as the maximum and

minimum values of the global e

entri
ity respe
tively.

4.2.4 Small-word brain 
onne
tivity

The �rst time the term small-world appeared was in a so
ial-network resear
h

study 
ondu
ted by Milgram [178℄. It was related to the idea that a person


ould rea
h any other person through a relatively short 
hain of a
quaintan
es,

known as the �six degrees of separation�. Subsequently, Watt and Strogatz

de�ned and des
ribed the underlying prin
iples of small-networks problems

[177℄. Small-world networks are de�ned as networks that are more 
lustered

than random networks but not as mu
h as 
ompletely ordered ones [22℄. It


an be seen that networks representing small-world properties may be simul-

taneously segregated and integrated networks [174℄, sharing properties of both

types of networks. Small-world networks generally present large lo
al 
lus-
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tering as 
ompletely ordered networks and short path lengths, typi
ally 
har-

a
teristi
ally represented in random networks [177℄. Network small-worldness

has been quanti�ed by a small 
oe�
ient, σv, 
al
ulated by 
omparing 
luster-

ing and the path length of a given network with a random network having the

same degree on average as des
ribed by 4.6. With this de�nition, a small-world

network will have σ > 1, numerator also >1 and denominator ~1 [179℄.

σ =
clusteringbrain/clusteringrandom

lengthbrain/lengthrandom
, (4.6)

There is not a 
lear 
riterion to 
lassify a network as a small-world network.

Several proposals have been proposed to measure �small-worldness� [180, 181℄.

It has been demonstrated that small-world phenomena are found in several real

life networks as they are found in the brain [22℄. The human brain is prone to

exhibit some of the features typi
al of small-world phenomena mentioned be-

forehand. In a re
ent study where small-world was applied to a neural network

ma
hine learning algorithm, it has been proven that small-world networks have

in�uen
e in a
hieving greater rates of information pro
essing [182℄. For their

pe
uliar 
hara
teristi
s, small-world phenomena have be
ome a hot topi
 in

the resear
h of the human brain.

4.3 Results

The phase di�eren
e matri
es result in a �nite number of 
lustered syn
hro-

states after running the algorithm des
ribed in 
hapter 3 for ea
h 
ondition,

Thinking R and Thinking L and for the frequen
y band studied. This pro-


edure provides information regarding the temporal evolution and transition

patterns of the syn
hrostates. However, it does not provide details about their

temporal stability. In order to 
ir
ums
ribe this issue and gain more knowledge

of the meaning of syn
hrostates, 
omplex networks based on graph theory are

used. The transformation into 
omplex brain networks was done using the


lustering results of the averaged population for ea
h 
ondition and frequen
y

band. The nodes of the network were the EEG ele
trodes and the syn
hron-

isation index ΥP (F ), 
al
ulated as indi
ated by equation 4.1, were used as the

weighted edges 
onne
ting ea
h pair of nodes.
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(a) No threshold (b) Threshold of 60%

Figure 4.3: Example of the syn
hronisation Index ΥP (F )matri
es for 
lustered syn
hrostate

1, the Thinking R 
ondition and the γ band. The left matrix is without threshold (a) and

the right one is the result of using a threshold of 60% as an example of the e�e
t of using

threshold (b).

Figure 4.3 depi
ts an example of the results of transformation from the

syn
hrostates into syn
hronisation index matri
es. This parti
ular image is

of the syn
hrostate 1, Thinking R 
ondition and γ band under two di�erent


ir
umstan
es; the normal syn
hrostate index matrix and when a threshold

is applied to it. Therefore only a per
entage of the data is used for further


al
ulations. The 
omplex networks resulting from the syn
hronisation matrix

will vary depending on the per
entage of the threshold used.

Afterwards, on
e the syn
hronisation index matri
es ΥP (F ) have been ob-

tained for ea
h 
ondition and frequen
y band, they 
an be used as the weighted

values for the edges between pairs of nodes. This will 
ontribute to a further

understanding of how well 
onne
ted the di�erent pairs of ele
trodes or nodes

are a
ross the areas of the brain and also about the temporal stability of ea
h

state. All the brain 
onne
tivity plots and values of the networks metri
s have

been obtained using the EEGNET [183℄ free software. Complex network �g-

ures have been plotted using a 5% threshold for ease of visualisation, meaning

only 5% of the most highly 
onne
ted edges are 
onsidered to plot the graph-

i
s. The 
olours and sizes of the nodes are based on their degree, meaning that

a bigger diameter of the node 
ontains a higher number of links 
onne
ted to

this node. In the same way, reddish 
olours of the nodes signify more links


onne
ted to the node; Bluish, a lower number of links 
onne
ted to it. Simil-

arly, the edges thi
knesses are based on the weighted values of the syn
hrostate

index matri
es. Consequently, thi
ker lines 
onne
ting ele
trode pairs mean
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higher values than thinner ones of the adja
en
y matrix. The results of these


omplex network plots are shown on �gures 4.4, 4.5 and 4.6 for the α, β and γ

bands respe
tively. Ea
h one of the �gures 
ontain the head plots of the three


lustered syn
hrostates resulting from the in
remental k-means algorithm and

both 
onditions, Thinking R and Thinking L. From the �gures, it 
an be seen

that two 
hannels, Tp9 and Tp10, are lo
ated outside of the physi
al area of

the brain. This is due to the plotting fun
tion of the software used, EEGNET,

that performs a 2D proje
tion dire
tly over the head outline.

It 
an be observed that the syn
hrostates present 
lear di�eren
es among

them, a
ross 
onditions and frequen
y bands, a

ording to the �ndings de-

s
ribed in 
hapter 3. From 
omparison a
ross frequen
y bands, it 
an be said

that the γ band 
onne
tivity plots are less dense than for the other two bands.

This agrees with the literature regarding MI based BCI, where the α and β

bands are those most 
ommonly used for representing higher a
tivity during a

MI task.

Figure 4.4: Brain 
onne
tivity plots from the three 
lustered syn
hrostates for both 
ondi-

tions, Thinking R and Thinking L, the α band and a threshold of the 5% highest 
onne
ted

edges.
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Figure 4.5: Brain 
onne
tivity plots from the three 
lustered syn
hrostates for both 
ondi-

tions, Thinking R and Thinking L, the β band and a threshold of the 5% highest 
onne
ted

edges.

Figure 4.6: Brain 
onne
tivity plots from the three 
lustered syn
hrostates of both 
ondi-

tions, Thinking R and Thinking L, the γ band and a threshold of the 5% highest 
onne
ted

edges.
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For the α band, state 3 displays some similarities for both 
onditions, where

the stronger 
onne
tions are between parietal and frontal ele
trodes. States

2 are 
learly di�erentiated in both 
ases. For the Thinking R task there is

a 
lear dense region in the right hemisphere, with parietal ele
trodes show-

ing a higher degree. This 
an be seen from the presen
e of reddish, larger


ir
les. By 
ontrast, the Thinking L 
ondition is not as densely 
onne
ted

with most ele
trodes presenting bluish 
olours, indi
ating that the number of

links 
onne
ting these ele
trodes is smaller.

Table 4.1: Network metri
s for the ea
h of the 
lustered syn
hrostates for the two 
onditions,

Thinking R and Thinking L, and the α band.

Network measures

Thinking R Thinking L

state 1 state 2 state 3 state 1 state 2 state 3

CPL 4.4539 3.3924 4.3540 4.0154 3.2635 3.3616

G.E. 0.1404 0.0823 0.1422 0.126 0.1047 0.1145

Diameter 11 10 10 9 7 7

Highest degree 9 7 11 7 11 9

Density 0.0682 0.0624 0.0672 0.0624 0.0624 0.06272

Num. of edges 129 118 127 118 118 127

Modularity (Q) 0.6917 0.6496 0.6812 0.6539 0.5763 0.57

Transitivity (T) 0.8213 0.7401 0.7009 0.7984 0.6246 0.6443

Num. of 
omponents 14 28 16 23 29 27

For the β band state 1 and Thinking R 
ondition, the nodes with a higher

number of links, are those pla
ed in the frontal area of the brain. This 
ontrasts

with the Thinking L 
ondition where the higher nodes are distributed between

the frontal, parietal and o

ipital areas of the left hemisphere. State 2 exhibits

a lower number of 
onne
tions for both 
onditions when 
ompared with the

other two states. State 3, the Thinking R 
ondition, shows two dominant

ele
trodes in the frontal area sharing 
onne
tions with the parietal area of the

right hemisphere.

However, the 
onne
tivity graphs (�gures 4.4-4.6) 
annot o�er any measur-

able and evident 
on
lusions regarding the di�eren
es a
ross syn
hrostates, so

a more quantitative methodology is needed. To this end, a series of 
onne
tiv-

ity metri
s is 
al
ulated. Together with the 
omplex network head plots, the

measures mentioned in se
tion 4.2 are obtained on
e more for ea
h syn
hro-

state, MI task and frequen
y band by means of the EEGNET software [183℄.

The measures were obtained using a binarised network with a 5% threshold.

As mentioned before this type of network only report a 
onne
tion if the weight

value is above the threshold, otherwise it is reported as an absen
e of 
onne
-

tion [175℄. The estimation of the right threshold is a 
ru
ial parameter as this
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fa
tor dire
tly a�e
ts the resulting network. There has been a long debate on

how to �x the threshold with no 
onsensus on the solution for the optimal way

to set this threshold [184℄. A range of thresholds from 3 to 10% was examined

as they are the most widely used in the literature. However, as the main 
on-


ern is to standardise the 
omparison a
ross the di�erent syn
hrostates and


onditions, a threshold of 5% was sele
ted.

Tables 4.1 to 4.3 represent a list of the measures obtained with in the

Matlab

(C)

-based tool EEGNET for the α, β and γ bands respe
tively. Note-

worthy is the fa
t that EEGNET 
al
ulates the per
entage of the highest 
on-

ne
ted edges from those elements of the adja
en
y matrix that are di�erent

from zero, not from the total number of nodes. The metri
s are in agreement

with the 
onne
tivity head plots. For instan
e, the G.E. value from table 4.1

for the Thinking R 
ondition is a maximum for State 3 whereas for the Think-

ing L 
ondition it is State1. In addition, modularity values for the Thinking

R 
ondition remain almost stead, 
ontrasting with the values of the Thinking

L 
ondition yielding values of a order lower. In both 
ases the dominant state

with maximum values is State 1, this may mean that for both 
ases State 3

is the one re�e
ting the minimal spe
ialised segregate pro
essing [134℄. The

diameter is remarkably lower for the Thinking L 
ondition than for the R 
on-

dition and it is also noti
eable that for both MI tasks, States 2 and 3 present

the same value whi
h is smaller than the one for state 1. A smaller diameter

indi
ates a more robustly 
onne
ted network.

From the β band, table 4.2, a similar situation is shown when the CPL

metri
 is observed. States 2 and 3 give the maximum values for the Thinking

R 
ondition, whi
h re�e
t a maximum information integration ability for these

two states. However, for the Thinking L 
ondition, the state showing 
onsider-

ably lower values of CPL and T is State 3, when 
ompared with the other two

whi
h may indi
ate that the minimum integration information takes pla
e in

this state for the Thinking L MI task. The behaviour of the diameter value for

the Thinking L 
ondition is similar to that found in the α band, with States

2 and 3 yielding the same value whi
h is lower when 
ompared with State

1. However, for the other 
ondition the states presenting lower and identi
al

values are States 1 and 2.

It 
an be seen from table 4.3 that State 1 presents the maximum CPL for

Thinking R 
ondition and the minimum value for the other one with a no-

ti
eable di�eren
e in values. Similar behaviour 
an be seen from the global

e�
ien
y metri
, but with inverse values. Also noti
eable is that the di�er-

en
es between diameter values a
ross states and between 
onditions are 
learly
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redu
ed in 
omparison with the other two frequen
y bands.

It is evident from �gure 4.4, 
orresponding to the α band, that State 2 of

the Thinking L 
ondition, asso
iated with sad fa
es, shows a 
lear di�eren
e

to the rest of the network parameters from the whole set of syn
hrostates. Its

lowest transitivity, minimum CPL, a high G.E. and minimum diameter lead

to the theory that parti
ipants need higher attention and pro
essing informa-

tion to understand and distinguish a sad fa
e or the left hand MI task. This


on�rms that the pro
ess of information integration is task spe
i�
 in nature

[23℄. Similar behaviour is shown for State 3 of the Thinking L 
ondition in the

β band (table 4.2) and State 1 again for the γ band (table 4.3).

Table 4.2: Network metri
s for ea
h of the 
lustered syn
hrostates for the two 
onditions,

Thinking R and Thinking L, and the β band.

Network measures

Thinking R Thinking L

state 1 state 2 state 3 state 1 state 2 state 3

CPL 4.0947 4.3663 4.3553 4.4131 4.2138 3.8054

G.E. 0.1487 0.1435 0.1461 0.1208 0.1673 0.1337

Diameter 10 10 11 12 9 9

Highest degree 12 9 9 8 7 9

Density 0.0672 0.0629 0.0672 0.0619 0.0672 0.0672

Num. of edges 127 119 127 117 127 127

Modularity (Q) 0.6384 0.6728 0.7043 0.6996 0.6969 0.64

Transitivity (T) 0.7127 0.8088 0.8 0.8643 0.8013 0.7508

Num. of 
omponents 19 18 16 21 14 20

Table 4.3: Network metri
s for ea
h of the 
lustered syn
hrostates for the two 
onditions,

Thinking R and Thinking L, and the γ band.

Network measures

Thinking R Thinking L

state 1 state 2 state 3 state 1 state 2 state 3

CPL 4.4850 3.4989 3.6708 2.9444 4.2125 4.4462

G.E. 0.0997 0.072755 0.0953 0.0371 0.0534 0.1056

Diameter 10 8 9 8 9 9

Highest degree 7 9 8 6 6 9

Density 0.0571 0.0576 0.0576 0.0523 0.0523 0.0571

Num. of edges 108 109 109 99 99 108

Modularity (Q) 0.7141 0.643081 0.6762 0.7852 0.7956 0.7103

Transitivity (T) 0.8942 0.8099 0.8127 1.0486 1.143 0.8793

Num. of 
omponents 24 32 27 32 29 24

4.4 Con
lusions

In the previous 
hapter, the presen
e of syn
hrostates was dete
ted for the �rst

time during the exe
ution of di�erent MI tasks. In this 
hapter the 
ombination
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of syn
hrostates and their temporal stability, by means of a syn
hronization

index, gave us more insights about the brain fun
tions of segregation and

integration within the human brain for a spe
i�
 task. This 
ombination, used

for �rst time for the study of MI tasks 
an pontentially lead to a more person-

spe
i�
 
hara
terisation of the brain and its fun
tioning and 
onsequently, to

a more personalised BCI systems.

A

ordingly, the �ndings from the translation of syn
hrostates information

into 
omplex brain networks for both imagined tasks has been 
on�rmed that

the information integration in the brain is task-spe
i�
. These results are in

line with previous �ndings [134℄, hen
e, validating the use of the syn
hrostate

information to perform a 
omparison between two MI tasks. The di�eren
es

of the values a
ross the syn
hrostates and between 
onditions of the main

network metri
s, su
h as modularity, transitivity or CPL, may be useful as

biomarkers to di�erentiate between both motor imagery tasks to 
ontrol a

MI-based BCI. However, extended analysis needs to be done regarding the

possibility of using graph theory metri
s as 
lassi�
ation features for individual

parti
ipants. The next 
hapter investigates the ability of 
onne
tivity network

metri
s to distinguish between the two proposed motor tasks.

Some re
ent studies have been undertaken using graph theory metri
s, espe-


ially small-world and motif properties, to analyse the dynami
 brain networks

of the brain based on EEG re
ordings [21, 185, 186℄. In addition, some more

investigations based on spe
tral power analysis in 
onjun
tion with a network

approa
h, trying to identify time-frequen
y dynami
s [187, 188℄. The main

di�eren
e with respe
t to these studies and the present one is that this work

explores the temporal evolution of 
lustered syn
hrostates linked to a spe
i�



ognitive task.



Chapter 5

Classi�
ation of MI tasks from

syn
hrostates

In 
hapter 3 the 
on
ept of syn
hrostates asso
iated to a spe
i�
 stimulus was

introdu
ed together with their transition patterns over time and head map

topographies. In order to gain more insight into their temporal stability, in


hapter 4, the syn
hronisation index was used as a me
hanism to translate

the information from the 
lustered syn
hrostates into 
omplex networks based

on graph theory. Both 
onne
tivity head maps and network metri
s, applied

to syn
hrostates, give more quantitative information regarding the informa-

tion �ow a
ross the di�erent areas of the brain. The graph theory metri
s

for ea
h syn
hrostate demonstrated that it is a good indi
ator of how the

underlying 
onne
tivity works, how the lo
al and global segregated and integ-

rated information is distributed over the syn
hrostates for a spe
i�
 task and

frequen
y band.

Network metri
s and 
onne
tivity plots have re
ently been used to explore

and understand how the brain works within pathologi
al 
onditions and to try

to use this information to �nd distin
tive features to di�erentiate them from


ontrol populations [151, 152, 153, 30℄. In addition, some initial explorations

have been undertaken regarding the use of graph theory metri
s to 
ontrol

BCI systems. For example, Stefano Filho et al. presented a MI-BCI system

based on motif as a graph theory metri
 to feed a 
lassi�
ation algorithm

[189, 190℄. A MI-based BCI online game has been produ
ed, based on a graph

lifting transform where the parti
ipant has to use left and right MI movements

in 
at
hing a 
oin [191℄. Based on these �ndings, and always working from

the syn
hrostates approa
h, the possibility of using graph theory metri
s to

dis
ern between the two MI tasks is explored within this 
hapter. Aiming

87
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to determine the best 
ombination of graph metri
s, 
lassi�ers and frequen
y

bands, a diverse range of 
ases is 
onsidered. Firstly, the feature sele
tion


riterion used is explained, afterwards a set of 
lassi�er algorithms is sele
ted.

Finally, the performan
e of the di�erent options are listed. Figure 5.1 shows

the steps involved in the pro
ess followed from the original EEG re
ordings

dataset to the 
onne
tivity metri
s to feed the 
lassi�ers based on the 
lustered

syn
hrostates from the phase di�eren
es.

Figure 5.1: Graphi
al �ow
hart 
overing all of the steps followed from EEG re
ordings to

the 
lassi�
ation step.

5.1 Dataset

The EEG re
ordings 
onsidered were obtained from 10 healthy volunteers when

performing two MI tasks using s
hemati
 emotional fa
es as stimuli as ex-

plained in se
tion 3.1. The aim of this 
hapter is to investigate the theory that

graph theory metri
s derived from the translation of syn
hrostates into brain


omplex networks 
an be e�
iently used as features to 
lassify between the

two tasks.

Network measures were obtained from the wavelet phase response and aver-

aged a
ross trials for ea
h one of the parti
ipants for ea
h of the stimuli within

a spe
i�
 frequen
y band. The resulting 
lustered syn
hrostates from the in-


remental k -means algorithm for ea
h subje
t were translated into 
onne
tivity

measures using the syn
hronisation index as weighted edges 
onne
ting ea
h
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pair of ele
trodes. The number of syn
hrostates varies slightly a
ross parti-


ipants as 
an be seen from �gure 3.14 within a �nite number of syn
hrostates.

It 
an be seen from the transition plots in �gures 3.11-3.13 or from table 3.2

that in the averaged population 
ase, some of the states o

ur more than oth-

ers. Extrapolating this 
on
ept to individual subje
ts of the population, the

maximum and minimum number of o

urren
e states will be used from here

on in for this 
hapter as an equitable sele
tion 
riterion a
ross parti
ipants.

Sele
ted maximum and minimum o

urring syn
hrostates for ea
h parti
ipant

are 
onverted to networks as shown in �gure 5.2 the for β band. The literat-

ure has demonstrated that MI leads to attenuation/a

entuation short-lasting

peaks in the α and β bands, widely known as μ and β rhythms in the MI-based

BCI area [192, 193℄. Therefore, here the α and β bands brain 
onne
tivity

metri
s are used to a

omplish the 
lassi�
ation algorithm des
ribed in this


hapter.

Figure 5.2: Syn
hrostates transition plots for both 
onditions in the β band and the trans-

lation to brain 
onne
tivity plots for the maximum and minimum number of o

urren
e

syn
hrostates for ea
h 
ondition with a threshold of the 5% highest 
onne
ted edges.

5.2 Separability 
riterion

One of the most important properties of a 
lassi�
ation system is its ability

to �nd the most informative features des
ribing the obje
ts that are 
lassi�ed

be
ause this guarantees as 
ompa
t a de
ision rule as possible. In the ma-


hine learning literature there is a wide range of feature sele
tion te
hniques,

ea
h with their own pros and 
ons in solving this issue. Two main, di�erent

approa
hes, 
an be highlighted, s
alar feature sele
tion and feature ve
tor se-

le
tion. The former is independent of the 
lassi�er used where the features are

ranked using a spe
i�
 s
ore metri
. Some examples of this methodology are

the t-test, re
eiver operating 
urve (ROC) or the Fisher's dis
riminant ratio
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(FDR) [170℄. By 
ontrast, feature ve
tor sele
tion is 
lassi�er dependent and

the aim is to �nd the optimal 
ombination of features to sele
t the optimal

sub-set of features. This 
an be done exhaustively, 
onsidering all possible 
om-

binations of available features and for ea
h one of this 
ombination, the 
lass

separability is 
omputed. This sear
h is 
omputationally expensive so normally

a suboptimal sear
h te
hnique is used. Some examples of su
h te
hniques are

sequential ba
kward sele
tion, sequential forward sele
tion, �oating forward

feature sele
tion or plus-l-takeaway-r feature sele
tion [194℄. The separability


riterion preferred to represent the di�eren
e between the analysed 
lasses in

this work is FDR. This separability 
riterion has been sele
ted for two main

reasons. Firstly, it is independent of the 
lassi�
ation algorithm sele
ted. This

is an essential feature in this 
ase where a set of di�erent 
lassi�ers will be


ompared. Se
ondly, the result of applying this algorithm will give us a de-

tailed list of the most dis
riminative features, those with a higher FDR value

and not only the optimal number of them. In this 
ase, the FDR is applied to

a two 
lass problem but it 
an be extended to problems with any number of


lasses [195℄.

FDR is a measure of the distan
e between two normal distributions inspired

by the z-s
ore. The z-s
ore is a statisti
al value representing the number of

standard deviations by whi
h the value of a data point is above or below the

mean value (μ) of the total population being observed. The z-s
ore of a raw

s
ore x is de�ned by z = (x− µ) /σ, where σv is the standard deviation of the

population. It is widely used in normalisation pro
esses, as the resulting data

retain the same properties as the original data but their mean is zero and the

standard deviation is 1. Therefore, two or more datasets with di�erent units


an be 
ompared [196, 197℄.

FDR =
(µ1 − µ2)

2

(σ2
1 + σ2

2)
(5.1)

FDR is de�ned by using the mean {µ1, µ2} and varian
e {σ1, σ2} of ea
h


lass as des
ribed in 5.1. FDR has large values when the mean di�eren
e

between the two populations is large with a small within-
lass varian
e. Fea-

tures presenting a higher FDR value will be more 
ompa
t and distantly lo
-

ated. This meaning that there is a better dis
riminant power. On the other

hand, if there is little di�eren
e between two populations, FDR presents a s
ore


lose to 0 [140℄. Prior to 
omputing the FDR for ea
h of the obtained features,

a data normalisation step is performed to avoid bias from larger values within

the set of features. Normalisation s
ales the feature ve
tors so they lie between
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the minimum and maximum value for ea
h feature.

5.3 Classi�er algorithms

The brain 
omplex network measures 
an be used as features to feed a 
las-

si�
ation algorithm to di�erentiate between the two MI tasks. The aim of

this study is to explore the diverse features and 
lassi�
ation algorithms to

identify the best 
ombination in order to a
hieve higher performan
e between

the Thinking R and Thinking L 
onditions. The ele
tion of the right features

pool and 
lassi�er type is 
ru
ial in order to obtain signi�
ant and 
onsistent


lassi�
ation a

ura
y rates.

Supervised learning 
an be divided into parametri
 and non-parametri


learning. The basi
 assumption of parametri
 learning is that the only un-

known fa
tors are the parameters of the probability densities involved. On the

other hand, non-parametri
 methods are learning te
hniques for whi
h prior

knowledge of the 
onditional distribution is not available or not used expli
itly

[194℄. Both types have advantages and disadvantages and the 
hoi
e will be

dataset dependent. The limited number of parti
ipants in this study makes

it more suitable for the use of non-parametri
 learning methods for o�ering a

higher �exibility in 
omparison with the parametri
 
lassi�ers [198℄. For this

parti
ular work three di�erent approa
hes are used: nearest neighbour 
las-

si�
ation, dis
riminant analysis and support ve
tor ma
hines. The three of

these are explained in the following sub-se
tions.

5.3.1 k-nearest neighbours 
lassi�er

This 
lassi�
ation te
hnique is very popular due to its simpli
ity, ex
ellent

empiri
al performan
e and the ability to handle binary and multi-
lass data

[199, 200, 201℄. Nearest neighbour estimation has no training phase. In order

to 
lassify a ve
tor z

new

the k samples from the training dataset 
losest to the

new value are sele
ted. Following this, a majority voting is performed and

the 
lass with the maximum number of votes 
oming from these k samples is

assigned to the new value z

new

. In order to sele
t the k nearest neighbours,

a distan
e measure is needed. In this 
ase, the Eu
lidean distan
e measure is


hosen. The eu
lidean distan
e is the most 
ommonly used distan
e metri
,

parti
ularly for 
ontinuous datasets. This is as opposed to other metri
s su
h as

the Hamming distan
e whi
h are more 
ommonly utilised for dis
rete variables

[168, 202℄. Therefore, it is one of the most reliably tested distan
e metri
s.



92 CHAPTER 5. CLASSIFICATION OF MI TASKS FROM SYNCHROSTATES

One drawba
k of this algorithm is the sele
tion of the optimal value of k. If it

is too small, the 
lassi�
ation results will be a�e
ted by noise. By 
ontrast, if

it is too large, the 
omputational 
ost will in
rease [194℄. In this 
ase the value

sele
ted for the algorithm is k=3 as a good 
ompromise between 
omputational


ost and a

ura
y rates.

5.3.2 Dis
riminant analysis based 
lassi�
ation te
hniques

Linear dis
riminant analysis (LDA) 
lassi�ers are based on the assumption

that the samples in the training dataset 
an be 
lassi�ed 
orre
tly by means

of linear de
ision boundaries [194℄. LDA assumes a normal distribution of

the data with an equal 
ovarian
e matrix for both 
lasses {C1, C2}. If the

samples of the two 
lass sets C1 and C2 are de�ned as {x11, x12, . . . , x1m} ǫC1

and {x21, x22, . . . , x2n} ǫC2 the the simplest representation of a linear dis
rim-

ination fun
tion is given by 5.2,

y (X) = w
T
X+ w0, (5.2)

where w is a weight ve
tor, y is the predi
ted 
lass label and w0 is a bias.

Using the ve
tor notation and a least squares error learning estimation to

train the ve
tor w, the optimal solution of equation 5.2 is given in the form of

the pseudo-inverse of the input features as 
an be appre
iated in 5.3 [203℄.

wopt =
(

XTX
)

−1

XT y. (5.3)

For 
onventional LDA the 
lassi�
ation for an input x is based on the


omparison of y (x) and a threshold or de
ision boundary. A simple de
ision

boundary 
an be set as: if y is greater than zero, the obje
t is assigned to


lass C1 and 
onsequently, if y is less than zero the input is assigned to 
lass

C2. If the data are not linearly separable a
ross 
lasses, the least squares

error based LDA will not perform properly. Maybe a more 
omplex de
ision

boundary is ne
essary. Quadrati
 dis
riminant analysis (QDA) 
lassi�ers are

used for heterogeneous varian
e and 
ovarian
e matri
es. QDA produ
es a

higher dimensional spa
e where the de
ision fun
tion is quadrati
, in
luding

the original features, their 
ross produ
t and the quadri
 features [194℄. For

instan
e, in the simplest 
ase of two 
lasses the QDA transforms the spa
e into

a �ve-dimensional spa
e {x1, x2, x1x2, x21, x22}. Both methods will be 
ompared

in this 
hapter.
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5.3.3 Support Ve
tor Ma
hine

Support Ve
tor Ma
hine (SVM) 
lassi�ers have been su

essfully used in MI

based BCI appli
ations [204, 205, 206, 207℄ due to their ex
ellent empiri
al

performan
e and be
ause the number of parameters that must be set for the

algorithm is related to the number of training obje
ts instead of the number

of attributes [198℄. In opposition to dis
riminant analysis, the SVM sele
ts

one parti
ular solution; the one that separates the 
lasses with maximal mar-

gin. For example, the distan
e from the nearest training points. Maximising

the marginal solution approa
h is proven to a
hieve the highest generalisa-

tion ability [194, 182℄. In order to �nd the de
ision boundary that maximises

this margin an optimisation routine is needed. In the 
ase of linear de
ision

boundaries the equation is de�ned by 5.2. If the values of y lie between [−1, 1],

then this means that the optimisation problem should �nd the solution to

| wT
X+w0 |= 1. Using the geometri
al de�nition of distan
e between a point

X and a hyperplane (w, w0) given by 5.4,

distance =
| wT

X+ w0 |
‖ w ‖ , (5.4)

it 
an be seen that the maximisation of the margin is redu
ed to the minimisa-

tion of ‖ w ‖. Su
h a minimisation pro
ess 
an be done by means of Lagrange

multipliers as explained in [194℄.

In the 
ase that the data are not linearly separable it 
an be mapped into a

higher dimensional spa
e. The idea is that if the data 
annot be separated by

a linear fun
tion they may be separated by a quadrati
 or 
ubi
 fun
tion by

means of more general kernel fun
tions. The fa
t of repla
ing the inner produ
t

in 5.2 by a kernel fun
tion is known as a kernel tri
k [194, 198℄. In
reasing

the order of the kernel also in
reases the 
omputational 
ost of the algorithm

and 
an lead to overlapping 
lasses. In this work linear and se
ond order

polynomial (quadrati
 and 
ubi
al) SVM algorithms will be used.

5.3.4 Cross-validation and performan
e measure

In order to avoid the problem of over-�tting the 
lassi�er and redu
ing the

sensitivity regarding the sele
tion of training and testing sets, a 
ross-validation

te
hnique is needed. In this parti
ular 
ase, having a redu
ed size dataset, a

leave one out 
ross-validation method is the most suitable to over
ome the

issue of over-�tting. It has been empiri
ally demonstrated that this method

has better bias-varian
e trade-o� than those based on k-fold 
ross validation
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for small datasets [208℄. There is always a slight bias when using a bootstrap

validation su
h as leave one out, but in pra
ti
e, it is not meaningful [209℄. It is

the most extreme 
ase of a k-fold validation s
heme where ea
h observation of

the data is left out for validating the model and the remaining n-1 observations

are used to train the algorithm. Posteriorly, the a

ura
y obtained for ea
h

one of the data-points is averaged to obtain the 
lassi�er a

ura
y. All the


lassi�
ation algorithms and performan
e measures for all of the 
lassi�
ation

algorithms have been 
al
ulated by means of the free ma
hine learning tool for

Matlab

©


alled PRTools [194℄ .

The performan
e of ea
h of the 
lassi�er methodologies used throughout

this thesis are 
al
ulated using the standardised measures of a

ura
y (acc),

the true positive rate (TPr) or sensitivity and the true negative rate (TNr)

or spe
i�
ity. TP and TN are 
orre
t 
lassi�
ation, by 
ontrast false positive

(FP ) and false negative FN are miss-
lassi�
ations. FP is when the out
ome

is in
orre
tly predi
ted as positive when it is a
tually negative and FN is the

opposite, when the out
ome is labelled as negative when it is a
tually positive.

A

ording to this nomen
lature, TPr is de�ned as TP divided by the total

number of positives (TP + FN). Consequently, TNr is FP divided by the

total number of negatives (FP + TN). Finally the overall 
lassi�
ation su

ess

rate or a

ura
y is de�ned as the number of 
orre
t 
lassi�
ations (TP + TN)

divided by the total number of 
lassi�
ations (TP + TN + FN + FP )[210℄.

All these measures are listed in equation 5.5,

Accuracy =
TP + TN

TP + TN + FP + FN

Specifity = TNr =
TN

TN + FP
(5.5)

Sensitivity = TPr =
TP

TP + FN
.

5.4 Results

The dataset of features for 
lassi�
ation between the two MI tasks, Thinking R

and Thinking L, is 
omposed of two states (maximum and minimum number

of o

urren
e states) and nine 
omplex network measures (refer to se
tion

4.2 for more details) giving a total of 18 possible features. The individual

and 
olle
tive dis
riminative power of all of them will be determined by the

FDR. However, it maybe be worth exploring whi
h syn
hrostate (minimum
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or maximum number of o

urren
es) and whi
h network parameter among

the nine sele
ted graph metri
s is the 
ombination with the highest power of

dis
rimination, hen
e a larger a

ura
y rate [30℄. In order to a
hieve the greater


ombination of features, the 
omplete range of 18 features was split into three

di�erent 
ases as listed in table 5.1. Dividing the whole dataset into di�erent

groups, not only gives information about the optimal 
ombination of features

that 
an be obtained but also provides an insight regarding the behaviour of

the max and min syn
hrostates. Therefore, a deeper understanding about

brain fun
tions and syn
hrostates will be gained. For the �rst 
ase (named


ase I) all ve
tors of features (18 in total) were 
onsidered. In the next two

groups (
ase II and 
ase III), only the maximum and minimum state network

measures were 
onsidered respe
tively (9 features in ea
h 
ase). In addition to

these situations, syn
hrostates from two frequen
y bands were 
onsidered, the

α and β bands.

Table 5.1: List of the di�erent 
ases for 
lassi�
ation based on a range of 
ombination

between the maximum and minimum number of o

urren
e states and network measures

for ea
h 
ondition (Thinking R and Thinking L).

Cases Combination


ase I both syn
hrostates metri
s


ase II maximum state metri
s


ase III minimum state metri
s

5.4.1 Results with 5% threshold

In 
hapter 4 the 
onne
tivity plots from the syn
hrostates and the network

metri
s were 
al
ulated using a 5% threshold, meaning that only the highest

5% of the edges matrix, based on the syn
hronisation index for ea
h syn
hro-

state were used. In this se
tion, the performan
e of the di�erent 
lassi�
ation

algorithms is shown when this threshold is applied. Afterwards, in the next

se
tion a 
omparison of a

ura
y rates of the 
lassi�ers when no threshold is

used is performed.

5.4.1.1 α band results

As mentioned in se
tion 5.2, FDR is the separability 
riterion sele
ted to elab-

orate a ranking of the di�erent features a

ording to a des
ending order of

dis
riminative power. The results of this de
reasing order step for 
ases I to

III are illustrated in �gures 5.3 to 5.5 respe
tively. The names of the features
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are listed on the horizontal axis of the �gures, ending in min or max referring

to the minimum and maximum o

urren
e state respe
tively. The 
orrespond-

ing FDR value for ea
h one of the features is shown on the verti
al axis of the

whole set of �gures. The set of �gures is transformed into line 
harts to aid

easy visualisation, this is to fa
ilitate the aim of grouping these features into

smaller sets a

ording to their FDR values.

Figure 5.3: FDR ordered values for the network metri
s sele
ted for 
ase I, all possible


ombinations are 
onsidered, and the α band.

From �gure 5.6 it 
an be seen that the set of features for 
ases I and II 
an

be divided into �ve groups and for 
ase III only four groups were formed. The

fewer number of groups formed means that features will have 
loser dis
rimin-

ative ability as their FDR values lay 
loser to ea
h other. It is also noti
eable

that the FDR values for 
ase III are 
onsiderably higher than those for 
ase

II when the maximum o

urren
e syn
hrostate features are used. It 
an also

be seen that the top four features for all the 
ases are 
learly separated from

the rest of the features within the same range. It is noti
eable that the FDR

values for the bottom half of the 
ase III features present a remarkably low

FDR value in 
omparison with the top half, meaning that their ability to dis-


riminate between the two MI tasks should be lower. Maximum values for


ase I are similar to those for 
ase III as it is a 
ombination of both 
ases. For


ase I, the �rst group is formed for the top feature, the following groups are
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integrated by 2, 4, 9 and 18 features respe
tively. Following the same 
riterion,

the �rst group of 
ase II is formed by the top 2 features, then 3, 5, 8 and 9

features. Finally, for 
ase III, only the minimum state features are used, the

four groups have the top 1, 3, 4 and 9, respe
tively.

Figure 5.4: FDR ordered values for the network metri
s sele
ted for 
ase II, only maximum

state network metri
s are 
onsidered, and the α band.

Figure 5.5: FDR ordered values for the network metri
s sele
ted for 
ase III, only minimum

o

urren
e state network metri
s are 
onsidered, and the α band.
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Performan
e for the six di�erent 
lassi�ers using the leave-one-out valid-

ation method for 
ase I is illustrated in �gure 5.7. It 
an be seen that for

linear dis
riminant analysis, the fa
t of adding more features to the 
lassi�er

means lower performan
e. This agrees with the theory, that a higher number

of features 
an lead to over-�tting [194℄. It 
an be seen that the three di�erent

kernels of the SVM algorithms performed similarly, obtaining the best a

ura
y

when only one feature, having the highest FDR value, is used. The a

ura
y

a
hieved in this situation is 74% (71% TNr and 76% TPr). In general, the

nearest neighbour (3-nn) algorithm showed the worst a

ura
y rates, whi
h


an be expe
ted as it is the simplest 
lassi�er from the ones sele
ted. The

highest performan
e among all the 
lassi�ers is for the quadrati
 dis
riminant


lassi�er (qd
) when the top four features are used. This highest a

ura
y is

83% (83% TNr and TPr). The top four features used to train the qd
 
lassi�er

are diameter, density, number of edges within the 5% threshold and CPL for

all metri
s from the minimum number of o

urren
e syn
hrostates as 
an be

seen in �gure 5.3.

Figure 5.6: Grouped features by their FDR values ranking for 
ases I to III.

For 
ase II, only the graph network metri
s 
orresponding to the maximum

number of o

urren
e syn
hrostates are 
onsidered. The performan
e of the

di�erent 
lassi�ers for this 
ase are evident in �gure 5.8. It 
an be seen that

the overall performan
e of the whole set of 
lassi�ers is lower that the rates

a
hieved by 
ase I when all of the features were under 
onsideration. The

a

ura
y per
entages are between 50% and 60% for all types of 
lassi�ers and

groups. This result was expe
ted as the values of the FDR ranking were



99 CHAPTER 5. CLASSIFICATION OF MI TASKS FROM SYNCHROSTATES


onspi
uously lower that those presented for 
ase I or 
ase III as 
an be 
learly

seen from �gure 5.6. It is noti
eable that the performan
e rates for the three

types of SVM 
lassi�ers are quite unbalan
ed, obtaining a spe
i�
ity or true

negative rate 
onsiderably higher than the sensitivity. The same behaviour is

shown for the dis
riminant analysis 
lassi�ers for the �rst and se
ond group

of features, 
ontaining 2 and 3 metri
s respe
tively. All the 
lassi�ers, with

the ex
eption on
e more of the nearest neighbour algorithm, show the highest

a

ura
y when the top two features were used. The performan
e rates for this


ase were 
onstant a
ross all of the 
lassi�ers, rea
hing an a

ura
y rate of

73% with 89% for TNr and merely 58% for TPr. The top two features used

were density and the number of edges remaining after the threshold limit used,

in 
on
ordan
e with the top four features of 
ase I.

Figure 5.7: Comparison of the performan
e of six di�erent 
lassi�ers for 
ase I in the α
band. Features grouped a

ordingly to their FDR values. For ea
h group of features the

a

ura
y (a

), the true negative rate (TNr) and the true positive rate (TPr) are shown.

The 
lassi�ers from top to bottom and left to right: 3-nearest neighbour, linear dis
riminant


lassi�er, quadrati
 dis
riminant 
lassi�er, SVM linear kernel, SVM kernel order 2 and SVM

kernel order 3.
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Figure 5.8: Comparison of the performan
e of six di�erent 
lassi�ers for 
ase II in the α
band. Features grouped a

ordingly to their FDR values. For ea
h group of features the

a

ura
y (a

), the true negative rate (TNr) and the true positive rate (TPr) are shown.

The 
lassi�ers from top to bottom and left to right: 3-nearest neighbour, linear dis
riminant


lassi�er, quadrati
 dis
riminant 
lassi�er, SVM linear kernel, SVM kernel order 2 and SVM

kernel order 3.

The last situation under 
onsideration, 
ase III, only uses the minimum

state graph metri
s to train the 
lassi�ers. As mentioned before, the �rst

three groups of features 
orresponding to the top 1, top 3 and top 4 features

are the same for 
ase I than for 
ase III: diameter, density, number of edges

and CPL of the minimum number of o

urren
e syn
hrostates. Consequently,

the performan
es of these three groups are the same in both 
ases. Therefore,

the highest a

ura
y is shown by the qd
 option, being 83% with 83% for

both, TNr and TPr. The last group of features, when the whole set of them

- 9 measures in total- are used to feed the 
lassi�
ation algorithm, performed

worse than the other 
ases for all of the algorithms. This 
an be attributed

on
e more to the over-�tting e�e
t whi
h is espe
ially marked for the qd



lassi�er where the a

ura
y dropped to a poor 48%, highlighting the fa
t that

the performan
e obtained for all 
lassi�ers, ex
ept the 3-nn 
lassi�er, when the
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top feature, is used is basi
ally the same for all the whole variety of algorithms

used (74% a

ura
y, 71% TNr and 76% TPr). This a

ura
y is not as great as

the 83% obtained when the top four features are utilised to feed the algorithm

but it 
an also be argued that the 
omputational 
ost of using only one feature

instead of four is 
onsiderably lower.

Figure 5.9: Comparison of the performan
e of six di�erent 
lassi�ers for 
ase III in the α
band. Features grouped a

ordingly to their FDR values. For ea
h group of features the

a

ura
y (a

), the true negative rate (TNr) and the true positive rate (TPr) are shown.

The 
lassi�ers from top to bottom and left to right: 3-nearest neighbour, linear dis
riminant


lassi�er, quadrati
 dis
riminant 
lassi�er, SVM linear kernel, SVM kernel order 2 and SVM

kernel order 3.

This summarises the 
omparative study for 
lassifying two MI tasks us-

ing network metri
s from the maximum and minimum syn
hrostates in the α

band. The exploration of these three di�erent s
enarios yielded a profound

understanding of whi
h 
ombinations from the assembly of features and syn-


hrostates 
onsidered have the higher dis
riminative ability. The maximum

a

ura
y rate of 83% a

ompanied by a TNr and TPr of 83% indi
ates that
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this methodology is a valid resour
e to distinguish between the two MI tasks

to 
ontrol a BCI.

A

ording to the results shown in �gures 5.7, 5.8 and 5.9, it 
an be 
on-

�rmed that for most of the 
ases, in
reasing the number of features to feed

the algorithm 
auses a de
rease in the general performan
e of the 
lassi�ers.

In addition, it 
an be said that the more 
omplex 
lassi�ers, for instan
e the

SVM of kernels 2 and 3, do not lead to a higher performan
e rate in general,

being the dis
riminant analysis based algorithms that a
hieved higher a

ura
y

rates.

Regarding the 
omparison between the maximum and minimum number of

o

urren
e states, the latter had better dis
riminant abilities than the max-

imum state for this frequen
y band. The average performan
e for the max-

imum state remains at under 60% for most of the groups of features and


lassi�ers. Another 
hara
teristi
 present in the maximum number of features


ase, is the remarkable di�eren
e between the sensitivity and spe
i�
ity rates,

making the 
lassi�ers unreliable for 
lassifying one of the two MI-tasks.

Figure 5.10: FDR ordered values for the network metri
s sele
ted for 
ase I (all possible


ombinations are 
onsidered) for the β band (left side). The right graph has same des
endent

ranked values, but the features are grouped in agreement with their FDR values to feed the


lassi�
ation algorithms.

5.4.1.2 β band results

The same methodology as the one explained in se
tion 5.4.1.1 is applied here,

but this time for the β band. Firstly the FDR values are ranked and ordered

for the three 
ases and the groups of features are used to feed the ensemble

of 
lassi�
ation algorithms used. The results are represented in �gures 5.10

and 5.11. The graphs on the left side of �gure 5.11 represent the feature-FDR

value pairs ordered in a des
ending order to ease visualisation. Similarly, by

the pro
ess des
ribed above, these values are transformed into a line graph to

group the features having similar FDR values, hen
e, similar dis
riminative
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apa
ities, to train the set of 
lassi�ers sele
ted. The 
lassi�
ation algorithm

families were the same as those sele
ted for the α band.

Network metri
s features in 
ases I and II were divided into �ve groups, the

same number of divisions as in the α band. However, for 
ase III the number of

groups is bigger, rising to six instead of the four groups for the same s
enario

with the α band. Case I groups were formed by the highest FDR value feature,

followed by the top 2, 6, 11 and �nally all of the 18 features. For 
ase II, the

initial group is 
omposed of two features and the next groups by 3, 4, 7 and 9

respe
tively. Case III has the �rst and se
ond group in 
ommon with 
ase I,

with the top one and top two features belonging to the minimum number of

o

urren
e states. It is noti
eable that 
ase II shows similar FDR values than

in the α band. In 
ontrast, the highest values of the ranking are 
learly lower

in the β band where the maximum FDR value is 2.2; half that of the top value

of the previously studied frequen
y band. One more similarity between both

frequen
y bands for 
ase I is that the features obtained from the minimum

syn
hrostate have the highest and lowest values of FDR.

Figure 5.11: Figures (A) and (B) are the ranking of de
reasingly-ordered FDR values for


ase II and (B) and (C) for 
ase III. The left hand side graphs, A and C, are the features for

the maximum (max) and minimum (min) syn
hrostates respe
tively. B and D graphs are

the same pair of the metri
-FDR values, but grouped a

ordingly to feed the 
lassi�
ation

algorithms.

Figures 5.12, 5.13 and 5.14 present the 
lassi�
ation performan
e rates for

the 
ases I, II and III respe
tively. For 
ase I, with all the features in
luded, the



104 CHAPTER 5. CLASSIFICATION OF MI TASKS FROM SYNCHROSTATES

average performan
e for all 
lassi�
ation algorithms is over 60% ex
ept when

all the features are used due to the over-�tting e�e
t. The highest a

ura
y

rate a
hieved is 80% for three di�erent 
lassi�ers when the top FDR value

feature is used. However, the performan
e varies a
ross the three algorithms.

For the qd
 option, the TNr is 100% and the TPr 60.1%. Similar behaviour

is found for the linear SVM. In 
ontrast, the SVM kernel order 2, presents

a more balan
ed performan
e with a per
entage of 80% for TNr and TPr;


ontrary to the α band s
enario where the performan
e of both dis
riminant

analysis 
lassi�ers were higher than the SMV algorithms. For this situation,

the a

ura
y rates have similar values a
ross 
lassi�ers.

Figure 5.12: Comparison of the performan
e of six di�erent 
lassi�ers for 
ase I in the β
band. Features grouped a

ording to their FDR values. For ea
h group of features the

a

ura
y (a

), the true negative rate (TNr) and the true positive rate (TPr) are shown

The 
lassi�ers from top to bottom and left to right: 3-nearest neighbour, linear dis
riminant


lassi�er, quadrati
 dis
riminant 
lassi�er, SVM linear kernel, SVM kernel order 2 and SVM

kernel order 3.

For 
ase II, �gure 5.13, when only features from the syn
hrostate with

maximum number of o

urren
es are used to feed the algorithms, the best
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performan
e for all of the 
lassi�ers is a
hieved when the top two features are

used. These top two features are density and the number of edges remaining

after the 5% threshold is applied; highlighting that these two features are

pre
isely the top two for 
ase II in α band. The highest a

ura
y per
entage

is for the 3-nn 
lassi�er with an 85% (85% TNr and 85% TPr). Followed by

the three types of SVM algorithms with a 75% a

ura
y (90% TNr and 61%

TPr). This dis
repan
y between true positive and negative rates shown for

the di�erent varieties of SVM was also present in the the α band for the same


ase. The poor performan
e of the qd
 algorithm is noti
eable when 
ompared

to the others with a maximum a

ura
y of 58% when top three features are

used.

Figure 5.13: Comparison of the performan
e of six di�erent 
lassi�ers for 
ase II in the β
band. Features grouped a

ording to their FDR values. For ea
h group of features the

a

ura
y (a

), the true negative rate (TNr) and the true positive rate (TPr) are shown.

For 
ase III, shown in �gure 5.14, only the minimum state features are


onsidered. The performan
e for the two �rst groups is the same as for 
ase

I as the top two features used are the same in both 
ases. The SVM with
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order 2 kernel the algorithm a
hieved the greatest performan
e with 80% of

a

ura
y and same values of TNr and TPr. Similar values were shown for the

linear SVM and qd
 algorithms. However, the unbalan
ed rate between true

positive and true negative makes them less suitable for this appli
ation.

Figure 5.14: Comparison of the performan
e of six di�erent 
lassi�ers for 
ase III in the

β band. Features grouped a

ording to their FDR values. For ea
h group of features the

a

ura
y (a

), the true negative rate (TNr) and the true positive rate (TPr) are shown.

5.4.1.3 Summary

Table 5.2 shows a list with the best performan
e results for ea
h 
ase and

frequen
y band 
onsidered during this se
tion. The 
lassi�
ation algorithm

rea
hing the maximum a

ura
y rate for ea
h s
enario is also listed with the

number of features used to feed the algorithm. It 
an be seen that the per-

forman
e for both frequen
y bands is in the same range and 
an be said to be

the same. However, the algorithm and number of features needed to a
hieve

higher a

ura
y rates are 
learly di�erent. For 
ases I and III in the α band,

four features are used by only 1 in the β band, both being a small number of

features, the 
omputational 
ost will be lower for the last s
enario. By 
on-
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trast the winning 
lassi�er in the α band is the qd
 algorithm, it is a simpler

algorithm than the SVM with kernel order 2 that is the one sele
ted for the β

band. In general, it 
an be said from the results obtained that this method-

ology is a promising tool for distinguishing between the two MI-tasks under


onsideration.

Table 5.2: Summary of the best 
lassi�er performan
e for ea
h 
ase and frequen
y band

when a 5% threshold is used. Note the bad performan
e of 
ase II with a TP

r

of only 58%.

α band β band

a

 TNr TPr

lassi�er

No.

Features

a

 TNr TPr

lassi�er

No.

Features


ase I 83% 83% 83%
qd
 4

80% 80% 80%

SVM

order 2

1


ase II 73% 89% 58%

SVM

(all)

2
85% 85% 85%

3-nn 2


ase III 83% 83% 83%
qd
 4

80% 80% 80%

SVM

order 2

1

5.4.2 Results without threshold

This uses the same dataset and the same pro
edure of feature sele
tion and


lassi�
ation algorithms than the previous se
tion but no threshold is applied

before the 
al
ulation of the network metri
s. In this 
ase, only two of the nine

network measures used in se
tions 5.4.1.1 and 5.4.1.2 present a FDR value dif-

ferent from zero and so 
an be used as a feature to feed the algorithms. These

two features for both frequen
y bands under 
onsideration were modularity

and transitivity. As explained in table 5.1, three 
ases will be studied. Case I

in
ludes the features for both states, the maximum and minimum number of

o

urren
es of syn
hrostates. Case II 
onsiders only the features for the max-

imum state and 
ase III for minimum state. In addition, two more s
enarios

are in
luded using only ea
h of the network metri
s from both states. This

means that 
ase IV 
omprises only modularity values from both states and


ase V only transitivity values to try to understand whi
h features have the

largest 
apability of dis
erning between the two MI-tasks.

5.4.2.1 α band results

Figure 5.15 shows
ase I for the α band when no threshold is used. The general

performan
e is substantially lower when 
ompared with the threshold 
ase.

Espe
ially noti
eable for the range of SVM used is that the majority of the

a

ura
y rates are under 50%. The two highest performan
es are for the linear

dis
riminant algorithm with 60.8% (70% TNr and 51.3% TPr) with only one
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feature used and quadrati
 dis
riminant algorithmwith 66.3% a

ura
y (67.2%

TNr and 65.4% TPr) and three features used. The feature used to feed the

ld
 algorithm was the modularity of the maximum state. This feature plus the

transitivity of the maximum and minimum states were the network metri
s

used to feed the qd
 algorithm.

Figure 5.15: Comparison of the performan
e of six di�erent 
lassi�ers for 
ase I in the α
band when no threshold is applied. Features grouped a

ording to their FDR values. For

ea
h group of features the a

ura
y (a

), the true negative rate (TNr) and the true positive

rate (TPr) are shown.

Figure 5.16 illustrates the rest of the 
ases, from II to V, when no threshold

is applied. The results are no more en
ouraging than for 
ase I, with the highest

a

ura
ies around 60% for all 
lassi�ers and the average under 40%. In parti
-

ular, this highlights the poor performan
e of 
ase V, when only transitivity is

used as a feature. Consequently, it 
an be said that the modularity (
ase IV)

has a larger ability to distinguish between both 
onditions than transitivity

does. In addition, from �gure 5.16, it 
an be said that the max state metri
s

have more powerful dis
riminating 
apa
ities than the min state.
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Figure 5.16: Comparison of the performan
e of six di�erent 
lassi�ers for 
ases II to V in the α band when no threshold is applied. For ea
h group of

features the a

ura
y (a

), the true negative rate (TNr) and the true positive rate (TPr) are shown.
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5.4.2.2 β band results

Figure 5.17 shows the 
ase I, when all the features and syn
hrostates are 
on-

sidered. It 
an be seen that the performan
e is similar a
ross 
lassi�ers and


learly superior to those results obtained from 
ase I for the α band (�gure

5.15). The highest performan
e is a
hieved for the ld
 algorithm with 75.1%

a

ura
y (67.3% TNr and 81.9% TPr) when three features are used. The three

features used to train the algorithm are transitivity and modularity of the min-

imum state and transitivity of the maximum state. The same 
lassi�er, ld


algorithm, with only one feature -transitivity minimum syn
hrostate- obtained

an a

ura
y rate of 70.1% (71.2% TNr and 69% TPr). The lowest a

ura
y,

on
e more, is for the 3-nn 
lassi�er with a maximum a

ura
y of 58% (57.3%

TNr and 58.8% TPr) when the top FDR value feature is used.

Figure 5.17: Comparison of the performan
e of six di�erent 
lassi�ers for 
ase I in the β
band when no threshold is applied. Features grouped a

ordingly to their FDR values. For

ea
h group of features the a

ura
y (a

), the true negative rate (TNr) and the true positive

rate (TPr) are shown.
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The best result is obtained with 3 features, similar to the α band for 
ase

I. However, the network metri
s are not the same, when in the α band the

highest FDR values were for the modularity and transitivity of the maximum

syn
hrostates in the β band. Conversely, the top features belong to the min-

imum state. This behaviour is similar to the situation when a threshold is

utilised previously to 
al
ulate the network metri
s, where the minimum state

always o�ers a higher dis
riminative ability.

As mentioned before, the a

ura
y of the results for the β band are 
learly

improved in 
omparison to those obtained from the α band. Nevertheless, the

a

ura
y rates are inferior when 
ompared to the s
enario when a threshold is

applied with per
entages of a

ura
y whi
h are over 80%.

The rest of the 
ases, from II to V, are shown in �gure 5.18. In opposition

to the results for the α band for 
ases II to V (�gure 5.16), transitivity (
ase V)

has higher a

ura
y rates than modularity (
ase IV). Case IV, only modularity

of the maximum and minimum syn
hrostates present a top a

ura
y of 65%

(54.8% TNr and 75.2% TPr) using only the feature from the minimum state.

By 
ontrast, 
ase V a
hieved the highest performan
e overall with 77.2% a
-


ura
y (70% TNr and 84.2% TPr). This performan
e was obtained when two

features were used to feed the ld
 algorithm. In general, it 
an be said that the

performan
e between all of the 
lassi�ers for 
ases IV and V remained 
onstant

a
ross the di�erent groups of features.

Similar behaviour is demonstrated in 
ases II and III (top two 
ases in

�gure 5.18) where the minimum o

urring state metri
s (
ase III) performed

remarkably better than the maximum state (
ase II). From the �gure it 
an

be seen that 
ase II is the worst 
ase among the �ve studied in the β band,

presenting a

ura
ies between 20 and 30% for the vast majority of the 
lassi�ers

and groups of features. The highest a

ura
y for 
ase III is a
hieved by the ld



lassi�er with a per
entage of 70.1% (71.2% TNr and 69% TPr) as mentioned

before. On
e more, the performan
e a
ross 
lassi�ers for this s
enario when

only one feature was used were similar, ranging from 65% to 70.1%, with the

ex
eption of the 3-nn 
lassi�er with only 58% a

ura
y (57.3% TNr and 58.8%

TPr).
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Figure 5.18: Comparison of the performan
e of six di�erent 
lassi�ers for 
ases II to V in the β band when no threshold is applied. For ea
h group of

features the a

ura
y (a

), the true negative rate (TNr) and the true positive rate (TPr) are shown.
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5.4.2.3 Summary

Table 5.3 shows a list with best performan
e results for ea
h 
ase and frequen
y

band 
onsidered during this se
tion, similar to the table presented in se
tion

5.4.1.3. The 
lassi�
ation algorithm rea
hing the maximum a

ura
y rates

for ea
h s
enario is also listed with the number of features used to feed the

algorithm. The performan
e when no threshold is used is remarkably lower

than when it is applied as 
an be seen when 
ompared to tables 5.2 and 5.3.

Similar to the previous s
enario, the performan
e of the β band is higher than

in the α band, espe
ially for 
ase V where the performan
e in one band is

half that of the performan
e of the other. This highlights that the number of

features and 
lassi�ers is similar for both frequen
y bands, needing only one

feature to a
hieve the highest a

ura
y rate in most of the 
ases and being the

dis
riminant analysis the 
lassi�
ation algorithm with higher su

ess.

Table 5.3: Summary of the best 
lassi�er performan
e for ea
h 
ase and frequen
y band

when no threshold is used.

α band β band

a

 TNr TPr


lassi�er

No.

Features

a

 TNr TPr


lassi�er

No.

Features


ase I 66.3% 67.2% 65.4%

qd
 3

75.1% 67.3% 82.9%

ld
 3


ase II 60.8% 70.3% 51.3%

ld
 1

44.5% 47.2% 41.8%

3-nn 1


ase III 52.8% 41.7% 63.9%

ld
 1

70.1% 71.2% 69%

ld
 1


ase IV 60.8% 70.3% 51.3%

ld
 1

65% 54.8% 75.2%

ld
 1


ase V 35.5% 35.8% 35.3%

ld
 1

77.2% 70.3% 84.2%

ld
 2

5.5 Dis
ussion

The aim of this 
hapter was to investigate the possibility of using 
omplex

brain networks from the syn
hrostates to distinguish between two MI-tasks, the

imagined movement of the right and left hands. In the pro
ess of probing this

theory, the idea of de�ning whi
h syn
hrostate and network metri
 possess the

most dis
riminant properties to di�erentiate between both 
onditions emerged.

Finally, 
omparison between the two typi
al frequen
y bands was performed

within this 
hapter in 
onjun
tion with a 
omparison of 
lassi�er performan
e

using a threshold or not.

The maximum and minimum number of o

urren
e states was used to ex-

tra
t a set of network measures based on graph theory. Afterwards, these

networks metri
s were used to feed six di�erent 
lassi�
ation algorithms to

di�erentiate between the two 
onditions. Maximum a

ura
y rates of over

80% for both bands when a 5% threshold is applied and over 70% when no
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threshold is used before 
al
ulating the network metri
s, indi
ating that this

is a promising te
hnique to 
lassify MI-tasks.

Regarding whi
h syn
hrostates have better dis
riminative abilities, it 
an

be said that the minimum number of syn
hrostates in general obtained better


lassi�
ation performan
e for all s
enarios. There was only one ex
eption,

where the maximum number of syn
hrostates presented better results than

the minimum state, this is for the α band when no threshold is applied.

Using a threshold of 5% in
reased the general performan
e of the 
lassi�
-

ation algorithms for all possible 
ombinations under 
onsideration, with the

highest a

ura
y for the α band of 83% (83% TNr and 83 TPr) and 85% a
-


ura
y for the β band with the same values for TNr and TPr. By 
ontrast,

the highest a

ura
y when no threshold is applied is 66.3% (67.2% TNr and

65.4% TPr) for the α band and 77.2% a

ura
y (70% TNr and 84.2% TPr) for

the β band. It 
an also be said that results of the β band were higher than the

performan
e in the α band for both situations (threshold and no threshold) as


an be seen from tables 5.2 and 5.3. The use of the threshold also in
reased

the number of features with a FDR value di�erent from zero. For this reason,

when it is used, the number of network metri
s used to feed the 
lassi�
ation

algorithms was nine in total. However, when the 
omplete adja
en
y matrix

of the syn
hronisation index was used to 
al
ulate the metri
s for ea
h syn-


hrostate, only two measures were found with FDR values di�erent from zero,

modularity and transitivity. Maybe this is one of the reasons that led to a

lower performan
e rate for the 
lassi�ers when no threshold is applied.

The features with a higher dis
rimination 
apability when a 5% threshold is

used, 
ommon to both frequen
y bands, are density and the number of edges

within the threshold. In the other s
enario, when the whole weighted matrix

is used, for the α band the top feature is modularity of the maximum state

and the top a

ura
y rate for the β band was a
hieved when the transitivity

of both states was used.

Regarding the 
lassi�ers, not one of them performed 
learly better than

the others, being dis
riminant analysis algorithms in some 
ases and the SVM


lassi�ers in others. Even if in table 5.2 it seems that SVM algorithms a
hieved

better results and in table 5.3 dis
riminant analysis 
lassi�ers, the a

ura
y

rates remained within a small range a
ross 
lassi�ers in most of the 
ases,

making the sele
tion of only one of them di�
ult.

Several examples 
an be found in the literature of investigations trying to


lassify MI-tasks to 
ontrol BCI based on EEG and ma
hine learning as men-

tioned within this work [211, 212, 213℄. The main di�eren
es in the resear
h
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generated until now in MI-based BCI are that in this work, �rstly the extra
-

tion of syn
hrostates based on phase di�eren
es is done for ea
h subje
t and

frequen
y band. Se
ondly, the maximum and minimum o

urring syn
hro-

states are sele
ted and used to 
al
ulate 
omplex network metri
s by means of

a syn
hronisation index. These network metri
s based on graph theory su
h

as density, diameter, CPL, GE, modularity or transitivity are be
oming a hot

topi
 in neural engineering as they have strong features to 
hara
terise several


ombinations of brain 
onne
tivity su
h as segregation and integration.

5.6 Con
lusion

In this 
hapter the study of 
onne
tivity network metri
s has been proposed,

derived from the maximum and minimun o

uring syn
hrostates, for the 
las-

si�
ation between two motor imagery tasks. The 
lassi�
ation algorithms gave

state of the art results for small datasets [214℄. Conne
tivity metri
s, always

from the syn
hrostates perspe
tive, have demostrated the ability to quantify

the underlaying fun
tional 
onne
tions between the di�erent areas of the brain

during motor imagery tasks.

This novel appli
ation of syn
hrostates led to a new 
lassi�
ation method-

ology for motor imagery based BCI systems, and it 
an be the base for new

appli
ations. However, even if the results are promising further investigations

should be done. Mainly, a larger number of parti
ipants should be used to

redu
e to a minimum any possible mis
lassi�
ation e�e
ts.



Chapter 6

Syn
hrostates: emotions from

human fa
es

The results obtained in 
hapter 3 demonstrated the existen
e of quasi-stable

states in the order of millise
onds when parti
ipants are performing an MI task

based on a s
hemati
 fa
es paradigm. This phenomenon was named syn
hro-

states. The number and the swit
hing patter among syn
hrostates are spe
i�


for ea
h one of the motor imagery tasks and frequen
y band. Furthermore in


hapter 4, resear
h regarding their temporal stability was performed by means

of a syn
hronisation index and 
omplex network analysis.

The aim of this 
hapter is validating the existen
e of syn
hrostate phenom-

ena using images of human fa
es as stimuli instead of s
hemati
 emotional fa
es

to indi
ate to the parti
ipants whi
h motor imagery task they should perform.

The use of human fa
e images is aligned with the idea stated in 
hapter 3 that

emotions 
an enhan
e a stronger response a
ross subje
ts and 
onsequently


an be used as a novel paradigm in motor imagery based BCIs. Furthermore,

the number of 
ognitive tasks has been in
reased from two to four with the

intention of testing and validating the presen
e of syn
hrostates over a larger

amount of motor imagery tasks.

Following the same steps des
ribed in 
hapters 3 and 4, the phase inform-

ation will be analysed for the di�erent tasks and frequen
ies. The temporal

evolution and stability of the task-spe
i�
 syn
hrostates will be explored in

the di�erent areas of the brain by using 
omplex network metri
s.

116
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6.1 Experimental proto
ol

Emotions play a vital role in the 
ommuni
ation and intera
tion between hu-

mans. The ability to re
ognise the emotional state of the surrounding people

is a natural step in human 
ommuni
ation. The re
ognition of a fa
ial emotion

is a highly 
omplex task utilising a wide range of skills. Emotional re
ognition

requires attention, per
eption, learning and memory skills. Numerous studies

have been performed using EEG as a basis for automati
 emotion re
ognition

in the past few de
ades. It has been proven that EEG signals 
an highlight

important information regarding emotional states [215℄. This information as-

so
iated with the emotions 
an be used as stimuli in brain 
omputer interfa
es.

For instan
e, this is the 
ase for novel BCI speller systems that using fa
es as

stimulus a
hieved a 
onsiderable in
remental improvement in their perform-

an
e when 
ompared to 
onventional BCI spellers [93, 156℄

6.1.1 Subje
ts

Fifteen healthy volunteers, 10 males and 5 females, with an age range between

24 and 39 years parti
ipated in the experiment. The parti
ipants in this exper-

iment were di�erent from those who joined the previous experiment explained

in 
hapter 3 to avoid any familiarity with the experimental set-up and so,

avoid a possible in�uen
e in the 
lassi�
ation results. Their sight was normal

or 
orre
ted to normal. The re
ruitment was 
arried out by means of publi


announ
ements, no sele
tion 
riteria were used and no monetary 
ompensa-

tions were o�ered to the parti
ipants. Written 
onsent was signed by ea
h

parti
ipant after they were informed of the nature of the study. They fully

understood all of the pro
esses and were 
omfortable with them. The Univer-

sity of Warwi
k Ethi
al 
ommittee, named Biomedi
al & S
ienti�
 Resear
h

Ethi
s Committee (BSREC), approved this study (REGO-2014-821).

6.1.2 Experimental montage and equipment

The experimental montage and the equipment des
ribed in se
tion 3.1.2 are

also used for this experiment. Please refer to the relevant se
tion for more

information about the EEG 
ap and ele
trodes used for re
ording the data.

6.1.3 Paradigm

The stimuli for the experiments were taken from a widely used database of
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human fa
ial expression images [216, 217℄. The Karolinska Dire
ted Emotional

Fa
es (KDEF) database is a set of 4900 pi
tures in total of human fa
ial

expressions of emotion. Forty fa
es were sele
ted from 5 female and 5 male

subje
ts, representing 4 emotions ea
h: happiness, sadness, neutrality and

surprise.

The subje
ts and emotions were sele
ted as being the most voted for from

a ranking performed by thirty people. The parti
ipants in the ranking were

shown the total number of frontal pi
tures from the database after being nor-

malised using Matlab

(C)

software. They had to sele
t the emotion expressed

by the person in the pi
ture and voted (from 1 to 5 -really good-) on how 
lear

the emotion was. More details about the sele
tion pro
edure 
an be found in

Appendix A.

The experiment was 
ondu
ted in 4 blo
ks of 80 trials ea
h. In ea
h blo
k 20

happy, 20 neutral, 20 sad and 20 surprised fa
es were presented at random. The

temporal s
heme of a typi
al trial is as follows: a s
rambled fa
e is presented

on the s
reen for half a se
ond, followed by one of the sele
ted emotion images

lasting on the s
reen for 0.5 se
onds. Afterwards, a bla
k s
reen is presented

to the parti
ipant for 3 se
onds. During this time, the parti
ipant is asked

to perform the imagined tasks asso
iated to the emotions shown just before

on the s
reen. Finally a 
ross is presented lasting for 1 se
ond indi
ating the

end of the trial. The motor imagery tasks that parti
ipants were asked to

perform were: imagined movement of the right hand when a happy fa
e is

shown, left hand movement when a sad fa
e is presented. This sele
tion was

spe
i�
ally 
hosen to follow the same 
riteria as in the experiment performed

in 
hapter 3. In addition, for emotions of surprise the parti
ipants were asked

to perform the imagined movement of both feet. Finally when a neutral fa
e is

shown the parti
ipants were requested to relax, and not do perform any type of

movement. Further details regarding the sequen
e and temporal s
heme of the

experimental set up 
an be found in appendix B. The movement of both feet,

together with the movement of left and right hands are the typi
al movements

asso
iated with MI based BCI systems [218℄. Regarding the dis
rimination

between right and left foot imagery, there are some studies 
overing the topi
,

whi
h uniformly show poor results with a

ura
ies of around 60% [219℄. For

this reason, in this thesis, the movement of both feet was sele
ted.

6.1.4 Pre-pro
essing

EEG data are a
quired at 512 Hz from 62 
hannels + 2 referen
e 
hannels



119 CHAPTER 6. SYNCHROSTATES: EMOTIONS FROM HUMAN FACES

pla
ed on the earlobes. The 
ontinuous EEG data are divided into the four


onditions: right and left hand movements, feet and relax. A �rst sele
tion of

trials was done by eliminating those with amplitudes over a 200μV threshold,

following the same 
riterion as in 
hapter 3. Afterwards a visual inspe
tion

of the whole dataset of trials and parti
ipants was performed and those trials

a�e
ted by blinking or any other kind of mus
le movement were eliminated and


onsidered as artifa
ts. Finally, artifa
t-free trials were divided into one se
ond

length epo
hs for ea
h 
ondition lasting from 100ms before stimulus onset to

900ms after and baseline 
orre
ted. Due to the low amount of artifa
t-free

trials, one of the male parti
ipants was dis
arded from future analysis.

6.2 Syn
hrostates from the averaged population

Similar to the pro
ess des
ribed in 
hapter 3, the study of temporal evolution

of the phase is developed �rst in the averaged population and posteriorly, the

variability within the subje
t is studied. In order to obtain the syn
hrostates

from the averaged population the phase di�eren
e matrix for ea
h individual

subje
t has to be 
al
ulated as des
ribed in se
tion 3.2.1. Afterwards, the av-

erage of the phase matri
es of ea
h subje
t at ea
h time instant and frequen
y

band is formulated. The resultant averaged matri
es are 
lustered by means

of the k-means algorithm as des
ribed in se
tion 3.2.2.

Figure 6.1 shows the results of the in
remental k-means algorithm for a

number of 
lusters between 2 and 10 for all the frequen
y bands of interest (θ,

α, β and γ) and for the four di�erent motor imaginary tasks from the averaged

population (R hand, L hand, Feet and Relax).

The top row (blue 
olour) represents the 
ost fun
tion for the four imaginary

tasks in the θ band. It 
an be seen that the �rst 
lear dominant knee o

urs

when the number of 
lusters is two for all of the 
ases. Although in some of

the 
ases, the 
ost fun
tions have �u
tuations, in
reasing or de
reasing, the

earliest knee will be the only one to 
onsider as previously dis
ussed in se
tion

3.2.2. It means that for the averaged group of 14 people the number of unique

syn
hrostates is k=2 for the θ band.

In the next row of the �gure the results of the α band-
ost fun
tions are

illustrated (red 
olour). It 
an be seen that the optimal number underlying

the phase di�eren
e matri
es is k=3 for the four di�erent situations under


onsideration. This is the same number of syn
hrostates obtained for the α

band for the right and left hand imagined movements experiment designed
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and explained in 
hapter 3. The same situation is not sustained for the β band

(bla
k 
olour), where only the R hand 
ase presents a number of 
lusters similar

to the previous study, k=3. Being only k=2 for the other three 
onditions (L

hand, Feet and Relax). Finally the last row (green 
olour) shows the results of

the algorithm for the γ band. It 
an be 
learly seen that the optimal number

of 
luster is k=4 for all situations.

Figure 6.1: k-means 
lustering 
ost fun
tion results for the four 
onditions under analysis

(R hand, L hand and feet movements and the no-movement or relax task). The upper row

(blue 
olour) 
orresponds to the θ band. It 
an be seen that the optimal number of 
lusters

is 2 for ea
h one of the tasks. Se
ond row from the top, red 
olour, represents the 
ost

fun
tion for the α band where a minimum 
an be found 
orresponding to 3 
lusters for all

the 
ases. Third row, in bla
k, represent the results for the β band. In this 
ase the number

of 
lusters sele
ted for the R hand movement task is 3, being only 2 for the other three tasks.

Finally the last row, green 
olour, represent the γ band results where a 
lear minimum 
an

be found for a number of 
lusters equal to 4 in ea
h one of the performed tasks.

As dis
ussed in previous 
hapters, the α and β bands will be further studied,

as they are the typi
al frequen
y bands used for BCI system investigations

a

ording to the literature. In addition, it has been demonstrated that the β

band is related to fa
e pro
essing and 
ognition [134℄. In this 
hapter, further

resear
h on the γ band is also performed as re
ent dis
ussions argued that the

γ band is indu
ed by di�erent sensory stimuli or 
ognitive tasks. Therefore,

the γ band syn
hronisation is an elementary and fundamental pro
ess in the

fun
tioning of the brain [220℄.

Figure 6.2 shows the head plots of the in
reasing k-means algorithm syn-


hrostates from the averaged group in the α band. At �rst glan
e, it 
an be

appre
iated that the topographies of the di�erent states are very similar along
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Figure 6.2: Topographies from the syn
hrostates of the averaged population for the α band.
Columns represent the syn
hrostate (1 to 3 in this parti
ular 
ase) and rows indi
ate the

performed task. From the top to the bottom: R hand imagined movement, L hand, Feet and

Relax. On the right side, the emotion linked to ea
h one of the tasks is indi
ated: happiness,

sadness, surprise and neutral respe
tively.

the di�erent stimuli presented to the parti
ipants. A similar result is shown

by the other frequen
y bands, β and γ, as 
an be seen from �gures 6.3 and 6.4

respe
tively. The syn
hrostates of the four di�erent tasks are similar within a

frequen
y band, whi
h is in line with the results found in 
hapter 3 for the
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Figure 6.3: Topographies from the syn
hrostates of the averaged population for the β band.
Columns represent the syn
hrostate number, up to 3 for the R hand movement and 2 for

the rest of 
onditions. Rows indi
ate the performed task. From the top to the bottom: R

hand imagined movement, L hand, Feet and Relax. On the right side, the emotion linked

to ea
h one of the tasks is indi
ated: happiness, sadness, surprise and neutral respe
tively.

s
hemati
 emotional fa
es stimuli. Another important observation is that the

syn
hrostates head plots of the α band 
losely resemble those obtained in the β

band. This behaviour is 
ompatible with a previous study [134℄. In the 
ase of

the γ band the syn
hrostates topographies still present some similarities, but
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the fa
t that the number of 
lusters is larger than in the other two frequen
y

bands makes a possible 
omparison di�
ult from just visual observation of the

graphs.

Following the same steps explained in 
hapter 3, the temporal evolution of

the syn
hrostates swit
hing patterns are studied to understand the di�eren
es

a
ross stimuli and between frequen
y bands. Figures 6.6 to 6.7 illustrate the

time-
ourse plots for the α, β and γ bands respe
tively for the four stimuli.

From the �gures, it 
an be said that the overall transition patterns between

frequen
y bands and also between the four stimuli are markedly di�erent. This

demonstrates the spe
i�
 nature of the phase syn
hrostates.

From the topographies of state 1 in �gures 6.2 and 6.3, it 
an be argued that

the averaged phase di�eren
e for these syn
hrostates remains almost uniformly

distributed a
ross all the ele
trodes. The same behaviour 
an be found in states

1 and 4 in the γ band (�gure 6.4). This may be explained by looking at the

temporal swit
hing pattern of the syn
hrostates (�gures 6.6 to 6.7). From

these time plots it 
an be seen that the averaged population remain for most

of the time in the state 1, therefore, it 
an be said that the averaged population

resides at a state of phase homogeneity for a longer period of time.

Observing the transition plots for the α band ( �gure 6.6) it 
an be observed

that for the movement related tasks, R hand, L hand and feet, the transition

starts in state 1, but for the relax task, it starts in state 2. The di�erent initial

states, for the di�erent emotional fa
es, is in line with previous �ndings [134℄,

where fa
e per
eption tasks were studied from patients su�ering from Autism

Spe
trum Disorder and a 
ontrol group. On
e more, as explained in 
hapter 3,

it may be explained by the di�erent pro
essing pathways a
ross parti
ipants

of the image prior to the stimulus onset or it may be be
ause of any other

underlying pro
ess o

urring in parallel and not related to the task. The solid

red line indi
ates the stimuli onset and the dotted red lines are set to 300 and

600 millise
onds to help the visualisation pro
ess. This highlights the similar

behaviour of the time 
ourse plots for all the stimuli between 100 and 300

millise
onds approximately, 
hanging qui
kly between states at almost the

same instant in time. It may be indi
ative of a similar pro
essing pathway of

the brain when analysing the image presented on the s
reen and the working

memory pro
ess to remember the tasks linked to ea
h fa
e, even for the neut-

ral fa
e/ relax task. Afterwards, the transitions are slower, remaining longer

in one state. This highlights the di�eren
es between the tasks. It is in line

with the argument that the syn
hrostates are task-spe
i�
. The time period
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between 300 and 600 millise
onds (between the dotted lines) shows a stable

transition for the imagination of the feet movement and relax tasks, staying

in state 1 and 2 respe
tively. Contrarily, the right and left hand imagined

movement's transition plots remain swit
hing between state 1 and 2 during

this time period. It 
an be seen that the number of swit
hes a
ross states is


onsiderably lower for the relax task than for the other three 
onditions. This


an be expe
ted as the parti
ipants were asked not to perform any movements.

Consequently the brain pro
essing �ow should be lower.

Figure 6.4: Topographies from the syn
hrostates of the averaged population for the γ band.
Columns represent the syn
hrostate number, from 1 to 4 for all 
onditions. Rows indi
ate

the performed task. From the top to the bottom: R hand imagined movement, L hand,

Feet and Relax. On the right side, the emotion linked to ea
h one of the tasks is indi
ated:

happiness, sadness, surprise and neutral respe
tively.
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Figure 6.5: Temporal evolution of the 
lustered syn
hrostates for the β band for the four


onditions: R hand (top left), L hand (top right), Feet (bottom left) and Relax (bottom

right). The solid red line indi
ates the time instants of the stimulus onset and the dotted

red lines are pla
ed at 300 and 600 millise
onds after the stimuli onset.

Figure 6.6: Temporal evolution of the 
lustered syn
hrostates for the α band for the four


onditions: R hand (top left), L hand (top right), Feet (bottom left) and Relax (bottom

right). The solid red line indi
ates the time instants of the stimulus onset and the dotted

red lines are pla
ed at 300 and 600 millise
onds after the stimuli onset. It seems that the

period that elapses between the stimulus onset and 300 millise
onds, the temporal swit
hing

for all the 
ases presents similar pattern.

From �gure 6.5 it 
an be observed that the L hand task swit
hing pat-

tern transitions are qui
ker than in the others, remaining for most of the time
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in state 1, in 
ontrast to the other three tasks where the most visited state

is state 2. It is noti
eable that during the period of time between the two

red dotted lines, from 300 to 600 millise
onds, the four stimuli remain almost


ompletely stable in one state, number 2, for all the 
ases ex
ept for L hand

tasks whi
h is state 1. In the γ band (�gure 6.7) the transitions o

ur almost


onstantly and o

ur in larger numbers than for the previous frequen
y bands.

This qui
k transition, the larger number of them and the presen
e of one more

syn
hrostate 
an lead us to think that maybe the γ band syn
hronisation 
an

re�e
t more 
omplex tasks happening in parallel to the tasks presented to the

users. This is in line with the argument that γ band syn
hronisation is a fun-

damental pro
ess that follows any elemental operation of 
orti
al 
omputation

previously mentioned.

Figure 6.7: Temporal evolution of the 
lustered syn
hrostates for the γ band for the four


onditions: R hand (top left), L hand (top right), Feet (bottom left) and Relax (bottom

right). The solid red line indi
ates the time instants of the stimulus onset and the dotted

red lines are pla
ed at 300 and 600 millise
onds after the stimuli onset.

6.3 Variability a
ross subje
ts

The results presented so far, topographi
 maps and transitions between

syn
hrostates plots, are based on the averages a
ross parti
ipants. The aim

of this se
tion is to explore the inter-subje
t variability regarding the optimal

number of syn
hrostates a
ross the diversity of frequen
y bands under s
rutiny.

The di�eren
es in the phase matri
es for ea
h parti
ipant were 
lustered by

the k-means algorithm as explained in se
tion 3.2.2 for ea
h 
ondition and



127 CHAPTER 6. SYNCHROSTATES: EMOTIONS FROM HUMAN FACES

frequen
y band. Finally, statisti
al measures su
h as median and quartile

ranges are used to illustrate the variability of the number of syn
hrostates as

explained in se
tion 3.3.2.

Figure 6.8: Variability in the optimal number of syn
hrostates for ea
h subje
t during four

di�erent tasks: R hand, L hand, Feet and Relax. In bra
kets, the emotion stimulus linked

to ea
h task. The group was formed by 15 subje
ts and was repli
ated in four frequen
y

bands (α, β, γ, θ).

The number of syn
hrostates a
ross subje
ts varies between 2 and 5, 2 to

4 or 2 and 3 depending on the task and frequen
y band as 
an be seen from

�gure 6.8. This is in line with the results des
ribed in se
tion 3.3.2, sustaining

the existen
e of task-spe
i�
 syn
hrostates. On
e more, it 
an be mentioned

that the small variation between the number of syn
hrostates 
an be due to

the fa
t that the pro
essing pathways are unique for ea
h person and they 
an

be in�uen
ed by several fa
tors.

6.4 Variability due to other fa
tors

Changing some parameters during the EEG re
ording su
h as the number

of ele
trodes or sampling frequen
y may a�e
t the �nal result on the head plots

topographies or in the temporal resolution of the syn
hrostates transitions. It

is likely that a higher sampling frequen
y 
an tra
e with more detailed granu-

larity the phase evolution of the signals. In the same manner, a larger number

of ele
trodes will probably lead to more 
onsistent results than a redu
ed

amount of EEG 
hannels.

However, there is also a small �u
tuation due to the variability from trial
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to trial and from person to person, leading to a small variation in the number

of syn
hrostates (see �gure 6.8). This variation is redu
ed enough to 
onsider

the presen
e of syn
hrostates validated a
ross parti
ipants. In this work, a

number of di�erent random initialisations of the k-means 
lustering algorithm

have been used in the aim of obtaining more 
onsistent results. Also the

sampling frequen
y was in
reased from 256Hz in the �rst study (
hapter 3) to

512Hz to gain in time-s
ale granularity.

The dependen
e on the type of experiment has been tested with two dif-

ferent sets of parti
ipants and two di�erent types of stimuli, s
hemati
 and

human fa
es, with regulated re
ording equipment and in a 
ontrolled environ-

ment. In addition, similar results were previously dete
ted in autisti
 
hildren

and a 
ontrol group [134℄. However, the presen
e of syn
hrostates using other

types of stimuli, di�erent from the pro
essing of emotional fa
es, has not being

tested yet as it is not within the s
ope of this thesis.

6.5 Network analysis

Syn
hrostates have been de�ned as states where the phase di�eren
e a
ross

ele
trodes remained 
onstant over time, spe
i�
ally of the order of millise
onds.

To study their stability in a time 
ontext and keeping the information related to

their phase di�eren
e values at the same time, the syn
hronisation index is se-

le
ted as the suitable measure. Afterwards, on
e the syn
hronisation matri
es

are formulated for ea
h one of the syn
hrostates and frequen
y bands of in-

terest, those matri
es 
an be translated into 
omplex network measures. The

aim of this pro
ess, fully des
ribed in 
hapter 4, is to gain further informa-

tion about the behaviour of the phase syn
hronisation amongst di�erent areas

of the brain. Therefore, a deeper insight into the temporal dynami
s of the


onne
tivity patterns for a spe
i�
 task 
an be obtained.

6.5.1 Syn
hronisation index

The syn
hronisation index for ea
h syn
hrostate, task 
ondition and fre-

quen
y band has been 
al
ulated a

ording to 4.1. The 
ross ele
trode plots

resulted from the syn
hronisation index in the α band are shown in �gure 6.9.

Similar to the pro
ess des
ribed in se
tion 4.1, the values 
losest to 1 (reddish


olour on the graph) indi
ate a larger degree of syn
hronisation.

After the analysis of the results from 
hapter 4, it was determined that

those states having the largest number of o

urren
es were the most stable and

probably will 
arry vital information. In the same manner, the states with the

lowest number of o

urren
es were also in
luded in the 
onne
tivity analysis as
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they may hold some spe
i�
 information related to the brain 
onne
tivity. In

line with the nomen
lature followed in 
hapter 5 the maximum and minimum

number of o

urren
es will from now be named the 'max' and 'min' states

respe
tively.

Figure 6.9: Syn
hronisation Index ΥP (F ) matri
es for the three syn
hrostates obtained for

the α band and task 
ondition.

6.5.2 Network measures

The syn
hronisation index obtained for the max and min states for ea
h


ondition and frequen
y band will be used as a weighted adja
en
y matrix in-

di
ating the degree of 
onne
tivity between nodes or EEG ele
trodes. This will


ontribute to a further understanding about how well 
onne
ted the di�erent

pairs of ele
trodes are or nodes a
ross the areas of the brain and also about
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the temporal stability of ea
h state. The pro
ess is des
ribed in 
hapter 4.

Figures 6.10 - 6.12 show the resulting 
onne
tivity maps for the max (left


olumn) and min (right 
olumn) states for ea
h 
ondition and frequen
y band:

the α, β and γ bands respe
tively. The rows represent the di�erent tasks:

(from top to bottom) R hand, Left hand, Feet and Relax linked to happy,

sad, neutral and surprised fa
e stimuli respe
tively. The resulting 
onne
tivity

graphs for the max and the min states are shown with only 5% of the strongest


onne
tions retained for further analysis. This was performed to maintain a

similar average degree distribution between subje
ts, sin
e the betweenness


entrality 
an be a�e
ted by the degree of a network [221℄. A similar threshold

was sele
ted to perform the analysis as detailed in 
hapter 4. A range of

thresholds from 3 to 10% was examined as they are the most widely used

in the literature. However, those thresholds were not found to signi�
antly


hange the properties of the examined 
onne
tivity networks.

Following the same 
riteria than as in previous 
hapters, the 
olours and

sizes of the nodes are based on their degree, meaning that a bigger diameter of

the node 
ontains a higher number of links 
onne
ted to this node. Similarly, a

reddish 
olours of the nodes, signi�es more links 
onne
ted to the node; Bluish,

a lower number of links 
onne
ted to it. Furthermore, the edge thi
knesses are

based on the weighted values of the syn
hrostate index matri
es. Consequently,

thi
ker lines 
onne
ting ele
trode pairs mean higher values than thinner ones in

the adja
en
y matrix. As mentioned in 
hapter 4, the nodes situated outside of

the brain 
ontour 
orrespond to the nodes labelled as Tp9 and Tp10, situated

by the ears. This is due to the way EEGNET software plots the 
onne
tivity

graphs.

An interesting observation from Figures 6.10 to 6.12 is that the relax task for

all frequen
y bands shows, in general, the less lo
alised 
onne
tivity 
ompared

to the other tasks linked to an imagined movement. In addition, the strength

of the edges represented by the thi
kness of the 
onne
tions between nodes is

lower in relation to the other three stimuli. It may mean that the number of

pro
esses ongoing within the brain when this stimulus is presented to the user is

lower, 
onsequently the need of spe
ialised information integration operations

are less that those needed for a motor imaginary task.

From the 
onne
tivity �gures it 
an also be noti
ed that there is a 
lear dif-

feren
e between the max and min states for the motor related tasks, espe
ially

in the α and γ bands. The min state is the one presenting more segmented


onne
tivity in relation to the max state. This may mean that most of the

spe
ialised information integration operations o

ur during the min state.
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Figure 6.10: Brain 
onne
tivity plots from the maximum and minimum number of o
-


urren
es syn
hrostates in the α band for all four 
onditions: R hand movement, L hand

movement, Feet movement and relax. The 
olours and sizes of the nodes are based on their

degree: bigger diameters and reddish 
olours of the node meaning a larger number of links.

The edge thi
kness is based on the weighted values of the syn
hrostate index matri
es.
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Figure 6.11: Brain 
onne
tivity plots from the maximum and minimum number of o
-


urren
es syn
hrostates in the β band for all four 
onditions: R hand movement, L hand

movement, Feet movement and relax. The 
olours and sizes of the nodes are based on their

degree: bigger diameters and reddish 
olours of the node meaning a larger number of links.

The edge thi
kness is based on the weighted values of the syn
hrostate index matri
es.
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Figure 6.12: Brain 
onne
tivity plots from the maximum and minimum number of o
-


urren
es syn
hrostates in the γ band for all four 
onditions: R hand movement, L hand

movement, Feet movement and relax. The 
olours and sizes of the nodes are based on their

degree: bigger diameters and reddish 
olours of the node meaning a larger number of links.

The edge thi
kness is based on the weighted values of the syn
hrostate index matri
es.
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Therefore, min state quantitative 
hara
terisation may lead to a higher power

of dis
rimination between tasks. This is a

ording to the results found in the

previous 
hapters. This phenomenon is not as 
lear in the β band where the

di�eren
es between max and min states are less intuitive from a visual point

of view.

It 
an be said that there are some similarities in the α band (�gure 6.10)

between the min states for the three motor imaginary tasks (the top three

topographies of the right 
olumn), spe
ially between L hand and both feet

movements. This behaviour 
annot be observed in the other frequen
y bands.

This may be explained by the in�uen
e of other pro
esses o

urring simultan-

eously in the brain that 
an be frequen
y spe
i�
 [134℄. Therefore, a�e
ting

di�erently to the range of frequen
ies observed.

From the above 
onne
tivity plots, as mentioned in 
hapter 4, obje
tive in-

formation 
annot be obtained, only some visual 
onje
tures and a more quant-

itative evaluation me
hanism is needed to yield any solid 
on
lusions. For this

reason, in addition to the 
onne
tivity network topographies showed in �gures

6.10 to 6.12 a set of 
onne
tivity metri
s was also obtained for ea
h frequen
y

band, 
ondition and max/min syn
hrostates. For a more exhaustive explana-

tion about the meaning and formulation of ea
h one of the graph theory based

measures please refer to 
hapter 4. Tables 6.1 and 6.2 show two examples of

the network measures 
al
ulated for the α and γ bands respe
tively.

Table 6.1: Example of two network metri
s, 
hara
teristi
 path length (CPL) and global

e�
ien
y (G.E.), for the max and min syn
hrostates for the four 
onditions (R hand, L

hand, Feet, Relax) for the α band.

measures

R hand L hand Feet Relax

max state min state max state min state max state min state max state min state

CPL 4.402 4.29 3.515 3.868 4.451 4.50 4.017 4.52

G.E. 151*10

-3

165*10

-3

130*10

-3

129*10

-3

156*10

-3

136*10

-3

114*10

-3

143*10

-3

Table 6.2: Example of two network metri
s, modularity and transitivity, for the max and

min syn
hrostates for the four 
onditions (R hand, L hand, Feet, Relax) for the γ band.

measures

R hand L hand Feet Relax

max state min state max state min state max state min state max state min state

Q 61.4*10

-2

71.8*10

-2

63.7*10

-2

70.0*10

-2

66.4*10

-2

71.6*10

-2

70.9*10

-2

70.3*10

-2

T 66.5*10

-2

86.9*10

-2

61.4*10

-2

80.6*10

-2

59.9*10

-2

84.3*10

-2

70.0*10

-2

69.3*10

-2

From table 6.1 it 
an be seen that the max state for the L hand and Feet

movement tasks present higher GE values and lower CPL than their 
orres-

ponding min states, meaning that the min states for L hand and feet 
onditions

have a larger information integration ability than their max states. However,
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for the R hand tasks the max state boasts this feature. Furthermore, despite

some states leading the integration 
apa
ity of the brain for the spe
i�
 task,

all of the motor tasks have a similar value of those features, meaning that all of

them perform to a 
omparable level of integration pro
ess. This 
an explained

by the notion that at the end, although di�erent stimuli have been shown to

the parti
ipant, all belong to the same 
ognitive task. It means that similar

information integration spe
i�
 to this task and stimuli is performed. This

behaviour also explains the similarities between the head plot topographies for

the di�erent states within a frequen
y band.

Also noti
eable are the higher values of the transitivity in table 6.2 of the

min state 
ompared with the max state for the motor imaginary tasks (feet and

R and L hands), This is not the 
ase for the Relax 
ondition, where min and

max states show similar values for both 
onne
tivity metri
s. These results


orroborate the previously mentioned regarding the proposition that the min

state 
an lead the segregated spe
ialised pro
essing.

6.6 Four 
lass 
lassi�
ation from syn
hrostates

In 
hapter 5 the possibility of using 
onne
tivity network metri
s from the

syn
hrostates to di�erentiate between two motor imaginary tasks, right and

left hand, has been 
learly demonstrated. In this se
tion the pursued aim is

similar, using the metri
s from the max and min syn
hrostates as features to


lassify between di�erent tasks to 
ontrol a BCI system. However, two main

di�eren
es 
an be highlighted. Firstly, from a two 
lass 
lassi�
ation problem,

right and left hand, it has in
reased to a four 
lass problem: right hand, left

hand, feet and no movement or a relax task. The other important di�eren
e

is the type of stimuli used, previous 
hapter results are based on s
hemati


emotional fa
es as stimuli, now the emotions are transmitted by images of

human fa
es.

The steps involved in the 
lassi�
ation pro
ess are detailed in 
hapter 5.

Brie�y, the individual and 
olle
tive dis
rimination power of the features 
om-

ing from the max and min syn
hrostates are determined by the FDR. Three


ases will be 
onsidered: only min state features, only max state features and

all together. Following the same nomen
lature as in 
hapter 5, the di�erent


ases will be named 
ase I (all features), 
ase II (max state features) and 
ase

III (min state features). In addition to the α and β bands studied in 
hapter 5,

γ band has also been in
luded in this study. Nevertheless, only the 
onne
tiv-

ity metri
s when a threshold is used will be 
onsidered as they demonstrate

having a stronger dis
riminative 
apa
ity. The number of and type of 
lassi�-
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ers remain identi
al to the previous study. Please refer to se
tion 5.3 for more

details.

6.6.1 Results for the α band

The FDR separability 
riterion results for 
ases I to III are illustrated in �gures

6.13-6.15 respe
tively. The whole set of features is divided into smaller subsets

a

ording to their FDR values. These redu
ed groups of features will be used

later on to feed the di�erent 
lassi�
ation algorithms. For 
ase I, �gure 6.13,

the number of groups after the grouping pro
ess is 9.

The �rst group is formed by the top one feature, degree network metri


from max syn
hrostate. The following groups are formed by 2 features, the

GE value and also from the max syn
hrostate and modularity (Q) of the min

syn
hrostate. The next four groups are formed by only one feature, followed

by 3 and 2 features groups and the last ensemble in
ludes all the available

features.

Figure 6.13: Grouped features by their FDR values ordered in de
reasing order for 
ase I,

all network measures are 
onsidered, and the α band.

Following the same 
riteria, the pro
ess of dividing into smaller sets of

features to feed the 
lassi�ers is applied to 
ases II and III where only the max

and min syn
hrostates network measures are 
onsidered respe
tively. The

number of groups for 
ase II is 6 as 
an be seen from �gure 6.14. The �rst

one is formed by the top one feature whi
h is the same as in 
ase I. The next

two sets are also formed by only one feature, followed by groups of 3 and 2

elements respe
tively. Finally, the 6

th

group that in
ludes all features.

Case III's situation, that only 
onsiders the network metri
s obtained from

the min syn
hrostate, is illustrated in �gure 6.15. The number of groups that

resulted in this parti
ular 
ase is only 5 and ex
ept for the last one that in
ludes

all of the range of features, the rest are formed from a single metri
. A big

gap is noti
eable between the FDR values of the top four features and the rest.
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This means that their ability to dis
riminate between the di�erent MI tasks

will be remarkably lower than for the top four features.

Figure 6.14: Grouped features by their FDR values ordered in de
reasing order for 
ase II,

only max syn
hrostate network measures are 
onsidered, and the α band.

It 
an been observed from �gures 6.13, 6.14 and 6.15 that the 
onne
tivity

measures with higher FDR values, hen
e, a larger dis
riminative power, are

modularity, transitivity, global e�
ien
y or the degree of the network. This is

in line with the expe
ted behaviour as 
ommented in previous se
tions of this


hapter.

Figure 6.15: Grouped features by their FDR values ordered in de
reasing order for 
ase III,

only min syn
hrostate network measures are 
onsidered, and the α band.

The di�erent subsets of features for 
ases I to III were used to feed six di�er-

ent 
lassi�ers using leaving-one-out validation following the 
riteria established

in 
hapter 5. For illustrative purposes, only the top two 
lassi�ers showing the

highest performan
e among the di�erent 
ases and frequen
y bands are presen-

ted in this se
tion. Figure 6.16 illustrates the performan
e of the algorithms.

The �rst one is a linear dis
riminant analysis 
lassi�er (ld
, top graph) and
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the se
ond one is a quadrati
 dis
riminant 
lassi�er, (qd
bottom graph). This

behaviour is similar to the previous 
hapter, being also those two algorithms

whi
h a
hieved the best performan
es 
lassifying between two MI tasks. It 
an

be seen that the higher average a

ura
y for the linear dis
riminant algorithm

is obtained when the top three features are used, being 90% with true positive

values of 100% for the R and L hand tasks, and 84% for the non-task situation

and 76% for the feet task.

Figure 6.16: Comparison of the performan
e of the top two 
lassi�ers for 
ase I in the α
band. Features grouped a

ording to their FDR value are fed to the di�erent 
lassi�
ation

algorithms. For ea
h one of the formed subsets, the average a

ura
y (a

) and the true

positive (TP) for ea
h one of the four tasks (R hand, relaxing or no-task, L hand and feet)

are illustrated. The upper graph shows the performan
e results for the linear dis
riminant

analysis 
lassi�er (ld
) and the bottom graph shows the results obtained for the quadrati


dis
riminant 
lassi�er (qd
).
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Similar results are obtained for the �rst two groups of features when the

quadrati
 dis
riminant algorithm is used , the bottom graph of �gure 6.16,

a
hieving a maximum averaged a

ura
y of 93% when the top three features

are used with a true positive rate of 92%, 100%, 100% and 82% for R hand,

no-task, L-hand and feet respe
tively. The addition of more features to both


lassi�ers leads to a lower averaged performan
e that on
e more, 
an be at-

tributed to the over-�tting phenomenon. It 
an be seen that for the linear

dis
riminant algorithm, that the worst performan
e is obtained for the last MI

tasks, 
onsisting of imagining moving both feet. This behaviour is not present

when the quadrati
 dis
riminant algorithm is used and where the true positive

rate between the four tasks is more balan
ed. Maybe this is due to the lower

general averaged performan
e of this 
lassi�er when 
ompared to the linear

dis
riminant 
lassi�er.

Figure 6.17: Comparison of the performan
e of the top two 
lassi�ers for 
ase II (left 
olumn)

and 
ase III (right 
olumn) in the α band. Features grouped a

ording to their FDR value

are feed to the di�erent 
lassi�
ation algorithms. For ea
h one of the formed subsets the

average a

ura
y (a

) and the true positive (TP) for ea
h one of the four tasks (R hand,

relaxing or no-task, L hand and feet) are illustrated. The upper row shows the performan
e

results for the linear dis
riminant analysis 
lassi�er (ld
) and the bottom row shows the

results obtained for the quadrati
 dis
riminant 
lassi�er (qd
).

The performan
e for 
ase II and 
ase III is displayed in �gure 6.17. The left


olumn of the �gure illustrates 
ase II, when only network metri
s 
orrespond-

ing to the max syn
hrostate are 
onsidered. The right 
olumn, 
onsequently

re�e
ts the performan
e obtained for 
ase III, when only the min syn
hrostate
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onne
tivity measures are used to feed the 
lassi�
ation algorithm. The higher

performan
e obtained in this 
ase for the linear dis
riminant algorithm is sim-

ilar to that in 
ase I, 90% with TP rates of 96%, 94%, 92% and 78% for R

hand, non-task, L hand and feet respe
tively. This averaged a

ura
y is s
ored

when three features are used to feed the algorithm. The top two features are

the same as for 
ase I so it is logi
al to think that the level of a

ura
y should

be similar. On
e more the MI task of moving both feet is the one obtaining the

lower performan
es. Similar numbers resulted from the se
ond 
lassi�er un-

der study, quadrati
 dis
riminant, with an averaged a

ura
y of 90.5% (92%,

82%, 92%, 96%) when the top three features are used. In this 
ase the poorest

performan
e is linked to the non-task (resting) situation.

Finally, performan
e results for 
ase III are visibly lower than the two pre-

vious 
ases. This behaviour 
an be explained by the lower values of the FDR

when 
ompared to the values of 
ase II, see �gures 6.14 and 6.15. In this 
ase,

for both 
lassi�ers, the greatest performan
e a
hieved is when the top feature,

modularity is used to feed the algorithm. The averaged a

ura
y obtained is

72% and 77% for linear and quadrati
 
lassi�ers respe
tively.

The results obtained for the α band after 
lassifying the four di�erent tasks

are 
onsiderably higher than those obtained in se
tion 5.4.1.1 when only two

tasks were 
lassi�ed (highest a

ura
y of 93% versus 83% respe
tively). This


an be explained through the FDR values whi
h are almost double for the

4-tasks 
lassi�
ation problem than for the 2-tasks problem as 
an be seen from

�gures 6.13 and 5.7 respe
tively. The higher results shown in this se
tion may

be explained by other fa
tors su
h as the larger number of parti
ipants or that

a higher number of tasks to perform during the same experiment indu
ed an

in
rement in the 
on
entration of the parti
ipants. Another di�eren
e with

respe
t to the 2-tasks 
lassi�
ation problem is that the 
onne
tivity measures

obtained from the min syn
hrostates present lower FDR values, hen
e poorer

dis
riminative abilities than the measures from the max syn
hrostates. This

is in line with the previous existing literature where the maximum number of

o

urring state network metri
s have better dis
riminative 
apabilities than

the minimum number of o

urring state metri
s [30, 134℄.

6.6.2 Results the β band

Following the same steps used for the α band the FDR values of the di�erent

network metri
s obtained from the max and min syn
hrostates are arranged

in des
ending order to subdivide the whole set into smaller groups to feed
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the di�erent 
lassi�ers as depi
ted in �gures 6.18 to 6.20. The same number

of 
ases are studied for the β band, starting from 
ase I, where all available

features are in
luded (�gure 6.18). Only metri
s of the max syn
hrostates are


onsidered for 
ase II (�gure 6.19) and only measures of min syn
hrostates for


ase III (�gure 6.20).

Figure 6.18: Grouped features by their FDR values ordered in de
reasing order for 
ase I,

all network measures are 
onsidered, and β band.

The number of groups formed for 
ase I is eight, one less than for the α

band, as 
an be seen in �gure 6.18. The �rst four groups are formed by a

single feature: CPL max, diameter (D) max, transitivity (T) min and T max

respe
tively. The su

essive groups are formed by 6, 8, 13 and all possible

features respe
tively. Similar to the previous se
tion, the top two features are

from the max syn
hrostate set of metri
s. In addition, it is noti
eable that the

FDR values are 
onsiderably lower than in the α band whi
h means that the

power of dis
rimination of the β band is in general, worse than that of the α

band.

Figure 6.19: Grouped features by their FDR values ordered in de
reasing order for 
ase II,

only max syn
hrostate network measures are 
onsidered, and the β band.
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For 
ase II the number of groups has in
reased from six in the α band to

seven in the β band as illustrated in �gure 6.19. The �rst three groups are

formed of only one feature, with the same features as in 
ase I: CPL max, D

max and T max. The subsequent subgroups are formed by 5, 6, 8 and the

whole set of features respe
tively. Figure 6.20 shows the last situation, 
ase

III. The number of groups resulting in 
ase III is only four: 1, 3, 5 and all

features respe
tively. Similar to 
ase III of α the band, the FDR values in this

s
enario are signi�
antly lower than for 
ase II and 
ase I.

Figure 6.20: Grouped features by their FDR values ordered in de
reasing order for 
ase III,

only min syn
hrostate network measures are 
onsidered, and the β band.

Figures 6.21 and 6.22 show the 
lassi�
ation performan
e rates for 
ase I

and 
ase II and III respe
tively for the 4-tasks 
lassi�
ation problem. For 
ase

I, the highest averaged a

ura
y for both 
lassi�ers is obtained with only one

feature, the one presenting the largest FDR value, CPL max. The a

ura
y

rate is 73% with true positive rates of 100%, 70%, 70% and 52% for R hand,

non-task, L hand and feet respe
tively for the linear dis
riminant algorithm

and 82.5% (100%, 100%, 50%, 80%) for the quadrati
 dis
riminant 
lassi�er.

This performan
e is substantially lower than in the same 
ase for the α band

where the averaged a

ura
y was over 90%. This behaviour is in line with the

lower FDR values for this frequen
y band as 
ommented beforehand.

In addition, the true positive rates for both 
lassi�ers are 
learly unbal-

an
ed. Both algorithms show strength in dete
ting some tasks espe
ially R

hand movement with 100% of hits, but are really bad for others su
h as feet

or L hand movements with rates near the 
han
e level. It 
an be seen that

the over-�tting phenomenon is more pronoun
ed in this 
ase than in the same

s
enario of the α band. For both 
lassi�ers the performan
e drops to 50% or

less when more than 9 features are used.
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Figure 6.21: Comparison of the performan
e of the top two 
lassi�ers for 
ase I in the β
band. Features grouped a

ording to their FDR value are fed to the di�erent 
lassi�
ation

algorithms. For ea
h one of the formed subsets, the average a

ura
y (a

) and the true

positive (TP) for ea
h one of the four tasks (R hand, relaxing or no-task, L hand and feet)

are illustrated. The upper graph shows the performan
e results for the linear dis
riminant

analysis 
lassi�er (ld
) and the bottom graph shows the results obtained for the quadrati


dis
riminant 
lassi�er (qd
).

For 
ase II, illustrated in the left row of �gure 6.22, the �rst two groups

are formed by the same features than for 
ase I, 
onsequently the performan
e

of the 
lassi�ers is the same as in 
ase I, 73% and 82.5% for linear and quad-

rati
 algorithms respe
tively. The se
ond 
lassi�er, quadrati
 dis
riminant,

shows slightly higher averaged a

ura
ies in general than linear dis
riminant

algorithm, with the ex
eption of the last group. When all of the features are

used to feed the quadrati
 dis
riminant algorithm, it 
annot 
lassify 
orre
tly
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any feature but feet movement whi
h reveals a true positive rate of 100%. Sim-

ilar to the other 
ases studied so far the two tasks obtaining lower 
lassi�
ation

performan
e are, in general, the neutral fa
e linked to the non-task or relax

situation and the movement of the feet.

Figure 6.22: Comparison of the performan
e of the top two 
lassi�ers for 
ase II (left 
olumn)

and 
ase III (right 
olumn) in the β band. Features grouped a

ording to their FDR value

are fed to the di�erent 
lassi�
ation algorithms. For ea
h one of the formed subsets, the

average a

ura
y (a

) and the true positive (TP) for ea
h one of the four tasks (R hand,

relaxing or no-task, L hand and feet) are illustrated. The upper row shows the performan
e

results for the linear dis
riminant analysis 
lassi�er (ld
) and the bottom row shows the

results obtained for the quadrati
 dis
riminant 
lassi�er (qd
).

Finally, 
ase III presents the slightly lower performan
e than in 
ase II and


ase I, with 71% of the averaged a

ura
y for both 
lassi�
ation algorithms.

Similar to 
ase I and II the true positive rates for the di�erent tasks are un-

balan
ed. But in this 
ase the performan
e is extremely poor for the non-task

s
enario. These results 
an be explained by the fa
t that the syn
hrostates are

task and frequen
y spe
i�
 as has been demonstrated earlier in this thesis. In

addition, the 
onne
tivity plots and 
onsequently, 
onne
tivity measures show


lear di�eren
es a
ross states and frequen
ies. This means that they pro
ess

di�erent information, for example the minimum number of o

urren
es state

performs a more spe
ialised pro
essing, leading to a di�erent 
lassi�
ation

performan
e a

ording to the tasks and frequen
y band being exe
uted.
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6.6.3 Results for the γ band

The FDR results for the last frequen
y under study are shown in �gures 6.23 to

6.25 for 
ases I to III respe
tively. For 
ase I, only seven groups were formed,

being the �rst four individual feature groups formed with the top highest

values of the FDR. The rest of the groups for 
ase I were 
omposed of 9, 13

and all sets of features respe
tively. Three out of the top four are features from

the min syn
hrostates: T, degree and CPL. This behaviour is the opposite to

the other two frequen
y bands where the max syn
hrostate presented higher

FDR values than the min syn
hrostate network metri
s, therefore a larger

dis
riminative ability. This in line with the �ndings for the previous 
hapter

for the α and β band, when the stimuli presented to the user were s
hemati


emotional fa
es. The me
hanisms to pro
ess s
hemati
 emotional fa
es and

real human emotional fa
es are obviously not the same. However, the aim is

to re
ognise the emotion shown on the s
reen and translate it to an imagined

movement. The fa
t that 
onne
tivity metri
s from the min syn
hrostate of

the γ band for human fa
es presents higher dis
rimination power similar to the

α and β band in the s
hemati
 emotional fa
es problem may indi
ate that some

of the pro
essing pathways are shared for both paradigms, but at a di�erent

frequen
y level. Maybe this is be
ause the pro
essing of human emotional

fa
es is a more 
omplex pro
ess.

Figure 6.23: Grouped features by their FDR values ordered in de
reasing order for the γ
band. and 
ase I, when all available network metri
s are 
onsidered.

Case II presents the lowest peak among all of the top FDR values from all

of the studied s
enarios with a value of 3.6 versus 8.28 for the 
ase III. As

mentioned previously, this means that the ability to dis
riminate between the

di�erent tasks of the max syn
hrostate is lower than the min syn
hrostate for



146 CHAPTER 6. SYNCHROSTATES: EMOTIONS FROM HUMAN FACES

this frequen
y band. The number of groups formed for this parti
ular 
ase is

six: top one feature, top two features, followed by a group of 4 features, 5 , 6

and the whole set of network metri
s as 
an be seen from the �gure 6.24.

Figure 6.24: Grouped features by their FDR values ordered in de
reasing order for the γ
band. and 
ase II, when only max state network metri
s are 
onsidered.

Finally, 
ase III (�gure 6.25) presents FDR values of the same order as 
ase

II of the β band (see �gure 6.19). The groups resulting from this sele
tion


riterion are also six, as in 
ase II. The three �rst groups are one feature

subsets: T min, degree min and CPL min. These three groups are the same

�rst three groups as for 
ase I. The next groups are integrated by 5, 7 and all

features.

Figure 6.25: Grouped features by their FDR values ordered in de
reasing order for the γ
band. and 
ase III, when only min state network metri
s are 
onsidered.
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Figure 6.26: Comparison of the performan
e of the top two 
lassi�ers for 
ase I in the γ
band. Features grouped a

ording to their FDR value are fed to the di�erent 
lassi�
ation

algorithms. For ea
h one of the formed subsets, the average a

ura
y (a

) and the true

positive (TP) for ea
h one of the four tasks (R hand, relaxing or no-task, L hand and feet)

are illustrated. The upper graph shows the performan
e results for the linear dis
riminant

analysis 
lassi�er (ld
) and the bottom graph shows the results obtained for the quadrati


dis
riminant 
lassi�er (qd
).

Classi�
ation results for the three 
ases are shown in �gures 6.26 and 6.27.

The average performan
e for 
ase I (�gure 6.26) is similar to 
ase I for the β

band as the values of FDR for both 
ases are similar in range. The similarities

are present also in the behaviour of the 
lassi�
ation algorithms. The highest
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a

ura
y is obtained with only one feature and the additional metri
s used

to feed the 
lassi�ers only provokes a progressive de
reasing of the averaged

a

ura
y. However, the top features are di�erent, CPL max for 
ase I, for the

β band and T min for 
ase I for the γ band. The best performan
e rate for

the linear dis
riminant 
lassi�er is 83.4% with true positive rates of 76%, 96%,

62%, 100% respe
tively. In the 
ase of the quadrati
 dis
riminant algorithm,

the averaged performan
e is slightly higher at 84.5% with true positive rates of

80%, 84%, 78% and 96%. For 
ase II, represented in the left 
olumn of �gure

6.27, the a

ura
y results are notably low for both 
lassi�ers with averaged

a

ura
ies under 50%. Finally, in 
ase III, illustrated in the right 
olumn of

�gure 6.27, the greatest results are the same as for 
ase I as the �rst three

groups are formed by the same features. The highest a

ura
ies are 83.4% and

84.5% for the linear and quadrati
 dis
riminant algorithms respe
tively.

Figure 6.27: Comparison of the performan
e of the top two 
lassi�ers for 
ase II (left 
olumn)

and 
ase III (right 
olumn) in the γ band. Features grouped a

ordingly to their FDR value

are fed to the di�erent 
lassi�
ation algorithms. For ea
h one of the formed subsets, the

average a

ura
y (a

) and the true positive (TP) for ea
h one of the four tasks (R hand,

relaxing or no-task, L hand and feet) are illustrated. The upper row shows the performan
e

results for the linear dis
riminant analysis 
lassi�er (ld
) and the bottom row shows the

results obtained for the quadrati
 dis
riminant 
lassi�er (qd
).

6.7 Con
lusions

The existen
e of syn
hrostates de�ned as quasi-stable periods of the phase

di�eren
e has been identi�ed for MI tasks based in emotional human fa
e



149 CHAPTER 6. SYNCHROSTATES: EMOTIONS FROM HUMAN FACES

images. The study has been performed as an averaged population and as

individuals belonging to a group. From the group results it 
an be seen that

the phase topographies of the di�erent syn
hrostates within the same frequen
y

band present similarities. However, the temporal swit
hing pattern a
ross the

di�erent syn
hrostates showed the di�eren
es among stimuli within a frequen
y

band. These di�eren
es have been quanti�ed by means of 
onne
tivity network

measures based on graph theory. For ea
h MI task performed by the user and

frequen
y band of interest, di�erent network metri
s have been 
al
ulated to

re-a�rm the �ndings of the previous 
hapters, that the information interpreted

from the brain, is task-spe
i�
.

The study of ea
h subje
t of the 
ohort of parti
ipants resulted, as in 
hapter

3, in a small variation of the optimal number of syn
hrostates due to the

variability inter-trials and inter-subje
ts. However, the existen
e of a redu
ed

number of syn
hrostates a
ross the parti
ipants is 
onsistent and 
ompatible

with previous results.

The di�eren
es observed in the 
onne
tivity network measures have been

further used to 
lassify between four di�erent MI tasks with a

ura
ies of 93%

using only three features or less to feed the 
lassi�ers. Simpler 
lassi�ers su
h

as linear and quadrati
 dis
riminant analysis performed similarly or even bet-

ter than more 
omplex kernels. The ex
ellent 
lassi�
ation a

ura
y a
hieved

for the multi-
lass problem presented in this 
hapter is superior to the per-

forman
e a
hieved in the previous 
hapter, when s
hemati
 emotional fa
es

were used as stimuli. This in
rement in the performan
e 
an be explained by

the use of human fa
es instead of emoti
ons. However, a deeper study with a

larger population and using both types of stimuli should be performed in order

to quantitatively measure any improvement regarding the use of human fa
e

images.

Another 
on
lusion that 
an be obtained from the 
lassi�
ation pro
ess is

that for the α and β bands, the set of features 
oming from the maximum

number of o

urren
es poses a 
onsiderably higher dis
riminative ability than

the minimum number of syn
hrostates metri
s.

In general, it 
an be said a

ording to the �ndings presented in this 
hapter

that:

� A redu
ed number of syn
hronised states exist during the performan
e of

di�erent motor imaginary tasks.

� These states have di�erent swit
hing patterns demonstrating that they
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are task-spe
i�
.

� The 
ombination of these states with a syn
hronisation index gave us a

deeper understanding of the brain segregation and integration fun
tions.

� The information from these syn
hrostates and their temporal stability 
an

be measured and quanti�ed by a set of 
onne
tivity network metri
s.

� There is a set of network metri
s perfe
tly 
apable of identifying and


hara
terising the underlying me
hanisms asso
iated to a 
ognitive task.

The validation of this of this pro
edure over a larger number of parti
ipants and

with a di�erent variety of stimuli, would result in a signi�
ant move-forward

in the world of neuros
ien
e.



Chapter 7

Con
lusions

BCI systems are still a 
hallenging topi
 of study in neural-engineering. Des-

pite being used in assistive devi
es for people with motor impairments, for

instan
e, BCI-based wheel
hairs, or in the rehabilitation pro
ess after a stroke

the amount of people unable to use this assistive te
hnology or that need a

long period of training is ex
essively high [222℄. In order to in
rease the reliab-

ility of BCI systems, it is ne
essary to deepen understanding of how the brain

rea
ts to a spe
i�
 stimulus over time. To ful�l this aim, this work has fo
used

on the temporal resolution 
hara
teristi
 of EEG based BCI to determine the

phase syn
hronisation variation over a period of time between the di�erent

areas of the brain when a spe
i�
 stimulus is presented to the user. Phase syn-


hronisation is an important key to understanding the underlying me
hanisms

of the brain in ex
hanging information a
ross the di�erent regions.

This work has identi�ed the existen
e of a �nite number of unique phase dif-

ferent patterns, named syn
hrostates that share similarities with the 
on
ept

of mi
rostates [119℄. These syn
hrostates remain stable in the order of milli-

se
onds, suddenly and abruptly 
hanging to the next one during the pro
essing

of a spe
i�
 stimulus. The swit
hing pattern a
ross the di�erent syn
hrostates

provides information regarding the evolution of the phase syn
hrony a
ross the

di�erent regions of the brain over time. This information leads to a greater

understanding of the information ex
hange o

urring in the brain. A higher

understanding of the information ex
hange dynami
s of the brain will help

the spe
ialist to 
reate more a

urate and personalised BCIs. Despite the fa
t

that the topographi
al maps of the 
lustered syn
hrostates demonstrated that

those syn
hrostates remain topographi
ally similar within a frequen
y band,

their o

urren
e and swit
hing pattern is 
learly dependent on the stimulus

151
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presented to the user. This means that the information pro
essing pathways

within the di�erent regions of the brain are task-spe
i�
 and ea
h task 
an be

divided into smaller sub-tasks represented by the syn
hrostates. The presen
e

of syn
hrostates was identi�ed using emotional s
hemati
 fa
es linked to the

imaginary movement of right and left hand and also with human emotional

fa
es images as a stimulus representing four di�erent tasks: right hand, left

hand, feet and non-task or relaxing task.

In order to quantify the di�eren
es among the task-spe
i�
 syn
hrostates

and 
onsequently establish a possible method to a

urately identify the variety

of motor imaginary tasks performed by the user, they were translated into a


onne
tivity network based on graph theory. This step added a further and

deeper understanding of the fun
tion integration and segregation features of

the syn
hrostate phenomenon, therefore a better understanding of the inform-

ation pro
essing of the human brain linked to a spe
i�
 task. Conne
tivity

network measures not only added a deeper knowledge regarding the underly-

ing me
hanism of the brain, but also provided a me
hanism of 
lassi�
ation

between the di�erent motor imaginary tasks. The network metri
s obtained

from the maximum and minimum number of o

urren
es of the states were

used to feed a wide range of 
lassi�
ation algorithms among di�erent super-

vised learning te
hniques: dis
riminant analysis and support ve
tor ma
hines

with di�erent levels of kernel 
omplexity and nearest neighbours with k=3.

The performan
e results obtained for the two task problem, right and left

hand, were as high as 83% a

urate with 83% sensitivity and spe
i�
ity for

the α band.

Results for the four tasks problem were of 93% of averaged a

ura
y with

sensitivity of 92%, 100%, 100% and 82% respe
tively for the right hand, non-

task, left hand and feet respe
tively for the α band. The proposed method of


lassi�
ation of a multi-
lass MI based BCI system gives ex
ellent a

ura
y

rates and ex
eeds some of the 
ontemporary proposed systems [223℄.

In parallel to the development of this methodology based on 
onne
tivity

metri
s obtained from syn
hrostates and with the aim of in
reasing the reli-

ability of the MI-based BCI systems, a novel stimulus was introdu
ed, fa
es

showing di�erent emotions. Nowadays, there is a wide variety of stimuli used

in 
onjun
tion with EEG re
ordings and BCI systems: sounds, images, videos,

navigation, letters, arrows in stati
 position or moving a
ross the s
reen, et
.

However, the use of emotional fa
es as a stimulus for a MI based BCI has been

introdu
ed for the �rst time in this work. Firstly, s
hemati
 emotional fa
es,

popularly known as emoti
ons used in so
ial networks, were used as stimuli.
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Parti
ipants were asked to perform the imaged movement of the right hand

when a happy fa
e appeared on the s
reen and a sad fa
e were asso
iated to the

imaged movement of the left hand. After the high a

ura
y results obtained in

the 
lassi�
ation pro
ess, the next logi
al step was to demonstrate that the hu-

man fa
e images displaying emotions 
an provoke the same or higher rea
tion

to the BCI users. In summary, the use of emotional fa
es has been validated;

Both s
hemati
 and human 
an be used as stimuli for MI-based BCI systems.

The number of ele
trodes, the sampling frequen
y, nature of the parti
ipants

or the performan
e of the parti
ipants on a parti
ular day are, among others,

fa
tors that 
an in�uen
e in the e�e
tiveness of any BCI system. However,

to minimise those e�e
ts, the standard proto
ols to re
ord and pre-pro
ess

the EEG signals for MI tasks have been followed. In addition, two di�erent

sets of experiments were undertaken with di�erent parti
ipants and di�erent

sampling frequen
ies to avoid any possible bias.

Furthermore, the presen
e of syn
hrostates was identify for �rst time during

a fa
e pro
essing task with autisti
 
hildren (6-13 years old) using 128 
han-

nels. In this thesis, the age of the parti
ipants ranged from 20 to 53 years and

the number of ele
trodes was redu
ed to 62. Further resear
h has to be done

regarding the minimum number of ele
trodes that 
an be used without losing

essential information, nevertheless, it 
an be said that the presen
e of syn
hro-

states is 
onsistent for a wide range of subje
ts and number of ele
trodes.

Two main aims were addressed in this thesis, the validation of fa
es show-

ing di�erent emotions as stimuli for a MI based BCI and the study of phase

syn
hronisation information to in
rease the performan
e of the 
urrent BCI

systems. The 
lassi�
ation results for both experimental set-ups indi
ates that

both aims were su

essfully a

omplished and always 
onsidering the limita-

tion of the small datasets used. In addition, in order to prove and quantify the

improvement of using emotional fa
es, a further study 
omparing the 
lassi�
-

ation performan
e using emotional fa
es versus more traditional stimuli should

be performed.

7.1 MI-based BCI systems: state of the art

One of the main aims of this thesis was to design a novel BCI system with

improved performan
e in 
omparison to the state of the art MI-based BCI

systems. In this se
tion, a 
omparison with some of the latest 
lassi�
ation

algorithms for two and multi-
lass problems is performed.
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A great number of algorithms have been proposed for feature extra
tion

and 
lassi�
ation of EEG data. In [224℄, the authors performed a 
omparison

between six di�erent feature sele
tion algorithms (
orrelation-based feature

sele
tion, minimum redundan
y-maximum relevan
e, ReliefF, 
onsisten
y, de-


ision tree C4.5 and a geneti
 algorithm approa
h) and �ve 
ommonly used


lassi�ers (probabilisti
 neural network, SVM, radial basis fun
tion network,

linear dis
riminant analysis and k-nearest neighbours) for a two-
lass prob-

lem. The MI-tasks to 
lassify were the right and left hand from the publi
ly

available dataset IIIB from the BCI Competition III [225℄. The highest per-

forman
es were over 90%, 
learly superior to the performan
e des
ribed in


hapter 5. However, the number of features needed to obtain this performan
e

ranged between 11 and 99. These numbers are extremely high 
ompared with

the range of 1 to 4 features used in the proposed algorithm. Another study,

using the same dataset from the BCI Competition III [225℄, proposed a novel

algorithm 
ombining a 
ross-
orrelation te
hnique for feature extra
tion and

a modi�ed SVM as the 
lassi�er [226℄. The averaged performan
e rate was

95.72%, using a total of 235 feature ve
tors for ea
h parti
ipant. On
e more,

an elevated number of features was needed to a
hieve higher a

ura
ies.

The 
ommon spatial pattern (CSP) is a te
hnique based on spatial �ltering

that has been proven as being e�e
tive in 
lassifying multi
hannel EEG signals

[227℄. However, this te
hnique o�ers limited performan
e when the number of

training samples is redu
ed [228℄. To address this issue in [214℄, an adaptation

named �subband regularized CSP� was proposed. The mean performan
e was

82.69% for the two tasks problem when at least more than 100 training samples

per 
lass were used.

On the other hand, some other adaptations to the traditional CSP methods

have been proposed to extend its use from a two-
lass problem to a multi-
lass

situation. For example, in [218℄ a �one versus one� and �one versus the rest�

CSPs are proposed in 
ombination with a hierar
hi
al SVM to 
lassify between

left hand, right hand, both feet and tongue movements of nine subje
ts. In

this 
ase the averaged 
lassi�
ation a

ura
y was 64.4%. Higher a

ura
y was

a
hieved in [229℄, with a mean 
lassi�
ation performan
e of 82.39% for a three-


lass problem (right hand, left hand and both feet). The authors proposed a

method 
alled �a 
omposite kernel support ve
tor ma
hine based stationary-

CSP�. In the �rst step, the ele
trodes are divided into �ve groups a

ordingly

with their neurologi
al anatomy (frontal, 
entral, temporal, parietal and o
-


ipital). Se
ondly, a stationary CSP is used to extra
t the features for ea
h of

the �ve regions. Finally these features are fed to a 
omposite kernel SVM, a
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non-linear supervised method based on 
omposite kernels. This approa
h only

highlights the relevant brain regions for a parti
ular task, dis
arding the least

informative regions in ea
h iteration of the 
lassi�
ation algorithm. A similar

averaged a

ura
y rate was shown in [230℄, 83.06%, for a four-
lass problem

(right and left hands, tongue and both feet). On
e more, the CSP approa
h

was sele
ted for the feature extra
tion step. For 
lassi�
ation, the authors 
om-

pared three strategies: a Gaussian mixture model, linear dis
riminant analysis

and the ridge regression algorithm. The ridge regression algorithm being the

te
hnique a
hieving the best results.

In summary, re
ent 
lassi�
ation methods for a two- MI tasks 
lassi�
ation

a
hieve performan
es ranging from just over 80% to more than 95%. The

a

ura
y of the proposed method in this thesis for a two 
lass problem is within

this performan
e range. By 
ontrast, for the multi-
lass 
ase, the performan
e

of the proposed method, based on human fa
es showing di�erent emotions


learly ex
eeds the state of the art 
lassi�
ation methodologies. However, a

larger number of parti
ipants is needed in order to 
onsolidate the results

shown for the proposed method and determine the level of improvement of

using emotional fa
es as stimuli for MI-based BCI systems.

7.2 Limitations and future work

This work has given more eviden
e of the existen
e of syn
hrostates linked to a

spe
i�
 MI-task and the ability to translate their information into 
onne
tivity

metri
s to establish a 
lassi�
ation pro
edure. To extrapolate this 
lassi�
ation

me
hanism to a 
lini
al situation, a more extensive EEG data 
olle
tion should

be obtained with a wider variety of parti
ipants to obtain a more generalisable

and de�nitive result. One of the limitations of this work is the 
olle
tion of

parti
ipants for the experiments. This methodology 
an be used in the future

with a larger EEG dataset to 
lassify between more MI tasks su
h as right and

left foot or tongue among others.

Another logi
al step derived from the results obtained in this thesis is pur-

suing an online 
lassi�
ation. In order to a
hieve this aim, the idea 
an be

studied of performing the 
lustering of the phase syn
hronisation, trial by trial

instead of on the grand average. Also, in line with this obje
tive, it 
an be

studied if there is an optimal assortment of ele
trodes than 
an help the 
luster-

ing pro
ess to be more e�
ient. For example, re-organising them by areas, all

ele
trodes from the frontal area together, the o

ipital area ele
trodes grouped
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and so on, might improve the 
omputational 
ost of the 
lustering algorithm.

The 
lustering algorithm 
hosen in this work has been the k-means algorithm,

whi
h is a hard 
lustering method as one data point only belongs to one of

the 
lusters. The idea of using another type of algorithm, not as rigid as those

based in fuzzy logi
 or neural networks may also fa
ilitate the pro
ess. Some

re
ent investigations have demonstrated that the use of fuzzy logi
 improves

the performan
e of BCI systems in terms of a

ura
y and system stationarity

[231℄. Therefore, this te
hnique 
ould also be used to improve the 
lassi�
ation

performan
e of the syn
hrostates-based method proposed in this thesis.

As an out
ome of this work, a Matlab-based toolbox is being developed with

the aim of fa
ilitating the use of this me
hanism to other resear
hers interested

in this topi
. The toolbox will allow users to estimate phase syn
hronisation

for ea
h one of the frequen
y bands, the optimal number of syn
hrostates and

the topographi
 maps of the resulting syn
hrostates.



Appendix A

Fa
e Database Sele
tion

Figure A.1: Example of a female (top row) and a male (bottom row) emotional fa
es of

the Karolinska Dire
ted Emotional Fa
es (KDEF) database [217℄ used for the experimental

design detailed in 
hapter 6. The sele
ted emotions for the experiment were happiness (left),

neutral, sadness and surprise (right).
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Figure A.2: Example of the interfa
e 
reated for the sele
tion pro
ess of the emotions and the

a
tors performing su
h emotions. Parti
ipants have to sele
t whi
h emotion in performing

the a
tor/a
tress between seven possible: angry, sad, afraid, disgusted, happy, neutral and

surprised. On
e they have sele
ted the appropriated emotion they should rank how well the

emotion is transmitted from 1 (not too good, not 
lear) to 5 (really good, 
lear). The pro
ess

goes through all the frontal images of the dataset, a total of 490 images. After dis
arding

those images whi
h 
ondu
ted a high number of errors, the top 4 emotions were sele
ted

and following the same 
riteria 5 female and 5 male images for ea
h emotion were sele
ted

from the same a
tor/a
tress.



Appendix B

Temporal s
heme of a typi
al trial

Figure B.1: Blo
ks s
heme of the experimental design developed in 
hapter 6. Ea
h parti-


ipant performed a total of 4 blo
ks of tasks. There is a variable break period between trials

a

ording to the parti
ipant needs. For ea
h blo
k there are a total of 20 trials for ea
h one

of the 4 possible tasks, meaning 80 trials per blo
k, with a total of 320 trials per parti
ipant.

The details regarding time and sequen
e of a typi
al trial are shown in the �gure B.2
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Figure B.2: Temporal s
heme of a typi
al trial for the experiment developed in 
hapter

6. The starting of the trial is marked by a masked fa
e lasting on the s
reen for 500ms.

Afterwards, the image of an a
tor/a
tress showing one of the four emotions: happy, sad,

neutral or surprised fa
e is shown. The images of the emotions are shown in a random

order with equal probability ea
h. After 500ms a grey s
reen (Matlab default �gure 
olour)

indi
ates the period to perform the tasks asso
iated with the emotion previously shown. This

is imagined movement of the right hand for a happy fa
es, imagined movement of left hand

for sad fa
es, surprised fa
es are linked to the imagined movement of the feet and neutral

fa
es means no movement at all, just doing nothing. The end of the trial is illustrated by a

bla
k 
ross in the middle of the s
reen lasting for 1000ms.



Appendix C

Newton fund

This 
ollaboration proje
t between University of Warwi
k (UK) and Tsinghua

University (China) was funded by the British Coun
il via the �Newton Fund�.

It has an obje
tive to study novel 
lassi�
ation algorithms from high density

iEEG. In addition, it emerged the idea of exploring the 
onne
tivity patterns

between the di�erent areas of the brain in the β band instead of the widely used

high γ band, aimed at �nding alternative features for motor tasks 
lassi�
ation.

C.1 Dataset

Twenty parti
ipants with intra
table epilepsy form the dataset for this resear
h

study. The ele
trode pla
ement were pla
ed a

ordingly to the patient's 
lini
al

needs. The performed task blo
ks of 20 se
onds ea
h interleaved with resting

period of 8 se
onds. Ea
h task blo
k 
onsisted of the movement of either tongue

or hand indi
ated by a pi
ture on the s
reen. An auditory 
ue indi
ates the

start of the movement that was repeated four times per blo
k. At the end of

the experiment parti
ipants performed 10 repetitions of ea
h task blo
k. More

details of the dataset and the paradigm 
an be found in [232℄.

C.2 Time frequen
y analysis

Firstly, a preliminary investigation is performed to determine whi
h 
hannels

and frequen
y bands 
an be the most sensitive to 
hanges between the resting

state and the motor task period. The power spe
trum of ea
h parti
ipant,


hannel and task for both periods, resting (one se
ond before stimuli onset)

and motor a
tion (0.3 to 1.3 se
onds after stimuli onset) were 
ontrasted. The

signi�
an
e of the modulation of the movement period versus resting was to

quantify by means of a t-test . Parti
ipants showed a signi�
ant di�eren
e
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between both period during high γ band and also during α and β bands as 
an

be seen from �gure C.1. This is in line with previous studies [232℄.

Figure C.1: Power spe
trum showing signi�
ant di�eren
es between resting and motor task

states after a t-test. The upper right graph shows the power spe
trum of the hand movement

from 
hannel 68. Bottom spe
trum graph is the resulted t-test of tongue movement from


hannel 85 for the same parti
ipant. Ele
trode lo
ation for this parti
ipant is illustrated in

the top left 
orner. It 
an be seen that high γ and α/β band showed the highest di�eren
es

for both tasks.

C.3 Classi�
ation

On
e the power spe
trum is obtained for ea
h parti
ipant and task, the next

step is trying to �nd a 
lassi�
ation method to distinguish between two motor

tasks -hand and tongue. The sele
ted method is based on Pearson 
orrelation

[233℄, whi
h is a measure of the linear dependen
e or 
orrelation between two

variables. The 
lassi�
ation pro
ess of a trial is as follows: the average of the

power spe
trum values of ea
h one of the tasks is averaged without in
luding

the trial to be 
lassi�ed. Afterwards the trial is 
orrelated with the averaged

model of hand and tongue of power spe
trum and labelled as the task it had

the highest 
orrelation s
ore with. This is performed in a spe
i�
 frequen
y

band, 
ounting in total six di�erent 
anoni
al bands: 4-8Hz, 8-13Hz, 13-24Hz,

24-35Hz, 60-90Hz, 110-130Hz [234℄. Performan
e of ea
h one of the studied fre-

quen
y bands is illustrated in �gure C.2. It 
an be seen that the performan
e

for the 60-90Hz frequen
y band is, on average, higher than the others present-
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ing a

ura
ies over 90% in half of the parti
ipants. However, the performan
e

of parti
ipant number 13 and parti
ipant number 14 remained spe
ially low

for all the frequen
y bands under study.

Figure C.2: Classi�
ation performan
e using Pearson 
orrelation of two motor task, hand

and tongue. Classi�
ation is performed in six di�erent frequen
y bands, listed from top left


orner to right bottom 
orner: 4-8Hz, 8-13Hz, 13-24Hz, 24-35Hz, 60-90Hz and 110-130Hz.

Ea
h graph shows the true positive (TP) rate in blue 
olour and true negative (TN) rate

in yellow 
olour for ea
h one of the twenty parti
ipants. It 
an be seen that for the two

sub-bands within γ band, the performan
e is the highest among the di�erent studied bands.

C.4 Future work

A logi
al further step after the �ndings of the previous se
tion is to improve the


lassi�
ation algorithm to in
rease the a

ura
y rate for ea
h one of the parti-


ipants. In addition, identify the number of 
hannels required for an optimal


lassi�
ation and in whi
h area of the brain these ele
trodes are lo
ated, that

will lead to improved algorithms, therefore their e�
ien
y will be in
reased.

Additionally, in line with the s
ope of the main work of this thesis, the

possibility of using 
onne
tivity measures as a biologi
al markers to 
lassify

the two motor tasks will also be investigated.
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Matlab 
ode

1 function DiffphaseN=Synchrostates(dataset,FileName,freq_band ,fs)
2 %constants
3 Nchannels=size(dataset,1);Ntrials=size(dataset,3);N samples=size(dataset,2);
4 % instantenous phase CMW
5 [phase,scales]=InstantaneousPhase(dataset,freq_band ,fs);
6 disp( 'instantaneous phase calculated' );
7 % diff phase
8 DiffphaseN=InstantaneousPhaseDiff(phase,scales);
9 % save diff phase file

10 save([FileName '_DiffPhase_' freq_band '.mat' ], 'DiffphaseN' );
11

12 function [ph2,scales]=InstantaneousPhase(data,freqband,fs)
13 fc=1.5;
14 % frequency bands
15 fbands.theta=8:-1:4;fbands.alpha=12:-1:9;
16 fbands.beta=30:-1:13;fbands.gamma=40:-1:31;
17 % chosen freq band
18 switch freqband
19 case 'theta'
20 fband=fbands.theta;
21 case 'alpha'
22 fband=fbands.alpha;
23 case 'beta'
24 fband=fbands.beta;
25 case 'gamma'
26 fband=fbands.gamma;
27 otherwise
28 disp( 'not valid' ); return ;
29 end
30 scales=zeros(1,length(fband));
31 for i=1:length(fband)
32 scales(i)=round(fc/(fband(i) * (1/fs)));
33 end
34 % phase
35 ph2=zeros(Ntrials,Nchannels,length(scales),Nsamples );
36 for trial=1:Ntrials
37 parfor ch=1:Nchannels
38 d=data(ch,:,trial);coeff=cwt(d,scales, 'cmor1-1.5' );
39 ph2(trial,ch,:,:)=angle(coeff); %angles between +-pi
40 end
41 end
42 end
43 function DiffphaseN=InstantaneousPhaseDiff(ph2,scales)
44 %% Instantaneous phase Difference
45 difff=zeros(length(scales),Nchannels,Nchannels);
46 temp=zeros(Ntrials,Nchannels,Nchannels);
47 Diffphase=zeros(Nsamples,Nchannels,Nchannels);
48 for t=1:Nsamples
49 for trial=1:Ntrials
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50 parfor f=1:length(scales)
51 ch=squeeze(ph2(trial,:,f,t)); %vector of channels
52 for i=1:Nchannels
53 difff(f,i,:)=abs(bsxfun(@minus, ch, ch(i)));
54 end
55 end
56 temp(trial,:,:)=mean(difff,1); %average across freq
57 end
58 Diffphase(t,:,:)=mean(temp,1); % average across trials
59 per=(t * 100/Nsamples);
60 disp([ 'percentage: ' num2str(per)]);
61 end
62 % Normalize
63 DiffphaseN=Diffphase./(2 * pi);
64 end
65 end

1 function [theta,bel,J,iter]=k_means_book(X,theta)
2 %function taken from
3 %Introduction to Pattern Recognition: A MATLAB based appro ach,
4 %S. Theodoridis, A. Pikrakis, K. Koutroumbas, D. Cavouras,
5 %Academic Press, 2010. ISBN: 9780123744869
6 [ ¬,N]=size(X);[l,m]=size(theta);e=1;iter=0;
7 while (e 6=0)
8 iter=iter+1;
9 theta_old=theta;

10 dist_all=[];
11 for j=1:m
12 dist=sum(((ones(N,1) * theta(:,j)'-X').^2)');
13 dist_all=[dist_all; dist];
14 end
15 [ ¬,bel]=min(dist_all);
16 J=sum(min(dist_all));
17

18 for j=1:m
19 if (sum(bel==j) 6=0)
20 theta(:,j)=sum(X'. * ((bel==j)' * ones(1,l))) / sum(bel==j);
21 end
22 end
23 e=sum(sum(abs(theta-theta_old)));
24 end

1 function [results]=cost_function_kmeans(alpha2,nruns,opt)
2 [l, ¬]=size(alpha2); %number of initializations
3 results=struct();
4 switch opt
5 case 1
6 for m=2:10
7 J_temp=inf;theta2=[];label2=[];
8 for t=1:nruns
9 rand( 'seed' ,100 * t);

10 theta_ini=rand(l,m);
11 [theta1,label1,J1, ¬]=k_means_book(alpha2,theta_ini);
12 if (J_temp>J1)
13 J_temp=J1;theta2=theta1;label2=label1;
14 end
15 end
16 results(m-1).J=J_temp;results(m-1).clusters=theta2;
17 results(m-1).labels=label2;
18 disp([ 'cluster number: ' num2str(m)]);
19 end
20 case 2
21 for m=2:10
22 J_temp=inf;theta2=[];label2=[];
23 for t=1:nruns
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24 theta_ini=randn(l,m);
25 [theta1,label1,J1, ¬]=k_means_book(alpha2,theta_ini);
26 if (J_temp>J1)
27 J_temp=J1;theta2=theta1;label2=label1;
28 end
29 end
30 results(m-1).J=J_temp;results(m-1).clusters=theta2;
31 results(m-1).labels=label2;
32 disp([ 'cluster number: ' num2str(m)]);
33 end
34 otherwise
35 disp( 'error' );
36 return
37 end
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