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Abstract—Compliant sheet metal parts or free-form shaped parts are widely used for automotive bodies, 

aerospace fuselage/wing or home appliances. Intrinsic flexibility of sheet metal along with forming 

process variability throws a number of challenges to produce geometrically conforming parts. 

Additionally, emerging optical non-contact metrology scanners offer to capture entire part geometric 

quality information which enables virtual design and manufacturing at early stage. This paper focuses on 

developing a generic functional data analysis based approach to quantify geometric error/shape error 

which are generated by process or material parameters (such as material thickness, stamping speed and 

blank holding force) during sheet metal forming process. The research methodology involves: (i) 

experimental investigation by varying the design parameters; (ii) capturing entire surface based shape 

error information (i.e. high density cloud-of-points, CoPs) by using optical scanner; (iii) functional 

mapping of shape error to design parameters (responsible to generate the data) by using deviation field 

decomposition approach; and (iv) parametric analysis of process parameters by developing analytical 

surrogate model. The proposed approach concentrates on finding root causes of failure, usually 

unforeseen if only based on heuristic approaches. The applicability and effectiveness of the proposed 

methodology have been illustrated with industrial case study. 

Keywords—sheet metal forming; shape error modelling; deviation field decomposition; parametric effect 

analysis 

I. INTRODUCTION 

Many industrial processes involve compliant sheet metal parts for building body structures, especially for 

automotive and aerospace industries. These sheet metal parts consist of geometric error /shape error which are 

the result of materials and manufacturing process variation such as spring-back, fabrication variations [1]. 

Because of intrinsic flexibility of sheet metal, it is usually difficult to control the final product shape with 

complex geometries and it affects assemblability and finished product quality [2, 3]. Additionally, tight quality 

requirements for GD&T specification cannot be met by inspecting few key points, such as, measured by 

Coordinate Measuring Machine (CMM). Alternatively, emerging optical non-contact metrology scanners enable 

to capture entire surface information of formed part or machined component which requires efficient method to 

quantify the shape error associated with it. Current industrial practice of identifying influential design 

parameters and their effects/sensitivity are based on trial-and-error approach which is repetitive, time expensive 

and costly [4]. As a result, it increases production cost and ramp-up time. In order to control global shape error 

by adjusting influential design (i.e. process and material) parameters, a proactive shape error quantification 

model is required by linking the parameters to the measured shape error.  

This on-going research is a step towards root cause analysis related to sheet metal components. The key idea of 

the proposed methodology is to correlate design parameters (such as material thickness, stamping speed and 

blank holding force) to shape error arising during pre- and production stage. The proposed methodology will 

allow to identify the most influential parameters and subsequently, their contributions towards generation of 

shape error. By analysing the effect size of identified parameters, real forming process can be adjusted. Further, 

enhanced shape quality within the specified tolerance limit can be achieved by tuning the parameters. 

Recent industrial trends are mainly focusing on (i.e. Smart Factory, Industry 4.0, Connected Factory, The 

Factory of the Future [5]) systematic integration of in-line or off-line sensor data to achieve closed-loop control 

over the manufacturing process to achieve near zero defects during production. This paper is oriented to enhance 

closed-loop process control, for example, of stamping process by using optical scanner based shape information. 

The general framework for closed-loop control of stamping process is illustrated in Fig. 1 which forecasts shape 

variation for given set of process parameters (forward process), and consequently optimise (feedback process) 

Abhishek Das et al. / International Journal of Engineering Science and Technology (IJEST)

ISSN : 0975-5462 Vol. 9 No.09S Sep 2017 117



the process parameters to achieve given quality standards [6]. A part of feedback process is to identify the 

sensitivity of design parameters and consequently, their effect.  
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Fig. 1.  Measurement data driven process adjustment of sheet metal forming. 

Current literature is mainly focusing on sensitivity analysis of stamping process which is either relies on finite 

element based numerical approach [7-9] or neural network training based on finite element simulation [10, 11]. 

Finite element based techniques are necessary to predict the shape quality but not adequate to achieve closed-

loop solution as it lacks integration of real measurement data. On the contrary, limited attempts have been made 

to link the measurement data to process parameters [4, 12], which are mainly point-based CMM data. Therefore, 

there is a requirement to develop a surface data (i.e. CoP) driven feedback control which can correlate the 

product and process parameters with the entire surface based shape error. Further, to quantify the shape error 

contributions coming from process parameters and understand effect size, the following challenges have been 

identified: (1) unavailability of a functional data analysis based parametric approach by correlating the measured 

shape error (i.e CoP data) with product and process parameters; (2) analytical representation (surrogate model) 

of the relationship between shape error and process parameters; and (3) techniques required to quantify the 

individual parameter’s effect. 

This paper addresses those challenges by decomposing the captured data into orthogonal (i.e. independent) error 

modes and uses the modes as a parametric approach to identify and quantify the influence of process parameters 

on shape error generation. Further, the parameters are ranked based on their effects on response behavior (i.e. 

shape error).  

The reminder of the paper is organized as follows: Section II proposes the methodology, Section III 

demonstrates the methodology with an industrial case study, and Section IV draws final remarks. 

II. PROPOSED METHODOLOGY 

The research methodology, to quantify the effect of process parameters and rank them considering entire surface 

information, is developed in three major steps as follows: 

A. Functional Decomposition of  Shape Error Generated by Varying Parameters 

Firstly, non-contact optical measurement scanner is used for capturing entire part surface which digitizes the 

surface by representing millions of data points (Cloud of Points-CoP). These CoP data can be classified as non-

functional data as it cannot be used directly [13], which requires functional data analysis approach to transform 

non-functional data into functional basis. This paper uses Geometric Modal Analysis (GMA) approach [14] 

which decomposes shape error into orthogonal error modes. The decomposed modes can be parameterized by 

means of its values to represent shape variation associated with the parts, produced through varying process 

parameters. GMA uses 3D Discrete-Cosine-Transform (3D-DCT) as main kernel to decompose the shape 

error/deviation field into significant shape error modes. The deviation field can be defined as difference between 

nominal and actual surfaces as stepwise illustrated in Fig. 2. Further, the decomposed shape error modes can be 

used from process design stage [15, 16] to process control stage for adjustments. This paper is a step forward 

towards process adjustments. 

Secondly, the deviation field is computed at mesh nodes (i.e. polygonal mesh of CAD model) when comparing 

with CoP. Design of Experiments (DOE) is chosen to characterize the shape error under varying process 

parameter conditions. Assuming m number of mesh node, and p number of DOE experiments, the deviation 

field (D) can be expressed as in (1), where, Dz,j denotes zth node deviation of  pth experimental sample. 

{ } { }(1) (2) ( ) ( )

,;   

, , ;  ,

p j

z jD D D D D D

z 1,2 m j 1,2, p

= =

∀ = ∀ =

L

L L

  (1) 
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Fig. 2.  Generation of deviation field from measured CoP data. 

Lastly, the obtained deviation field is also non-parametric in nature and it cannot be linked to the process 

parameters. To overcome this limitation, functional data analysis based GMA approach has been adopted to 

extract geometric features/shape error features from the deviation field (see Fig. 3). These extracted features are 

parametric modes which are also orthogonal and can be linked with the process parameters. Due to 

orthogonality of the shape error modes, they can be varied independently to fit different set of shape error by 

changing the amplitude of the modes. A set of decomposed modes for p number of experiments is defined as in 

(2), where n is the number of modes. The transformed modes are expressed as a function of the given deviation 

field, as in (3), where F denotes the GMA function. Inverse GMA function can be used to recover deviation 

field. 

{ } { }(1) (2) ( ) ( )

,;   

, , ;  ,

p j

t jM M M M M M

t 1,2 n j 1,2, p

= =

∀ = ∀ =

L

L L

 (2) 
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t, jM = F(D ) ; D invF M=  (3) 

Mode 1 (M1,j)

Dev[mm]

10

4

0

-4

Shape Error Modes

…

Mode 2 (M2,j)Deviation Field  
Mode 3 (M3,j)

Mode n (Mn,j)

 

Fig. 3. GMA decomposition of deviation field into orthogonal modes. 

B. Analytical Surrogate Model of Decomposed Modes 

Due to parametric behavior of decomposed geometric error modes, they can be mapped with the process 

parameters by developing analytical surrogate model. For example, stamping process parameters, SP, as in (4), 

are used to identify the relationship with each mode, where NSP is the total number of process parameters.  

{ } { }(1) (2) (p) (j)

s, j

SP

SP = SP SP SP ;  SP = SP

s = 1,2, ,N ; j = 1,2, , p∀ ∀

L

L L

 (4) 

After conducting the parametric DOE study, the output responses (i.e. each shape error modes) are fitted to the 

analytical response surface model which is represented as a meta-model for further effect analysis and 

parametric effect visualization. Fig. 4 illustrates surrogate model development for each decomposed mode. The 

tth mode can be expressed as function (gt) of a set of stamping parameters (SP(j)). The analytical function as in 

(5), gt, is computed in two consecutive phases: (i) model training; and, (ii) model development. Model Training 

uses experimental data from the experimental characterisation. Model Development identifies the analytical 

relationship between process parameters and error modes, as per (5). Adaptive polynomial fitting, spline or 

Kriging methods can be utilized for this purpose [17]. 

( ) ( ), 1,2,j (j)

tM g SP t n= ∀ = L  (5) 
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Fig. 4.  Pictorial representation of analytical surrogate model development. 

C. Shape Error Quantification and Effect Analysis of Process Parameters 

The section focuses on a sensitivity analysis of the process parameters and quantifies the effect of process 

parameters on the part shape error. As the process parameters are analytically linked with each decomposed 

shape error modes, analysis of variance (ANOVA) has been carried out to identify the effect of parameters on 

each mode. 

For identifying the effect size of each parameter on each mode, five steps are adapted: (i) parameter is 

grouped into two levels based on medium value of each parameter (higher side of parameter value, i.e. SPs
+ and 

lower side of parameter value, i.e. SPs
─); (ii) mean values of each response shape error mode is computed for 

higher and lower group of parameter values (i.e. Mt
+and Mt

─ at SPs
+ and SPs

─ respectively); (iii) effect size 

calculated by taking the difference between Mt
+and Mt

─ ; (iv) inverse GMA applied (on Mt
+─Mt

─) to obtain 

mesh node deviations as per (5); and (v) aggregating individual modal effect (as modes are orthogonal to each 

other), overall shape error effect of each parameter by using (6) is determined. By applying these steps, effect 

size is computed for each process parameter. The corresponding effect size can be quantified by borrowing tools 

from signal processing, i.e. total energy of the shape error surface as per (7). 

Effect of parameter SPs,
1

( )
n

z t t

t

D invF M M+ −

=

= −∑  (6) 

2

1

( )
s

m

SP z

z

E abs D
=

=∑    (7) 

Further, ranking of parameters can be achieved based on their effects on shape error. This parametric ranking 

helps to identify the most influential to least influential parameter. This work aims to identify and rank 

parameters according to their contribution to the model response followed by user guidelines for proper 

selection of parameter during process adjustment. 
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III. INDUSTRIAL CASE STUDY 

The developed methodology on parametric effect analysis is demonstrated with an industrial case study, 

where the entire part surface has been considered. Therefore, entire part shape error is analyzed for determining 

the effect of process parameters. The selected top-hat geometry mapped with CoP and nominal polygonal mesh 

geometry are shown in Fig. 5(a) and 5(b). Three parameters are chosen as case-in-point investigation: (i) 

material thickness (SP1); (ii) blank holding force (SP2); (iii) stamping speed (SP3). A set of top hat parts has 

been stamped varying stamping parameters as per DOE Table I. Each experimental run has been repeated for 5 

times (the average deviation field is utilised for further calculations).  

TABLE I. EXPERIMENTAL RUNS 

DOE Table 
Parameters 

Thickness [mm] Holding Force [kN] Speed [mm/s] 

E
xp

er
im

en
ta

l 
R

u
n

s 
(p

) SP(1) 0.6 150 10 

SP(2) 0.6 150 50 

SP(3) 0.6 375 10 

SP(4) 0.6 375 50 

SP(5) 1.2 150 10 

SP(6) 1.2 150 50 

SP(7) 1.2 375 10 

SP(8) 1.2 375 50 

The computed deviation field for SP(1) is shown in Fig. 5(c) where the color map showing the deviation of 

measured CoP from nominal mesh. Deviation field is calculated for each node of the mesh model, by using the 

morphing mesh technique, as originally proposed in [18]. Entire part surface has been captured using GOM 

optical scanner (measuring volume 320×240×240 mm3; specified accuracy of probing error 0.005 mm) and 

represented as CoP data (see Fig. 6). 

8.0

6.0

4.0

2.0

0.0

-1.0
(b) (c)(a)

 

Fig. 5.  Top-hat part (a) CoP alignment with CAD part; (b) nominal mesh; (b) deviation field (mm) computation for run SP(1). 

(a) (b)
 

Fig. 6.  Experimental setup used to measure CoP of stamped parts (a) fixture to hold parts; (b) measurement setup with GOM optical 

scanner. 

The obtained deviation field for each experimental run is decomposed by using GMA. Fig. 7 shows a sample set 

of GMA transformed modes, used as parameters to map with process parameters (i.e. material thickness; blank 

holding force; and stamping speed). Further, Fig. 8 illustrates the surrogate model (contour plots) for modes in 

relation with varying blank holding force (SP2) and speed (SP3).  

The effect of process parameters on shape error generation has been identified by applying (6). As mentioned 

earlier, average deviation maps of each experimental run has been utilised to determine parametric effect size. 

Fig. 9 shows the shape error contributions coming from the process parameters, namely, material thickness, 

blank holding force and stamping speed. Further, the interaction plot is reported in Fig. 10.   
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Fig. 7.  Deviation field decomposition for each experimental run into shape error modes by using GMA approach (Deviation in mm). 
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Fig. 8.  Surrogate model linking shape error modes and process parameters (at SP1=0.6 mm). 
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Fig. 9.  Main effect plot of process parameters on shape error generation. 
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Fig. 10.  Interaction effect plot of process parameters on shape error generation. 

By using (7), each parametric contribution is quantified and they are ranked in descending order as per their 

contributions (See Table II). The total energy associated with each shape error surface generated by main and 

interaction of factors is shown in Fig. 11 with their relative contribution (%). 
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Fig. 11.  Relative contribution (%) of factors on shape error generation. 

TABLE II. RANKING OF ALL EFFECTS 

Rank Factor 
Total Energy (Relative 

Contribution, %) 

1 Material Thickness 10801.44 (32.39%) 

2 Blank Holding Force 6092.33 (18.27%) 

3 Stamping Speed 5963.25 (17.88%) 

4 Material Thickness* Stamping Speed 3638.04 (11.98%) 

5 Material Thickness*Blank Holding Force 3994.21 (10.91%) 

6 Blank Holding Force*Stamping Speed 2857.53 (8.57%) 

IV. CONCLUSION AND FINAL REMARKS 

The proposed methodology allows to quantify the contributions coming from process parameters on 

generating the shape error. The methodology uses CoP data measured by optical measurement gauge which 

represents whole part surface based shape error. Shape error is defined as deviation field using CoP data which 

is non-parametric in nature. Therefore, deviation field decomposition (i.e. GMA techniques) has been 

implemented to convert CoP data into functional parametric shape error modes. Subsequently, surrogate model 

technique has been applied to link shape error with process parameters. Furthermore, effect size of each process 

parameter has been calculated and quantified by using total energy indicator. The proposed methodology 

significantly explores and contributes to the following areas: 

• The developed model-driven technique represents a step towards automatic closed-loop process control 

and subsequently process adjustment for stamping process. 

• Costly and time-consuming trial-and-error approaches can be reduced by automatic selection and tuning 

of process parameters based on their sensitivity; 
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• The model-driven approach can forecast geometrical variations for given set of process parameters 

(forward process), and consequently can optimise (feedback process) the process parameters to achieve 

given quality standards. 

Further investigations will be focused on root cause identification of global/local shape error occurring during 

production and development of intelligent closed-loop process adjustments.  
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