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Abstract. 

Multifunctionality can be embedded into material systems by three distinct 

design processes. These are: firstly multifunction can be embedded at a material level 

such as the use of nanomaterials within a polymer. In the second instance, discrete 
material systems can be added together. Examples are laminate systems in food 

pouches consisting of thin layers of metal and polymer. In the third process this can be 

achieved by integrating these materials systems together to form one holistically 
behaving component with multifunctionality. An example is an embedded antenna in 

an automotive windscreen.Drivers for multifunctionality include the increased push 

towards intelligent objects, such as the creation of the internet of things. Here, the 
embedding of communication and electronic function into daily consumer objects, 

such as milk cartons and food packaging are demanded. This must be offset by 

consideration of the related rise of a new wave of short-lifetime waste electronic and 
electronic equipment, incapable with current plastic recycling infrastructure, for 

disposal systems to adapt too. Designing integrated and multifunctional plastic 

components however, is complicated by the sheer number of material choices, multiple 
processing platforms, cost implications and environmental legislation. Considering 

just the processes of injection moulding, compression moulding and additive 

manufacturing, a designer is confronted with considerable complexity and numerous 
engineering design and stakeholder issues to consider. This paper presents examples 

of current state of art in multifunctional systems and discusses the barriers and potential 

solutions to creating fully realized multifunctional systems within a polymeric 
manufacturing environment. Impacts on material lifecycles and disposal 

infrastructures must be considered, as is the necessity to retain diversity with new 

integrated and advanced manufacturing processes suitable for the demands of mass 
customization, automation and Industry 4.0. 

Keywords. Multifunction, plastic, complexity, sustainability 

                                                      

1 Corresponding Author, Vannessa Goodship, WMG, University of Warwick, Coventry, CV4 7AL, UK 

; E-mail: V.Goodship@warwick.ac.uk. 

 

mailto:V.Goodship@warwick.ac.uk.


 

 

1. Introduction 

Next generation products are required to have ever increasing levels of functionality as 

we enter an age of multifunctional plastic design. Whether thinking about intelligent 

packaging, autonomous cars or smart houses the same underlying concept is one of 

multifunctionality. The difference being explored here lies in where that function is 

embedded within any complex system and how this can affect the design and 

manufacturing decision making in the plastic industry. The processing challenges to create 

multifunctional plastic products (MFPP) are considerable and initial attempts at 

describing and reviewing all materials and process challenges can be found in the work of 

Salonitis et al [1]. Here, the concept is broken into processes: primary forming, deforming, 

removing, joining and modifying material property processes. 

Whilst these processes are valid for many materials for fully integrated MFPP this is 

fundamentally directed by two just choices; the material and the polymer processing 

route, therefore before any further discussion of this issue takes place it is important to 

consider the impact and relationship of the material and process. 

Matic [2], defined three levels of introducing multifunction, he termed these 

processes as Embedding, Addition and Integration. For the purposes here, these are 

defined as Level 1: EMBED, Level 2: COMBINE and Level 3: INTEGRATE. A complex 

system or product may be made up of many instances of Levels 1 and 2 operating, 

however a Level 3 system is by default a value of just 1 in any ‘ideal’ multifunctional 

fully integrated product system. Similarly, just because other lower levels are in place it 

does not necessarily mean you have created a single holistic multifunctional system. 

Creating Level 1 embedding functions are of course very common and routine in 

the plastic industry where manufacturing processes allow the use of both inbuilt 

polymeric function such as a shape memory material or an intrinsically conductive 

polymer, as well as the addition of numerous different additives. Embedding 

multifunctional particles into plastic components is not problematic as polymers can be 

readily mixed with a wide range of other polymeric, ceramic or metallic particulates 

right through from nano to micron and continuous fibre strands such as glass fibres and 

carbon fibre mats in various configurations and sizes.When combined with base 

polymeric materials these can be tailored to induce functional properties such as 

conductivity, magnetic function, or antimicrobial properties for instance. This also 

includes reinforced materials with glass, carbon, boron fibres and so forth. A 

commercial example is plastic bottles that contain carbon nanotubes. The result is beer 

bottles that stay colder for longer [3]. 

For the purposes of this paper, the materials chosen themselves are less important 

than the concept of EMBED. For a review of materials the reader is directed to Duarte et 

al [4]. 

Level 2 functions combine materials together. Many common examples of level 2 

functions exist in everyday life and most often appear as laminate systems. A simple way 

to think of this is simply as a coating applied to a moulding to produce a durable and /or 

functional surface such as aesthetic painting, protective layers or labelling. This does not 

affect the mechanical integrity of the component beneath, but adds a further element of 

function in the surface to the overall component [5]. In this way we are combining materials 



 

together into a common component. This process adds an element of complexity in 

production as to when this combination process takes place. It can be a) during the 

production process, such as in-mould labelling, or b) after the production process such as 

off-line painting. 

In both of these cases a further process is introduced – joining. For end of life purposes, 

it is also a point that may require a separation or disassembly process be it for digestion or 

composting, recycling, remanufacture and/or ultimately disposal. The circular economy and 

the need to consider the next use of materials and products needs consideration of cradle to 

grave or perhaps more accurately from a circular ecomony perspective ‘cradle to next 

cradle.’ Legislation on product design and disposal issues in the European Union, require 

consideration, given the need to deal with and safely dispose of growing electronic waste 

streams to which integrated multifunctional designs will contribute to. There are many 

unknowns in newer materials entering the waste streams and their long term impacts on 

recycling infrastructures. 

Achieving a Level 3 functionality, requires the creation of a fully integrated 

holistically acting structure – a biological example being the human body. Here we can 

find a structural component, fully integrated with five senses, movement through an 

actuation process and self-healing. It is therefore not surprising than biomimetics inspires 

much multifunctional research with a bottom-up (molecular level approach) to 

multifunctional system design. For these kind of systems there is also a dependency on 

the integration of (electronic) control functions as sytem communication is needed. 

Whilst this approach has bought major scientific breakthroughs, it is currently, not an 

approach relevant to a mass production environment in the plastic industry; for example 

a blow moulder wishing to make an internet ready milk bottle. These are routinely mass 

produced using HDPE material and a blow moulding process. It is therefore necessary 

to introduce the new function that can monitor, then actively switch on at a preset 

condition to communicate via the internet to monitor and re-order the customer a new 

bottle. This requires either some kind of link with sensors in the fridge to read that the 

bottle is nearly empty or a functionality embedded entirely within the bottle. 

Which approach should be taken ? 

What are the implications of varying the concepts of level 1-3 design in this case? 

To do this, there is a need for an entirely different but structured approach to the 

problem. 

2. Drivers for Multifunctionality 

The creation of new products is generally driven by a well-defined market opportunity and 

success will depend on making a profit (whether the customer knows they need products 

at this point at not). The demands for MFPP therefore comes from the market stakeholders. 

Several overarching technological drivers are driving the push towards MFPP, these are: 

 Manufacturing cost reduction by combining function 

 Weight reduction by combining function 

 Energy efficiency 

 Increased product communication – 'internet of things' 

 Increased electronic functionality 



 

 Mass customization 

 Industry 4.0 and associated automation 

 Environmental legislation demands – plastics recycling and recovery for 

example. 

Furthermore in some cases it may be necessary to consider any societal impacts such 

as on infrastructure, our health, energy concerns and security: whether this is materials 

security or product security. 

Each of these drivers may positively or negatively impact upon others. For example, 

returning to the example of the intelligent HDPE milk bottle, by introducing a new stream 

of short life electronic food packaging waste there are serious impacts on the current 

disposal infrastructure in place for plastic milk bottles. With all these issues to consider, 

the designing of MFPP can now be considered. 

  3. Designing for Multifunction  

The first assumption here is that all the pre-market new product issues are complete (which 

are beyond the scope of this paper). Therefore the first question should already be clear – 
namely the product that will be made and how much it can viably cost to manufacture. 

     With this in mind the complexity, engineering design and stakeholder issues can at 

least be attempted. Looking back at the list of eight challenges, assignments can be made 

as to whether these are Material, Process, COMBINE, or Environmental issues, or in many 

cases combinations of a number of areas. It should also be noted that not one of these 

challenges can, in isolation, necessarily produce INTEGRATE. 

     Only point, automation, sits in 'Process', all other points are combinations of materials, 

processes and COMBINE or environmental factors. This is because the use of any 

underlying processing platforms are often restricted by the choices made in material 

selection which can cause problems if making significant changes in the product or 

volumes of production. To return to the example of a high commodity milk bottle at this 

point, blow moulding remains the key underlying process for cost effective manufacture, 

but by default places restrictions on the structure of the bottle materials that can be 

processed, in that they must be processable by a blow moulding route. It is therefore highly 

unlikely that an internet ready milk bottle will be produced by a single shot process through 

the blowing head and further function must be introduced in the tool (such as addition of 

an insert) or as an after production process (such as a sticky label), it is however possible 

to EMBED a functional material into the main bottle material, such as nanotubes, as 

discussed earlier in the example of the bottle that stayed cooler for longer. 

      For an internet ready, stand alone bottle it would be necessary to add both a sensor 

device (in this case a simple weight sensitive indicator could be suitable), and a wireless 

device to transmit that the bottle has reached the pre determined low level to trigger 

automatic re-order or perhaps just addition to the home cloud shopping list. These two 

devices could be produced by the roll to roll technology used in polymer electronics and 

added to a bottle by suitable adhesives or suitable melt processes to give the desired 

function. Job done. 

      However, the cost of the bottle has increased, the weight of the bottle has increased for 

logistics, the bottle must now be classified as 'electronic waste' and could therefore not be 

collected in the kerbside schemes used in the UK and many other developed countries. The 

product could potentially be hijacked and used as a back door to hack home computer 



 

systems. The carbon footprint has increased through the additional use of a further 

technology platform (roll-to-roll). 

     On the plus side, the desired objective of saving the consumer time and the addition 

reduction in food wastage has been achieved, but will consumers actually be willing to pay 

such an increased price for their milk? 

     However, if we now consider a similar scenario but for an essential and expensive 

prescription drug used regularly, and we have a far more likely adoption scenario where 

mass customization of labels and devices becomes a benefit, also allowing the use of drugs 

to be monitored regularly through the cloud perhaps linking directly back form patient to 

doctor to ensure drug regimes are being followed, and allowing a potential for reclamation 

of unopened and unused drugs. 

     These examples consider functionality as an ‘add-on’ function after a more basic 

production route has taken place, however for other methods to develop Level 3 systems 

with integrated structure and functions, production routes that enable fully formed 

integrated products are required. 

     Updated roadmaps on developmental routes for printed electronic devices are regularly 

being produced [6]. Continuing developments have enabled electronics and components 

to be printed directly onto plastic substrates, offering the potential for structural 

components such as printed memory devices, batteries and solar cells to be added on to 

product lines. These can be used as both active and passive components and allows 

integration of electronic function and plastic product. Therefore these integrated 

multifunctional systems (smart systems) can include sensors, RFID tags and smart 

textiles. 

     The further potential of additive manufacturing and other direct deposition methods 

have generated much excitement in both the research arena and the public imagination. 

Certainly inkjet printing remains a key technology for the future of integrated electronic 

functional manufacture. Research into direct manufacture of solar cells [7] and battery 

structures using inkjet printing are currently being actively researched. Structural batteries 

in composite manufacturing are also being pursued, though currently with less success. 

However, the integration possibilities within conventional manufacturing processes 

should not be ignored. Injection moulding, a process with a long history of innovations in 

integrating materials and processes can also be used to produce disruptive electronic 

devices [8], the challenges remain to produce these integrated multifunctional structres to 

challenge current product. 



 

 
 

 
Figure 1. Multifunctional product design 

4. Conclusion 

Producing viable MFPP remains a key challenge for plastic manufacturing, where 
breakthroughs in materials, processes and electronics must be aligned to realise the 
potential of fully integrated and functional products (see Figure 1). The challenges for 
disposal of a new generation of plastic electronic products should not be overlooked, 
especially in short life products such as food packaging. Whilst MFPP offer great 
potential to enhance the quality of human life, it could also create a serious 
environmental challenge if all lifecycle impacts are not fully considered. 
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