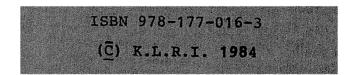

KAINJI LAKE RESEARCH INSTITUTE TECHNICAL REPORT SERIES NO.13


A COMPUTER PROGRAMME FOR CALCULATING THE AREA COLONIZED BY EMERGENT MACROPHYTES IN LAKE KAINJI

Emmanuel Asuquo Obot* and A. J. Morton**

By

Kainji Lake Research Institute P. M. B. 666 New Bussa NIGERIA Imperial College Silwood Park Ascot Berlcs UNITED KINGDOM

Erratum

Page 6 paragraph 2 the second sentence should read: "If the plants depend for successful establishment on mud wetted by rainfall, conditions in a drought situation may have been too harsh for proper establishment of the plant population"

KAINJI LAKE RESEARCH INSTITUTE TECHNICAL REPORT SERIES NO.13

A COMPUTER PROGRAMME FOR CALCULATING THE AREA COLONIZED BY EMERGENT MACROPHYTES IN LAKE KAINJI

Ву

Emmanuel Asuquo Obot* and A. J. Morton**

Kainji Lake Research Institute
 P. M. B. 666
 New Bussa
 NIGERIA

** Imperial College Silwood Park Ascot Berlcs UNITED KINGDOM

Contents

Pages

Abstract		1
Introduction		1
Reservoir environment	e o o	2
- Climate		2
- Geology	• • •	2
- Lake hydrology	e o o	3
- Presence of vegetation and		
its probable effects	* * 0	3
Prográmme development	a 8 o	3
- Definitions		3
- Concept		4
Programme verification		5
Modification of the programme to incorporate		
harvesting and subsequent regrowth	0 0 8	6
How to use the programme	9 0 0	8
Uses and limitations of the programme		10
Concluding statements	• • •	10
Literature cited		10
Tables		11
Figures		12

Abstract

A FORTRAN programme which calculates the maximum area of Lake Kainji colonizable by macrophyte vegetation in a given year, and the productivity of <u>Echinochloa</u> <u>stagnina</u> is given and explained.

A modified version of the programme which calculates the amount of nitrogen and phosphorus removable from the Lake if <u>Echinochloa</u> stagnina is managed, by harvesting, as a renewable source of dry season livestock fodder is also presented.

The uses and limitations of the programmes are discussed.

INTRODUCTION

The emergent vegetation of Lake Kainji has attracted widely varied interests. Whilst the power generation authority view the vegetation as a problem to the lake's hydrology and a threat to the life expectancy of the lake (Fregene pers. comm.), fishery experts see the vegetation as a valuable spawning and breeding ground for a number of economically important fish species (Imevbore and Bakare, 1974; Ita <u>et al</u>, 1982). Cattle farmers, both resident and the semi-nomadic Fulani view <u>Echinochloa stagnina</u> (Retz.) P. Beav., the major component (92.6% frequency) of the vegetation as a valuable source of dry season fodder for their stock. Wildlife experts see the vegetation as the only hope left for the return of the Manatee, a herbivorous mammal that lived in the River Niger before the impoundment.

With such varied interest in the vegetation, there is need to manage and maintain it within "safe" limits such that while it does not affect power generation significantly, it satisfies the need of the wildlife/tourism, cattle and fishery industries.

Such management can only be based on a knowledge of the cover dynamics of the vegetation in order to plan control measures well ahead. Cover data could be obtain from LANDSAT imageries but these are difficult to buy and are grossly out-dated when they finally arrive. This report presents computer programme which calculates the maximum area colonizable by the vegetation in a given year using the maximum and minimum water levels of the previous year. The programme also calculates the productivity of Echinochloa. stagnina, the nitrogen and phosphorus removable from the lake if 75% of the standing crop of Echinochloa stagnina is harvested.

The Kainji reservoir, 9°50' - 10°55'N; 4°25' - 4°45'E closed on 2nd August, 1968 is 136.8km maximum length and 24.1km maximum width. Its surface area has been variously quoted as 1270km² (Willoughby, 1974); 1250km² (Imevbore and Bakare, 1974); in this work the surface area is approximated to 1300km². At full volume, the water level is at altitude 142m, maximum depth 60m, mean depth 11m.

The Lake is bordered by Sokoto and Niger States on the eastern shore and Kwara State on the western shore.

RESERVOIR ENVIRONMENT

Climate

The climate is seasonal, tropical with a distinct rainy season (April - October) and a dry season (November -March). The peak of the rainfall occurs between July and September. The ambient temperature are generally high. The lowest day temperatures are recorded in December and January, while the highest are recorded in April before the out set of the rains. Wind speed is generally low during the dry season (4km/hr) and higher (10km/hr) during the rainy season. Live squalls with wind speed to 90km/hr do occur during the early rains. Lake surface temperature is between 29 and 31°C but falls to 26°C between February and April (Henderson, 1973).

Geology

The geology of the Lake site has been summarized by Halsteed, 1975.

The wester margin of the Lake basin is bordered by upper Crestaceous classics of the Nupe formation. The southern and northern margins are bordered by a variety of rock types belonging to the basement complex. The floor of the Lake consists mainly of silty alluvium.

Lake Hydrology

The Lake is sustained by two annual floods. One originates from areas around the source of the River Niger in Guinea. The water from this catchment passes through semi-desert areas and deltaic swamps around -Timbuctu where it loses much of its silt and about 65% of its water by evaporation and infiltration before it reaches Kainji Lake in November, nearly six months later. This is called the "Black flood". The other, the "White flood" originates from the drainage area of River Niger south of Niamey. The drainage from this catchment area and the river Sokoto with its tributaries is heavily laden with giving a milky white appearance. The retention time of the Lake is about 76 days, implying that the Lake flushes itself four times in the year. The Lake rises and falls about 10m annually. The lowest level is reached in August, but the Lake is essentially full from November to March.

Presence of Vegetation and its Probable Effects

The presence of the emergent vegetation of the Lake was first reported by Imevbore (1971) who estimated that less than 0.5% of the Lake surface area was covered by vascular plant communities.

Hall (1975) described the macrophyte communities of Lake Kainji as made up of <u>Echinochloa</u> sp., <u>Cyperus</u> sp., <u>Pistia stratiotes and Cratophyllum demorsum</u>. In 1977, using a combination of a side looking radar imagery (February 1977) and a ground-truth survey, Chachu (1977) estimated that 84.6km² or 8.9% of the Lake was covered by plants mainly <u>Echinochloa</u> sp. Chachu (1977) used for the surface area of the Lake, the 950km² which he surveyed for ground-truth.

PROGRAMME DEVELOPMENT

DEFINITIONS

A 'draw-down period' in this study refers to the period between the highest water elevation and the lowest water elevation of a given year. A 'flood period' refers to the period between the lowest water elevation of a given year and the highest water elevation of the next year (effectively; August - January). A 'new area' is the exposed mud which has remained inundated during the previous draw-down period. An 'acquired area' is an area of draw-down which maintains a stand of vegetation for two consecutive draw-down periods.

CONCEPT

The concept (Kainji Lake <u>Echinochloa</u> Model, Morton and Obot, 1984) is based on the colonization characteristic of <u>Echinochloa</u> <u>stagnina</u> which is the major component of the vegetation.

For each 1m drop in water elevation, up to 80km² of mud is exposed (Henderson, 1973). This mud can be colonized by <u>Echinochloa stagnina</u> and other emergent macrophytes provided the mud is wet enough for seed germination and establishment. The mud is exposed during the rainy season so conditions are usually suitable for establishment.

If the exposed area is 'new', it is colonized mainly by seedlings. A colonized new area may become 'acquired' if it is exposed in the next draw-down period. If the area is not exposed, the colonizing plants of the previous draw-down usually die. An acquired area may also, remain inundated during the next draw-down period. Plants in such areas are also killed.

An acquired area may stay exposed for more than two flood cycles. In this situation, the mud may become dry enough for other terrestrial plants to establish and the area will be lost to the emergent plants due to competition. Thus, the depth classes and consequently, the area of draw-down colonized and acquired by the emergent macrophytes for a given year (in January) is largely determined by the highest water elevation (January) and the lowest water elevation (August) of the previous year.

Echinochloa stagnina and other emergent macrophytes have not been observed growing in the Lake rooted in areas deeper than 9.5m. This depth is reffered to as DMAX; the maximum depth in which the emergent plants can survive.

In any particular, UL is the upper water limit (January) and LL is the lower water limit (August) of the previous year (Figure 1). D is an array which denotes the

classes (0.1m) which can potentially be colonized in a particular year i.e. form UL to LL (when LL is less than DMAX) or UL to DMAX (when LL > DMAX). 'A' is an array which contains the additional area of mud exposable in each depth class (Table 1), subdivided equally within each 1m depth class.

The area of mud which is potentially colonized in any particular year (AREA) is therefore, given by:-

$$AREA = \begin{cases} A_{i} & D_{i} \\ i = 1 \end{cases}$$

where <u>m</u> is the total number of depth classes which could be exposed in any year.

The percentage area of the Lake occupied by the macrophytes (PCT) is given by:-

$$PCT = \frac{AREA \times 100}{1300}$$

PROGRAMME VERIFICATION

Using this concept, a FORTRAN programme was written to simulate the expected depth classes in which the macrophytes are expected to root for the year 1972 to 1973.

The area colonizable in any given year is shown in Figure 2.

The programme accurately simulates the area colonized by the grass in 1977 as observed on SLAR imagery of February 1977 (Figure 3) but there appear to be large differences between the observed and calculated values in years prior to 1977 (Figure 2).

The programme calculates the potential area cohonizable (the environmental potential) in any one year but the calculation of the actual area colonized by the plant should take into account the early years of the lake when the vegetation must have been building up its population towards the environmental potential, controlled probably by its intrinsic reproductive rate (the biological potential). The plant are obviously capable of attaining the environmental potential rapidly e.g. from 16% to 33% between 1976 and 1977 (LANDSAT March 1976 Figure 4 and SLAR February 1977 Figure 3), a reproductive rate of 2.1. An explanation is needed for its apparent inability to attain the environmental potential during the period 1974-1976, assuming a similar reproductive rate applied to the 1972 LANDSAT data.

One explanation is based on the fact that the last Sahelian drought affected Kainji in 1972/73 (Ita et al, If the plants depend, for successful establishment 1982). of the plant population. There seems to be no reason, however, why the environmental potential should not have been achieved between 1974-1976 after the drought. In fact, no LANDSAT data are available at present for 1973-1975, so it is not known whether this potential was actually achieved. An explanation for the discrepancy in 1976 is still needed, however. The satellite images were taken in February and March respectively; while the programme 'predicts' the population of the grass in January. It is known that the grass is harvested by cattle farmers for their stock and professional harvesters who sell the grass to the nomadic Fulani herdsmen. Thus, the imageries record what is left of the potential maximum standing crop less harvest.

MODIFICATION OF THE PROGRAMME TO INCORPORATE HARVESTING AND SUBSEQUENT REGROWTH

Two factors were introduced into the programme.

- 1) The actual area colonized (ACT) controlled by a reproduction factor (R)
- 2) The visible area colonized (VIS), i.e. actual area colonized less harves.

The reproductive rate of the population was based on the reproductive rate of the major component of the population of Echinochloa stagnina. A mean reproductive rate of 5.1 was estimated from tiller density and seed production data. Eight seed collectors were randomly placed in the grass stand and viable seeds trapped in the collectors were counted daily through the fruiting season (November to February). Mean viable seed collected was 1009 seeds/m². Mean tiller density was 197 tiller/m² (tiller density in January, 1982).

From field observations it is known that when the plants are cut above water, the nodes maintained above water become active, producing new tillers. However, when the plant is cut below water it dies and the stem starts to decay within a few days. Cutting occurs both above and below water but cutting below water is more frequent as this is far easier than cutting above water level. In the programme, the 'worst' situation - cutting below water - is assumed. That is all plants harvested are killed.

The proportion of the total colonized area harvested was introduced into the programme as the variable CUT.

The raltionship between ACUT, VIS and CUT are as follows:-

ACT = VIS x R (or ACT = PCT if vis x R < PCT)

 $VIS = ACT \times (\frac{100 - CUT}{100})$

It is most probable that the practice of cutting the grass for livestock had not in 1972, reached the highly commercial stage it has reached at present, probably because the local people did not realize its commercial value so were too busy with re-settlement problems. In that case, the LANDSAT value for March 1972 would be equal to ACT. Starting with the 1972 value of ACT, (10.8%) the programme was applied for zero cutting regime (CUT = 0) and reproductive rates of 2 and 5.1 (Figure 4). With r = 5.1, the environmental potential could have been achieved in one year with a low value of R (R = 2), the environmental potential could very nearly have been achieved in two years.

The results of varying the cutting regime are shown in Figure 5 and it can be seen that a cutting regime of between 50 and 60% could account for the figure produced from LANDSAT imagery in 1976. In the model, the same cutting regime is simulated over all years, but in reality it would vary from year to year e.g. the 1977 SLAR imagery suggests virtually no cutting occurred in 1977

HOW TO USE THE PROGRAMME

Input Data

To calculate the area of lake potentially covered in the "next" year the following information for the current year must be defined:-

- 1. Upper water level UL (usually available in January)
- 2. Bower water level LL (usually available in August)
- 3. Reproductive rate R (the present reproductive rate for Echinochloa stagnina is 5.1).

The programme can also be used for making management decisions; for example, if <u>Echinochloa</u> <u>stagnina</u> is to be maintained as a renewable source for <u>livestock</u> fodder, a given percentage chould be left unharvested.

If the plant has a reproductive rate greater than 4 for instance about 75% of the standing crop can be harvested.

For management decision making, the variable CUT (the percentage standing crop to be harvested) must be defined. For the present, CUT = 75% is recommended. When CUT is defined, the programme calculates.

- 1. Area of the lake potentially colonized (AREA)
- 2. Percentage potential area colonized (PCT)
- 3. Actual area colonizable (ACT)
- 4. Potential productivity (PROD)
- 5. Actual productivity (APROD)
- 6. Visible area colonized (VIS)
- 7. Utilizable standing crop (UT)
- 8. Nitrogen removable from the system (NREM)
- 9. Phosphorus removable from the system (PREM)

The potential productivity (standing crop) is given by:-

PROD = m

$$\begin{cases} P_i D_i A_i \\ i = 1 \end{cases}$$

APRO (actual productivity) is a function of ACT and PCT; and is given by APROD = PROD x $\frac{ACT}{PCT}$

UT (utilizable standing crop) = $0.1 \times APROD$ NREM (nitrogen removable from the lake system when 75% of the standing crop is harvest) is given by NREM = 0.02 UT PREM (phosphorus removable from the lake ecosystem when 75% of the standing crop is harvested is given by PREM = 0.002 UT.

The programme and a typical result sheet are shown in Figures 6 and 7 respectively.

It is more practical to make management decisions on area basis based probably on available labour for harvesting. Area to be harvested can thus, be defined as HARV. HARV can be set to a high value. The relationship between CUT and HARV is given by:-

$$CUT = \frac{HARV \times 100}{AAREA}$$

$$AAREA = \frac{1300 \times PCT}{100}$$

A modified version of the programme automatically converts HARV to 75% of area covered if HARV is greater than AREA and calculates the area harvestable (AREAH). Calculation of the area harvestable takes into consideration of the fact that if more than 75% of the population is cut, (Reproductive rate of 5.1) the population will extinct.

The modified programme and its result sheet are shown in Figures 8 and 9 respectively.

These programmes are easily adapted to systems using FORTRAN IV. For systems that use BASIC the programmes can be translated easily to BASIC. USES AND LIMITATIONS OF THE PROGRAMME

The programme calculates the area covered by the vegetation assuming an equilibrium state. In a disturbed situation (for example during a high level of polution), there may be differences between the calculated area and the observed area. This may be useful as a means of monitoring ecosystem disturbance in the lake.

CONCLUDING STATEMENTS

Using the programmes presented, it is possible to predic the extent of the vegetation cover of the Lake for a given year well in advance for management plans that may require such data. LANDSAT imageries will obviously give the most accurate data but at present the imageries are difficult to buy and are grossly outdated when they finally arrive.

The use of the KAINJI LAKE <u>ECHINOCHLOA</u> MODEL to estimate the vegetation cover data will also save the cost of aerial surveys which is the immediate alternative to LANDSAT Imageries.

LITERATURE CITED

- Chachu, R.E.O. (1977) The vascular flora of Kainji Lake. Proceedings of the International Conference on Kainji Lake and River Basin Development in Africa Vol. II. Kainji Lake Research Institute, Nigeria.
- Imevbore, A.M.A. and Bakare, O. (1974) Kainji Lake Basin. J. Trop. Hydrobiol. and Fish. 3: (1) 79 - 93
- Imevbore, A.M.A. (1971) Floating vegetation of Lake Kainji. Nature 230: 599 - 600
- Ita, E.O., Balogun, J.K. and Adminula, A. (1982) Sokoto Rima Basin Development Authority: A preliminary report on <u>Pre-impoundment Fishery Survey of Goronyo</u> Reservoir, Sokoto State, Nigeria.
- Hall, J.B. (1975) The vascular flora of Lake Kainji and its shores. In: <u>The Ecology of Lake Kainji</u>. <u>The</u> <u>Transition from River to Lake</u>. Imevbore, A.M.A.; <u>Adegoke</u>, O.S. Eds. University of Ife Press.

Halstead, L.B. (1975) The shore line of Lake Kainji. Ibid.

Henderson, H.F. (1973) A limnological description of Kainji Lake 1969 - 1971. FAO Tech. Report F1/DP/NIR66/524/10.

Morton, A.J. and Obot, E.A. (1984) The control of <u>Echinochloa stagnina</u> by harvesting for dry season by harvesting for dry season livestock fodder in Lake Kainji, Nigeria - a modelling approach. <u>J. Appl. Ecol</u>. 21 (2) (in press).

Table 1 - Hypsographic chart for Kainji Lake (Modified from Table 2 of Henderson (1973)

Height of Upper surface (m above M/S/L)	Lake Volume (m ³ x 10 ⁹)	Area of 1-m Statum (m³ x 10 ⁹)	Incremental Area of Mud Exposed (km ²)
142	15.6	1.30	0
141	14.4	1.24	60
140	13.2	1.17	70
139	12.0	1.11	60
138	10.9	1.05	60
137	9.9	.99	60
136	8.85	.92	70
135	7.95	.86	60
134	7.10	.78	80
133	6.30	.73	50
132	5.60	.67	60
131	4.90	.63	
130	4.3	.58	
129	3.7	.53	
128	3.25	. 48	
127	2.75	.43	
126	2.3	.39	
125	1.9	.35	
124	1.55	.31	
123	1.25	.26	
122	1.0	.22	not
121	.85	.18	usually
120	. 7	.14	exposed
119	.6	.09	- ···· - - · · · · ·
118	.5	.07	
117	. 4	.05	
117	.35	.04	
115	.30	.03	
114	.25	.02	
113	.2	.01	
112	.1	.005	
111	.05	_	
110	-	_	

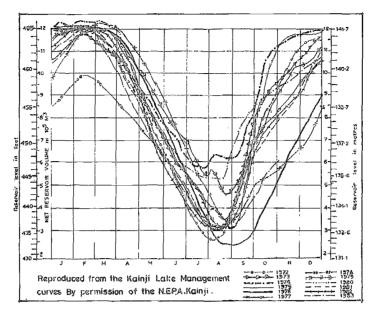
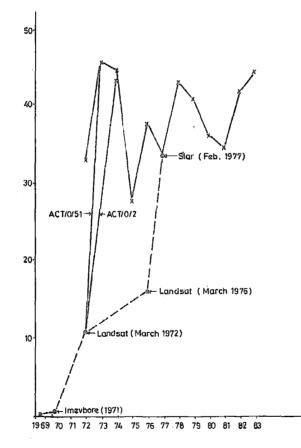
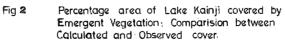




Fig. 1 Kainji Lake Management Curve.

12

Reproduced from LAND-SAT Imagery 7th March 1976.

Fig. 🗳

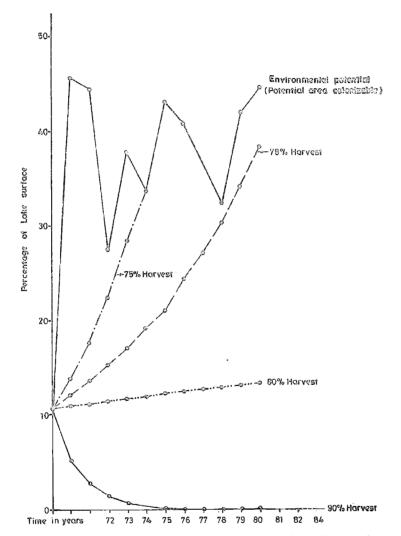


Fig. \$. Calculated area colonizable by E.stagnina at cutting regimes 75%-90% assuming a 5.1 reproductive rate

FIG.	6 PROG	RAMME;	KAINJI LAKE <u>ECHINOCHLOA</u> MODEL
1.	000000B 000000B 000000B		REAL МREA REAL LL Батерек т (120)
	0	0000	THE ARRAYS ARE DINERSIGNED, XMIN(N), XMAX(N), X(M), A(M*10, Y(M),
4.	0000006	C	P(2410) WHERE $U = HUHBER (F YEARS H = MUHBER (F YEARS)X = AREA EXPOSSABLE IJ FACH 14 DEPTH CLASS FINELSTOP XBJ4(20) X41X(20) X(12), A(120), ST(120,20), Y(12), P(120) FATA IBL LASF/14 144 Y = BTANDING CRUP FOR EACH IN DEPTH CLASS DHAX = HAX DEPTH AT WHICH ECHIBIOCHLOA CAN SURVIVE REARPROMUCTIVE DATE$
5.	0021318	CCC	TATA IBL IAST/H, IH*/ Y= STAUDIG CRUE FAR BACH IM DEPTH CLASS DBAX = HAX DEPTH AT WHICH SCHLUGCHLOA CAN SURVIVE R=RARENDUCTIVE, DATE
ŕ.	0021318 0075158	ĉ	CUTE POPORTION OF FORLOOPLOA RAPVESTED BELOW WATER LEVEL D'ATES 5 RES 1 BELOW WATER OF YEARS
R G	0075478 0075508	C.	
10	0075618 0076138	c c	TEAD (5,1)N READ (10, AND MAX WATER LEVEL FOR EACH YEAR READ(5,2)(XMIE(1), X*AX(1), I=1, N) READ(5, P)(X(I), I=1, I2) READ STANDING (ROP FOR FACH IN DEPTH CLASS READ(5, P)(X(I), I=1, I2)
12. 13. 14.	0076338 0076535 0076538	-	K=0
16 17 18	0076568 0076618 0076628 0076628		00 9 1≓1,12 p0 9 1=1,10 K=×+1 Λ(K)=x(I)/10.
19 20 21	0077046 0077128 0077208	9	A(K)=X(I)/10. P(K)=Y(I) P(K)=Y(I) P(K)=Y(I) P(K)=K(K) P(K) P(K)=K(K) P(K)=K(K) P(K) P(K)=K(K) P(K) P(K)=K(K) P(K)
22. 23. 24.	007726B 007735B	C C	CHURTE DEPER COLODIZABLE LIMIT(UL)AND LOWER COLONIZABLE LIMIT(LL) DB 3 I=1 9 ULEXMAX(1)
24.	0077416 007746B		LL=XYT4(1) SET LOVER COLONIZABLE LIMIT EQUAL TO DMAX IT (LL.CT.NMAX)LL=DMAX CALCULATE AND PETUT DEPTH CLASS COLONIZABLE FOR EACH YEAR. DO A.L=1.120
26. 27. 28.	2077528 0077518 0077628 0077728	C 4	CONCOLATE AND FRIDT DEPTH CLASS COLONIZABLE FOR EACH YEAR, 5T(J,T)=0. T(J)=TOL K=[U+10.
31.	0077725 0077748 0077765 0100109	•	K=01,840 D=0,53 D=5,54 K±0,55
32 33 34 35	0100168 0100276 0100415	5 3	R= (μ=) 0 L= (μ=) 0 D0 5 J=r, L S™ (J, 1) = 1. T(J) = IAST WAR PR(ch) I, T CONTRINCE (J)
36. 37.	0100458	C C	CALCULATÉ AREA POTENTIALLY COLONIZED CALCULATÉ PRODUCTIVITY
38.	910053B 0109625 0100628 010063B)∩(10/i=j,n) APEA=0 PROD = 0 D(11, i=1,110
42	0101028 0101028 0101108	c 11	AFEA- FROD = 0 AFEA-AFEA+A(J)*ST(J,I) FFOD = PROD*A(J)*ST(J,I) CH-TIANE PROD*A(J)*ST(J,I) CH-TIANE PROD*A(J)*ST(J,I)
44. 45. 46.	0101138 0101158 0101178	` .	CALCULATE PERCENTAGE OF LAKE SURFASE POTENTIALLY COLONIZED FCT =AREA/1300,4100, f(I.GT.)GO TO 15 ACT= 10.8 GO TO 16
47.	0101200	с с	GO TO 16 CALGULATE ACTUAL PERCENTAGE AREA COVERED BRFORE HARVEST BASED ON LAST YEAP LETT-OVER ACTIVESTR
(49) ~ 49.	0101220 CAUTION 0101218		JF(ACT,GT_PCT)ACT=PCT CALCTLATF AND PRINT LEFT-OVER(USUALLY VISIBLE ON LANDSAT) VISTACT#(100,-CUT)/100. APPOD=PROD#ACT/CCT
50 51 52	010130B 010134B 010136B 010136B	с : 16	CALCULATE UTULIZABLE BIOGASS IN TONNES
555557	0101403		コードにコーロングロー - アクディーの。002年11で、 19月11日(6、12)1、AREA、PCT、PPOD、ACT、APPOD、VIS 11T NURM DURM
- 34 •	010163B 0101678 0101758 0102038		200 J 117 J 54 2 2 9 1
60 61 62 63	0102118		(₩) ŤΨ[6],14] ₩61Ψ(6,23) -(₩1Ψ1Φ(6,20)
65. 16	0102338 0102410 0102476 0102558		E(λ ² , μ ² (β, 27) μ ⁰ τ ^μ (β, 27) μ ⁰ τ ^μ (β, 28) γΡ τ ^μ (β, 24)
67. 68. 69. 70.	0102638 0102738 0103028 0103118 0103118		исттр(д,25)¥ иялтв (д,20)Сит иялтв (д,22)Л
72.	0103118	1 2 6 7	FURNAT [12] FORMAT(18F5.0) FORMAT(18,12,101,120A1,101) FORMAT(101.18.290KAIDJI LAKE ECHINDCHLOA MODEL//)
74. 75. 76.	0103115 0103115 0103118	12 13	PORIAT (16F5.6) PORIAT(2/1X,12,9F10.1) - 2084ματ(2/1X,12,9F10.1) - 2084ματ(2/1X,4)μαθρ.(3%,3)μαστ.6%,4)μασσ.48%,304στ.5%,504000,
77.	010311B 010311B	14	FORMATITX, 111, 9X, 112, 9X, 113, 9X, 114, 9X, 115, 9X, 116, 9X, 117, 9X, 118, 19X, 119, 9X, 110/ EUPHAT(IX, 391)CT = PUTCHTIAL PEPCENTAGE AREA COVERED)
80 81 82	010311B 010311B 010311B 010311B	18 19 20 21	<pre>diff() d</pre>
83. 84. 85	0103118 0103118 0103115 0103115	223	FURMAT (16 F_5 , 0) FORMAT(1X, 444PROD = POTEKTIAL TOTAL STANDING CROP(TONNES)) FORMAT(//(X, 34MSTANDING CROP FOR EACH IN DEPERTITIONNES))
84 97 88 89	0103113	256 27 27 27	FOR MAT(12,33) H = HILLIZABLE STANDING CROP(TONNES)) FOR MAT(12,33) HHREN = HUTROGEN REMOVED(TONNES)) FOR MAT(12,33) HEREN = PUTROFUNDEUS REMOVED(TONNES))
90 91 92 93	0103118 0103110 0103116 0103128	29 30	PORMAT(//IX,28HPOTENTIA, ARCA COVENED(XMF2)) PORMAT(IX,36HAPROD = ACTUAL STANDING (ROP(TONNES)) STOP ELD
	-1-3140		NPD

FIG. 7 KAINJI LAKE ECHINOCHLOA MODEL: RESULT SHEET

	1	2	3	4	5	6	7	Ð	9	° O
17175117717 1234567890112 112	****** ************** **************	**************************************	**************************************	······································		本 な な 本 本 本 本 本 本 本 本 本 本 本 本 本	***************************************		2 4 * * * * * * 2 * * * * * * * * * * * * * * * * * * *	
	APS/A	PCT	PROD	λCT	APROD	VIS	11ዋ(ዋ)	AREM(T)	PREM(T)	
i	128.)	32.9	1194774.0	10.8	391930.5	2.7	39193.1	783.9	78.4	
2	233.0	45.6	1596374 0	13.8	484910.1	Э.4	48491,0	969,8	97.0	
3	579.0	44.5	1606374.0	17,6	631316.9	4.4	63431.7	1268.6	126.9	
4	3-0.0	27.7	800488.0	22.4	647068.1	5.6	64706.8	1294.1	129.4	
5	492-0	37.9	1524066.0	28.5	1149334.7	7.1	114933.5	2299.7	229.9	
6	430.0	33.8	1392140.0	33,8	1332140.0	8. . 4	133214,0	2764.3	276.4	
7	558.0	43°3	1595544.0	42.9	1595544.0	10.7	159554.4	3191.1	319,1	
8	531.0	40.8	1531640.0	40.9	1531640.0	10.2	153164.0	3067,3	306.3	
ò	170,0	36.2	1396248.0	36.2	1396248.0	9 . 0	139624,8	2792.5	279.2	
10	422.9	32,5	1136280.0	32,5	1135280.0	8.t	113628.0	2272.5	227.3	
11	544.6	11.9	1580392.0	41.4	1563096.6	10.3	156309,7	3126,2	312.6	
12	574.0	44.5	1612872.0	41.5	1612872.0	ţ1_1	161287.2	3225.7	322,6	
PCT ACT VIS PPOU APPO UT : NREA	= ACTHAL PE = VIAIALE () = PATEATEA = PATEATEA = ACTUAL ; = UTILIZABLE	PERCENTAGE AMDSAT AMDSAT TAMDIN STANDIN STANDI BENDVEL	PAGE AREA COVER - AREA COVERF - DEFERMACE - STANDING CRO - CROP(TONNES - CROP(TONNES - CRONNES)	N AREA COL PECTOUNES	/ERED 3)					

STANDING CROP FOR EACH 19 DEPTH(TONNES) 1083, 1625, 1625, 1625, 2166, 5416, 5416, 5416, 1083, 0 0 0 CUT = 75, R = 5.1

NTITITICTT

17	

		17
FIG.		KAINJI LAKE BCHINOCHLOA MODEL: MARV (MARVEST) INCORPORATED
1 • 2 • 3 •	6000048 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 600000 6000000	REAL TREM REAL TH THE ARRAYS ARE DIMESSIONED, XHIN(K), XEAX(R), X(M), A(M*10., Y(M), THE ARRAYS ARE DIMESSIONED, XHIN(K), XEAX(R), X(M), A(M*10., Y(M), F(*Y10)
4. 5.	0000000 C .	LATEGORY T(120) THE ARRYS ARE DIMENSIOPED, XHIH(E), XEAX(H), X(H), A(M*10., Y(N), P(410) HERE S = NUTHER OF YEARS A = DEMARE OF DEPTH CLASSES S = APEA EXPOSEADL: 14 EACH 14 DEPTH CLASS DIEMISTOR XHIH(20), XHX(20), X(12), A(120), ST(120, 20), Y(12), P(120) DITA (HL, TASY)H, 144 Y= STA HD14G CPOP FOR EACH 14 DEPTH CLASS H = STA HD14G CPOP FOR EACH 14 DEPTH
6. 7.	0021318 0075458 C	D'AX=9.5 2=5.1 2=5.0 duprer of yrars
8. 9. 10.	0075508 0075508 0075525	0.500-505
11.	0975628 0976148 C	$ \begin{array}{c} \mu_{\text{EAD}} & (5,1) \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (5,1) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,1) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) (2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} & \mu_{\text{EAD}} \\ \mu_{\text{EAD}} & (1,2) \mu_{\text{EAD}} & \mu_{\text{EAD}} &$
13. 13. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	0076340 0076540 0076540 0076540 0076620 0076620 0076635	1 22 μ 5 = 0 5 = 0 5 = 0 5 = 0 5 = 1 5 = 0 5 = 1 5 = 1
23 • 24 • 25 •	007736B 007742B C	1994 - G. (8-814-9)
20. 27. 28. 31. 33. 33. 35.	2077478 0077538 0077558 0077558 0077738 0077738 0077778 0077778 0100118 010018 010018 010018 00008 00008 0008	K=0,1,*10. 1,05 S¶(J,1)=1. x(J,1)=1.
36. 37. 38. 40. 42. 42. 44. 45. 45. 45.	0100460 C 0100546 0100630 0100630 0100748 0100708 0101178 0101148 0101148 0101148 0101148 0101148 0101148	<pre>(#14) #2(3) (#14) #2(4) (*1,4) #47E (Ake, FOTEHTIALLY COLONIZED (*A,4) #47E (Ake, FOTEHTIALLY COLONIZED (*A,4) #47E (Ake, FOTEHTIALLY COLONIZED (*A,4) #4 (***********************************</pre>
49 (49) 50 51 52 53	9191530 11 C	CALCULATE ACTUAL DERCENTAGE AREA CUVERED BEFORE HARVEST BASED ON LAST YEAR LEFT-OVER ACT=VISTE (IF (ACT CT PCT)ACT=PCT ADDR=1300%ACT/100 IF (CTL GF, CTMPHIARV/AREA*109, IF (CTL GF, CTMPHAN)CITETS CALCULATE ADD PRIDT LEFT-OVER(USUALLY VISIBLE ON LANDSAT) VISACT4(100, CTM)/100 VISACT4(100, CTM)/100 VISACT4(100, CTM)/100 VISACT4(100, CTM)/100
54. 555. 77.	0101598	CALCULATE UTILIZABLE BIOSASS IN TONNES UT=0.1*APPUD
550 660645666677777777788710 800 6606466666677777777887188 8 8888899999999999999999999999999999	0101540 0101500 0101500 0101100 0102150 0102150 0102150 01022150 01022150 01022150 01022150 01022370 01022370 01022370 01022370 01022370 01022370 01022370 01022370 01022370 01022370 0102370 0102370 0102370 0103370 01033770 01033470 010334770 01034770 010034770 010000000	<pre>Himter () 2 Himter () Himter () Himter () 2 Himter () Himter</pre>

FIG.	1	2	3	4	5	C; HARV. (HARV	٦	÷	9	0		Ŧ
27177 4717 7777 8917 101	***************************************	***************************************	***************************************	*****	**************************************		************	**************************************	** ** ** ** ** ** ** ** ** * * * * * *	****		
	АРРА	PCτ	5 800	ACT	AAREA	APROD	V15	UT(T)	NREM(T)	PREM(T)	CUT	AREAH(KME2
1	428.0	35.0 11	91774_^	10.8	140.4	391930,5	2.7	39193.1	783.9	78.4	75.0	105.3
2	593.0	45.6 16	46374.0	13.8	179.0	484919.1	3.4	48491.9	969.8	97.0	75.0	134.3
3	579.0	44.5 16	05374.0	17.6	228.2	634316.9	4.4	63431.7	1268.6	126.9	75.9	171.2
4	360.0	27.7 8	01158.0	22.4	291.0	647068.1	5,6	64706.8	1294.1	129.4	75.0	218.3
.5	492.0	37.8 15	24056.0	28.5	371.0	1149334.7	7.1	114933.5	2248.7	229.9	75.0	278.3
6	439.5	33.8 13	82140.0	33.8	439.0	1382140.0	6.4	138214.0	2764.3	276.4	75.0	329.3
7	558.0	42.9 15	95544.0	42.9	558.0	1595544.0	10.7	159554.4	3191.1	319.1	75.0	418.5
8	531.1	46.8 15	31640.0	40.8	531.0	1531640.0	10.2	153164.0	3063.3	306,3	75.0	398.2
9.	170.0	36.2 13	06218.0	36.2	470.0	1396248.0	9.0	139624.9	2792.5	279.2	75.0	352.5
0	422.)	32.5 11	34290.0	32.5	422.0	1136280.0	8.1	113624.0	2272.6	227.3	75.0	316.5
11	544.0	41.8 15	iE4342.0	41.4	538.0	1563096.6	10.3	156309.7	3126.2	312.6	75.0	403.5
12	579.0	44.5 16	12872.0	44.5	579.0	1612872.0	12.2	161297.2	3225.7	322.6	72.5	420.0
APEOI APEOI VIS = NEEN PREY ABEAJ		STADDING DANDSAT) (STAPDING PENOVES USEDOVES USESTABLE)	(ROP(703688 (PPC647AGE (PPP(70138 (PPP(70138)) (700785) (700785) (7487)) ARRA COVE S) SES)	RED	416. 1083.	0	Q	0			

PUBLISHED AND PRINTED BY KAINJI LAKE RESEARCH INSTITUTE, NEW BUSSA, NIGERIA