Bioassessment, the Human Disturbance Gradient, and Applicability to Environmental Decisions

Russ Frydenborg and Tom Frick Environmental Assessment Section FDEP Bureau of Laboratories

Factors Affecting Aquatic Biological Communities

Defining Ecological Expectations

- Absent human interference, ecological communities have evolved in response to:
 - physical,
 - chemical, and
 - bio-geographic processes
- Expectations are set by studying reference condition (and its variability) in each community type.

Adverse Human Factors

- Hydrologic modifications
 - (consumptive use, impounding, ditching/draining)
- Habitat disturbance
 - (physical removal, sedimentation)
- Degradation of water quality
 - (toxic substances, nutrient and organic enrichment)
- Introduction of invasive exotic taxa
- Harvesting biomass

Biological Integrity

- The ability of an aquatic ecosystem to support and maintain a **balanced**, adaptive community of organisms having:
 - species composition,
 - diversity,
 - and functional organization

comparable to that of natural habitats within a region.

Procedure to Develop Biologically-Based Criteria

- 1) Classify aquatic systems into meaningful units
- 2) Sample biota across human **disturbance** gradient (define expectations)
- 3) Select relevant **biological attributes** that provide a reliable signal about human effects (nutrient imbalances)
- 4) Extract and interpret **patterns** in the data
- 5) Develop **reasonable policy** to protect designated aquatic life use

Florida's Stream Condition Index: 1990's Multimetric Approach

- Established reference condition in various sub-ecoregions
 - Best professional judgment
 - Surrounding land use, in-stream habitat
- Sampled known impaired sites
 - Point source discharge studies
 - Toxicity, low DO, poor habitat

Florida's Stream Condition Index: 1990's Multimetric Approach (cont.)

Selected 7 metrics

Box and whisker plots determined discrimination power

Aggregated by summing metrics

5, 3, 1 point, depending on departure from reference condition

Florida's SCI Re-calibration

- Develop human disturbance gradient
 - Test disturbance gradient for each Bioregion
 - Evaluate metric response to disturbance gradient (new thresholds, new metrics)
- Determination of metric variability
- Power analysis for trend detection
- Develop consistency with EPA Tiered Aquatic Life Use Support guidance (TALUS)

To Ensure Scientifically Defensible Metrics:

- Develop criteria, independent from biology, to determine which sites are impaired by humans vs. those that are not (the fabled "x axis")
 - Reference vs. Degraded Sites
 - Human Disturbance Gradient

Human Disturbance Factor Analysis

- Landscape level
 - Landscape Development Intensity Index
- Habitat alteration
 - Habitat assessment data
- Hydrologic modification
 - Hydrologic scoring process
- Chemical Pollution
 - Ammonia, etc.

Summary of the Landscape Development Intensity* Coefficients

Category	Coefficient
Natural System	1
Pine Plantation	1.6
Pasture	3.4
Row Crops	4.5
Residential (low)	6.8
Residential (high)	7.6
Commercial	8.0
Industrial	8.3
Commercial (high)	9.2
Business District	10.0

*Developed by Mark Brown, University of Florida, based on non-renewable Energy inputs, Odom's "Embodied Energy" concept.

Landscape Development Intensity Index

Hydrologic Modification Scoring

Best, 1-2 points

Flow regime as naturally occurs (slow and fairly continual release of water after rains), few impervious surfaces in watershed; high connectivity with ground water and surface features delivering water (e.g., sandhills, wetlands; no ditches, berms, etc.)

Very poor, 9-10 points

 Flow regime entirely human controlled; hydrograph very flashy (scouring after rain events with subsequent reductions in flow, leading to stagnant or dry conditions, related to impervious surfaces and ditching throughout watershed); water withdrawals & impoundments fundamentally alter the nature of the ecosystem

Florida's HDG: Combination of other Disturbance Measures

Scores Measure	1	2	3	4
NH3	<0.1	>0.1	>2	
Habitat	>65	>50 and <65	<50	
Hydro	<6	6-7	8-9	10
LDI (buffer)	<20 0	200-350	>35 0	
LDI (ws)	<20 0	200-350	>35 0	

Metric Selection Criteria

- Meaningful measure of ecological structure or function
- Strong and consistent correlation with human disturbance
- Statistically robust, low measurement error
- Represent multiple categories of biological organization
- Cost-effective to measure
- Not redundant with other metrics
 - Exception: "response signature" metrics

Attribute Groups

INDIVIDUAL CONDITION	TAXONOMIC COMPOSITION	COMMUNITY STRUCTURE	LIFE HISTORY ATTRIBUTES	SYSTEM PROCESSES
DISEASE				TROPHIC DYNAMICS
		TAXA RICHNESS	FEEDI NG GROUPS	PRODUCTIVITY
LEVELS	RARE OR	RELATI VE ABUNDANCE	НАВІТ	MATERIAL: CYCLES
DEATH METABOLI C	ENDANGERED KEY TAXA	DOMI NANCE	VOLTI NI SM	PREDATION
RATE				RECRUI TMENT
TOXICITY TESTS	RIVPACS ← INV FISH I	INTEGRATED BIOASSESSME VERTEBRATE IBI -	NT	

Incorporating "Integrity"

Include Robust, Discriminating Metrics from a Variety of Categories:

Richness

- Composition
- Tolerance
- Feeding Functions
- Habit
- Voltinism

Richness Measures

Total taxa

EPT taxa

Ephemeroptera taxa

Plecoptera taxa

Trichoptera taxa

Diptera taxa

Chironomidae taxa

Coleoptera taxa

Oligochaeta taxa

Insect taxa

Non-insect taxa

Shannon-Wiener Index

Composition Measures

% EPT

- % EPT (no Baetidae or Hydropsychidae)
- % Ephemeroptera
- % Ephemeroptera (no Baetidae)
- % Plecoptera
- % Trichoptera
- % Trichoptera (no Hydropsychidae)
- % Diptera
- % Diptera (no Chironomidae)
- % Chironomidae
- % Coleoptera
- % Oligochaeta
- % non-insects
- % 5 dominant
- % 10 dominant

Feeding Measures

% Collectors

% Scrapers

% Shredders

% Filterers

% Predators

Collectors taxa

Scrapers taxa

Shredders taxa

Filterers taxa

Predators taxa

Tolerance and Other Measures

HBI

BCI CTQa

Beck's Biotic Index

Intolerant taxa

% tolerant

% Clingers

Clingers taxa

% Semivoltine

Semivoltine taxa

Two Approaches to Assessing Metrics

- Compare extremes
 - reference vs. impaired
- Compare across continum of disturbance
 - Human Disturbance Gradient

Chironomid taxa vs. HDG

% Diptera vs. HDG

Correlation for Metrics and HDG

Trichoptera Taxa

Human disturbance gradient

Sensitive Taxa

SCI vs. Human Disturbance Gradient

SCI from 1992 to 2001

Florida Mayfly Taxa vs. HDG

SCI can reliably detect 3 categories based on 1 sample

Number of categories: ~ 15 points x 2 = 30 points 100 / 30 = 3 categories

SCI	Description
70-100	"Good"
40-69	"Fair"
0-39	"Poor"

SCI Can Reliably Detect 5 Categories Based on 2 Samples

SCI	Description
80-100	"Excellent"
60-79	"Good"
40-59	"Fair"
20-39	"Poor"
0-19	"Very poor"

BioRecon Metrics

Metric				
	0	0.5	1.0	
Total taxa				
Northeast	<20	20-30	>30	
Panhandle	<23	23-33	>33	
Peninsula	<19	19-29	>29	
Ephemeroptera taxa				
Northeast	<2	2	>2	
Panhandle	<5	5-8	>8	
Peninsula	<2	2	>2	
Trichoptera taxa	<2	2-4	>4	
Long-lived taxa				
Northeast	<2	2-3	>3	
Panhandle	<3	3-4	>4	
Peninsula	<2	2-3	>3	
Clinger taxa				
Northeast	<3	3-5	>5	
Panhandle	<4	4-7	>7	
Peninsula	<2	2-4	>4	
Sensitive taxa				
Northeast	<3	3-6	>6	
Panhandle	<5	5-8	>8	
Peninsula	<3	3-5	>5	

BioRecon Final Evaluation

BioRecon	Index range	
<u>1 sample</u>		
Pass	5-10	
Fail	0-5	
2 samples		
Good	7-10	
Fair	4-7	
Poor	0-4	

SCI Categories and TALUS Axis

Existing Applications of SCI

- Springs Studies
- Ambient Monitoring
- Impaired Waters Rule (TMDLs)
- Point Source Permitting
- Watershed (NPS) Studies
- BMP Effectiveness Studies

Recent SCI_Scores for Wakulla

Conclusions

- The SCI is effective in regulatory programs
- Discriminatory power of metrics
 - Comparing extremes identifies strong metrics, but includes some "noisy" metrics
 - Human Disturbance Gradient improves metric selection and provides an independent measure for comparing biological response