State of California The Resources Agency DEPARTMENT OF FISH AND GAME

1

Relative Abundance and Size Composition of Red Sea Urchin, Strongylocentrotus franciscanus, Populations Along the Mendocino County Coast, 1991

by

Peter Kalvass and Ian Taniguchi

MARINE RESOURCES

Administrative Report No. 93-1

Relative Abundance and Size Composition of Red Sea Urchin, Strongylocentrotus franciscanus, Populations Along the Mendocino County Coast, $1991 \frac{1}{2}$

-

0

by

Peter Kalvass,2/ and Ian Taniguchi3/

ABSTRACT

Underwater surveys were conducted in the summer of 1991, as part of a three year survey, to determine density and size composition of red sea urchin, *Strongylocentrotus franciscanus*, populations along the Mendocino coast at three different depth zones. The study consisted of two parts: i) a broad scale survey, with 12 systematically chosen sites from Gualala to Mendocino and ii) a fine scale survey, with nine sites in the vicinity of Fort Bragg. The fine scale sites were selected to represent different habitat types and levels of commercial exploitation. The sites included the Point Cabrillo Marine Reserve (PCMR) as an unfished control and the Caspar Commercial Urchin Closure Area, established in 1989 to assess the effects of closure upon recovery of fished areas.

The broad scale mean density was 0.71 red urchin m^{-2} (SD 1.9), a decline from the 1.3 and 1.1 red urchin m^{-2} found during the 1988 and 1989 surveys, respectively. The 4.6-m depth zone yielded only 0.17 m^{-2} . No site in the broad scale survey had greater than 2.2 red urchin m^{-2} . Fine scale fished site mean density declined to 0.34 (SD 1.1) and the PCMR control site density increased to 7.0 m^{-2} (SD 6.2). Abundance was variable; however, as in past surveys the highest densities were generally found at the 10.7-m and 15.2-m depth zones.

The presence of a mode in the 15-35 mm size interval indicated a recent recruitment event. However, continued declines in legal-sized (>89 mm) red sea urchins survey-wide demonstrate the need for more effective fishery management.

1/ Marine Resources Administrative Report No. 93-1
2/ CDFG, 19160 S. Harbor Dr., Fort Bragg, CA 95437
3/ CDFG, 330 Golden Shore, Suite 50, Long Beach, CA 90802

i

ACKNOWLEDGMENTS

The authors wish to acknowledge all of the participants involved in the planning and execution of this effort. The diving teams from Humboldt State University (HSU), the skippers and crews of the CDFG patrol vessels *Broadbill* and *Bluefin*, and other Department divers who helped out deserve special thanks. Once again, Dr. John DeMartini of HSU contributed from his wealth of knowledge gained from more than 20 years of observations on the northcoast sublittoral environment.

We would also like to thank Frank Henry and Fred Wendell for their invaluable assistance in editing this report.

And finally, acknowledgement is due the Director's Sea Urchin Advisory Committee, as well as the urchin industry divers and processors who provided us with their insights into the fishery.

.

سيو منها يهودون مارد ما ما م

TABLE OF CONTENTS

2

;

Page

ABSTRACT	i
ACKNOWLEDGMENTS	ij
TABLE OF CONTENTS	iii
LIST OF FIGURES	iv
LIST OF TABLES	vi
LIST OF APPENDICES	viii
INTRODUCTION	1
METHODS	1
RESULTS	5
Broad Scale Survey	5
Fine Scale Surveys	9
DISCUSSION	12
SUMMARY	16
FIGURES	17
TABLES	43
LITERATURE CITED	57
APPENDIX A	59
APPENDIX B	63

LIST OF FIGURES

-

;

		Page
FIGURE 1.	Northern California red sea urchin harvest area centered between Bodega Bay and Fort Bragg.	17
FIGURE 2.	Commercial red sea urchin landings in northern and southern California from 1971 through 1991.	18
FIGURE 3.	Northern California sea urchin resource survey areas showing fine scale (upper box) and broad scale areas.	19
FIGURE 4.	Broad scale study site locations in the Point Arena South coastal zone from the Gualala River to Point Arena, summer 1991.	2 0
FIGURE 5.	Broad scale study site locations in the Point Arena North coastal zone from Point Arena to Mendocino, summer 1991.	21
FIGURE 6.	Frequency distribution of red sea urchin test diameters from all broad scale survey sites, summer 1991.	2 2
FIGURE 7.	Frequency distribution of red sea urchin test diameters from the 1988, 1989 and 1991 broad scale surveys.	23
FIGURE 8.	Frequency distribution of red sea urchin test diameters by coastal zone from all broad scale survey sites, summer 1991.	24
FIGURE 9.	Frequency distribution of red sea urchin test diameters by depth zone from all broad scale survey sites, summer 1991.	25
FIGURE 10.	Mean and SD of red sea urchin test diameters by depth zone and coastal zone from the 1991 broad scale survey.	2 6
FIGURE 11.	Deviations from the mean coefficient of variation (CV) for red sea urchin test diameters by site for all sizes and for urchins less than 90mm, broad scale survey.	27
FIGURE 12.	Frequency distribution of red sea urchin test diameters for canopy- grouped and non-canopy-grouped urchin from all broad scale sites.	28
FIGURE 13.	Frequency distribution of red sea urchin test diameters for sheltered juveniles and canopy-providers from all broad scale sites.	29

LIST OF FIGURES (cont'd)

-

;

	Page
FIGURE 14. Red sea urchin densities by size category and depth zone, broad scale survey, 1991.	3 0
FIGURE 15. Frequency distribution of red sea urchin counts by transect quadrat for all broad scale survey sites.	31
FIGURE 16. Comparison of invertebrate densities by coastal zone and depth zone from the 1991 broad scale survey.	32
FIGURE 17. Individual fine scale study sites from Laguna Point to Van Damme Bay.	33
FIGURE 18. Point Cabrillo Marine Reserve and Caspar Closure Area fine scale study subsites showing approximate transect locations, 1991.	34
FIGURE 19. Frequency distribution of red sea urchin test diameters from all fine scale sites, summer 1991.	35
FIGURE 20. Frequency distribution of red sea urchin test diameters from Point Cabrillo Marine Reserve, Caspar Closure Area, and combined harvested sites, fine scale survey, summer 1991.	3 6
FIGURE 21. Mean and SD of red sea urchin densities (number per square meter) by depth zone from Point Cabrillo Marine Reserve, Caspar Closure Area, and combined harvested sites, fine scale survey, summer 1991.	37
FIGURE 22. Frequency distribution of red sea urchin counts for Point Cabrillo Marine Reserve transect quadrats, Caspar Closure Area transect quadrats, and combined harvested site transect quadrats, fine scale survey, summer 1991.	38
FIGURE 23. Red sea urchin densities by size category for each broad scale survey, 1988 to 1991, and red sea urchin densities by size category for Point Cabrillo Marine Reserve, Caspar Closure Area and combined fished sites, fine scale survey, summer 1991.	39
FIGURE 24. Frequency distribution of red sea urchin test diameters from intensive plots, summer 1991.	40
FIGURE 25. Frequency distribution of red sea urchin test diameters for PCMR from fine scale surveys from spring 1988 to summer 1991.	41
FIGURE 26. Frequency distribution of red sea urchin test diameters for PCMR, Caspar closure area and fished sites for 1989 and 1991 summer fine scale surveys.	. 42

v

.

. .

.

LISI OF INDLES	L	IST	OF	T/	B	LES
----------------	---	-----	----	----	---	-----

Page

TABLE 1.	Broad Scale Survey Site Descriptions and Locations, Summer 1991.	43
TABLE 2.	Pairwise Kolmogorov-Smirnov Tests of Observed Red Sea Urchin Size Frequency Distributions by Coastal Zone, Broad Scale Survey, Summer 1991.	4 4
TABLE 3.	Analysis of Variance of Red Sea Urchin Test Diameters by Depth Zone, Broad Scale Survey, Summer 1991.	45
TABLE 4.	Pairwise Kolmogorov-Smirnov Tests of Observed Red Sea Urchin Size Frequency Distributions by Depth Zone, Broad Scale Survey, Summer 1991.	4 6
TABLE 5.	Comparison of Red Sea Urchin Size Categories by Coastal Zone and Depth Zone, Broad Scale Survey, Summer 1991.	47
TABLE 6.	Comparison of Red Sea Urchin Counts, Mean Sizes, and Canopy and Non-Canopy Grouped Red Urchins by Site and Coastal Zone, Broad Scale Survey, Summer 1991.	48
TABLE 7.	Analysis of Variance of Red Sea Urchin Densities by Depth Zone, Broad Scale Survey, Summer 1991.	. 49
TABLE 8.	Substrate and Algae Mean Percent Area and Selected Invertebrate Counts by Site and Depth Zone, Broad Scale Survey, Summer 1991.	5 0
TABLE 9.	Test Diameter and Percentage of Red Sea Urchin Juveniles by Study Site and Depth Zone, Fine Scale Survey, Summer 1991.	51
TABLE 10	. Analysis of Variance of Log Transformed Red Sea Urchin Densities by Depth Zone from Combined Harvested Sites, Fine Scale Survey, Summer 1991.	52
TABLE 11	. Analysis of Variance of Log Transformed Red Sea Urchin Densities by Depth Zone from Point Cabrillo Marine Reserve, Fine Scale Surv Summer 1991.	vey, 53
TABLE 12	. Analysis of Variance of Log Transformed Red Sea Urchin Densities by Site, Fine Scale Survey, Summer 1991.	54
TABLE 13	. Analysis of Variance of Log Transformed Red Sea Urchin Densities by Depth Zone from Caspar Closure Area, Fine Scale Survey, Summer 1991.	5 5

vi

. .

. . . .

۰.

_

.....

- - --

LIST OF TABLES (cont'd)

vii

Page

TABLE 14. Substrate and Algae Mean Percent Area and Selected Invertebrate Countsby Site and Depth Zone, Fine Scale Survey, Spring 1991.

2

LIST OF APPENDICES

-

ĩ

APPENDIX A. Transect data from broad scale survey sites, summer 1991.	59
APPENDIX B. Transect data from fine scale survey sites, summer 1991.	63

.

INTRODUCTION

The California Department of Fish and Game (Department) has studied the northern California sea urchin fishery since 1987. As part of these investigations and commencing in 1988, the Department initiated a multi-year survey of red sea urchin, *Strongylocentrotus franciscanus*, populations at various locations along the Mendocino and Sonoma county coasts. Red sea urchin densities and recruitment patterns were assessed by examining adult-juvenile aggregations and size frequency data collected along subtidal transects.

The main fishery area for this commercially important echinoid in northern California extends from approximately Fort Bragg, Mendocino county to Bodega Bay in Sonoma county (Figure 1). This area, except for occasional stretches of sandy beach, is characterized by an alternating series of small coves and headlands of exposed bedrock. Tidal areas are dominated by lush seasonal growths of large-bladed brown algae. In 1991, Bodega Bay was the primary northern California port with catches totaling 5.4 million pounds of red sea urchin.

Exponentially increasing catches in northern California between 1985 and 1988 triggered concern in both the Department and the sea urchin industry for the long-term sustainability of the red sea urchin fishery (Figure 2). This concern prompted legislation establishing a landing tax to partially fund investigations into sea urchin population characteristics. This report summarizes the results of the 1991 northern California sea urchin survey. Previous northern California sea urchin investigations are summarized in Department administrative reports (Kalvass et al 1991, Kalvass, Taniguchi and Buttolph 1990, and Kalvass 1989).

METHODS

The study was patterned after a two-phase approach used to study the red sea urchin in British Columbia, Canada (Sloan, Lauridsen and Harbo 1987). Both phases, the 'broad scale' and 'fine

. . . .

7.--

.

scale' surveys, were conducted during the same three week period beginning in late July. The 'broad scale' survey consisted of systematically sampling selected sites along the central portion of the fishery area in Mendocino county, though in 1991 the Sonoma county coast was not surveyed as in past years. During the broad scale survey, the Saunders Reef area was also examined as an area of special interest since it is one of the largest offshore reefs in northern California and a state-designated Area of Special Biological Significance. Fine scale survey sites were selected near Fort Bragg, within the Point Cabrillo Marine Reserve (PCMR), within the Caspar Urchin Closure Area, and at locations with a history of intensive commercial exploitation (Figure 3).

Broad Scale Survey

Divers from the Department and Humboldt State University surveyed 30-meter long transects from July 23 to August 14, 1991. Sea conditions were hazardous at times during the survey period, causing difficulty in obtaining vessel support. The Department patrol vessels Bluefin and Broadbill were utilized to access some sites. Remaining sites were accessed by small boat or eliminated from the survey when vessel support was unavailable. Forty-five transects were surveyed by divers during the broad scale phase at 12 sites from Robinson Reef, Mendocino county (site 9) (Figure 4) to Jack Peters Creek, Mendocino county (site 22) (Figure 5), including Saunders Reef (Table 1). In the survey design used in 1988 and 1989, 22 sites were systematically chosen at intervals of 2.7 nautical miles along the coast. Sites were located in subsequent surveys using Loran and photographic landmark descriptions of the original sites. However, no attempt was made to locate the path of a previous transect line. We eliminated the Sonoma coast sites (sites 1-8) in the 1991 survey in order to focus effort in the fine scale phase of the survey. The broad scale study area was divided at Point Arena, the prominent geographical feature of the area, into two zones, designated Point Arena South and Point Arena North (Figures 4 and 5). These zones represent distinct oceanographic and commercial urchin fishing areas. No site in this phase of the survey was exempt from commercial urchin harvest.

Fine Scale Surveys

•

The fine scale phase consisted of surveying 63 thirty-meter transects at nine sites. Sites and subsites (individual dive locations within a larger site, such as the PCMR) were selected during the first survey year to represent a variety of habitat types (i.e. headland and cove) with varying degrees of harvest pressure. In 1991 several new sites were added and one area (Laguna Pt) surveyed in 1989 was deleted. The Point Cabrillo Marine Reserve served as an unfished control. In May 1991, the PCMR was expanded to nearly twice its previous size to encompass approximately one mile of shoreline. Two new survey subsites were added to assess reef structures in the expanded portion of the PCMR. The Caspar Commercial Urchin Closure Area was selected to assess population recovery and interactions in a previously fished area. This area was closed to commercial sea urchin fishing in the spring of 1989.

The fine scale survey design allowed flexibility in transect placement to compare and contrast habitats, as well as the option of using permanent transects in selected locations within sites. During the 1991 survey, we placed three 'permanent' transects for use in future surveys. Two were placed in the Caspar Closure Area and one in the PCMR. Each was marked by 18.2 Kg concrete piers at 5 meter intervals. In 1988 and 1989, two fine scale surveys were completed during each year, one in spring and one in summer. In 1990, an abbreviated spring fine scale was completed, but due to budget constraints that year the summer fine scale and broad scale surveys were postponed to 1991. During the spring 1990 fine scale survey 31 transects were surveyed.

For both the broad and fine scale survey sites, transect starting points were randomly selected within potential urchin habitat (defined as less than 50% sand substrate). Transect lines, 30 m long x 2 m wide, were laid on an approximate north/south compass bearing, along depth contours at 4.6, 10.7 and 15.2 meters (+/- 1.5 m). Each transect was partitioned into six 5 m long sectors. Each sector was surveyed, with the aid of a movable 1 m long pvc pipe segment on either side of the line, and data was recorded separately for each adjacent 1 m x 5 m quadrat.

This was the most significant departure from previous surveys in which we surveyed 30 m x 1 m lines.

Most of the divers working the 1988 surveys also worked the 1989, 1990, and 1991 surveys. Divers counted all exposed red urchin in each quadrat. Crevices and algal turf were also searched for red urchin. The test diameter of the first 25 red urchin encountered by divers, beginning on opposite ends and working on opposite sides of the line, was measured to the nearest 5 mm. These urchin were removed from the substrate to check for cryptic canopied conspecifics. Red urchin smaller than 5 mm were considered too small to be consistently visible to the divers and were excluded from the survey. Red urchin exhibiting spine or test overlap, with one or more red urchin providing shelter for one or more smaller conspecific urchin were considered to be a canopy group (Sloan, Lauridsen and Harbo 1987). Red urchin of similar size merely aggregated or touching spines were not considered canopy groups. Canopy-grouped red urchin within the first 25 encountered were measured and categorized as sheltered or shelterproviding. Following completion of the measurement phase, each diver continued to count red urchin along the remainder of the transect line.

In 1991, we also sampled 239 one-half square meter plots placed approximately three meters off the left side of a selection of the regular transects, in part to assess the accuracy of our transect sampling method in determining the number of juvenile red sea urchin. Juvenile red sea urchin were defined in this study as red urchins with a test diameter <= 50 mm (Sloan, Lauridsen and Harbo 1987) and one-year-olds as red urchins with test diameters <= 30 mm. Pearse and Hines (1987) defined one-year-olds in a 1975 California cohort as being between 20 and 40 mm, with a major mode between 26 and 30 mm. Tegner and Barry (1989) defined young-of-the-year red sea urchin as having a test diameter <=35 mm. This definition was based on a growth study conducted at Pt Loma, California; however, they felt that growth was probably somewhat faster in southern California waters. Recent work by Ebert, Dixon and Schroeter (1992) suggests that on average, 15 mm size red urchin may grow to 30 mm in about a year, but that urchin smaller

than 15 mm actually may grow more slowly.

A diver searched as many contiguous plots as time allowed. Small rocks were overturned and replaced, crevices were searched, and all red sea urchin found within a plot were counted, measured, removed and examined on the oral surface for clinging juveniles. Plots were characterized by substrate-type and by the presence of other organisms in the same manner as the regular 30 m transects.

Additional information collected on the surveys included; (i) percent of area covered by type of substrate (boulder-bedrock, cobble, or sand), (ii) percent of area covered by type of algae (canopy, subcanopy, turf, or encrusting), (iii) number of red urchin competitors including exposed purple sea urchin, *S. purpuratus*, and exposed red abalone, *Haliotis rufescens*, pinto abalone, *H. kamschatka* and flat abalone, *H. wallalensis*, and (iv) number of exposed sea stars by species or genus, including the sunflower star, *Pycnopodia helianthoides*, a sea urchin predator (Morris, Abbott and Haderlie 1980), and members of the genus *Pisaster*. Substrate and algae determinations were made at 10 meter intervals along the transect line.

RESULTS **Broad** Scale Survey

Size Composition

1

The mean test diameter (MTD) of randomly-sampled red urchin at all broad scale locations was 77 mm (SD 36 mm), with the smallest urchin in the 5-10 mm interval and the largest in the 165-170 mm interval (Figure 6). This is a decrease in mean size from the two previous broad scale surveys. Mean test diameters in 1988 and 1989 were 92 mm and 90 mm (Figure 7). Some of this difference could be due to the reduced survey area in 1991. However, in 1991 there was a marked increase in the percent frequency of red urchin under 50 mm, particularly in comparison to 1989.

<u>By Coastal Zone</u>

South of Point Arena, the mean test diameter was 81 mm (SD 41 mm). The relatively high standard deviation indicates a rather wide size distribution. The Point Arena North distribution had a smaller MTD (75 mm) and appeared bimodal with modes at 30-35 mm and 90-95 mm (Figure 8). In 1988 and 1989, the most northerly sites (sites 19-22) had the lowest mean size and the lowest percentage of red urchin over 90 mm. The present commercial minimum size limit is 89 mm. Size frequency distributions between the two coastal zones were significantly different (Table 2).

By Depth Zone

Mean sizes were significantly different by depth (ANOVA, p<0.0000). The mean test diameter at the 4.6 m depth zone was 29 mm larger than at the 15.2 m depth, and 5 mm larger than the intermediate depth (Table 3). A reduction in size with depth was evident in 1991 as in all three survey years. Size classes above 100 mm were sparsely represented in the 15.2 m depth zone (Figure 9). Size frequency distributions between the 15.2 m depth and the two shallower depth zones were significantly different in pairwise comparisons (Table 4). The inverse relationship between depth and test diameter noted in past surveys was stronger in 1991 in the Point Arena North zone than the Point Arena South zone (Figure 10).

Recruitment

It is important to note that size frequency distributions are presented in terms of *percent* frequency. Relative frequency for given size classes may increase or decrease from zone to zone or survey to survey but does not account for changes in density. Size frequency data needs to be viewed in the context of density data to make accurate population or recruitment assessments.

Juveniles totaled 28.4% by number, and one-year-olds 16.1% from all sites combined, compared to 7.3% and 3.1%, respectively in 1989. When partially corrected for harvesting pressure by removing urchin greater than 90 mm from the analysis (Tegner and Dayton 1981), the values

. . . .

increased to 45.8% for all juveniles and 26.0% for one-year-olds, compared to 13.9% and 6.0%, respectively in 1989 (Table 5). The percentage of commercially legal individuals greater than 90 mm was 38.0%, with approximately even distribution between coastal zones.

Analysis by depth zone indicated higher frequencies of juveniles at the 10.7 m and 15.2 m depths than at the 4.6 m depth; this was also the case in 1989 and in 1988. Commercially sublegal individuals (5-90 mm) were also more abundant in the deeper depth zones (Table 5).

The coefficient of variation (CV) was calculated for red urchin at each broad scale site as an index of recruitment (Ebert and Russell 1988). Larger CV's can indicate a distribution with a wide range of sizes relative to the mean and so could be an indication of more frequent recruitment. A mean CV was calculated for combined sites and the deviation of each site from the mean was plotted. As in 1989, five of the sites north of Point Arena showed some positive deviation (Figure 11).

Canopy Grouping

The size frequency distribution of canopy-grouped red urchin displayed a characteristic bimodality with a mean of 55 mm. The distribution of non-canopied urchin was much less bimodal, with relatively fewer juveniles (Figure 12). The mean size of canopy-providers was 94 mm compared to 25 mm for sheltered conspecifics. Survey-wide, canopy-providers and sheltered conspecifics were present in a ratio of 1.00 to 1.27 (Figure 13).

A total of 46.2% of all juveniles were sheltered under canopy, compared to 45.6% in 1989. Sheltered juveniles comprised 13.1% of all measured urchin, but made up only 5.8% of the total in the Pt Arena South zone (Table 6). In 1988, a lower percentage of juveniles were sheltered (32.8%).

Density

The mean red urchin density for all sites combined was 0.71 per square meter (m^{-2}) (SD 1.9).

7

.....

. . .

In 1989 the mean density for all sites was 1.1 m^{-2} (SD 2.4), and in 1988 the mean density was 1.3 m^{-2} (SD 2.0). The 1988 and 1989 mean densities were significantly different (ANOVA, p<0.0000). Individual site densities in 1991 ranged from a low of 0.0 red urchin m⁻² at the Sail Rock site (site 11) to a high of 2.2 m^{-2} at the Van Damme Headland site (site 21). Unlike surveys in previous years, there were no 'high density sites' (Table 6). Red urchin densities were also significantly different between depths (ANOVA, p<0.0000). As in 1988 and 1989, the 4.6m depth zone density was markedly lower than densities in each of the deeper depths (Table 7).

Density by size-category for each of the depth zones confirms the suggestion from analysis of the size frequency data that the shallowest depth zone had the lowest numbers of red sea urchin in all size intervals, particularly in the smaller size categories (Figure 14).

Almost 65% of the 460, 1 m x 5 m quadrats examined in all areas contained no red urchin, a figure that was higher than in any previous survey (Figure 15). The distribution of red urchin counts is a classic negative binomial featuring a high variance to mean ratio (mean 3.6, var. 90.7) characteristic of contagiously distributed populations. This type of population distribution can hinder accurate assessment as both patch number and patch mean size decrease (Elliott 1977).

Habitat and Competitors

Boulder-bedrock was the dominant substrate at all sites regardless of depth, and accounted for over 90% of the identified substrate types. Unlike past years, algae, except for the turf category (foliose algae or articulated corallines less than 0.3 m above the substrate), was most abundant at the 10.7 m depth zone (Table 8).

Overall, red urchin densities were higher than those for purple urchin, red abalone, sunflower star, and all other macroinvertebrate categories enumerated in both coastal zones (Figure 16). As in 1989, red abalone mean transect counts exceeded those of red sea urchin at the 4.6 m depth zone. Red abalone was the dominant abalone, showing a definite inverse relationship

8

. . . .

between density and depth zone. The *Pisaster* sea star category was the most abundant of the emergent sea stars examined at the 10.7 and 15.2 m depths. Sunflower stars were more common at the 4.6 and 10.7 m depth zones than at 15.2 m. Red urchin were at least twice as abundant as the other macroinvertebrates at the 10.7 and 15.2 m depths. Purple sea urchin were less abundant than red abalone at the 4.6 and 10.7 m depth zones.

Van Damme Headland (site 21) at 10.7 m had the highest count of red urchin (196) as well as the highest count of purple urchin (200). Interestingly, this site and depth had the highest counts of red and purple urchin (285 and 208, respectively) in 1989 as well. Cavanaugh Gulch (site 18) at 10.7 m had the highest red abalone count (45), while Schooner Gulch (site 12) at 15.2 m had the highest *Pisaster* count (33) (Table 8).

Fine Scale Surveys

The fine scale survey yielded size frequency and density data from 63, 2 m x 30 m transects at nine sites between Fort Bragg and Mendocino in the Fort Bragg area (Figure 17). The Caspar Commercial Urchin Closure Area and Point Cabrillo Marine Reserve were intensively surveyed to assess red urchin in a variety of microhabitats including northern and southern wave and swell exposure, surge channel, and protected reef pool (Figure 18).

Size Composition

The mean red urchin test diameter at all sites sampled in the 1991 survey was 94 mm (SD 29 mm) with a range of 5-155 mm (Figure 19). Point Cabrillo Marine Reserve, Caspar Closure Area and combined fished site MTD's were 94 mm (SD 34 mm), 95 mm (SD 27 mm), and 91 mm (SD 27 mm), respectively (Figure 20). The PCMR MTD was unchanged from the summer 1989 survey. Size frequency distributions from all three areas showed an approximate bimodality, with the lower mode in the 15 to 40 mm range. This mode of smaller animals was aot evident in the 1989 data, but is echoed in the 1991 broad scale data (Figure 6).

9

. . . -

As in past surveys, stratification of size by depth was evident in the combined fished sites, as well as in the PCMR and the Caspar Closure Area, with a 6-17 mm mean size difference between urchin from the 4.6 and 15.2 m depths (Table 9). The 15.2 m depth zone yielded smaller urchin on average.

Recruitment

Juveniles (<= 50 mm test diameter) and one-year-olds (<=30 mm) totaled 11.7% and 7.6% of all red urchin sampled during the fine scale survey. These percentages are higher than the 1989 summer values of 9.4% and 3.4%. However, there are reduced red urchin densities in the fished sites compared to past years and as larger urchin are removed from these sites, those size classes remaining make up a relatively greater proportion of the size distribution. As in past surveys, PCMR subsites had higher juvenile frequencies than did harvested sites (15.4% versus 12.4%) (Table 9).

Conclusions regarding stratification of recruitment by depth zone are difficult to make due to limited data; but, the trend for fewer juveniles at shallower depths agrees with observations made from past surveys. The 15.2 m depth had the highest number of juvenile red urchin averaged over all survey sites. Often, this depth stratum has the lowest density of foliose algae, which could be a factor in either attracting new recruits, increasing survival of newly settled urchin or allowing divers to see them more easily.

Canopy Grouping

More juveniles were under canopy in the fine scale survey (69.9%) than were observed in the broad scale survey (46.2%). These canopied juveniles made up 8.2% of all measured urchin. More juveniles were under canopy in the PCMR (77.4%) compared to fished sites (65.2%) and the Caspar Closure Area (65.1%). In the 1989 fine scale survey, 66.2% of the juveniles were under canopy at fished sites. The canopy-provider to canopied urchin ratio from all sites combined was 1:1.06.

Density

•

In the fine scale survey, the fished sites yielded 0.34 (SD 1.1) red urchin m^{-2} while the PCMR site had 7.0 m^{-2} (SD 6.2) (Tables 10 and 11). Harvested-site mean densities ranged from 0.0 urchin m^{-2} at Noyo Bay to 1.1 at Beaver Pt. (Table 12). The Caspar Closure Area had an average density of 3.7 urchin m^{-2} (SD 5.2) (Table 13). These densities compare to 5.4 m^{-2} at PCMR, 2.3 at the Caspar Closure Area and 1.7 at fished sites in 1989.

Density varied significantly by depth (ANOVA, p<0.0000) at the Caspar Closure Area and the PCMR, but not at the combined fished sites (p=0.593) (Tables 10, 11 and 13). At PCMR and Caspar, the shallowest depth had the lowest density of red urchin (Figure 21).

The proportion of 1 m x 5 m quadrats within the PCMR with no red urchins was less than 15% and over 75% for combined fished sites, much higher than in previous surveys (Figure 22). Harvest-site densities were very low, particularly in comparison to densities in the smaller size intervals at the PCMR and the Caspar Closure Area. Densities of the 5-30 mm interval at the PCMR were about the same as the density for all size classes found in the broad scale survey in 1991 (0.71 m⁻²) (Figure 23).

Habitat/Competitors

Boulder-bedrock substrate was prevalent at all sites (>= 53%) and at all depths during the fine acale survey. The highest densities of purple urchin were found at the 4.6 m depth zone at PCMR. The densities of red abalone were also highest here. As in past surveys, high red abalone densities were encountered at sites with either high or low urchin density. The high red urchin densities at PCMR and Caspar were accompanied by abundant encrusting and turf-type algaes (Table 14). PCMR had very low amounts of canopy and subcanopy-type algaes.

Saunders Reef

Transects at Saunders Reef, between broad scale sites 11 and 12, were surveyed at two depth zones (10.7 and 15.2 m). Mean density was 2.6 red urchin m⁻² (SD 4.1) and MTD was 68 mm.

In 1989 mean density at Saunders Reef was 3.1 m^{-2} . A relatively high percentage of red urchin (34.6%) were under 50 mm TD. Saunders Reef consists of uplifted blocks of sand and siltstone bedrock forming alternating ridges and valleys. Many red urchin were found along linear cracks in the bedrock. The area was characterized by large numbers of purple urchin burrowed into the substrate, with many of the purple urchin canopied under red urchin.

Intensive Plots

Intensive 0.5 m² plots were sampled throughout the broad scale and fine scale survey range to assess the accuracy of juvenile urchin counts on the 30 m transects. Overall density was 2.3 red urchin m⁻², but only 1.4 m⁻² outside the PCMR and the Caspar Urchin Closure Area. MTD within the plots was 79 mm, with 22.3% under 50 mm, and 83.7% of juveniles \leq 50 mm were under canopy (Fig 24).

DISCUSSION

Broad Scale Survey

The 1991 broad scale survey data suggest a 1989 recruitment event, indicated by a mode in the 15-35 mm size interval (Figure 6). Apparently, the 1987 and 1988 cohorts were not well represented in the population in 1991 as evidenced by the relatively low densities in the 51-90 mm size interval and the clearly bimodal size distribution (Figure 7).

Juveniles comprised 28% of all red urchins measured during the broad scale survey. This is an increase compared to 1989 data (7.3%). However, a steady decline in density of animals greater than 90 mm accounts for part of this increase. A decline from 0.67 in 1988 to 0.51 in 1989 and finally to 0.27 m^{-2} in 1991, represents a 60% decline in abundance of legal sized animals in three years.

In 1991, the 10.7 and 15.2 m depth zones yielded the highest densities of urchin for all size intervals combined, with the 10.7 m depth having the greatest density in all but one size interval (31-50 mm). The largest mode at 15.2 m was the 20-25 mm interval (Figure 9). The

commercial fishery is concentrated in subtidal areas that we characterize as the mid-depth to deep depth zones (6.1 to 18.4 m).

Adult-juvenile canopy associations were similar to those observed in 1989, with just under 50% of the juveniles canopied under adult spine or test compared to 45.6% in 1989. The juveniles to adult ratio (1.27) in this association was alightly higher than observed in 1989 (1.01). Yet, this ratio is much lower than the ratio reported in southern California surveys where as many as 30 juveniles canopied per adult have been noted in these associations (Tegner and Barry 1989). Canopy-providers were also much larger than in northern California (80% of canopy-providers in southern California were between 90 and 129 mm). In 1991, 54.7% of canopy-providers were under 90 mm test diameter, compared to 49% in 1989. Interestingly, the largest canopy-provider mode was the 85-90 mm size interval (21.3%), just under legal size. It appears that the 89 mm (3.5 inch) minimum size limit performs an important function in protecting the remaining canopy-providers (Figure 13).

Fine Scale Survey

The bimodal size frequency distributions apparent at PCMR in 1988 and in the current survey year were not evident in 1989. This pattern was also evident in the broad scale survey data. PCMR was surveyed six times between spring 1988 and summer 1991 (Figure 25). The size frequency distributions from the first three sampling events (sampled within a 12 month period) show a similar pattern in the smaller size intervals. By the 1989 summer survey, the 20-30 mm mode had shifted to 40-45 mm. Eight months later, in spring 1990, it was in the 65-75 mm range. Sixteen months later, in summer 1991, the mode was lost in the greater than 90 mm group. Also, a new mode at 15-35 mm was apparent, having recruited in the 16 month interval since the previous survey.

PCMR densities remained fairly stable with 6.7 m⁻² (SD 6.9) in the summer 1988 survey, 5.4 (SD 5.8) in summer 1989, and 7.0 (SD 6.2) in the summer 1991 survey. This stability would be

expected in an unfished area subject only to natural mortality and low, relatively regular recruitment.

The Caspar Closure Area was closed in spring 1989. Prior to the closure, in summer 1988, there were 4.5 red urchin m⁻² (SD 5.6). In the summer 1989 survey there were 2.3 m⁻² (SD 3.2) and 3.7 (SD 5.2) in the summer 1991 survey. The increase in density in the two years between the post-closure surveys may represent a recovery due in combination to the recruitment event noted in 1991 and the closure to fishing. However, densities still do not approach the pre-closure level.

A shift of the 70-90 mm mode apparent in summer 1989 to 90-110 mm at Caspar in summer 1991 represents a 20 mm size increase in two years (Figure 26). Bernard and Miller (1973) developed a growth curve for red urchin at a location in British Columbia, Canada, which suggests a period of approximately 1.1 years to grow from 70 to 90 mm (approximately 2.8 years old at 70 mm and 3.9 years old at 90 mm). Tegner and Barry (1989) developed a growth curve for red urchin at Pt. Loma, California that suggests growth from 70 to 90 mm may take 1.3 years with a 90 mm red urchin being about 3.6 years old. Ebert and Russell (1992) studied two intertidal red sea urchin populations at San Nicolas Island, California. Using a tetracycline tagging method they developed a growth equation which estimates the age of a 70 mm red urchin to be about 5.5 years and a 90 mm urchin to be as old as 24 years. This comparatively slow growth rate may be due to the fact that Ebert and Russell worked with an intertidal rather than a subtidal urchin population.

The 1991 broad scale survey showed that 62.0% of the red urchin were sublegals (under 90mm TD), contrasted with 52.6% in 1989 and 46.5% in 1988. The increasing percentage of sublegals in northern California is much more an effect of fishing down larger size classes than increasing recruitment as shown by the actual decline in densities of sublegals in the surveys.

Ebert and Russell (1992) used recruitment rates to estimate total mortality (Z) in a stable urchin

population where mortality is balanced by recruitment. This condition is probably approximated at the PCMR. Recruitment rates (the proportion of red urchin less than 30 mm test diameter) at PCMR were 0.096 in 1988, 0.039 in 1989 and 0.097 in 1991. The average annual recruitment was 0.077 for these three sampling years. These estimates of Z compare with 0.076 and 0.075 determined for red urchin populations at two locations at San Nicolas Island by Ebert and Russell (1992) using the same method for red urchin less than 35 mm. The annual mortality rate for PCMR with a Z=0.077 would be, $1 - e^{-Z}$, or 0.074. Bradbury (1989) estimated the mean recruitment rate in the Strait of Juan de Fuca to be 0.097.

Kenner (1992) found densities of purple urchin at Stillwater Cove in Carmel Bay, California, to range from 6.5 to 12.7 per 0.25 m^2 quadrat, much higher than for any individual sites in our study. Our highest densities, which were at PCMR, ranged from 4.8 m^{-2} at the 4.6 m depth zone to a low of 1.6 at the 10.7 m depth zone. Red abalone densities at PCMR varied from 0.98 m⁻² at the 4.6 m depth zone to 0.13 at the 10.7 m depth zone. Red abalone densities at PCMR in 1986 were 1.21 m⁻² (Parker, Haaker and Henderson 1988).

15

*

ŝ,

SUMMARY

1. A total of 108 transects, covering 6480 square meters, was completed during the summer 1991 fine scale and broad scale surveys. Also, 239 0.5 m² plots were sampled. An additional 31 transects were surveyed during the spring 1990 fine scale survey.

2. Red urchin mean density for the broad scale sites was 0.71 m^{-2} (SD 1.9). Summer fine scale survey density for all harvested sites was only 0.34 m^{-2} (SD 1.1) compared to the Point Cabrillo Marine Reserve (PCMR) red urchin density of 7.0 m⁻² (SD 6.2).

3. Relative abundance was variable within and among sites in all surveys; however, as in past surveys highest urchin densities were generally found at the 10.7 m and 15.2 m depth zones. The 4.6 m depth zone yielded the lowest mean density (0.17 red urchin m^{-2}) in the broad scale survey. No site in the broad scale survey had more than 2.2 red urchin m^{-2} .

4. A significant development in the 1991 surveys was the appearance of a mode in the 15-35 mm size interval, probably consisting of red sea urchin from the 1989 cohort.

5. About 62% of the red urchins sampled in the broad scale areas were under the 89 mm (3.5 inch) minimum test diameter size limit in 1991, contrasted with 52.6% in 1989 and 46.5% in 1988. Declines in density of legal sized animals continued, dropping from 0.67 m⁻² in the 1988 broad scale survey to 0.27 in 1991.

6. 46.2% of juvenile (<= 50 mm) red urchin measured in the broad scale survey were under canopy, and juveniles represented 28.4% of all measured urchin. Juveniles accounted for 11.7% of red urchin from all sites of the fine scale survey, compared to 15.4% from the PCMR, and 12.4% from combined fished sites.

7. Average annual recruitment at PCMR over the 1988 to 1991 period was estimated as 0.077, yielding an estimated annual mortality rate of 0.074.

8. Though red abalone densities were usually lower than those of red urchin, mean red abalone counts were more than double those of red sea urchin at the 4.6 m depth zone in the 1991 broad scale surveys. In 1989 mean red abalone counts were only slightly higher than red urchin (0.62 m⁻² versus 0.54 m⁻²).

FIGURE 1. Northern California red sea urchin harvest area centered between Bodega Bay and Fort Bragg.

r,

FIGURE 2. Commercial red sea urchin landings in northern and southern California from 1971 through 1991.

FIGURE 3. Northern California sea urchin resource survey areas showing fine scale (upper box) and broad scale areas.

FIGURE 5. Broad scale study site locations in the Point Arena North coastal zone from Point Arena to Mendocino, summer 1991.

FIGURE 6. Frequency distribution of red sea urchin test diameters from all broad scale survey sites, summer 1991.

•

:

1.

FIGURE 8. Frequency distribution of red sea urchin test diameters by coastal zone from all broad scale survey sites, summer 1991.

•

.

FIGURE 9. Frequency distribution of red sea urchin test diameters by depth zone from all broad scale survey sites, summer 1991.

FIGURE 10. Mean and SD of red sea urchin test diameters by depth zone and coastal zone from the 1991 broad scale survey.

-

:

FIGURE 11. Deviations from the mean coefficient of variation (CV) for red sea urchin test diameters by site for all sizes and for urchins less than 90mm, broad scale survey.

2

1.

FIGURE 13. Frequency distribution of red sea urchin test diameters for sheltered juveniles and canopy providers from all broad scale sites.

FIGURE 14. Red sea urchin densities by size category and depth zone, broad scale survey, 1991.

•

DEPTH ZONE (m)

FIGURE 16. Comparison of invertebrate densities by coastal zone and depth zone from the 1991 broad scale survey.

MEAN COUNT PER 30m2 TRANSECT

• .

.

...

FIGURE 18. Point Cabrillo Marine Reserve and Caspar closure area fine scale study subsites showing approximate transect locations, 1991.

:

FIGURE 19. Frequency distribution of red sea urchin test diameters from all fine scale sites, summer 1991.

FIGURE 20. Frequency distribution of red sea urchin test diameters from Point Cabrillo Marine Reserve, Caspar Closure Area, and combined harvested sites, fine scale survey, summer 1991.

•

-

ł

DEPTH ZONE (m)

FIGURE 22. Frequency distribution of red sea urchin counts for Point Cabrillo Marine Reserve transect quadrats, Caspar Closure Area transect quadrats, and combined harvested site transect quadrats, fine scale survey, summer 1991.

38

÷

1

. .:

ė

FIGURE 24. Frequency distribution of red sea urchin test diameters from intensive plots, summer 1991.

PERCENT

.

2

FIGURE 25. Frequency distribution of red sea urchin test diameters for PCMR from fine scale surveys from spring 1988 to summer 1991.

- - -

-- --

FIGURE 26. Frequency distribution of red sea urchin test diameters for PCMR, Caspar closure area and fished sites for 1989 and 1991 summer fine scale surveys.

TABLE	1.	Broad	Scale	Survey	Site	Descriptions	and 1	Locations,	Summer	1991
	_									

•

•

Site		Depth Sones	Appros	imate	
Mumber	Description	Surveyed(m)	Location	(Lat./Lon.)	Date
9	Robinson Reef 4.6	.10.7.15.2 3	8.45.55 N x	123.32.40 W	07/23/91
10	Haven's Neck	3	38.48.30 N x	123.36.50 W	07/23/91
11	Sail Rock	3	38.49.55 N x	123.38.30 W	08/01/93
12	Schooner Gulch	3	8.51.45 N x	123.40.00 W	07/31/91
13	High Bluff	3	88.53.40 N x	123.41.55 W	07/31/91
14	Sea Lion Rocks	3	8.56.10 N x	123.44.50 W	07/31/91
15	Irish Gulch	NOT S	URVEYED		
16	Bridgeport Landing	NOT S	URVEYED		
17	Elk Rock	3	39.06.30 N x	123.43.30 W	08/03/93
18	Cavanaugh Gulch	3	9.08.55 N x	123.45.00 W	08/03/91
19	Navarro Pt.	3	39.11.75 N x	123.46.50 W	08/02/91
20	Albion Pt.	3	39.14.10 N x	123.47.00 W	08/14/91
21	Van Damme Hdlnd.	3	9.16.30 N X	123.48.05 W	08/14/91
22	Jack Peters Creek	. 3	39.19.10 N x	123.48.50 W	08/06/91

43 .

.

.

•

. . .

TABLE 2.	Pairwise Kolmogorov-Smirnov Tests of Observed Red Sea
	Urchin Size Frequency Distributions by Coastal Zone,
	Broad Scale Survey, Summer 1991.

ż

X,

Kolmo	gorov-Sr	nirnov Test	
Coastal Zone	N	Deviation from Mean at Max	
Point Arena South (Gualala North)	220	-1.264	KS Statistic 0.055863
Point Arena North (Navarro North & South)	512	0.829	D = 0.121839 KSasymp. = 1.51140 Prob > KSa = 0.0207
Total	732		

TABLE 3. Analysis of Variance of Red Sea Urchin Test Diameters by Depth Zone, Broad Scale Survey, Summer 1991.

..

.

			ANOVA				
	Source of Variation	DF		SS	MS	F	Prob.
	Depth Zone	2		109211	54 605.70	47.98	0.0000
	Residual	729		829606	1138.01		
	Total	731		93 8817			
		TE	ST DIAME	TER (mm)			
	Depth Zone (m)	Mean	SD	N			
L	4.6	91	29	110			ž
	10.7	86	37	326			
	15.2	62	32	296			
	Total	92	30	732			

45

مديمو مرايد المردية والمتعام والمتعمد المردية

К	olmogorov-S	Smirnov Test	
Depth Zone (m)	De N M	viation from Iean at Max	
4.6	110	-0.932	KS Statistic 0.051596
10.7	326	0.541	D = 0.118795 KSasymp. = 1.07736 Prob > KSa = 0.1961
	436	2	
	Kolmogorov	Smirnov Test	
Depth Zone (m)	N N	eviation from Mean at Max	
4.6	110	-2.961	KS Statistic 0.172126
15.2	296	1.805	D = 0.387285 KSasymp. = 3.46825 Prob > KSa = 0.0001
	406		
	Kolmogorov	-Smirnov Test	
Depth Zone (m)	N	Deviation from Mean at Max	
10.7	326	-2.480	KS Statistic 0.144149
15.2	296	2.603	D = 0.288634 KSasymp. = 3.59506 Prob > KSa = 0.0001
	622		

TABLE 4. Pairwise Kolmogorov-Smirnov Tests of Observed Red Sea Urchin Size Frequency Distributions by Depth Zone, Broad Scale Survey, Summer 1991.

46

-

		1	Rea	Urchin		I	Red Urchin <	=90mm1
		<i>I</i> -	SI	ze Calegory			Size Cal	egoryl
Coastal Zone	Sile Nos.	N	% 0-30mm	0-50mm	0-90mm	N	% 0-30mm	0-50mm
Point Arena South	9 - 14	242	15.3	29.3	59.9	145	25.5	49.0
Point Arena North	-17 - 22	490	16.5	28.0	63.1	309	26.2	44.3
TOTAL	9 - 22	732	16.1	28.4	• 62.0	454	26.0	45.8
		1	Red	Urchin	······/·	1	Red Urchin <	=90mml
Depth Zone (m)	-	Ň.	Sl. % 0-30mm	ze Category 0-50mm	0-90mm	N ¹	Size Cat % 0-30mm	egory1 0-50mm
4.6		110	7.3	10.9	44.6	49	16.3	24.5
10.7		326	13.5	20.6	52.2	170	25.9	39.4
15.2		296	22.3	43.6	79.4	235	28.1	54.9
TOTAL		732	16.1	28.4	62.0	454	26.0	45.8

TABLE 5. Comparison of Red Sea Urchin Size Categories by Coastal Zone and Depth Zone, Broad Scale Survey, Summer 1991.

47

۰.

									1	CANO	PIED		"	ON-CANO	PIED	1
Constal	Site	No. 30x1m	Urchin	Hean Cnt	No. Urc	Hean	x	X Canopy	No. Urch	Hean	Juv Urch	Juv Hean	No. Urch	Heart	Juv Urch	Juv Heen
Zone	No.	Transects	Count	per sq.m	Neasurd	Size	Juvenile+	Juvenile	Heasurd	Size	Measured	Size	Heasurd	Size	Heasured	Size
	·	•				(mm)				((📖)		(mm)		(mn)
Pt Arene	,	6	41	0.2	39	102	10.3	2.6	3	93	1	40	36	103	3	27
	10	8	24	0.1	23	101	13.0	0.0	0	•	0	-	23	101	3	40
	11	3	10	0.0	10	91	20.0	10.0	2	60	1	20	8	98	1	35
	12	5	31	0.2	27	130	3.7	3.7	2	93	1	30	25	133	0	•
	13	6	61	0.3	61	63	36.1	0.0	0	-	· 0	•	61	63	22	. 34
	14		284	1.2	82	61	47.6	13.4	16	48	11	22	66	64	28	32
Subto	tal	38	451	0.4	242	81	29.3	5.8	23	61	14	24	219	83	57	33
Pt Arena	17	6	335	1.9	145	73	28.3	18.6	53	59	27	27	92	81	14	38
NOPEN	18	6	147	0.9	⁻ 82	63	43.9	15.9	19	44	13	24	63	69	23	34
	19	. 6	43	0.2	43	83	16.3	14.0	10	48	6	27	33	94	1	25
	20	6	250	1.4	124	73	29.0	19.4	42	55	24	24	82	83	12	41
	21	6	391	2.2	52	73	28.9	21.2	19	56	11	25	33	83	4	34
	22	9	29	0.1	44	105	4.6	2.3	2	45	1	20	42	108	1	35
Subto	tel	39	1195	1.0	490	75	28.0	16.7	145	54	82	25	345	84	55	36
TOTALS	12	π	1646	0.7	732	π	28.4	13.1	168	55	96	25	564	84	112	35

· . .

*#:

TABLE 6.	Comperison of Red See Urchin Rew Counts, Hean Sizes, and Canopy and Non-Canopy Grouped	
	Red Urchins by Site and Coastal Zone, Broad Scale Survey, Summer 1991.	

* Some transacts were not completed

+ Juveniles are red urchins with test diameter <= 50mm

.

48

...

TABLE 7. Analysis of Variance of Log Transformed Red Sea UrchinDensities by Depth Zone, Broad Scale Survey, Summer 1991.

-

.

94 - 1997 - 19	A۸	IOVA (log i	transformed a	lensities)		
Source of Variation	DF(1x5m qua	nds)	S S	MS	F	Prob.
Depth Zone	2		10.08	5.04	16.84	0.0000
Residual	457		136.71	0.30		
Total	459		146.79			
	DENSITY	(untransfo	rmed no./sq.m	neter)		
Depth Zone	Mean	SD	N (1x5m q	uads)		
4.6	0.17	0.65	154			
10.7	1.22	2.71	144			
15.2	0.78	1.71	162			
Total	0.71	1.91	460			

.

- -

8	DZ	NT																
1	E 0	UR		STRA	TE-	1	AL	GAE	••••	IN	VERTE	RATES	(coun	t/30m	2 tri	meet	:)	
T	PH	H A	(X)		(X	878)	1URC	NIN	A	BALON	E		EA ST/	RS	
E	E	8 N	bidr	cbi	snd	CEPY	scp)	tri	enc	r red p	urple	red	flat	pint	PYC	pis	other	
		R S																
_												_	_					
						•	~		-	• •	• •	• •	• •	• •				
9	4.0	1	100				0	30	80	11.0	0.0	9.0	0.0	0.0	1.0	10.0	3.0	
73	10.7		100	2		0	20	20	60	0.5	0.0	0.0	0.0	0.0	0.0	22 0	1 0	
	13.2		100	•	U	•	60	20		7.3	0.0	0.0	0.0	0.0	4.0			
10	4.6	1	50	50	0	0	0	100	0	0.0	0.0	21.0	0.0	0.0	1.0	1.0	2.0	
	10.7	1	98	2	0	0	0	16	83	4.5	0.0	2.0	0.0	0.0	1.0	2.0	2.0	
	15.2	1	100	0	0	0	20	20	60	3.8	0.0	0.0	0.0	0.0	0.0	7.0	0.5	
11	4.6	1	100	0	0	0	0	92	0	0.5	0.0	7.0	0.0	0.0	1.0	1.0	2.0	
	10.7	1	98	2	0	0	0	16	83	1.5	0.0	11.0	0.0	0.0	0.0	9.0	0.0	
	15.2	1	100	0	0	0	20	20	60	2.0	0.0	2.0	0.0	0.0	0.0	2.0	1.0	
12	4.6	1	94	3	3	0	0	60	8	0.0	0.0	0.0	0.0	0.0	0.0	6.0	2.0	
	10.7	1	98	2	0	0	0	16	83	1.0		0.0	0.0	0.0	••	••	••	
	15.Z	1	100	0	0	0	20	20	60	0.0	0.0	0.0	0.0	0.0	0.0	33.0	0.0	
47			74	34	•		75			• •				• •		• •	• •	
13	4.0		/0 08	-			35	14		17.0	2.0	16.0	0.0	0.0	4.0	12.0	2.0	
	15.2	÷	100				20	20	40	13.5	6.0	2 0	0.0	0.0	1.0	12.0	13.0	
		•									•.•	6.0	•.•				19.9	
14	4.6	2	100	0	0	0	5	90	10	2.5	0.5	14.5	0.0	0.0	2.5	0.0	0.5	
	10.7	1	98	2	0	0	0	16	83	15.5	5.0	2.0	0.0	0.0	1.0	1.0	3.0	
	15.2	1	100	0	0	0	20	20	60	126.5	20.0	1.0	0.0	1.0	0.0	9.0	1.0	
17	4.6	1	100	0	0	20	30	60	100	37.0	0.0	16.0	0.0	0.0	2.0	3.0	8.0	
	10.7	1	98	2	0	0	0	16	83	110.5	2.0	0.0	1.0	0.0	3.0	3.0	10.0	
	15.2	1	100	0	0	0	20	20	60	20.0	5.0	0.0	2.0	0.0	0.0	7.0	9.0	
					_						•							
18	4.6	1	100	0	0	0	45	30	45	11.3	0.0	3.0	0.0	0.0	1.5	0.0	3.5	
	10.7	1	96	Z	0	0	0	16	83	3.0	0.0	45.0	0.0	0.0	0.0	1.0	2.0	
	15.2	1	100	0	0	0	20	20	60	62.0	4.0	0. 0	1.0	0.0	0.0	3.0	17.0	
10	4.6	1	82	0	18	15	*		50	4 5	2.0	11 0	• •	• •	2 0		2.0	
.,	10.7		96	2	0	ġ	0	16	83	2.0	0.0	4.0	0.0	0.0	0.0	0.0	1.0	
	15.2	1	100	0	0		20	20	60	13.0	1.0	0.0	0.0	0.0	1.0	13.0	10.0	
												••••	••••	••••				
20	4.6	1	100	0	0	0	16	57	33	6.5	0.0	0.0	0.0	0.0	1.0	2.0	13.0	
	10.7	1	96	2	0	0	0	16	83	56.5	0.0	7.0	0.0	0.0	0.0	3.0	8.0	
	15.2	1	100	0	8	0	20	20	60	62.0	36.0	0.0	0.0	0.0	0.0	0.0	1.0	
21	4.6	1	100	0	8	0	2	100	0	0.0	0.0	2.0	0.0	0.0	2.0	3.0	2.0	
	10.7	1	98	2	0	0	0	16	83	195.5	200.0	20.0	3.0	0.0	0.0	4.0	0.0	
	15.2	1	100	0	0	0	20	20	60	0.0	0.0	11.0	0.0	0.0	0.0	0.0	0.0	
-					10				70						• -	• •	• •	
a	10 -		73		37	. 15	+0	43	30	1.0	0.0	13.0	0.0	0.0	3.0	0.0	3.0	
	15 2		100		0	0		10	65	7.7	0.0	30.5	0.0	0.0	0.5	0.0	0.5	
	13.6	•			•	J		20		0.3	0.0	3.0	0.0	0.0	0.0	1.0	0.0	

TABLE 8. Substrate and Algae Nean Percent Area and Selected Invertebrate Counts by Site and Depth Zone, Broad Scale Survey, Summer 1991.

** Some transacts were not completed, counts extrapolated to 30m.

:

. -

..

5~

-- • •

TABLE 9.

.

Test Diameter and Percentage of Red Urchin Juveniles by Study Site and Depth Zone, Fine Scale Survey, Summer 1991.

				One Yea	r OldI	IJuve	nile*l	
		ISiz	e(mm)	<= 3	0 mm	<= 5	0 mm	
Site	N	Mean	Range	*	n	%	n	
All Sites	1848	94	5-155	7.6	141	11.7	216	
Depth (m)								
4.6	754	100	5-150	3.6	27	5.3	40	
10.7	594	91	5-150	7.7	46	12.0	71	
15.2	500	87	5-155	13.6	68	21.0	105	
Point Cabril	10							
Reserve	545	94	5-150	9.7	53	15.4	84	
4.6	173	97	5-135	6.4	11	10.4	18	
10.7	156	94	10-145	10.1	9	8.3	13	
15.2	216	91	5-150	15.3	33	24.5	53	
Caspar								
Closure	9 32	95	5-150	3.0	65	9.2	86	
Area	222		10 150	~ ~				
4.0	3//	101	10-150	3.2	. 12	4.2	16	
10.7	313	90	5-150	7.0	20	9.8	28	
15.2	242	64	2-142	12.2	33	12.0	42	
Harvested	371	91	10-155	6.2	23	12.4	46	
4.6	204	100	10-150	2.0	4	3.1	6	
10.7	125	78	10-150	13.6	17	24.0	30	
15.2	42	85	20-155	4.0	2	20.0	10	
Individual Harve	ested Sit	es						
Mill Covo	20	00	30-155					
Novo Bay	20	105	80-110					
Hare Creek	31	112	65-130					
Beaver Pt	53	98	10-125					
Mitchell P	et 0	-	-					
N Casp Bay	40	88	25-120					
Pt Cab So	125	84	10-135					
Mendo Hain	d 81	88	15-150					

* Juvenile category includes one year olds

-.. - -

١,

TABLE 10. Analysis of Variance of Log Transformed Red Sea Urchin Densities, by Depth Zone from Combined Harvested Sites, Fine Scale Survey, Summer 1991.

		ANOVA	(log trans	formed dens	ities)		
	Source of Variation	DF(1x5m quad	ts)	SS	MS	F	Prob.
	Depth Zone	2		2.96	1.48	9.58	0.0000
*	Residual	369		57.00	0.15		
÷	Total	371		59.97			
		DENSITY (untra	ansformed	number/sa n	n)		
	Depth Zone (m)	Mean	SD	N (1x5m o	v uade)		
÷		moun	00	N (IXOIII 9	uausj		
	4.6	0.62	1.5	120			
	10.7	0.29	1.2	144			
	15.2	0.09	0.3	108			
	Total	0.34	1.1	372			

. ...

.

÷.,

....

......

TABLE 11. Analysis of Variance of Log Transformed Red Sea Urchin Densities, by Depth Zone from Point Cabrillo Marine Reserve, Fine Scale Survey, Summer 1991.

٣.

	ANOVA	(log transf	ormed densit	ies)		
Source of Variation	DF(1x5m quad	's)	S S		F	Prob.
Depth Zone	2		16.30		10.16	0.0000
Residual	112		89.79	0.80		
Total	114		106.08			
	DENSITY (untr					
Depth Zone (m)	Mean	SD	N (1x5m q	juads)		
4.6	5.5	7.3	45			
10.7	6.9	4.3	31			
15.2	8.7	5.9	39			
Total	7.0	6.2	115			

TABLE 12. Analysis of Variance of Log Transformed Red Sea Urchin Densities, by Site, Fine Scale Survey, Summer 1991.

		ANOVA (lo	transforme	d densities)		
Source of Variation	DF(1x5r	n quads)	SS	MS	F	Prob.
Site	9		258.16	28.68	53.85	0.0000
Residual	723		385.09	0.53		
Total	732		643.25			
	DEN		6			
	DENS	SIIY (Untrans	stormea nun	nber/sq.m)		
Site		Mean	SD	N (1x5m q	uads)	
1-Mill Cove		0.2	0.4	48		
2-Novo Bay		0.0	0.1	36		
3-Hare Creek		0.1	0.3	48		
4-Beaver Pt		1.1	2.2	36		
5-Mitchell Pt		0.0	0.0	24		
6-N Caspar		0.2	0.4	48		
7-Caspar Closu	re Area	3.7	5.2	246		
8-PCMR		7.0	6.2	115		
9-Pt Cabrillo	South	0.4	1.5	96		
10-Mendocino Hd	lnd	0.6	1.3	36		
Schaff	a Test for S	Sites with Sig	nificant Diffe	prences /log tr	ansformed	n
Group one		Group Two		Mean Diff.	Prob. (alp) ha=0.005)
7 Caspar	Closure	. 1		0.96		0 0000
· 7 Ar	CIOSUIE	2		1 05		0.0000
7	54			0.99		0.0000
7		3		0.50		0.0000
7		5		1 06		0.00032
7		6		0 94		0.0000
7		9		0.87		0.0000
7		10		0.75		0.0002
8 PCMR		1		1.59		0.0000
8		2		1.68		0.0000
8		3		1.60		0.0000
8		4		1.28		0.0000
8		5		1.69		0.0000
8		6		1.57		0.0000
8		7		0.63		0.0000
8		9		1.50		0.0000
8		10		1.38		0.0000

L

ų,

54

. .

.

.

محاج محاور والعالي المراجر الوالي

-, ,

TABLE 13.	Analysis of Variance of Log Transformed Red Sea Urchin
	Densities, by Depth Zone from Caspar Closure Area
	Fine Scale Survey, Summer 1991.

-

4

•

1

	ANOVA	(log tr	ansformed de	nsities)			
Source of Variation	DF(1x5m quad	ds)	S S	MS	F	Prob.	
Depth Zone	2		0.96	0.48	0.52	0.593	
Residual	243		223.15	0.92			
Total	245		224.11				
	DENSITY (untran	sformed	i number/sq.n	n)			
Deptn ∠one (m) 	Mean	30		juaios)			
4.6	3.1	4.7	108				
10.7	4.7	6.3 78					
15.2	3.3	4.4	60				
Total	3.7	5.2	246				

55

•

.

.

Ň

.

	\$ 0.7	NT								,								
			1.010	CTDA	TE-I	1		CAE			Itm	EDTED			/T D-2	*		
	1 20	UK	1-200	5184	11E-1	1	AL	GAE			1	VERIES	KAIEƏ	count		tran	Sect.	
	TPN		()	are	(8)			81	ea)		IOKCI	HIM	11	BALON	F	SE	A SI	uxs1
	EE	BN	bldr	cbl	snd	сру	scpy	tr	fencr		red	purpl	e red	flat	pint	русп	pis	other
	*	RS																
	1 4.6	4	97	4	0	0	18	32	45		163.8	145.4	29.3	0.0	0.0	1.7	2.1	5.1
	10.7	3	67	18	16	0	0	0	100		207.1	49.4	3.9	0.0	0.0	4.8	3.5	16.8
	15.2	4	89	11	0	0	0	0	70		261.6	72.6	20.5	0.0	1.1	1.1	1.8	21.5
	2 4.6	9	89	11	0	8	32	65	31		94.4	9.9	8.3	0.3	0.0	1.4	1.9	19.2
÷	10.7	3	67	18	16	0	0	0	100		141.2	9.7	10.1	0.0	0.4	2.3	2.3	23.2
• •	15.2	4	89	11	0	0	0	0	70		100.3	3.2	3.6	0.0	0.0	0.4	3.2	2.0
	3 4.6	1	100	0	0	0	3	96	7		8.0	1.0	3.0	0.0	0.0	0.0	0.0	4.0
	10.7	3	67	18	16	0	0	0	100		7.5	0.0	8.0	0.0	0.0	1.0	0.0	2.0
	15.2	4	89	11	0	0	0	0	70		2.8	0.0	0.0	0.0	0.0	0.0	1.0	0.0
	4 4.6	1	100	0	0	0	20	53	40		95.5	6.0	13.0	0.0	0.0	0.0	1.0	39.0
	10.7	3	67	18	16	0	0	0	100		0.5	0.0	5.0	0.0	0.0	2.0	2.0	6.0
	15.2	4	89	11	0	0	0	0	70		0.0	0.0	2.0	0.0	0.0	0.0	1.0	1.0
	5 4.6	2	68	5	27	0	30	45	12		7.5	6.5	6.0	0.0	0.0	2.0	1.0	6.0
	10.7	3	67	18	16	0	0	0	100		0.0	0.0	11.5	0.0	0.0	0.5	56.0	0.5
	15.2	4	89	11	0	0	0	0	70			••			••	••	••	••
•	6 4.6	1	73	7	20	.0	60	60	0		0.0	1.0	35.0	0.0	0.0	2.0	0.0	1.0
	10.7	3	67	18	16	0	0	0	100		1.5	0.0	7.0	0.0	0.0	2.0	0.0	1.0
÷	15.2	4	89	11	0	0	0	0	70		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
 5	7 4.6	1	75	0	25	0	60	0	80		1.5	0.0	9.0	2.0	0.0	4.0	1.0	2.0
	10.7	3	67	18	16	0	0	0	100		1.5	0.0	22.5	0.5	0.0	1.0	2.5	6.0
	15.2	4	89	11	0	. 0	0	0	70		13.5	0.0	2.0	0.0	0.0	1.0	1.0	1.0
	8 4.6	3	53	47	0	34	41	34	18		8.5	1.0	19.0	0.0	0.0	2.0	0.3	21.7
	10.7	3	67	18	16	0	0	0	100		38.5	13.0	9.0	0.0	0.5	0.5	1.5	41.5
	15.2	4	89	11	0	0	0	0	70		1.3	0.0	22.0	0.3	0.0	0.0	1.0	39.0
	9 4.6				••		•••	••			••		••	••	••			••
	10.7	3	67	18	16	0	0	0	100		0.0	0.0	0.0	0.0	0.0	0.0	0.5	1.0
	15.2	4	89	11	0	0	0	0	70		••	••	••	••	••	••	••	
	10 4.6	1	100	0	0	0	30	60	50		39.5	43.0	2.0	0.0	0.0	1.0	3.0	7.0
	10.7	3	67	18	16	0	0	0	100		15.0	2.0	21.0	2.0	0.0	0.0	1.0	12.0
	15.2	4	89	11	0	0	0	0	70		1.5	57.0	9.0	2.0	0.0	0.0	1.0	0.0

TABLE 14. Substrate and Algae Nean Percent Area and Selected Invertebrate Counts by Site and Depth Zone, Fine Scale Survey, Summer 1991.

*1=PCMR,2=S.Caspar,3=N.Caspar,4=Beaver Pt.,5=Hare Crk.,6=Noyo,7=GP Will,8=S.PCMR,9=Witchell Pt, 10=Wendocino

** Some transacts were not completed, extrapolated to 30m

`

56

- Bernard, F.R. and D.C. Miller. 1973. Preliminary investigation on the red sea urchin resources of British Columbia [Strongylocentrotus franciscanus (Agassiz)]. Fish Res. Bd. of Can. Tech. Rep. No. 400:1-35.
- Bradbury, A. 1989. Management and stock assessment of the red sea urchin (Strongylocentrotus franciscanus) in Washington State. DRAFT. WDF. 39 pp.
- Ebert, T.A., J.D. Dixon and S.C. Schroeter. 1992. Experimental outplant of cultured juvenile red sea urchin, *Strongylocentrotus franciscanus*, in California. Final Tech. Rep. FG-0182.
- Ebert, T.A. and M.P. Russell. 1992. Growth and mortality estimates for red sea urchin Strongylocentrotus franciscanus from San Nicolas Island, California. Mar. Ecol. Prog. Ser. 81:31-41, 1992.
- Ebert, T.A. and M.P. Russell. 1988. Latitudinal variation in size structure of the west coast purple sea urchin: A correlation with headlands. Limnol. Oceanogr.,33(2),286-294.
- Elliott, J.M. 1977. Statistical Analysis of Samples of Invertebrates. Freshwater Bio. Ass., Sci. Pub. No. 25.
- Kalvass, P. 1989. Characteristics of red sea urchin, Strongylocentrotus franciscanus, populations in the vicinity of Fort Bragg, California. Calif. Dept. Fish and Game. Mar. Res. Admin. Rpt. 89-1. 25p.
- Kalvass, P., I. Taniguchi and P. Buttolph. 1990. Relative abundance and size composition of red
 sea urchin, Strongylocentrotus franciscanus, populations along the Mendocino and
 Sonoma county coasts, August 1988. Calif. Dept. Fish and Game. Mar. Res. Admin.
 Rpt.90-1. 101p.
- Kalvass, P. I. Taniguchi, P. Buttolph and J. DeMartini. 1991. Relative abundance and size composition of red sea urchin, *Strongylocentrotus franciscanus*, populations along the Mendocino and Sonoma county coasts, 1989. Calif. Dept. Fish and Game. Mar. Res. Admin.Rpt.91-3. 103p.
- Kenner, M.C. 1992. Population dynamics of the sea urchin Strongylocentrotus purpuratus in a Central California kelp forest; recruitment, mortality, growth and diet. Mar. Biol. 112, 107-118.
- Morris, R.H., D.P. Abbott and E.C. Haderlie. 1980. Intertidal invertebrates of California. Stanford University Press. 690p.

LITERATURE CITED

- Parker, D., P.L. Haaker and K.C. Henderson. 1988. Densities and size compositions of red abalone, *Haliotis rufescens*, at five locations on the Mendocino and Sonoma county coasts, September 1986. Calif. Dept. of Fish and Game. Mar. Res. Admin. Rpt. 65p.
- Pearse, J.S. and A.H. Hines. 1987. Long-term population dynamics of sea urchin in a central California kelp forest: rare recruitment and rapid decline. Mar.Ecol.Prog.Ser.39:275-283.
- Sloan, N.A., C.P. Lauridsen and R.M. Harbo.1987. Recruitment characteristics of the commercially harvested red sea urchin Strongylocentrotus franciscanus in southern British Columbia, Canada. Fisheries Research,5:55-69.
- Tegner, M.J. and J.P. Barry. 1989. Size structure of red sea urchin (*Strongylocentrotus franciscanus*) populations in southern California: effects of growth, recruitment, predation and oceanography. Scripps Inst. Ocngr. Draft Rpt. 50p.
- Tegner, M.J. and P.K. Dayton. 1981. Population structure, recruitment and mortality of two sea urchin (*Strongylocentrotus franciscanus* and *S. purpuratus*) in a kelp forest. Mar.Ecol.Prog.Ser. 5:255-268.

APPENDIX A

TRANSECT DATA FROM BROAD SCALE SURVEY SITES, SUMMER 1991

Explanation of Transect Data Display Format:

1. Red Urchin Counts by Transect

1

•

2. Solitary Red Urchin Size Frequency Data by Transect

3. Canopy Grouped Red Urchin Size Data by Transect

These three data bases are linked by the transect code.

APPENDIX A:1991 BROAD SCALE SURVEY RED URCHIN COUNTS BY TRANSECT

TRANSECT	0	SITE	DEP					- QU	ADR/	ATS'	•					
CODE DATE	LOCATION	NO.	M	QIA	Q2 A	QSA	Q4A	Q6A		Q1B	Q28	C36	Q4B	Q68	Q6B	TOTAL
800 072391	ROBINSON REEF	9	4.6	C) () 0	c) a	0	0	0	0	0	6) 0	0
801 072391	ROBINSON REEF	9	10.7	C) 0	· () 0	0		10	0	0		0	22
802 072391	ROBINSON REEF		15.2	c	1		C) 0	0	1	0	0	4		. 0	19
803 072391	HAVENS NECK	10	4.6	c) 0	C) O	0	0	0	0	0) O	0
804 072391	HAVENS NECK	10	10.7			0		5 1	0	0	0		0) o	9
805 072991	HAVENS NECK	10	15.2	c		> 2	c) o	4	0	0	1	0) o	7
806 072391	HAVENS NECK	10	15.2	c	Ċ) 0) 1	5	0	0	2	0) 0	
807 000191	SAIL ROCK	11	4.6	C		0) (1	0	0	0	0) O	1
808 000191	SAIL ROCK	11	10.7	c) 0) (0	1	0	2	C	Ċ	0	3
809 080191	SAIL ROCK	11	15.2	C		0 1	c) 1	0	900	900	900	900	996	900	2
810 073191	SCHOONER GULCH	12	4.6	C) 0) (0	0	0	0	0) O	0
811 073191	SCHOONER GULCH	12	10.7			2 2	1	2 6	15	900	900	800	900	906	900	31
812 073191	SCHOONER GULCH	12	15.2	C) (o 0) (0	0	0	0	0		0	0
813 073191	HIGH BLUFF	13	4.6	C		0		,	0	0	0	0	0) O	0
814 073191	HIGH BLUFF	13	10.7) 1	2 2	: :	3 7		4	0	4	0) 1	2 1	34
815 073191	HIGH BLUFF	13	15.2	•		1 2	: :	2 8	2	2	1	12	0) () 1	27
816 073191	SEA LION ROCKS	14	4.6			0 1	C) (0	0	0	0	0) o	1
817 073191	SEA LION ROCKS	14	4.6) (0	•	2	. 0	0		1	C	1	• •	9
818 073191	SEA LION ROCKS	14	10.7		i e	1 0		0 1	0	•	. 0) () o	21
819 073191	SEA LION ROCKS	14	15.2			5 17	11	5 26	17	36	13	15	30	4	29	253
820 000391	ELK ROCK	17	4.6		1 10	b 0	•	0 1	1	1		0	C	12	15	74
821 000301	ELK ROCK	17	10.7	4	2	7 3) 1	9	75	20	22	1		17	221
822 000301	ELK ROCK	17	15.2	7		1			0		0	20	0) O	40
823 000301	CAVANAH GULCH	18	4.6) (0		5 1	0	0	0	0	11	906	800	17
824 000301	CAVANAH GULCH	18	10.7			0			0	3	0	2	1	C) O	6
825 000391	CAVANAH GULCH	18	15.2	(8 2	: 1	24	0	17		45	5		4	124
826 080291	NAVARRO PT.	19	4.6	4		5	; 1	0	1	0	2	0	0		0	13
827 000291	NAVARRO PT.	19	10.7	C) (•)	4	0	0	0	0) O	4
828 000291	NAVARRO PT.	19	15.2) (0			5		2	0	1	Ċ) 15	26
829 081491	ALBION PT.	20	4.6) (D ·· 1			0	0	2		1	C) o	13
830 081491	ALBION PT.	20	10.7) (0	13	3 18	31	0	0	0	10	14	27	113
831 081491	ALBION PT.	20	15.2	10	6 (0 2	14	14		0	7	1	12	41	9	124
832 081491	VAN DAMME HEAD	21	4.6) (b 0		b 0	0	0	0	0	0	, c) O	0
833 081491	VAN DAMME HEAD	21	10.7		14	4 26		3 32	87	1	81	17	25	; 21	65	391
834 081401	VAN DAMME HEAD	21	15.2			0 0		,	0	0	0	0	0		0	0
835 00001	JACK PETERS	22	4.6) (0 0			0		0	0	1	C	1	2
836 00001	JACK PETERS	22	10.7			0 16			1	800		800	800			10
837 00001	JACK PETERS	22	10.7	1	2 (0 0	•		0	2		0	0) o	4
838 00001	JACK PETERS	22	15.2) (0)	0	0	0	0	0) o	0
839 00001	JACK PETERS	22	15.2			2			0	0	0	0	G) O	2

* 888 = NOT SURVEYED

1

. .

1981 BROAD SCALE SOLITARY RED URCHIN SIZE(MM) FREQUENCY DATA BY TRANSECT CODE

.

.

CODE	BIZE	FREQ	CODE	BIZE	FREQ	CODE	SIZE	FREQ	CODE	BIZE	FREQ	CODE	SIZE	FREQ
801		2	811	130	1	- 818	120	1	822	80		829	105	2
801	70	1	811	135	1	818	140	1	822	96	2	890	40	1
801	86		811	145	2	819	15	1	822	100	2	890	46	1
801	90	1	811	150	4	819	20	2	822	106	2	890		
801	125	2	811	186	1	819	20		623			600		
801	180			100	,	01U. 810			823		;	830		
801	140		814	15	- 1	A19	40		823	100		830	105	
801	145	1	814	20	1	819	45		823	105	2	830	110	
801	180	1	814	25	2	819	80	2	823	110	2	830	115	
802	20	1	614	30	2	819	66	2	623	115		830	125	2
802	26	1	814	36	2	819	80	1	823	120	1	831	25	1
802	36	1	814	40	1	819	65	1	823	125	1	831	35	4
802	55	1	814	45	1	819	70	1	824	76	1	831	45	2
802	75		814	50 EE	1	819	75	2	824	100 AE	1	631	60 85	1
802			814			810	105		824			601 601		
802	95	2	814	65		819	110		825	15		831	70	
802	110	2	814	70	1	820	25		825	20		831	75	i
802	115	3	814	75	2	820	30	2	825	25	2	831	85	3
802	120	1	814	85	1	820	36	1	825	30	3	891		5
802	125	1	814	96	1	820	40	1	825	36		831	96	
802	145	1	814	105	1	820	50	1	825	40		831	105	2
804	75	1	814	120	1	820	66	1	825	45	2	833	80	1
804	85	1	814	125	1	820	65	2	825		2	833	86	
804	110		815	20	1	820	76	Z	825	60		833	66	1
804	118		015 015	20		820			620				70	1
804	146		815	40	2	820			825				80	
805	45	1	815	45		820			825		1	893		
805	60	1	815	50	1	820	100	4	825	100	8	833	80	2
806	86	1	815	66	1	820	105	3	825	105	1	833	86	5
805	106	1	815	65	3	820	110	3	826	65	1	893	100	4
805	136	2	815	75	1	820	115	2	826	80	1	803	105	8
805	155	1	815	80	2	820	120	3	826	100	1	833	115	2
806	25	1	815	86		620	125	2	826	105	2	896	105	1
806	56		815		1	820	130		626	110	2		120	1
	90 405		815 815	100		620	140			110				
-	110		A16	100		821	. is	,	826	136				
805	120		817	25	1	621		2	826	140	i	836		2
806	135	1	817	45	1	821		2	826	145	1	896	100	8
807	140	1	817	66	2	821	70	1	827	75	1		105	3
806	86	1	817	70	1	821	76	4	827	106	1		110	1
809	*	1	817	76	1	821	80	2	827	125	2	696	115	5
809	80	1	817	80	1	821		5	825	26	1	884	120	4
	86	1	817		Z			1			1		125	
	115		010				100						100	-
-	100		81A	75					-	**				
611	86	1	818	80	1	-		2	-	80			100	1
811		1	818		1	882	46	1				887	105	•
811		1	818		2	882		1	-		2	880	70	1
811	100	2	818	85	1	682	85			105	1			1
811	106	2	818	100	1	822	70	1	629	75	6			•
811	115	1	818	105	4	822	. 76	2		80	2			
811	120	1	818	110	1	882	80		889					

61 .

BROAD SCALE CANOPIED RED URCHIN SIZE (MM) DATA BY TRANSECT CODE

CODE	CNPY"	SIZE	CODE	CNPY"	SIZE	CODE	CNPY"	SIZE	CODE	ONPY"	SIZE
801	101	136	821	105	105	825	206	15	831	203	86
801	101	105	821	206	\$6	8 25	206	20	631	203	80
801	201	40	821	205	30	825	106	80	#3 1	104	80
808	10 1	100	821	205	10	825	206	80	831	204	20
800	201	20	821	206	10	825	206	15	63 1	105	75
811	101	165	821	106	65	828	101	86	831	206	15
811	201	30	821	106	45	828	201	3 5	831	106	60
814	10 1	110	821	206	25	828	102	85	831	206	15
814	201	66	821	206	20	828	305	25	831	107	80
810	101	110	821	107	80	828	103	75	831	207	20
818	3 201	20	821	207	25	828	103	75	8 31	207	15
816	101	120	821	108	85	828	203	25	833	10 1	80
816	201	16	821	208	30	828	203	25	833	201	20
816) 102	: 10 0	821	109	90	828	203	25	833	201	10
818	202	15	821	209	· 25	828	203	25	83 3	102	90
816	103	115	821	110	95	830	101	90	#33	202	30
816	203	35	821	210	20	830	201	36	83 3	202	30
816	203	15	821	210	30	830	102	105	833	103	100
816	203	20	822	101	100	830	102	75	833	103	120
811) 104	75	622	201	25	830	202	35	833	203	20
816	204	25	822	102	90	830	202	20	893	203	30
816	204	35	822	202	45	830	103	85	63 3	104	90
81	204	20	822	103	100	· 630	203	30	883	204	20
816	204	20	822	203	30	630	104	110	893	204	30
816	204	25	822	104	90	83 0	204	25	833	105	80
82) 101	115	822	204	25	830	204	30	63 3	206	20
82) 101	85	822	105	65	830	105	70	683	106	110
820) 201	10	822	205	40	830	105	86	693	206	30
820) 20 1	25	622	106	80	830	206	15	883	107	100
820) 102	96	622	206	35	890	206	15	883	207	36
820) 102	100	822	107	80	830	206	20	836	101	70
82) 202	20	822	207	80	890	106	80	836	201	20
820) 103	115	825	101	80	830	206	10			
820) 103	120	825	201	15	830	107	115	* First digit	1= cenopy	
820) 203	20	#2 6	201	45	830	107	130	provider, 2	-canopied	
821	101	90	825	201	25	890	207	15	wohin		
821	101	80	825	201	20	63 0	108	110	Second, th	ird digits:	
821	201	35	825	102	96	830	108	140	canopy gro	up within	
821	102	• • •	825	202	20	890	206	45	teneod		
821	802	20	625	103	110	830	206	80			
821	103	90	825	205	25	831	101	100			
621	303	86	825	104	80	891	201	10			
821	104	90	625	204	80	69 1	102	110			
82	104	90	825	105	80	831	302	20			
62	1 204	25	625	306	20	631	802	20			
				905	-		400	76			

62

- 1

APPENDIX B

TRANSECT DATA FROM FINE SCALE SURVEY SITES, SUMMER 1991

Explanation of Transect Data Display Format:

1. Red urchin counts by transect

2

2. Solitary red urchin size (mm) frequency data by transect

3. Canopy grouped red urchin size data by transect

These three data bases are linked by the transect code.

-- -

........
APPENDIX B:1991 FINE SCALE SURVEY RED URCHIN COUNTS BY TRANSECT

	TRANS	ECT		DEP	J						QU/	DR	ATS*				
CODE	DATE	LOCATION	NO.	M	Q1A	Q2A	QSA	Q4A	Q6A	Q6A	Q1B	028	COB	Q4B	Q58	QBB	TOTAL
900	081291	PCMR NORTH	211	4.6	0	0	. 38	29	81	0	11		23	31	8	0	221
901	081291	PCMR NORTH	210	10.7	800	25	55	65	42	4	40	6	800	800	800	800	290
902	081291	PCMR NORTH	201	15.2	26	\$7	45	36	38	16	x	3	20	59	20	20	378
903	072591	PCMR REEF POOL	204	4.6	0	8	35	80	15	9	11	1	11	999	800	900	190
904	072501	PCMR REFE POOL	204	10.7	26	11	11	41	4	30	54		2	-		75	\$73
905	072601	BOMP REEF POOL	204	15.2	800	000	74	17		76			82	600	800	800	429
006	072001		204						401		-					417	
007	072501		~	48.0					406	74						800	-
008	0/2001	POWR COTEKSONGE	200	10.2				~~~~									
000	000701	POWR SOUTH	200	4.0	47	~										74	407
010	-080/91	POWR SOUTH	-	10.7		-		10	40				, au		•~		
011	000/91	PCMR SOUTH	202	15.2	10	10			10					30		14	200
010	051291	FCMR OLD S BOUN	252	4.0	U	U								U	0	U	
912	061291	PCMR OLD S BOUN	262	4.0	0	0			10					0		•	20
913	061291	PCMR OLD S BOUN	251	10.7	22	3	42	3	0	3	4		2 5	3	0	3	134
914	081291	PCMR OLD S BOUN	251	15.2	0	C) 0) 0	0	0	Ċ) () 0	0	0	0	• 0
915	072991	PCMR NEW SOUTH	253	4.6	2	0	0	17	11	1	C		0 0	0	0	0	31
916	072991	PCMR NEW SOUTH	253	10.7	4	0	0	0	0	0	16	3 () 0	0	0	0	20
917	072991	PCMR NEW SOUTH	253	15.2	0	2	2 0	0	0	0	C) (0	0	0	0	2
918	072991	PCMR NEW SOUTH	253	15.2	0	C	0	0	0	6	C		0	0	0	0	6
919	072991	GP MILL COVE	650	10.7	0	C	0	0) 1	0	C) (0	1	0	0	2
920	072991	GP MILL COVE	850	10.7	0	0) (2	2 0	1	C) () 0	1	0	0	4
921	072991	GP MILL COVE	650	4.6	3	C) (0	0	0) (0	0	0	0	3
922	072991	GP MILL COVE	650	15.2	0	0) 8	5	0	0	7		3	0	0	0	27
923	072891	NOYO BAY	601	4.6	0	C). C	0	0	0	C) () 0	0	: 0	0	0
924	072891	NOYO BAY	601	10.7	0	C) 2	. 0	0	0	C) () 1	0	0	0	3
925	072891	NOYO BAY	601	15.2	0	0	0	0	0	0	C) (0	0	0	0	0
926	072891	HARE CREEK	501	4.6	2	0	2	. 0	. 4	8	c) 0	1	0	5	22
927	072891	HARE CREEK	501	10.7	0	C	0	0	0	0	C) 0	0	0	0	0
928	072891	HARE CREEK	501	10.7	0	0	0	0	0	0) (0	0	0	0	0
929	072891	HARE CREEK	501	4.6	0		0	0	0	0			2 0	0	0	0	
930	081591	BEAVER PT	401	4.6	3	13	40	23	24	5		2	20	3	13	2	191
931	081591	BEAVER PT	401	10.7	0	0	0	0	0	0			0	0	0	0	1
932	081591	BEAVER PT	401	15.2	0	0				0			0	0	0	0	0
933	081591	MITCHELL PT	402	10.7	0									0	0	0	0
934	081501	MITCHEL PT	402	10.7	0									0	0	0	
935	072791	NORTH CASPAR	301	46	0	2					Č		2	0	9		16
936	072791	NORTH CASPAR	301	107	10	-							-			-	15
937	072781	NORTH CASPAR	301	16.2													
938	072781	NORTH CARDAR	301	15.2													
930	073004		-	10.2							-			0	0		-
040	070001		100	4.0	10		1/	2		0				0	1	4	
041			100	10.7	0			3	12	4			4	5	0	0	30
042			100	15.2	0	G		0	0	3			0	0	0	0	3
042		CASPAR N.W.	301	4.0	3	17	0	18	15	18	*		10	10	0	21	154
044		GAIPAR N.W.	301	10.7	31	0	0	3	40	33	72		0	1	7	63	250
044	001301	CASPAR N.W.	301	15.2	51	•	23	4	10		Z	2 0) 0	0	12	3	143
943	080691	CASPAR WEST	802	4.6		17		0	31	- 4	14) 0	2	10	4	164

64

.

1

APPENDIX B:1991 FINE SCALE SURVEY RED URCHIN COUNTS BY TRANSECT (CONT.)

	TRANS	ECT	SITE	DEP		h in de protecteur					QUA	DR/	TS*				
CODE	DATE	LOCATION	NO.	M	Å1Å	Q2 A	QSA	QLA	Q6A		Q18	028	Q38	048		QBB	TOTAL
946	000001	CASPAR WEST	302	10.7	0	\$1	54	\$7) 13	27	20	- 36		21	; 1	318
947	000001	CASPAR WEST	302	15.2	0	8	0	S		65	0	0	0	118	-	42	384
948	080791	CASPAR REEF	303	4.6	3	C	. 4	1	C) 0	3	1	4	1	C) Q	17
949	000701	CASPAR REEF	303	4.6	0	0	0	2) 0	0	0	0	0	0	4	15
950	080791	CASPAR REEF	303	10.7		- 20	- 46		40	5 3	899	800	800	800	800	800	285
951	080791	CASPAR REEF	303	16.2	17	10	20	27	18	5 3		21	46	41	43	27	\$22
952	081591	CASPAR NEWHOUSE	804	4.8	4	25	0		21	2	3	36	0	70	7	0	183
953	081591	CASPAR NEWHOUSE	304	4.6	23	- 24	15	43	81	171	44			19	25		571
954	080891	CASPAR POOL	305	4.6	27		27	- 14	•	: 16	4	13	1	4			219
955	080591	CASPAR POOL	305	10.7	21	C	11	101	81		- 39	3	30		152		846
956	080591	CASPAR POOL	305	10.7	1	C	0	0) (0	0	3	0	83	60	42	189
957	072791	CASPAR STEAMER	306	4.6	0	4		7	· •) 0	0	80	- 40	0	0	0	118
958	072791	CASPAR STEAMER	306	10.7	0	2	: 5	3	2	! 12	2	0	0	0	0	0	26
959	072791	CASPAR STEAMER	306	15.2	7	13	11	1	2	2	39	12		7		0	108
960	080891	CASPAR RESERVE	307	4.6	4	6	23	29		29		10	19	23	24	43	248
961	080891	CASPAR RESERVE	807	10.7	2	Q	17	- 64	C	3	4	6	12	0	0	3	111
962	080891	CASPAR RESERVE	307	15.2	7	7	1	3		0	7	0	5	10	0	0	46
963	080191	BAUNDERS REEF S	803	10.7	0	5	0	12	. 0) 2	5	14	•	880	600	800	46
964	080191	BAUNDERS REEF S	803	10.7	0	1	0	0		13	3		0	0	0	0	3 3
965	080191	SAUNDERS REEF S	803	15.2	1	C	ם ו	27	· 0	0		0	0	10	0	0	47
966	080191	BAUNDERS REEF N	807	10.7	12	21	0	0	-	70	41	34	67		80		467
967	080191	SAUNDERS REEF N	807	15.2	20	27			1	16	- 28	42	0	0	0	- a	155

1989 = NOT BURVEYED

.

....

1991 FINE SCALE SOLITARY RED URCHIN SIZE (MM) FREQUENCY DATA BY TRANSECT CODE

CODE	SIZE	FREQ	CODE	SIZE	FREQ	CODE	\$IZE	FREQ	CODE	SIZE	PREQ	000	E SIZE	FREQ
900	45		903	110		907	65	2	913	105		1 929	70	1
900	70	1	903	115		907	70	2	913	125		1 929	80	1
900	75	1	903	120		907	76	1	015	75		1 929	95	1
900	85		603	125	•	907		4	915	80		1 829	100	2
900	80	1	803	130	•	907	. 60	1	015	80		1 829	106	2
900	96	1	903	135	1	907	96	2	915	95		6 929	120	1
900	100		5 904	25	1	907	100	4	915	100	1	8 930	70	1
900	105	- 1	5 904	36		907	106	2	915	105		6 830	75	2
900	110		904	66	1	907	110	4	915	115		2 930	80	1
900	115		5 804	e 0	1	907	115	2	915	120		1 990	66	4
800	120	1	8 904	66	1	907	120		915	125		1 530		6
900	126		804	76		907	125	4	915	130		8 930	96	
900	120		2 904			907	136		915	140		1 1630	100	12
901	50			80		907	140		016			8 830	110	
901	75			100		807	150		916			4 930	115	,
801	75			100		907	165		916			2 930	120	2
801			904	115		908	95		916			1 930	125	- 2
901			904	120		908	100		916	100		4 930	130	1
901	100		4 904	125		908	115	2	B16	105		2 935	65	2
901	105		8 904	130		5 808	130	1	917	65		1 935	75	3
901	110		1 904	135		5 908	135	1	917	115		1 835	80	1
901	115	1	2 904	140		808	140	1	919	65		1 835	86	3
901	120		8 904	145		2 909		1	919			1 835	96	2
901	125		4 904	150		909	65	2	919	86		1 935	105	2
901	135		1 905	25		909	70	1	919	106		1 835	120	2
901	145		1 905	30		909	75	1	919	76		1 835	125	1
901	150		1 905	36		909	80	2	919	166		1 836	70	1
902	36		1 906	45	1	909	85		820	80		1 896	75	1
902	40		1 906	70		909	80	4	920	100		1 896	80	2
902	50	1	806	80	1	909	95	11	820	120		1 836	96	3
902	60	1	2 906	86		809	100		820	120		1 896	100	1
902	65	•	1 905	90		909	105		921	105		1 996	105	3
902	80	1	2 805	96	1	909	110	- 4	921	125		1 836	110	2
902	86		1 905	100		2 909	120	1	821	140		1 596	125	1
902	90	1	8 905	105	1	2 910	80	1	822	86		8 997	80	1
902	96	4	4 905	110		8 810	80	2	822	45		1 837	110	1
902	100	. (8 905	115	1	2 910	86	2	822	76		2 936	45	1
902	106		2 905	120		9 910	- 100	2		80		1 536		1
902	110	1	2 806	125		5 91 0	105		822	90		1 536	76	2
902	115		1 906	136		910	115		822	85			110	1
802	120			140			120		822	100			50	
602 ·	120			140		810	180		822	115			70	
802	195								6 22	110			/*	
803	30		1 805			912			822	125		1 880		
903			1 806			6 812	100		822	100		1 830		,
803	45		1 806	100		9 12	105		824			1 830	100	
803			1 806	105		912	110		824	115		2 880	105	11
803	66	1	808	110	1	912	116	2	826	80		1 880	110	4
803	70		808	115	7	013		2	826	100		4 880	115	
803	76	•	1 906	120	1	913	80	1	626	105		2 880	120	2
805	80		808	125		013	85	1	826	110	1	2 880	125	1
803	86	1	5 806	130	1	913	70	1	105	115		2 880	155	1
903	90		4 807	30	1	913		1	926	120		2 840	80	1
808	86		4 807	56		913	80	1	1 886	125		4 840	*	2
908	100		6 807	45	. ;	913	86	•	826	190		1 940	40	2
808	106		4 807	80		813	100		886	135		5 840	45	2

66

....

1

1

1001 FINE SCALE SOLITARY RED URCHIN SIZE (MM) FREQUENCY DATA BY TRANSECT CODE (CONT.)

-

.

CODE	SIZE	FREQ	CODE	\$IZE	FREQ	CODE	817E	FREQ	OODE	BIZE	MEQ	CODE	SIZE	PREQ
940	66	1	2 945	120	2	860	115	2	966	76		1 969		1
840	86		845	125	2	860	120	2	966	80		2 960	100	•
940		1	2 845	130			136		966				100	-
940	100			120			20 95						110	:
	110									100			190	,
842						6 1			865	105		7 860	125	
M2	70					861			965	110		2 860	120	2
842	75	1	846	80	1	951			965	115		2 860	135	2
842	80	1	946	86	1	861	70	1	965	120		1 860	140	1
842	86		846	80	1	861	80		965	125		4 860	145	1
942	80		946	86	2	95 1	86	2	865	135	;	1 960	160	2
842	86		846	80	2	861	80	5	865	140		2 980	70	2
942	100		5 946	86	8	961	96	1	966	145		1 980	80	1
842	105		5 846	100		951	100	2	966	80	•	3 980	86	
842	110		946	106		861	105		966					-
842	115			110		861	110						500	-
642	125		1 946	120		862			856	100		5 000	105	
842	135		1 846	125		862			956	105		4 980	110	
843	40		1 946	120	2	962			966	110		4 980	115	
943	70	1	2 946	140	1	862	100		966	120		1 980	120	
843	75		8 947	20	1	962	105	10	966	125		1 880	125	3
843	80	1	2 947	26	1	862	110		957	76		2 961	45	1
943	85		4 947	66	3	962	115	6	867	80		1 861	66	1
843	80	1	8 947	70	2	962	120	2	867			1 861	86	5
843	96		8 947	75	10	862	130	1	957	100		5,961	80	2
943	100	1	2 847	80	5	962	140	1	867	106		4 961		7
843	105		947	86	8	963	70	1	957	110		4 961	100	3
943	110		5 947	\$ 0	2	963	76	1	967	115		7 961	105	13
843	115		8 947	66	• 4	863	86	•	957	120		6 961	115	7
843	125		1 947	100					567	. 126		4 561	120	
	10			100					867	180			120	
				110		863	100		867	140				
	~			20		663	110			145		1 882		:
			-	75		863	115	;	867	180		1 882	70	
844						863	120			76		2 862	75	
844	70		1 844	100	4	863	125	1	864			1 982	80	1
944	75	1		105	2	963	130	2	964			1 862		1
944	80		8 948	110	2	863	136	4	964			1 982	80	4
944	85			115	1	963	140	1	964			2 862	86	2
944	80	10		120	2	864	80	1	964	100		1 882	100	•
944	86		6 848	125	2	964	86	1	968	106		6 982	105	
944	100		5 840	80	1	864			958	110		8 982	110	7
844	105	1	1 840	66		964	75	1	968	115		4 962	115	1
844	110		8 840	100	•	864	80	2	964	120		2 962	120	1
844	120			106	2	864		6	950	190			80	1
	126	1		8	1		90	4		196			86	1
	180									140				
				70			100	-		100				
						-						2 999		
	-					864	146			-		1 884	-	
945	100		7 860			864	100					1 88	. 71	
845	105		7 860	100		864	125)	1 100		
845	110			105		864	140	1	860					•

67

1991 FINE SCALE SOLITARY RED URCHIN SIZE (MM) FREQUENCY DATA BY TRANSECT CODE (CONT.)

CODE	\$IZE	FREQ	OODE	SIZE	FREQ	
963	96	2	967	40		2
963	106	1	967	66	1	2
964	25	1	967	70	2	2
964	30	1	967	75		•
964	36	2	967	80		
964	46	2	967	85		8
.964	65	1	967	90		1
964	66	1	967	105		I
964	96	2				
084	100	2				
984	110	2				
964	115	5				
964	120	2				
964	125	1				
964	130	1				
965	25	2				
965	30	2				
965	36	2				
965	40	4				
965	45	2				
965	50	1				
065		3				
865	20	,				
965	. 75	2				
965	80	2				
965	86	4				
965	90	3				
965	96	2			••	
965	100	1				
965	105	1				
965	110	1				
965	125	1				
996	26	1				
¥00	30					
000		4				
200	45					
986	60	1				
966	66	3				
886	75	2				
986	80	2				
966	86	4				
996	90	4				
886	96	6				
995	105	6				
	110	1				
	116					
	120					
	120					
986	135	1				
867	80	2				
867	25	3				
	-					

۲

68

-

(Book)

1001 FINE SCALE CANOPY GROUPED RED URCHIN SIZE (MM) DATA BY TRANSECT CODE

-

CODE	ONPY"	81ZE	CODE	ONPY"	SIZE	OODE	ONPY"	SIZE	CODE	ONPY	\$KZE	CODE	ONPY"	SIZE
800	101	86	808	102	105	\$10	113	190	940	102	100	661	201	20
800	301	26	806	202	20	91 0	213	15	940	802	80	851	201	25
800	102	100	806	103	96	91 0	213	20	940	108	130		102	80
900	202		806	203	20	910	213	20		404			802	20
800	903	100	806	904	80		914	*	840	804			901	
601	101	120	806	105	115	812	901	100	841	101	70	662	102	100
801	201	20	806	106	115	912	201	80	841	801	25	962	802	25
801	102	86	806	106	125	9 12	102	100	842	101	80	862	103	96
801	802	20	806	106	120	012	802	80	842	S D1	20	862	203	80
801	103	100	806	206	45	913	101	105	842	102	86	964	101	80
801	203	25	806	106	86	9 13	301	80	842	802	80	864	201	25
801	104	120	806	106	95	913	102	80	842	302	25	966	101	120
801	204	15	806	206	30	0 13	102	100	842	108	105	966	201	15
802	101	120	906	206	36	913	. 202	20	842	103	115	866	201	10
802	102	10	807	101	145	013	103		843	101	100		102	110
802	202	40	807	201	25	9 13	203	20	843	901	15	860	101	110
802	105	140	907	201	35	013	104	100	843	102	70	860	201	20
802	203	80	807	102	125	013	104	86	843	102		960	102	105
802	203	20	907	202	35	913	204	80	843	202	35	850	202	25
802	104	100	808	101	100	913	204	25	844	101	86	860	202	30
802	204	20	908	201	15	913	106	80	944	801	26	860	103	120
802	106	130	809	101	80	013	205	80	844	102	105	960	203	25
802	206	40	809	101	110	013	205	35	844	802	25	960	104	76
802	206	40	809	201	20	913	105	100	945	101	115	960	204	20
802	105	106	800	102	90	U13	105		915	201	20		106	80
802	107	110	810	101	100	013	204	10		901	40		100	
802	807	45	810	201		013	305			102			106	100
803	101	100	910	102	140	913	107		946	102	115	869	206	25
803	101	110	910	202		913	207	20	-	802	80		107	80
803	201	80	910	103	106	913	105	86	846	302		860	207	25
803	102	125	910	203	30	913	108	80	846	108	105	860	207	25
803	302	30	910	104	110	913	308	*	846	108	115	880	101	100
903	202	10	e 10	204	25	913	109		946	303	86	980	201	16
904	101		910	106	140	913	900		946	104			102	5 5
-	201			306		913	300	30	047	304	80		302	20
804	902	40	810	105	130	813	210		847	901			903	
804	802	20	910	206	20	913	210		847	102	80	661	101	110
804	103	130	91 0	206	36	915	101	100	847	802	25	961	101	80
804	803	86	91 0	206	20	915	801	35	860	101	180	861	301	80
904	803	86	91 0	206	15	915	102	86	860	301	80	661	102	115
806	101	130	91 0	107	106	816	202	80	860	102	105	661	302	20
906	301	40	910	207	15	918	101	120	860	102		661	105	100
806	102		91 0	108	110	618	801	40		802	55	961	303	. 80
-	302			308	20		101			802			901	
806	200		810	206	20		101	-		100	100		100	
804	104		810	109		-	201			-		-	802	10
806	304		810	809	80		801	45	860	104		862	108	110
806	105	126	e10	110	100		101			104			306	
906	805	80	010	210	80		101	100		804	80	-	104	80
806	106	180	910	111	86	880	101	110	660	304	35	902	304	26
806	806	80	91 0	211	80		801	40	860	105	110		185	#5
808	101	110	910	112	86	040	101	110		305	80		306	25
	904	-		949	-		904	_		674	een.	-		, mo

69

...

١.

....

1901 FINE SCALE CANOPY GROUPED RED URCHIN SIZE (MM) DATA BY TRANSECT CODE

.

CODE	CNPY"	SIZE	CODE	CNPY"	SIZE
862	108	125	867	102	80
962	206	20	957	202	36
962	107	115	967	108	100
862	207	26	867	103	110
863	101	80	967	203	15
	201	15	967	203	26
	102		967	203	20
	108	75	967	204	20
963	108	80	867	204	80
963	209	25	867	204	15
963	203	25	967	204	20
963	104	60	967	204	20
863	204	25	967	106	96
963	105	66	967	206	20
963	105	80	967	206	10
963	205	15	967	106	80
964	101	110	957	206	25
864	201	20	967	107	a U 45
064	102	100		201	40
964	902	30			
964	103	80			
964	103	110			
864	203	25			
865	101	80			
865	201	30			
865	102	80			
865	202	25			
865	108	86			
865	203	36			
965	203	36			
965	104	66			
	204	105			
	101	110			
	201	36			
886	201	25			
805	102	80			
986	102	105			
996	202	40			
906	103	80			
886	103	100			
995	203	30			
906	104	100			
996	104				
	104				
	105				
-	105				
-	206	25			
-	108	80			
	106	100			
996	306	25			
985	906	25			
986	206	15			
867	101	105			
987	901	16			

* First digit: 1 = cenopy provider, 2 = canopled urchin Second, third digits: eanopy group within transact