stete of Colifornia The Teeovrese Agency DEPARTIEAT OF FISH AND GAYE

phcirtc MPRETw, CLUPEA HANEMCUS PALLASI. STUDITE II SMY FRNHCISCO IND TOMALES BAYS. APRIL $19 E 7$ TO wARCH 1538

by

Peul N. Rex1ly

and
Thowns O. Hoore

Herlae hesources Pivision Adilut turative Ieport Vo. 88-20

1988

PACIFIC HERRING, CLUPEA HARENGUS PALLASI. STUDIES IN SAN FRANCISCO AND TOMALES BAYS. APRIL 1987 TO MARCH 1988

by
Paul N. Reillyll
and
Thomas 0. Moore 2'

Abstract

Herring schools were surveyed hydroacoustically and ampled in San Francisco Bay from late October 1987 to March 1988. Nine large achools (greater then 1000 tons) and four amaller ones were detected. Total acoustic biomass estimate, using a combination of echo integration and "visual integretion" methoda, was 71,110 tons. Improved acouatic calibration parameters reaulted in this estimate being close to the apawn eacapenent-plus-catch estimate of 68,881 tons. However, the two biomass aurvey methods are complementary and. when used together, provide more accurate estimate of the spawning population than either method alone.

Eighty-two samples, containing a total of 16,316 herring, were collected with variable-mesh gill net, midwater traw , or obtained from the roundhaul fiahery. Mean body length decreased by more then 20 mm from the beginning to the end of the apawning season. Sex ratios favored males in November and December, while females were more abundant in February and March.

The 1982 through 1986 year classes (6- through 2-yr olds) contributed approximately 98x by weight and number to the total 1987-88 apawning blomasa in San Francisco Bay. Herring year classes aged 7 and older each comprised no more than $1 x$ of any achool.

Above average recruitment occurred for the 1986 year class. Recruitment may not be complete for some year classes until age 3 yr . This was particularly evident for the 1985 year class.

I'Marine Resources Division, 411 Burgess Drive, Menlo Park CA 94025
2'Marine Resources Division, 1136 Duer Road, Sebastopol CA 95472

ACKNOWLEDGMENTS

Abstract

We would like to extend special thanke to seasonal aid Ian Teniguchi for his assistance during the herring season.

Philip Law asaisted on atatistical analyses. The manuscript was reviewed by Tom Jow, Jerry Spratt, and Art Haseltine. Jerry aleo read sone of the difficult otolithe.

Norm Lemberg and Steve Burton, Washington Department of Fiaheries. Seattle, contributed their time and equipment to facalatate the echo integration of ecoustic dete.

Thanks are also extended to survey volunteers Wendy Cole. Steve Covarrubias. Jin Delatore. Eric Dick. Debbie Dresser. Hernan Gomez. Jennifer Hallet. Frank Henry. Vladimir Hvochinaky. Tom Jow, Marie Kramer-Wegrich, Karin Marsh. William Poole. Charlea Prudhon. Fred Smith, Bob Tasto. Dave Thomas. Geoff Thomas, Ed Ueber, and Dennis Williams.

The commercial fishers and herring buyers of San Francisco Bay deserve epecial recognition for their cooperation in providing us with amples throughout the season.

ABSTRACT ii
ACKNOWLEDGMENTS 121
TABLE OF CONTENTS iv
LIST FF FIGURES V12
LIST OF TABLES. $1 \times$
LIST OF APPENDICES *
INTRODUCTION 1
METHODS 1
Spawning Season Field Work 1
Research Vessels 4
Sampling Gear Types 4
Gill Nets 4
Midwater Trawl 4
Roundhaul Neta 4
Non-spawning Season Field Work 4
Acoustic Monitoring and Processing 4
Standard Acoustic Surveys 4
Visual Integration 5
Echo Integration 6
Dual Bean Tranaducer Survey 6
Calibration Parameters and "A" Constant 7
Field Proceasing of Samplea 8
Laboratory Processing of Samples. 8
Assigned Ages and School Numbera 9
Total Age Composition for Spawning Season 9
Computer Procesaing of Samples 10

TABLE OF CONTENTS (continued)

page
Supplementary Data 10
RESULTS 10
Acoustic Monitoring of Herring Schools in San Francisco Bay 10
Actustic Biomass Estimates for San Francisco Bay 15
Tomales Bay Acoustic Survey 16
Herring Samplea from San Franciaco Bay 17
Length Composition 17
Variable-mesh Gill Net Samples 17
Midwater Trawl Samplea 21
Purse Seine and Lampara Net Samplea 21
Comparison of Length Compoaition by Gear Type 26
Sex Ratios. 26
Weight and Length 30
Length at Age 31
Weight et Age 31
Age Composition 31
Variable-meah Gill Net Samples 34
Midwater Trawl Samplea. 34
Purse Seine and Lampara Net Samples. 36
Total Age Composition for Spawning Season 36
Catches of YOY Herring and Recruitment 36
Relationahip Between Unripe Herring and Spawning Events 39
Tides, Barometric Pressure, Rainfall, and Spawning 42
Non-apawning Season Sampling of YOY Herring 44
DISCUSSION 44
LITERATURE CITED 49

14 min

page

$\begin{aligned} & \text { FIGURE 1. Pacific herring acoustic survey and ampling areas in } \\ & \text { San Francisco Bay, 1987-88... } 2\end{aligned}$
FIGURE 2. Pacific herring acoustic aurvey area in Tomales Bay. 1988.. 3

FIGURE -3 . Percent length frequencies ($2-$ mm intervals) from variable-mesh gill net samples, San Francisco Bay, October 1987 to February 1988..................................... 19

FIGURE 4. Percent unripe females in midwater trawl samples and days before nearest apawn. San Francisco Bay, 1987-88....41

FIGURE 5. Spawning events, tide, rainfall, and barometric pressure data for San Francisco Bay. October 1987 to March 1988...43
page
TABLE 1. Summary of Herring Schools in San Francisco Bay and Biomass Estimates. November 1987 to March 1988 12
TABLE 2. Number of Pacific Herring by Body Length (2-mm Intervals).Intervals Combined by Assigned School Number. fromVariable-mesh Gill Net Samples. San Francisco Baye\% October 1987 to February 198818
TABLE 3. Sumary of Mean Body Length (min) by Meah Size from Variable-mesh Gill Net Samplea from San Francisco Bay. 1981-82 to 1987-88 20
TABLE 4. Number of Pacific Herring by Body Length (2-mm Intervals). Combined by Assigned School Number, from Midwater Trawl Samples. San Franciaco Bay. November 1987 to March 1988 22
TABLE 5. Number of Pacific Herring by Body Length (2-mm Intervals), Combined by Assigned School Number, from Purae Seine and Lampara Net Samples. San Franciaco Bay. January to February 1988 24
TABLE 6. Number of Pacific Herring by Body Length (2-mm Intervals) from Roundhaul Samplea, 1981-82 to 1987-88 25
TABLE 7. Comparison of Gill Net, Midwater Trawl, Combined Gill Net and Trawl, and Roundhaul Samples, San Francisco BaY. 1981-82 to 1987-88 27
TABLE 8. Composition of Pacific Herring Samples from San Franciaco Bay, by School and Sex, Gears Combined, November 1987 to March 1988 28
TABLE 9. Percent Female Herring by Number from Variable-mesh Gill Net Samples from San Franciaco Bay, 1981-82 to 1987-88 29
TABLE 10. Mean Body Length (min) and Weight (g) of San Francisco Herring by Age and Season, 1983-84 to 1987-88 32
TABLE 11. Number of Pacific Herring at Age by Body Length (2-mm Intervale) from All San Franciaco Bay Samples. October 1987 to March 1988 33
TABLE 12. Percent Age Composition by Number of Pacific Herring Samples, by School Number, Based on Otolith Aging and Age Assignments by Length, from San Francisco Bay, October 1987 to March 1988 35
TABLE 13. Percent Age Composition for 1983-84 through 1987-88 Spawning Seasons in Sen Francieco Bay 37

LIST OF TABLES (continued)

TABLE 14. Monthly Average Catch per Tow of Young-of-the-Year Pacific Herring in San Francisco Bay. April to June. 1983 to 1986. and Recruitment Eatimates 1985 to 1988..... 38

TABLE 15. Number of 2-. 3-, and 4-yr-Old Herring (x 100) in San c Franciaco Bay Spawning Population, 1981 to 1986.......... 40

TABLE F6. Number of Young-of-the-year Pacific Herring by Body Length (2-mm Intervals) from Midwater Trawl Samplea, San Franciaco Bay. April to August 1987....................... 45
APPENDIX A. Summary of Adult Herring Samples from San Francisco Bay. October 1987 to March 1988 51
APPENDIX B. Number of Pacific Herring by Body Length (2-mm Intervala) from Variable-meah Gill Net Samplea, San Franciaco Bay. October 26, 1987 to Febraury 5, 1988...53
APPENDIX C. Number of 'Pacific Herring by Body Length (2-am Intervals) from Midwater Trawl Samples. San Francisco Bey, November 18. 1987 to March 14. 1988................ 54
APPENDIX D. Number of Pacific Herring by Body Length (2-mm Intervals) from Purse Seine and Lampara Net Samples. Sen Franciaco Bay, January 5 to February 26, 1988 58
APPENDIX E. Eatimated Weight at Length for Ripe Pacific Herring from San Francisco Bay. 1987-88. 61
APPENDIX F. Number of Pacific Herring at Age by Body Length (2-min Intervals) for Selected Fish from San Francisco Bay. December 1987 to March 1988............. 62

INTRODUCTION

Thia was the seventh year in which the California Departaent of Fiah and Game (CDFG) Pacific Herring Research Project has conducted acoustic aurveys and obtained herring amples during the oct́ober to March Epawning season. Data have been presented for each season in administrative reporte (Reilly and Moore 1982. 1983. 1984, 1985. 1986. and 1987). Biomass estimates using hydroacoustics are directly comparable with those from spawn deposition surveys (Spratt 1988a). Samplea obtained from the roundhaul fishery and with our research nets complement those from the gill net fiahery (Spratt 1988b) and together provide a complete assessment of the age. length, and sex composition of San Francisco Bay's apawning population, both fished and unfished.

The Pacific Herring Research Project has one major objective, to provide data necessary for long-term management of the herring roe and roe-on-kelp fisheries in California. Research. oriented to this objective during the 1987-88 herring season, included: 1) hydroacoustic estimation of spawning bionase of each school of adult herring in San Franciaco Bay (Figure 1); 2) determination of length. sex, and age compoaition of each achool; 3) weight/length/age relationships; 4) one hydroacoustic survey in Tomales Bay (Figure 2): 5) Eampling young-of-the-year (YOY) herring during the non-apawning aeason in San Frencisco Bay; and 6) ampling the experimental roe-onkelp fishery in San Francisco Bay. Resulta from the roe-on-kelp ampling are presented in Moore and Reilly (1986).

METHODS

FIGURE 1. Pacific herring acoustic survey and sampling areas in San Francisco Bay, 1987-88.

FIGURE 2. Pacific herring acoustic survey areas in
Tomales Bay, 1988.

Research Vessele
The 23-ft R/V PANDALUS was used on all field days in San Franciaco Bay. The acoustic survey in Tomales Bay was conducted onboard F / V CHRISTINE and $F / V E V A U$.

Sampling Gear Types
Gill Nets. During the spawning season. nylon multifilament. variable mesh gill nets were used to sample herring in depths from 6 to 65 ft . The mesh array consisted of five 10-ft long by 6-ft high panels with mesh size 1.5. 1.75. 2.0. 2.25. and 2.5 in. Neta were anchored and marked by floats. Soak times varied from 10 min to 15 hr. Moat samples were separated by mesh size.

Midwater Trawl. A 12-ft aquare (mouth opening). 65-ft long. double warp midwater trawl with a 0.5-in. stretched-mesh cod end was used throughout the season. Tow speed was approximately 3-4 kn and tow duration ranged from 2 to 27 min .

Roundhaul Nets. From January 5 to February 26. 1988. samples were obtained from purse seine and lanpara boats. Fish were either collected with a brail as they were brought to the aide of the boat with the seine or lampara net, or obtained from a bin at an offloading dock.

Non-apawning Season Field Work

Samples of YOY herring were collected with the midwater trawl in San Francisco Bay during April. May. July, and August 1987 in order to compare growth with previous year classes.

Acoustic Monitoring and Procesaing
Standard Acountic Suryeys
Hydroacoustic surveys were conducted 3 or 4 deach week in San

Francisco Bay. Areas surveyed were watera bounded by the Richmond-San Rafael Bridge, Oakland Bay Bridge, and Pt. Bonita (Figure 1). hereafter referred to as north bay, and waters between the Dakland Bay Bridge and Oyster Point (Figure 1), hereafter referred to as south bay. İcoustic monitoring was done at apeed of approximately 8 kn . A Reytheon model $D E-719 B$ recording fathometer depth sounder was used to locate and delineate herring schools 2-3 deach week. The paper recordinga from this unit allowed us to estimate biomase using a technique we call "viaual integration".

A scientific grade echo sounder, the Biosonics model 105, was used to conduct acoustic transects over herring schools on approximately weekly basis: this allows biomass estimation using the acoustic technique of echo integration. The data collection system consists of the echo sounder, narrow bean (6°) 200 kHz transducer, oscilloscope. chart recorder, video casaette recorder, and digitizer. Reflected echoes from herring are converted to voltages. digitized after being attenuated by factor of ten, and stored on tape. The echo aunder incorporates a time-varied gain which insurea that particular fish will reflect the same amount of voltage regardless of its depth. Biomass estimates for most achools were obtained this season uaing both echo integration and visual integration.

Viaugl Integration

Visual integration has been used to estimate biomass since 1982.
Herring schools were plotted on charts of San Francisco Bay uaing the horizontal extent of herring traces, measured from the Raytheon paper recordings, botton depth (also from the echosounder), compass bearinga, and landmarka. A Housten Inatrument HI-PAD digitizer was used to calculate surface area of portions of schools with
approximately uniform density and height in the water column, based on visual examination of the paper recordinge.

Density estimates (tons/10 $f t^{2}$) were then assigned to different parts of each achool based on calibration factora developed during charter of purse aeine veasel in 1983 (Reiliy and Moore 1983) and modified from intercalibration factors obtained in 1985 from a Washington Department of Fiaheries (WDF) Biosonica model 101 echo sounder and model 121 echo integrator (Reilly and Moore 1985). Finally, achool biomasa was calculated for each achool aurveyed. Echo Integration

Tapes were processed in Seattle using WDF's echo integrator and interface (to increase attenuated voltages). The integrator calculates densities of herring per unit volume for each depth atratum for each transect. Depth strata were arbitrarily chosen to be 5-10. 10-15. 15-20. 20-25, 25-30, and 30-70 . The firat 5 mere not integrated due to the absence of herring and the presence of air bubbles from vessel wakes. An average density per unit area was then calculated and multiplied by the aurface area bisected by each transect to obtain a biomass estimate.

Dual Bean Tranaducer Survey

A apecial survey was conducted with Biosonics personnel to obtain back-scattering cross section values () for San Francisco Bay herring on Jenuary 2. 1988. These values are measure of the reflected voltage from aingle fish targets and are releted to target atrength (TS) by the equation

$$
T S=10 \log \sigma
$$

A dual bean tranaducer, echo sounder, and procesaor were ueed to discriminate single echoes from herring school. Approximetely 9000
herring targete in north and south bay waters were individually discriminated. Average back-scettering cross section (f) was $4.94 \times$ $10^{-5} \mathrm{~m}^{2}$. Herring averaged 185 mm in BL and 96 g in weight; and averege $\sigma_{w}\left(F\right.$ per $k g$) was 5.15×10^{-4}. This value was incorporated into tik acaling equation, and is equivalent to a target strength of $-32.9 \mathrm{~dB} / \mathrm{kg}$. This is almost identical to the value of $-33.0 \mathrm{~dB} / \mathrm{kg}$ selected last year (based on WDF studies of Washington herring). Calibration Parameters and "A" Constant

The integration eatimate ia acaled by a factor known aa the "A" constant. This incorporates system parameters of tranamitter source level. receiver sensitivity, bean pattern factor of the transducer. and pulse width. plus other factors including speed of sound in water. pi. and the average back-scattering cross section of herring.

The first three parameters are calibrated in an acoustics laboratory. This season, two sets of calibrations to determine transmitter source level (transmitted pressure at 1 m from the transducer) and receiver sensitivity (the through system gain at 1 m from the transducer) were perforaed, one each by the Applied physics Laboratory in Seattle and by Biosonics. Inc. The beam pattern factor is a measure of how transmitted presaure within the acoustic beam changes with the angular diatance from the acoustic axis. This year the correct beam pattern factor was obtained from Biosonics for our transducer. Last season, value from aister transducer was used which proved to be erroneous. Acouatic bionass estimates for last season were recalculeted this year.

Source level and receiver eeneitivity (mean of two calibrations) were estimated to be 218.25 and -129.125 decibels, respectively. The correct beam pattern fector was 5.79×10^{-4}. Incorporating these
values and σ_{w} into the acaling equation produced an A constant of 0.138. Last season, an A constant of 0.088 was derived. Adyusting for average weight differences between herring this seamon and last season. the correct A constant should have been 0.144 last aeason and corresponds to a $64 x$ increase in the original echo integration biomass estimate.

Field Procesaing of Sampilea
For all fiah sampled, body length (BL) was determined to the nearest mmeasuring from the tip of the snout to the end of the pigment underneath the last column of acales on the caudal peduncle (Spratt 1981). All fish except YOYs were sexed and recorded as either unripe. ripe, or spent; spent herring were excluded from age. weight. and length analyses. Subsamplea of approximately 17 fish per $10-m m$ size class were retained from each achool for weighing and aging. Additional herring ≥ 210 mm BL-were selected to augent the age-length data base.

An experiment was conducted to investigate weight loss from extrusion of eggs and milt due to stress fron capture. Herring were sexed. measured and bagged individually as moon as posaible after capture (not standard procedure) and subsequently weighed.

Laboratory Procesaing of Samples

All herring aubamples were returned to the Menlo Park
laboratory, frozén. end thewed béfóréprócessing. Thawed lengthé were matched with fresh lengths from the field, or a correction factor of 1.020 for males and 1.023 for femeles was applied to eccount for ahrinkage. Freah or corrected lengtha were ueed in all analyaes. Weight was determined to the nemrest 0.1 g ; previously we found no
aignificant difference between freah and thawed weight (Reiliy and Moore 1985). Fish that were partially spent (determined subjectively by examination) were not weighed.

Otoliths were removed from herring, rubbed clean on wet paper towels妾 placed in ethanol, and stored dry in gelatin capsules. Otoliths were read in ethanol under a disaecting microscope by two readers independently. When disagreement occurred in aging. the first reader would re-exanine the otolithe. If agreenent could not be reached they were aent to Jerome Spratt (CDFG-Monterey) for another reading.

Assigned Ages and School Numbers

Ages were assigned to unaged fish within 2-min intervals based on the percentege composition of fish aged using otoliths for that particular size interval. All fish aged or assigned an age were then combined by achool number to determine total age composition.

A achool number was used to define each herring school that apawned in San Franciaco Bay. Each ample of herring was asisigned to a school based on a combination of factors: 1) dete of sample; 2) date of spawning as determined by egg deposition surveys; 3) hydroecoustic observations of achooling locations; 4) percentage of unripe females in each ample; 5) examination of daily landinga of the commercial fleet (highest landinge coincide with spaning eventa): and 6) miscellaneous information from fishers.

Totel Aqe Composition for Spewning Seamon
Total percentege ege composition was calculated for the entire apawning seeson based on two separate biomass estimates for each school: 1) the aum of spawn escapement eatimate (Spratt 1988a) plus comercial catch; 2) our visuel integration biomese entimate
(Spratt's eatimatea were used for achools not detected hydroacoustically). To calculate total percentage age compoaition by number of fish, mean $B L$ by school was converted to mean weight, using values from Appendix F. Each biomass eatimate for each school was divided by the appropriate mean weight, and percentage age composition was used to calculate total number of fish by age for each achool. Numbers for each age were then aummed and divided by the total number of fish. For achoole not sampled, data from the nearest achool. temporally, were used. To calculate total percentage age composition by weight, 1987-88 mean weight at age values were used along with percentage age compoaition by achool.

Computer Procesaing of Samples

Length, weight, aex, and age data from all herring amples were entered in an IBM XT microcomputer using dBase III programs. Mean BL by sex and maturity stage and length frequencies for each anple and school were generated. Other atatistical analyses were performed using programe from ABSTAT.

Supplementary Data
Local precipitation and barometric pressure data were obtained from the National Climatic Data Center. Aaheville. North Carolina. for San Francisco International Airport. These were used to determine if a relationship exists with apawing events.

RESULTS

Acountic Monitoring of Herring Schools in San Franciaco Bay On October 26 the first adult herring of the seeson were captured in Raccoon Strait. Biomass was too small to be estimated by either

TABLE 1. Summary of Herring Schoola in San Franciaco Bay and Biomass Estimates. November 1987 to March 1988.

integration method, and trace quantities of egg membranes were found in Sausalito several weeks later: the spawn occurred on approximately November 3 (Table 1).

Little hydroacoustic activity was observed until November 18 when school 2 first appeared near Sausalito. Midwater trawl amples showed this small school to be mixed with anchovies: herring comprised $40 x$ by weight of fish sampled. Spawning occurred aporadically from November 24 to 29 in Sausalito. On opening day of the XH gill net season (November 29) aeveral boats landed a total of 26 tons from this school.

The firat aignificant (>1000 tons) school (3) of the season was detected November 29 between the Dakland Bay and Golden Gate Bridges. A trawl ample contained only $23 x$ unripe herring; these ripened rapidly and apawning occurred during the next $2 d$ along the San Francisco waterfront. Gill netters landed 326 tons from this school.

On December 2 the firat wave of school 4 was encountered at high tide between Hunters Point and the Dakland Bay Bridge. A trawl ample Yielded $79 x$ uriripe fiah. Landinge from this part of the achool peaked December 7 and 8 as spawning occurred at San Francisco and Hunters Point. A second wave of herring appeared December 7 and apawned December 9-11 as landings decilned and peaked again. The XH fleet exceeded their quota on December 11 and their aeason was closed: a total of 1467 tons was caught from school 4. A visual integration estimate was obteined on December 2 of the first wave in the south bay, and an echo integration survey was completed. December 7 of the second portion of the school.

On December 3, using the Raytheon echo aounder, amell achool was detected and sampled near Sausalito. The same school was echo
integrated on December 5. Although no apawn was diacovered in north bay waters. gill netters landed 100 tons from Sausalito December 7-8 and these fish were considered to be from achool 5 .

Part of echool 6 first appeared in Raccoon Strait on December 9: a trawl sample yielded $72 x$ unripe herring. These fish were echo integréted the next day. se was a larger body of fish near San Francisco. On December 11 trawl sample of the main body near Alcatraz Ialand contained 52x unripe fish. The northern part of the school was agein sampled December 14 and contained 67x unripe herrina. Echo antegration of the southern portion on December 17 indicated a sionificant increase in bionass with only $26 x$ unripe fish. On the next day visual integration yielded the largest biomass present sofar thas season. from west of Alcatraz Island to Hunters Point. Apparently both parts of the achool had coalesced by this time and new fish (achool 7) had also moved into the bay; trawl ample near Alcatraz yielded $92 x$ unripe fish. Significant apawning did not occur until December 25. Based on the difference between the echo and the visual integration eatimatea, it ia likely that the latter contained approximately 3000 tons of herring which apawned with the next achool (7).

On December 28 tremendous quantity of herring (part of echool 7) was visually integrated from near Harding Rock (HR) buoy to Ialais Creek with a break in diatribution near the Oakland Bay Bridge. Two daya later trawl amplea yielded 68x unripe fiah near Alcatraz Ialand and only 39x unripe fieh in central eouth bay. Echo integration of the ame part of the achool at low tide between the Oakland Bay and Golden Gate Bridges produced more than 10,000 tona. On the next day a aecond massive school was visually integrated at high tide from north
of Treasure Ialand to the Richmond-San Rafael Bridge and contained only 23x unripe herring. Together, these fish were considered as achool 7 and contained the largeat acoustic biomass of the season. During our special dual beam survey January 2, parts of the school were atill present in north and south bays but echo integration was not posisible. By the next day (the season opener for the odd gill net and roundhaul fleets), apawning had already commenced along the Dakland shoreline and an echo integration survey of the second part of the achool yielded coneiderably less blomass than the viaual integration survey. The commercial catch during the January 3-6 spawn in Oakland. San Francisco, and Treasure Ialand was 1722 tona. As spawning was tapering off, a new school (8) moved into the bay near Sausalito on January 5. Visual and echo integration estimates were obtained one day apart on January 5 and 6. Spawning occurred January 7-8 near Sausalito and 155 tons were caught by the fleet. In early January, schools were entering the bay in rapid succession. On January 8. achool (9) was visually integrated near San Francisco. The aame school was echo integrated January 11 and a trawl sample contained 67x unripe herring. Before these fish began apawning on January 16 at Hunters Point (comercial catch 725 tons) the firat aigna of achool 10 were detected. A January 13 trawl ample of school 10 yielded 92% unripe herring. Although school 10 subsequently was the largeat school estimated from apawn deposition surveys, repeated scoustic surveys during the next 2 whs yielded significantly less biomese. Echo integration surveys were conducted Januery 19. 22, and 27 on separate portions of achool 10, but the total biomasa eatimate wes only 9390 tons. A visuel integration survey on Jenuary 25 yielded less than 4000 tons. Even when the
confidence limate from apawn depoedtion eanpling (Spratt 198\&a) are considered. it is likely that acoustic surveys underestimated this achool adgrificantly.

Between February 1 and 8 . several portions of a new school (11) were scettered throughout north and south bay waters and were repurted Σ
as far zouth as the San Mateo Bridge where gili net and roundhaul boats caught fish. The best acoustic trace of this school occurred with our echo integration equipment on February 8 when herring had cualeaced into a dense mase between Alcatraz Ialand and Central Bagir. Approximately 1500 tons were caught. primarily by the roundhaul fleet. before and during the February $8-13$ apawn at Hunters Point.

Another moderately large school (12) was first located in the south bay at high tide on February 16. Echo integration of this achool yielded 2535 tons $(45$ tons of roundhaul landings were made prior to the arvey). A second echo integration survey on February 24 yielded only 2040 tons: however. 391 tons had been taken by roundhaul boats by this date, thus making the two estimates comparable. A visuel integration survey yielded 2130 tone on February 22. Althougtz no apawn was detected from this school. more than $10 x$ apent herring occurred in trawl samples between February 22 and 26.

A few roundhaul boats continued to fish from Februery 29 to March 4. during which time the last school (13) of the season was detected acousticaliy and ampled by trawl. This amall school renained near Sauaalito until March 14. but no apawn could be located. Only ecottered herring were caught incidenteliy to anchovies during the rest of March.

A best bionass estimate is presented for the 1987-88 seasor
(Tabie 1) based on both acoustic survey techniques. This best estimate reflects the maximun biomass present in closest proxinity to a spawn, but also considers the presence of separate schools, one ripe and ong unripe, on successive survey days. such as occurred December 17 and 18 . When visual and echo integration estimates were fairly similar for a particular school (9 and 12), the average was used as the beat eatimate. Our total acoustic biomass estimate was 70.290 tons. In addition, it was determined from landinga that 820 tone of herring were taken by the roundhaul fleet prior to those acoustic surveys which produced the best estimate. Thus. our adjusted acoustic estimate is 71.110 tons. This is approximately $3 x$ greater than the spawn escapement-plus-catch estimate of 68.881 tons. If 2830 tons from schools 12 and 13 (for which no spawn escapement was found) are added to the escapement-plus-catch biomass. the total estimates from the two methods differ by only 600 tons.

Our revised acoustic biomass eatimate for the 1986-87 season. incorporating both acoustic integration methods, is 54.265 tons. In addition. it was determined that 1140 tons were caught by the roundhaul fleet prior to acoustic aurveys on individual achools, and One achool of 875 tons (spawn escapement plus catch) was not surveyed. Thus, the best acoustic estimate for $1986-87$ is 56.280 tons, $1 * 1 e s s$ than the spawn escapement-plus-catch estimate of 56.816 tons (Spratt 1987).

Tomalea Bay Acoustic Survey

The presence of the gill net fleet precluded acoustic biomass eatimates based on standard transecta. In addition. the shallow
topography of the bay may cause boat avoidance to be a eigrificart factor. Although the survey was conducted at night, herrang were onjy detected in amall discrete patches near the bottom. During 2 hr of acoustic surveys. nine small patches of herring were located. All but one had denazties ranging from 3 to 47 tons per $10^{6} f t^{2}$. These woujo be considered low to moderately low densities in Sari francisca Bay. An average patch measured 200 ft n diameter: this would equate tc a range of 0.08 to 1.47 tons per patch. One patch had a density of i\&\& tons/10 ${ }^{6} t^{2}$ (moderately hzgh for San Francisco Bay standards): this would have yielded 5.9 tone of herying.

Herring Samplea from Sar Fraricaaco Bay
Eighty-two sanples of adult herrang were collected in San
Francisco Eay from October 26. 1987 to March 14. 1988 (Appendix A): these contained a total of 16.316 fieh. Herring were sampled from all 13 schools.

Lenath Composition
Varıable-mesh Gill Net Samples. Many of this season's herring schoole were not adequately sampled with thia gear. Only 865 fish were obtained from nine samples (Appendix B). Only amplee from schools 4. 7, and 9 (Appendix A) were aufficiently large (n>100) to provide useful comparisons of length composition. Mean BL decreased substantially from echool 7 (early January) to echool 9 (late Jenuary)(Table 2): this is typical each eeacon as smaller herring begin to appear in lerge quentities.

Length frequency histograms for each meah size were combined for all samples this season (Figure 3). Meen BL data by mesh elze from the pest seven seasons are aumarized in Teble 3 . While there is

TABLE 2. Number of Pacific Herring by Body Length (2-mm Intervals). Combined by Assigned School Number, from Variable-mesh Gill Net Samples. San Francisco Bay, October 1987 to February 1988.

FIGURE 3. Percent length frequencies (2-mm intervals).. from vaziable-mesh gill net samples, San Francisco Bay, October 1987 to February 1988.

TABLE 3. Summary of Mean Body Length (m) by Meah Size from Variable-mesh G111 Net Samplea from San Francisco Baye 1981-82 to 1987-88.

usually conaiderable overlap in length frequency diatrituticin between adjecent meshes. mean $B L$ for a particular mesh size has fallen withan a fairly narrow range ($6-9 \mathrm{~m})$. demonstrating the selective nature of this sampling gear.

Midwater Trawl Samples. The traw was our most effective ampling tocil this aeason. ylelding 11.272 fiah in 40 amples (Appendix C) from all schools except the first one. Mean Bi by schori wae feirly undform between mid-November (achool 2) and early January (school 8). varyirg by leae then 6 mm (Table 4). One month later (achool 11). mear BL had decreased by approximately 15 mm as smajify herring joined the prespawning aggregations. Mean BL then remaineo below 165 mm for the duration of the season. Thas season. for schoojs 4. 7. and 9. alll net mean BL averaged 8 mm greater than that of trawi mean BL. Lagt season's mean BL by school from trawl samples rarigec from 166 to 184 mm.

Puree Seine and LamparáNét Sambléa. We measured 4179 herrzra from 3 : samples (Appendix D) taken from January 5 to February 26 from achoole 7-12. This season. unlike most, the roundhaul fleet bearan fiehing before the traditional influx of smallex herring. Mear BL from the first two achoois sampled was approximately 20 mm greater than that of the last two achools eampled (Table 5). Mean BL avereged 2.8 mm greater (range 0.2 to 5.8 mm) than that of trawl amples from achools 7-12. Gill net ample mean $B L$ from achoola 7 and 9 averaged 5.2 m greater then roundhaul ample meana from those achools.

During the past seven seasons, ennual mean BL of alifish sampled from the roundhaul fleet has ranged from 162 to 181 mm (Table 6). These fluctuations ere determined by the relative atrength of year clasees as well as periode of unusual growth, as shown in samples from

TABLE 4. Number of Pacific Herring by Body Length ($2-\mathrm{mm}$ Intervals). Combined by Asaigned School Number, from Midwater Trawl Samplea. San Franciaco Bay. November 1987 to March 1988.

Body lenath (mm)	2	3	4	$\begin{gathered} 3 \mathrm{gr} \\ 5 \end{gathered}$		$\begin{aligned} & \mathrm{Nu} \\ & 7 \end{aligned}$	8	9	10	11
130-139						2		8	16	23
140-141						1	1	3	11	8
142						2		10	- 10	27
144 E					1	1		8	13	15
146					2	12	2	17	32	51
148			1		2	8	3	29	34	67
150			2		6	13	3	25	52	58
152	1	1	3		13	33	7	54	92	113
154	1	4	1	3	14	23	2	41	70	96
156	1	3	7	6	22	50	10	75	139	162
158		1	12	4	32	43	3	60	89	101
160	3	1	13	9	44	38	5	61	68	129
162	6	1	19	3	64	94	12	81	107	159
164	5	3	15	5	38	46	9	44	78	102
166	6	7	22	6	77	91	12	72	79	109
168	11	4	12	3	45	48	10	52	65	69
170	10	3	10	7	52	58	4	40	57	62
172	13	5	28	10	80	74	13	50	68	68
174	6	5	13	7	49	45	11	29	46	37
176	15	13	24	8	80	92	13	49	55	37
178	12	10	23	4	81	60	12	34	50	31
180	17	12	35	6	66	42	12	28	36	27
182	30	21	28	15	105	91	25	43	68	42
184	21	11	24	8	79	59	14	40	45	20
186	35	14	41	6	115	80	28	50	52	25
188	12	13	31	8	78	73	16	35	36	26
190	19	13	33	8	89	60	17	24	40	14
192	17	15	41	6	113	83	13	33	44	27
194	12	12	35	7	73	38	8	10	24	16
196	14	11	26	5	83	37	10	27	29	16
198	8	4	20	9	49	43	8	19	19	9
200	4	7	22	3	50	36	8	11	15	12
202	11	4	24		58	34	15	11	14	8
204	1	2	12	3	46	22	8	10	5	6
206	4	4	8	1	51	34	8	5	7	5
208	1	1	5		17	13	1	3	9	7
210	1		7		12	12	2	8	7	3
212	1		8	1	9	11	1	2	1	5
214	1		2	1	4	3	2	2	2	4
216	1		1		10	3	2	2	2	1
218		2	2	2	4	7	2	1	1	2
220					2	6		1	1	3
222		1	1		1	2	3			2
224						1			1	
226						1				
228						1				

232
N Mean
$300 \quad 208 \quad 611 \quad 164 \quad 1817$ 184.2184 .8184 .7180 .4183 .5179 .2182 .4170 .9169 .3164 .9

TABLE 4. (continued)

$$
-24-
$$

TABLE 5. Number of Pacific Herring by Body Length (2-mm Intervala): Combined by Asaigned School Number, from Purse Seine and Lampara Net Samples. San Franciaco Bay. January to February 1988.

TABLE E. Number of Pacific Herring by Body Length (2-mm Intervele) from Roundhoul Sapples. 1981-82 to 1987-88.

the 1983-84 aeason affected by El Niño conditions. Thie season. above average recruitment of the 1986 year class resulted in the second smallest annual mean $B L$ in seven seasons. In addition. based on the percentage of herring less than 150 mm BL, it appears that growth of this ationg year class may have been below average.

Comparison of Length Compoaition by Gear Type. In previous reports (Reilly and Moore 1982. 1983. 1984. 1985. 1986. and 1987) we have found blases inherent in the variable-nesh gili net (towards larger fiah) and miwater trawl (towarde smaller fish). In the absence of unbiased roundhaul samples, a combination of gill net and trawl amples from a particular school may be the most accurate representiation of the size composition of those herring spawning before or after the roundhaul fishery. During the past seven seasoris 19 schools have been adequately sampled by each of the three gears (Table 7). Differences between mean $B L$ from roundhaul amples and the combined mean $B L$ from gill net and trawl samples ranged from 0.1 to 4.4 mm and averaged only 1.2 mm .

Sex Ratios
The usual trend of an increasing percentage of females in herring schools as the season progressed was again apparent this season (Table 8). In general. herring achoole from late October to mid-December are composed of more males than females, those from late December until the end of January have a sex ratio of approximately 1.0, and those in February and March have more femalea than malea.

Data from this sesson are consistent with those of previous years in demonetrating a trend of increasing percentege of femele herring with increasing mesh aize in variable-meah gill net asmples (Table 9). Earlier maturation and selective mortality of 2-yr old males (Reilly

TABLE 7. Comparieon of Gili Net. Midwater Trawl. Combined Gill Net and Trawl, and Roundhaul Samples. San Franciaca Bay. 1981-82 to 1987-88.

Year	School number	Mean q111 net	$\begin{aligned} & \text { BL } \\ & \text { trow } \end{aligned}$	Ave. Mean BL gill net-trawl	$\begin{aligned} & \text { Mean BL Diff } \\ & \text { roundhaul mea } \end{aligned}$	$\begin{aligned} & \text { B } n \\ & \text { in } B L \\ & \hline \end{aligned}$
1981-82	-	178.4	171.9	175.1	175.2	0.1
1982-83	12	184.4	171.1	177.8	180.1	2.3
	13	182.2	175.7	178.9	178.6	0.3
1983-84	7	174.6	165.2	169.9	169.3	0.6
	8	171.0	157.3	164.1	160.8	3.3
	9	164.9	156.3	160.6	161.4	0.8
	11	161.3	161.6	161.4	160.3	1.1
1984-85	10-11	178.1	169.1	173.6	169.2	4.4
1985-86	5	184.3	178.8	181.6	181.1	0.5
	7	178.6	175.1	176.8	175.6	1.2
	8	182.7	174.0	178.3	178.0	0.3
	9	184.4	179.2	181.8	179.9	1.9
1986-87	8	183.6	174.5	179.0	177.9	1.1
	10	180.2	172.3	176.2	176.4	0.2
	11	175.3	168.3	171.8	170.1	1.7
	13	177.4	169.3	173.3	171.3	2.0
	14	177.9	165.6	171.7	172.2	0.5
1987-88	7	189.6	179.2	184.4	185.0	0.6
	9	181.9	170.9	176.4	176.1	0.3
					mean=	1.2

TABLE 8. Composition of Pacific Herring Samplea from San Francisco Bay, by School and Sex. GearslCombined. November 1987 to March 1988.

School	Month	N	$\begin{gathered} \text { Per } \\ \text { Male } \end{gathered}$	ge by number Female	
1	Nov	49	55	45	
2	; Nov	300	55	45	
3	- Nov	208	56	44	
4	Dec	1059	56	44	
5	Dec	164	60	40	
6	Dec	1817	52	48	
7	Jan	1924	50	50	
8	Jan	709	52	48	
9	Jan	1676	49	51	
10	Jan	2234	50	50	
11	Feb	2980	45	55	
12	Feb	2032	42	58	
13	Mar	691	36	64	

Mesh size (1n.)	$\begin{aligned} & 1981- \\ & 1982 \\ & \hline \end{aligned}$	$\begin{aligned} & 1982- \\ & 1983 \\ & \hline \end{aligned}$	$\begin{aligned} & 1983- \\ & 1984 \\ & \hline \end{aligned}$	$\begin{aligned} & 1984- \\ & 1985 \\ & \hline \end{aligned}$	$\begin{aligned} & 1985- \\ & 1986 \\ & \hline \end{aligned}$	$\begin{aligned} & 1986- \\ & 19871 \\ & \hline \end{aligned}$	$\begin{aligned} & 1987- \\ & 1986 \\ & \hline \end{aligned}$	mear
1.5	37	36	38	36	30	42	32	35.9
1.75	53	42	52	43	37	45	47	45.6
2.05	57	52	64	48	49	55	53	54.0
2.25	79	65	73	62	63	67	66	67.9
2.5	- 2	- 2 -	- 2	- 2	80	83	-	81.5
L'excludes October 1986 sample								
2'ansuffı	sampl	size						

and Moore 1985) reault in a higher proportion of females among older herring. In addition, female herring have a higher girth/length ratio and thus are caught more frequently in larger meshes.

Weight and Length
Weights and lengths for 1643 herring collected from October 1987 to March 1988 were used to generate the following equations using natural logarithms:

For unripe males

$$
\ln \omega=-12.26+3.22 \ln L \quad r=.98 . n=80
$$

For unripe females

$$
\ln w=-13.12+3.38 \ln L \quad r=.99 . n=478
$$

For ripe males

$$
\ln w=-12.75+3.31 \ln L \quad r=.99 . n=602
$$

For ripe females

$$
\ln w=-13.31+3.43 \ln L \quad r=.99 . n=483
$$

For all ripe herring

$$
\ln w=-13.14+3.39 \ln L \quad r=.99 . n=1085
$$

Estimated weights for rape male herring from 130 to 238 mm BL . (Appendix E) ranged from 5 to $2 x$ less, respectively, than those from the 1986-87 season. Estimated weights for ripe female herring from 130 to 238 mm BL (Appendix E) ranged from 8 to $2 x$ less. respectively. than those for 1986-87. Last season, the weight/length regression for ripe herring was:

$$
\ln W=-12.84+3.34 \ln L \quad r=.98, n=1257
$$

An overall test between the two regressions for all ripe herring showed that the slopea were not aignificantly different at the 99\% level of significance $(F=4.35, p=0.037, d . f .=2340$).

The weight/length regresiion for ripe herring bagged individually
thae seasor was:

$$
\ln \omega=-13.04+3.37 \ln L \quad r=.98 . n=248
$$

Ar overell test between this regression and the $1987-88$ regressiori for alı ripe herring was not sianifacant at the 99\% level (F = 3.98. $=$ 0.019. d.E. $=13 \Xi 2$. This 1 ndicates that weight/length relataorerape repreaentative of the apawning population may be determined ty eliminating partially spent fish from weight determanationa in tre a aboratory. However. some ripe herring lose a sigrificant ancunt of goradel meterial due to etreae ufor capture.

Lenath at AaE

Mean length at age hag ahown little variation gince the El Niruanfluenced $1983-84$ season (Table 10). The 1982 year class (ahown as 3-yr olds $1 n 1984-85$ and 6-yr olds an 1987-88) continues to demonstrate above average arowth.

Wedaht at Aqe

Mean weights at age for 2- to 7-yr-old herring ahowed small declines from the previous season (Table lo) but are well above the El Nanc season weigtits of $1983-84$ and cortinue to indacate a heajthy population. As 6-yr olds. the 1982 year class averaged only 3.7 a lese than 7-yr olds this season. Nine-yr olds have been sampled too infrequentiy to include with the weight, length. and age data.

Age Conposition

Paise of otoliths were aged for 1892 herving from atratified random samples from variable-mesh gili nets. midwater trewl. and furee seine and lampera nets. Silght difyerences in mean BL at age presented in Table 10 and Table 11 are due to the pooling of deta in Table 11 1nto 2-nin intervala and the excluaion of partioliy spent fieh in Table 10 for 1987-88 herring.

$$
\text { - } 32 \text { - }
$$

TABLE 10. Mean Body Length (mm) and Weight (g) of San Francisco Bay Herring by Age and Season, 1983-84 to 1987-88.

Age$(y r)$	Season									
	1983-84 1984-85				1985-86		1986-87		1987-88	
	BL	ωt.	BL	Wt.	BL	Wt.	BL	$w t$.	BL	$\boldsymbol{\omega t}$
2	153	47.3	161	64.1	162	63.5	160	61.5	159	58.0
3	$\div 172$	68.3	182	96.5	178	88.6	179	89.7	176	81.0
4	182	81.6	190	111.2	194	118.5	190	112.8	191	10E. 8
5	194	99.7	198	126.0	199	127.4	204	140.2	202	130.8
6	- 201	111.4	204	138.1	206	141.5	209	152.3	211	151.7
7	210	127.8	210	148.8	211	155.4	215	160.5	215	155.4
8	214	135.6	213	156.1	217	166.3	218	166.7	217	167.7

TABLE 11. Number of Pacific Herring at Age by Body Length (2-mm Intervala) from San Francisco Bay. October 1987 to March 1988.

intervel		3	Age (yr)				8	9
(man					6	7		
130-139	1							
140-149	26							
150-151.	13							
152 \%	43	3						
154	39	2						
156	54	12						
158	44	17						
160	26	10						
162	40	25						
164	35	15						
166	38	39						
168	18	37						
170	12	28	1					
172	22	66	6					
174	4	27	6					
176	2	43	6	2				
178	3	44	19					
180	1	20	9					
182		46	31	1	1			
184		34	18	2				
186		31	43	7				
188		18	25	6				
190		16	23	9	1			
192		17	37	17	2			
194		11	28	7	2			
196		9	20	18	3			
198		2	21	21	5			
200		4	19	32	20	2		
202		1	20	33	15	1		
204			14	18	7	2		
206			10	16	17			
208			1	12	10	2		
210			6	15	31	3	4	
212			4	21	24	4	1	
214				5	21	4	1	
216				6	21	3	2	
218				9	10	3	4	
220				3	7	2	2	
222				1	13	5	1	
224					4		1	
226					3			
228								1
232							1	
\boldsymbol{N}	421	577	367	261	217	31	17	1
Mean 1	159.4	175.6	190.8	201.9	210.0	213.3	216.9	228.0
Std.dev.	. 7.3	10.2	8.9	8.6	8.6	6.6	5.9	0.0

The percentage of $3-y r$ olds less than 170 mm increased from 19.5 last season to $27.7 x$ this season. Two otolith patterns were evident for the 1985 year class; one showed robust growth and was characteriatic of most $3-y r$ olds $>180 \mathrm{~mm} B L$, while the other, found in most 3 -yr olds $<170 \mathrm{~mm}$ BL, had considerably smaller but etill well defined annual growth zones. Six-yr-old herring dominated all length groups $>208 \mathrm{~mm}$ BL. The weak 1981 year class was poorly represented as 7-yr olds. Seven- to 9-yr-old herring comprised only 2.6\% of all fish aged. the lowest percentage we have found during the past 7 seasons.

An additional 209 large herring were selected for aging (Appendix F) for use in the construction of an age-length key. Again. the domanance of the 1982 year class (as 6-yr olds) was apparent. Otoliths from these herring have been of high quality each season and have been aged with a minimum of disagreement.

Variable-mesh Gill Net Samples. Samples for age compoaition with N>25 were obtained only from achools 1, 4, 7-9, and 11 (Table 12). Percentage of $3-y r$ olds was fairly constant, while 2-yr olds began to increase with school 11 in late Jenuary. Ages 7 to 9 yr were poorly represented. The bias of the gill net towards larger, older fish is apparent when age composition 18 compared among gear types (Table 12).

Midwater Trawl Samples. All schools were adequately ampled with the exception of number 1 , the smalleat of the season. Results demonstrate the gradual ahift in age composition towards younger fish as the season progressed (Table 12). Two-yr olds became the most abundant year class in trawl samples beginning with achool 9 in midJanuary. The last three achools of the season contained approximately 90\% 2- and 3-yr-old herring by number. Throughout the season, 7-. 8-, and 9-yr olds each comprised no more than $1 *$ by number of any achool

Tablé 12. Percerit age Composition by Number of Pacific Herrang
Samples, by School Number. Based on Otolith Aging
and Age Assignments by Length, from Sar, Francisco Bay. October 1987 to March 1988.

School				Age (yr)					
number	2	3	4	5	6	7	8	9	Otolith Assigned by

variable-mesh alll net samples

1	$=16$	35	21	14	10	4		48	1
4	$=10$	35	28	17	9	1	T		19
7	10	32	29	14	15	T	T	18	265
8	3	29	32	22	9	1	4		160
9	15	33	36	10	6			T	5
11	30	30	11	16	13				5

madwater trawl samples.

2	6	39	35	15	5	T		109	191
3	8	35	38	16	3	T	T	95	115
4	12	37	31	13	6	1	T	211	900
5	19	40	25	7	5	T		72	
6	15	38	27	13	7	T	T	342	1475
7	24	39	21	10	5	1	T	T	147
8	19	33	27	13	7	T	1	12	1479
9	41	37	14	5	3	T	T	115	1092
10	45	35	14	4	2	T		100	1589
11	56	33	6	3	2	T		206	1598
12	64	30	4	1	1	T		75	745
13	63	30	3	2	2	T	T	90	601

roundhaul eamples

7	8	45	23	14	6	2	2	7	113
8	15	37	29	13	6	T		104	166
9	32	40	18	7	2	T	T	9	311
10	34	41	16	7	2	T	T	513	
11	56	33	7	3	1	T	T	107	1633
12	59	35	4	1	1	T		6	1203

sampled by trawl.
Purse Seine and Lampara Net Samples. Roundhaul samples were obtained from schools 7 to 12 from early January to late February. Similar to trawl results, a trend is apparent of an increasing percentige of $2-y r$ olds with each new school (Table 12). As reported previoúaly (Reilly and Moore 2987). midwater trawl samples slaghtly overestimate percentage of $2-y r$ olds. compared to unbiased roundhaul samples. This occurred for all schools this season with the excefition of number 7; one small roundhaul eample was obtained and, based on a comparison with trawl and gill net samples, we believe that it underestimates the percentage of $2-y r$ olds. No other gill net samples have contained a higher percentage of $2-y r$ olds than roundhaul samples from the same school.

Total Age Composition for Spawning Season
The 1982 through 1986 year classes contributed 98-99\% by number and 97-98: by weight to the total 1987-88 spawning biomass in San Francisco Bay (Table 13). Good recruitment has occurred during the past five seasons. The weak 1981 year class has become insignificant slong with 8- and 9-yr olds.

Catchee of YOY Herxing and Recruitment

During spring and summer, 1983 to 1986. CDFG's Bay-Delta Project, Stockton, collected YOY herring incidentally in San Franciaco Bay from approximately 270-400 idwater tows annually (Table 14). Their catch-per-tow increased significantly from 1983 to 1985 and in 1986 was aimilar to the previous year. We calculated recruitment of 2-yr olds based on our hydroacoustic biomass estimates and age composition by school for the 1984-85 through 1987-88 spawning seasons. A trend is

TABLE 13. Percent Age Composition for 1983-84 through 1987-88 Spawning Seasons in San Francisco Bay.

Age (y)
Season $2 \quad 3 \quad 4 \quad 4 \quad 5 \quad 6 \quad 3 \quad 8 \& 9$

percent by number

based on apawn eacapement-plue-catch biomases estamates

$1983-84$	56.6	11.9	15.8	12.6	2.9	0.2	0.0
$1984-85$	38.7	40.0	9.8	4.6	5.4	1.4	0.1
$1985-86$	32.5	32.1	25.3	5.3	3.2	1.5	0.1
$1986-871$,	29.2	33.6	23.1	11.2	1.6	1.1	0.2
$1987-88$	30.6	38.3	17.9	8.7	3.3	0.7	0.5

based on hydroacoustic biomass estimates

$1983-84$	51.1	11.7	16.5	15.8	4.3	0.5	0.1
$1984-85$	36.9	40.7	9.9	4.9	5.8	1.6	0.2
$1985-86$	31.6	31.7	25.9	5.5	3.4	1.7	0.2
$1986-871$,	33.4	33.7	20.6	9.7	1.5	0.9	0.1
$1987-88$	27.7	37.6	19.3	9.8	4.2	0.8	0.7

percent by weight
based on spawn escapement-plus-catch

$1983-84$	42.1	12.7	20.1	19.6	5.1	0.4	0.0
$1984-85$	27.6	42.9	12.1	6.5	8.3	2.3	0.3
$1985-86$	22.1	30.6	32.2	7.3	4.9	2.6	0.3
$1986-871$,	19.0	31.9	27.8	16.6	2.6	1.8	0.3
$1987-88$	20.6	36.0	22.2	13.2	5.8	1.2	1.0

based on hydroacoustic biomass estimates

$1983-84$	36.2	12.0	20.1	23.5	7.1	1.0	0.1
$1984-85$	26.1	43.4	12.1	6.7	8.8	2.6	0.3
$1985-86$	21.6	30.0	32.8	7.4	5.2	2.7	0.3
$1986-871$	22.4	33.0	25.4	14.9	2.5	1.5	0.4
$1987-88$	18.1	34.4	23.2	14.4	7.1	1.4	1.3
I'Date from $1986-87$ have been revised aubsequent to publication							
of previoua administrative report (Reilly and Moore 1987).							

TABLE 14. Monthiy Average Catch per Tow of Young-of-the-Year Pacific Herring in San Francisco Bay\% April to June. 1983 to 1986 end Recruitment Estimates 1985 to 1988.

afyarerit elmilar to that of YOYA, although the magriatude of the ancrease is less for adult recruits.
However, if the recruitment of $2-y r$ olds. based on escapement-plus-catch estimates. is examined (Table i5). the relationship with YOY cetches is not as clear. Year class abundarice estimates for the 1981 through 1 get year classes (Table 15) indicate that for some year classes the number of 2-yr olds may be less than the number of $3-y{ }^{2}$ Gids the foilowing season; this indacates that recruatmert of a year clase may not alwaye be complete by the time it has reached 2 yz of age. For three year classes, using hydroacoustic estimates. and fer two vear classes. using spawn escapement-plus-catch estimates, number of s-yr olds was greater than number of 2-yr olds from the previcus season. In all cases. number of 4-yr olds was less than number of 3yr cilda from the previoue season, indicating complete recruitment by age $3 y y$.

For both acoustic and escapement biomass estimates, the number of 3-yr olds has increased during the past three seasons (Table 15). in agreement with average catch-per-tow of yoYa for the respective year classes. Data indicate that the 1986 year class. as 3-yr olde. will be as strong as the previous one.

Relationehip Eetween Unripe Herving and Spawning Evente

Sufficient midwater trawl samples were collected this season to examine the relationship between the percentege of unripe females and the number of deys before the next epan. While a wide variation was obaerved (Figure 4), ainear relationship was derived with a correletion coefficient of 0.77:

Daye before epewn $=-0.7+0.149$ percentege unripe femalea.

TABLE 15. Number of 2-. 3-. and 4-yr 0ld Herring (x 1000) in San Francisco Bay Spawning Population, 1981 to 1986.

	Year class 2 Age	(yr)

based on hydroacoustic biomass estimates

1981	5	88.921	39.248	30.143
1982	-	170.899	124.036	110.941
1983		113.543	135,796	122.204
1984		135.352	200,093	144.960
1985		198.316	283.013	-
1986		208.308	-	-
based		escapement-plus-catch biomass estimates		
1981		87.908	69.654	46.613
1982		332.699	190.998	126.535
1983		185.742	160.613	134.528
1984		162.422	194.365	136.604
1985		168.962	292.508	-
1586		233.193	-	-

FIGURE 4. Percent unripe females in midwater trawl samples and days belore nearest spawn, San francisco Bay, 1987-38.

This equation predicte that when approxinately 50% of female herying are unripe. a spawn is likely within 7 d, while if only 20-25\% of femalea are unripe, a spawn 18 probable within 3 d .

Tidee. Barometric Frebeure, Rainfall and Spewning From October 1987 to March 1988 there were ten tidal cycles 3 r which the highest tide $(+5.5 \mathrm{ft}$ or greater) during a $24-\mathrm{hr}$ period occurred at naght (sunset to sunrise) (Figure 5). Spawns occurred on five of the 10 cycles within the season. If morning hours are included. then eight of the 10 mapor spawns are associated with these cycles. Highest tide for the remaining two spawns occurred about midday. However, the high tide at night in both cases was within the tidal range used by spawning herring in a previous year (Reilly and Moore 1987).

Average highest tide height associated with the 10 major spawns was 6.0 ft with a range from +5.3 to +6.7 ft . High tides continue to be a mapor influence on the timing of apawns in San Franciaco Bay.

Periods of falling barometric pressure (Figure 5) appeared to have little correlation with the onset of spawning as was seen in the wet winter of the 1981-82 season.

Total rainfall during the spawning season amounted to 11.4 in with the majority (7.1 in.) falling in the first half of the six-month season. Periods of aignificant rainfall (> 0.1 in.) began in late October and ended in late February. There appeared to be little correlation between periods of significant rainfall and the onset of apewning (Figure 5). Monthiy rainfall totals were highest in December and January and it was during this period that the bulk of the apawning took place in San Francisco Bay. This is the second year in

a row that total rainfall has been leas than normal and local rainfall and delta outflows did little to inhibit spawning as was seen in previous years (Reilly and Moore 1983. 1986).

Non-Spawring Season Sampling of YOY Herring

Stmples of YOY herring were obtained from sefi-monthly midwater trawla in San Franciaco Bay from April. May. July, and August 1987. Mean BL increased from 44.6 mm in April to 61.5 mm in Auguat (Table 16). Data from the first 2 montha are consiatent with an approximately 10 mim per month growth rate reported by Reilly (1988). but July and August mean BLs are much leas than expected. Since there are many YOY cohorts from different spawn each season, it is likely that YOYs in August represent the cohort frow the last major spawn (late February 1987). Mean BL of YOYe in May 1987 was aimilar to that of 3 out of 4 yr previously studied by Reilly (1988) and indicates normal growth.

DISCUSSION

Improvement in the accuracy of calibration parametere for our echo integration equipment has resulted in close egreenent between acoustic and escapement-plus-catch (EC) bionass eatimates for San Francisco Bay herring during the past 2 seasons. Confidence limits cannot be obtained for acoustic eatimates because time conatraints in the eurvey design prohibit replicate sampling; each achool ia integrated during the period of minimal tidal flow (approximately 2 h) and the assumption is made that each transect integrates anique part of a achool.

TARLE 16. Number of Young-of-the-Year Pacific Herxing by Bcidy Leraft, (2-mm Intervala) from Midwater Trawl Samfles. Sarifrancasea Bay, April to Auquet 1987.

estimates for schools 6. 7. and 10. When acoustic estimates exceed EC estimates. it may be due to the fact that all fish detected acoustically on a particular day may not spawn as a unit; part of a school may spawn while the remaining fish may wait and join another school gentering the bay. In addition, spawn deposition sonetimes is not loc̃ated for a achool that has been detected acoustically and EC estimates are not possible. When EC estimates exceed acoustic estimates. it may be due to part of a school entering the bay and spawning ahortly thereafter. These fish will then avoid detection by acoustic surveys which cannot be conducted on a daily basis due to weather and personnel limitations. The important conclusion to draw is that the two bionass survey methods are complementary and, when used together. provide a more accurate estimate of the spawning population than either method alone.

Boat avoidance by herring may result in an undereatimation of acoustic biomass. Target strength data collected this season are directly related to the orientation in the water column of fish in the path of the transducer beam during normal aurvey operations (i.e. responding to boat noise). However, it is not known if herring simply change their orientation in response to noise, such as by sounding, or move horizontally out of the path of the beam, thus avoiding acoustic detection. The latter scenario will of course resuit in underestimation of biomass. Experiments are planned next season to inveatigate this problem.

Frequent ampling throughout each October to March apawning aesson during the 7 yr of this reaearch project has revealed patterns for San Franciaco Bay herring. Mean BL and mean age for each achool gradually decrease as the meason progresses, and 2-yr olds do not
become aignificant part of the apawning biomase until late liecemter or January. Two-, 3-, and 4-yr-old herring typically comprise 80-90x by number of each school in February and March. Sex ratios favor made herring from October to December. while females generally are more abundant in February and March.

Total age composition for the spawning season is heavily 2nfiuenced by the relatave abundance of $2-$ and $3-y r-o l d$ herring wher they first enter the fiahery. The 1981 year clase hae corisietentiy beer poorly represented in eanfiee bince the 1982-83-aeason. Fortunately. this is the only weak year class that has entered the fashery in the past 10 yr.

The 1982 year clasa was above average in strength: mear, $B L$ of 2-yr olds was well below average due to the effects of El Niño and poci arowth as YoYs in San Francibco Bay (Reilly 1988). However, a dramatic recovery in growth rate resulted in these fiah being larger at each subsequent age than any other year class we have seen since the project in 1981. We have not collected any herring greater thars 240 mm -BL 1 n -San Francisco Bay aince 1982 but we anticipate that in 2 yr some of the 1982 year class may reach that size.

The 1985 year claas appeara to be of greater relative abundance than previousiy thought due to additional recruitment of 3-yr olds this sesson. Recruitment patterns have been inconsistent in that not all herring may be present on the epawing grounds when they reach 2 yr. Studies of growth patterne of YOY and juvenile herring mey offer an explenation. Reilly (1988) reported that the 1985 year cless had the smalest mean BL as YOYe in Junc of four year ciasees atudied (1983 to 1986). As juvenilea the following epring (1986). aignificant proportion ampled in San Francieco Bay ranged from 90 to
-48-
120 mm BL, compared with a normal size range of 120 to 150 mm BL . It is likely that these herring did not mature until their third year. This may also explain the relatively high abundance of $3-y r$ olds in the 156-168 mm BL range this season.

Moore, Thomas 0. and Paul N. Reilly. In press. Pacific herring. Clupea harengus pallasi. experimental roe-on-kelp open pound fiahery in San Francieco Bey. December 1987 to Februery 1988. Calif. Dept. Fish and Game. Mar. Resources Admin. Rep.

Reilly. Paul N. 1988. Growth of young-of-the-year and juvenile Pacific herring from San Franciaco Bay, California. Calif. Fiah and Game 74(1): 38-48.
and Thomas 0. Moore. 1982. Pacific herring. Ciudea harenaus pallasi. studies in San Francisco Bay. December 1981 to March 1982. Calıf. Dept. Fiah and Game. Mar. Resources Admin. Rep. No. 82-8: 1-43.
1983. Pacific herring. Clupea harenaus pallasi. atudies in San Francisco Bay. Monterey Bay, and the Gulf of the Farallones. July 1982 to March 1983. Calif. Dept. Fish and Game. Mar. Resources Admin. Rep. No. 83-5: 1-49.
. 1984. Pacific herring. Clupea harengua pallasi. atudies in San Francisco Bay. Monterey Bay, end the Gulf of the Farallones. May 1983 to March 1984. Callf. Dept. Fish and Game. Mar. Resources Admin. Rep. No. 84-3: 1-67.
——. 1985. Pacific herring. Clupea harengus pallasi, atudies in San Franciaco Bay and the Gulf of the Farallones, June 1984 to March 1985. Calif. Dept. Fiah and Game, Mar. Reaourcea Admin. Rep. No. 85-4: 1-73.
1986. Pacific herring. Clupea harengua pallasi. atudies in San Franciaco Bay, central and northern California, and Wachington, March 1985 to May 1986. Calif. Dept. Fish and Game. Mar. Resources Admin. Rep. No. 86-6: 1-88.
. 1987. Pacific herring, Clupea harengus pallesi, atudies in Sen Francisca Bay. April 1986 to March 1987. Calif. Dept. Fiah and Game. Mar. Resources Adnin. Rep. No. 87-15: 1-74.

Spratt. Jerome D. 1981. Status of the Pacific herring, Clupea harengus pallasii, resource in California 1972 to 1980. Calif. Dept. Fish and Gane Fish Bull. 171: 1-107.
1987. Bionasa eatimates of Pacific herring, Clupea harenque pellesi. in Californis from the 1986-87 spawning ground surveys. Celif. Dept. Fiah and Game. Mar. Resourcea Admin. Rep. No. 87-12: 1-29.

1988a. Biomase eatimatea of Pacific herring, Clupea herengua pallesi. in Celifornia from the 1987-88 apawning ground aurveya. Calif. Dept. Fish and Game. Mar. Resources Admin. Rep. No. 88-6: 1-14.

LITERATURE CITED (continued)

—. 1988b. Biological characteristica of the catch from the 198788 Pacific herring, Clupea harenqua pallasi, roe fishery in California. Calif. Dept. Fish and Game, Mar. Resources Admin. Rep. No. 88-7:1-22.
$ま$

APDENLIX A. Summary of Adujt Herring Samples from San franciaco Eay. October 1987 to March 1988.

Sample number	Date	Location'	Gear ${ }^{\text {2 }}$	$\begin{gathered} \text { Number } \\ \text { measured } \end{gathered}$	Number aged	A8819 school	ned number
543	Oct 26	BE	GN	49	48	1	
544	Nov 18	SA	MT	85	85	2	
545	Nov 23	SA	MT	215	24	2	
546	Nov 29	AL	MT	208	95	3	
547	\therefore Dec 2	SE	MT	188	97	4	-
548	Dec 3	SA	MT	164	92	5	
549	Dec 8	SR	MT	357	107	4	
550	Dec 9	SA	GN	141	12	4	
551	Dec 9	PP	NT	66	7	4	
552	Dec 11	SB	GN	143	7	4	
553	Dec 11	AL	MT	380	116	6	
554	Dec 14	TB	MT	331	103	ϵ	
555	Dec 17	SE	MT	597	12	ϵ	
556	Dec 18	AL	MT	509	111	ϵ	
557	Dec 28	SE	MT	228	2	7	
558	Dec 30	SB	MT	347	9	7	
559	Dec 30	AL	MT	378	111	7	
560	Dec 31	TB	MT	334	11	7	
561	Jan 2	SB	MT	335	14	7	
562	Jan 5	OA	GN	178	18	7	
56\%	Jan 5	SA	GN	25	3	8	
564	Jan 5	SA	RH	128	8	8	
565	Jan 5	SA	RH	142	96	8	
566	Jan 5	A I	RH	120	7	7	
$5 \in 7$	Jan ϵ	SA	GN	79	8	ε	
568	Jan 6	SA	MT	335	12	8	
56.9	$\operatorname{Jan} 8$	SE	MT	331	5	5	
570	Jan 11	SB	MT	60	26	9	
571	Jan 13	SB	MT	383	79	9	
572	Jen 13	HP	MT	433	5	5	
573	$\operatorname{Jan} 13$	HP	GN	149	5	9	
574	Jan 13	SB	RH	165	3	9	
575	Jen 13	SB	RH	155	6	9	
576.	Jan 14	SA	MT	71	47	10	
577	Jan 14	SA	GN	25	10	10	
578	Jan 15	SB	MT	434	2	10	
579	Jan 19	SB	RH	130	0	10	
580	Jan 20	SB	RH	135	4	10	
581	Jen 20	SB	MT	437	6	10	
582	Jan 22	SA	MT	353	44	10	
583	Jan 25	SB	MT	156	0	11	
584	Jen 25	TI	RH	124	2	11	
585	Jan 25	GG	RH	126	0	10	
586	Jen 25	GG	RH	129	3	10	
587	$\operatorname{Jan} 25$	GG	MT	394	1	10	
588	Jan 27	AL	RH	100	0	11	
589	Jen 27	AL	RH	66	0	11	
590	$\operatorname{Jan} 27$	AL	RH	77	0	11	
591	Jan 27	AL	RH	118	0	11	
592	Feb 1	SB	RH	120	1	11	

APPENDIX A. (continued)

Sample number	Date	Location	Gear	Number measured	Number aqed	$\begin{array}{r} \text { Assig } \\ \text { school } \\ \hline \end{array}$	gned number
593	Feb 1	SB	RH	100	1	11	
594	Feb 1	SB	RH	99	2	11	
595	Feb 1	SB	MT	420	99	11	
596	Feb 2	SA	RH	173	4	11	
597	Feb 3	$G G$	RH	86	2	11	-
598	F Feb 3	$G G$	RH	198	90	11	
599	- Feb 3	GG	RH	97	4	11	
600	Feb 3	SA	MT	151	4	11	
601	Feb 5	YB	GN	76	5	11	
602	Feb 5	SB	MT	435	8	11	
603	Feb 8	SB	MT	417	18	11	
604	Feb 9	HP	RH	148	0	11	
605	Feb 10	PP	MT	225	77	11	
60E	Feb 11	SM	RH	234	1	11	
607	Feb 16	SB	MT	40	3	12	
608	Feb 16	HP	FH	113	2	12	
609	Feb 16	HP	RH	130	0	12	
610	Feb 17	SB	MT	450	12	12	
6.11	Feb 19	GG	RH	99	0	12	
E. 12	Feb 19	GG	RH	151	2	12	
613	Feb 19	GG	RH	125	1	12	
614	Feb 22	GG	RH	116	1	12	
615	Feb 22	GG	RH	114	0	12	
616	Feb 22	GG	RH	98	0	12	
617	Feb 22	SB	MT	131	2	12	
618	Feb 24	BR	MT	199	58	12	
619	Feb 24	GG	RH	115	0	12	
620	Feb 26	GG	RH	148	0	12	
E21	Feb 29	GG	MT	249	4	13	
622	Mar 4	GG	MT	313	82	13	
623	Mar 7	GG	MT	40	3	13	
624	Mar 14	SA	MT	89	1	13	

1'Legend: AI-Angel Island: AL-Alcatraz; BB-Oakland-Bay Bridge: BEBelvedere; GG-Golden Gate Bridge; HP-Hunters Point: OA-Oakland: Pp-Peninsula Point: SA-Sausalito: SB-South San Francisco Bay between Oakland-Bay Bridge and Hunters Point; SM-San Mateo Bridge; TB-Tiburon: TI-Treasure Ialand: YB-Yerba Buena Ialand.

2/Leqend: GN-variable-mesh gill net; MT-midwater trawl: RH-purse seine or lampara net.

APpenili B. Number of Pocific Herring by Body Length (2-mm Intervale. from Veriablemesh Gill Net Samplea. Sar Francisco Bay. October 26 . 1987 to Februery 5. 1988.

Body length					le Num				
(mm)	543	550	552	562	563	567	573	577	60.
144-145							1	1	
146							1		
148							1	-	
150	\pm						1	1	
252	-	1	1	1				2	i
154				2					3
156			1	1			1	1	3
158		1	4	1			5	2	$:$
160		1	1				5		2
162		4	1	4		2	4	3	4
164		1	2	6			2	1	7
166		5	5	5	1	3	5	4	2
168		4	2	2		3	5		4
170		5	2	2			4		4
172	2	4	3	5		1	4	1	3
174		3	1	3	1		8		1
176	1	3	3	6	1	1	9	1	
178	2	4	1	7	4	2	5		4
180	1	3	ϵ	3		4	4		3
182	1	8	7	9	4	5	12		3
184	5	10	9	4		5	3		3
186	1	12	15	14	1	7	11	3	2
188	6	11	10	5	1	9	13	1	2
190	3	4	10	11		2	8	1	3
192	2	11	14	15		7	13	1	4
194	3	6	5	9	2	4	3		1
196	1	11	7	8	1	5	5		1
198	1	7	3	8	1	1	4		2
200	3	4	6	4	1	2	2	1	4
202	2	3	5	13	2	4	2	1	
204		2	5	1		3	2		
206	2	2	5	5		3			3
208	1	1	2	5	2		1		
210	5	2	2	6	1				1
212	3	2	2	5	1		2		2
214		2		3		1			
216	2	2	1		1	2	1		1
218	2	2	1	2		1	1		
220				1		1			
222			1			2			2
224						1			
226				1			1.		
N	49	141	143	178	25	79	149	25	76
Mean	196.0	187.5	188.5	189.6	191.3	191.4	181.9	170.8	180.3

AFPENDIX C. Number of Pacific Herring by Body Length (2-mm Intervsia) from Midwater Trawl Samples. San Francisco Bay. November 18. 1987 to March 14. 1988.

Body length	544	545	546	Sample Number			551	553	554	555	556
(mm)				547	548	549					
144-145											1
146								1	-1		
148 =						1		1			1
150				1			1	1		4	1
152		1	1			2	1	3	2	3	5
154		1	4	1	3			6	3	3	2
156		1	3	1	6	4	2	3	3	7	\underline{S}
158			1	2	4	8	2	7	6	10	9
160		3	1	3	9	10		13	7	19	5
162	1	5	1	4	3	11	4	10	18	21	15
164	2	3	3	3	5	11	1	7	6	9	16
166	1	5	7	7	6	12	3	14	10	29	24
168	3	8	4		3	10	2	7	11	15	12
170		10	3	1	7	7	2	10	10	14	18
172	3	10	5	10	10	16	2	14	15	24	27
174	1	5	5	2	7	11		10	2	23	14
176	4	11	13	5	8	17	2	11	11	31	27
178	6	6	10	7	4	14	2	17	20	27	17
180	3	14	12	13	6	20	2	13	9	22	22
182	5	25	21	12	15	15	1	29	23	23	30
184	6	15	11	9	8	14	1	18	13	26	22
186	12	23	14	14	6	25	2	19	20	43	33
188	4	8	13	10	8	18	3	14	21	24	19
190	6	13	13	10	8	19	4	22	20	29	18
192	6	11	15	13	6	20	8	27	22	30	34
194	7	5	12	12	7	19	4	17	12	24	20
196	4	10	11	7	5	17	2	9	15	33	26
198	1	7	4	7	9	10	3	16	9	16	8
200	1	3	7	8	3	14		13	10	15	12
202	5	6	4	10		10	4	13	10	18	17
204	1		2	3	3	8	1	3	8	18	17
206	2	2	4	2	1	4	2	15	7	15	14
208		1	1	1		3	1	2	1	9	5
210	1			2		4	1	2	2	3	5
212		1		6	1	1	1	4	1	3	1
214		1			1	1	1	2		2	
216		1				1		6	1	2	1
218			2	1	2		1	1	1	1	1
220									1	1	
222			1	1							1
232										1	
N	85	215	208	188	164	357	66	380	331	597	509
Mean	186.7	183.3	184.8	187.0	180.4	183.4	84.9	4.2		3.6	3.1

AFFENLIX C. (continued)

Body
length Sample Number

(mm)	557	558	559	560	561	568	56.9	570	571	572	576
130-139	1	1					2	1	3	2	1
140-141	1					1	1		1	1	1
142		1	-		1		3		3	4	
144				1			1		4	3	
146 三	4	4	1	1	2	2	7	1	4	5	1
148	2	2	1	1	2	3	8	3	6	12	2
150	3	5	1	2	2	3	5		10	10	3
152	8	13	2	4	6	7	14	4	20	16	7
154	5	7	3	3	5	2	12	2	17	26	3
156	18	13	12	1	6	10	16	8	27	24	8
158	11	12	5	4	11	3	12	1	22	25	7
160	7	9	3	6	13	5	16	1	15	29	4
162	25	22	23	15	9	12	23	3	27	28	6
164	7	14	8	11	6	9	13	1	15	15	7
166	20	23	18	20	10	12	23	2	17	30	2
168	8	7	13	6	14	10	13	5	17	17	3
170	8	17	10	8	15	4	11	2	9	18	1
172	15	15	21	11	12	13	17	1	12	20	3
174	2	9	6	12	16	11	6		9	14	1
176	10	19	30	16	17	13	14	2	18	15	1
178	3	8	17	16	16	12	12	2	10	10	1
180	2	10	10	8	12	12	9		6	13	1
182	7	18	21	23	22	25	13	4	14	12	2
184	4	11	15	14	15	14	9	3	9	19	
186	11	13	18	24	14	28	14	2	14	20	2
188	5	13	22	18	15	16	11	1	14	9	
190	7	11	13	15	14	17	6	1	7	10	
192	9	17	26	20	11	13	8	1	14	10	1
194	3	6	13	5	11	8	3		3	4	1
196	3	7	5	11	11	10	10	3	7	7	1
198	2	5	10	13	13	8	4		8	7	1
200	6	7	8	8	7	8	3	1	5	2	
202	5	5	9	10	5	15	3	1	4	3	
204	1	4	9	4	4	8		2	6	2	
206	1	7	11	9	6	8	2		2	1	
208	2	3	3	3	2	1	1	1		1	
210	1	2	2	2	5	2	3		2	3	
212		2	2	6	1	1	1			1	
214		2			1	2			1	1	
216		2	1			2	2				
218		1	3		3	2			1		
220			1	2	3						
222			1		1	3					
224			1								

226
228
Nean
$\begin{array}{rrrrrrrrrrrr}228 & 347 & 378 & 334 & 339 & 335 & 331 & 60 & 383 & 433 & 71 \\ 172.2 & 176.4 & 181.9 & 182.6 & 180.5 & 182.4 & 171.4 & 172.1 & 170.9 & 170.4 & 163.3\end{array}$

Body

length					$e \mathrm{~N}$						
(mm)	578	581	582	583	587	595	600	602	603	605	607
130-139	3	3	4	3	5	4		7	7	3	1
140-141	4	1			5	1	2	1	3	1	
142	3		2	5	5	3	3	9	6	1	1
144	3	5	3	2	2		2	6	-4	1	1
146 :	8	5	6	1	12	12	4	15	11	8	1
148	10	6	6	8	10	14	4	20	18	3	1
150	14	15	5	8	15	14	5	13	16	2	2
152	17	19	20	9	29	26	4	31	28	15	1
154	13	20	13	9	21	18	8	23	26	12	1
156	35	41	25	14	30	36	15	39	35	23	2
158	20	14	14	16	34	25	7	24	23	6	2
160	18	19	9	12	18	26	12	27	37	15	2
162	30	23	17	15	31	39	7	38	38	22	7
164	23	23	10	10	15	18	7	24	31	12	4
166	19	16	15	6	27	22	12	37	17	15	5
168	21	14	11	8	16	7	9	16	16	13	2
170	9	30	5	2	12	9	6	12	23	10	
172	18	17	16	5	14	15	7	15	10	16	
174	14	9	13	3	9	8	4	7	10	5	
176	15	18	11		10	14	3	5	9	6	1
178	13	9	17	3	10	8	6	5	6	3	1
180	8	13	9		3	7	2	12	4	2	
182	17	12	25	2	12	19	2	5	9	5	1
184	17	11	10	1	7	4	3	4	4	4	
186	16	10	18	1	6	8	3	3	3	7	
188	8	10	13	3	5	14	2	4	2	1	
190	12	17	5	2	6	6	1	1	4		1
192	14	6	17	2	6	12		6	3	4	
194	6	5	6	1	6	5	3	4	2	1	
196	8	10	7		3	6	3	3		4	
198	2	10	4		2	4	1	1	3		
200	3	6	4		2	2	2	4	3	1	
202	4	4	5	1	1	4	1	2			
204	1	3	1	2		2		1	1		1
206	4	2			1	1		3		1	1
208	2	3	1	1	3	2		2	1	1	1
210	1	2	3		1	1		1	1		
212			1			2	1	2			
214	1	1						1	2	1	
216		1	1						1		
218		1				1		1			
220			1	1				1		1	
222						1				1	

224
Nean

APPENDIX C. (contınued)

AFFENDIX D. Number of Pacific Herring by Body Length (2-mm Intervals) from Purae Seine and Lampara Net Samples. San Franciaco Bay, January 5 to February 26, 1988.

Body length (mm)	564	565	566	$\begin{aligned} & \text { Sam! } \\ & 574 \end{aligned}$	$\begin{array}{r} \text { Nus } \\ 575 \\ \hline \end{array}$	579	580	584	585	586	588
130-139								2			
140-141					1						1
142			1			1		2		2	
144				1		3	1	1			
146				2	1			5	3	1	4
148		1		3	3	2	1	2			3
150	1	1		2	2	5	4	7	4	3	5
152	1	3		1	3	2	4	9	3	6	10
154		2		8	3	7	2	3	4	4	2
156	1	2	1	6	3	6	6	15	8	14	9
158	1	8	1	8		4	5	12	2	5	4
160	3	2	4	10	8	7	5	5	4	5	4
162	3	3	2	11	8	5	9	9	13	13	12
164	2	3	2	9	9	6	5	6	2	2	2
166	3	3	1	6	5	7	4	6	5	6	6
168	5	6	4	4	4	6	2	4	10	3	4
170	3	5	5	12	3	10	8	1	2	2	3
172	6	6	4	5	6	6	11	3	7	6	7
174	3	6	4	4	2	5	4	1	3	2	2
176	6	3	7	9	8	8	9	4	4	1	3
178	5	5	3	4	5	5	5	4	5	1	
180	4	5	6	6	7	2	5	2	6	5	1
182	9	9	8	11	4	4	6	2	12	5	2
184	5	4	5	7	10	5	4		3	4	3
186	5	10	11	8	5	4	9	5	3	5	3
188	4	3	10	8	7	3	2	1	4	3	2
190	8	11	5	7	7	3	1	1	3	6	2
192	14	6	9	4	6	2	5	3	6	6	1
194	5	4	3	1	10	4	1	1	3	3	
196	8	8	3	2	8	2	4	1	2	3	1
198	5	8	3	2	2	2	5		2	5	1
200	5	5	3	1	4				1		2
202	6	4	1			1	1	2		4	
204	2	1	5		3		1	1	2	1	
206	3	1	1		2						
208		1	1			1	2	2			1
210				1	1					1	
212		1	2	1		1	2	2		1	
214			3		2		1			1	
216		1			1						
218	2		2		1						
220						1	1.				
222				1	1						
224		1									
N	128	142	120	165	155	130	135	124	126	129	100
Mean	185.1	1.7	5.0	3.0		1.5	5.5	5.5	3.1	3.6	6.0

Body length (mm)	589	590	591		$\begin{array}{r} \text { ole Num } \\ 593 \\ \hline \end{array}$	$\begin{aligned} & \text { mber } \\ & 594 \\ & \hline \end{aligned}$	596	597	598	599	604
130-139				7	1		1	2			
140-141				1	3	1	3		2	1	
142	1		3		4	2			1		1
144		3	1		2	1	1	1	2	3	4
146		1	3	5	3	2	6	5	1	5	4
148	\%		2	7	2	3	3	1	3	1	7
150	1		1	3	7	3	5	1	2	3	5
152	7	4	8	7	8	5	8	4	11	10	9
154	2	4	6	11	8	7	9	2	ϵ	5	6
15ϵ	5	5	17	8	9	8	22	8	14	12	20
158	5	5	11	4	3	8	9	8	11	10	17
160	3	1	6	6	4	5	7	7	10	3	11
162	10	7	10	18	7	6	13	10	20	2	7
164	4	4	7	2	6	10	10	5	7	7	6
166	8	6	9	8	6	8	17	6	20	6	11
168	1	4	5	5	5	5	4	2	13	3	5
170	1	4	3	2	2	4	5		4	3	5
172	2	4	4	4	2	3	3	2	12	2	6
174	1		1	3	1	2	5	5	3	1	3
176	3	5	1	1	2		9	4	10	2	5
178			3	2	1	3	3		5	2	
180	2	1	2	3	1	2	2	3	1		2
182	1	5	3	3		1	3	2	7	3	1
184	2			1	2	2	2		3	1	
186	2	1	2	3	5	2	6	3	6		
188	2	3	1	2		2	3	1	3	2	2
190		2	1	1		1	1	1	2	4	1
192	3	4	1	2	3		6	1	4	1	2
194		2	2		1	1	1		2		1
196			1		1		1		3	1	1
198			1				1		3		1
200		1				1			1		
202			1			1		1	1	1	1
204							1	1	1		
206			2		1		1			1	1
208		1					1		1	1	1
210									1		1
212				1					1		
214							1		1		
222										1	
N	66	77	118	120	100	99	173	86	198	97	148
Mean	166.2	169.6	164.6	162.0	162.1	164.2	166.2	164.7	169.1	164.6	163.0

APPENDIX D. (continued)

Body length (mm)	Sample Number										
	606	608	609	611	612	613	614	615	616	619	620
130-139	5	2		1	1	2	2	2		1	3
140-141			1		1	1	3	2	1		1
142		1					2	2		1	1
144		2	1		1		2	3	. 3	1	2
146	4	4	2	2	6	2	2	10		1	6
148	8	1	2		4	3	2	2	5	5	7
150	4	1	3	2	3	2	7	5	4	1	7
152	10	9	11	3	13	7	4	2	6	8	5
154	8	6	6	1	7	4	7	6	4	5	16
156	24	17	7	9	11	8	7	7	7	12	12
158	18	6	14	8	10	11	3	8	6	8	10
160	10	7	4	8	11	5	6	15	7	9	12
162	30	11	21	14	13	16	15	13	7	10	20
164	17	9	4	10	5	5	11	3	4	7	10
166	23	8	15	7	11	10	8	3	10	10	12
168	23	4	7	6	8	8	12	12	7	7	4
170	7	3	8	4	8	10	6	3	4	6	8
172	17	6	11	9	11	7	4	8	11	6	4
174	7	4	3	1	5	8	5	2	4	6	5
176	5	5	5	5	2	4	1	1	1		1
178	1	1	2	1	3		1	1	2	2	
180	1	1		2	4	2	2	1	2		1
182	2			2	1	4		1	1	3	1
184			1	2	1	2	1		1	2	
186	2				1		1	1		3	
188	2	2				1		1		1	
190	1	1	2	1		1	1				
192	1										
194	4				3						
196	1			1	1						
198					1	1					
200	1										
204		1			1						
206		1			1				1		
208					2						
210					1						
214						1					
216							1				
N	236	113	130	99	151	125	116	114	98	115	148
Mean	163.8	162.5	163.3	165.3	165.0	165.1	162.1	160.2	163.2	163.4	159.6

appewilx E. Estimated Weight (g) at Length for Ripe Pacific Herring from San Francisco Bay, 1987-88.

Body					Body				
lenath	(mm)	Male	Female	Both	lenath	(mm)	Male	Femede	Both
130		29.6	28.9	29.0	206		135.9	140.1	138.4
132		31.1	30.5	30.6	208		140.3	144.8	143.0
134		32.7	32.1	32.2	210		144.9	149.6	147.7
136		34.3	33.8	33.8	212		149.5	154.6	152.5
138		36.0	35.5	35.6	214		154.2	159.6	157.5
140	Σ	37.8	37.3	37.3	216		159.0	164.8	162.5
142	=	39.6	39.2	39.2	218		164.0	170.1	167.7
144		41.5	41.1	41.1	220		169.0	175.5	172.9
146		43.4	43.1	43.0	222		174.2	181.0	178.3
148		45.4	45.1	45.1	224		179.4	186.6	183.8
$150-$	-	- 47.5	47.2	47.2	226	-	184.8	192.4	189.5
152		49.6	49.4	49.4	228		190.3	198.3	195.2
154		51.8	51.7	51.6	230		195.8	204.3	201.1
156		54.1	54.0	53.9	232		201.5	210.5	207.1
158		56.4	56.4	56.3	234		207.4	216.8	213.2
160		58.8	58.9	58.7	236		213.3	223.2	219.4
162		61.3	61.5	61.3	238		219.3	229.7	225.8
164		63.8	64.1	63.9					
166		66.4	66.9	66.5					
168		69.1	69.7	69.3					
170		71.9	72.5	72.1					
172		74.7	75.5	75.1					
174		77.7	78.6	78.1					
176		80.7	81.7	81.1					
178		83.7	84.9	84.3					
180		86.9	88.2	87.6					
182		90.1	91.6	90.9					
184		93.5	95.1	94.3					
186	- - -	96.9	98.7	97.9					
188		100.4	102.4	101.5			- - -	- - -	- - -
190		104.0	106.2	105.2					
192		107.6	110.1	109.0					
194		111.4	114.0	112.9					
196		115.2	118.1	116.9					
198		119.2	122.3	121.0					
200		123.2	126.6	125.2					
202		127.4	131.0	129.5					
204		131.6	135.5	133.9					

-62-
APPENDIX F. Number of Pacific Herring at Age by Body Length (2-mm Intervala) for Selected Fish from San Francisco Bay, November 1987 to March 1988.

Body	Age (yr)					
length	4	5	6	7	8	9
$210-211$	6	14	17	3		
212	3	9	26	3	6	
214	2	10	18	1	1	
216			6	15	1	1
218		3	19	2	2	1
220		3	6	2	3	
222		2	7	2		
224			10	1		
226				27	122	15
228					13	1

