State of California The Resources Agency DEPARTMENT OF FISH AND GAME

Conversions Between Total, Fork, and Standard Lengths for 41 Species in 15 Families of Fish from California Using Preserved and Fresh Specimens

by

Konstantin A. Karpov and Gerald S. Kwiecien

MARINE RESOURCES

Administrative Report No. 88-9

Conversions Between Total, Fork, and Standard Lengths for 41 Species in 15 Families of Fish from California Using Preserved and Fresh Specimens 1/

by

Konstantin A. Karpov <u>2</u>/ and Gerald S. Kwiecien <u>2</u>/

ABSTRACT

Tables of regression values for converting between total, fork, and standard lengths are provided for 41 species of fish from 15 families using preserved and fresh specimens of fish. A table is also included for converting between body length and total length for Pacific herring, <u>Clupea harengus pallasii</u>.

1/ Marine Resources Administrative Report No 88-9.

<u>2</u>/ Marine Resources Division, 19160 So. Harbor Drive, Fort Bragg, CA 95437 We wish to thank, John Mello, Paul Reilly, and Gail Roper for assisting in collecting and measuring specimens. I also wish to thank Eric Anderson and Tomio Iwamoto for providing generous access to the fish collection at California Academy of Sciences.

Recent analysis of Marine Recreational Fisheries Statistics Survey (MRFSS) data collected between 1979 and 1984 has revealed a systematic sampling error consisting of measuring fork lengths rather than the required total lengths for most species collected in San Francisco and adjacent counties (Karpov 1988a-e; Karpov and Kwiecien 1987a-b; Karpov and Kwiecien 1988a-h; Karpov et. al. 1987a-c; Karpov et. al. 1988). The measurement method used in MRFSS outlined by Holliday, et. al. (1984a-b, 1985, 1986 and 1987) is incorrectly described as fork lengths for all species with forked tails. The actual measurements used in California's MRFSS are total lengths except for species with rigid tuna-like caudal fins, where fork lengths are used (Karpov 1986; Karpov 1987a-j; Karpov 1988a-e; Karpov and Kwiecien 1987a-b; Karpov and Kwiecien 1988a-h; Karpov et al. 1987a-c; Karpov et al. 1988). To convert the San Francisco area fork lengths to total lengths, fork length to total length regressions had to be generated for 41 species currently not reported in the literature.

Measurements were made of fresh or preserved specimens. Fresh specimens were obtained from creel sampled catches or from directed field collections. These were collected from Halfmoon Bay through Cape Mendocino, California, during 1986-87. Preserved specimens were measured from California Academy of Sciences in San Francisco, California. These were primarily collected between Monterey and Sonoma counties. However, some of the specimens were collected as far south as Baja California, and as far north as British Columbia. Preserved fish had been collected from 1894 through 1982. Only specimens with intact fin membranes were used in this study. All preserved fish examined were being maintained in an aqueous solution of 70% ethanol.

Measurements were taken on a meter board in millimeters. Samples were selected in an attempt to cover the size ranges encountered in the MRFSS analysis. Up to four different types of length measurements were recorded .pn 2depending on species. The measurements selected were total length, fork length, standard length, and for some Pacific herring, body length. Total length was measured from the most anterior tip of the longest jaw to the most posterior part of the tail when the caudal rays are sqeezed together. Fork length was measured from the anterior tip of the longest jaw to the median point of the caudal fin (Holt 1959). Standard length was measured from the anterior tip of the upper jaw to the posterior end of the vertebral column (Hubbs and Lagler 1970); and body length was measured from the tip of the snout to the end of the pigment underlying the last row of scales on the caudal peduncle (Spratt 1981).

Linear regressions were run on all permutations of length measurements using a microcomputer and the ABSTAT statistical package. Statistics reports were the same as those used by Echeverria and Lenarz (1984); these included for each species the y-intercept (a), slope (B), standard error of the estimate (S_{y*x}) , correlation coefficient (r), range in length, and the sample size used in the regression (n) (Tables 1-4).

Caution needs to be exercised by applying these regressions only to the size ranges covered. In addition, the assumption was

made that shrinkage due to preservation technique had a proportional affect on the various measurements taken and did not affect the regressions involved.

TABLE 1. Results of Linear Regressions of Standard Length Versus Fork Length for All Species Sampled.

٠.

•

•

				.						
			Stand	ara		cengun as	a runction	Standard	length as a	TUNCTION
			length	Ē	of	standard (ength	6	fork lengt	
Species by family	c	L	Min.	Max.	æ	80	S y#x	6	B	Sy*x
Clupeidae										
** Clupea harengus pallasii	65	0.997	114	203	0.005	1.098	2.371	1.125	0.905	2.153
* Sardinops sagax	0	0.998	110	200	2.215	1.059	2.221	-1.521	0.941	2.093
Engraul ididae										
* Engraulis mordax	30	0.999	57	151	2.594	1.075	1.564	-2.145	0.928	1.453
Salmonidae										
* <u>Salmo clarkii</u>	14	0.999	147	280	11.346	1.074	2.153	-10.170	0.930	2.003
* S. gairdnerii	30	1.000	107	800	0.769	1.119	5.922	-0.424	0.893	5.289
Osmeridae										
*** <u>Hypomesus pretiosus</u>	20	0.999	55	184	2.647	1.064	1.405	-2.215	0.938	1.319
* Spirinchus starksi	9	0.994	82	117	-3.514	1.138	1.483	4.335	0.867	1.295
* S. thaleichthys	10	0.995	48	8	3.329	1.037	1.317	-2.503	0.955	1.264
Gadidae										
* <u>Gadus</u> macrocephalus	æ	0.995	198	324	27.438	1.016	4.804	-24.396	0.976	4.708
* Theragra chalcogramma	v	0.981	113	<u>к</u>	-2.484	1.134	5.863	7.319	0.849	5.074
Atherinidae										
* Atherinops affinis	30	0.999	82	190	7.185	1.058	1.368	-6.545	0.944	1.292
*** Atherinopsis californiensis	30	1.000	50	280	2.444	1.086	2.469	-2.062	0.920	2.272
Scorpaenidae										
** Sebastolobus altivelis	46	0.996	170	260	12.024	1.172	2.304	-8.519	0.847	1.958
Hexagrammidae										
* <u>Hexagrammos</u> decagrammus	17	0.999	130	345	3.076	1.146	3.251	-2.379	0.871	2.835
* <u>H.</u> superciliosus	ø	0.997	174	297	-1.100	1.180	3.892	2.295	0.842	3.287
** <u>Ophiodon elongatus</u>	ង	1.000	381	852	-6.085	1.135	4.782	5.937	0.880	4.211
Anoplopomatidae										
** Aroplopoma fimbria	3	0.993	450	567	9.571	1.075	4.039	-1.955	0.918	3.732
Cottidae										
* Leptocottus armatus	9	0.999	56	178	1.549	1.166	2.718	-1.116	0.856	2.330
Serranidae										
* <u>Paralabrax</u> <u>nebulifer</u>	13	0.997	r	392	8.988	1.154	8.827	-6.523	0.861	7.622
*** Roccus saxatilis	ŝ	0.999	53	206	5.942	1.136	1.695	-5.075	0.879	1.491

4

1.1

•

-

•

TABLE 1. (Continued)

			Stand length	lard (mm)	Forlof	k length as standard l	a function ength	Standard of	lèngth as a fork lengt	function
Species by family	n	r	Min.	Max.	8	В	s _{y*x}	8	B	Sy‡x
Scieaenidae										
*** Genyonemus <u>lineatus</u>	8	1.000	94	262	5.868	1.137	2.084	-5.019	0.879	1.832
* <u>Roncador</u> <u>stearnsii</u>	4	0.999	177	271	16.892	1.107	2.216	-14.958	0.902	2.001
Girellidae										
* <u>Girella</u> <u>nigricans</u>	14	0.998	62	376	5.823	1.172	7.944	-4.316	0.850	6.768
Embiotocidae										
*** Amphistichus argenteus	27	0.999	108	230	4.883	1.138	2.010	-4.004	0.877	1.765
*** <u>A. koelzi</u>	15	0.998	103	193	6.363	1.133	2.282	-5.139	0.880	2.010
*** A. rhodoterus	19	0.999	55	214	-0.770	1.172	2.036	0.828	0.852	1.736
* Brachyistius frenatus	12	0.997	73	132	-3.699	1.213	1.758	1.444	0.819	1.444
*** Cymatogaster aggregata	30	0.982	53	97	6.920	1.054	2.462	-3.929	0.914	2.293
*** Damalichthys vacca	21	0.999	78	280	7.401	1.103	2.948	-6.426	0.905	2.671
*** Embiotoca jacksoni	28	1.000	51	205	6.575	1.133	1.641	-5.700	0.882	1.447
*** <u>E. lateralis</u>	35	0.999	53	206	5.942	1.136	1.695	-5.075	0.879	1.491
* Hyperprosopon anale	6	0.996	70	136	3.932	1.125	3.031	-2.652	0.882	2.685
*** H. argenteum	24	0.999	70	217	4.870	1.124	2.862	-3.977	0.888	2.544
* <u>H.</u> ellipticum	18	0.998	107	181	8.321	1.110	1.563	-6.880	0.897	1.405
* <u>Hypsurus</u> caryi	16	1.000	56	192	6.781	1.094	1.418	-6.050	0.913	1.295
* <u>Micrometrus</u> aurora	13	0.998	35	132	4.830	1.120	2.415	-3.871	0.889	2.151
* <u>M. minimus</u>	10	0.999	45	105	6.305	1.111	0.780	-5.541	0.899	0.702
* <u>Phanerodon</u> atripes	7	0.905	192	216	40.290	0.878	4.179	-10.451	0.932	4.304
*** P. furcatus	21	0.998	77	215	9.240	1.075	2.032	-8.015	0.927	1.886
*** Rhacochilus toxotes	14	1.000	70	280	9.440	1.100	2.341	-8.513	0.909	2.129
Pleuronectidae										
** Parophrys vetulus	26	0.983	235	333	17.766	1.118	4.968	-5.940	0.864	4.368

•

٠,

* Preserved specimens only.

** Fresh specimens only.

*** Both fresh and preserved specimens.

ហ

TABLE 2. Results of Linear Regressions of Fork Length Versus Total Length for All Species Sampled.

•

.

•

			For	 _ [Total	length as	a function	Fork	length as a	function
:			_ tengtn_		6	rork_tengu		5	_נטנפו_וכווש	
Species by family	C	۴	Min.	Max.	Ø	æ	Sy*x	8	8	Sy*x
Clupeidae										
** <u>Clupea harengus pallasii</u>	65	0.996	126	221	1.702	1.109	2.799	-0.129	0.894	2.513
* Sardinops sagax	0	0.999	117	216	-0.734	1.110	1.735	0.959	006.0	1.562
Engraul ididae										
* Engraulis mordax	30	0.998	3	165	2.898	1.076	1.973	-2.292	0.926	1.831
Salmonidae										
* <u>Salmo clarkii</u>	14	0.999	168	315	4.639	1.032	1.725	-4.233	0.968	1.670
* S. gairdnerii	30	1.000	124	006	4.073	1.051	6.523	-3.547	0.950	6.200
Osmeridae										
*** Hypomesus pretiosus	20	0.999	63	200	0.161	1.084	1.880	0.293	0.920	1.732
* Spirinchus starksi	9	0.996	6	131	12.395	0.990	1.196	-11.487	1.002	1.204
* S. thaleichthys	9	0.997	52	96	-3.494	1.150	1.199	3.476	0.864	1.040
Gadidae										
* Gadus macrocephalus	æ	0.999	228	350	-12.699	1.067	2.538	12.526	0.935	2.376
* <u>Theragra</u> <u>chalcogramma</u>	9	1.000	125	194	7.918	0.981	0.423	-8.035	1.019	0.431
Atherinidae										
* Atherinops affinis	30	0.999	91	208	-0.228	1.092	1.272	0.399	0.914	1.164
*** Atherinopsis californiensis	50	0.998	55	340	2.645	1.076	5.453	-1.509	0.925	5.057
Scorpaenidae										
** <u>Sebastolobus</u> altivelis	46	0.999	212	317	1.759	1.007	1.332	-1.071	0.991	1.321
Hexagrammidae										
* Hexagrammos decagrammus	17	1.000	155	404	-3.112	1.027	1.414	3.092	0.973	1.376
* <u>H. superciliosus</u>	0	1.000	202	342	-2.541	1.016	0.937	2.590	0.984	0.922
** Ophiodon elongatus	3	1.000	430	967	4.090	1.013	1.838	-3.942	0.987	1.814
Aroplopomatidae										
** <u>Anoplopoma fimbria</u> Cottidae	ß	0.994	492	616	10.793	1.044	3.930	-3.807	0.947	3.742
* Leptocottus armatus	9	1.000	67	213	-0.083	1.013	0.584	0.093	0.987	0.576
Serranidae										
* <u>Paralabrax</u> nebulifer	13	1.000	80	461	-2.030	1.046	3.035	2.097	0.956	2.901
*** Roccus saxatilis	40	0.999	%	305	1.028	1.089	2.671	-0.695	0.917	2.451

-

•

6

TABLE 2. (Continued)

			For	rk	Tota	l length as	a function	Fork	length as a	function
			length	(mm)	<u>of</u>	fork lengt	h	of	total leng	th
Species by family	n	г	Min.	Max.	â 	B	^S у*х	8	B	S _{y*x}
Scieaenidae										
*** <u>Genyonemus</u> <u>lineatus</u>	26	0.998	115	345	0.338	1.030	4.560	0.698	0.966	4.417
* <u>Roncador</u> <u>stearnsii</u>	4	0.999	215	317	4.852	1.022	2.769	-4.239	0.977	2.707
Girellidae										
* <u>Girella</u> <u>nigricans</u>	14	1.000	77	456	-0.438	1.028	2.363	0.489	0.972	2.298
Embiotocidae										
*** Amphistichus argenteus	45	0.998	129	342	3.618	1.057	4.228	-2.520	0.943	3.994
*** <u>A.</u> <u>koelzi</u>	25	0.997	122	236	-4.142	1.121	3.267	4.771	0.887	2,906
*** A. rhodoterus	25	0.999	63	325	2.884	1.061	3.115	-2.465	0.941	2.933
* <u>Brachyistius</u> <u>frenatus</u>	12	0.995	84	155	5.754	1.030	2.074	-4.572	0.962	2.005
*** <u>Cymatogaster</u> <u>aggregata</u>	49	0.998	62	255	4.401	1.062	2.608	-3.740	0.939	2.452
*** Damalichthys vacca	40	0.996	92	360	2.311	1.139	7.346	0.008	0.871	6.423
*** <u>Embiotoca</u> jacksoni	50	0.998	64	275	0.456	1.087	4.032	. 0.317	0.916	3.702
*** <u>E.</u> <u>lateralis</u>	40	0.999	66	305	1.028	1.089	2.671	-0.695	0.917	2.451
* Hyperprosopon anale	6	0.999	83	155	3.478	1.035	1.650	-3.090	0.964	1.592
*** H. argenteum	37	0.998	85	265	0.036	1.088	3.501	0.581	0.916	3.213
* <u>H.</u> <u>ellipticum</u>	18	0.998	126	208	5.623	1.058	1.820	-4.466	0.941	1.716
* <u>Hypsurus</u> <u>caryi</u>	16	0.999	70	216	1.303	1.089	2.604	-0.735	0.916	2.389
* <u>Micrometrus</u> aurora	13	0.999	42	151	1.069	1.079	1.956	-0.711	0.924	1.810
* <u>M. minimus</u>	10	0.995	56	123	1.861	1.062	2.147	-0.744	0.933	2.013
* <u>Phanerodon</u> atripes	7	0.966	216	240	-108.930	1.612	4.253	78.295	0.579	2.548
*** P. furcatus	32	0.987	91	300	10.388	1.087	7.511	-3.946	0.897	6.822
*** Rhacochilus toxotes	19	1.000	85	337	-7.534	1.144	1.572	6.613	0.874	1.374
Pleuronectidae										
** Parophrys vetulus	26	0.985	276	390	-7.324	1.029	4.910	16.866	0.943	4.701

.

* Preserved specimens only.

****** Fresh specimens only.

*** Both fresh and preserved specimens.

TABLE 3. Results of Linear Regressions o	^F Total Length Versus	Standard Length For All	Species Sampled.
--	----------------------------------	-------------------------	------------------

			Tota	al	Standa	rd length a	s a function	Total	length as a	function
· · · · · · · · · · · · · · · · · · ·			length	<u>(mm)</u>	0f	total leng	th	0	standard	ength
Species by family	n	г	Min.	Max.	8	B	^S у*х	8	B	^S y*x
Clupeidae					4					
** <u>Clupea harengus pallasii</u>	65	0.997	140	250	0.249	0.813	1.900	0.776	1.223	2.330
* Sardinops sagax	9	0.998	131	238	-0.741	0.847	2.159	1.582	1.176	2.545
Engraulididae										
* <u>Engraulis</u> mordax	30	0.999	71	183	-4.467	0.861	1.405	5.471	1.159	1.630
Salmonidae										
* <u>Salmo clarkii</u>	14	0.999	180	332	-14.166	0.900	2.282	16.287	1.109	2.533
* <u>S. gairdnerii</u>	30	1.000	131	962	-3.782	0.849	4.288	4.659	1.178	5.051
Osmeridae										
*** Hypomesus pretiosus	20	0.999	68	218	-1.940	0.863	2.099	3.031	1.153	2.426
* <u>Spirinchus starksi</u>	10	0.998	101	141	-6.478	0.876	0.841	8.013	1.135	0.957
* <u>S. thaleichthys</u>	10	0.990	56	106	0.966	0.823	1.814	0.516	1.190	2.181
Gadidae										
* <u>Gadus</u> <u>macrocephalus</u>	8	0.998	232	365	-13.162	0.916	3.178	15.556	1.088	3.463
* Theragra chalcogramma	6	0.980	131	198	0.650	0.864	5.230	5.652	1.112	5.932
Atherinidae										
* Atherinops affinis	30	0.999	101	225	-6.217	0.863	1.491	7.565	1.156	1.725
*** Atherinopsis californiensis	30	0.999	60	368	-1.167	0.832	2.366	1.646	1.200	2.841
Scorpaenidae										
** <u>Sebastolobus</u> <u>altivelis</u>	46	0.996	215	320	-9.742	0.840	1.924	13.508	1.182	2.282
Hexagrammidae										
* <u>Hexagrammos</u> <u>decagrammus</u>	17	0.999	156	415	0.327	0.848	3.184	0.062	1.177	3.751
* <u>H.</u> superciliosus	9	0.996	203	344	4.620	0.828	3.702	-3.483	1.199	4.455
** Ophiodon elongatus	25	1.000	440	983	2.407	0.869	4.072	-2.146	1.150	4.687
Anoplopomatidae										
** Anoplopoma fimbria	25	0.991	424	660	-7.349	0.872	4.271	18.678	1.127	4.853
Cottidae									r	
* <u>Leptocottus</u> <u>armatus</u>	10	0.999	68	215	-1.056	0.846	2.151	1.462	1.181	2.541
Serranidae										
* <u>Paralabrax</u> nebulifer	13	0.997	92	476	-4.801	0.823	7.527	7.273	1.208	9.119
*** Roccus saxatilis	35	0.999	71	328	-3.927	0.794	2.206	5.354	1.256	2.775

TABLE 3. (Continued)

•

• '

.

•

			Tota		Standal	d length as	a function	Total	ength as a	function
			length	(IIII)	of	total lengt	Ę	of	standard l	ength
Species by family	C	L	Min.	Max.	8	8	sy*x	8	80	Sy*x
Scieaenidae										
*** Genyonemus Lineatus	80	0.999	118	317	-2.253	0.830	2.444	3.010	1.203	2.942
* Roncador stearnsii	4	0.998	223	327	-18.655	0.881	3.644	22.250	1.131	4.130
Girellidae										
 * <u>Girella nigricans</u> Embiotocidae 	14	0.999	ድ	466	-3.967	0.827	6.340	5.472	1.206	7.655
*** Amphistichus argenteus	27	0.999	140	275	-2.028	0.805	1.911	2.928	1.240	2.373
*** A. koelzi	5	0.998	142	245	-0.420	0.778	2.173	1.229	1.281	2.788
*** A. rhodoterus	19	0.998	22	266	0.308	0.791	3.143	0.321	1.259	3.966
* Brachyistius frematus	12	0.998	93	167	-0.597	0.792	1.197	1.302	1.256	1.506
*** Cymatogaster aggregata	30	0.979	89	124	-1.353	0.785	2.471	5.274	1.221	3.082
*** Damalichthys vacca	21	0.999	102	356	-3.239	0.774	3.565	4.816	1.289	4.600
*** Embiotoca jacksoni	28	1.000	69	261	-4.067	0.799	1.588	5.241	1.251	1.988
*** E. lateralis	35	0.999	7	253	-3.927	0.794	2.206	5.354	1.256	2.775
* <u>Hyperprosopon</u> anale	9	0.998	8	166	-5.753	0.854	1.717	7.133	1.168	2.009
*** <u>H. argenteum</u>	24	0.998	89	278	-3.208	0.810	3.355	4.704	1.229	4.133
* <u>H. ellipticum</u>	18	0.995	138	222	-10.823	0.843	2.176	14.492	1.174	2.567
* Hypsurus caryi	16	0.998	74	235	-6.704	0.836	2.612	8.704	1.191	3.117
* Micrometrus aurora	13	0.997	45	162	-4.564	0.822	2.438	6.211	1.210	2.957
* M. minimus	10	0.998	61	132	-6.495	0.842	1.306	8.238	1.183	1.548
* <u>Phanerodon</u> atripes	2	0.891	241	278	59.814	0.550	4.591	-33.425	1.444	7.441
*** P. furcatus	21	0.989	102	289	-0.741	0.774	4.815	5.584	1.265	6.156
*** Rhacochilus toxotes	14	1.000	9	355	-2.027	0.790	2.368	2.674	1.264	2.995
Preuronectique	ä		į		!					
** Parophrys vetulus	26	0.990	276	394	2.635	0.833	3.435	3.827	1.176	4.080

.

.

* Preserved specimens only. ** Fresh specimens only. *** Both fresh and preserved specimens.

TABLE 4. Results of Linear Regressions of Body Length Versus Total Length for Pacific Herring.

.

•

•

•

			Body Length	(mu)	Tote	l length a: body lengt	t a function th	Body (0	ength as a f total ler	function gth
species by family	c	L	Min.	Max.	æ	8	Sy*x	6	8	sy*x
lupeidae ** <u>Clupea harengus pallasii</u>	65	266.0	118	209	0.702	1.182	2.382	0.361	0.841	2.009

** Fresh specimens only.

REFERENCES

Echeverria, T. and W.H. Lenarz. 1984. Conversion between total, fork, and standard lengths in 35 species of <u>Sebastes</u> from California. Fishery Bulletin 82(1):249-251.

. '

- Holliday, M.C., D.G. Deuel, and W.M. Scogin. 1987. Marine Recreational Fisheries Statistics Survey, Pacific Coast, 1986. NOAA Current Fisheries Statistics. No.8393.
- Holliday, M.C., D.G. Deuel, and W.M. Scogin. 1986. Marine Recreational Fisheries Statistics Survey, Pacific Coast, 1985. NOAA Current Fisheries Statistics. No.8328.
- Holliday, M.C., D.G. Deuel, and W.M. Scogin. 1985. Marine Recreational Fisheries Statistics Survey, Pacific Coast, 1983-1984. NOAA Current Fisheries Statistics. No.8325.
- Holliday, M.C., D.G. Deuel, and W.M. Scogin. 1984a. Marine Recreational Fisheries Statistics Survey, Pacific Coast, 1981-1982. NOAA Current Fisheries Statistics. No.8323.
- Hollid ay, M.C., D.G. Deuel, and W.M. Scogin. 1984b. Marine Recreational Fisheries Statistics Survey, Pacific Coast, 1979-1980. NOAA Current Fisheries Statistics. No.8321.
- Holt, S.J. 1959. Report of the international training center on the methodology and techniques of research on mackerel (Rastrelliger). FAO/ETAP Rep. 1095, 129p.
- Hubbs, C.L., and K.F. Lagler. 1970. Fishes of the Great Lakes region. Univ. Michigan Press, Ann Arbor, 213p.
- Karpov, K.A. 1986. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 23, January to March 1985. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (86-4):1-226.
- Karpov, K.A. 1987a. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 20, April to June 1984. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (87-7):1-226.
- ------ 1987b. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 21, July to September 1984. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (87-5):1-338.

- -----. 1987c. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 22, October to December 1984. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(87-6):1-285.
- ----- ----. 1987d. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 24, April to June 1985. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(87-1):1-283.
- Karpov, K.A. 1987e. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 25, July to September 1985. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (87-2):1-332.
- ------ 1987f. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 26, October to December 1985. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (87-3):1-285.
- -----. 1987g. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 27, January to March 1986. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(87-11):1-230.

- ------ 1987h. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 28, April to June 1986. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (87-10):1-290.
- -----. 1987i. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 29, July to September 1986. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(87-8):1-359.
- ------ 1987j. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 30, October to December 1986. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (87-9):1-270.
- -----. 1988a. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 14, October to December 1982. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(88-14):1-234.
- -----. 1988b. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 15, January to March 1983. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(88-15):1-188.

- ----- 1988c. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 16, April to June 1983. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (88-16):1-314.
- -----. 1988d. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 17, July to September 1983. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (88-17):1-347.
- ----- 1988e. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 18, October to December 1983. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (88-18):1-239.
- Karpov, K.A. and G.S. Kwiecien, 1987a. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 3, January to March 1980. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (87-17):1-342.
- ----- 1987b. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 4, April to June 1980. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(87-18):1-328.
- Karpov, K.A., G.S. Kwiecien, and J.J. Mello. 1987a. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 1, July to September 1979. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (87-14):1-323.
 - -----. 1987b. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 2, October to December 1979. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(87-16):1-302.
 - Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 5, July to September 1980. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(87-19):1-391.
- Karpov, K.A. and G. S. Kwiecien. 1988a. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 7, January to March 1981. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (88-2):1-218.

- ------ 1988b. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 8, April to June 1981. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(88-3):1-231.
- ----- I988c. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 9, July to September 1981. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(88-4):1-292.
- ------ 1988d. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 10, October to December 1981. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(88-10):1-223.
- ----- I988e. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 11, January to March 1982. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(88-11):1-216.
- ------ 1988f. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 12, April to June 1982. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(88-12):1-258.
- ----- I988g. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 13, July to September 1982. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep.,(88-13):1-288.
- Karpov, K.A. and G.S. Kwiecien. 1988h. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 19, January to March 1984. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (88-19):1-281.
- Karpov, K.A., G.S. Kwiecien, and J.J. Mello. 1988. Marine Recreational Fisheries Statistics Survey for Northern and Central California. Quarterly Report No. 6, October to December 1980. Calif. Dep. Fish Game, Mar. Resour. Admin. Rep., (88-1):1-291.
- Spratt, J.D. 1981. Status of the Pacific herring,<u>Clupea harengus</u> <u>pallasii</u>, resource in California 1972 to 1980. Calif. Dep. Fish and Game, Fish Bull.,(171):1-107.