Poul Reilly CDFG

State of California The Resources Agency DEPARTMENT OF FISH AND GAME

STATUS OF MAJOR SOUTHERN CALIFORNIA MARINE SPORT FISH SPECIES WITH MANAGEMENT RECOMMENDATIONS, BASED ON ANALYSES OF CATCH AND SIZE COMPOSITION DATA COLLECTED ON BOARD COMMERCIAL PASSENGER FISHING VESSELS FROM 1985 THROUGH 1987

by

J. R. Raymond Ally David S. Ono Robert B. Read Michael Wallace

MARINE RESOURCES DIVISION

Administrative Report No. 90-2

May 1991

STATUS OF MAJOR SOUTHERN CALIFORNIA MARINE SPORT FISH SPECIES WITH MANAGEMENT RECOMMENDATIONS, BASED ON ANALYSES OF CATCH AND SIZE COMPOSITION DATA COLLECTED ON BOARD COMMERCIAL PASSENGER FISHING VESSELS FROM 1985 THROUGH 1987 1/

by

J. R. Raymond Ally $\frac{2}{}$ David S. Ono $\frac{3}{}$ Robert B. Read $\frac{-4}{}$ Michael Wallace $\frac{5}{}$

ABSTRACT

This report on the status of major southern California marine sport fish species, together with management recommendations, is based on analyses of catch and size composition data, which were collected on board Commercial Passenger Fishing Vessels (CPFV) from 1985 through 1987. The project was designed to determine the status of those fishes that support the CPFV industry, and to make management recommendations when deemed necessary.

We collected and analyzed data based on random, stratified, on-board sampling of weekday (excluding holidays), open CPFV's on a year-round basis. We sampled 1/2-day, 3/4-day, and full-day type trips at a level of 5%. The survey area extended from below the United States-Mexican border to Point Arguello. Catch estimates were extrapolated to include weekday as well as weekend and holiday, open and chartered CPFV's.

We sampled 736 CPFV trips in 1985, 650 in 1986, and 631 in 1987. We encountered 180 species of fishes, including 49 species of rockfishes. We performed detailed analyses on 14 non-rockfish species and 12 rockfish species, as well as all fishes as a group and all rockfishes as a group.

We found a moderate increase in total catch of combined fish species between this study and one in the mid-1970's, due primarily to sizeable increases in catches of Pacific mackerel, kelp bass, barred sand bass, and barracuda. However, we also found that there has been more than a 50% decline in the CPFV rockfish catches, due primarily to substantial decreases in catches of bocaccio, chilipepper, and olive rockfish. We have recommended that the current 15-rockfish bag limit regulation be reduced to a 10-rockfish bag limit, and that additional and equitable conservation measures also be implemented on the commercial rockfish fishery.

- 1				
1/	Marine	Resources	Administra	ative Report No. 90-2.
$\overline{2}/$	Marine	Resources	Division,	330 Golden Shore, Suite 50, Long Beach, CA. 90802
3/	Marine	Resources	Division,	Santa Barbara, California 93110.
4/	Marine	Resources	Division,	1350 Front St., San Diego, CA 92101.
<u>5</u> /	Inland	Fisheries	Division,	5341 Erickson St., Arcata, CA 95521.

- i -

ACKNOWLEDGMENT

This project was supported by Dingell-Johnson/Wallop-Breaux Federal Aid in Sport Fish Restoration Act funds (California Project F-50-R; the Southern California Marine Sport Fish Monitoring Project).

We wish to thank the Southern California Commercial Passenger Fishing Vessel Industry (landing owners/operators, and boat skippers and crews) and their clientele for allowing us to gather fishery data.

Also, we wish to thank the Technical Services Branch, and in particular Tony Pirote, Phil Law, and Calvin Chun for their help in statistical and computer programming matters.

Special thanks are also due to the clerical staff: Sherry Avants, Elizabeth Carden, Eileen Price, Lien Tran, and Mickey Wolfe (retired); and to former project staff biologist, Michael Harris.

We also wish to thank all of our samplers who spent countless hours out at sea and on the computer.

TABLE of CONTENTS

·

ABSTRACT	i
ACKNOWLEDGMENT	ii
TABLE of CONTENTS	iii
INTRODUCTION	1
METHODS AND MATERIALS	3
Survey	7
Data Analysis	13
RESULTS AND DISCUSSION	18
All Fishes	30
Catch Estimates	30
Ocean Whitefish	40
Catch Estimates	40
Size Composition	43
Management Recommendations	51
California Halibut	53
Catch Estimates	53
Size Composition	57
Management Recommendations	64
Yellowtail	65
Catch Estimates	65
Size Composition	68

Management Recommendations	68
Lingcod	76
Catch Estimates	76
Size Composition	79
Management Recommendations	83
California Sheephead	88
Catch Estimates	88
Size Composition	91
Management Recommendations	94
White Croaker	99
Catch Estimates	99
Size Composition	102
Management Recommendations	104
White Seabass	112
Catch Estimates	112
Size Composition	115
Management Recommendations	121
Pacific Bonito	122
Catch Estimates	122
Size Composition	125
Management Recommendations	128
Pacific Mackerel	135
Catch Estimates	135

Size Composition	138
Management Recommendations	143
Sculpin	149
Catch Estimates	149
Size Composition	152
Management Recommendations	159
All Rockfishes	161
Catch Estimates	161
Management Recommendations	172
Bank Rockfish	175
Catch Estimates	175
Size Composition	175
Management Recommendations	179
Blue Rockfish	186
Catch Estimates	186
Size Composition	189
Management Recommendations	189
Bocaccio	197
Catch Estimates	197
Size Composition	200
Management Recommendations	203
Chilipepper	210

Page

Catch Estimates	210
Size Composition	213
Management Recommendations	215
Cowcod	224
Catch Estimates	224
Size Composition	224
Management Recommendations	228
Greenspotted Rockfish	233
Catch Estimates	233
Size Composition	233
Management Recommendations	236
Honeycomb Rockfish	245
Catch Estimates	245
Size Composition	248
Management Recommendations	248
Olive Rockfish	255
Catch Estimates	255
Size Composition	258
Management Recommendations	258
Squarespot Rockfish	267
Catch Estimates	267
Size Composition	267
Management Recommendations	271

Page

Starry Rockfish	279
Catch Estimates	279
Size Composition	279
Management Recommendations	29 0
Vermilion Rockfish	291
Catch Estimates	291
Size Composition	294
Management Recommendations	294
Widow Rockfish	303
Catch Estimates	303
Size Composition	306
Management Recommendations	310
Barred Sand Bass	313
Catch Estimates	313
Size Composition	317
Management Recommendations	328
Giant Sea Bass	329
Catch Estimates	329
Size Composition	329
Management Recommendations	332
Kelp Bass	335
Catch Estimates	335
Size Composition	339

Page

Management Recommendations	354
Spotted Sand Bass	355
California Barracuda	356
Catch Estimates	356
Size Composition	361
Management Recommendations	369
CONCLUSION	⁻ 370
LITERATURE CITED	372

INTRODUCTION

This report on the status of major southern California marine sport fish species, together with management recommendations, is based on analyses of catch and size composition data, which were collected by California Department of Fish and Game (DFG) personnel on board Commercial Passenger Fishing Vessels (CPFV) from 1985 through 1987. The project collected data through the early part of 1990, then was forced to discontinue because of the loss of its Federal Aid in Sport Fish Restoration funds. It is anticipated that 1988 and 1989 data will be analyzed at a later date.

The project was designed to determine the status of those fishes that support the CPFV industry, to monitor the fishery, and to make management recommendations when deemed necessary.

In southern California, there are over one million marine recreational anglers who account for approximately 2/3 of California's total marine sport fish catch (Steve Crooke, California Department of Fish and Game, Marine Resources Division, pers. comm.). A sizeable commercial fishery also exists in this area. Fishing pressure, as well as coastal habitat degradation caused by increasing urbanization, necessitates the acquisition of a sound database, in order to properly evaluate the status of the major sport fish species.

This study gathered fishery data, much of which are unavailable from CPFV fishing logs [required by State law since 1935 to be submitted by CPFV owner/operator on forms provided by DFG (Fish and Game Code 1935, Sec. 432.5)], and from the Federal Marine Recreational Fisheries Statistics Survey (MRFSS).

A similar DFG CPFV study was conducted between 1975 and 1978. Although 14 quarterly reports were published during the earlier study (Black and Schultze 1977; Crooke 1978a, 1978b, 1978c, 1979a, 1979b, 1979c; Crooke and Schultze 1977; Maxwell and Schultze 1976a, 1976b, 1976c, 1977a, 1977b, and 1977c), the results of the study were not published in a final report. However, a draft manuscript of the study results was produced by R. A. Collins and S. J. Crooke (California Department of Fish and Game, Marine Resources Division), entitled "An evaluation of the commercial passenger fishing vessel record system and the results of sampling the southern California catch for species and size composition, 1975-1978." The draft manuscript is unavailable. In it they concluded that "The logbook record system, while satisfactory for its original purpose, does not meet today's needs, and, in fact, provides inaccurate and misleading information which can lead to the mismanagement of marine resources." This was based on their discovery that compliance with the log record system by the CPFV industry, as well as the accuracy of log records, were inadequate. They further stated that the problems with the logbook system were such that new importance is given to the independent estimates of catches made possible by on-board sampling. Additionally, they opined that even if compliance and accuracy of the log records were significantly improved, the system would still not provide adequate information for fishery management. The reason for this is that the log record system does not provide information on size composition, which is a vital tool in fishery management. Also, it does not provide catch information by discrete fishing site, nor does it provide information on the catch of fishes released.

- 2 -

Our CPFV study provides a better method of collecting information for resource management. Work on the study design began in July 1983, and field sampling began in July 1984. CPFV fishing site catch estimates, which had not been available until this study, were the subject of another report published in 1988 (Ally et al.).

Collins and Crooke's methodology and data analyses differed somewhat from those of this study. However, where possible, we made comparisons. Collins and Crooke are cited throughout this report as "Collins and Crooke unpublished manuscript."

METHODS AND MATERIALS

For a clear understanding of the subject matter in this report, the following terms are defined:

- 1. CPFV: Commercial Passenger Fishing Vessel, AKA Partyboat.
- 2. Landing: Depending on context, this term refers to either a CPFV docking facility from which vessels operate, or to the catch of fishes kept.
- 3. Complex: One or more landings whose CPFV's fish the same general area.
- 4. Open CPFV: A fishing vessel that is open to any customer.
- 5. Chartered CPFV: A fishing vessel that is leased by a group, and open only to members of the group.
- 6. 1/2-day boat: A CPFV trip type of 4 to 6 hours duration.
- 7. 3/4-day boat: A CPFV trip type that varies in duration according to location. San Diego County: 8 to 12 hours; Orange and Los Angeles counties: more than 6 hours and up to 12 hours; Ventura and Santa Barbara counties: 8 to 10 hours.

- 3 -

- 8. Full-day boat (all-day boat): A CPFV trip type that varies in duration according to location. San Diego, Orange, and Los Angeles counties: more than 12 hours and up to 24 hours; Ventura and Santa Barbara counties: more than 10 hours and up to 24 hours.
- 9. Multi-day trip: A CPFV trip of more than 24 hours duration.
- 10. Six-pack: A chartered CPFV carrying six or fewer paying passengers.
- 11. Trips taken: Unless otherwise specified, all CPFV trips that the landings actually ran, except multi-day trips and six-packs.
- 12. Trips sampled (or surveyed): Those CPFV trips randomly selected from the pool of weekday (excluding holidays), open trips taken, and sampled by our personnel.
- 13. Catch: A general term denoting the capture of fishes.
- 14. Released fish: Fish returned to sea after capture, usually alive.
- 15. Total catch: Fishes kept plus fishes released.
- 16. Fishing effort: The total available fishing time, expressed in minutes, on CPFV trips. We assumed that all anglers fished the full time available.
- 17. Legal fish (legal size fish): Fish whose sizes are equal to or greater than the minimum size limit regulation set for their species. They are legal to keep.
- 18. Short fish (sublegal or undersized fish): Fish whose sizes are less than the minimum size limit regulation set for their

- 4 -

species. They are not legal to keep. Currently, there is a species (Pacific bonito) whose minimum size limit regulation is modified by a bag limit regulation (discussed in that species' section).

19. Habitat types: Categories of fishes' living environments, which we named (i) nearshore-surface-coastal, (ii) nearshore-surface-island, (iii) nearshore-bottom-coastal, (iv) nearshore-bottom-island, (v) nearshore-mix-coastal, (vi) nearshore-mix-island, (vii) offshore-surface, (viii) offshore-bottom, and (ix) outer bank. The categories were chosen primarily for catch-per-unit-of-effort determinations. The terms surface, bottom, and mix, used in conjunction with other terms to describe habitat types, are subjective, and require an understanding of the factors that make them subjective. These factors are (i) intent of the vessel's captain (is there a target species?), or lack thereof; (ii) intent of the anglers (for some anglers, intent may differ from that of the captain); (iii) experience of the anglers (inexperienced anglers may have inappropriate fishing gear for the species being targeted, or may not have the expertise to fish targeted species, resulting in their fishing a category other than that intended by the captain; and (iv) catch composition, which may be composed of only a fraction of the targeted species, because of factors (ii) and/or (iii) above, or because of the inability of anglers to keep from catching unwanted species of another category.

- 5 -

With the above understanding, the habitat type terms are defined as follows:

- a) Surface: Where the catch consisted of (i) surface species only [jacks (e.g. yellowtail), mackerels and tunas (e.g. Pacific mackerel, Pacific bonito, albacore), California barracuda, white seabass (surface in summer; bottom in winter) kelp bass, etc.] or (ii) both surface and bottom species, but surface species were targeted and made up at least 75% of the catch; or (iii) both surface and bottom species, with no species being targeted, and the catch was comprised of at least 90% surface species.
- b) Bottom: Where the catch consisted of (i) bottom species only (California sheephead, ocean whitefish, lingcod, white croaker, flatfishes, most rockfish species, etc.); or (ii) both bottom and surface species, but bottom species were targeted and made up at least 75% of the catch; or (iii) both bottom and surface species, with no species being targeted, and the catch was comprised of at least 90% bottom species.
- c) Mix: Where the catch consisted of both surface and bottom species, and (i) where either targeted surface or bottom species made up less than 75% of the catch; or (ii) where no species was targeted and the catch was comprised of less than 90% surface or bottom species. Intent overrided percentage in a close call, if the biologist felt circumstances warranted it.

- 6 -

- d) Nearshore: Area where bottom depth is less than or equal to 73 m (40 fm).
- e) Offshore: Area, including banks, where bottom depth is greater than 73 m (40 fm).
- f) Outer bank: Bank where bottom depth is less than or equal to 73 m (40 fm).
- g) Coastal: Along the mainland.
- h) Island: Around the island.

Survey

We did randomized, on-board sampling of weekday (excluding holidays), open CPFV trips on a year-round basis. We did not sample weekend and holiday, open trips, nor any chartered trips. Although Collins and Crooke (unpublished manuscript) did sample weekend/holiday, open trips, we decided not to. Weighing heavily in that decision was the logistical problem it presented in stratifying our sampling for weekday and weekend/holiday, open trips, and possibly for chartered trips. We felt that to sample these two or three groups effectively, additional samplers would be necessary. However, additional funding was not available. Also contributing to our decision not to sample weekend/holiday, open trips is the fact that open CPFV's are usually filled to capacity on major holidays and summer weekends. Since, by law, a CPFV's carrying capacity cannot be exceeded, paying customers take precedence over non-paying samplers. We though that being forced to miss too many randomly selected weekend/holiday trips might adversely affect the randomness of our sampling. Chartered trips, on the other hand, are generally not filled to capacity, but are private

- 7 -

outings. This being so, we felt that we might have even less success in randomly sampling this group than we would the latter.

We sampled 1/2-day, 3/4-day, and full-day type trips. Project funding allowed us to sample roughly 5% of the weekday, open CPFV trips by complex. The survey area extended from below the U.S.-Mexican border (to Mexican fishing sites within a day's range of the landings) to Point Arguello, including the Channel Islands and those offshore banks within a day's range of the landings (Figure 1). The area was divided into 11 complexes containing the following landings:

San Diego County

Complex 1: San Diego Bay

Landing 1: Fisherman's Landing

Landing 2: Point Loma Sport Fishing Association Landing 3: H & M Landing

Complex 2: Mission Bay

Landing 1: Seaforth Sportfishing

Landing 2: Islandia Sportfishing

Complex 3: Oceanside

Landing 1: Helgren's Oceanside Sportfishing

Orange County

Complex 4: Dana Point

Landing 1: Dana Wharf Sportfishing

Complex 5: Newport Beach

Landing 1: Davey's Locker Sportfishing

Landing 2: Newport Landing Sportfishing (this landing

was closed between May 1, 1987 and

November 30, 1987)

- 8 -

FIGURE 1. Southern California Commercial Passenger Fishing Vessel Sport Fish Project survey area.

Los Angeles County

Complex 6: Los Angeles-Long Beach

Landing 1: Seal Beach Pleasure Fishing, Inc.

Landing 2: Belmont Pier Sportfishing

Landing 3: Long Beach Sportfishing

Landing 4: L.A. Harbor Sportfishing, Inc.

Landing 5: The Skippers' 22nd Street Landing, Inc.

Complex 7: Redondo Beach

Landing 1: Redondo Sportfishing

Complex 8: Marina Del Rey

Landing 1: Marina Del Rey Sportfishing

Complex 9: Malibu

Landing 1: Malibu Pier Sportfishing

Ventura County

Complex 10: Oxnard-Ventura

Landing 1: Port Hueneme Sportfishing, Inc.

Landing 2: Captain Jack's Landing/Cisco Sportfishing

Landing 3: Ventura Sportfishing

Santa Barbara County

Complex 11: Santa Barbara

Landing 1: SEA Landing

Although Landing 1 (Seal Beach Pleasure Fishing, Inc.) in complex 6 is technically in Orange County, we considered it part of Los Angeles County because (i) it borders Los Angeles County and is under the same management as is Belmont Pier Sportfishing (Landing 2), and (ii) its CPFV's fish the same areas fished by the other landings in complex 6.

- 10 -

The project was divided into three units: San Diego (responsible for San Diego County), Long Beach (responsible for Orange and Los Angeles counties), and Santa Barbara (responsible for Ventura and Santa Barbara counties). Long Beach was the project headquarters.

Each unit was headed by a Marine Biologist whose duties were, in part, to (i) recruit, hire, and train (2-4 weeks) samplers, (ii) visit the landings weekly (semi-monthly in the Long Beach unit) to obtain data on all daily, open, and chartered, CPFV trips taken (by trip type), and (iii) determine each sampler's monthly boat trip schedule. To determine boat trip schedules, the biologist first obtained each landing's projected trip schedule for the following month, during the biologist's end-of-the-month visit to the landings. Then, each trip in a complex's projected total number of trips for the month was numbered consecutively. Finally, 5% (varied with sampler funding) of this total was selected for sampling from computer-generated random numbers (with replacements).

Samplers (Scientific Aids) were responsible for contacting the landings the day before their scheduled trips to ask for permission to sample. Permission was rarely denied. When it was, the reasons were usually because the boat was filled to capacity, or out of commission. When the sampler was unable to sample a scheduled trip, he/she attempted to sample another boat trip of the same type, on the same day, and at the same complex. If the attempt failed, the trip was listed as having been missed.

Samplers were provided with fish keys, data forms, fish length recording boards, coded information, and various books to aid them in their task.

- 11 -

Sampling priorities were to (i) count all fishes released; (ii) record the lengths of as many fishes released as possible, if activity in priority one was slow; (iii) count all fishes kept as they were being caught if activities in top two priorities were slow--otherwise, count all fishes kept (or subsample) as the boat was returning to port; and (iv) record the lengths of all fishes (or subsample) as the boat was returning to port.

In addition to the top four priorities, samplers recorded the following information on their data sheet: complex, landing, boat identification number, date, time of boat departure, trip type, whether boat fished in Mexican waters, number of anglers (including crew, if they fished), sampler's identification number, time fished in each habitat type and at each specific fishing site, and bottom depth. Fish counts for both kept and released fishes were recorded by habitat type at each stop during a trip, and by fishing site. Fish lengths for both kept and released fishes were recorded by trip.

We used total length (TL) measurements for all but two families of fishes. Fork length (FL) measurements were taken for Carangidae (Jacks: yellowtail, jack mackerel) and Scombridae (Mackerels: Pacific bonito, Pacific mackerel, and all tunas). The symbols TL and FL are not used within the text to simplify the metric with English equivalent measurement expressions.

Samplers were also required to enter their data into the microcomputer databases, and to check their data entries.

- 12 -

Data Analysis

To reduce statistical variation in our estimates, we stratified the data by month and complex. Stratification by month reduces variation caused by seasonal changes in species composition, and that caused by differing seasonal angler counts. Stratification by complex reduces variation caused by clinal changes in species composition, and that caused by differing geographic angler counts.

Computer analyses of the data was done on IBM 286 AT clones, using menu driven dBASE III Plus and/or SAS programs.

In this report, we have analyzed the most important species to the CPFV industry. Importance was determined using four criteria. In priority order they are (i) species with size limits, (ii) species highly prized by anglers, (iii) species given special consideration (e.g. white croaker used in testing for toxicity from pollution along the coast), and (iv) species highly placed on an index of relative importance.

We have performed detailed analyses on 14 non-rockfish species and 12 rockfish species. In addition, we looked at all fishes as a group, as well as all rockfishes as a group. Species are presented in alphabetical order of scientific family name, and within family name, in alphabetical order of common name, except for sculpin (spotted scorpionfish), which is placed before the rockfish complex. The "all fish" group is presented first; the "all rockfishes" group heads the rockfish complex.

- 13 -

Index of Relative Importance (IRI)

The IRI was developed to help us determine which of the less important species we might consider for detailed analysis. It was an especially useful tool for the rockfish species. We used raw catch counts and frequency of a species' occurrence to obtain the IRI. We felt that rank by count is twice as important as frequency of occurrence. Thus, $IRI = \frac{2A + B}{2}$, where A = the rank by count of a

species, B = the rank by frequency of occurrence of a species, and 3 = the sum of the values assigned to importance.

For rockfishes, the IRI was the first step in determining which species we should consider for detailed analyses. Final ranking was based on the means of the 1985 through 1987 catch estimates, which were calculated for the top-ranking species of the IRI.

One weakness of our IRI is that it does not take desirability into account. If it did, the ranking of some species would be significantly altered.

Catch Estimate

We calculated catch estimates in the following manner:

$$CE = \frac{F \times T}{T_s} t$$

where CE = catch estimate

F = number of fish in the sample

T = number of trips sampled

 T_{+} = number of trips taken by the landings.

- 14 -

Although we sampled only weekday, open CPFV trips, our catch estimates (in numbers of fish) were extrapolated to include the catches of all open and chartered CPFV trips for all days, but not the catches of multi-day trips and six-packs. We made the assumption that weekday, open CPFV trips are representative of both open and chartered CPFV trips taken any day of the week.

Catch estimates were calculated by month and complex. Monthly complex catch estimates were summed up to obtain annual, county and southern California catch estimates.

Catch estimates within the text are accompanied with their standard deviations.

In our analyses, we placed more importance on the kept fish and released fish categories than we did on those of legal fish and short fish, because they better represent landing estimates. Sizeable numbers of short fishes are kept by anglers, and anglers occasionally release legal fishes. However, since the catch estimate ratio of legal fish to short fish is an important indicator of the health of a resource, we also calculated estimates for these categories to determine the ratios. We also compared our legal and short catch estimates to those of Collins and Crooke (unpublished manuscript); they did not report kept and released catch estimates.

There was a limitation in calculating legal and short fish catch estimates. It was necessary to use counts of fishes measured in the equation. However, because of sampling priorities, the percentages of released fishes measured, for most species with size limits, were considerably less than those of fishes kept. This means that analyses

- 15 -

of released fishes measured are less reliable than those of kept fishes measured.

Catch estimates for legal and short fishes were calculated as follows:

- A = E x G, where A = the catch estimate of legal fish kept, E = the catch estimate of fish kept, and G = the proportion of legal fish kept (from count of fish measured).
- B = F x H, where B = the catch estimate of legal fish released, F = the catch estimate of fish released, and H = the proportion of legal fish released (from count of fish measured).
- C = E x I, where C = the catch estimate of short fish kept, E = same as above, and I = the proportion of short fish kept (from count of fish measured).

D = F x J, where D = the catch estimate of short fish
released, F = same as above and J = the proportion
of short fish released (from count of fish
measured).

A + B = Catch estimate of legal fish.

C + D = Catch estimate of short fish.

We could have assumed that kept fish equals legal fish and released fish equals short fish, but we felt that the above method was more reliable in estimating numbers of legal and short fishes.

- 16 -

Size Composition

A variable percentage of fishes kept was measured each trip. Often the percentage was high, but it was also occasionally low. It was usually low on those high catch, surface fishing boat trips in areas close to the boat's home port. This is because samplers normally measured fishes kept as the boat was returning to port. Hence, the closer a boat fished to its home port, the fewer fishes were measured.

Length data, for those species with minimum size limit regulations, were analyzed separately for the kept fish and released fish categories, because of the sizeable difference in percentages of measured fish kept and those of measured fish released mentioned in the catch estimate section above. Had analysis been done on combined data, the length frequency bar graphs would have been misleading, overemphasizing the frequency of kept fish (the bias favoring the measurement of kept fish was negligible in the case of lingcod and white seabass, which were not caught in such numbers or rapidity as to overwhelm the samplers' ability to measure released fishes). Even when analyzed separately, the length frequency bar graphs of fish released are skewed towards the upper end of the range. That is because a far greater number of short fish with lengths close to the minimum size limit were measured than those that were obviously sublegal. Generally, anglers immediately released clearly short fishes, but measured those whose legal size status was questionable. This gave samplers a greater opportunity to measure those fishes.

Samplers had another problem in measuring some fishes. A few species without size limit restrictions, although frequently caught,

- 17 -

are far less desirable to anglers than are other species. Many of these fishes were released immediately after capture, before the sampler had a chance to measure them. However, these species are not very important to the CPFV industry, and data analysis has been performed on only one of them (white croaker).

Because our methods of analyzing length frequency data differed from those of Collins and Crooke (unpublished manuscript), only mean lengths and modes of species without size limits are compared. They did not distinguish between kept and released fishes for those species with size limits.

Effort and Catch-Per-Unit-of-Effort (CPUE)

We had hoped to report on effort (in terms of angler-hours) and CPUE (in terms of catch/angler-hour), but the necessary analytical computer programs became available only after we had completed the first draft of this report. It is anticipated that both effort and CPUE will be part of any future report based on this project's data.

RESULTS AND DISCUSSION

We sampled an average 5.5% of the weekday, open CPFV trips taken in southern California from 1985 through 1987 (Table 1). On a county-by-county basis, however, the 3-year average sampling percentages varied from 3.9% to 9.8% (Table 1). Collins and Crooke's (unpublished manuscript) average from 1976 through 1978 was 3.1% of all open trips taken.

In our study, the average number of open CPFV trips taken per year was 19,450, 1.8% more than Collins and Crooke's (unpublished manuscript) annual average.

- 18 -

TABLE 1. Weekday (W), Open (O) Commercial Passenger Fishing Vessel Sampling Effort in Southern California from 1985 through 1987.

	SOUTHERN	N CALI	FORNIA	SAN D	IEGO CO	DUNTY	ORAN	GE COUN	NTY	LOS AN	GELES	COUNTY	VENT	JRA CO	UNTY	SANTA	BARBAR	A COUNTY
	NO.	NO.	x	NO.	NO.	%	NO.	NO.	%	NO.	NO.	%	NO.	NO.	%	NO.	NO.	X
	WO	TRIPS	TRIPS	WO	TRIPS	TRIPS	WO	TRIPS	TRIPS	WO	TRIPS	TRIPS	WO	TRIPS	TRIPS	WO	TRIPS	TRIPS
	TRIPS	SUR-	SUR-	TRIPS	SUR-	SUR-	TRIPS	SUR-	SUR-	TRIPS	SUR-	SUR-	TRIPS	SUR-	SUR-	TRIPS	SUR-	SUR-
YEAR	TAKEN	VEYED	VEYED	TAKEN	VEYED	VEYED	TAKEN	VEYED	VEYED	TAKEN	VEYED	VEYED	TAKEN	VEYED	VEYED	TAKEN	VEYED	VEYED
1985	12,090	736	6.1	3,744	253	6.8	1,986	89	4.5	4,876	219	4.5	1,076	125	11.6	408	50	12.2
1986	12,348	650	5.3	3,817	251	6.6	2,160	87	4.0	4,815	182	3.8	1,109	95	8.6	447	35	7.8
1987	12,504	631	5.0	4,161	255	6.1	1,913	62	3.2	4,873	1 72	3.5	1,085	99	9.1	472	43	9.1

.

.

,**,** }

:

.

i

.

- 19 -

•

..

Our data show that the majority of open CPFV trips occurred on weekdays, while that of chartered CPFV's, with the exception of 1/2-day type trips, occurred on weekends and holidays (Tables 2 through 4). The data also show that the ratio of open CPFV trips to chartered CPFV trips is greater than 3 to 1 (Table 5 through 7). Furthermore, the majority of open CPFV trips were 1/2-day type trips, whereas those of chartered CPFV's were full-day type trips (Tables 5 through 7).

TABLE 2. Breakdown of Southern California Commercial Passenger Fishing Vessel Trips Taken in 1985 into Periods when Trips Were Taken.

		OPEN	CPFV'S			
	1/	2-DAY	3	/4-DAY	FUL	L-DAY
PERIOD	%	NO.	%	NO.	%	NO.
Weekdays Weekends & Holidays All Days	64 36 100	6,647 3,778 10,425	64 36 100	3,512 2,011 5,523	59 41 100	1,931 1,349 3,280
Ser ai - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	T	CHARTER	ED CPFV	'S	· · · · · · · · · · · · · · · · · · ·	
Weekdays Weekends & Holidays All Days	54 46 100	128 109 237	36 64 100	393 702 1,095	44 56 100	2,051 2,635 4,686
	OP	EN & CHAR	TERED C	PFV'S		
Weekdays Weekends & Holidays All Days	64 36 100	6,775 3,887 10,662	59 41 100	3,905 2,713 6,618	50 50 100	3,982 3,984 7,966

annu la

- 20 -

		OPEN	CPFV'S			
	1/	2-DAY	3/4	4-DAY	FULL-DAY	
PERIOD	%	NO.	%	NO.	X	NO.
Weekdays Weekends & Holidays All Days	64 36 100	7,003 3,915 10,918	65 35 100	3,591 1,956 5,547	57 43 100	1,754 1,309 3,063
	·	CHARTER	ED CPFV	'S		
Weekdays Weekends & Holidays All Days	53 47 100	157 138 295	34 66 100	475 932 1,407	44 56 100	1,665 2,146 3,811
	OP	EN & CHAR	TERED C	PFV'S	•••••••••	
Weekdays Weekends & Holidays All Days	64 36 100	7,160 4,053 11,213	58 42 100	4,066 2,888 6,954	50 50 100	3,419 3,455 6,874

TABLE 3. Breakdown of Southern California Commercial Passenger FishingVessel Trips Taken in 1986 into Periods when Trips Were Taken.

۲

TABLE 4.Breakdown of Southern California Commercial Passenger Fishing
Vessel Trips Taken in 1987 into Periods when Trips Were Taken.

		OPEN C	PFV'S						
1/2-DAY 3/4-DAY FULL-DAY									
PERIOD	%	NO.	%	NO.	%	NO.			
Weekdays Weekends & Holidays All Days	65 35 100	6,993 3,801 10,794	64 36 100	3,560 1,985 5,545	60 40 100	1,951 1,305 3,256			
	СН	ARTERED C	PFV'S						
Weekdays Weekends & Holidays All Days	52 48 100	175 159 334	40 60 100	667 1,019 1,686	42 58 100	1,521 2,063 3,584			
	OPEN	& CHARTE	RED CPF	v's					
Weekdays Weekends & Holidays All Days	64 36 100	7,168 3,960 11,128	58 42 100	4,227 3,004 7,231	51 49 100	3,472 3,368 6,840			

OPEN CPFV 'S									
TRIP	WEI	EKDAYS	WEEKENDS	& HOLIDAYS	ALL DAYS				
TYPE	%	NO.	%	NO.	x	NO.			
						· .			
1/2-Day	55	6,647	53	3,778	54	10,425			
3/4-Day	29	3,512	28	2,011	29	5,523			
Full-Day	16	1,931	19	1,349	17	3,280			
Combined	100	12,090	100	7,138	100	19,228			
			•	•		-			
		CH	ARTERED C	PFV'S					
1/2-Day	5	128	3	109	4	237			
3/4-Day	15	393	20	702	18	1,095			
Full-Day	8 0	2,051	77	2,635	78	4,686			
Combined	100	2,572	100	3,446	100	6,018			
	•		-			•			
		OPEN	& CHARTER	ED CPFV'S					
1/0 5	10	(77F		2 2 2 2	10	10 ((0			
1/2-Day	40	6,//5	3/	3,88/	42	10,662			
3/4-Day	27	3,905	25	2,713	26	6,618			
Full-Day	27	3,982	38	3,984	32	7,966			
Combined	100	14,662	100	10,584	100	25,246			

TABLE 5.	Breakdown o	f Southern	California (Commercial	Passenger
	Fishing Ves	sel Trips '	Taken in 198	5 into Trip	Types.

•

TABLE 6. Breakdown of Southern California Commercial PassengerFishing Vessel Trips Taken in 1986 into Trip Types.

OPEN CPFV'S							
TRIP	WEI	EKDAYS	WEEKENDS	& HOLIDAYS	AL	L DAYS	
TYPE	%	NO.	7	NO.	%	NO.	
1/2-Day	57	7,003	55	3,915	56	10 ,9 18	
3/4-Day	29	3,591	27	1,956	28	5,547	
Full-Day	14	1,754	18	1,309	16	3,063	
Combined	100	12,348	100	7,180	100	19,528	
	•		•	•			
		CH	ARTERED C	PFV'S			
1/2-Day	7	157	4	138 [5	295	
3/4-Day	21	475	29	932	26	1,407	
Full-Day	72	1,665	67	2,146	69	3,811	
Combined	100	2,297	100	3,216	100	5,513	
	•						
		OPEN	CHARTER	RED CPFV'S			
1/2-Day	49	7,160	39	4,053	45	11,213	
3/4-Day	28	4,066	28	2,888	28	6 ,9 54	
Full-Day	23	3,419	33	3,455	27	6,874	
Combined	100	14,645	100	10,396	10 0	25,041	
	{						

. -

OPEN CPFV'S						
TRIP	WEI	EKDAYS	WEEKENDS	& HOLIDAYS	AL	L DAYS
TYPE	%	NO.	%	NO.	%	NO.
1/2-Day	56	6,993	54	3,801 (55	10,794
3/4-Day	28	3,560	28	1,985	28	5,545
Full-Day	16	1,951	18	1,305	17	3,256
Combined	100	12,504	100	7,091	10 0	19,595
	•	-	•			•
		CH	ARTERED C	PFV'S		
1/2-Day	8	175	5	159	6	334
3/4-Day	28	667	31	1,019	3 0	1,686
Full-Day	64	1,521	64	2,063	64	3,584
Combined	10 0	2,363	100	3,241	10 0	5,604
		-	•			
		OPEN a	& CHARTER	ED CPFV'S		
			}			
1/2-Day	48	7,168	38	3,960	44	11,128
3/4-Day	29	4,227	29	3,004	29	7,231
Full-Day	23	3,472	33	3,368	27	6,840
Combined	100	14,867	100	10,332	100	25,199

TABLE 7. Breakdown of Southern California Commercial PassengerFishing Vessel Trips Taken in 1987 into Trip Types.

The mean angler counts among trip types and over time were similar (Table 8). However, higher angler counts were noted during the summer season (mid-June through mid-September) than during the off-season.

TABLE 8. Mean Angler Count on Sampled Southern California Weekday, Open Commercial Passenger Fishing Vessels by Trip Type for 1985 Through 1987.

TRIP		1985			1986]]	987		19	985-	1987
TYPE	MEAN	LOW	HIGH	MEAN	LOW	HIGH	MEAN	LOW	HIGH	MEAN	LOW	HIGH
1/2-Day	25	4	88	27	4	71	28	3	93	26	3	93
3/4-Day	26	5	77	29	7	86	28	5	89	27	5	89
Full-Day	.26	8	51	24	9	6 0	23	7	44	24	7	60
Combined	25	4	88	27	4	86	27	3	93	26	3	93

Based on sampled CPFV trips for combined years 1985 through 1987, the data show that mean fishing effort on full-day boats was 40% greater than that of 3/4-day boats, and 60% greater than that of 1/2-day boats; for 3/4-day boats, mean fishing effort was 32% greater than that of 1/2-day boats (Table 9).

TABLE 9. Fishing Effort (Minutes) for Sampled Southern California Weekday, Open Commercial Passenger Fishing Vessels by Trip Type for 1985 Through 1987.

۰.

TRIP		198	5		1986			1987		19	985-	1987
TYPE	MEAN	LOW	HIGH	MEAN	LOW	HIGH	MEAN	LOW	HIGH	MEAN	LOW	HIGH
1/2-Day	172	34	288	175	56	334	178	19	33 0	175	19	334
3/4-Day	248	28	458	268	75	437	2 61	69	411	258	28	458
Full-Day	382	48	770	450	64	863	451	9 9	865	432	48	865
Combined	217	28	770	244	56	863	244	19	865	234	19	865

Some of our sampled southern California CPFV trips fished in Mexican waters. Our data show that almost all of those trips originated at San Diego Bay landings. Based on data for combined years 1985 through 1987, 38% of all San Diego Bay Complex CPFV trips fished in Mexican waters (Table 10).

TABLE 10. Percentages and Sample Size (N) of Sampled San Diego Bay Complex Weekday, Open Commercial Passenger Fishing Vessel Trips to Mexican Waters by Trip Type for 1985 Through 1987.

TRIP]	985	1	986	1	987	1985-	-1987
TYPE	%	N	%	N	%	N	%	N
1/2-Day	0	71	0	50	0	54	0	175
3/4-Day	56	16	31	16	58	19	49	51
Full-Day	84	19	89	47	100	44	93	110
Combined	24	106	42	113	47	117	38	336

We encountered 180 species of fishes on board southern California CPFV's between 1985 and 1987, including 49 species of rockfishes (Table 11). Collins and Crooke (unpublished manuscript) reported having encountered 156 species during their survey.

TABLE 11.Species Encountered On Board Southern California Commercial
Passenger Fishing Vessels Between 1985 and 1987

COMMON NAME

SCIENTIFIC NAME

Albacore	Thunnus alalunga
Barracuda, California	Sphyraena argent e a
Bass, Barred Sand	Paralabrax nebulif er
Bass, Kelp	Paralabrax clathratus
Bass, Spotted Sand	Paralabrax maculatofasciatus
Blacksmelt, Pacific	Bathylagus pacificus
Blacksmith	Chromis punctipinnis
Bocaccio	Sebastes paucispinis
Bonito, Pacific	Sarda chiliensis
Butterfish, Pacific	Peprilus simillimus
Cabezon	Scorpaenychthys marmoratus
Chilipepper	Sebastes goodei
Combfish, Shortspine	Zaniolepsis frenata
Corbina, California	Menticirrhus undulatus
Cowcod	Sebastes levis
Croaker, Black	Cheilotrema saturnum
Croaker, Spotfin	Roncador stearnsi
Croaker, White	Genvonemus lineatus
Croaker, Yellowfin	limbring roncador
Cusk-eel, Basketweave	Ophidian scrippsae
Dogfish. Spiny	Savalus acanthias
Dolphinfish	Coruphaena hippurus
Flyingfish, California	Cupselurus californicus
Fringehead Sarcastic	Neoclinus blanchardi
Garihaldi	Hupsupops rubicundus
Greenling, Painted	Orulebius mictus
Grouper Gulf	Mucteroperca jordani.
Grouper, Snowy	Eminephelus nivertus
Cuitarfich Shovelnose	Rhinobatos productus
Gultariish, Shoverhose	Scombenomonus concolon
Haofish Black	Entatretus deani
Haofieh Pacific	Eptatretus stouti
Hake Parific	Merluccius productus
Halfmoon	Medialuna californiensis
Halibut, California	Paralichthus californicus
Hammerhead. Smooth	Sphurna zuaaena
Herring, Round	Etrumeus teres
Herring, Pacific	Clupea harengus
Jacksmelt	Atherinopsis californiensis
Kelpfish, Giant	Heterostichus rostratus
Kelpfish, Striped	Gibbonsia metzi
Lingcod	Ophiodon elongatus
Lizardfish, California	Sunodus lucioceps
Mackerel, Bullet	Auris rochei
Mackerel, Jack	Trachurus summetricus
Mackerel, Pacific	Scomber japonicus
Midshipman, Plainfin	Porichthys notatus
Midshipman, Specklefin	Porichthys myriaster
Monkeyface Prickleback	Cebidichthys violaceus
Moray, California	Gymnothorax mordax
Needlefish, California	Strongylura exilis
· · · · · · · · · · · · · · · · · · ·	

TABLE 11 continued

.

10

1

i ante

COMMON NAME	SCIENTIFIC NAME
Ocean Sunfish	Mola mola
Opaleve	Girella nigricans
Pomfret. Bigscale	Taractichthus steindachnoni
Queenfish	Seriphus politus
Ratfish	Hudrolagus colliei
Rav Rat	Muliobatis californica
Ray, Datific Electric $\sqrt{2}$	Torredo californica
Rockfish Aurora $0 \times 10^{0^{10}}$	Sebastes aumona
Rockfish Bank n°	Sabastas mitus
Rockfish Black	Sebastes malanons
Rockfish Black-and-Vellow	Sebastes meranops Sebastes chrysomelas
Rockfish Blackgill	Sebastes malanostomus
Pockfich Blue	Sebastes metanostomus
Rockfish Brossosstad	Sebastes mystinus
Rocklish, Blonzespolled	Sebastes gilli
RUCKIISH, DIUWH Daalfish Calica	Sebastes auriculatus
RUCKIISH, GALLEO Doolfich Concern	Sebastes aalli
Rocklish, Canary	Sebastes pinniger
Rocklish, Chameleon	Sebastes phillipsi
Kockiish, Unina	Sebastes nebulosus
Rockiish, Copper	Sebastes caurinus
ROCKIISH, DATEDIOICHED	Sebastes crameri
KOCKIISH, FIAG	Sebastes rubrivinctus
ROCKIISH, FRECKIEG	Sebastes lentiginosus
Kockfish, Gopher	Sebastes carnatus
KOCKIISH, GRASS	Sebastes rastrelliger
Rockfish, Greenblotched	Sebastes rosenblatti
Rockfish, Greenspotted	Sebastes chlorostictus
Kockfish, Greenstriped	Sebastes elongatus
Rockfish, Halfbanded	Sebastes semicinctus
Rockfish, Honeycomb	Sebastes umbrosus
Kockfish, Kelp	Sebastes atrovirens
Rockfish, Mexican	Sebastes macdonaldi
Rockfish, Olive	Sebastes serranoides
Rockfish, Pink	Sebastes eos
Rockfish, Pinkrose	Sebastes simulator
Rockfish, Redbanded	Sebastes babcocki
Rockfish, Redstripe	Sebastes proriger
Rockfish, Rosethorn	Sebastes helvomaculatus
Rockfish, Rosy	Sebastes rosaceus
Rockfish, Sharpchin	Sebastes zacentrus
ROCKIISH, SHOTTDELLY	Sebastes jordani
Rockiish, Speckled	Sebastes ovalis
Rockrish, Splitnose	Sebastes diploproa
Rockiish, Squarespot	Sebastes hopkinsi
RUCKIISH, STAFFY	Sepastes constellatus
RUCKIISH, SURPERAL Poolfish Cuardaning	Sebastes saricola
RUCKIISH, SWUIDSPINE Pookfich Ticor	sedastes ensijer
RUCKIIDH, IIgel Dockfich, Normilion	Sebastes nigrocinctus
Nockiish, Vermillon Dockfieb, Widow	Sebastes miniatus
RUCKIIBH, WIUUW Dockfich Vallowero	Sebastes entomelas
	NEDUBLES TUDETTUMAS
COMMON NAME

Rockfish, Yellowtail Ronquil, Smooth Sablefish Salema Salmon, King Sanddab, Longfin Sanddab, Pacific Sanddab, Speckled Sardine, Pacific Sargo Scad, Mexican Sculpin (California Scorpionfish) Sculpin, Fringed Sculpin, Staghorn Sculpin, Threadfin Sea Bass, Giant Seabass. White Senorita Shark, Blue Shark, Bonito Shark, Horn Shark, Leopard Shark, Pacific Angel Shark, Sixgill Shark, Soupfin Shark, Swell Shark, Thresher Sheephead, California Sierra, Pacific Skate, Big Skate, California Skate, Longnose Skate, Starry Skipjack Skipjack, Black Skipjack, Wavyback (Kawakawa) Smoothhound, Brown Smoothhound, Gray Sole, Bigmouth Sole, Butter Sole, English Sole, Fantail Sole, Flathead Sole, Petrale Sole, Rex Sole, Rock Sole, Sand Sole, Slender

SCIENTIFIC NAME

Sebastes flavidus Rathbunella hypoplecta Anoplopoma fimbria Xenistius californiensis Oncorhynchus tshawytscha Citharichthys xanthostigma Citharichthys sordidus Citharichthys stigmaeus Sardinops sagar Anisotremus davidsoni Decapterus hypodus Scorpaena guttata Icelinus fimbriatus Leptocottus armatus Icelinus filamentosus Stereolepis gigas Atractoscion nobilis Oxyjulis californica Prionace glauca Isurus oxyrinchus Heterodontus francisci Triakis semifasciata Squatina californica Hexanchus griseus Galeorhinus zyopterus Cephaloscyllium ventriosum Alopias vulpinus Semicossyphus pulcher Scomberomorus sierra Raja binoculata Raja inornata Raja rhina Raja stellulata Katsuwonus pelamis Euthynnus lineatus Euthynnus affinis Mustelus henlei Mustelus californicus Hippoglossina stomata Isopsetta isolepis Parophrys vetulus Xystreurys liolepis Hippoglossoides elassodon Eopsetta jordani Glyptocephalus zachirus Lepidopsetta bilineata Psettichthys melanostictus Lyopsetta exilis

TABLE 11 continued

COMMON NAME

Stargazer, Smooth Stingray, Diamond Stingray, Pelagic Stingray, Round Surfperch, Barred Surfperch, Black Surfperch, Pile (Pile Perch) Surfperch, Rainbow Surfperch, Rubberlip Surfperch, Sharpnose Surfperch, Shiner (Shiner Perch) Surfperch, Striped Surfperch, Walleye Surfperch, White Thornback Thornyhead, Shortspine Tomcod, Pacific Topsmelt Treefish Triggerfish, Finescale Triggerfish, Redtail Tuna, Bigeye Tuna, Bluefin Tuna, Yellowfin Turbot, C-O (C-O Sole) Turbot, Diamond Whitefish, Ocean Wolf-eel Wrasse, Rock Yellowtail

SCIENTIFIC NAME

Kathetostoma averruncus Dasyatis dipterura Dasyatis violacea Urolophus halleri Amphistichus argenteus Embiotoca jacksoni Damalichthys vacca Hypsurus caryi Rhacochilus toxotes Phanerodon atripes Cymatogaster aggregata Embiotoca lateralis Hyperprosopon argenteum Phanerodon furcatus Platyrhinoidis triseriata Sebastolobus alascanus Microgadus proximus Atherinops affinis Sebastes serriceps Balistes polylepis Xanthichthys mento Thunnus obesus Thunnus thynnus Thunnus albacares Pleuronichthys coenosus Hypsosetta guttulata Caulolatilus princeps Anarrhichthys ocellatus Halichoeres semicinctus Seriola lalandei

All Fishes

Catch Estimates

Southern California. Based on our IRI, Pacific mackerel, kelp bass, and barred sand bass were the three most important species caught by southern California CPFV's from 1985 through 1987 (Table 12).

The estimated total catch of all fishes for southern California was 3,772,941 fish \pm 113,188 in 1985, 4,603,498 \pm 92,069 in 1986, and 4,240,369 \pm 127,211 in 1987 (Table 13). The estimated number of fishes kept increased by 25% from 1985 to 1986; 1986 and 1987 figures were similar (Table 13). The estimated number of released fishes increased by 16% from 1985 to 1986, then declined by 22% from 1986 to 1987 (Table 13). The overall kept to released ratio steadily increased from 1.8 to 1 in 1985 to 2.4 to 1 in 1987. The catch distribution shows that 50% of the fishes were taken from June through September (Figure 2).

Our annual, estimated total catches for 1985 through 1987 were higher than those reported by Collins and Crooke (unpublished manuscript) for 1976 through 1978, and had less variability. Their estimates were 2,726,930 \pm 81,499 for 1976, 2,907,512 \pm 86,994 for 1977, and 4,089,640 \pm 117,073 for 1978. Also, surface species were more important in our survey than they were in theirs; they found mixed depth and bottom species taken with greater frequency.

<u>Counties</u>. Based on our IRI, Pacific mackerel, kelp bass, and barred sand bass were the most important components of the catch in San Diego, Orange and Los Angeles counties (Tables 14 through 16). In Ventura and Santa Barbara counties, bocaccio and olive rockfish shared

- 30 -

TABLE 12. Top 20 Ranks, Based on an Index of Relative Importance, of Sport Fish Species Observed On Board Southern California Based Commercial Passenger Fishing Vessels in 1985, 1986, and 1987.

RANK	1985	1986	1987
1	Pacific mackerel	Kelp bass	Pacific mackerel
2	Kelp bass	Pacific mackerel	Kelp bass
3	Barred sand bass	Barred sand bass	Barred sand bass
4	California barracuda	Pacific bonito	Pacific bonito
5	Pacific bonito	California barracuda	California barracuda
6	Bocaccio	Ocean whitefish	Sculpin (California scorpionfish)
		Sculpin (California scorpionfish)	• • • • • •
7	Ocean whitefish	White croaker	Vermilion rockfish
7	Sculpin (California scorpionfish)		Ocean whitefish
8	Starry rockfish	Bocaccio	California halibut
9	California halibut	California halibut	Bocaccio
10	Vermilion rockfish	V <u>ermilion</u> rockfish	Olive rockfish
11	Greenspotted rockfish	Starry rockfish	White croaker
12	Rosy rockfish	Halfmoon	California sheephead
13	Chilipepper	California sheephead	Chilipepper
13	Honeycomb rockfish		
14	Squarespot rockfish	Calico rockfish	Copper rockfish
15	Blue rockfish	Honeycomb rockfish	Starry rockfish
15	White croaker		
15	Calico rockfish		
16	Flag rockfish	Olive rockfish	Halfmoon
17	Olive rockfish	Chilipepper	Greenspotted rockfish
17		Jack mackerel	-
18	Pacific sanddab	Greenspotted rockfish	Yellowtail
19	Yellowtail	Rosy rockfish	Blue rockfish
19		-	Honeycomb rockfish
20 20	California lizardfish	California lizardfish	California lizardfish Gopher rockfish

1

.

•

۰.

- 31

I

Catch Estimates (EST) and Coefficients of Variation [CV (%)] of All Fishes from On-Board Sampling of Southern Callfornia Commercial Passenger Fishing Vessels for 1985 Through 1987. TABLE 13.

			FISHES	KEPI					FISHES REI	LEASE	6				TUTAL CA	E		1
	1985		1986		1987		198	5	1986		1987	ł	196	5	198	36	196	5
AREA	EST	2	EST	S	EST	S	EST	5	EST	2	EST	Ð	EST	5	EST	Ŋ	EST	ß
San Diego County	687,455	9	890,638	ŝ	927,073	4	250,877	2	363,706	و	291,120	ي	938,333	~	1,254,344	4	,218,193	. -
- C Ounty County	262,822	9	476,556	æ	429,968	11	258,903	6 0	387,320	0	268,769	6	521,72	se La	863,875	•	698,737	6
i Los Angeles County	966,957	4	1,038,125	4	989,711	9	744,698	-	631 , 188	Ŷ	501,642	Q	1,711,65	n '	1,669,313	31	,491,352	ŝ
Ventura County	432,631	\$	546,975	Ś	572,924	9	75,137	11	153,263	80	134,272	10	207,769	ŝ	700,238	ŝ	707,197	S
Senta Barbere County	66,524	16	74 ,240	13	95,661	19	26,936	6	41,488	19	29,228	14	93,459	11	115,728	14	124,890	13
Southern Calfforn is	2,416,389	m	3,026,532	m	3,015,337	e	1,356,551	S	1,576,966	4 1	,225,032	4	3,772,941	۴	4,603,498	2 4	,240,369	~
										:								

•

·.

·

FIGURE 2. Monthly total catch estimates (number of fish) and standard deviations of all fishes from on-board observations of southern California commercial passenger fishing vessels.

TABLE 14. Top 20 Ranks, Based on an Index of Relative Importance, of Sport Fish Species Observed On Board San Diego County Based Commercial Passenger Fishing Vessels in 1985, 1986, and 1987.

RANK	1985	1986	1987
1	Pacific mackerel	Pacific mackerel	Pacific mackerel
2	California barracuda	Kelp bass	Kelp bass
3	Kelp bass	California barracuda	Pacific bonito
4	Barred sand bass	Pacific bonito	California barracuda
5	Pacific bonito	Barred sand bass	Barred sand bass
6	 Honeycomb rockfish 	Ocean whitefish	Ocean whitefish
6	- Sculpin (California scorpionfis	h)	Sculpin (California scorpionfish)
7	Ocean whitefish	Calico rockfish	Olive rockfish
8	Starry rockfish	Honeycomb rockfish	Honeycomb rockfish
8	Calico rockfish	•	•
9	Albacore	- Sculpin (California scorpionfish)	-Vermilion rockfish
10	Flag rockfish	Olive rockfish	_California sheephead
10	Gopher rockfish		•
11	Treefish	Jack mackerel	Yellowtail
12	Squarespot rockfish	Vermilion rockfish	¿Calico rockfish
12	Yellowtail		"Treefish
13	Bocaccio	Starry rockfish	Starry rockfish
14	Blue rockfish	Treefish	White croaker
15 15	Vermilion rockfish	White croaker Yellowtail	California halibut
16	Brown rockfish	-California sheephead	Lingcod
16	-California sheephead	-	
17	California halibut	: Gopher rockfish	Gopher rockfish
18	Greenspotted rockfish	California halibut	Flag rockfish
19	Rosy rockfish	Bocaccio	Chilipepper
19	-	Squarespot rockfish	• • • • •
20	Bank rockfish	Skipjack	Skipjack
20	-	Flag rockfish	15

- 34

TABLE 15. Top 20 Ranks, Based on an Index of Relative Importance, of Sport Fish Species Observed On Board Orange County Based Commercial Passenger Fishing Vessels in 1985, 1986, and 1987.

••

RANK	1985	1986	1987
1	Barred sand bass	Pacific mackerel	Barred sand bass
2	Pacific mackerel	Barred sand bass	Pacific mackerel
3	Kelp bass	Kelp bass	Kelp bass
3	•	• .	California barracuda
4	California barracuda	Pacific bonito	Pacific bonito
5	∽Sculpin (California scorpionfish)	California barracuda	-Sculpin (California scorpionfish)
6	. Bocaccio	White croaker	Vermilion rockfish
7	Pacific bonito	-Sculpin (California scorpionfish)	White croaker
7	White croaker		
8	California halibut	, Bank rockfish	California lizardfish
8		Halfmoon	
9	California lizardfish	Chilipepper	California sheephead
10	Halfmoon	California halibut	, Bocaccio
10			California halibut
11	*Greenspotted rockfish	California lizardfish	"Chilipepper
11	-		Halfmoon
12	`Starry rockfish	"Bocaccio	White seabass
13	Flag rockfish	Yellowtail	Flag rockfish
13	Vermilion rockfish		-
14	Rosy rockfish	_California sheephead	Olive rockfish
14	-	-	Senorita
15	Honeycomb rockfish	Pacific sanddab	Ocean whitefish
16	Bank rockfish	Ocean whitefish	Pacific sanddab
17	Ocean whitefish	Greenblotched rockfish	Yellowtail
18	~ California sheephead	Vermilion rockfish	Bank rockfish
19	Squarespot rockfish	Greenstriped rockfish	Calico rockfish
20	Yellowtail	Calico rockfish	Blacksmith
20			Fantail sole

- 35 -

TABLE 16. Top 20 Ranks, Based on an Index of Relative Importance, of Sport Fish Species Observed On Board Los Angeles County Based Commercial Passenger Fishing Vessels in 1985, 1986, and 1987.

RANK	1985	1986	1987
1 1	Pacific mackerel	Kelp bass	Barred sand bass Pacific mackerel
2	Kelp bass	Pacific mackerel	Kelp bass
2	Barred sand bass		•
3	California barracuda	Barred sand bass	Pacific bonito
4	Pacific bonito	California barracuda	California barracuda
5	California halibut	Pacific bonito	Sculpin (California scorpionfish)
6	Sculpin (California scorpionfish)	California halibut	California halibut
7	Ocean whitefish	-Sculpin (California scorpionfish)	White croaker
8	Bocaccio	White croaker	Vermilion rockfish
9	White croaker	c Bocaccio	Ocean whitefish
10	California lizardfish	Halfmoon	Bocaccio
10	·	Ocean whitefish	California lizardfish
11	Squarespot rockfish	-California sheephead	Halfmoon
11	Yellowtail		
12	Starry rockfish	California lizardfish	🖉 California sheephead
13	<pre>&Vermilion rockfish</pre>	Vermilion rockfish	Yellowtail
14	California sheephead	Starry rockfish	Spiny dogfish
14	Rosy rockfish		
15	Calico rockfish	Squarespot rockfish	Starry rockfish
16	Honeycomb rockfish	Blacksmith	Olive rockfish
17	Greenspotted rockfish	Calico rockfish	Calico rockfish
18	Flag rockfish	Flag rockfish	Greenspotted rockfish
19	Treefish	Rosy rockfish	Chilipepper
19		-	Pacific sanddab
20	Jack mackerel	Honeycomb rockfish	Rosy rockfish

.•

.•

- 36

ł

top three positions with Pacific mackerel and kelp bass (Tables 17 and 18).

Los Angeles County showed the highest estimated catches throughout our survey, but a declining trend was evident, down 13% from 1985 to 1987 (Table 13). San Diego and Orange counties showed strong catch increases in 1986, followed by a decline in 1987 (Table 13). Ventura and Santa Barbara counties showed rapid catch increases from 1985 to 1987, up 39% and 34%, respectively (Table 13). There was a general increase in the ratio of kept to released fishes during the survey in all counties. TABLE 17. Top 20 Ranks, Based on an Index of Relative Importance, of Sport Fish Species Observed On Board Ventura County Based Commercial Passenger Fishing Vessels in 1985, 1986, and 1987.

RANK	1985	1986	1987
1	<i>⊭</i> Bocaccio	Kelp bass	Kelp bass
2	Pacific mackerel	Pacific mackerel	Pacific mackerel
3	Kelp bass	Bocaccio	Barred sand bass
4	Greenspotted rockfish	Ocean whitefish	Bocaccio
5	Pacific sanddab	Greenspotted rockfish	Pacific bonito
5		California barracuda	
6	Ocean whitefish	Chilipepper	"Chilipepper
7	Chilipepper	Halfmoon	Olive rockfish
7	Starry rockfish		
8	Rosy rockfish	Starry rockfish	-Vermilion rockfish
9	Vermilion rockfish	Vermilion rockfish	Greenspotted rockfish
10	California barracuda	Copper rockfish	Copper rockfish
10		California sheephead	
11	Greenstriped rockfish	Rosy rockfish	Ocean whitefish
12	Blue rockfish	Blue rockfish	California halibut
12		Greenstriped rockfish	
13	Copper rockfish	Kelp rockfish	Blue rockfish
14	Flag rockfish	Sculpin (California scorpionfish)	Sculpin (California scorpionfish)
15	Speckled rockfish	Pacific sanddab	White croaker
15	-		California barracuda
16	Gopher rockfish	California halibut	Gopher rockfish
17	Barred sand bass	Olive rockfish	California sheephead
18	California sheephead	Gopher rockfish	Halfmoon
19	Olive rockfish	Blacksmith	Greenstriped rockfish
20	Pacific bonito	Pacific bonito	Starry rockfish

•

- 38 -

ſ

TABLE 18. Top 20 Ranks, Based on an Index of Relative Importance, of Sport Fish Species Observed On Board Santa Barbara County Based Commercial Passenger Fishing Vessels in 1985, 1986, and 1987.

...

1985		1986	1987
1	Kelp bass	Kelp bass	Pacific mackerel
1	Pacific mackerel	-	
2	Olive rockfish	Pacific mackerel	Kelp bass
3	Bocaccio	Barred sand bass	<pre>Copper rockfish</pre>
4	Blue rockfish	/ Olive rockfish	• Vermilion rockfish
4			•Olive rockfish
5	Vermilion rockfish	Blue rockfish	Barred sand bass
6	Barred sand bass	California barracuda	Blue rockfish
7	California barracuda	Copper rockfish	Pacific bonito
8	Copper rockfish	White croaker	Bocaccio
9	Starry rockfish	Vermilion rockfish	Widow rockfish
10	Greenspotted rockfish	Pacific bonito	Kelp rockfish
11	Calico rockfish	Bocaccio	Ocean whitefish
11			Gopher rockfish
12	Pacific bonito	Greenspotted rockfish	California barracuda
12		Brown rockfish	
13	Rosy rockfish	Yellowtail rockfish	Lingcod
14	Yellowtail rockfish	California halibut	Starry rockfish
14			California halibut
15	Squarespot rockfish	Starry rockfish	Greenspotted rockfish
16	Widow rockfish	Lingcod	Brown rockfish
17	Speckled rockfish	Sculpin (California scorpionfish)	Sculpin (California scorpionfish)
18	Ocean whitefish	Ocean whitefish	White croaker
18	Lingcod		
19	Gopher rockfish	Widow rockfish	Rosv rockfish
20	White croaker	Rosy rockfish	Canary rockfish

6

ł

.

• • •

,... f

.

.

- 39 -

Ocean Whitefish (Branchiostegidae)

Catch Estimates

<u>Southern California</u>. Ocean whitefish, a shallow-water-dwelling species, is usually caught in depths of 11 to 92 m (6 to 50 fm) over rocky reefs and offshore banks (Eschmeyer et al. 1983). In the southern California CPFV fishery, ocean whitefish is normally an incidental catch species on trips targeting shallow-water rockfishes.

The total catch estimates for ocean whitefish ranged from 72,846 fish \pm 9,470 in 1987 to 94,786 \pm 13,270 in 1986 (Table 19). In Collins and Crooke (unpublished manuscript), ocean whitefish total catch estimates ranged from 40,354 \pm 5,567 in 1978 to 58,959 \pm 8,009 in 1977. The CPFV log records show a trend of increasing ocean whitefish landings, starting in 1965 and peaking in 1985 (Paul Gregory, California Department of Fish and Game, Marine Resources Division, pers. comm).

The catch-by-month analysis showed that, in 1985 and 1986, total catches peaked in the summer months, while in 1987, total catches peaked in October (Figure 3). This seasonal distribution is governed by CPFV fishing patterns, which dictate that shallow-water rockfish fishing occurs during the summer months. Most of the ocean whitefish catch is incidental to rockfishes on these trips. The October catch peak in 1987 might be a result of changes in normal fishing patterns.

<u>Counties</u>. San Diego, Los Angeles, and Ventura Counties supplied an average of 96% of the ocean whitefish catch. The distribution of ocean whitefish catches was due primarily to the geographic location of ocean whitefish habitat areas: the San Diego County catch came almost

- 40 -

TABLE 19. Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Ocean Whitefish from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

.

••

																<u></u>			
				FISH	KEPT				1	FISH RELEA	SED					TOTAL C	ATCH		
		198	5	198	6	198	7	1985		198	36	19	37	198	5	198	6	1987	7
	AREA	EST	CV	EST	CV	EST	CV	EST	<u>C,V</u>	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV
	San Diego County	23,880	35	27,969	31	31,065	19	465	45	1,448	84	256	46	24,345	35	29,417	34	31,321	19
- 41	Orange County	1,155	44	1,097	36	2,833	43	17	97	1,625	90	31	98	1,173	43	2,722	65	2,864	43
1	Los Angeles County	31,690	29	32,850	21	20,484	25	877	47	863	44	1,209	27	32,568	29	33,713	20	21,693	25
	Ventura County	21,885	24	27,256	20	11,850	29	54	98	432	46	282	48	21,939	24	27,688	19	12,132	28
	Santa Barbara County	471	37	1,245	78	4,836	68	i2	96	0	0	0	0	484	36	1,245	78	4,836	68
	Southern California	79,082	17	90,418	14	71,068	13	1,426	33	4,368	45	1,777	21	80,508	17	94,786	14	72,846	13

FIGURE 3. Monthly total catch estimates (number of fish) and standard deviations of ocean whitefish from on-board observations of southern California commercial passenger fishing vessels.

exclusively from the Coronado Islands in 1986 and 1987; San Clemente Island, Santa Barbara Island, and Horseshoe Kelp were the sites contributing most of the Los Angeles County ocean whitefish catches; and Anacapa Island and the east end of Santa Cruz Island were the fishing sites where most of the Ventura County ocean whitefish catches occurred (Ally et al. 1988).

Size Composition

Southern California. Our analyses of ocean whitefish length frequency data show a single modal group that is probably composed of a single, strong year class (Figure 4). Based on the length at age relationships described by Cooksey (1980), this mode represents 1983 year class ocean whitefish.

<u>Counties</u>. Two trends were apparent in our analyses of the ocean whitefish length frequencies by county; one pattern, of a dependence on a single strong year class, was reflected in the southern California ocean whitefish length frequency analysis. The San Diego, Los Angeles, Ventura, and Santa Barbara County length frequencies all display this uni-modal pattern (Figures 5 through 8). In the case of Orange County, the relatively small number of length measurements available did not define a single, dominant length mode (Figure 9). The second trend is a south to north cline in which larger, older ocean whitefish were more heavily represented in catches from the northern most counties. This was most obvious in the Ventura and Santa Barbara COPFV's were generally greater than those from the other four counties (Figure 10). The Santa Barbara County ocean whitefish catch revealed, especially in

- 43 -

FIGURE 4. Size composition of ocean whitefish from on-board observations of southern California commercial passenger fishing vessels.

•

FIGURE 5. Size composition of ocean whitefish from on-board observations of San Diego County commercial passenger fishing vessels.

FIGURE 6. Size composition of ocean whitefish from on-board observations of Los Angeles County commercial passenger fishing vessels.

FIGURE 7. Size composition of ocean whitefish from on-board observations of Ventura County commercial passenger fishing vessels.

بياست الماسي

FIGURE 8. Size composition of ocean whitefish from on-board observations of Santa Barbara County commercial passenger fishing vessels.

1.1

FIGURE 9. Size composition of ocean whitefish from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 10. Mean lengths and standard deviations of ocean whitefish measured on-board southern California commercial passenger fishing vessels.

1985 and 1987, that quantities of ocean whitefish greater than 400 mm (16 in.) in length were caught that shifted the length frequency mean upward (Figure 8). The presence of large ocean whitefish at San Miguel Island, one of the prime fishing sites for Santa Barbara County CPFV's (Ally, et al.), was the source of the 400-mm and larger fish in the frequency distribution.

Management Recommendations

In the past ocean whitefish was not highly prized, either as a gamefish or for its edibility (Fitch and Lavenberg 1971), but the catch trend since 1965 has been increasing steadily. A decreased availability of the more desirable rockfish species may be one major reason for the increased catches of ocean whitefish. In situations where shallow-water rockfishes cannot be found or coaxed to bite, ocean whitefish may frequently be found schooled nearby in large numbers; they can be caught on the same terminal gear and baits, and do not require sophisticated angling techniques.

Although the ocean whitefish catch has been increasing over the past 20 years, our study showed a 29% decline in the ocean whitefish catch between 1986 and 1987. Our length frequency analyses reveal that a large portion of the current catch is composed of immature fish that have not reached spawning age. If the observed trend continues, ocean whitefish catches over the next several years may show a declining trend until another strong year class is recruited into the CPFV fishery. The ocean whitefish population segment in southern California may fit a pattern described by Rothschild (1986), in which Very Large Year Classes dominate a sequence of recruitment data. Another factor affecting recruitment of ocean whitefish is the fact that southern

- 51 -

California is at the northern edge of the range for the species (Miller and Lea 1972). Physical conditions may only be marginally or cyclically suitable for successful recruitment and survival so far north of their central, subtropical home range.

Based on our results, we recommend that a longer time series of current catch and length frequency data be available before any new regulations are considered for the ocean whitefish sport fishery. The CPFV catch estimates generated by our survey, plus the fact that the commercial fishery for ocean whitefish is currently very limited, leads us to believe that the sport fishery can be sustained under the existing management regulations.

California Halibut (Bothidae)

Catch Estimates

Southern California. The estimated total catch of California halibut (henceforth referred to as halibut) remained stable between 1985 and 1987 (Table 20). Estimated landings of halibut rose steadily from 1985 to 1987, but not enough to alter the stable trend exhibited by the halibut total catch (Table 20). The estimated number of released halibut remained stable from 1985 to 1987 (Table 20). The ratio of kept to released halibut was 0.2 to 1 from 1985 through 1987. February through May was the time of peak catches (Figure 11).

Estimated annual catches of halibut have increased since the mid-1970's. The 1976 through 1978 estimated mean annual catch of legal halibut [\geq 559 mm (22 in.)] increased from 5,148 fish \pm 935 (Collins and Crooke unpublished manuscript) to our 3-year study's estimate of 7,415 \pm 1,248; the estimated mean annual catch of short halibut increased from 14,951 \pm 2,417 (Collins and Crooke unpublished manuscript), to our 3-year study's estimate of 52,151 \pm 5,344. The ratio of legal to short halibut was 0.1 to 1 in both 1985 and 1986, and 0.2 to 1 in 1987. Collins and Crooke (unpublished manuscript) found that the ratio of legal to short halibut was 1.1 to 1 in 1976, 0.3 to 1 in 1977, and 0.2 to 1 in 1978.

The annual estimated catch of short halibut increased sharply from 1976 to 1978, but stabilized at some point thereafter. Collins and Crooke (unpublished manuscript) felt that halibut benefited greatly from the 1971 law that prohibited the take of halibut less than 559 mm

- 53 -

Catch Estimates (EST) and Coefficients of Variation [CV (%)] of California Halibut from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987. TABLE 20.

.

			FISH KI	EPT					ISH RELEA	SED					TOTAL CA.	ICH		
AREA	EST EST	C C	EST 198	cv 6	1987 EST	C	EST 198	C C	1986 EST	C	1987 EST	CV	EST 198	S	198(EST	C	EST 19	CC .
San Diego County	658	52	439	38	634	27	3,394	19	2,784	13	3,547	21	4,053	22	3,223	14	4,181	18
County County	583	29	241	44	421	17	5,195	19	4,782	20	3,758	28	5,778	17	5,022	19	4,179	26
Los Angeles County	5,304	26	6,153	18	5 , 059	25	34 , 916	10	37,366	15	29,243	13	40,220	12	43,519	15	34,303	13
Ventura County	395	31	1,435	35	3,382	27	116,1	36	8,182	14	10,004	28	2,306	33	9,617	39	13,386	26
Santa Barbara County	23	29	186	37	521	09	239	39	784	36	735	44	291	3 6	970	36	1,256	39
Southern California	6,993	20	8,453	15	10,017	16	45,654	æ	53,898	12	47,288	10	52,648	9	62,351	12	57,305	<mark>ء</mark>

FIGURE 11. Monthly total catch estimates (number of fish) and standard deviations of California halibut from on-board observations of southern California commercial passenger fishing vessels.

(22 in.). Our data show that there has been a large increase in the number of short halibut since the mid 1970's, probably due, in part, to the same law.

The mean catch of legal halibut increased by roughly 45% between the 1976 to 1978 survey and our survey. This is well below the increased mean catch of short halibut between the two surveys (roughly 250%). Although CPFV anglers caught more than three times as many short halibut during our survey as they did during the 1976 to 1978 survey, they have not experienced the same success with legal halibut. If we assume that the number of halibut caught by CPFV anglers is an indication of the population size, then either the population of legal size halibut has not grown at the same rate as the population of short halibut, or other modes of fishing such as private boat sport fishing and/or commercial fishing is/are benefiting more from the increased availability of legal halibut.

<u>Counties</u>. More halibut were caught in Los Angeles County than in any other southern California county during each year of our survey (Table 20). Ventura County had the second highest catch of halibut in 1986 and 1987 (Table 20). We do not have site-specific catch estimates for 1985, but the area from Port Hueneme, Ventura County, to Palos Verdes Point, Los Angeles County, produced an estimated 60% of the CPFV halibut landings, and 71% of the CPFV halibut total catch in 1986 and 1987 (Ally et al. 1988). Los Angeles County's contribution to the southern California halibut total catch dropped from 76% in 1985, to 70% in 1986, and to 60% in 1987. Conversely, Ventura County showed an increase in its contribution towards the southern California halibut

- 56 -

total catch from 4% in 1985, to 15% in 1986, to 23% in 1987. There was a still greater change between Los Angeles and Ventura counties in terms of kept halibut. Los Angeles County contributed 76%, 73% and 51% to the southern California halibut landings from 1985 to 1987, respectively, while Ventura County contributed 6%, 17%, and 34% during the same period. Most of the increased landings in Ventura County from 1986 to 1987 were due to increased landings from its two southernmost sites (Ally et al. 1988). The decreased landings in Los Angeles County were due to decreased landings throughout Los Angeles County, including Santa Monica Bay. Even though the data show a shift in halibut landings from Los Angeles County to Ventura County, most of the changes are within the Port Hueneme to Palos Verdes Point area.

Other counties contributed relatively little to the southern California CPFV halibut catch.

Ventura County had the highest kept to released ratio, averaging 0.4 to 1 over the 3 years. Orange County had the lowest kept to released ratio with a 3-year average of 0.1 to 1.

Size Composition

Southern California. Annual mean lengths of kept halibut rose slightly in southern California between 1985 and 1987 (Figure 12). Most of the kept halibut were close to the minimum 559 mm (22 in.) size limit (Figure 13). The modal size class for kept halibut was 560 to 579 mm (22.0 to 22.8 in.) in 1985 and 1986 (Figure 13). Modal size classes were 560 to 579 mm (22.0 to 22.8 in.) and 580 to 599 mm (22.8 to 23.6 in.) in 1987 (Figure 13). Approximately 35% of the measured kept halibut were 560 to 599 mm (22.0 to 23.5 in.), and 60% to 70% of

- 57 -

FIGURE 12. Mean lengths and standard deviations of kept California halibut measured on board southern California commercial passenger fishing vessels. Size limit = 559 mm (22 in.).

FIGURE 13. Size composition of kept California halibut from on-board observations of southern California commercial passenger fishing vessels. Size limit = 559 mm (22 in.).

the kept halibut were 560 to 659 mm (22.0 to 25.9 in.). This means that the majority of the CPFV halibut landings are dependent on a very narrow range of year classes, and the CPFV fleet is probably susceptible to decreased landings with the failure of even one year class.

Modal size classes of released halibut were 420 to 439 mm (16.5 to 17.3 in.) in 1985, 480 to 499 mm (18.9 to 19.6 in.) in 1986, and 340 to 359 mm (13.4 to 14.1 in.) in 1987 (Figure 14). The emergence of the 340 to 359 mm (13.4 to 14.1 in.) halibut as the modal class in 1987 may mean another strong year class is being recruited into the CPFV halibut fishery.

Halibut less than the minimum size limit accounted for 11.1% to 15.2% of the annual CPFV halibut landings between 1985 and 1987. Most of the sublegal halibut kept were within 20 mm (0.8 in.) of the minimum size limit. Halibut less than 540 mm (21.2 in.) made up 2.6% of the measured kept halibut in 1985, 4.5% in 1986, and 6.0% in 1987. This suggests that inaccurate measuring (by anglers and/or samplers), and/or fish shrinkage, and/or the temptation to keep a barely short halibut, rather than mis-identifying the fish or not knowing the minimum size regulations is/are responsible for most of the sublegal halibut being kept by CPFV anglers.

<u>Counties</u>. Mean lengths of kept halibut varied little between counties or years (Figure 12). Length frequency patterns for Los Angeles and Ventura counties are similar to those of southern California (Figures 15 and 16). Other than those for Los Angeles County and Ventura County, sample sizes of measured halibut in the three other counties were very small.

- 60 -

FIGURE 14. Size composition of released California halibut from on-board observations of southern California commercial passenger fishing vessels. Size limit = 559 mm (22 in.).

2

FIGURE 15. Size composition of kept California halibut from on-board observations of Los Angeles County commercial passenger fishing vessels. Size limit = 559 mm (22 in.).

FIGURE 16. Size composition of kept California halibut from on-board observations of Ventura County commercial passenger fishing vessels. Size limit = 559 mm (22 in.).

- 63 -
The percent of sublegal halibut kept by Los Angeles County CPFV anglers decreased from 11.4% in 1985, to 6.6% in 1987. There was no trend in Ventura County. From 1985 through 1987, 9.0% of the Los Angeles County halibut landings were shorter than the size limit. During the same time period, 22.0% of the Ventura County halibut landings were sublegal fish.

The remaining counties had too small a sample size for analysis. Management Recommendations

The minimum size limit should remain in place to protect the young halibut and allow them to spawn at least once before they are recruited into the sport fishery. We need to develop a good CPUE estimate for CPFV trips targeting halibut. Finally, we need to more closely monitor the catch of short halibut, because this information could give us an indication of the number of halibut recruiting into the fishery, and provide an early warning of a diminishing halibut stock.

Yellowtail (Carangidae)

Catch Estimates

Southern California. This surface gamefish is one of the most highly prized species found off our coast. Yellowtail is highly esteemed by anglers, and ranked among the top 20 fishes in our IRI for San Diego, Orange and Los Angeles counties from 1985 through 1987 (Tables 14 through 16).

The estimated total catches of yellowtail were 33,701 fish \pm 5,392 in 1985, 19,724 \pm 2,957 in 1986, and 33,197 \pm 5,312 in 1987 (Table 21). A high percentage of the yellowtail total catch is kept by anglers (Table 21).

In 1986 and 1987, most yellowtail were caught from May through September; in 1985, the season ran from March through November (Figure 17).

Recreational sport fishing for yellowtail is almost entirely dependent upon a yearly migration of fish from Baja California waters (Crooke 1983). Consequently, the catch of yellowtail by southern California CPFV's can be expected to fluctuate widely in response to their availability in local waters.

<u>Counties</u>. San Diego County had the highest estimated catches in both 1986 and 1987, accounting for 51% and 61% of the yellowtail catches, respectively (Table 21). Los Angeles County led the other counties in 1985 with 54% (Table 21).

Historical catch records indicate the Coronado Islands, located a few miles south of San Diego County, have consistently provided the best fishing for yellowtail (Frey 1971 and Maxwell 1977).

- 65 -

TABLE 21. Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Yellowtail from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

..

			FISH K	EPT						FISH RE	LEASED)				TOTAL CA	TCH		
	198	5	198	6	198	7	-	198	15	19	36	19	87		1985	198	16	19	87
AREA	EST	CV	EST	CV	EST	CV	E	ST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	ĊV
San Diego ! County	8,649	34	10,051	20	20,129	21		0	0	0	0	37	99	8,64	9 34	10,051	20	20,166	21
ත ග Orange ¡ County	3,109	54	5,762	25	2,632	37		0	0	. 0	0	0	0	3,10	9 54	5,762	25	2,632	37
Los Angeles County	18,021	21	3,692	38	7,888	25		107	. 99	63	99	2,511	99	18,12	8 21	3,755	39	10,399	31
Ventura County	3,678	51	157	45	0	0		0	0	0	0	0	0	3,67	8 51	157	45	0	0
Sant a Barbara County	137	87	0	0	0	0		0	0	0	0	0	0	13	7 87	0	0	0	0
Southe rn California	33,594	16	19,662	15	30,649	15		107	99	63	99	2,548	97	33,70	L 16	19,724	15	33,197	16

FIGURE 17. Monthly total catch estimates (number of fish) and standard deviations of yellowtail from on-board observations of southern California commercial passenger fishing vessels.

Size Composition

<u>Southern California</u>. There was little variation in mean lengths of yellowtail during the survey: 714 mm (28.1 in.) in 1985, 717 mm (28.2 in.) in 1986, and 710 mm (27.9 in.) in 1987 (Figure 18).

The analysis of length frequencies revealed tri-modal size classes of 500-519 mm (19.7-20.4 in.), 660-679 mm (25.9-26.7 in.), and 760-779 mm (29.9-30.7 in.) in 1985, bi-modal classes of 600-659 mm (23.6-25.9 in.), and 800-819 mm (31.5-32.2 in.) in 1986, and a modal class of 700-719 mm (27.6-28.3 in) in 1987 (Figure 19). According to Baxter (1960) these size classes represent mainly 1- to 7-year-old fish. Twoto three-year-old yellowtail composed most of the catch in 1987, while a wider range of age classes contributed to the catches in 1985 and 1986. According to Baxter (1960), some 2-year-old, and all 3-year-old and older yellowtail are able to spawn. This means the fishery is taking many immature fish.

On a comparative basis, yellowtail size composition from 1985 through 1987 is similar to that reported by Maxwell (1977). He found that 99% of the 1972 through 1974 yellowtail catch was composed of 1to 6-year-old fish.

<u>Counties</u>. The size composition of yellowtail for San Diego County closely resembled that for southern California (Figures 20 and 19, respectively). The largest yellowtail were found in Orange and Los Angeles counties; the smallest, in Ventura County (Figures 21 through 23). Management Recommendations

At the present time no management action is recommended, though a word of caution is warranted. The southern California sport fishery for

- 68 -

FIGURE 18. Mean lengths and standard deviations of yellowtail measured on board southern California commercial passenger fishing vessels.

.

FIGURE 19. Size composition of yellowtail from on-board observations of southern California commercial passenger fishing vessels.

PERCENT FREQUENCY

.

:

.

•

•

FIGURE 22. Size composition of yellowtail from on-board observations of Los Angeles County commercial passenger fishing vessels.

,

FIGURE 23. Size composition of yellowtail from on-board observations of Ventura County commercial passenger fishing vessels.

yellowtail is almost entirely dependent on annual migrants from central and northern Baja California (Crooke 1983). Therefore, the California fishery has little effect on the main population of yellowtail. However, a large expansion of the commercial and/or recreational catch off central Baja California could reduce yellowtail availability to anglers in southern California waters.

Lingcod (Hexagrammidae)

Catch Estimates

Southern California. Lingcod total catch estimates ranged from 2,936 fish \pm 440 in 1985 to 8,712 \pm 958 in 1987 (Table 22). Collins and Crooke (unpublished manuscript) reported lingcod total catch estimates from 4,879 \pm 805 to 10,690 \pm 2,209 in their study.

The catch distribution showed that in 1985 there were no dramatic trends or peaks in the lingcod total catch (Figure 24). A May total catch of 399 lingcod was the highest of several small monthly peaks. In 1986 there was a major total catch peak of 1,220 in November, and secondary peaks in January and August. The high November catch (88% of which came from San Diego County) coincided with the October through January lingcod migration and spawning period (Jow and Hardwick 1979). In 1987 a very large estimated total catch of 2,182 occurred in July, and the October through December catch was comparatively minor. Most of the 1987 total catch occurred in San Diego County, and consisted of sublegal [<559 mm (22 in.)], released fish. The presence of a strong year class or classes of immature lingcod in the CPFV fishery accounted for the July catch peak, and the unexpectedly low lingcod catch in October through December could be explained by unusually harsh weather conditions that limited CPFV bottom fishing effort.

<u>Counties</u>. The lingcod catch was distributed fairly evenly throughout the five counties, except for Orange County, where the total catch estimates ranged from only 103 to 548 fish. San Diego County had the highest estimated total catch at 4,340, of which 3,453 were released;

- 76 -

Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Lingcod from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987. TABLE 22.

			PTCU V	507					FISH RELE	ASED					TOTAL CAT	R	.001	
	198		19861		198.		1985	1	198	9	198. PCT	2	1985 EST	S	1986 FST	cv	EST EST	ß
AREA	EST	C	EST	2	EST	ð	EST	2	103	3	109	5						
San D1ego	323	68	335	36	886	32	811	51	1,918	10	3,453	14	441	60	2,253	10	4,340	16
- councy 2. Orange 2. County	103	o	0	0	0	0	0	0	548	22	541	35	103	0	548	22	541	55
Los Angeles Countv	343	29	Ц	73	297	50	148	. 0	898	49	1,008	30	491	20	975	46	1,304	28
Ventura County	611	26	225	36	434	36	788	27	554	47	952	28	1,399	21	977	36	1,386	28
Santa Barbara County	292	95	61	48	374	52	210	23	456	25	768	23	502	30	517	23	1,142	26
Southern	1,672	19	698	23	1,990	20	1,264	18	4,374	13	6,722	11	2,936	13	5,072	12	8,712	=
Callfornia																		

FIGURE 24. Monthly total catch estimates (number of fish) and standard deviations of lingcod from on-board observations of southern California commercial passenger fishing vessels.

the San Diego catch represented 50% of the 1987 estimated lingcod total catch. Collins and Crooke (unpublished manuscript) found that the bulk of the lingcod total catch came from Santa Barbara and Ventura counties; in 1978, 79% of the southern California lingcod total catch originated from those two counties.

Size Composition

Southern California. Our length frequency analyses for lingcod show a progressive shift towards younger, sublegal age classes when successive years are compared (Figure 25). In 1985 63% of the measured lingcod were legal size [>559 mm (22 in.)]. That percentage dropped to 44% in 1986 and 39% in 1987. It appears that one or more strong year classes were recruited into the CPFV fishery during 1986 and 1987, causing the above described shift in the lingcod size structure toward smaller fish. In 1986 the major mode [420 to 439 mm (16.5 to 17.3 in.)] represented 2-year-old lingcod (Miller and Geibel 1973). In 1987 the primary mode [460 to 479 mm (18.1 to 18.9 in.)] was representative of 3-year old lingcod.

The mean length of southern California kept lingcod (Figure 26) showed annual decreases, from 698 mm in 1985 to 625 mm in 1987 (27.5 to 25.0 in.). This was largely due to the previously described shift to younger age class modes. The mean lengths of released lingcod remained relatively static between 1985 and 1986, and increased from 390 to 441 mm (15.4 to 17.4 in.) from 1986 to 1987 (Figure 27).

<u>Counties</u>. The quantity of length frequency data was inadequate to provide a meaningful descriptive analysis of the size composition for Orange, Los Angeles, and Santa Barbara counties. The 1987 San Diego

- 79 -

FIGURE 25. Size composition of lingcod from on-board observations of southern California commercial passenger fishing vessels. Size limit = 559 mm (22 in.).

1 1

FIGURE 26. Mean lengths and standard deviations of kept lingcod measured on-board southern California commercial passenger fishing vessels. Size limit = 559 mm (22 in.).

:

,

ŗ

FIGURE 27. Mean lengths and standard deviations of released lingcod measured on board southern California commercial passenger fishing vessels. Size limit = 559 mm (22 in.).

County lingcod catch displayed a prominent length frequency mode at 460 to 479 mm (18.1 to 18.9 in.), which is indicative of a strongly recruited group of 2- to 3-year-old lingcod (Figure 28). Only 27% of the measured lingcod in 1987 were legal sized. The 1985 Ventura County lingcod catch (Figure 29) displayed three prominent length modes: 300 to 319 mm (11.8 to 12.6 in.), 560 to 599 mm (22.1 to 23.6 in.), and 780 to 799 mm (30.7 to 31.5 in.). These roughly correspond to young of the year, 3-, and 7-year-old lingcod, respectively (Miller and Geibel 1973). More than 61% of the Ventura County lingcod were legal sized. The wide ranges of sizes, and the preponderance of larger [\geq 559 mm (22 in.)] lingcod in the Ventura County catch indicate that the portion of the stock exploited by this complex is healthy and self-sustaining.

Management Recommendations

Lingcod is an inshore, rocky bottom-dwelling species that ranges from Kodiak Island, Alaska to Baja California (Eschmeyer, et al. 1983). It is sought by both sport and commercial fishermen throughout the state, but the catch south of Pt. Arguello is a relatively small component of both fisheries.

Miller and Geibel (1973) stated that lingcod survival and recruitment depended more on overall oceanographic conditions than on the utilization of local stocks. They discussed three management options that could be implemented if fishing mortality were to continue to increase: (i) a minimum size limit, (ii) a reduced bag limit (from the then current 10 lingcod), and (iii) a spawning season closure. At the present time, only the spawning season closure option has not been implemented.

- 83 -

FIGURE 28. Size composition of lingcod from on-board observations of San Diego County commercial passenger fishing vessels. Size limit = 559 mm (22 in.).

FIGURE 29. Size composition of lingcod from on-board observations of Ventura County commercial passenger fishing vessels. Size limit = 559 mm (22 in.) The current minimum size limit for lingcod was imposed in 1982 in order to protect the spawning stock. The size limit, along with a five-lingcod bag limit instituted in 1979, would seem to adequately protect the southern California lingcod stock under existing levels of exploitation. Our catch estimates and CPFV log data show an increasing lingcod catch since 1985.

If environmental conditions and/or increasing fishing pressure should, some time in the future, seriously threaten the lingcod stock, several steps can be taken to reduce or redirect the sport and commercial effort on lingcod. Miller and Geibel (1973) proposed that a lingcod size limit of 610 mm (24 in.) be implemented, in stages, over several years, in order to maintain an adequate spawning biomass. They pointed out that the size limit would also provide a quality, or trophy, lingcod fishery. Another management option discussed (and rejected) by Miller and Geibel (1973) was a spawning season closure. Such a December through February closure would not be useful or effective, they concluded, unless fishing effort in shallow-water spawning areas increased dramatically. In southern California, the major lingcod spawning areas are located around the margins of offshore islands, a factor limiting fishing effort at spawning sites.

Area closures are a management option that can be considered. Lingcod are not a highly migratory species (Fitch and Lavenberg 1971). Therefore, portions of the lingcod stock that are fished by each sport fishing complex can be treated as separate populations, for management purposes. If, for example, a particular lingcod stock, such as at an offshore island, is being overfished, then a sport/commercial fishing

- 86 -

closure at the island site would allow replenishment of the spawning component of the population. Eventually, after 2 or more years, the closure could be lifted and lingcod fishing resumed.

California Sheephead (Labridae)

Catch Estimates

<u>Southern California</u>. California sheephead (henceforth referred to as sheephead) is a bottom-dwelling species esteemed by sport anglers and sport divers. It is caught year-round, though peak catches occur from August through October (Figure 30).

The estimated total catch of sheephead increased by 75% from 1985 to 1986, then declined by 17% from 1986 to 1987 (Table 23). However, the sheephead's contribution to the total catch of combined fishes was very consistent during the survey: 0.6% in 1985, 0.8% in 1986, and 0.7% in 1987 (Tables 13 and 23). Ninety-seven percent of the sheephead total catch was kept by anglers each year of our survey.

On a comparative basis, the annual sheephead total catch rate during our survey was more stable than that during Collins and Crooke's (unpublished manuscript) survey. Their survey reported a sheephead total catch increase of 297% from 1976 to 1978: 7,568 fish \pm 1,089 in 1976, 26,022 \pm 3,702 in 1977, and 30,016 \pm 5,885 in 1978. Their reported catch increase also corresponded to an increase in sheephead's contribution to the total catch of combined fishes, from 0.3% in 1976 to 0.7% in 1978.

Based on statistical analysis of combined CPFV and spearfishing data from 1947 through 1971, Ames (unpublished manuscript) found no decline in the sheephead stock, but did not rule it out, especially in localized areas. According to Fitch and Lavenberg (1971), pollution, disappearance of kelp beds, fishing pressure, and other unfavorable factors have caused a decrease in the numbers of sheephead along our mainland coast, as well

. '

FIGURE 30. Monthly total catch estimates (number of fish) and standard deviations of California sheephead from on-board observations of southern California commercial passenger fishing vessels.

•

			FISH K	EPT					FISH RF	LEASED			T			TOTAL CA	TCH		
	198	85	198	6	198	7	19	85	19	86	19	87	1	1985		198	6	198	1
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV		EST	CV	EST	CV	EST	CV
San Diego County	4,001	23	6,527	32	8,393	13	39	70	55	70	190	46		4,041	23	6,582	32	8,583	13
Orange County	1,379	25	3,982	19	3,948	22	96	73	265	70	301	42		1,475	26	4,247	19	4,249	20
Los Angeles County	11,050	27	16,936	13	9,805	22	569	· 42	465	22	342	65		11,619	- 27	17,401	13	10,147	23
Ventura County	3,660	19	8,090	13	7,195	20	54	98	139	79	82	76		3,714	18	8,229	13	7,277	20
Santa Barbara County	150	51	334	67	330	41	0	0	0	0	0	0		150	51	334	67	· 330	41
Southern California	20,240	16	35,868	9	29,670	10	758	34	924	26 ·	916	30		20,999	16	36,793	9	30,587	10

.

TABLE 23. Catch Estimates (EST) and Coefficients of Variation [CV (%)] of California Sheephead from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

as a decrease in the percentage of large individuals around the islands.

<u>Counties</u>. Los Angeles County had the highest estimated total catches from 1985 through 1987, accounting for 55%, 47% and 33% of the sheephead catches, respectively (Table 23). All counties except Los Angeles County recorded a total catch increase ranging from 96% to 188% from 1985 to 1987 (Table 23). Orange and Los Angeles county anglers released a higher proportion of the sheephead catch than those of the other counties during this survey (Table 23).

Size Composition

Southern California. There was little variation in mean length of sheephead during this survey: 371 mm (14.6 in.) in 1985, 378 mm (14.9 in.) in 1986, and 389 mm (15.3 in.) in 1987 (Figure 31). Most sheephead measurements from 1985 through 1987 ranged between 250 and 489 mm (9.8 in. and 19.3 in.); also, there were no unique modal size classes (Figure 32). According to Warner (1975), this size range represents 4- through 14-year-old fish.

Sheephead, according to Warner (1975), is a protogynous hermaphrodite, and, as such, most females will mature by 203 mm (8 in.) and transform into males by 305 mm (12 in.); some slow-growing females may not transform at all. He also states that sheephead have very long life spans (an estimated 50 or more years), although exact age determination is difficult for large and old individuals; and that size at age distribution can vary for different geographic areas. The long-lived nature of sheephead suggests population stability. However, the reproductive biology of this species, along with it's growth variability by area, make inferences about the stability of the southern

- 91 -

١

FIGURE 31. Mean lengths and standard deviations of California sheephead, measured on board southern California commercial passenger fishing vessels.

.

2

FIGURE 32. Size composition of California sheephead from on-board observations of southern California commercial passenger fishing vessels.

California population difficult. In our study, we assumed the existence of population stability in sheephead over the geographic range of our survey.

<u>Counties</u>. From 1985 through 1987, the largest sheephead were concentrated in Los Angeles, Ventura and Santa Barbara counties (Figure 31). The smallest sheephead occurred in Orange County.

Size composition of sheephead among counties was similar (Figures 33 through 36). There were insufficient data for size composition analysis of sheephead from Santa Barbara County.

Management Recommendations

We do not see the need for special management action on sheephead at this time. Our data reveal a consistent size composition and total catch stability for the sheephead population exploited by the CPFV fishery.

.

FIGURE 33. Size composition of California sheephead from on-board observations of San Diego County commercial passenger fishing vessels.

.

FIGURE 34. Size composition of California sheephead from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 35. Size composition of California sheephead from on-board observations of Los Angeles County commercial passenger fishing vessels.

;

FIGURE 36. Size composition of California sheephead from on-board observations of Ventura County commercial passenger fishing vessels.

White Croaker (Sciaenidae)

Catch Estimates

-

Southern California. Young (1969) stated that CPFV landing operators ranked white croaker as the 20th most important species to the CPFV fleet, and that it was a nuisance to CPFV anglers 90% of the time. More recently, white croaker has gained notoriety due to the high amount of toxins found in its flesh (McCain et al. 1988). According to our IRI, white croaker annually ranked as the 7th to 15th most important species to the CPFV fleet (Table 12). However, because the IRI does not take into account the desirability of the species to CPFV anglers, its actual importance is considerably lower. CPFV anglers expend little effort for white croaker, and most of the catch is probably incidental to that of other fish species.

Estimated total catch of white croaker nearly tripled from 1985 to 1986, and then in 1987, dropped to only 60% of the 1986 catch (Table 24). Estimated landings and catches of released white croaker followed the same trends as total catch (Table 24).

The ratio of kept to released white croaker was 0.7 to 1 in 1985, 0.9 to 1 in 1986, and 0.7 to 1 in 1987. Peak catches of white croaker occurred from June through August, and a smaller peak occurred from February through April (Figure 37). Most of the summer catch of white croaker was probably incidentally caught during trips targeting barred sand bass, while the winter peak was probably an incidental white croaker catch on trips targeting California halibut.

Estimated catches of white croaker have dropped since the time of Collins and Crooke's (unpublished manuscript) survey. The average annual

- 99 -
| TABLE 24. | Catch Estimates (EST) and Coefficients of Variation [CV (%)] of White Croal
On-Board Sampling of Southern California Commercial Passenger Fishing Vesse
Through 1987. | er from
1s for 1985 |
|-----------|---|------------------------|
|-----------|---|------------------------|

• •

	1																				
FISH KEPT										FISH RELE	ASED			TOTAL CATCH							
AREA	19	1985		1986		1987		1985		1986		19	87	1	198	5	1986		1987		
	EST	CV	EST	CV	EST	CV		EST	CV	EST	CV	EST	CV	E	ST	CV	EST	CV	EST	CV	
San Diego County	817	48	8,380	28	5,651	30		306	51	2,125	23	1,225	56	1	,123	47	10,506	- 25	6,875	31	
I Orange O County O	5,546	45	9,383	31	1,255	25		4,821	33	20,570	41	5,688	44	10	,367	34	29,953	33	6,943	38	
I Los Angeles County	5,753	35	22,622	25	9,444	29		11,563	24	21,417	17	17,105	21	17	,316	23	44,039	19	26,549	22	
Ventura County	1,031	34	1,355	64	5,296	50		1,683	38	1,254	42	6,880	31	2	,714	33	2,610	50	12,176	33	
Santa Barbara County	78	59	939	62	151	43		548	31	997	28	797	49		626	29	1,936	38	948	47	
Southern California	13,226	25	42,680	16	21,797	19		18,920	17	46,363	20	31,694	16	32	,146	17	89,043	15	53,491	15	

• •

.

(

.

FIGURE 37. Monthly total catch estimates (number of fish) and standard deviations of white croaker from on-board observations of southern California commercial passenger fishing vessels.

total catch decreased from 83,558 fish \pm 11,921 during 1976 to 1978 (Collins and Crooke, unpublished manuscript) to 58,227 \pm 9,414 during 1985 to 1987. However, reduced catches of white croaker were probably dictated more by lack of angler demand than a reduced white croaker population. Anglers cite poor taste, lack of fighting ability, and concern about the safety of eating white croaker as primary reasons for not targeting white croaker.

<u>Counties</u>. Los Angeles County had the highest annual total catch of white croaker, accounting for 49% to 54% of the white croaker total catch in southern California between 1985 and 1987 (Table 24). Orange County accounted for 32% and 34% of the southern California white croaker total catch in 1985 and 1986, respectively, and Ventura County, 23% in 1987 (Table 24).

Los Angeles County had the highest annual landings of white croaker from 1985 through 1987 (Table 24). Orange County's white croaker contribution to southern California landings showed the largest decrease among southern California counties, dropping from 42% of the landings in 1985, to 22% in 1986, to 6% in 1987 (Table 24). Ventura County's landings' contribution increased from 8% in 1985 to 24% in 1987, and San Diego County's contribution increased from 6% in 1985 to 26% in 1987 (Table 24). San Diego County had the highest kept-to-released ratio with 2.6 to 1 in 1985, 3.9 to 1 in 1986, and 4.6 to 1 in 1987.

Size Composition

<u>Southern California</u>. Annual mean lengths of white croaker rose slightly in southern California between 1985 and 1987 (Figure 38). Modal lengths for white croaker were 255 to 259 mm (10.0 to 10.2 in.) and 265

- 102 -

· .

FIGURE 38. Mean lengths and standard deviations of white croaker measured on board southern California commercial passenger fishing vessels.

:

to 269 mm (10.4 to 10.6 in.) in 1985, 260 to 264 mm (10.2 to 10.4 in.) in 1986, and 265 to 269 mm (10.4 to 10.6 in.) in 1987 (Figure 39). Based on Love's et al. (1984) growth curve, modal size white croaker were probably 7 to 9 years old.

The annual mean length of white croaker in our study was similar to that of Collins and Crooke's (unpublished manuscript). However, it was considerably larger than that of otter trawl-caught white croaker observed by Love et al. (1984). White croaker are probably not fully recruited into the CPFV fishery until they reach approximately 255 mm (10 in.), and, in fact, CPFV mean lengths correspond more closely with private skiff and commercially caught white croaker lengths reported by Love et al. (1984).

<u>Counties</u>. Mean lengths of white croaker varied little during 1985 to 1987 (Figure 38). The mean length of white croaker increased slightly each year in San Diego and Santa Barbara counties (Figure 38). The length frequency analysis for southern California as a whole and by counties exhibited similar patterns (Figures 39 to 44).

Management Recommendations

White croaker are not highly esteemed nor frequently targeted by southern California CPFV anglers. Currently, catches are governed by angler effort rather than resource capabilities. No management policies seem needed at this time. However, CPFV anglers are concerned about the health issues surrounding white croaker and other sport fish species caught off portions of southern California. In addition to the warnings

FIGURE 39. Size composition of white croaker from on-board observations of southern California commercial passenger fishing vessels.

FIGURE 40. Size composition of white croaker from on-board observations of San Diego County commercial passenger fishing vessels.

FIGURE 41. Size composition of white croaker from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 42. Size composition of white croaker from on-board observations of Los Angeles County commercial passenger fishing vessels.

FIGURE 43. Size composition of white croaker from on-board observations of Ventura County commercial passenger fishing vessels.

•

FIGURE 44. Size composition of white croaker from on-board observations of Santa Barbara County commercial passenger fishing vessels.

issued in the California sport fishing regulations, DFG and other responsible agencies should make every effort to keep the fishing public informed of all the latest information concerning the safety of consuming sport fish species.

White Seabass (Sciaenidae)

Catch Estimates

<u>Southern California</u>. White seabass (henceforth referred to as seabass) is highly esteemed by anglers because of its exceptional good taste and angling challenge (Vojkovich and Reed 1983).

Estimated annual total catches of seabass increased 134% from 1985 to 1986, then declined by 1% in 1987 (Table 25). Most of this increase was in the number of released seabass, which increased 188% from 1985 to 1987 (Table 25). The estimated number of kept seabass was small and extremely variable: 989 in 1985, 3,696 in 1986, and only 547 fish in 1987 (Table 25).

The ratio of kept to released seabass was variable during the survey: 0.3 to 1 in 1985, 0.7 to 1 in 1986, and 0.1 to 1 in 1987. This variability was caused by a general increase in released fish, and a sharp decline in kept fish in 1987.

The peak periods of seabass catches were erratic. In general, the summer and fall months recorded the largest catches during the survey (Figure 45).

The seabass catch during our survey was composed of a greater number of short fish [<711 mm (28 in.)] compared to that reported in Collins and Crooke's (unpublished manuscript) survey. The estimated mean annual catch of legal seabass decreased from 2,565 fish \pm 665 for 1976 through 1978 to 1,646 \pm 771 for 1985 through 1987. Not enough data on short seabass were collected during the 1970's study for comparative purposes. Our survey's legal to short ratios were 0.3 to 1 in 1985, 0.6 to 1 in 1986, and 0.1 to 1 in 1987.

- 112 -

TABLE 25. Catch Estimates (EST) and Coefficients of Variation [CV (%)] of White Seabass from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

.

.

.

			FISH K	EPT				1	FISH RELE	ASED		TOTAL CATCH						
	198	5	198	1986		37	198	5	198	86	19	87	19	85	1986		1987	
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV
San Diego Count y	247	38	440	56	142	70	907	34	2,445	21	1,979	30	1,153	30	2,885	21	2,121	28
∣ ⊔ Orange ⊔ County ω	0	0	175	63	73	99	705	30	1,740	16	4,331	33	705	30	1,914	16	4,404	32
l Los Angeles County	566	29	2,917	45	173	61	1,259	30	1,271	65	567	34	1,825	27	4,188	37	740	28
Ventura County	73	98	0	0	102	53	98	98	0	0	1,711	53	171	98	0	0	1813	50
Santa Barbara County	104	87	163	81	56	98	26	68	151	38	36	99	130	72	314	55	92	71
Southern California	989	22	3,696	36	547	33	2,994	18	5,606	18	8,624	21	3,983	17	9,301	18	9,171	20

.

.

.

FIGURE 45. Monthly total catch estimates (number of fish) and standard deviations of white seabass from on-board observations of southern California commercial passenger fishing vessels.

Seabass are thought to be migratory, moving northward along the coast in spring, returning southward in the fall, and wintering in Baja California (Young 1973). Moser et al. (1983) found that 85% of seabass larvae occur in Baja California waters, while 15% occur in southern California waters. Thus, spawning would seem to occur mostly in Mexican waters. Thomas (1968) suggested that a single population of seabass occurs off our coast. However, Crooke (1989) indicated that subpopulations may exist. Our data support the migratory theory for seabass, and further suggest the existence of discreet subgroups of legal and short fish. There remains a great deal we do not understand about the early life history, population structure, and migration patterns of this species.

<u>Counties</u>. The highest total catch estimates came from Los Angeles County in both 1985 and 1986, accounting for 46% and 45% of the seabass catches, respectively (Table 25). Orange County led the other counties in 1987 with 48% (Table 25). Santa Barbara County anglers kept a higher proportion of the seabass than those of the other counties during this survey (Table 25), while Orange County anglers returned a higher proportion of the catch than did anglers in the other counties (Table 25).

Size Composition

Southern California. The annual mean lengths of all measured seabass during this survey were 682 mm (26.9 in.) in 1985, 773 mm (30.4 in.) in 1986, and 583 mm (22.9 in.) in 1987 (Figure 46). According to Thomas (1968), these sizes represent to 2- to 5-year-old fish. Greater

- 115 -

۱

FIGURE 46. Mean lengths and standard deviations of white seabass measured on board southern California commercial passenger fishing vessels. Size limit = 711 mm (28 in.).

numbers of 866 to 1,072 mm (34.1 to 42.2 in.) long fish (6 to 10 years old) were caught in 1986, but in 1987 greater numbers of 467 to 571 mm (18.4 to 22.5 in.) long fish (3 to 4 years old) were caught (Figure 47). The size composition of seabass in our survey indicates an increasing size trend compared to that of earlier DFG surveys. Maxwell (1977) found that the sampled CPFV seabass catch from 1972 through 1974 consisted almost entirely of 2- to 4-year-old fish, with only a few legal size individuals.

The 3-year mean length of seabass in our survey increased by 117 mm (4.6 in.) over that of Collins and Crooke's (unpublished manuscript), because of the larger proportion of older fish sampled in our study.

The annual mean lengths of released seabass during this survey were 526 mm (20.7 in.) in 1985, 506 mm (19.9 in.) in 1986, and 497 mm (19.6 in.) in 1987 (Figure 48). According to Thomas' (1968) criteria, these sizes correspond to 2- to 4-year-old fish. There was a consistent but low percentage of short seabass kept by anglers during this survey: 3.6% in 1985, 4.4% in 1986, and 3.6% in 1987.

Mean lengths of kept seabass during this survey were 811 mm (31.9 in.) in 1985, 882 mm (34.7 in.) in 1986, and 861 mm (33.9 in.) in 1987 (Figure 49). Seabass 723 mm (28.5 in.) long (5 years old) composed most of the kept category in 1985 and 1987, with few larger fish represented (Figure 47). In 1986, however, 723 to 1,072 mm (28.5 to 42.2 in.) long (5 to 10 years old) fish composed most of the kept category (Figure 47).

- 117 -

FIGURE 47. Size composition of white seabass from on-board observations of southern California commercial passenger fishing vessels. Size limit = 711 mm (28 in.).

AREA

FIGURE 48. Mean lengths and standard deviations of released white seabass measured on board southern California commercial passenger fishing vessels. Size limit = 711 mm (28 in.).

FIGURE 49. Mean lengths and standard deviations of kept white seabass measured on board southern California commercial passenger fishing vessels. Size limit = 711 mm (28 in.).

<u>Counties</u>. The available data were insufficient to perform a size composition analysis by county.

Management Recommendations

There is a great deal we do not understand about this species. The erratic catch success and continued low numbers of legal-size seabass suggest the population exploited by this fishery is unstable. A continuation of this trend could further depress this fishery if adverse environmental conditions were to combine with fishing mortality.

Monitoring of all fishery segments should be maintained, and a catch moratorium imposed if necessary to prevent further decline of the seabass population. A tag-and-release program on both short and legal-size seabass could further our understanding of its migration patterns and population structure, thereby providing vital parameters necessary for meaningful management.

- 121 -

Pacific Bonito (Scombridae)

Catch Estimates

<u>Southern California</u>. According to Collins et al. (1980), Pacific bonito (henceforth referred to as bonito) is a schooling fish with two adjacent stock segments residing principally off Baja California, variable portions of which move northward in late summer and fall, and then return to overwinter in more southerly, warmer waters. They further state that southern California-spawned fish, which are at the northern fringe of the population center, seem to spawn locally for at least their first spawning and may remain in the area for a longer time than those fish from more southerly areas.

The bonito total catches increased by 286% from 1985 to 1987 (Table 26). Bonito's contribution to the southern California catch of combined fishes increased from 3% in 1985 to 11% in 1987 (Tables 26 and 13).

A high percentage of the bonito total catch was kept by anglers: 97% in 1985, 76% in 1986, and 92% in 1987.

Most bonito were caught during the summer and fall months. In each successive year of our survey, they were caught over a broader portion of the year, indicating an increasing availability to the fishery (Figure 50).

On a comparative basis, the bonito total catch in our survey was less variable than that reported during Collins and Crooke's (unpublished manuscript) survey. Their total catch estimates were 168,835 fish \pm 18,210 in 1976, 98,764 \pm 20,015 in 1977, and 207,105 \pm 26,448 in 1978.

- 122 -

TABLE 26.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Pacific Bonito from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

		FISH K					FISH RELE	ASED			TOTAL CATCH							
	198	1985			1987		1985		1986		1987		19	1985		1986		7
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV
San Diego County	51,119	13	186,775	10	205,942	8	653	35	53,359	18	7,211	24	51,772	13	240,135	10	213,153	8
o Orange County	11,207	43	99,001	15	72,448	29	75	71	31,885	23	5,693	35	11,282	43	130,887	15	78,141	28
Los Angeles County	53,299	19	72,074	16	128,599	12	3,282	· 35	27,324	23	26,310	22	56,581	19	99,398	16	154,909	12
Ventura County	6,958	24	5,437	49	42,555	24	49	69	1,356	57 [.]	1,830	38	9,007	24	6,793	50	44,385	23
Sant a Barbara County	1,175	42	3,192	61	2,832	35	41	69	181	65	212	58	1,216	42	3,372	60	3,044	34
Southern California	123,758	10	366,479	7	452,376	7	4,100	29	114,106	12	41,256	16	127,858	11	480,585	7	493,632	7

.

• • • • • • • • •

FIGURE 50. Monthly total catch estimates (number of fish) and standard deviations of Pacific bonito from on-board observations of southern California commercial passenger fishing vessels.

- 124 -

•

<u>Counties</u>. The highest total catch estimates came from San Diego County in both 1986 and 1987, accounting for 50% and 43% of the bonito catches, respectively (Table 26). In 1985, Los Angeles County led the other counties with 44% of the catch (Table 26).

Size Composition

Southern California. Mean lengths of bonito were similar in 1985 and 1987, but substantially lower in 1986: 437 mm (17.2 in.) in 1985, 359 mm (14.1 in.) in 1986, and 446 mm (17.6 in.) in 1987 (Figure 51). Current DFG regulations allow anglers to retain five bonito under the minimum size limit of 610 mm (24 in.). This regulation allows for a high percentage of undersized bonito to be kept, as our survey revealed: 92%, 99%, and 98% in 1985, 1986, and 1987, respectively.

The analysis of length frequencies revealed modal size classes of 400 to 409 mm (15.7 to 16.1 in.), 500 to 509 mm (19.7 to 20.0 in.) and 590 to 640 mm (23.2 to 25.2 in.) in 1985 and 1987; and modal size classes of 330 to 339 mm (12.9 to 13.3 in.) and 490 to 509 mm (19.3 to 20.0 in.) in 1986 (Figure 52). According to Collins et al. (1980), this means that the catch was composed of young-of-the-year and 1-year old fish, with lesser numbers of 2-year-old fish.

The size composition of bonito in our study is similar to that of earlier DFG surveys. In his study, Maxwell (1977) found that the sampled southern California CPFV bonito catch was comprised of fish less than 3 years old, and that a single year class was the major catch component in some years. In their study, Collins and Crooke (unpublished manuscript) found the catch to be dependent on 1-year-old bonito. We found young-of-the-year fish to be more important to the

- 125 -

Figure 51. Mean lengths and standard deviations of Pacific bonito measured on board southern California commercial passenger fishing vessels. Size limit = 610 mm (24 in.).

•

FIGURE 52. Size composition of Pacific bonito from on-board observations of southern California commercial passenger fishing vessels. Size limit = 610 mm (24 in.).

catch than older fish. Based on a 3-year mean, the mean length of bonito declined approximately 36 mm (1.4 in.) between our survey and that of Collins and Crooke (unpublished manuscript), because of the preponderance of younger fish during our survey.

<u>Counties</u>. Our data show a cline of increasing mean length from San Diego County to Santa Barbara County (Figures 51, 53 through 57). In 1985 and 1987, the largest bonito were landed in Ventura and Santa Barbara counties. In 1986, the largest bonito were landed in San Diego, Orange, and Los Angeles counties.

Management Recommendations

The current size regulation with the allowed retention of five fish under the size limit for sport-caught bonito was established in 1982 in conjunction with the bonito commercial regulation, to manage the take of this species equitably between the two industries (Rob Collins, California Department of Fish and Game, Marine Resources Division, pers. comm.). We have no evidence yet that the regulation, as it applies to sport fish, has had an impact on the bonito stock. This is probably due, in large part, to the migratory nature of the species. The catch does fluctuate from year to year.

Adherence to the bonito regulation by CPFV anglers is good in some areas, not quite as good in other areas. Although we have no firm statistical figures, we know from on-board observations that in certain areas of southern California, CPFV anglers will retain over-limits of undersized bonito and give them to anglers who do not have their limits.

- 128 -

FIGURE 53. Size composition of Pacific bonito from on-board observations of San Diego County commercial passenger fishing vessels. Size limit = 610 mm (24 in.).

FIGURE 54. Size composition of Pacific bonito from on-board observations of Orange County commercial passenger fishing vessels. Size limit = 610 mm (24 in.).

FIGURE 55. Size composition of Pacific bonito from on-board observations of Los Angeles County commercial passenger fishing vessels. Size limit = 610 mm (24 in.).

PERCENT FREQUENCY

FIGURE 56. Size composition of Pacific bonito from on-board observations of Ventura County commercial passenger fishing vessels. Size limit = 610 mm (24 in.).

FIGURE 57. Size composition of Pacific bonito from on-board observations of Santa Barbara County commercial passenger fishing vessels. Size limit = 610 mm (24 in.).

Based on historical evidence, other studies, and our findings, we recommend that the current management regime be retained in order to further evaluate the effects of the bonito regulation.

Pacific Mackerel (Scombridae)

Catch Estimates

Southern California. Pacific mackerel (henceforth referred to as mackerel) is an often maligned surface-schooling fish, whose only use to the serious sport angler is as bait to attract more desirable species. Nonetheless, based on our IRI, mackerel ranked first in 1985 and 1987, and second in 1986 (Table 12). Mackerel would rank much lower if our IRI took desirability into account. However, there was a declining trend in its total catch estimates of 16% from 1985 to 1987 (Table 27). There was a corresponding decrease in its contribution to the total catch of combined fishes from 25% in 1985 to 19% in 1987 (Tables 13 and 27).

Although mackerel have no minimum size limit, some 40% of the catch is released after capture (Table 27). Most CPFV's avoid areas of known mackerel concentrations, unless small individuals are needed for bait, or more desirable species are not readily available at the time. Mackerel are caught year-round, but peak catches occur from May through September (Figure 58).

On a comparative basis, the mackerel catches from 1985 through 1987 were considerably more stable than those reported by Collins and Crooke (unpublished manuscript). Their total catch estimates were 43,498 fish \pm 7,571 in 1976, 399,814 \pm 39,359 in 1977, and 823,241 \pm 64,330 in 1978. Their reported catch increase also corresponded to an increase in mackerel's contribution to the total catch of combined fishes, from 2% in 1976 to 20% in 1978. This rapid catch growth was
TABLE 27.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Pacific Mackerel from
	On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985
	Through 1987.

. .

			FISH K	EPT					FISH RELE	ASED						TOTAL CA	TCH		
	198	5	198	6	1987		198	5	198	6	1987			198	5	198	6	19	87
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	E	ST	CV	EST	CV	EST	CV
San Diego County	316,170	17	207,208	11	267,866	8	44,411	12	47,062	14	89,829	10	360	,581	16	254,270	10	357,695	8
Orange County	79,363	12	97,748	13	67,680	18	74,279	14	100,729	18	82,595	18	153	,642	11	198,477	14	150,274	16
Los Angeles County	140,111	9	172,823	10	114,663	10	222,393	21	125,593	12	117,376	12	362	, 504	15	298,416	10	232,038	9
Ventura Count y	45,920	18	34,714	15	31,720	25	25,808	24	37,961	16	25,858	18	71	,727	17	72,675	14	57,578	19
Santa Barbara County	7,109	23	16,641	18	4,852	26	6,925	26	8,120	38	7,772	17	14	,034	22	24,760	20	12,624	18
Southern California	588,672	10	529,134	6	486,780	6	373,816	13	319,464	8	323,429	7	962	,488	8	848,597	6	810,209	5

•

FIGURE 58. Monthly total catch estimates (number of fish) and standard deviations of Pacific mackerel from on-board observations of southern California commercial passenger fishing vessels.

expected because the early 1970's was a resurgent period for the mackerel resource (Klingbeil 1977).

<u>Counties</u>. According to our IRI, mackerel ranked first or second in every county from 1985 through 1987 (Tables 14 through 18). Los Angeles County had the highest estimated catches in both 1985 and 1986, accounting for 38% and 35% of the mackerel catches, respectively (Table 27). San Diego County led the other counties in 1987 with 44% (Table 27). In 1987, there was a substantial mackerel catch decline, ranging from 21% to 49%, in all counties except San Diego (Table 27). San Diego County anglers kept a higher proportion of the mackerel catch than those of the other counties during this survey, while both Orange and Los Angeles county anglers returned a higher proportion of the catch than did anglers in the other counties (Table 27).

Size Composition

<u>Southern California</u>. There was little variation in mean lengths of mackerel during the survey: 329 mm (12.9 in.) in 1985, 332 mm (13.1 in.) in 1986, and 322 mm (12.7 in.) in 1987 (Figure 59). Size composition of kept and released fish were similar, indicating no angler selection by size (Figures 60 and 61).

The length frequency analysis revealed a modal size class of 320-329 mm (12.6-12.9 in.) in 1985, bi-modal size classes of 280-289 mm (11.0-11.4 in.) and 330-339 mm (12.9-13.3 in.) in 1986, and tri-modal size classes of 300-309 mm (11.8-12.2 in.), 330-339 mm (12.9-13.3 in.), and 350-359 mm (13.8-14.1 in.) in 1987 (Figure 62). According to Klingbeil (1977), this would indicate a mackerel catch composed of mainly 2- to 4-year-old fish, with some younger and older fish mixed

- 138 -

•

FIGURE 59. Mean lengths and standard deviations of Pacific mackerel measured on board southern California commercial passenger fishing vessels.

٦.

FIGURE 60. Size composition of released Pacific mackerel from on-board observations of southern California commercial passenger fishing vessels.

- 140 -

_

FIGURE 61. Size composition of kept Pacific mackerel from on-board observations of southern California commercial passenger fishing vessels.

FIGURE 62. Size composition of Pacific mackerel from on-board observations of southern California commercial passenger fishing vessels.

in. From their survey, Collins and Crooke (unpublished manuscript) concluded that catches of mackerel are dependent on the strength of dominant year classes.

<u>Counties</u>. Size composition variability between and within counties was minimal, reflecting the uniform nature of the mackerel population being fished (Figures 63 through 67). San Diego and Los Angeles counties showed the least variability in size composition during this survey. Their annual mean lengths and size composition were nearly identical (Figures 63 and 65). Santa Barbara County showed the most variability in size composition (Figure 67). In 1986 there was a slight cline toward larger fish, from San Diego County to Santa Barbara County, but that was reversed in 1987 (Figures 63 through 67). Management Recommendations

No change from the present management regime is indicated at this time. Angler utilization of kept mackerel could be enhanced by an education effort aimed at proper shipboard care and preparation of this fish for cooking, to ensure it ends up on the table rather than in the rose garden.

PERCENT FREQUENCY

FIGURE 63. Size composition of Pacific mackerel from on-board observations of San Diego County commercial passenger fishing vessels.

FIGURE 64. Size composition of Pacific mackerel from on-board observations of Orange County commercial passenger fishing vessels.

.

FIGURE 65. Size composition of Pacific mackerel from on-board observations of Los Angeles County commercial passenger fishing vessels.

FIGURE 66. Size composition of Pacific mackerel from on-board observations of Ventura County commercial passenger fishing vessels.

FIGURE 67. Size composition of Pacific mackerel from on-board observations of Santa Barbara County commercial passenger fishing vessels.

Sculpin (Scorpaenidae)

Catch Estimates

Southern California. Sculpin or spotted scorpionfish is a shallow-water, bottom-dwelling species, commonly caught in nearshore waters in depths of 30 m (100 ft) or less (Eschmeyer, et al. 1983). Total catch estimates ranged from 58,758 fish \pm 5,288 in 1985 to 96,215 \pm 14,432 in 1987 (Table 28). Collins and Crooke (unpublished manuscript) had sculpin total catch estimates ranging from 32,583 \pm 7,751 in 1976 to 69,966 + 14,954 in 1978.

The total catch distribution by month showed considerable variation over the 3 years surveyed (Figure 68). In 1985 the total catch did not fluctuate significantly from month to month and a catch peak of 9,200 fish occurred in January. In 1986 the January peak was present, but a much larger catch peak occurred from July through September that reached 12,600 fish. The sculpin total catch pattern in 1987 differed considerable from that of the previous 2 years. A January catch peak of 11,499 was again present, accompanied by major peaks in March (15,407), June (15,027), and November (10,634). Based on the April through August spawning period reported by Frey (1971), we expected to see an increase in the CPFV sculpin total catch during that time period. The fact that it did not occur in 1985 indicates that additional factors, such as CPFV targeting of other species and fishing sites, or environmental conditions, may influence the sculpin catch.

<u>Counties</u>. The three southernmost counties of San Diego, Orange and Los Angeles contributed the major part of the estimated sculpin

- 149 -

TABLE 28. Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Sculpin from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

1

			FISH K	EPT				•	FISH RELE	ASED						TOTAL CA	тсн		
	198	5	198	6	198	7	198	5	198	6	198	7	1	198	5	198	6	198	7
AREA	EST	CV	EST	CV	EST	CV	 EST	CV	EST	CV	EST	CV		EST	CV	EST	CV	EST	CV
San Diego County	13,579	14	20,354	30	19,143	16	2,664	15	5,004	27	4,972	15		16,243	12	25,359	26	24,115	14
orange County	7,442	23	6,645	13	2,101	16	4,087	25	9,297	16	5,804	21		11,529	19	15,941	12	7,905	17
Los Angeles County	25,093	16	16,679	13	44,483	32	3,184	. 17	16,220	10	11,862	11		28,278	14	32,899	9.	56,345	25
Ventura County	1,825	43	3,688	21	5,473	25	664	24	2,886	19	1,527	28		2,489	34	6,573	16	7,000	23
Santa Barbara County	170	52	206	36	209	47	50	76	542	46	642	24		220	46	748	35	851	21
Southern California	48,108	10	47,572	14	71,408	20	10,650	12	33,948	8	24,807	8		58,758	9	81,520	9	96,215	15

· `·

FIGURE 68. Monthly total catch estimates (number of fish) and standard deviations of sculpin from on-board observations of southern California commercial passenger fishing vessels.

;

total catch. At least 90% of the sculpin total catch came from those counties in each of the 3 years. Los Angeles County led all counties with sculpin total catches ranging from 40% in 1986 to 58% in 1987. The geographic distribution of sculpin in the catch may have been related to the presence of large, nearshore sculpin spawning areas within close proximity to Los Angeles and San Diego CPFV landings. The Coronado Island site, fished by San Diego CPFV's, and Dago Bank, fished by Los Angeles County CPFV's, are two sites which have been identified as important sculpin spawning areas (Love et al. 1987).

Size Composition

Southern California. The sculpin length frequency modes for each year were very close to the distribution mean (Figure 69). The mean lengths (Figure 70), 270 to 284 mm (10.6 to 11.2 in.), were within the size range of 6-year old sculpin (Love, et al. 1987). In each of the 3 years, only a small portion of the distribution consisted of sexually immature sculpin, less than 220 mm (8.7 in.)

<u>Counties</u>. The sculpin length frequency distributions for all counties except Santa Barbara (there was insufficient length data from Santa Barbara County for meaningful analysis) were similar in several respects (Figures 71 through 74). In each case, there was a progressive, year by year shifting of the distribution towards younger age classes. This was reflected, except in San Diego County, by the annual decline in the mean lengths of each county's sculpin length frequency sample (Figure 70).

- 152 -

FIGURE 69. Size composition of sculpin from on-board observations of southern California commercial passenger fishing vessels.

FIGURE 70. Mean lengths and standard deviations of sculpin measured on-board southern California commercial passenger fishing vessels.

.

FIGURE 71.

Size composition of sculpin from on-board observations of San Diego County commercial passenger fishing vessels.

FIGURE 72. Size composition of sculpin from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 73. Size composition of sculpin from on-board observations of Los Angeles County commercial passenger fishing vessels.

FIGURE 74. Size composition of sculpin from on-board observations of Ventura County commercial passenger fishing vessels.

Management Recommendations

The CPFV sculpin landings began to rise rapidly in the early 1960's and peaked at over 90,000 fish in 1980, according to CPFV log data. Although sculpin present handling problems for CPFV deckhands and passengers, (because of their venomous fin spines), they are highly esteemed as a food fish and were ranked as the 10th most important species in the CPFV sport fish catch by southern California partyboat operators (Frey 1971). Our survey ranked sculpin among the top ten CPFV species in each of the 3 years surveyed (Table 12).

Though sculpin are caught throughout the year, the greatest catches occur during the spring and summer, a time interval when sculpin migrate to spawning areas. Sculpin are particularly vulnerable to anglers during this time period, and CPFV's will target them specifically, particularly if more desirable gamefish species are unavailable.

Based on our survey results, the conclusions provided by Collins and Crooke (unpublished manuscript), and the long-term CPFV log data trend, it seems that more and more fishing effort is being directed for sculpin, and that much of the increased catch is harvested from traditional spawning areas. It is not yet apparent whether the increasing levels of fishing effort have had an adverse impact on the sculpin stock, although the size structure of fish recruited into the fishery showed a trend toward younger age classes.

- 159 -

The sculpin fishery should be monitored closely, and the catch from the Coronado Islands, Dana Point, Dago Bank, Santa Monica Bay, and Anacapa Island sites, identified as probable or possible sculpin spawning areas (Love et al. 1987), should be given particularly close scrutiny.

All Rockfishes (Scorpaenidae)

Catch Estimates

Southern California. Rockfish total catch estimates decreased from 750,531 fish \pm 45,030 in 1985 to 695,769 \pm 62,620 in 1987 (Table 29). Collins and Crooke (unpublished manuscript) reported rockfish total catches ranging from 1,580,575 \pm 63,963 in 1976 to 1,699,899 \pm 98,877 in 1978. This indicates that CPFV rockfish catches have declined by more than 50% in 10 years, a trend that is mirrored in the rockfish landings reported in the statewide CPFV log reports (Paul Gregory, California Department of Fish and Game, Marine Resources Division, pers. comm.).

Resolving all the factors behind the drop in southern California rockfish catches over the past decade is beyond the scope of our study. However, we know that the decline in the stocks of key catch species such as bocaccio, chilipepper, and olive rockfish accounted for a large portion of the diminished rockfish catch. These three species composed as much as 71% of the estimated rockfish catch in Collins and Crooke's (unpublished manuscript) study, but only up to 39% of the rockfish total catch during our study. In comparing the average annual total catches of each of these three species, we see that bocaccio catches have dropped by 72%, chilipepper catches, 40%, and olive rockfish catches, 83%. The total catch estimates for other rockfishes, which rank in the top 20 species in our study (Table 30), either did not vary as substantially, or, in a few cases (honeycomb, rosy, and calico rockfishes), were caught in much larger estimated numbers in the

- 161 -

Catch Estimates (EST) and Coefficients of Variation [CV (%)] of All Rockfishes from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987. TABLE 29.

			FISHES	KEPT					PIS	HES REL	EASED					TOTAL CA	TCH		
	1987		198		198			1985		1986		1987		198	5	198	9	198	
AREA	EST	2	EST	5	EST	CV	ES.		2	EST	2	EST	CC	EST	2	EST	5	EST	2
San Diego County	92,726	14	120,745	15	105,752	16	14,1	121	17	17,443	14	7,017	16	106,847	13	138,188	14	112,769	13
County 195	33,208	28	17,982	28	9,758	39		105	21	2,822	18	1,480	33	34,613	27	20,804	24	11,238	35
l Los Angeles County	266,610	13	257,127	16	201,536	21	20,1	180	12	12,963	25	6,819	20	286,790	12	270,090	16	208,356	21
Ventura County	273,296	6	275,748	12	297,276	12		. 86/	23	3,169	20	4,961	28	275,094	6	278,918	12	302,237	12
Santa Barbara County	45,089	23	23,071	29	59,600	27	2,(860	21	1,425	47	1,569	25	47,188	21	24,497	28	61,169	56
Southern California	710,930	~	694,674	æ	673,923	6	39,6	502	6	17,822	:	21,845	=	750,531	•	732,496	••	695,769	^
										-									

-

TABLE 30. Ranking of Rockfish Species Observed On Board Southern California Based Commercial Passenger Fishing Vessels. Based on the Mean of the 1985 Through 1987 Catch Estimates.

				3-Year	% of 3-Year
SPECIES	1985	1986	1987	Mean	Catch Mean
Bocaccio	193,609	151,031	107,344	150,661	20.74
Chilipepper	42,690	70,396	149,673	87,586	12.06
Vermilion rockfish	47,241	56,466	72,389	58,699	8.08
Greenspotted rockfish	61,797	38,278	36,366	45,480	6,26
Starry rockfish	42,752	35,259	24,721	34,244	4.72
Olive rockfish	16,857	25,271	44,485	28,871	3.98
Blue rockfish	34,673	19,862	31,984	28,840	3.97
Honeycomb rockfish	31,279	34,602	20,629	28,837	3.97
Bank rockfish	21,452	48,034	12,435	27,307	3.76
Squarespot rockfish	39,113	33,225	7,679	26,672	3.67
Rosy rockfish	32,884	26,146	14,925	24,652	3.39
Calico rockfish	23,964	34,070	11,338	23,124	3.18
Flag rockfish	22,534	15,278	12,643	16,818	2.32
Copper rockfish	11,409	11,538	26,296	16,414	2.26
Greenstriped rockfish	14,140	16,741	17,560	16,147	2.22
Speckled rockfish	16,483	9,766	19,683	15,311	2.11
Gopher rockfish	17,016	11,890	14,176	14,361	1.98
Treefish	12,392	15,391	10,957	12,913	1.78
Halfbanded rockfish	11,506	12,653	3,228	9,129	1.26
Kelp rockfish	6,294	10,291	9,200	8,595	1.18
Widow rockfish	2,235	5,979	14,421	7,545	1.04

١

- 163 -

•

current study than they were during Collins and Crooke's (unpublished manuscript) study.

A breakdown of the estimated total catch by month shows a pattern in which rockfish catches peak in the late fall and winter, and experience a low point during the summer months (Figure 75). This pattern is mostly a result of targeting, in that the CPFV fleet tends to target surface fishes during the summer, to the exclusion of rockfishes. The opposite situation occurs during the late fall and winter, when bottom fishing trips for rockfishes are dominant, and surface fishing is generally unproductive.

The catch-by-month breakdown for 1987 reveals an anomalous pattern in which the peak rockfish total catches occurred in April instead of the months of January, November, or December. Also, the December rockfish total catch, at 19,000, was the lowest monthly estimate for 1987. The April peak, at 118,900 was the result of large rockfish total catches at Los Angeles County landings, where 46% of the April southern California rockfish total catches occurred. The very low rockfish total catches in December were probably due to adverse weather conditions which limited the number of CPFV trips scheduled. Seventeen percent fewer CPFV trips were run in December 1987 than in December 1986.

<u>Counties</u>. Los Angeles and Ventura counties had the largest rockfish total catch estimates during our study. In 1985, Los Angeles County contributed 38% to the southern California rockfish total catch, and Ventura County, 37% (Table 29).

- 164 -

FIGURE 75. Monthly total catch estimates (number of fish) and standard deviations of all rockfishes from on-board observations of southern California commercial passenger fishing vessels.

The species composition of the catch exhibited some county-by-county variation, based on our computed IRI rockfish rankings. In San Diego County various shallow-depth species, including honeycomb, calico, and olive rockfishes dominated the top 20 ranked species (Table 31). In Orange County the higher ranking species were mostly offshore bottom and mid-water species, such as bocaccio, chilipepper, bank, and vermilion rockfish (Table 32). The ranking and composition of the top five species showed considerable annual variation in Orange County from 1985 to 1987. Los Angeles County rockfish IRI rankings showed some stability in the species composition of its first few ranks, with bocaccio, vermilion, squarespot, and starry rockfish representing the top two ranks over the 3 years (Table 33). Ventura County IRI rankings were led by bocaccio in each year, indicating the importance of this offshore species to the Ventura complex CPFV's (Table 34). The other top-ranking rockfishes (with the exception of olive rockfish) were offshore, deep-water species. The IRI ranking of rockfishes for Santa Barbara County reflected a mixture of shallow-depth and deep-water species among the top 10 ranks (Table 35). The shallow depth-dwelling olive and blue rockfishes were the most important species in 1985 and 1986, while in 1987, vermilion and copper rockfishes, two mid- to deep-water species occupied the top ranks. The admixture of rockfish species in the Santa Barbara County catch may have been a reflection of the CPFV trip types run; a high percentage of trips from this complex were shorter, half-day runs that fished nearshore, coastal reefs. This could have accounted for the importance of shallow-water species in the county's IRI rankings.

- 166 -

TABLE 31. Top 20 Ranks, Based on an Index of Relative Importance, of Rockfish Species Observed On Board San Diego County Based Commercial Passenger Fishing Vessels in 1985, 1986, and 1987.

RANK	1985	1986	1987
1	Honeycomb rockfish	Honeycomb rockfish Calico rockfish	Olive rockfish
2 2	Starry rockfish	Vermilion rockfish Olive rockfish	Honeycomb rockfish
3	Calico rockfish	Starry rockfish	Vermilion rockfish
4	Flag rockfish	Treefish	Calico rockfish
5	Gopher rockfish	Gopher rockfish	Treefish
6	Squarespot rockfish	Squarespot rockfish	Starry rockfish
6	Bocaccio		
6	Treefish		
7	Blue rockfish	Bank rockfish	Chilipepper
7		Bocaccio	
8	Bank rockfish	Flag rockfish	Greenstriped rockfish
8	Vermilion rockfish		Gopher rockfish
9	Brown rockfish	Brown rockfish	Flag rockfish
10	Greenspotted rockfish	Greenspotted rockfish	Greenspotted rockfish
11	Rosy rockfish	Rosy rockfish	Brown rockfish
12	Olive rockfish	Speckled rockfish	Bocaccio
12		Blue rockfish	Rosy rockfish
13	Halfbanded rockfish	Kelp rockfish	Squarespot rockfish
14	Chilipepper	Halfbanded rockfish	Blue rockfish
14	Kelp rockfish		Kelp rockfish
15	Blackgill rockfish	Copper rockfish	Copper rockfish
15	Rosethorn rockfish		
16	Greenstriped rockfish	Blackgill rockfish	Mexican rockfish
17	Grass rockfish	Greenstriped rockfish	Greenblotched rockfish
18	Chameleon rockfish	Chilipepper	Grass rockfish
18	Speckled rockfish	Grass rockfish	
19	Copper rockfish	Greenblotched rockfish	Halfbanded rockfish
19			Speckled rockfish
20	Canary rockfish	Swordspine rockfish	Pink rockfish

- 167 -

TABLE 32. Top 20 Ranks, Based on an Index of Relative Importance, of Rockfish Species Observed On Board Orange County Based Commercial Passenger Fishing Vessels in 1985, 1986, and 1987.

RANK	1985	1986	- 1987
1	Bocaccio	Bank rockfish	Vermilion rockfish
2	Greenspotted rockfish	Chilipepper	Chilipepper
3	Starry rockfish	Bocaccio	Bocaccio
4	Flag rockfish	Vermilion rockfish	Olive rockfish
5	Honeycomb rockfish	Greenblotched rockfish	Flag rockfish
5	Vermilion rockfish	Greenspotted rockfish	-
6	Bank rockfish	Greenstriped rockfish	Calico rockfish
6	Rosy rockfish	•	
7	Squarespot rockfish	Calico rockfish	Bank rockfish
7	• •		Greenstriped rockfish
7			Squarespot rockfish
8	Calico rockfish	Olive rockfish	Greenspotted rockfish
9	Chilipepper	Rosy rockfish	Treefish
9	Halfbanded rockfish		•
10	Brown rockfish	Treefish	Rosy rockfish
11	Treefish	Splitnose rockfish	Cowcod
12	Greenstriped rockfish	Swordspine rockfish	Honeycomb rockfish
13	Splitnose rockfish	Brown rockfish	Greenblotched rockfish
13	Mexican rockfish		
14	Greenblotched rockfish	Halfbanded rockfish	Halfbanded rockfish
14		Squarespot rockfish	
15	Chameleon rockfish	Starry rockfish	Starry rockfish
16	Grass rockfish	Mexican rockfish	Shortbelly rockfish
17	Cowcod	Pinkrose rockfish	Gopher rockfish
18	Gopher rockfish	Stripetail rockfish	Yellowtail rockfish
18	▲ · · · · · · · · · · · · · · · · · · ·	Honeycomb rockfish	
19	Swordspine rockfish	Kelp rockfish	Speckled rockfish
19	-	Flag rockfish	Copper rockfish
20	Blackgill rockfish	Cowcod	Swordspine rockfish

TABLE 33. Top 20 Ranks, Based on an Index of Relative Importance, of Rockfish Species Observed On Board Los Angeles County Based Commercial Passenger Fishing Vessels in 1985, 1986, and 1987.

RANK	1985	1986	1987
1	Bocaccio	Bocaccio	Vermilion rockfish
2	Squarespot rockfish	Starry rockfish	Bocaccio
2	Starry rockfish		
3	Vermilion rockfish	Vermilion rockfish	Starry rockfish
3	Rosy rockfish		
4	Greenspotted rockfish	Squarespot rockfish	Olive rockfish
4	Calico rockfish		
5	Honeycomb rockfish	Flag rockfish	Calico rockfish
5		Calico rockfish	
6	Flag rockfish	Rosy rockfish	Greenspotted rockfish
7	Treefish	Honeycomb rockfish	Chilipepper
8	Halfbanded rockfish	Treefish	Speckled rockfish
8			Rosy rockfish
9	Blue rockfish	Greenspotted rockfish	Honeycomb rockfish
10	Speckled rockfish	Halfbanded rockfish	Squarespot rockfish
11	Olive rockfish	Greenblotched rockfish	Flag rockfish
11		Olive rockfish	•
12	Chilipepper	Greenstriped rockfish	Greenblotched rockfish
12	• • •	Brown rockfish	Copper rockfish
13	Shortbelly rockfish	Chilipepper	Treefish
14	Brown rockfish	Copper rockfish	Blue rockfish
15	Greenstriped rockfish	Bank rockfish	Greenstriped rockfish
15	•	Yellowtail rockfish	Halfbanded rockfish
16	Copper rockfish	Gopher rockfish	Brown rockfish
16	Gopher rockfish		
17	Bank rockfish	Kelp rockfish	Gopher rockfish
18	Canary rockfish	Redstripe rockfish	Grass rockfish
18	•	Speckled rockfish	
18		Grass rockfish	
19	Greenblotched rockfish	Blue rockfish	Shortbelly rockfish
19			Kelp rockfish
20	Cowcod	Widow rockfish	Cowcod

TABLE 34. Top 20 Ranks, Based on an Index of Relative Importance, of Rockfish Species Observed On Board Ventura County Based Commercial Passenger Fishing Vessels In 1985, 1986, and 1987.

RANK	1985	1986	· 1987
1	Bocaccio	Bocaccio	Bocaccio
2	Greenspotted rockfish	Greenspotted rockfish	Chilipepper
3	Starry rockfish	Chilipepper	Olive rockfish
3	-	Starry rockfish	
4	Chilipepper	Vermilion rockfish	Greenspotted rockfish
4			Vermilion rockfish
5	Rosy rockfish	Copper rockfish	Copper rockfish
6	Vermilion rockfish	Rosy rockfish	Blue rockfish
6		Kelp rockfish	
7	Greenstriped rockfish	Blue rockfish	Gopher rockfish
8	Blue rockfish	Greenstriped rockfish	Greenstriped rockfish
9	Speckled rockfish	Olive rockfish	Starry rockfish
9	Flag rockfish		Kelp rockfish
10	Gopher rockfish	Gopher rockfish	Rosy rockfish
10	Copper rockfish	-	
11	Olive rockfish	Speckled rockfish	Widow rockfish
11		-	Treefish
12	Kelp rockfish	Flag rockfish	Flag rockfish
12	Swordspine rockfish	-	-
13	Squarespot rockfish	Widow rockfish	Black-and-yellow rockfish
13	·	Treefish	
14	Treefish	Bank rockfish	Grass rockfish
14			Brown rockfish
15	Bank rockfish	Swordspine rockfish	Cowcod
16	Widow rockfish	Squarespot rockfish	Speckled rockfish
17	Brown rockfish	Cowcod	Bank rockfish
18	Greenblotched rockfish	Greenblotched rockfish	Swordspine rockfish
18	Cowcod		Greenblotched rockfish
18			Squarespot rockfish
19	Black-and-yellow rockfish	Black-and-yellow rockfish	Halfbanded rockfish
2 0	Yellowtail rockfish	Grass rockfish	Stripetail rockfish

TABLE 35. Top 20 Ranks, Based on an Index of Relative Importance, of Rockfish Species Observed On Board Santa Barbara County Based Commercial Passenger Fishing Vessels in 1985, 1986, and 1987.

RANK	1985	1986	1987
1	Olive rockfish	Blue rockfish Olive rockfish	Vermilion rockfish
2	Bocaccio	Copper rockfish	Copper rockfish
3	Blue rockfish	Vermilion rockfish	Olive rockfish
4	Vermilion rockfish	Greenspotted rockfish	Blue rockfish
5	Copper rockfish	Bocaccio	Bocaccio
5	••• FF •• ••• • ••	20020020	Kelp rockfish
6	Starry rockfish	Yellowtail rockfish	Widow rockfish
7	Greenspotted rockfish	Brown rockfish	Gopher rockfish
8	Calico rockfish	Starry rockfish	Greenspotted rockfish
8			Starry rockfish
9	Yellowtail rockfish	Widow rockfish	Brown rockfish
9	Rosy rockfish		
10	Widow rockfish	Kelp rockfish	Rosy rockfish
11	Speckled rockfish	Rosy rockfish	Canary rockfish
11	Squarespot rockfish		
12	Gopher rockfish	Halfbanded rockfish	Yellowtail rockfish
13	Brown rockfish	Gopher rockfish	Chilipepper
14	Flag rockfish	Greenstriped rockfish	Squarespot rockfish
15	Yelloweve rockfish	Squarespot rockfish	Calico rockfish
16	Honeycomb rockfish	Flag rockfish	Black-and-vellow rockfish
16		Grass rockfish	
16		Black-and-vellow rockfi	sh
17	Black-and-vellow rockfish	Chilipepper	Speckled rockfish
17			Flag rockfish
18	Canary rockfish	Canary rockfish	Greenstriped rockfish
19	Greenstriped rockfish	Treefish	Treefish
20	Halfbanded rockfish	Yelloweve rockfish	Greenblotched rockfish
20	Kelp rockfish		Grass rockfish

- 171 -
Management Recommendations

The southern California CPFV rockfish fishery is a multi-species fishery, which, though dominated by a dozen or so species (Table 30), encompasses at least 49 out of the 62 rockfish species known to inhabit California waters. These rockfishes inhabit a wide range of habitats, have varying food habits, growth rates, etc. Managing such a diverse group as a single entity is not an ideal practice, but given the lack of available data on the individual rockfish species, it is the only workable management scheme currently available. As a result, the principal management implementation consists only of an aggregate 15-fish bag limit for all rockfish species.

Miller and Hardwick (1973) discussed the sport and commercial fisheries for rockfish, and listed the development of an aggregate species population dynamics model as one of the prerequisites necessary for management.

Based on evidence of declining rockfish catches in our study and in the CPFV logbook data (Oliphant 1979), we offer several management recommendations that would reduce the sport-caused portion of fishing mortality, and might stabilize or reverse declining rockfish catch trends. The options are:

- 1. Reducing the bag limit for rockfishes from 15 to 10.
- Imposing area fishing closures. This would provide nursery areas, allowing rockfish to mature and spawn, and eventually replenish depleted areas outside of the closures.

- 172 -

- 3. Imposing a limit on the number of hooks per gangion in order to lower the efficiency or fishing power. of each angler.
- 4. Imposing a single size limit or series of size limits. A minimum size limit would allow more rockfish to reach sexual maturity and reproduce before being taken by anglers.

Of the four options listed, a reduction of the bag limit would probably be the easiest to implement. If a 10-rockfish bag limit proved to be ineffective, then smaller bag limits could be considered. The option regulating gangions might have a comparable effect to a lower bag limit. However, we feel this option would engender greater opposition from anglers, the CPFV industry, and the fishing tackle industry. The area closure option for rockfishes would be difficult to enforce, and would tend to redirect fishing pressure to the remaining, open rockfishing areas. Finally, the size limit option for rockfishes would be the most difficult to implement, and would be ineffective for the smaller rockfish species, unless separate size limits were set for them. Also, most of the rockfish catches occur in 73 m (40 fm) or deeper; rockfishes reeled up rapidly from such depths invariably decompress and have inflated air bladders, making it difficult to return undersized rockfish alive to their original habitat depths.

Attempting to manage the rockfishes on a species-by-species basis would be difficult because each CPFV fishing trip is unable to target a single species, and may catch a dozen or more different rockfishes at

- 173 -

one fishing site. Most anglers and many CPFV crew members cannot identify the various rockfishes that occur in the catch.

Without discounting the impact of year-to-year variations of the oceanic environment, such as El Nino, on rockfish stocks, we believe that fishing mortality, both sport and commercial, has been a significant cause of the decline in rockfish catches over the past decade. Based on our findings and analyses, we recommend that the current 15-rockfish bag limit regulation be reduced to a 10-rockfish bag limit, and that additional conservation measures be implemented on the commercial rockfish fishery. The form and scope of such commercial regulations are beyond our purview, but it seems obvious that restricting one component of the rockfish fishery and not the other would not work, nor would it be equitable.

Bank Rockfish (Scorpaenidae)

Catch Estimates

<u>Southern California</u>. Bank rockfish is an offshore, bottom-dwelling rockfish species. In our survey, bank rockfish total catch estimates fluctuated between 12,435 fish \pm 8,580 and 48,034 \pm 15,370 from 1985 to 1987 (Table 36). Bank rockfish was the ninth ranked rockfish catch species, composing 3.8% of the rockfish total catch (Table 30). Collins and Crooke (unpublished manuscript) had bank rockfish total catch estimates ranging from 16,998 \pm 3,381 in 1977 to 36,378 \pm 11,305 in 1978. It was the 11th ranking rockfish species in their survey, composing 1.3% of the rockfish catch.

The total catch distribution of bank rockfish displayed catch peaks in the winter and spring of 1985 and 1986, and a spring catch peak in 1987 (Figure 76). This pattern was most likely tied to the targeting of the offshore banks by CPFV's during their seasonal offshore rockfish fishery.

<u>Counties</u>. Los Angeles County had the largest total catches of bank rockfish, followed by San Diego County (Table 36). These two counties contributed 55% and 30% of the southern California bank rockfish total catch, respectively.

Size Composition

<u>Southern California</u>. The length frequency distributions for bank rockfish display several modes in each of the 3 years (Figure 77). We do not have length-at-age data available to assign ages to modal groups, but it appears that the fishery is supported by several cohorts and that new year classes were being recruited into the catch.

- 175 -

TABLE 36.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Bank Rockfish from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985
	Through 1987.

· ·

•

			PISH K	EPT					FISH R	ELEASED			TOTAL CATCH							
	198	198	1986		1987		85	1986		19	87		1985		1986		1987			
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	ES	r	CV	EST	CV	EST	CV	
I San Diego County 6	9,504	65	14,742	74	149	98	0	0	0	0	0	0	9,	504	65	14,742	74	149	98	
I Orange County	2,637	84	180	99	0	0	49	99	0	0	0	0	2,	6 85	83	180	99	0	0	
Los Angeles County	6,079	59	27,483	37	11,181	76	0	• 0	0	0	0	0	6,	0 79	59	27,483	37	11,181	76	
Ventura County	3,183	78	5,630	61	1,104	52	0	0	0	0	0	0	3,	183	78	5,630	61	1,104	52	
Sant a Barbara Couhty	0	0	0	0	0	0	o	0	0	0	0	0		0	0	0	0	0	0	
Southern California	21,403	37	48,034	32	12,435	69	49	99	0	0	0	0	21,	52	37	48,034	32	12,435	69	

.

.

.

· .

.

FIGURE 76. Monthly total catch estimates (number of fish) and standard deviations of bank rockfish from on-board observations of southern California commercial passenger fishing vessels.

)

۰.

)

.)

.

.

1

.

)

,

۵

)

1 1

178

<u>Counties</u>. The mean length plot displays considerable variation between and within each county over the 3 years (Figure 78). In San Diego, Orange, and Los Angeles counties, bank rockfish mean lengths decreased in varying patterns over the 3 years, while Ventura County bank rockfish mean lengths increased incrementally each year.

In San Diego County the frequency distribution was heavily represented by larger bank rockfish, with modes at 460 to 469 mm (18.1 to 18.5 in.) in 1985 and at 420 to 429 mm (16.5 to 16.9 in.) in 1986 (Figure 79). Most of these fish came from a single San Diego fishing site: Sixty Mile Bank (Ally et al. 1988, 1989). The Orange, Los Angeles, and Ventura counties length data display several length modes in a pattern indicative of recruitment of younger bank rockfish age classes into the CPFV fisheries of those counties (Figures 80 through 82). There were insufficient length frequency data available to analyze the bank rockfish catch from Santa Barbara County.

Management Recommendations

Bank rockfish is an important commercial catch species in southern California, contributing between 8.0% and 32.0% of the sampled rockfish catch between 1983 and 1988 (Sunada, California Départment of Fish and Game, Marine Resources Division, pers. comm.). Southern California CPFV's fish bank rockfish seasonally, when they target such offshore banks as Sixty Mile Bank and Southeast Bank. When comparing our bank rockfish total catch estimates with bank rockfish total catch estimates from the 1976 to 1978 survey, there seems to have been very little change in the magnitude of the catch. In both surveys, the range of total catch estimates did tend to fluctuate widely from year to year.

- 179 -

FIGURE 78. Mean lengths and standard deviations of bank rockfish measured on board southern California commercial passenger fishing vessels.

FIGURE 79. Size composition of bank rockfish from on-board observations of San Diego County commercial passenger fishing vessels.

FIGURE 80. Size composition of bank rockfish from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 81. Size composition of bank rockfish from on-board observations of Los Angeles County commercial passenger fishing vessels.

FIGURE 82. Size composition of bank rockfish from on-board observations of Ventura County commercial passenger fishing vessels.

....

We do not believe that bank rockfish are currently being heavily exploited by southern California CPFV's, and feel that the commercial harvest probably has a greater impact on the stock. Therefore, we do not propose new sport fish regulations to further limit the CPFV take of bank rockfish, except as they apply to the rockfish group.

Blue Rockfish (Scorpaenidae)

Catch Estimates

Southern California. Blue rockfish is a shallow-depth, mid-water rockfish species that forms dense schools near the surface to 91 m (50 fm). In our survey the blue rockfish total catch estimates ranged from 19,862 fish \pm 5,360 to 34,673 \pm 6,935 (Table 37). It was ranked seventh in importance among the rockfishes, based on its 4.0% of the rockfish total catch (Table 30). Collins and Crooke (unpublished manuscript) had blue rockfish total catch estimates ranging from 62,420 \pm 7,193 in 1976 to 243,341 \pm 91,662 in 1978; it was the fourth ranked rockfish species, composing 9.2% of the Sebastes catch.

The blue rockfish total catch distribution was variable, although June, July, and August were the months that consistently displayed the largest estimated catches in each of the 3 years (Figure 83).

<u>Counties</u>. Ventura County had the largest blue rockfish total catches, ranging from 54 to 63% of the estimated southern California blue rockfish totals. Most of the Ventura County blue rockfish were taken at northern Channel Islands sites: San Nicolas Island, Anacapa Island, the west end of Santa Cruz Island, Santa Rosa Island, and the west end of San Miguel Island (Ally et al. 1988). The remaining blue rockfish catches were distributed fairly evenly among San Diego, Los Angeles, and Santa Barbara counties, while the Orange County blue rockfish sampled catch was too small to generate a catch estimate.

- 186 -

TABLE 37.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Blue Rockfish	from
	On-Board Sampling of Southern California Commercial Passenger Fishing Vessels	for 1985
	Through 1987.	

•

• • • • • • •

			FISH K	EPT					FI	SH REL	EASED			TOTAL CATCH							
	1985 1986			198	1987		1985		1986		19	1987		1985	;	198	36	198	37		
AREA	EST	CV	EST	CV	EST	CV		EST	CV	EST	CV	EST	CV		EST	CV	EST	CV	EST	CV	
San I Diego ⊢ County ∞	3,896	43	2,779	38	1,355	31		898	9 9	16	97	52	99		4,794	51	2,795	38	1,407	30	
√ Orange I County	0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0	
Los Angeles County	6,419	44	526	43	3,198	70		175	81	39	99	135	70		6,594	43	565	41	3,333	69	
Ventu ra Count y	18,767	31	12,488	38	18,644	34		77	72	0	0	645	47		18,843	31	12,488	38	19,289	33	
Sant a Barbara County	4,392	32	4,014	55	7,919	57		50	52	0	0	36	72		4,442	31	4,014	55	7,954	56	
Southern California	33,473	20	19,808	27	31,116	26		1,199	75	55	76	868	37		34,673	20	19,862	27	31,984	25	

.

.

•. •

.

4

.

FIGURE 83. Monthly total catch estimates (number of fish) and standard deviations of blue rockfish from on-board observations of southern California commercial passenger fishing vessels.

Size Composition

Southern California. The blue rockfish length frequency distributions display several modal length groups, one of which represents 1980 year class fish (Figure 84), based on Miller and Geibel's (1973) length at age analyses. These blue rockfish were approximately 230 to 239 mm (9.1 to 9.4 in.) in length and 5 years old in 1985, and represented the major mode in 1987 as 7-year olds, 290 to 299 mm (11.4 to 11.7 in.) fish. The blue rockfish length frequency distributions in Collins and Crooke's study (unpublished manuscript) are also dominated by 5-year-old fish, with smaller modes representing fish up to 12 years old. The presence of these older blue rockfish in the catch is attributed to CPFV's targeting previously unexploited portions of the blue rockfish stock.

<u>Counties</u>. The county length frequency distributions reflect the recruitment and progression of 1980 year class blue rockfish into the CPFV fishery (Figures 85 through 88). The mean lengths for Los Angeles, Ventura, and Santa Barbara counties show a 30 mm (1.2 in.) and greater increase between 1985 and 1986, an indication of the incremental growth in the strong 1980 year class (Figure 89).

Management Recommendations

In California, blue rockfish population densities reach their peak north of Point Conception (Fitch 1974). In central and northern California, blue rockfish composed 31.4% of the CPFV rockfish catch from 1958 to 1961, making it the top rockfish species (Miller and Gotshall 1965). More recent studies have indicated that the central California blue rockfish stock had the potential of being overfished by

- 189 -

FIGURE 84. Size composition of blue rockfish from on-board observations of southern California commercial passenger fishing vessels.

FIGURE 85. Size composition of blue rockfish from on-board observations of San Diego County commercial passenger fishing vessels.

FIGURE 86. Size composition of blue rockfish from on-board observations of Los Angeles County commercial passenger fishing vessels.

- 192 -

•

FIGURE 87. Size composition of blue rockfish from on-board observations of Ventura County commercial passenger fishing vessels.

FIGURE 88. Size composition of blue rockfish from on-board observations of Santa Barbara County commercial passenger fishing vessels.

FIGURE 89. Mean lengths and standard deviations of blue rockfish measured on board southern California commercial passenger fishing vessels.

inshore skiff and CPFV fisheries (Miller and Geibel 1973). They discussed a 254-mm (10-in.) minimum size limit and temporal area closures as management options to prevent blue rockfish over: exploitation.

Southern California CPFV blue rockfish catches are concentrated at the northern Channel Islands of San Nicolas, Anacapa, Santa Cruz, Santa Rosa, and San Miguel. The relative inaccessibility of these offshore island fishing sites has limited the amount of skiff and CPFV fishing effort targeting blue rockfish and other fishes inhabiting their waters. The geographic distribution of blue rockfish populations has been a major factor in protecting the southern California blue rockfish stock from over-exploitation.

Our survey results indicate that the southern California CPFV blue rockfish total catches have remained relatively constant from 1985 to 1987. Also, the mean lengths of blue rockfish in the catch have risen within that time interval. Based on these factors, we recommend no changes in current management regulations governing the sport take of blue rockfish, except as they apply to the rockfish group.

Bocaccio (Scorpaenidae)

Catch Estimates

Southern California. Bocaccio, a mid-water to bottom-dwelling rockfish, is a major catch component of both the sport and commercial rockfish fisheries in California. The estimated CPFV total catch in southern California fluctuated between 194,000 fish \pm 21,300 in 1985 to 107,340 \pm 13,950 in 1987 (Table 38). In 1985 and 1986 the bocaccio catch peaked during the winter months of November, December, and January, while the 1987 catch was the greatest in the months of February through April (Figure 90). The southern California total catch estimates for bocaccio calculated by Collins and Crooke (unpublished manuscript) for the period 1976 through 1978 ranged from 342,741 \pm 32,845 to 747,489 \pm 51,913. This is approximately four times greater than the range of estimates generated from our survey. Apparently, the bocaccio stock being fished by the southern California CPFV fleet in the mid to late 1970's has been substantially reduced in size during the intervening 7 years of fishing activity.

<u>Counties</u>. Los Angeles and Ventura counties were the areas producing the greatest total catches of bocaccio during the 3 years of our study. In each year, they accounted for more than 90% of the total estimated southern California bocaccio catch. Up to 46% of the bocaccio total catch (1985) came from Los Angeles County landings (Table 38). The catch trend over the 3 years of the survey reflected a considerable decline (56%) in that county's bocaccio total catches, from 89,947 in 1985 to 41,124 in 1987. In 1986 up to 58% of the

- 197 -

TABLE 38. Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Bocaccio from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

(

¢

•

	· ·		FISH K	EPT					FISH RE	LEASED			TOTAL CATCH								
	1985			1986 1987		7		1985		1986		1987		1985		198	6	1987			
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST		CV	EST	CV	EST	CV		
San Diego Count y	3,847	25	4,836	32	2,902	49	12	7 53	0	0	0	0	3,9	74	25	4,836	32	2,902	49		
I Orange County	2,260	39	341	88	943	81		00) 0	0	0	0	2,2	60	39	341	88	943	81		
Los Angeles County	87,202	19	55,546	21	40,969	17	2,74	4 · 6	421	75	155	98	89,9	47	19	55,968	21	41,124	17		
Ventu ra Count y	87,635	16	88,417	17	57,768	20	20	4 42	. 0	0	0	0	87,8	40	16	88,417	17	57,768	20		
Sant a Barbara Count y	9,314	39	1,456	38	4,607	38	27	5 61	. 13	96	0	0	9,5	88 :	38	1,469	38	4,607	38		
Southern Californ ia	190,258	12	150,596	13	107,189	13	3,35	1 8	435	72	155	98	193,6	0 9	11 1	51,031	13	107,344	13		

•

1

1

1

FIGURE 90. Monthly total catch estimates (number of fish) and standard deviations of bocaccio from on-board observations of southern California commercial passenger fishing vessels.

southern California bocaccio total catch was taken by Ventura County CPFV's. From an estimated total catch of 88,417 bocaccio in 1985 to 57,768 in 1987, there was a 35% decline in the Ventura County bocaccio total catch.

Size Composition

Southern California. The mean length of sampled bocaccio (Figure 91) ranged from 341 to 431 mm (13.4 to 17.0 in.). The length frequency distributions (Figure 92) each display a major modal length grouping, which encompasses a large portion of the measured bocaccio catch. Based on MacGregor's (1987) bocaccio length at age relationship, this modal group represents the 1983 year class, young fish which exhibited a rapid progression of growth for each year of this study. Hulbrock (1974) showed bocaccio at this age class range (2-4 years) growing approximately 76 mm (3 in.) per year. The recruitment of the 1983 year class into the fishery caused an upward shift of mean lengths over the 3-year survey period. The annual length frequency distributions for the 1975-78 CPFV bocaccio catch exhibited a similar pattern of a rapidly growing, single, dominant modal year class appearing in each year's catch, except for the final year of that study, 1978. In that year, a second strong year class was also recruited into the fishery, resulting in a lower overall length frequency mean (Collins and Crooke unpublished manuscript).

<u>Counties</u>. A length frequency analysis by county displayed a cline in which the mean length of bocaccio decreased from south to north (Figure 91). At the same time, the mean length by county increased each year in all five counties. This was probably the result of the

- 200 -

3

•

FIGURE 91. Mean lengths and standard deviations of bocaccio measured on board southern California commercial passenger fishing vessels.

FIGURE 92. Size composition of bocaccio from on-board observations of southern California commercial passenger fishing vessels.

- 202 -

modal 1983 year class growing rapidly and contributing the major portion of each county's annual catch. The length frequency distributions for each county reflect the presence of the 1983 year class as the major modal contributor to the length frequency in each of the 3 years (Figures 93 through 97).

Management Recommendations

Bocaccio is one of the most abundant rockfishes in the southern California bight, and is a species that grows rapidly and can reproduce in as little as 3 years (Frey 1971). The results from Collins and Crooke (unpublished manuscript) and our survey indicate that the bocaccio stock in southern California is subject to large fluctuations at existing levels of fishing effort. The dependence of the current sport fishery on a few strong year classes suggests that the bocaccio fishery may experience large downward trends in the catch when there are several successive years of poor recruitment. Thus, the magnitude of the bocaccio catch may be more directly dependent on oceanic conditions and events, such as an El Nino, which can severely limit successful recruitment, than by the current level of sport and commercial fishing-induced mortality.

We conclude that the CPFV bocaccio catch has fluctuated greatly over the past decade, and, due to the population structure of the southern California stocks, is sensitive to environmental conditions, as well as the level of fishing effort targeting that stock. Because of the recent downward trend in the CPFV bocaccio catch, we feel that there is currently a need to closely monitor the affects of both sport and commercial fishing on the bocaccio stock. If the current catch

FIGURE 93. Size composition of bocaccio from on-board observations of San Diego County commercial passenger fishing vessels.

FIGURE 94. Size composition of bocaccio from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 95. Size composition of bocaccio from on-board observations of Los Angeles County commercial passenger fishing vessels.

۰.

FIGURE 96. Size composition of bocaccio from on-board observations of Ventura County commercial passenger fishing vessels.

FIGURE 97. Size composition of bocaccio from on-board observations of Santa Barbara County commercial passenger fishing vessels.

decline continues, restrictions on both the sport and commercial harvest of bocaccio (beyond the recommendations for rockfishes as a group), should be implemented. In both fisheries, area closures might be the most effective means of reducing fishing pressure that targets bocaccio.

Chilipepper (Scorpaenidae)

Catch Estimates

<u>Southern California</u>. Chilipepper is a schooling, mid-waterdwelling rockfish species that is an important component of sport and commercial fisheries in southern California. Our chilipepper total catch estimates increased each year from 42,690 fish \pm 7,684 in 1985 to 149,673 \pm 28,438 in 1987 (Table 39). Collins and Crooke (unpublished manuscript) had chilipepper total catches ranging from 151,540 \pm 15,554 in 1976 to 225,102 \pm 34,687 in 1978. Chilipepper was the third ranked rockfish species in the 1975-1978 survey (11.2% frequency of occurrence), and was the second ranking rockfish species (12.1%) in our survey (Table 30).

The largest total catches of chilipepper were made in the late fall, winter, and spring (Figure 98). These are the months when the southern California CPFV fleet traditionally shifts much of its fishing effort away from surface species to target bottom fish species, including rockfishes. Chilipepper are particularly vulnerable to sport anglers from mid-November through mid-March, the time period during which pre-spawning and spawning schools are formed (Frey 1971). The anomalies in the expected fishing pattern, as in the low chilipepper catches in January and March of 1985, March of 1986, and December of 1987, were most likely due to weather conditions that limited fishing effort for chilipepper and other rockfishes during those months.

- 210 -

TABLE 39.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Chilipepper from On-Board
	Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

• • • • • • • • •

			FISH K	EPT				-	FISH REI	LEASED		TOTAL CATCH							
	1985 1986			1987		1985		1986		198	7	1985		1986		198			
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	
San I Diego N County	1,947	68	888	82	13,444	68	0	0	0	0	0	0	1,947	68	888	82	13,444	68	
Drange I County	2,239	56	1,380	99	493	72	0	0	0	0	0	0	2,239	56	1,380	99	493	72	
Lo s Angeles County	4,108	26	26,932	44	35,243	44	58	98	0	0	62	98	4,166	27	26,932	44	35,305	44	
Ventura County	34,060	22	40,868	23	98,693	22	279	98	34	99	0	0	34,339	22	40,902	23	98,693	22	
Sant a Barbar a County	0	0	293	96	1,739	98	0	0	0	0	0	0	0	0	293	96	1,739	98	
Southern Callforni a	42,354	18	70,362	22	149,611	19	337	83	34	99	62	98	42,690	18	70 ,39 6	22	149,673	19	
				•												•			

4500 1985 4000 3500 3000 :... 2500 2000 1500 I 1000 500 Ī ļ 0 FEB APR JAN MAR MAY JUN JUL AUG SEP NOV DEC OCT 4500 1986 4000 3500 3000 2500 2000 1500 1000 I 500 0 JUL AUG DEC JAN FEB MAR APR MAY JUN SEP OCT NOV 4500 1987 4000 3500 3000 2500 2000 1500 1000 500 ٥ FEB MAR APR MAY JUN JUL NOV DEC JAN AUG SEP OCT MONTH

CATCH ESTIMATES (X10)

•.

۰.

FIGURE 98. Monthly total catch estimates (number of fish) and standard deviations of chilipepper from on-board observations of southern California commercial passenger fishing vessels.

<u>Counties</u>. The largest chilipepper total catches came from Ventura County, which accounted for from 58% (1986) to 80% (1985) of the southern California chilipepper total catch. Most of the Ventura catch came from a relatively small number of fishing sites. In 1986 and 1987, four fishing sites provided 75% and 94%, respectively, of the Ventura County chilipepper catches (Ally et al. 1988). These sites were two areas in the Santa Barbara Channel, Rincon Dome Reef and Short Banks, and the northern and southern sections of the Santa Rosa Flats area around Santa Rosa Island.

Size Composition

Southern California. The length frequency distributions show a shift in size class structure over the 3 survey years (Figure 99). In 1985 the sample mean was at 333 mm (13.1 in.) and there were two clearly defined modal length groups, one centered at 220 to 229 mm (8.7 to 9.0 in.) and one at 340 to 349 mm (13.4 to 13.8 in.) These corresponded to 3-year-old and 5-year-old chilipepper, respectively (MacGregor 1987). In 1986 the mean was 330 mm (13.0 in.) and there were three prominent modal groups at 280 to 289 mm (11.0 to 11.4 in.), 350 to 359 mm (14.0 to 14.2 in.), and 430 to 439 mm (17.0 to 17.3 in.). These groups were representative of 4-, 6-, and 8-year-old and older chilipepper, respectively (MacGregor 1987). In 1987 the mean length was 307 mm (12.1 in.) and a single modal group at 290 to 299 mm (11.4 to 11.8 in.) dominates the distribution. Chilipepper at that size would be approximately 5 years old. Modal age classes older than age five did not appear in the 1987 sampled catch. Based on the progression of chilipepper size classes in the CPFV catch, it appears

- 213 -

FIGURE 99. Size composition of chilipepper from on-board observations of southern California commercial passenger fishing vessels.

- 214 -

that the fishery was heavily dependent on a 1982 year class that, by 1987, accounted for a major portion of the sampled catch.

During the 1975 to 1978 period surveyed by Collins and Crooke (unpublished manuscript), the 4-year length frequency mean was 380 mm (15 in.), and there were no major shifts in length frequency modes until 1978, when a new mode at 300 to 309 mm (11.8 to 12.2 in.) entered the fishery.

<u>Counties</u>. The length frequency distributions for Orange, Los Angeles, and Ventura counties reflect the shift to younger age classes in chilipepper from 1985 through 1987 (Figures 100 through 102). San Diego County chilipepper length frequencies display a different sequence in which the size structure shifted to larger, older fish between 1985 and 1986, and then reverted to distinctly younger modal age groups in 1987 (Figure 103). There were insufficient data to develop length frequency distributions for Santa Barbara County in 1985 and 1986. The 1987 length frequency plot displays a single modal length group at 330 to 339 mm (12.9 to 13.3 in.), which, based on MacGregor's (1987) study, was representative of 5-year-old chilipepper (Figure 104).

The county mean length plots closely follow the trends displayed in the length frequency analyses (Figure 105). For each county, the mean lengths for 1987 were 25 mm (0.9 in.) or more lower than the 1985 mean lengths.

Management Recommendations

Chilipepper range from Vancouver Island, British Columbia to Magdelena Bay, Baja California, and are commonly found in depths of 40

- 215 -

FIGURE 100. Size composition of chilipepper from on-board observations of Orange County commercial passenger fishing vessels.

. •

-

. .

FIGURE 101. Size composition of chilipepper from on-board observations of Los Angeles County commercial passenger fishing vessels.

۰.

FIGURE 102. Size composition of chilipepper from on-board observations of Ventura County commercial passenger fishing vessels.

۰.

FIGURE 103. Size composition of chilipepper from on-board observations of San Diego County commercial passenger fishing vessels.

.

:

•

•.

FIGURE 104. Size composition of chilipepper from on-board observations of Santa Barbara County commercial passenger fishing vessels.

•.•

FIGURE 105. Mean lengths and standard deviations of chilipepper measured on board southern California commercial passenger fishing vessels.

to 183 fm (Miller and Lea 1972). In California, chilipepper are fished commercially from San Diego to Fort Bragg, and the sport fishery for chilipepper occurs throughout the state.

In a 1958 to 1960 northern California sport fish survey, the average annual CPFV catch of chilipepper was estimated at 2,165 fish, or approximately 0.3% of the CPFV rockfish catch (Miller and Gotshall 1965).

Frey (1971) stated that the chilipepper catch was stable and overfishing was not occurring. He also stated that, in the area of maximum chilipepper abundance (Santa Barbara to Fort Bragg), the exploitable stocks were restricted to a narrow 3-mile band of continental shelf within the chilipepper preferred habitat depth range.

The results of our survey, when compared to catch data from Collins and Crooke (unpublished manuscript), and Miller and Gotshall's (1965) sport fish survey, point to an increased utilization of chilipepper by the CPFV fishery over the past 20 years. In southern California, chilipepper ranked among the top 10 rockfish species in each of the 3 years surveyed (Table 30). In 1987 chilipepper was the most abundant rockfish species in the CPFV catch, composing 22% of the estimated rockfish total catch.

Chilipepper have consistently maintained a position as one of the most important rockfish in the CPFV catch over the past 15 years. It also continues to be a commercially important catch species in southern California. The dependence of the CPFV fishery on a few age classes, and the shift to younger age classes seen in our length frequency data, may indicate that chilipepper stocks are being harvested at or near the

- 222 -

maximum sustainable yield. Also, the fact that the major portion of the chilipepper catch is concentrated at a relatively few fishing sites is potential cause for concern. We recommend that the chilipepper catch be closely monitored over the next few years in order to sort out the environmental and man-caused impacts on the southern California chilipepper stock. If sport fishing pressure and/or commercial fishing pressure is/are found to be depleting the chilipepper stock, then appropriate conservation measures should be formulated and implemented.

Cowcod (Scorpaenidae)

Catch Estimates

Southern California. Cowcod is a deep-water, bottom-dwelling rockfish species that is eagerly sought by anglers because of the large sizes it can attain. In our survey, cowcod total catch estimates ranged from 1,840 fish \pm 443 to a high of 2,763 \pm 387 (Table 40). Cowcod composed an average of 0.3% of the rockfish total catch during the 3 years surveyed (Table 30). Collins and Crooke (unpublished manuscript) computed cowcod total catch estimates ranging from 6,729 \pm 1,067 in 1977 to 9,987 \pm 1,209 in 1976. Over the 4 years of their survey, cowcod composed 0.6% of the rockfish total catch.

The cowcod total catch peaked in late fall through early spring, the time of year when southern California CPFV's normally target offshore bottom fishes (Figure 106). Although the seasonal time period of heavy cowcod catches did not vary over the 3 years, the total catch peaks did occur in different months each year: in December during 1985, in January during 1986, and in April during 1987.

<u>Counties</u>. Los Angeles and Ventura county landings had the largest cowcod total catches in each of the 3 years. The two counties contributed an average of 91% of the southern California cowcod total catch.

Size Composition

<u>Southern California</u>. The cowcod length frequency distributions display considerable variation from year to year (Figure 107). A core group of fish larger than 420 mm (16.5 in.) was present in the sampled

- 224 -

TABLE 40.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Cowcod from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through	÷
	1987.	

·.

•

			FISH KE	EPT					FISH RE	LEASED			TOTAL CATCH								
	198	1985		1986		1987		1985		1986		1987		1985		1986		87			
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV			
San Diego County	180	45	106	72	0	0	0	0	0	0	0	0	180	45	106	72	0	0			
Orange County	206	84	0	0	38	99	0	0	0	0	0	0	206	84	0	0	38	99			
Los Angeles County	1,383	20	498	40	988	33	0	0	0	0	0	0	1,383	20	498	40	988	33			
Ventura County	887	21	1,223	30	1,078	36	0	0	0	0	0	0	887	21	1,223	30	1,078	36			
Santa Barbara County	107	75	13	96	0	0	0	0	0	0	0	0	107	75	13	96	0	0			
Southern California	2,763	14	1,840	23	2,103	24	0	0	0	0	0	0	2,763	14	1,840	23	2,103	24			

• • • • • •

•••

.

. ·

FIGURE 106. Monthly total catch estimates (number of fish) and standard deviations of cowcod from on-board observations of southern California commercial passenger fishing vessels.

:

southern California commercial passenger fishing vessels. FIGURE 107. Size composition of cowcod from on-board observations of

catch in each year, while smaller cowcod were completely absent from the 1986 length frequency. The modal grouping of young cowcod, centered at the 300-344 mm (11.8-13.5 in.) length group, was present in 1985 and 1987, and was, according to Fitch and Lavenberg (1971), the size representative of immature 3-year-old cowcod. The absence of this size range of fish in the 1986 catch may indicate very weak recruitment of juvenile cowcod during that time period.

<u>Counties</u>. There was insufficient length frequency data available to construct length plots for San Diego, Orange, and Santa Barbara counties. In Los Angeles and Ventura counties, the distributions (Figures 108 and 109) display an extremely broad range of cowcod lengths, from 210 to 884 mm (8.3 to 34.8 in.). The Los Angeles County length frequency distribution is dispersed and does not exhibit distinct modal length groups. The Ventura County plots do display modal length groups of 465 to 615 mm (18.3 to 24.2 in.).

The mean length distribution among the five southern California Counties did not display any obvious patterns or trends, although the lack of sufficient length frequency data in San Diego, Orange, and Santa Barbara counties may have precluded any meaningful comparisons (Figure 110).

Management Recommendations

Although cowcod have been given special attention by CPFV anglers, they constitute only a fraction of the annual CPFV catch. This is apparently not a recent development, since cowcod composed less than 1% of the CPFV rockfish catch in 1961 (Miller and Gotshall 1965) and in Collins and Crooke's (unpublished manuscript) CPFV survey in the

- 228 -

FIGURE 108. Size composition of cowcod from on-board observations of Los Angeles County commercial passenger fishing vessels.

FIGURE 109. Size composition of cowcod from on-board observations of Ventura County commercial passenger fishing vessels.

۰.

FIGURE 110. Mean lengths and standard deviations of cowcod measured on board southern California commercial passenger fishing vessels.

:

1970's. Cowcod are rarely the sole target of CPFV's, and are normally captured in an aggregate catch along with other offshore rockfish species.

Since cowcod landings are such a minor component of the current rockfish catch, we do not feel that any regulatory changes are necessary to protect the cowcod stock, except as they apply to the rockfish group.

Greenspotted Rockfish (Scorpaenidae)

Catch Estimates

Southern California. Greenspotted rockfish is a deep-water, bottom-dwelling species very common in rockfish catches from depths of 73 m (40 fm) and greater. In our survey, greenspotted rockfish total catch estimates ranged from 36,366 fish \pm 5,455 in 1987 to 61,797 \pm 7,415 in 1985 (Table 41). It was the fourth ranking rockfish species in our survey (Table 30). Collins and Crooke (unpublished manuscript) had greenspotted rockfish total catch estimates ranging from 35,406 \pm 4,245 in 1976 to 42,452 \pm 6,760 in 1978, and it was the seventh ranked rockfish species, with a 2.4% frequency of occurrence.

The greenspotted rockfish total catch distribution displayed catch peaks in January through April and October through December in 1985 and 1986 (Figure 111). These time intervals are when CPFV's normally target offshore bottom fishes. In 1987 a different catch pattern emerged; March was the greenspotted rockfish catch peak, and the January and December catches were relatively minor.

<u>Counties</u>. Ventura County consistently recorded the highest estimated total catches of greenspotted rockfish, ranging from 50% (1985) to 61% (1987) of the southern California greenspotted rockfish total catch (Table 41).

Size Composition

<u>Southern California</u>. The southern California length frequency distributions display one mode ranging from the 240 to 249 mm (9.5 to 9.8 in.) length group in 1985 to the 280 to 289 mm (11.0 to 11.4 in.)

			FISH K	EPT					FISH RE	LEASED		TOTAL CATCH							
AREA	1985		1986		1987		19	85	1986		19	87		190	1985		1986		87
	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV		EST	CV	EST	CV	EST	CV
San Diego I County	3,141	49	2,556	41	4,301	38	0	0	28	98	88	98		3,141	49	2,583	40	4,389	38
N W Orange ^A County	3,850	26	1,500	99	75	99	0	0	0	0	0	0		3,850	26	1,500	99	75	99
Los Angeles County	18,963	27	6,992	35	7,520	28	918	6	0	0	144	71		19,881	26	6,992	35	7,634	28
Ventura County	300,739	13	24,847	19	22,078	21	72	5	67	71	0	0		30,811	13	24,914	19	22,078	21
Sant a Barbara County	4,115	55	2,275	74	2,138	50	0	0	13	96	53	72		4,115	55	2,288	73	2,191	49
Southern California	60,808	12	38,169	16	36,111	15	989	7	108	52	255	49		61,797	12	38,278	15	36,366	15

TABLE 41. Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Greenspotted Rockfish from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

.

•.•*

FIGURE 111. Monthly total catch estimates (number of fish) and standard deviations of greenspotted rockfish from on-board observations of southern California commercial passenger fishing vessels.

length group in 1987 (Figure 112). We found it difficult to assign an age class to this mode, based on MacGregor's (1987) length-at-age data, because it appears that several overlapping age classes were combining to produce the observable mode. The possible range of ages represented by the major mode is 5 through 10.

Greenspotted rockfish length frequency means ranged from 282 to 317 mm (11.1 to 12.5 in.), and averaged 300 mm (11.8 in.) in our survey (Figure 113). The mean length of greenspotted rockfish ranged from 314 mm (12.4 in.) to 332 mm (13.1 in.) and averaged 321 mm (13.0 in.) in Collins and Crooke's (unpublished manuscript) CPFV survey.

<u>Counties</u>. The greenspotted rockfish caught in Ventura and Santa Barbara counties were generally larger than those caught in the southernmost counties (Figures 113 through 118). We believe that this is the result of CPFV's from Ventura and Santa Barbara counties fishing comparatively unexploited greenspotted rockfish population segments in the Santa Barbara Channel and in the vicinity of the northern Channel Islands. Our analysis of site catch data for 1986 and 1987 showed that the largest catches of greenspotted rockfish came from the Santa Rosa Flats area around Santa Rosa Island, off San Miguel Island, and Rincon Dome Reef in the Santa Barbara Channel (Ally et al. 1988).

Management Recommendations

Greenspotted rockfish was ranked among the top 10 CPFV rockfish catch species in Collins and Crooke's (unpublished manuscript) 1975 to 1978 survey and in our current study. The range of greenspotted rockfish annual total catch estimates was roughly equivalent in both studies.

- 236 -

ADHENDERL LINEDREM

BEBJERL LEEDTERCL

PERCENT FREDUEHCY

•...

FIGURE 113. Mean lengths and standard deviations of greenspotted rockfish measured on board southern California commercial passenger fishing vessels.

:

1.1

FIGURE 114. Size composition of greenspotted rockfish from on-board observations of San Diego County commercial passenger fishing vessels.

:

FIGURE 115. Size composition of greenspotted rockfish from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 116. Size composition of greenspotted rockfish from on-board observations of Los Angeles County commercial passenger fishing vessels.

FIGURE 117. Size composition of greenspotted rockfish from on-board observations of Ventura County commercial passenger fishing vessels.

..

FIGURE 118. Size composition of greenspotted rockfish from on-board observations of Santa Barbara County commercial passenger fishing vessels.
Our length frequency analysis revealed that the CPFV fishery exploits a wide range of age classes, lessening the possibility of large declines in the catch due to a series of poor year class recruitments.

Although the greenspotted rockfish catch exhibited a 40% decline from 1985 to 1986 and a 4% decline from 1986 to 1987, the relative constancy of greenspotted rockfish catches over a long period of time, and the broad age structure of the exploited population indicate that the species can withstand current levels of harvest by CPFV's. We do not recommend changes in the sport fish regulations governing greenspotted rockfish catches, except as they apply to the rockfish group.

Honeycomb Rockfish (Scorpaenidae)

Catch Estimates

Southern California. Honeycomb rockfish is a bottom-dwelling species that is found in depths of 73 m (40 fm) or less (Eschmeyer, et al. 1983). Our survey produced honeycomb rockfish total catch estimates ranging from 26,629 fish \pm 4,125 in 1987 to a high of 34,602 \pm 6,228 in 1986 (Table 42). Honeycomb rockfish was the eighth ranked species in the rockfish catch, composing 4.0% of the estimated rockfish total catch (Table 30). Collins and Crooke (unpublished manuscript) had honeycomb rockfish total catch estimates ranging from 12,460 \pm 2,558 in 1975 to a high of 19,797 \pm 3,625 in 1977. It was the 17th ranked rockfish species in their survey, composing 0.9% of the 1975 to 1978 rockfish catch.

The catch distribution of honeycomb rockfish was variable from year to year, exhibiting a winter peak in 1985, a summer catch peak in 1986, and a spring and summer dual catch peak in 1987 (Figure 119). Since honeycomb rockfish were present in the CPFV catch during all months of the year, it appears that the magnitude of the catch is directly related to the frequency with which CPFV's target shallow-water rockfishes.

<u>Counties</u>. San Diego and Los Angeles county landings were the source of most of the honeycomb rockfish total catch (Table 42). Over the 3 years they provided 64% and 31%, respectively, of the southern California honeycomb rockfish catch.

- 245 -

TABLE 42.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Honeycomb Rockfish from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

			FISH K	EPT					FISH REL	EASED			TOTAL CATCH							
	198	5	1986		198	7		985	198	36	19	87	198	5	198	6	19	87		
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV		
San Diego County	13,914	17	21,760	19	14,628	22	1,75	6 51	1,930	21	1,454	39	15,670	18	23,690	18	16,082	22		
V County	2,911	65	617	54	38	99	:	2 98	0	0	0	0	2,943	65	617	54	38	99		
Los Angeles County	10,335	27	9,576	45	4,177	49	1,59	97 <u>3</u> 7	636	39	308	45	11,932	27	10,212	43	4,486	48		
Ventura County	428	56	34	99	0	0		0 0	0	0	0	0	428	56	34	99	0	0		
Sant a Barbara Count y	206	38	50	75	24	98	10	0 97	0	0	0	0	306	52	50	75	24	98		
Southern California	27,795	15	32,036	19	18,867	20	3,48	4 31	2,566	19	1,762	33	31,279	15	34,602	18	20,629	20		
											. •				•	, •				

.

1 1 1

FIGURE 119. Monthly total catch estimates (number of fish) and standard deviations of honeycomb rockfish from on-board observations of southern California commercial passenger fishing vessels.

:

Size Composition

Southern California. The length frequency distribution for each of the 3 years (Figure 120) approximates a normal distribution encompassing several age groups, with the modal age groups representing 4- to 9-year-old fish (MacGregor 1987).

<u>Counties</u>. There was insufficient length frequency data to plot length frequency distributions for Ventura and Santa Barbara counties. In San Diego County (Figure 121), the modal length groups range from 190 to 220 mm (7.5 to 8.7 in.). According to MacGregor's (1987) length-at-age criteria this length range would encompass 4- to 7-year-old honeycomb rockfish. Orange County was the source of enough length frequency data for only a 1985 length plot (Figure 122). A single, strong mode at 210 to 219 mm (8.2 to 8.6 in.), representing 5-year-old and older honeycomb rockfish is present. The Los Angeles County length plots also reveal a single dominant mode, ranging between 180 to 199 mm (7.1 to 7.8 in.) over the 3 years surveyed (Figure 123). Honeycomb rockfish between 4 to 5 years old, based on MacGregor's (1987) length at age data, were the age groups which dominated the Los Angeles County catches.

The mean length plot showed very little variability among the five counties (Figure 124). Annual changes in mean length did not display a discernible trend from county to county.

Management Recommendations

Honeycomb rockfish is a species whose small maximum size [270 mm (10.6 in.)] limits its desirability with CPFV anglers. Its position among the top 10 rockfish species in the CPFV catch is a result of honeycomb rockfishes' ubiquitous presence in mixed catches of

- 248 -

P

FIGURE 120. Size composition of honeycomb rockfish from on-board observations of southern California commercial passenger fishing vessels.

FIGURE 121. Size composition of honeycomb rockfish from on-board observations of San Diego County commercial passenger fishing vessels.

ø

•.

FIGURE 122. Size composition of honeycomb rockfish from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 123. Size composition of honeycomb rockfish from on-board observations of Los Angeles County commercial passenger fishing vessels.

•.

FIGURE 124. Mean lengths and standard deviations of honeycomb rockfish measured on board southern California commercial passenger fishing vessels.

shallow-water rockfishes, especially in San Diego County. The rockfish index of relative importance for San Diego County ranked honeycomb rockfish first in 2 out of the 3 years surveyed (Table 31).

We do not feel that there is currently a need for additional sport fish regulations designed to specifically protect honeycomb rockfish, except as the regulations apply to the rockfish group.

Olive Rockfish (Scorpaenidae)

•

Catch Estimates

Southern California. Olive rockfish is a shallow-depth, mid-water-dwelling rockfish species, usually associated with kelp bed habitats. The estimated olive rockfish total catch increased during each year of our survey. The total catch rose from 16,857 fish \pm 2,191 in 1985 to 44,485 \pm 4,448 in 1987 (Table 43). Over the 3 years surveyed, olive rockfish represented an average 4.0% of the estimated rockfish total catch and was the sixth ranking species (Table 30). In Collins and Crooke's (unpublished manuscript) survey, olive rockfish total catch estimates ranges from 154,198 \pm 21,720 in 1978 to 232,344 \pm 20,454 in 1977. It was their second ranked rockfish species, at 12.3%

Olive rockfish total catches peaked during the summer and fall months of June through October (Figure 125). This coincides with the seasonal emphasis of southern California CPFV'S on surface and mixed-depth fishing trips. We have observed in our survey that, besides the olive rockfish caught on shallow-water bottom fishing trips, considerable quantities are caught, incidentally, on surface fishing trips targeting species such as kelp bass, barracuda, etc.

<u>Counties</u>. The olive rockfish total catch varied considerably within each county. The most extreme fluctuation in the total catch occurred in Orange County, where it increased 2,000% (from 100 in 1985 to 1,970 in 1987). San Diego and Ventura Counties also displayed large increases in olive rockfish total catches over the 3 years. By 1987,

						•		•										
			FISH K	EPT				1	FISH RELE	ASED		TOTAL CATCH						
	198	5	1986		1987		1985		1986		1987		1	985	19	1986		87
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	C	EST	CV	EST	CV
San Diego	1,395	22	10,405	11	16,866	12	670	34	1,446	29	181	46	2,0	5 20	11,854	11	17,047	12
County																		• •
I Orange N County И О	32	98	1,727	21	1,459	36	68	99	240	47	511	62		00 74	1,966	21	1,970	34
Los Angeles County	2,439	44	2,186	24	3,645	24	87	⁻ 71	328	63	1,190	36	2,5	26 42	2,514	24	4,835	24
Ventura County	3,614	31	5,051	39	13,747	22	216	47	703	30	1,591	33	3,8	30 30	5,754	35	15,339	21
Santa Barbara County	8,237	19	2,277	33	4,719	27	100	62	905	72	574	33	8,3	37 19	3,182	43	5,294	25
Southern California	15,716	14	21,647	12	40,437	10	1,141	24	3,623	23	4,047	19	16,8	57 13	25,271	11	44,485	10

TABLE 43. Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Olive Rockfish from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

.•.*

FIGURE 125. Monthly total catch estimates (number of fish) and standard deviations of olive rockfish from on-board observations of southern California commercial passenger fishing vessels.

the two counties contributed 73% to the southern California olive rockfish total catch.

Size Composition

Southern California. Several strong modal groups are displayed in each annual length frequency distribution (Figure 126). These modes represent 1982 and 1983 year class fish (Love and Westphal 1981; MacGregor 1987).

<u>Counties</u>. Olive rockfish caught from Los Angeles and Ventura county landings were generally larger than those from the other three counties, based on a comparison of mean lengths (Figure 127). Each county length frequency analysis (there was sufficient data for only a 1987 Orange County length frequency plot) reveals a strong modal group representing 1983 year class olive rockfish (Figure 128 through 132). The Los Angeles, Ventura, and Santa Barbara County plots each display modes representing larger fish, greater than 350 mm (13.8 in.); we attributed the presence of these large fish to the targeting by CPFV's of relatively unexploited, offshore island components of the olive rockfish stock.

Management Recommendations

The southern California olive rockfish total catch has declined from an estimated average annual catch of 183,000 in 1976-1978 (Collins and Crooke unpublished manuscript) to one of 28,870 in our study. A large portion of the catch is composed of olive rockfish less than 280 mm (ll in.), which is the size of first maturity (Love and Westphal 1981).

FIGURE 126. Size composition of olive rockfish from on-board observations of southern California commercial passenger fishing vessels.

•.

FIGURE 127. Mean lengths and standard deviations of olive rockfish measured on board southern California commercial passenger fishing vessels.

FIGURE 128. Size composition of olive rockfish from on-board observations of San Diego County commercial passenger fishing vessels.

FIGURE 129. Size composition of olive rockfish from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 130. Size composition of olive rockfish from on-board observations of Los Angeles County commercial passenger fishing vessels.

FIGURE 131. Size composition of olive rockfish from on-board observations of Ventura County commercial passenger fishing vessels.

۶

FIGURE 132. Size composition of olive rockfish from on-board observations of Santa Barbara County commercial passenger fishing vessels.

Love (1980) stated that olive rockfish populations can be overfished, in part, because of the lack of significant movement among reef-dwelling individuals. On one of the heavily fished reefs investigated, juvenile and prereproductive olive rockfish composed almost the entire resident population, indicating that adult olive rockfish were particularly vulnerable to sport hook and line gear.

It appears from our length frequency data that the major portion of the current olive rockfish catch is composed of 2- to 3-year-old fish that are just beginning to enter the reproductive population.

The apparent decline in the CPFV olive rockfish catch since 1978, coupled with the narrow age structure of the harvested fish, indicate that the species should be closely monitored. If the southern California olive rockfish stock is found to be overexploited, regulatory options, in addition to those that apply to the rockfish group, should be considered. These might include area fishing closures or a minimum olive rockfish size limit.

- 266 -

Squarespot Rockfish (Scorpaenidae)

•.-

Catch Estimates

j,

<u>Southern California</u>. Squarespot rockfish total catch estimates decreased from 39,113 fish \pm 8,605 in 1985 to 7,679 \pm 1,613 in 1987 (Table 44). It was the 10th ranked rockfish species, composing 3.7% of the estimated rockfish total catch (Table 30). Collins and Crooke (unpublished manuscript) had squarespot rockfish total catch estimates ranging from 12,912 \pm 3,310 in 1975 up to 64,051 \pm 11,170 in 1978, and ranked sixth at 2.5% (frequency of occurrence) among the rockfish catch.

The total catch distribution for squarespot rockfish displayed peaks in the fall and winter of 1985 and 1986, while that for 1987 reflected uniformly low monthly total catch levels with an absence of large-scale fluctuations (Figure 133).

<u>Counties</u>. Los Angeles County landings were the major source of the squarespot rockfish catch (Table 44). Seventy-six percent of the southern California squarespot rockfish total catch came from Los Angeles County. In 1986 and 1987, the largest Los Angeles County squarespot rockfish total catches came from two sites, Santa Monica Canyon, and the Submarine Wreck off Los Angeles Harbor (Ally et al. 1988).

Size Composition

<u>Southern California</u>. The squarespot rockfish length frequency distributions display single, strong modes in what approximate normal distributions (Figure 134). These modal groups ranged from 210 to 239

- 267 -

	· ·
TABLE 44.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Squarespot Rockfish from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

•

· .

•

•

	FISH KEPT 1985 1986 1987						19	198	TOTAL CATCH 1985 1986 1987									
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	ČV
San Diego I County	4,681	41	4,382	26	1,784	38	53	57	110	51	0	0	4,734	40	4,492	26	1,784	38
N O Orange County	586	41	2,013	9	270	86	0	0	84	99	0	0	586	41	2,097	10	270	86
Los Angeles County	29,725	27	24,511	50	4,743	30	1,028	24	456	61	212	46	30,753	27	24,967	50	4,955	29
Ventura County	2,271	30	1,450	41	361	36	133	82	0	0	0	0	2,404	32	1,450	41	361	36
Santa Barbara Count y	506	33	219	53	310	48	130	49	0	0	0	0	637	31	219	53	310	48
Southern <u>California</u>	37,770	22	32,575	38	7,467	22	1,344	21	650	46	212	46	39,113	22	33,225	38	7,679	21

FIGURE 133. Monthly total catch estimates (number of fish) and standard deviations of squaresport rockfish from on-board observations of southern California commercial passenger fishing vessels.

FIGURE 134. Size composition of squarespot rockfish from on-board observations of southern California commercial passenger fishing vessels.

mm (8.3 to 9.4 in.) during the 3 years surveyed, representing 5- to 8-year-old squarespot rockfish (MacGregor 1987).

<u>Counties</u>. The length frequency plots of the five southern California counties display length frequency modes within the 210 to 239 mm (8.3 to 9.4 in.) range, indicating that a large portion of the squarespot rockfish catch in each county was composed of 5- to 8-year-old fish (Figures 135 through 139), based on MacGregor's (1987) study. The squarespot rockfish mean lengths were relatively uniform among the counties, and were, for the most part, coincident with the range of modal values for each county (Figure 140).

Management Recommendations

Squarespot rockfish is a species whose small size (Eschmeyer et al. 1983) limits its desirability as a target species for CPFV anglers. Their relative prominence in the CPFV catch may simply indicate that they are readily available to CPFV's at nearshore fishing sites. In the case of Los Angeles County, where most of the southern California squarespot rockfish catch occurred, two nearshore fishing sites located near a concentration of partyboat landings produced a large portion of the catch in 1986 and 1987 (Ally, et al. 1988).

An observation can be made concerning the squarespot rockfish catch that may be applicable to some of the other, smaller rockfish species. Even though squarespot rockfish is not a desired catch species, and is even considered to be a nuisance species by some anglers, very few fish (less than 3.0%) were caught and released (Table 44). This may indicate that the majority of CPFV anglers have been educated against the practice of wasting fish, even small fish that will count against their bag limit.

- 271 -

FIGURE 135. Size composition of squarespot rockfish from on-board observations of San Diego County commercial passenger fishing vessels.

FIGURE 136. Size composition of squarespot rockfish from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 137. Size composition of squarespot rockfish from on-board observations of Los Angeles County commercial passenger fishing vessels.

ť

FIGURE 138. Size composition of squarespot rockfish from on-board observations of Ventura County commercial passenger fishing vessels.

FIGURE 139. Size composition of squarespot rockfish from on-board observations of Santa Barbara County commercial passenger fishing vessels.

FIGURE 140. Mean lengths and standard deviations of squarespot rockfish measured on board southern California commercial passenger fishing vessels.

Based on our survey results, we do not feel that additional sport fish regulations are needed to protect squarespot rockfish, except as they apply to the rockfish group.

Catch Estimates

<u>Southern California</u>. Starry rockfish is a small- to moderate-size rockfish species [maximum size = 460 mm (18 in.)] that lives in deep-water habitats (Eschmeyer, et al. 1983). Total catch estimates decreased from 42,752 fish \pm 4,275 in 1985 to 24,721 \pm 5,686 in 1987 (Table 45). Starry rockfish was the fifth ranked species at 4.7% in the rockfish catch (Table 30). Collins and Crooke (unpublished manuscript) reported starry rockfish total catch estimates ranging from 18,011 \pm 2,389 in 1976 to 25,812 \pm 3,037 in 1978. It was the 13th ranking rockfish species (1.3% frequency of occurrence) in their survey.

The monthly total catch distributions did not display clear, recurring seasonal patterns from year to year (Figure 141). In 1985 the highest catches of starry rockfish occurred in December, while the 1986 and 1987 December catches were among the lowest monthly catches in each respective year. The highest starry rockfish catches occurred in January and May in 1986, and in April in 1987.

<u>Counties</u>. San Diego, Los Angeles, and Ventura counties had the highest annual starry rockfish total catches (Table 45).

Size Composition

<u>Southern California</u>. The starry rockfish length frequency plots do not display clearly defined length modes (Figure 142), and seem to encompass age group 5 through at least age group 15 (MacGregor 1987).
TABLE 45.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Starry Rockfish from
	On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985
	Through 1987.

.

•

		FISH K				FISH RELE	ASED		TOTAL CATCH									
	198	5	198	6	198	7	198	5	19	86	19	87	19	85	198	36	19	87
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV
San Diego County	11,365	20	8,136	16	5,390	19	651	46	527	34	111	60	12,01	6 20	8,664	15	5,501	19
l Orange County	2,330	37	498	40	156	58	116	58	0	0	58	99	2,44	6 36	498	40	214	63
C Los Angeles County	11,031	12	8,408	24	8,465	56	1,931	. 27	1,116	24	745	70	12,96	2 11	9,523	22	9,210	52
Ventura County	13,026	20	15,143	26	7,291	29	68	59	171	99	26	98	13,09	4 20	15,313	26	7,317	29
Sant a Barbara County	2,172	49	1,247	52	2,479	69	62	49	14	96	0	0	2,23	3 48	1,261	51	2,479	69
Southern California	39,923	10	33,431	14	23,782	23	2,829	22	1,828	20	939	57	42,7	2 10	35,259	13	24,721	23

•

FIGURE 141.

FIGURE 142. Size composition of starry rockfish from on-board observations of southern California commercial passenger fishing vessels.

Counties. MacGregor's (1987) length at age relationships were used to define length frequency patterns for starry rockfish from each county. The San Diego length plots have multiple modes, with 1980 year class starry rockfish [220 to 229 mm (8.7 to 9.0 in.) in 1985] composing a large portion of the catch in each year (Figure 143). There was only sufficient data for a 1985 Orange County plot (Figure 144). It reveals two modal groups, one representing 3-year-old, 1982 year class, fish [190 to 199 mm (7.5 to 7.8. in.)], and the second mode delineating 7-year-old, 1978 year class, starry rockfish [270 to 279 mm (10.6 to 11.0 in.)]. The Los Angeles County length frequency distributions are dominated by 1980 year class starry rockfish that became a major part of the 1985 through 1987 catches (Figure 145). The Ventura County plots display modes which are composed of multiple, overlapping year classes, ranging from 210 to 369 mm (8.3 to 14.5 in.), and representing major portions of the catches in each of the 3 years (Figure 146). Age classes 6 through 13 are represented in the defined modal ranges (MacGregor 1987). The Santa Barbara County plots have length modes that represent older, larger starry rockfish than those of other counties (Figure 147). The modal length groups range from 290 to 389 mm (11.4 to 15.3 in.), representing 9- to 14-year-old fish.

Mean lengths suggest a geographic cline in fish size, increasing from San Diego to Santa Barbara Counties (Figure 148). However, this may be due to an inverse function of the fishing pressure expended in these areas.

FIGURE 143. Size composition of starry rockfish from on-board observations of San Diego County commercial passenger fishing vessels.

•...

FIGURE 144. Size composition of starry rockfish from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 145. Size composition of starry rockfish from on-board observations of Los Angeles County commercial passenger fishing vessels.

FIGURE 146. Size composition of starry rockfish from on-board observations of Ventura County commercial passenger fishing vessels.

FIGURE 147. Size composition of starry rockfish from on-board observations of Santa Barbara County commercial passenger fishing vessels.

Ű.

FIGURE 148. Mean lengths and standard deviations of starry rockfish measured on board southern California commercial passenger fishing vessels.

Management Recommendations

Starry rockfish are usually found in depths greater than 40 m (22 fm) in association with other demersal rockfish species. They are not usually targeted because of their small size, and are often caught in a mix along with other, larger species, such as vermilion rockfish and bocaccio.

Because the starry rockfish catch reflects a population composed of a wide range of age classes, and since catch levels have been relatively constant over the past 10 years, we feel the species has not been adversely affected by current levels of fishing. We do not recommend species-level regulatory protection at this time, except as it applies to the rockfish group. Vermilion Rockfish (Scorpaenidae)

Catch Estimates

<u>Southern California</u>. Vermilion rockfish is considered a premium rockfish species by both sport and commercial fishermen; they are prized for the texture and flavor of their fillets. Our vermilion rockfish total catch estimates increased from 47,241 fish \pm 8,976 in 1985 to 72,389 \pm 9,411 in 1987 (Table 46). Collins and Crooke's (unpublished manuscript) vermilion rockfish total catch estimates ranged from 42,714 \pm 5,312 in 1976 to 64,266 \pm 12,352 in 1977. Those estimates placed vermilion rockfish fifth among their frequently taken rockfish species (3.5% frequency of occurrence). In our survey vermilion rockfish ranked third in species composition at 8.1% of the rockfish total catch (Table 30).

The total catch distribution of vermilion rockfish was quite variable over the 3 years surveyed (Figure 149). Catch peaks were in April and November in 1985, May and October in 1986, and February and June in 1987.

<u>Counties</u>. Los Angeles County had the largest portion of the southern California vermilion rockfish total catch, composing an average of 47% of the total catch. San Diego and Ventura county also had substantial vermilion rockfish total catches, composing an average of 19% and 21% of the southern California vermilion rockfish total catch, respectively.

TABLE 46.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Vermilion Rockfish from
	On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

			FISH K	EPT					FISH REI	LEASED				TOTAL CATCH					
	1985		198	1986		1987		1985		1986		1987		1985		1986		1987	
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV		EST	CV	EST	CV	EST	CV.
San Diego County	4,229	17	13,0 97	28	14,684	25	54	71	459	30	250	45		4,283	17	13,557	27	14,934	25 ·
I N Orange O County N	2,363	19	3,541	10	3,116	46	0	0	50	99	0	0		2,363	19	3,591	10	3,116	46
I Los Angeles County	25,304	33	25,781	49	30,224	23	170	70	289	55	343	99		25,474	33	26,070	49	30,566	23
Véntura County	10 ,295	23	11,081	21	14,801	34	46	69	160	50	53	67		10,341	23	11,241	21	14,855	34
Santa Barbara County	4,752	40	686	35	8,883	27	27	68	21	98	36	72		4,780	40	2,007	35	8,919	27
Southern California	46,944	19	55,486	24	71,708	14	297	44	979	24	681	53		47,241	19	56,466	24	72,389	13

.

,• .•

•

.

FIGURE 149. Monthly total catch estimates (number of fish) and standard deviations of vermilion rockfish from on-board observations of southern California commercial passenger fishing vessels.

Size Composition

Southern California. The vermilion rockfish length frequency distributions display a trend toward the appearance of fewer modal groups in each succeeding year (Figure 150). By 1986, a modal group at 240 to 254 mm (9.4 to 10.0 in.), composed of 4-year-old fish, constituted a large portion of the catch sample (MacGregor 1987). These 1982 year class vermilion rockfish carried through to the next year, 1987, as the major modal group.

<u>Counties</u>. The pattern of vermilion rockfish length frequency distributions by county generally follow the trend seen in the southern California composite length frequency distributions (Figure 151 through 155). Vermilion rockfish greater than 360 mm (14 in.) and 10 years old were a diminishing segment of the sampled catch in each succeeding year.

Vermilion rockfish in Ventura and Santa Barbara counties were larger than those from the three southernmost counties (Figure 156). This may have been due to the ability of CPFV's from complexes in these two counties to fish areas of the northern Channel Islands that supported relatively unexploited populations of vermilion rockfish. The length frequency distributions for Ventura and Santa Barbara counties show concentrations of large, older [>400 mm (16.0 in.)] vermilion rockfish that did not appear elsewhere in the same modal quantities (Figures 154 and 155).

Management Recommendations

Vermilion rockfish are highly prized by CPFV anglers, and made up a larger portion of the CPFV rockfish catch during our study than they did during Collins and Crooke's (unpublished manuscript) study. Our

- 294 -

FIGURE 150. Size composition of vermilion rockfish from on-board observations of southern California commercial passenger fishing vessels.

FIGURE 151. Size composition of vermilion rockfish from on-board observations of San Diego County commercial passenger fishing vessels.

ß

ø

FIGURE 152. Size composition of vermilion rockfish from on-board observations of Orange County commercial passenger fishing vessels.

FIGURE 153. Size composition of vermilion rockfish from on-board observations of Los Angeles County commercial passenger fishing vessels.

ŕ

FIGURE 154. Size composition of vermilion rockfish from on-board observations of Ventura County commercial passenger fishing vessels.

FIGURE 155. Size composition of vermilion **rockfish** from on-board observations of Santa Barbara County commercial passenger fishing vessels.

ġ,

ř,

FIGURE 156. Mean lengths and standard deviations of vermilion rockfish measured on board southern California commercial passenger fishing vessels.

.

data indicate that the vermilion rockfish catch is supported by a relatively small number of year classes, and there is not the steady-state recruitment available, as observed in 1975 through 1978. Although the estimated catch of vermilion rockfish rose each year of our survey, several years of poor recruitment could precipitate a decline in the catch.

We recommend that the magnitude and population age structure of the annual vermilion rockfish catches be closely monitored. Any trend that includes declining catch estimates and/or a narrowing of the age group structure of harvested fish should be taken as an indication that management options, in addition to those that apply to the rockfish group, should be developed and implemented.

Widow Rockfish (Scorpaenidae)

Catch Estimates

Ė

<u>Southern California</u>. Widow rockfish, a pelagic, mid-waterschooling rockfish species, has been the object of a large commercial trawl fishery in central and northern California since 1980 (Wilkins 1986). In southern California widow rockfish is a moderately important species in the CPFV fishery.

Our widow rockfish total catch estimates ranged from 2,235 fish \pm 604 in 1985 to 14,421 \pm 6,922 in 1987 (Table 47). It was the 21st ranked rockfish, composing 1% of the rockfish estimated total catch (Table 30). In Collins and Crooke's CPFV survey (unpublished manuscript) widow rockfish total catch estimates ranged from of 22,730 \pm 8,101 in 1976 to 36,320 \pm 10,618 in 1978. They were the eighth-ranked rockfish species, composing 2.0% (frequency of occurrence) of the 1975 to 1978 rockfish catches.

The total catch distribution of widow rockfish over the 3 years of our study did not display a clearly recurring catch pattern (Figure 157). In 1985 the highest monthly widow rockfish total catches occurred in the spring and winter (March and November-December); the 1986 catch peak occurred in January, and the 1987 catch peak occurred in April.

<u>Counties</u>. Ventura County had the highest estimated widow rockfish total catches each year, followed closely by Santa Barbara County (Table 47). The two counties, combined, were the source of 84% of the southern California widow rockfish total catch.

- 303 -

of Widow Rockfish from	Fishing Vessels for 1985	
[(%) \]	Passenger	
Catch Estimates (EST) and Coefficients of Variation	On-Board Sampling of Southern California Commercial	Through 1987.
TABLE 47.		

	987 CV	96	0	11	89	39	48
	LST L	20	0	253	7,188	6,931	14,421
VTCH	<u>د</u>	98	0	80	58	61	45
TOTAL C	EST 198	28	0	581	4,390	980	5,979
	85 CV	o	98	83	31	55	27
	EST	0	23	175	1,190	819	2,235
	C	o	0	o	0	o	0
	EST 198	o	o	o	0	o	0
EASED	<u>د</u> و	0	0	0	0	98	98
FISH REL	198 EST	0	0	0	0	21	21
	35 CV	o	0	96	0	96	75
	EST 19	o	o	31	0	13	43
	C	96	0	11	88	39	48
	EST EST	50	0	253	7,188	6,931	14,421
Ł	CV CV	98	o	80	58	61	45
PISH KE	196 EST	28	0	581	4,390	959	5,958
	85 CV	0	96	66	31	56	28
	EST EST	o	53	144	1,190	806	2,192
	AREA	San Diego County	Orange County	Los Angeles County	Ventura County	Santa Barbara County	Southern California

•.

.

.

- 304 -

FIGURE 157. Monthly total catch estimates (number of fish) and standard deviations of widow rockfish from on-board observations of southern California commercial passenger fishing vessels.

Size Composition

Southern California. The widow rockfish length frequency distributions (Figure 158) display an age structure dominated by age 6 [320 to 329 mm (12.5 to 12.9 in.)] and younger age classes (MacGregor 1987). In 1985 there was no clearly dominant length mode, and 3- to 6-year-old widow rockfish [230 to 329 mm (9.0 to 13.0 in.)] were all well represented in the frequency analysis. The 1986 plots have a bi-modal frequency distribution, with 4- and 7-year-old widow rockfish comprising the major modes [270 to 279 mm (10.6 to 11.0 in.) and 340 to 349 mm (13.4 to 13.7 in.) respectively]. In the 1987 length frequency plot, 5-year-old fish are dominant [290 to 299 mm (11.4 to 11.8 in.)], and older widow rockfish are almost completely absent from the analysis.

<u>Counties</u>. There were insufficient length data to plot for widow rockfish caught in San Diego, Orange, and Los Angeles counties. The length frequency plots for Ventura County display length modes representing 1979 year class widow rockfish (MacGregor 1987) in the 1985 and 1986 plots [ages 6 and 7; 320 to 329 mm (12.6 to 13.0 in.) and 340 to 349 mm (13.4 to 13.7 in.), respectively]. Widow rockfish of the 1982 year class [age 5; 290 to 299 mm (11.4 to 11.8 in.)] are prominent in the 1987 plot (Figure 159). In Santa Barbara County, prominent length modes represent 1982 year class widow rockfish in the 1985 and 1986 length frequency distributions [ages 3 and 4; 230 to 239 mm (9.0 to 9.5 in.) and 250 to 259 mm (9.8 to 10.2 in.), respectively], and 1983 year class widow rockfish [age 4; 240 to 249 mm (9.4 to 9.8 in.)] are prominent in the 1987 plot (Figure 160).

FIGURE 158. Size composition of widow rockfish from on-board observations of southern California commercial passenger fishing vessels.

FIGURE 159. Size composition of widow rockfish from on-board observations of Ventura County commercial passenger fishing vessels.

FIGURE 160. Size composition of widow rockfish from on-board observations of Santa Barbara County commercial passenger fishing vessels.

These cohorts were within the size and age ranges of widow rockfish that encompass the time of first and 50% sexual maturity (Echeverria 1987). First maturity in widow rockfish occurs at age 3 and 290 mm (11.4 in.), and 50% maturity occurs at age 5 and 370 mm (14.6 in.) in length.

The plot of widow rockfish mean lengths shows a south to north gradient, with larger fish caught in the south, and smaller fish in the north, over the 3 years surveyed (Figure 161). Much of the Santa Barbara County widow rockfish catch came from oil platform sites in 1986 and 1987 (Ally et al. 1988), and the subsurface structures of these sites apparently serve as the midwater habitat for schools of small, juvenile and sub-adult widow rockfish.

Management Recommendations

Widow rockfish were a minor constituent of the southern California CPFV catch in our survey, after having been ranked among the top 10 rockfish species in the 1975 through 1978 southern California CPFV catch (Collins and Crooke unpublished manuscript). North of Point Conception, widow rockfish CPFV total catches ranged up to 68,000 in 1977 (Monterey to Bodega Bay), but were considered to be a minor catch species at 5% of the rockfish catch (Cooperrider 1987). The commercial widow rockfish landings have ranged as high as 1.4 million fish in 1981, and the species was the most important rockfish species in the West Coast commercial catch. Currently, commercial catch quotas are in effect for widow rockfish in California, Oregon, and Washington (Anonymous 1988). In southern California, both the sport and commercial widow rockfish catch components are relatively minor

- 310 -

FIGURE 161. Mean lengths and standard deviations of widow rockfish measured on board southern California commercial passenger fishing vessels.

compared to the widow rockfish landings from the rest of the state.

Since the southern California CPFV widow rockfish total catch is such a minor component of the overall CPFV rockfish total catch, we do not feel that any species-specific regulatory protection is currently required, except as it applies to the rockfish group. If the widow rockfish harvest is greatly expanded, either through targeting by CPFV's or by the extension of the commercial widow rockfish fishery into southern California, then a review of management options would be appropriate.

Barred Sand Bass (Serranidae)

Catch Estimates

Southern California. According to our IRI, barred sand bass annually ranked as the third most important fish to the southern California CPFV fleet (Table 12). According to the CPFV logbook records, barred sand bass landings exceeded kelp bass landings in 1985 and 1987 for the first time since kelp bass and barred sand bass landings began being reported separately in 1961 (Mac Oliphant, California Department of Fish and Game, Marine Resources Division, pers. comm.). They accounted for 11% to 16% of all CPFV fish landings, 9% to 14% of all CPFV-released fish, and 10% to 15% of the CPFV total catch (Tables 13 and 48).

Estimated total catch of barred sand bass dropped slightly in 1986, but increased by 41% in 1987 (Table 48). One reason for the decrease in total catch in 1986 may have been the increased availability of kelp bass that year. Kelp bass catches were very high in 1986 and CPFV anglers probably directed their fishing effort away from barred sand bass to kelp bass. Estimated landings of barred sand bass increased 53% from 1985 to 1987 (Table 48). The estimated number of released barred sand bass dropped 23% from 1985 to 1986, then increased 26% from 1986 to 1987 (Table 48).

The ratio of kept to released barred sand bass rose from 1.7 to 1 in 1985, to 2.3 to 1 in 1986, to 2.7 to 1 in 1987. June through August was the time of peak total catches from 1985 through 1987 (Figure 162).

Estimated catches of barred sand bass have increased almost ten

- 313 -

TABLE 48. Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Barred Sand Bass from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through 1987.

	FISH KEPT							FISH RELEASED							TOTAL CATCH						
	198	1985 19		36 198		7	198	1985		1986		1987		1985		1986		1987			
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV			
San Diego County	48,678	20	87,606	21	61,781	15	18,691	14	21,137	17	15,284	18	67,369	17	108,742	19	77,065	15			
Orange کے County	79,532	21	74,005	16	153,981	18	54,998	18	40,897	20	47,088	13	134,531	. 18	114,902	15	201,069	17			
Los Angeles County	177,975	13	157,751	15	217,616	14	105,210	15	75,742	19	98,870	14	283,185	12	233,493	15	316,486	13			
Ventura County	8,176	43	2,620	42	46,115	32	1,640	37	859	47	14,256	35	9,816	41	3,480	38	60,371	32			
Santa Barbara Count'y	1,531	31	5,034	36	3,266	24	1,265	23	2,244	21	1,509	28	2,796	25	7,278	30	4,775	23			
Southern California	315,893	9	327,016	10	482,758	9	181,804	10	140,879	12	177,007	9	497,697	9	467,895	10	659,766	9			

.

.

FIGURE 162. Monthly total catch estimates (number of fish) and standard deviations of barred sand bass from on-board observations of southern California commercial passenger fishing vessels.
fold since the time of Collins and Crooke's (unpublished manuscript) survey. The 1976 through 1978 estimated mean annual catch of legal size barred sand bass [>305 mm (12 in.)] increased from 44,634 fish + 10,953 (Collins and Crooke unpublished manuscript) to our 3-year study's estimate of 355,726 + 33,301; the estimated mean annual catch of short barred sand bass increased from 23,447 + 7,273 (Collins and Crooke unpublished manuscript) to our 3-year study's estimate of 186,060 + 19,119. According to surveyed CPFV skippers, the CPFV fleet has increased its fishing effort for barred sand bass since the 1970's. They cite the ease in which legal sand bass can be caught, and the relative scarcity of legal kelp bass as the major reasons for the increased effort toward barred sand bass. The ratio of legal to short barred sand bass increased from 1.4 to 1 in 1985, to 2.1 to 1 in 1986 to 2.3 to 1 in 1987. Collins and Crooke (unpublished manuscript) found that the ratio of legal to short barred sand bass was 3.7 to 1 in 1976, 4.7 to 1 in 1977, and 2.5 to 1 in 1978.

<u>Counties</u>. Los Angeles County had the highest annual total catches of barred sand bass from 1985 to 1987 (Table 48). It accounted for 48% to 57% of the total catch of barred sand bass in southern California; Orange County was next with 25% to 30%. Catch estimate trends by county for kept fish as well as for released fish were similar to that of total catch by county (Table 48).

Kept to released ratios increased from 1985 to 1986 in all counties except Ventura County. The ratios changed little from 1986 to 1987, except in Orange County, where they increased from 1.8 to 1 to 3.3 to 1. Ventura County had the highest kept to released ratio in

- 316 -

1985 with 5.0 to 1, and San Diego County had the highest in 1986 and 1987 with 4.1 to 1 and 4.0 to 1, respectively.

Size Composition

Southern California. Annual mean lengths of kept barred sand bass for southern California changed little from 1985 to 1987 (Figure 163). Most of the kept barred sand bass were close to the minimum 305 mm (12 in.) size limit. The modal size class for kept barred sand bass was 310 to 314 mm (12.2 to 12.4 in.) in 1985 and 1986, and 315 to 319 mm (12.4 to 12.6 in.) in 1987 (Figure 164).

Barred sand bass, 305 to 329 mm (12.0 to 13.0 in.), annually made up 27% to 28% of all kept fish measured from 1985 to 1987. Barred sand bass 305 to 404 mm (12.0 to 15.9 in.) accounted for 73% to 77% of all measured fish. Fish 305 to 329 mm (12.0 to 13.0 in.) represent primarily two, possibly three year classes, while 305 to 404 mm (12.0 to 15.9 in.) fish represent primarily four, but possibly up to seven year classes (Diego Busatto, California Department of Fish and Game, Marine Resources Division, pers. comm.).

Kept barred sand bass less than the minimum size limit decreased from 10.2% to 7.2% of the annual CPFV barred sand bass landings from 1985 to 1987. Most of the kept sublegal barred sand bass were within 15 mm (0.6 in.) of the size limit (Figure 164). Barred sand bass less than 290 mm (11.4 in.) only made up 2.3% of the landings in 1985, 1.7% in 1986, and 1.0% in 1987. This suggests that inaccurate measuring, (by anglers and/or samplers), and/or fish shrinkage, and/or the temptation to keep a barely short barred sand bass, rather than mis-identifying the fish, or not knowing the minimum size regulations was/were responsible for most of the sublegal barred sand bass being kept by CPFV anglers.

- 317 -

•_

FIGURE 163. Mean lengths and standard deviations of kept barred sand bass measured on board southern California commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

.

PERCENT FREQUENCY

(mm) HIGHER TATOL

FIGURE 164. Size composition of kept barred sand bass from on-board observations of southern California commercial passenger fishing vessels. Size limit = 305 mm (l2 in.). Approximately 80% of the kept barred sand bass measured 290 to 404 mm (11.4 to 15.9 in.). The barred sand bass sport fishery is supported by several year classes, and most of the sublegal fish are released. Even though there could be reduced CPFV catches with poor recruitment from one or two year classes, it would probably take several years of low recruitment before a collapse in the population would occur. Because the kept-to-released ratio for barred sand bass was high from 1985 to 1987, and the percentage of sublegal fish kept was low, it is likely that there were sufficient numbers of legal barred sand bass to satisfy CPFV anglers.

However, one concern is that most of the fishing pressure takes place in shallow-water, sandy-bottom areas where barred sand bass congregate to spawn. We do not yet know if this adversely affects the barred sand bass resource. Also, the 305 mm (12 in.) minimum size limit for barred sand bass is actually based on data derived from Young's (1963) work on kelp bass. Young admitted that there was not enough data concerning barred sand bass, but said they probably had a similar or slightly faster growth rate than kelp bass. A current study shows that barred sand bass may reach the mimimum size limit a year younger than kelp bass (Diego Busatto, California Department of Fish and Game, Marine Resources Division, pers. comm).

The modal size classes of released barred sand bass were 280 to 284 mm (11.0 to 11.2 in.) in 1985, 285 to 289 mm (11.2 to 11.4 in.) in 1986, and 290 to 294 mm (11.4 to 11.6 in.) in 1987 (Figure 165). There was a decreasing number of fish caught less than 275 mm (10.8 in.) from 1985 to 1987 (Figure 165). This may have been due to a lower abundance

- 320 -

FIGURE 165. Size composition of released barred sand bass from on-board observations of southern California commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

of these size fish, or, more likely, a decrease in the incidental take of these size fish in the later years, as evidenced by the increasing kept-to-released ratios from 1985 to 1987. Barred sand bass probably are not fully recruited into the CPFV fishery until they reach 255 to 279 mm (10.0 to 11.0 in.) in length.

<u>Counties</u>. Mean lengths of kept barred sand bass were largest in Ventura County in 1985 and 1986, and largest in San Diego County in 1987 (Figure 163). Orange County had the lowest mean lengths of kept barred sand bass from 1985 through 1987 (Figure 163). The mean length of kept barred sand bass decreased 27 mm (1.1 in.) in Ventura County from 1985 to 1987 (Figure 163). The other counties showed no notable trends.

Some differences in size compositions of kept barred sand bass among southern California counties were observed (Figures 166 to 170). Ventura County was the only county which had its highest frequency mode of measured kept fish in the 330 to 354 mm (13.0 to 13.9 in.) size range. In all other counties, 305 to 329 mm (12.0 to 13.0 in.) was the modal size class (Figures 166 to 170).

Sublegal barred sand bass accounted for 12.7% to 16.3% of the annual CPFV landings in Orange County, the highest rate among southern California counties. Los Angeles County had the next highest rate, 6.8% to 8.6%. Sublegal landings of barred sand bass decreased from 1985 to 1987 in San Diego, Orange, and Los Angeles counties. Ventura and Santa Barbara counties kept fewer sublegal barred sand bass in 1986 than 1985, but more in 1987 than 1985.

FIGURE 166. Size composition of kept barred sand bass from on-board observations of San Diego County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 167. Size composition of kept barred sand bass from on-board observations of Orange County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 168. Size composition of kept barred sand bass from on-board observations of Los Angeles County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 169. Size composition of kept barred sand bass from on-board observations of Ventura County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 170. Size composition of kept barred sand bass from on-board observations of Santa Barbara County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

Management Recommendations

We propose no management recommendations at this time, but we feel that the DFG needs to examine growth rates and maturation of barred sand bass to insure that the minimum size limit allows enough barred sand bass to spawn before being recruited into the sport fishery. The DFG should also determine how much time barred sand bass spend in spawning congregations, a time during which they are highly vulnerable to CPFV anglers. A current DFG barred sand bass tagging program designed to determine their movements and growth rates may shed light on these concerns.

Giant Sea Bass (Serranidae)

•...

Catch Estimates

Southern California. Giant sea bass has been a prohibited species for both the sport and commercial fisheries in southern California since 1982 (an incidental take of one fish per landing of gill and trammel nets is currently in effect). In our survey we measured and counted giant sea bass that were caught and then released. Estimates of released giant sea bass ranged from 339 fish \pm 139 in 1985 to 614 \pm 184 in 1987 (Table 49). The catch-by-month distribution for giant sea bass did not display a clearly discernible catch pattern (Figure 171). However, we observed that the lowest giant sea bass catches were consistently made in the spring (April-June) and late winter (November-December).

<u>Counties</u>. The three southernmost counties, San Diego, Orange, and Los Angeles, contributed the greatest portion of the released giant sea bass catch. In 1987 all of the estimated 614 giant sea bass came from these counties.

Size Composition

Southern California. Almost all the giant sea bass encountered in our survey were small, juvenile specimens, less than 670 mm (25 in.) long, and less than 4 years old [based on the length at age criteria described in Frey (1971)]. Too few fish were measured to perform a meaningful analysis. One larger giant sea bass, at 882 mm (34.7 in.) in length and 5 years of age, was measured at San Clemente Island in 1987. All the giant sea bass measured were well under the 1,219- to

- 329 -

TABLE 49.	Catch Estimates (EST) and Coefficients of Variation [CV $(\%)$] of Giant Sea	Bass from
	On-Board Sampling of Southern California Commercial Passenger Fishing Vesse	els for 1985
	Through 1987.	

					TOTAL CATCH													
AREA	1985		1986		1987		19	1985		1986		87	1985		1986		1987 .	
	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	 EST	CV	EST	CV	EST	CV
San Diego Count y	0	0	0	0	0	0	68	50	139	51	38	99	68	50	139	51	38	99
Orange County	0	0	0	0	0	0	32	98	50	99	178	52	32	98	50	99	178	52
Los Angeles County	0	0	0	0	0	0	213	60	344	48	399	38	213	60	344	48	399	38
Ventura County	0	0	0	0	0	0	13	96	55	71	0	0	13	96	55	71	0	0
Santa Barbara County	0	0	0	0	0	0	13	96	17	97	0	0	13	9 6	17	97	0	0
Southern California	0	0	0	0	0	0	339	41	604	31	614	30	339	41	604	31	614	30

, ******

1

FIGURE 171. Monthly total catch estimates (number of fish) and standard deviations of giant sea bass from on-board observations of southern California commercial passenger fishing vessels.

1,397-mm (48- to 55-in.) size range (11- to 13-year age range) at which the species is sexually mature (Frey 1971).

<u>Counties</u>. Los Angeles County was the only county with sufficient length frequency data to analyze. The data showed considerable annual variation [over 200 mm (8 in.)] in giant sea bass mean lengths (Figure 172).

Management Recommendations

Giant sea bass range from the Gulf of California to Humboldt Bay, although they are rare north of Point Conception (Eschmeyer et al. 1983). The center of their range is off Baja California, where most of the pre-1982 sport and commercial catches originated. In southern California the adult population is concentrated around the offshore islands, including San Clemente, Santa Catalina, Santa Barbara, San Nicolas, Anacapa, and Santa Cruz Islands (Frey 1971).

According to Frey (1971), the commercial giant sea bass fishery in southern California peaked sometime before 1945. The CPFV fishery, comprised of only fish caught in Mexican waters since 1981, amounts to less than 200 giant sea bass per year, based on CPFV logbook data. In southern California, the complete prohibition for both sport and commercial fisheries should have greatly lowered the fishing mortality on all stocks of giant sea bass. Any enhancement of the stocks, however, would not become apparent for many years because of the lengthy reproductive cycle of giant sea bass.

An unknown quantity of giant sea bass is probably taken illegally each year by sport divers and private boat fishermen. Also, commercial set net fisheries take legal (allowable incidental catch) and, perhaps, illegal giant sea bass.

- 332 -

FIGURE 172. Mean lengths and standard deviations of giant sea bass measured on board southern California commercial passenger fishing vessels.

Proposed management recommendations would include a program to educate sport anglers in the identification of juvenile giant sea bass, and the necessity of and procedure for releasing them. In order to protect the adult populations, giant sea bass habitat and spawning areas should be identified and protected from the net fisheries that are likely to take them accidentally. Kelp Bass (Serranidae)

Catch Estimates

Southern California. Kelp bass have long been one of the most important sport fishes to the southern California CPFV fleet. Young (1969) stated that CPFV landing operators ranked both kelp and barred sand basses the second most important species to the CPFV fleet. According to our IRI, from 1985 to 1987 kelp bass annually ranked as either the first or second most important species (Table 12). Kelp bass accounted for 11% to 17% of all CPFV fish landings, 25% to 33% of all fishes released, and 16% to 22% of the total catch of the CPFV fleet (Table 13).

The estimated total catch of kelp bass varied from year to year, with a large peak of over 1 million fish caught in 1986 (Table 50). Estimated catches of kept and released kelp bass showed a trend similar to that of total catch (Table 50). This pattern of variable catches is similar to the historical landing trends documented in the CPFV logbook records (Oliphant 1979; Best 1963; Calif. Dept. Fish and Game 1952). Whether the variability of the landings is due more to the availability of kelp bass, or yearly changes in the amount of fishing effort directed towards kelp bass, or some other reason, or a combination of factors is not known.

The ratio of kept to released kelp bass was 0.7 to 1 in 1985, 1.0 to 1 in 1986, and 1.3 to 1 in 1987.

June was the time of peak catches of kelp bass in all 3 years of the survey, but there also seemed to be a second peak between August and October (Figure 173).

•	TABLE 50.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of Kelp Bass from On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985 Through
		1987.

.

¢

·

•

.

1			FISH K	EPT				FISH RELE			TOTAL CATCH							
	19	85	198	36	198	7	198	5	198	1986		<u></u>	198	15	198	6	19	87
AREA	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV
San Diego County	48,874	15	118,620	11	130,579	10	54,288	10	114,251	10	88,280	11	103,163	11	232,871	9	218,858	9
ω Orange ω County Ο	34,015	19	68,998	18	69,277	17	82,148	16	102,056	17	58,549	16	116,163	16	171,054	16	127,827	15
¹ Los Angeles County	126,832	13	160,257	12	93,453	16	174,119	13	205,047	13	93,033	12	300,951	12	365,304	12	186,485	13
Ventura Count y	37,275	22	136,797	11	94,774	13	21,296	15	77,338	11	53,904	15	58,571	17	214,134	10	148,677	13
Santa Barbara County	9,227	18	21,408	14	17,626	19	11,755	24	23,184	22	12,941	24	20,982	19	44,591	17	30,567	20
Southern California	256,223	8	506,080	6	405,709	6	343,606	8	521,875	7	306,706	6	599,829	7	1,027,955	6	712,415	6

FIGURE 173. Monthly total catch estimates (number of fish) and standard deviations of kelp bass from on-board observations of southern California commercial passenger fishing vessels.

Estimated total catches of kelp bass have increased since the time of Collins and Crooke's (unpublished manuscript) survey. The 1976 through 1978 estimated mean annual catch of legal size kelp bass [\geq 305 mm (12 in.)] increased from 271,812 fish \pm 27,224 (Collins and Crooke unpublished manuscript) to our 3-year study's estimate of 354,921 \pm 23,034; the estimated mean annual catch of short kelp bass increased from 191,846 \pm 20,111 (Collins and Crooke unpublished manuscript) to our 3-year study's estimate of 412,033 \pm 29,783. The ratio of legal to short kelp bass was 0.7 to 1 in 1985, 0.8 to 1 in 1986, and 1.1 to 1 in 1987. Collins and Crooke's (unpublished manuscript) ratio of legal to short kelp bass was 4.5 to 1 in 1976, 1.6 to 1 in 1977, and 0.8 to 1 in 1978.

<u>Counties</u>. All counties showed an increase in kelp bass total catch from 1985 to 1986, followed by a decrease in total catch in 1987 (Table 50). Los Angeles County had the highest estimated total catch in 1985 and 1986, while San Diego County had the highest in 1987 (Table 50). Los Angeles County's contribution toward the southern California total catch dropped from 50% in 1985 to 26% in 1987. Conversely, San Diego County's contribution increased from 17% in 1985 to 31% in 1987. Catch estimate trends by county for kept as well as for released fish were similar to that of total catch by county (Table 50).

Kept-to-released ratios for kelp bass increased in all counties from 1985 to 1987, except in Ventura County, where they remained the same. However, Ventura County had the highest kept-to-released ratio at 1.8 to 1; while Orange County had the lowest in 1985 and 1986 at 0.4 to 1 and 0.7 to 1, respectively; and Los Angeles County, the lowest in 1987 at 1.0 to 1. The increase in the kept-to-released ratios may

- 338 -

in such numbers as to increasingly satisfy angler demand for legal-sized fish, and/or (ii) reduced recruitment.

Size Composition

Southern California. Annual mean lengths of kept kelp bass for southern California changed little during 1985 to 1987 (Figure 174). Most of the kept bass were close to the minimum 305-mm (12-in.) size limit (Figure 175). The modal size class for kept kelp bass was 310 to 314 mm (12.2 to 12.4 in.) in 1985 and 1986, and 305 to 309 mm (12.0 to 12.2 in.) in 1987 (Figure 175).

Kelp bass 305 to 329 mm (12.0 to 13.0 in.) annually made up 31% to 34% of all kept kelp bass measured from 1985 to 1987. Kelp bass 305 to 404 mm (12.0 to 15.9 in.) accounted for 76% to 79% of all measured kelp bass. According to Young (1963), the 305 to 329 mm (12.0 to 13.0 in.) range represents primarily two, possibly three year classes, while that of 305 to 404 mm (12.0 to 15.9 in.) represents primarily four, but possibly up to seven year classes.

Kept kelp bass less than the minimum size limit decreased from 11.9% to 10.9% of the annual CPFV kelp bass landings from 1985 to 1987. Most of the kept sublegal kelp bass were within 15 mm (0.6 in.) of the size limit. Kelp bass less than 290 mm (11.4 in.) made up only 2.7% of the measured kept bass in 1985, 2.6% in 1986, and 1.8% in 1987. This suggests that inaccurate measuring (by anglers and/or samplers), and/or fish shrinkage, and/or the temptation to keep a barely short kelp bass, rather than mis-identifying the fish or not knowing the minimum size regulations, was/were responsible for most of the sublegal kelp bass being kept by CPFV anglers.

- 339 -

FIGURE 174. Mean lengths and standard deviations of kept kelp bass measured on board southern California commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 175. Size composition of kept kelp bass from on-board observations of southern California commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

Over 85% of the kept kelp bass measured between 290 to 404 mm (11.4 to 15.9 in.). It appears that a stable spawning potential is being maintained because many year classes support the kelp bass sport fishery and most sublegal fish are released. Even though there could be substantially reduced CPFV catches [especially among the 305- to 329-mm (12- to 13-in.) fish] with poor recruitment from one or two year classes, it would likely take several years of low recruitment before a collapse in the population would occur.

The modal size class of released kelp bass was 280 to 284 mm (11.4 to 11.6 in.) in 1985 and 1986, and 290 to 294 mm (11.4 to 11.6 in.) in 1987 (Figure 176). Kelp bass are probably not fully recruited into the CPFV fishery until they are 255 to 279 mm (10.0 to 11.0 in.) in length. Peak catches of released kelp bass probably occur at the above size due to bait selectivity.

<u>Counties</u>. Kept kelp bass from Ventura and San Diego counties had larger mean lengths than those of any other southern California county (Figure 174). Orange County kelp bass had the smallest mean length of any southern California county (Figure 174). Mean lengths increased slightly each year in San Diego County, but decreased slightly in Los Angeles and Ventura counties (Figure 174).

Length frequency analyses for kept kelp bass and released kelp bass by county exhibited similar patterns to those of southern California as a whole (Figures 177 to 186).

Sublegal kelp bass accounted for 23.1% to 30.6% of the annual CPFV kelp bass landings in Orange County, by far the highest rate among southern California counties. Los Angeles County had the next highest

- 342 -

FIGURE 176. Size composition of released kelp bass from on-board observations of southern California commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 177. Size composition of kept kelp bass from on-board observations of San Diego County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 178. Size composition of kept kelp bass from on-board observations of Orange County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 179. Size composition of kept kelp bass from on-board observations of Los Angeles County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 180. Size composition of kept kelp bass from on-board observations of Ventura County commercial passenger fishing vessels. Size limit = 305 mm (12 in,).

FIGURE 181. Size composition of kept kelp bass from on-board observations of Santa Barbara County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

- 348 -

FIGURE 182. Size composition of released kelp bass from on-board observations of San Diego County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 183. Size composition of released kelp bass from on-board observations of Orange County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

- 350 -

FIGURE 184. Size composition of released kelp bass from on-board observations of Los Angeles County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 185. Size composition of released kelp bass from on-board observations of Ventura County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

FIGURE 186. Size composition of released kelp bass from on-board observations of Santa Barbara County commercial passenger fishing vessels. Size limit = 305 mm (12 in.).

annual rate, 9.6% to 17.9%, followed by Santa Barbara County, 6.1% to 12.2%, Ventura County, 4.8% to 11.1%, and San Diego County, 3.8% to 9.4%.

Management Recommendations

Collins and Crooke (unpublished manuscript) felt that there may have been insufficient legal kelp bass available to satisfy CPFV anglers. The large number of kelp bass caught at or near the size limit, coupled with the large number of released fish indicates this is still the case. Because there is no commercial fishery for kelp bass, and due to the extreme pressure exerted on kelp bass by sport anglers, kelp bass populations probably can be influenced by sport fishing regulations more than those of most other marine sport fishes. Due to high fishing pressure, the minimum size limit should remain in place to protect kelp bass until they spawn at least once. But the size limit has probably altered the size distribution of kelp bass by decreasing the number of large fish and increasing the number of fish close to the size limit. The decreased abundance of larger, older fish could be a cause for concern. Without these older fish, the age classes supporting the kelp bass fishery is narrowed, increasing the chance of lowered catches due to poor recruitment years. Setting aside areas for reserves with no fishing, implementing a larger minimum size limit, and/or having a maximum size limit probably would increase the abundance of older, larger kelp bass.

- 354 -

Spotted Sand Bass (Serranidae)

3. .

Although spotted sand bass is an important sport fish species by our criteria [it has a 305-mm (12-in.) minimum size limit], it is found primarily inside protected bays and harbors where CPFV's rarely fish. Consequently, we encountered too few of them in our survey to perform any type of analysis.

California Barracuda (Sphyraenidae)

Catch Estimates

Southern California. According to our IRI, California barracuda (henceforth referred to as barracuda) annually ranked as the fourth or fifth most important fish to the southern California CPFV fleet (Table 12). Young (1969) stated that CPFV landing operators ranked barracuda as the most important fish to the CPFV fleet. In 1971, DFG implemented a 711-mm (28-in.) minimum size limit for all sport-caught barracuda, greatly reducing CPFV landings.

The estimated total catch of barracuda dropped 16% from 1985 to 1987 (Table 51). However, barracuda landings rose 53% from 1985 to 1987 (Table 51). The number of released barracuda decreased 41% from 1985 to 1987 (Table 51).

The ratio of kept to released barracuda rose from 0.4 to 1 in 1985, to 0.5 to 1 in 1986, to 1.0 to 1 in 1987. This increase was a function of both increasing catches of kept fish and decreasing catches of released fish. Peak total catches of barracuda were from June through August in 1985 through 1987 (Figure 187).

Estimated catches of barracuda have increased since Collins and Crooke's (unpublished manuscript) survey. The 1976 through 1978 estimated mean annual catch of legal barracuda [\geq 711 mm (28 in.)] increased from 43,970 fish \pm 9,761 (Collins and Crooke unpublished manuscript) to our 3-year study's estimate of 101,719 \pm 13,996; the estimated mean annual catch of short barracuda increased from 46,817 \pm 6,759 (Collins and Crooke unpublished manuscript) to our 3-year study's

- 356 -

TABLE 51.	Catch Estimates (EST) and Coefficients of Variation [CV (%)] of California Barracuda from
	On-Board Sampling of Southern California Commercial Passenger Fishing Vessels for 1985
	Through 1987.

.

• • •

•

•

ŧ

¢

	FISH KEPT						108	108	TOTAL CATCH									
AREA	EST	CV	EST	CV	EST	CV	EST	<u> </u>	EST	CV	EST	CV	EST	CV	EST	CV	EST	CV
San Diego Count y	21,811	26	41,199	18	40,273	15	105,777	12	84,998	11	58,675	10	127,58	3 13	126,197	12	98,947	9
Orange County	1,506	59	15,083	35	27,359	36	24,338	20	51,631	14	34,581	16	25,84	20	66,713	16	61,940	20
J Los Angeles County	77,418	18	46,052	22	90,543	19	135,383	10	70,271	14	65,348	14	212,80	0 12	116,323	16	155,892	14
Ventura County	3,536	25	5,672	25	1,920	35	13,868	19	10,202	20	5,671	28	17,40	4 18	15,874	20	7,591	27
Santa Barbara County	146	73	60	69	75	97	2,371	24	2,613	46	1,640	38	2,51	7 23	2,672	46	1,715	37
Southern California	104,417	15	108,065	13	160,170	13	281,736	7	219,714	7	165,915	8	386,15	38	327,779	8	326,085	8

.

.

.

FIGURE 187. Monthly total catch estimates (number of fish) and standard deviations of California barracuda from on-board observations of southern California commercial passenger fishing vessels.

- 358 -

1

estimate of 244,954 \pm 18,130. The ratio of legal to short barracuda was 0.3 to 1 in 1985 and 1986, and 0.7 to 1 in 1987. Collins and Crooke (unpublished manuscript) found that the ratio of legal to short barracuda was 2.5 to 1 in 1976, 0.6 to 1 in 1977, and 0.4 to 1 in 1978.

Because catches of barracuda are highly dependent on sea surface temperatures (Pinkas 1966), and because we did not correlate catches and sea surface temperatures, we do not know if increased barracuda catches from 1985 to 1987 were related to an increase in population size or a northerly migration due to warmer waters. However, the availability of legal barracuda to CPFV anglers increased during 1985 to 1987, as illustrated by increased catches of kept barracuda, and this has decreased incidences of retained sublegal barracuda. This might be due to high recruitment from 1981, 1982, and 1983 year classes reaching legal size. The decreased catches of released barracuda may be due to large numbers of legal fish available to CPFV anglers, and/or a weak 1984 year class of barracuda recruiting into the CPFV fishery (Figure 188). If the latter is true, there may be a decrease in barracuda landings when this age class reaches legal size.

<u>Counties</u>. Los Angeles County had the highest annual total catch of barracuda in 1985 and 1987, while San Diego County had the highest total catch in 1986 (Table 51). Los Angeles County accounted for 35% to 55% of the total catch of barracuda and 43% to 74% of the barracuda landings in southern California between 1985 and 1987 (Table 51). San Diego County accounted for 30% to 39% of the total catch of barracuda, and 21% to 38% of the barracuda landings in southern California between 1985 and 1987 (Table 51). Considerably more short barracuda were kept

- 359 -

FIGURE 188. Size composition of released California barracuda from on-board observations of southern California commercial passenger fishing vessels. Size limit = 711 mm (28 in.).

1.1

by Los Angeles County CPFV anglers than were kept by San Diego County anglers. Barracuda catches dropped considerably north of Los Angeles County (Table 51).

Size Composition

Southern California. Annual mean lengths of kept barracuda for southern California rose from 738 ± 56 mm (29.1 \pm 2.2 in.) in 1985 to 752 ± 43 mm (29.6 \pm 1.7 in.) in 1987 (Figure 189). Modal size classes were 710 to 719 mm (28.0 to 28.3 in.) in 1985 and 720 to 729 mm (28.3 to 28.7 in.) in 1986 and 1987 (Figure 190).

The size composition of kept barracuda shifted towards larger fish from 1985 to 1987 (Figure 190). Kept barracuda measuring less than 711 mm (28.0 in.) decreased from 23% of the southern California barracuda landings in 1985 to 12% in 1987. From 1985 to 1987, kept barracuda measuring 711 to 759 mm (28.0 to 29.9 in.) and 760 to 809 mm (29.9 to 31.9 in.) increased from 48% to 52% and 20% to 27% of the southern California landings, respectively.

Modal size classes of released barracuda were 660 to 669 mm (26.0 to 26.3 in.) in 1985, 680 to 689 mm (26.8 to 27.1 in.) in 1986, and 690 to 699 mm (27.2 to 27.5 in.) in 1987 (Figure 188). In 1985 there seems to have been a strong year class of fish centered around 550 mm (21.7 in.), which, according to Schultze (1980), would be 2-year-old fish. A portion of this year class began to reach legal size in 1987 and probably contributed to the large increase in landings in 1987, and should continue to support landings in 1988 and 1989.

Unlike most of the other sport fish species with minimum size limits, there is a sizeable portion of kept barracuda that are clearly

- 361 -

•

FIGURE 189. Mean lengths and standard deviations of kept California barracuda measured on board southern California commercial passenger fishing vessels. Size limit = 711 mm (28 in.).

FIGURE 190. Size composition of kept California barracuda from on-board observations of southern California commercial passenger fishing vessels. Size limit = 711 mm (28 in.).

short. Kept barracuda measuring less than 700 mm (27.6 in.) accounted for 15% of the landings in 1985, 13% in 1986, and 6% in 1987. Although there seemed to be an improvement on the part of the angler to release undersize barracuda, it was probably due to good availability of legal fish and/or scarcity of short fish. We feel that when legal barracuda become scarce, and short fish more plentiful, high rates of short barracuda kept by CPFV anglers will return.

<u>Counties</u>. Mean lengths of kept barracuda were greatly affected by the amount of sublegal barracuda landed. In 1985 and 1987, kept barracuda from San Diego County had the largest mean length of any other southern California county (Figure 189), and the lowest incidence of sublegal barracuda landed with 13% and 11%, respectively. In 1986, kept barracuda from Ventura County had the largest mean length of any southern California county (Figure 189), and the lowest incidence of sublegal fish landed with 13%. The counties with the smallest mean lengths of barracuda also had the highest incidence of sublegal fish landed. In 1985 and 1987, kept barracuda from Ventura County had the lowest mean length of any southern California county (Figure 189), and the highest incidence of sublegal barracuda landed, 37% and 18%, respectively. In 1986 Orange County-caught barracuda had the shortest mean length (Figure 189) and the highest incidence of short fish landed (31%).

Length frequency analyses for kept barracuda by county exhibited similar patterns to one another (Figures 191 to 194). In all counties kept barracuda between 710 and 759 mm (28.0 and 29.9 in.) made up between 45% and 63% of the barracuda landings. Santa Barbara County did not have enough measured barracuda for analysis.

- 364 -

FIGURE 191. Size composition of kept California barracuda from on-board observations of San Diego County commercial passenger fishing vessels. Size limit = 711 mm (28 in.).

:

FIGURE 192. Size composition of kept California barracuda from on-board observations of Orange County commercial passenger fishing vessels. Size limit = 711 mm (28 in.).

FIGURE 193. Size composition of kept California barracuda from on-board observations of Los Angeles County commercal passenger fishing vessels. Size limit = 711 mm (28 in.).

FIGURE 194. Size composition of kept California barracuda from on-board observations of Ventura County commercial passenger fishing vessels. Size limit = 711 mm (28 in.).

-

Management Recommendations

Because of uncontrollable factors such as migration, water temperature, and Mexico's management policies, DFG's management policies for barracuda probably have a limited effect on its population level. Landings increased from 1985 through 1987, and compared to the years immediately following implementation of the 1971 sport-caught barracuda regulation, they were well above average. However, we encountered high incidences of sublegal barracuda landings (over 30% in some counties), even though most CPFV anglers can identify barracuda and are aware of the minimum size limit. This high degree of disregard for the minimum size limit suggests that the species is very highly prized. Therefore, besides enforcement of the size limit regulation, we need to find a means of conveying to anglers the dangers to the barracuda resource of retaining sublegal fish. Otherwise, the resource will suffer. Also, educating anglers on proper release techniques would probably decrease a suspected (from our observations) high mortality rate of released barracuda.

CONCLUSION

Although there has been a moderate increase in total catch of combined fish species between this study and that of the mid-1970's, disturbing trends have also become evident. There have been sizeable increases in the catches of Pacific mackerel, kelp bass, barred sand bass, and barracuda. However, there has been a decline of more than 50% in the CPFV rockfish catches. Key catch species such as bocaccio, chilipepper, and olive rockfish, which comprised 71% of the mid-1970's estimated rockfish catch, accounted for a large portion of the decline, down to 39% of this study's rockfish catch.

Because of the sharp decline in rockfish catches, we have recommended that the current 15-rockfish bag limit regulation be reduced to a 10-rockfish bag limit, and that additional conservation measures be implemented on the commercial rockfish fishery. If these recommendations are implemented, but prove to be inadequate, we would have no option but to recommend even more stringent measures.

In order to measure potential changes in a fishery, however, it is necessary to have an effective monitoring program. Our survey was such a program, whose database could also be used to evaluate the effects of habitat modifications (artificial reefs, kelp restoration, etc.), assess oil and/or chemical spill events, and provide information in mitigating resource allocation disagreements. Thus, we strongly recommend that the program be reinstated as soon as funding permits, and at no less than the previous level of sampling, in order to acquire a long-term database. The time series would allow us to not only

- 370 -

detect trends in fisheries, but would also give insights into the causative components (fishing mortality, predation, oceanic conditions, etc.) driving the fluctuations in populations. We further recommend that, if funding permits, weekend/holiday trips and chartered trips be sampled. This could greatly increase the level of confidence of the catch estimates, as well as that of the other parameters measured.

LITERATURE CITED

Ally, J.R.R., D.S. Ono, R.B. Read, and M. Wallace. 1988. Fishing site catch estimates for major species of marine fishes caught by commercial passenger fishing vessels off southern California during 1986 and 1987. Calif. Dept. Fish and Game, Mar. Resour. Div. 3 vol.

. 1989. Rockfish and lingcod size composition information at selected offshore banks from catches by the southern California commercial passenger fishing vessel (cpfv) fleet from 1984 through 1988. Calif. Dept. Fish and Game, Mar. Resour. Div. Limited Distribution. Located at: Dept. Fish and Game, Mar. Tech. Inform. Center, 330 Golden Shore, Suite 50, Long Beach, CA 90802.

- Ames, J.A. Unpublished manuscript. California Sheephead. Located at: Calif. Dept. Fish and Game, Mar. Tech. Inform. Center, 330 Golden Shore, Suite 50, Long Beach, CA 90802. 16 p.
- Anonymous. 1988. Status of the Pacific coast groundfish fishery through 1988 and recommended acceptable biological catches for 1989. Pacific Fishery Management Council, 526 Mill St., Portland, OR.
- Baxter, J.L. 1960. A study of the yellowtail <u>Seriola</u> <u>dorsalis</u> (Gill). Calif. Dept. Fish and Game, Fish Bull., 110:1-96.
- Best, E.A. 1963. The California marine fish catch for 1961. Calif. Dept. Fish and Game, Fish Bull., 121:1-56.
- Black, G.F. and D.L. Schultze. 1977. Southern California partyboat sampling study, quarterly report No. 7, Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 77-17:1-21.
- Calif. Dept. Fish and Game. 1952. The commercial fish catch of California for the year 1950 with a description of methods used in collecting and compiling the statistics. Calif. Dept. Fish and Game, Fish Bull., 86:1-124.
- Collins, R.A., and S.J. Crooke. Unavailable draft manuscript. Calif. Dept. Fish and Game, Mar. Resour. Div.
- Collins, R., D. Huppert, A. MacCall, J. Radovich, and G. Stauffer. 1980. Pacific bonito management information document. Calif. Dept. Fish and Game, Mar. Resour. Tech. Rep., 44:1-93.
- Cooksey, D.J. 1980. Age, growth and maturity of the ocean whitefish, Caulolatilus princeps. Calif. State Univ., Long Beach, CA. Thesis. 1-61.
- Cooperrider, C.L. 1987. Commercial passenger fishing vessel landings of widow rockfish <u>Sebastes entomelas</u> in central California. Natl. Mar. Fish. Serv., NOAA Tech. Rep. NMFS 48:49-52.

- Crooke, S.J. 1978a. Southern California partyboat sampling study, quarterly report no. 9. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 78-7:1-31.
- . 1978b. Southern California partyboat sampling study, quarterly report no. 10. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 78-11:1-65.
- . 1978c. Southern California partyboat sampling study, quarterly report no. 11. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 78-15:1-53.
- . 1979a. Southern California partyboat sampling study, quarterly report no. 12. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 79-12:1-67.
- . 1979b. Southern California commercial passenger fishing vessel sampling study, quarterly report no. 13. Calif. Dept. Fish and Game, Mar. Res. Admin. Rep., 79-15:1-57.
- . 1979c. Southern California commercial passenger fishing vessel sampling study, quarterly report no. 14. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 79-17:1-65.
- . 1983. Yellowtail, <u>Seriola lalandei</u> Valenciennes. In: Barrett, I.; Frey, H.; Reid, J. eds. The larger pelagic fishes of the California current: Symposium of the CalCOFI Conference; 1982 October 26; Idyllwild, CA. Calif. Coop. Oceanic Fish. Invest. Rep. 24:84-87.
- . 1989. The Ocean resources enhancement and hatchery program, 1988. Calif. Dept. Fish and Game, Report to the Legislature and Legislative Analyst, January 1989. 22 p.
- Crooke, S.J. and D.L. Schultze. 1977. Southern California partyboat sampling study, quarterly report no. 8, Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 77-19:1-24.
- Echeverria, T.W. 1987. Thirty-four species of California rockfishes: maturity and seasonality of reproduction. Fish. Bull. 85(2):229-250.
- Eschmeyer, W.E., E.S. Herald, H. Hammann. 1983. A field guide to Pacific coast fishes of north America. Boston. Houghton Mifflin Co. 336 p.
- Fish and Game Code. 29th ed, 1935-1937. J.S. Hunter, compiler. Dept. Nat. Res., Div. Fish and Game. 1935. 224 p.
- Fitch, J.E. 1974. Offshore fishes of California. 5th rev. Calif. Dept. Fish and Game. Sacramento, CA. 79 p.
- Fitch, J.E. and R.J. Lavenberg. 1971. Marine food and game fishes of California. Univ. of Calif. Press, Berkeley. 179 p.
- Frey, H.W., editor. 1971. California's living marine resources and their utilization. Calif. Dept. Fish and Game. 148 p.

- Hulbrook, R., compiler. 1974. Lengths, weights and ages of 13 southern California marine gamefish. Calif. Dept. Fish and Game, Mar. Resour. Reg. 33 p.
- Jow, T. and J.E. Hardwick. 1979. Status of the groundfish resource and a plan for its management. Calif. Dept. Fish and Game. Fish and Game Comm. Rep. Appendix C. p. 65-93.
- Klingbeil, R.A. 1977. Status of the Pacific mackerel resource and a plan for its management. Calif. Dept. Fish and Game, Mar. Resour. Manage. Rep., 4: 46 p.
- Love, M.S. 1980. Isolation of olive rockfish, <u>Sebastes</u> serranoides, populations off southern California. Fish. Bull., 77(3):975-983.
- Love, M.S., B. Axell, P. Morris, R. Collins, and A. Brooks. 1987. Life history and fishery of the California scorpionfish, <u>Scorpaena</u> <u>guttata</u> within the southern California bight. Fish. Bull., 85(1):99-116.
- Love, M.S., G.E. McGowen, W. Westphal, R.J. Lavenberg, and L. Martin. 1984. Aspects of the life history and fishery of the white croaker, <u>Genyonemus</u> lineatus (Sciaenidae), off California. Fish. Bull., 82(1):179-198.
- Love, M.S., and W.V. Westphal. 1981. Growth, reproduction, and food habits of olive rockfish, <u>Sebastes</u> serranoides, of central California. Fish. Bull., 79(3):533-545.
- MacGregor, J.S. 1987. Growth of twenty species of rockfish (Genus Sebastes). Nat. Mar. Fish. Serv. Southwest Fisheries Center. Admin. Rep. LJ-87-16. 42 p.
- Maxwell, W.D. 1977. Age composition of California barracuda, <u>Sphyraena argentea</u>; Pacific bonito, <u>Sarda chiliensis</u>; white seabass, <u>Cynoscion nobilis</u>; and yellowtail, <u>Seriola dorsalis</u> from southern California partyboats 1972-1974. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 77-3:1-23.
- Maxwell, W.D. and D.L. Schultze. 1976a. Southern California partyboat sampling study, quarterly report no. 1. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 76-3:1-18.
- . 1976b. Southern California partyboat sampling study, quarterly report no. 2. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 76-6:1-18.
- . 1976c. Southern California partyboat sampling study, quarterly report no. 3, Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 76-9:1-13.
- . 1977a. Southern California partyboat sampling study, quarterly report no. 4. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 77-2:1-13.
- . 1977b. Southern California partyboat sampling study, quarterly report no. 5. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 77-6:1-25.

·····

. 1977c. Southern California partyboat sampling study, quarterly report no. 6. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 77-11:1-21.

- McCain, B.B., D.W. Brown, M.M. Krahn, M.S. Myers, R.C. Clark, Jr., S.L. Chan, and D.C. Malins. 1988. Marine pollution problems, North American West Coast. Aquatic Toxicology 11:143-162.
- Miller, D.J. and J.J. Giebel. 1973. Summary of blue rockfish and lingcod life histories; a reef ecology study and giant kelp, <u>Macrocystis pyrifera</u>, experiments in Monterey Bay, California. Calif. Dept. Fish and Game. Fish Bull., 158:1-137.
- Miller, D.J., D. Gotshall. 1965. Ocean sportfish catch and effort from Oregon to Point Arguello, California, July 1, 1957-June 30, 1961. Calif. Dept. Fish and Game. Fish Bull., 130:1-135.
- Miller, D.J., J.E. Hardwick. 1973. The status of the rockfish resource and its management. Calif. Dept. Fish and Game, Mar. Resour. Tech. Rep. 17:1-33.
- Miller, D.J. and R.N. Lea. 1972. Guide to the coastal marine fishes of California. Calif. Dept. Fish and Game, Fish. Bull., 157:1-249.
- Moser, H..G., D.A. Ambrose, M.S. Busby, J.L. Butler, E.M. Sandknop, B.Y. Sumida, and E.G. Stevens. 1983. Description of early stages of white seabass, <u>Atractoscion nobilis</u>, with notes on distribution. Calif. Coop. Oceanic. Fish. Invest. Rep. 24:182-193.
- Oliphant, M.S. 1979. California marine fish landings for 1976. Calif. Dept. Fish and Game, Fish Bull., 170:1-56.
- Pinkas, L. 1966. A management study of the California barracuda, <u>Sphyraena</u> argenta girard. Calif. Dept. Fish and Game. Fish Bull., 134:1-58.
- Rothschild, B.J. 1986. Dynamics of marine fish populations. Harvard Univ. Press, Cambridge. 277 p.
- Schultze, D.L. 1980. An evaluation of the California barracuda resource and its management. Calif. Dept. Fish and Game, Mar. Resour. Admin. Rep., 80-6:1-71.
- Thomas, J.C. 1968. Management of the white seabass (Cynoscion nobilis) in California waters. Calif. Dept. Fish and Game, Fish Bull., 142:1-34.
- Vojkovich, M. and R.J. Reed. 1983. White seabass, <u>Atractoscion nobilis</u>, in California-Mexican waters: status of the fishery. Calif. Coop. Oceanic Fish. Invest. Rep. 24:79-83.
- Warner, R.R. 1975. The reproductive biology of the protogynous hermaphrodite Pimelometopon pulchrum (Pisces: Labridae). Fish. Bull., 73, (2):262-283.
- Wilkins, M.E. 1986. Development and evaluation of methodologies for assessing and monitoring the abundance of widow rockfish, <u>Sebastes</u> <u>entomelas</u>. Fish. Bull. 84, (2):287-310.

Young, P.H. 1963. The kelp bass (Paralabrax clathratus) and its fishery, 1947-1958. Calif. Dept. Fish and Game. Fish Bull., 122:1-67.

_____. 1969. The California partyboat fishery 1947-1967. Calif. Dept. Fish and Game. Fish Bull., 145:1-91.

¥

. 1973. The status of the white seabass resource and its management. Calif. Dept. Fish and Game, Mar. Resour. Tech. Rep., 15:1-10.