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Abstract 
 

This work presents a comprehensive methodology for the reduction of 

analytical or numerical stochastic models characterized by uncertain input 

parameters or boundary conditions. The technique, based on the 

Polynomial Chaos Expansion (PCE) theory, represents a versatile solution 

to solve direct or inverse problems related to propagation of  uncertainty. 

The potentiality of the methodology is assessed investigating different 

applicative contexts related to groundwater flow and transport scenarios, 

such as global sensitivity analysis, risk analysis and model calibration. This 

is achieved by implementing a numerical code, developed in the MATLAB 

environment, presented here in its main features and tested with literature 

examples. The procedure has been conceived under flexibility and 

efficiency criteria in order to ensure its adaptability to different fields of 

engineering; it has been applied to different case studies related to flow and 

transport in porous media. Each application is associated with innovative 

elements such as (i) new analytical formulations describing motion and 

displacement of non-Newtonian fluids in porous media, (ii) application of 

global sensitivity analysis to a high-complexity numerical model inspired 

by a real case of risk of radionuclide migration in the subsurface 

environment, and (iii) development of a novel sensitivity-based strategy for 

parameter calibration and experiment design in laboratory scale tracer 

transport. 
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Sommario 
 

In questa tesi viene presentata una metodologia esaustiva per la 

riduzione di modelli stocastici, di natura analitica o numerica, affetti da 

incertezza relativamente ai parametri in ingresso o alle condizioni al 

contorno. Tale metodologia, basata sulla teoria dell’espansione in Caos 

Polinomiale, costituisce una soluzione versatile per la soluzione di 

problemi diretti o inversi legati alla propagazione dell’incertezza. Le 

potenzialità della tecnica sono verificate in questo lavoro investigando 

differenti contesti applicativi, come l’analisi di sensitività globale, l’analisi 

di rischio e la calibrazione dei modelli, inerenti a scenari di flusso e 

trasporto in ambiente sotterraneo. Ciò è realizzato per mezzo di un codice 

numerico, sviluppato in ambiente MATLAB, presentato in questa tesi nelle 

sue caratteristiche principali. Tale codice è stato concepito secondo criteri 

di flessibilità ed efficienza in modo da assicurarne l’adattabilità a differenti 

campi ingegneristici. Inoltre, ogni caso studio descritto, è associato ad 

elementi innovativi quali, in particolare, (i) le nuove formulazioni 

analitiche sviluppate per descrivere flusso e spiazzamento di fluidi non-

Newtoniani in mezzi porosi, (ii) l’applicazione della tecnica 

dell’espansione in Caos Polinomiale ad un modello numerico di elevata 

complessità ispirato ad un caso reale di rischio di migrazione di 

radionuclidi nell’ambiente sub-superficiale, e (iii) lo sviluppo di una nuova 

strategia basata sulla sensitività per l’ottimizzazione della calibrazione dei 

parametri e per la progettazione degli esperimenti. 
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1. Introduction 
 

 

SOMMARIO 

In questo capitolo viene introdotto il problema della quantificazione 

dell’incertezza associata alle modellazioni matematiche di sistemi e 

processi fisici oggetto di studio. L’ingegneria civile ed ambientale ricorre 

frequentemente a schematizzazioni complesse per la caratterizzazione degli 

scenari di interesse al fine di ottenerne una rappresentazione realistica. 

Ciononostante, un’incertezza dalla duplice natura influenza la capacità di 

fornire rappresentazioni modellistiche appropriate: da un lato la 

conoscenza incompleta delle dinamiche dei sistemi reali (incertezza 

epistemica), dall’altro l’aleatorietà intrinseca associata a determinati 

fenomeni fisici (incertezza aleatoria). L’impossibilità di identificare a 

priori l’impatto di queste fonti di incertezza sulle risposte dei modelli è un 

punto cruciale di cui occorre tener conto per garantire la robustezza delle 

previsioni fornite. Conseguentemente, strumenti quali l’Analisi di 

Sensitività Globale e l’analisi di rischio giocano un ruolo fondamentale per 

la valutazione (i) del modo in cui l’incertezza si propaga, attraverso un 

modello, dalle fonti in ingresso alla risposta in uscita, (ii) delle fonti di 

incertezza maggiormente influenti rispetto alla variabilità della risposta, 

(iii) della funzione di densità di probabilità associata alla risposta del 

modello. La quantificazione e caratterizzazione dell’incertezza viene 

tradizionalmente svolta ricorrendo a metodi di simulazione alquanto 

onerosi dal punto di vista computazionale. Il metodo più comunemente 
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utilizzato è il metodo Monte Carlo, dal quale successivamente sono state 

derivate diverse tecniche di campionamento intelligenti, allo scopo di 

diminuire il numero di simulazioni necessarie per arrivare a convergenza. 

Una valida alternativa, capace di ridurre drasticamente il costo 

computazionale associato alle analisi descritte, è rappresentata dalle 

tecniche di riduzione dei modelli, che procedono attraverso la sostituzione 

del modello originale con un modello surrogato caratterizzato da un onere 

di calcolo trascurabile. Fra le possibili famiglie di modelli surrogati, quella 

dell’espansione in Caos Polinomiale è stata selezionata ed adottata in 

questo lavoro di ricerca per la sua versatilità e la sua efficienza dimostrate 

nei confronti di una considerevole molteplicità di casi studio. L’adozione 

della tecnica dell’espansione in Caos Polinomiale a problematiche 

ingegneristiche è relativamente recente e, di conseguenza, l’estensione 

dell’applicabilità di questa metodologia rappresenta un campo di ricerca in 

espansione. In questo capitolo, oltre ad introdurre tale tecnica, sono 

riassunte le fasi dell’attività di ricerca mirata ad approfondire tematiche 

ancora parzialmente inesplorate ed a proporre al contempo l’applicabilità 

degli strumenti sviluppati in differenti contesti. 
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1.1 UNCERTAINTY QUANTIFICATION IN MODELING 

The need for complex numerical models to quantify uncertainty 

associated with environmental and civil engineering scenarios is strictly 

connected with the goal of providing a realistic representation of physical 

systems. Our capability of modelling is typically plagued by uncertainty 

linked to (i) our incomplete knowledge of system dynamics, which 

ultimately impacts our ability to provide a proper mathematical description 

(epistemic uncertainty), and (ii) the randomness which is inherent with 

natural phenomena (aleatory uncertainty) [e.g., Tartakovsky, 2007, and 

references therein]. This limits our ability to understand a priori the impact 

of these sources of uncertainty on model responses.  

Proper identification of the way uncertainties propagate from model 

input to output is critical to provide effective predictions complying with 

guidelines provided by regulatory bodies and/or Institutions [US EPA, 

2009; European Commission, 2009; Castaings et al., 2012].  

For these purposes, Global Sensitivity Analysis (GSA) is identified as 

a suitable method to (i) improve the definition of the link between inputs 

and outputs upon providing quantitative information on the influence of the 

variability of input parameters on model responses, and (ii) address 

monitoring and data assimilation efforts towards the characterization of the 

most influential sources of input uncertainty [Saltelli et al., 2000; 

Tarantola et al., 2002; Kiparissides et al., 2009]. As such, GSA stands as a 

powerful tool and plays a key role in the attempt to reduce the epistemic 

uncertainty (both structural, i.e., referred to the validity of a mathematical 

model, and parametric, i.e., associated with model parameters) of a given 

analytical or numerical model [Tartakovsky, 2012]. 

Relating a probabilistic weight to model predictions has become a 
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crucial issue in modern environmental and engineering science. Even as 

epistemic uncertainty can be reduced by augmenting our knowledge, 

accurate uncertainty quantification (UQ) is required to render robust and 

functional predictions. In this context, it is also noted that the relevance of 

a proper quantification of the relationship between environmental 

phenomena and human health has become an issue which is central to 

society development [Maxwell and Kastenberg, 1999; Aral, 2010; de 

Barros et al., 2011; Tartakovsky, 2012], as it is strongly related to the 

assessment of risk for human beings and environmental systems caused by 

existing or expected hazardous scenarios [Bedford and Cooke, 2003].  

Though risk analysis (RA) is a relatively recent tool in environmental 

problems, quite a lot of Institutions and Agencies promote the adoption of 

this methodology to assess several scenarios [e.g., US NRC, 1997; EC, 

2003]. In this context, modelling is considered a key part of an overall 

process where planning and management are crucial issues involving 

different subjects (e.g. stakeholders, managers) [Refsgaard et al., 2007].  

RA is practically developed through the computation of the 

cumulative distribution function associated with a target state variable to 

derive the probability of exceeding a threshold value beyond which the risk 

is not acceptable. A numerical Monte Carlo (MC) analysis is the most 

common framework adopted for RA because of its flexibility to deal with 

strongly nonlinear problems [Vose, 1996; Zhang et al., 2010; Ballio and 

Guadagnini, 2004]. However, the computational demand associated with 

MC analyses may be a limiting factor in case of complex numerical models 

and in the presence of a large number of uncertain parameters [Sudret, 

2008]. As a consequence, it is common practice to compute only the first 

two (statistical) moments of the state variable of interest [Zhang and 

Neuman, 1996; Fiori et al., 2002] or to resort to reduced complexity 
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schematizations which are capable to encapsulate the major system 

dynamics involved [Winter and Tartakovsky, 2008].  

When a refined level of detail is required, probabilistic risk analysis 

(PRA) may represent an useful comprehensive approach, though the 

associated computational cost is definitely higher [Tartakovsky, 2007; 

Bolster et al., 2009; Tartakovsky, 2012]. 

1.2 METHODOLOGY  

Model reduction techniques provide an alternative to overcome the 

computational limitations in the development of GSA and RA for complex 

models. Also denoted as meta-modeling strategies, this kind of techniques 

represents an expanding research field of significant importance in the 

study of uncertainty related to mathematical formulations adopted to depict 

complex real systems. The need to reach important information, related to 

e.g. risk assessment or optimization designs, both in relatively short times 

and accurately, promotes the adoption of this kind of tools.  

These approaches are basically aimed at defining surrogate models 

which are associated with negligible computational demands due to their 

simple form. At the same time this strategy avoid the introduction of any 

simplifying assumption that would change the main features of the original 

problem  [Sudret, 2008; Volkova et al., 2008; Ratto et al., 2012; Carnevale 

et al. 2012; Villa-Vialaneix et al., 2012; Borgonovo et al., 2012].  

Among the possible families of surrogate models, those based on the 

Polynomial Chaos Expansion (PCE) theory introduced by Wiener [1938] 

have received particular attention in the recent years. The introduction of 

PCE in engineering applications is due to Ghanem and Spanos [1991] 

within the stochastic finite element (SFE) context. The main idea of this 
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spectral approach relies on the projection of the model response (i.e., the 

state variable of interest) onto a probabilistic space (Polynomial Chaos) to 

derive a polynomial approximation which is capable to preserve the entire 

variability associated with the original formulation. This variability is 

imbibed into the expansion coefficients [Ghanem and Spanos, 1991] so 

that mean, variance and sensitivity measures can be computed through a 

simple analytical post-processing once the PCE is defined [Sudret, 2008].  

Recent examples of the adoption of PCE for GSA and UQ, including 

comparisons against traditional sampling schemes (e.g., MCs) to verify the 

accuracy of the method, are presented by, e.g., Cheng and Sandu [2009], 

Konda et al. [2010], Oladyshkin et al. [2012], Formaggia et al. [2012], 

Ciriello et al. [2012], Ciriello and Di Federico [2013]. 

The uncertainty that affects parameters of a selected model is relevant 

also when optimization or calibration problems are considered. In 

engineering, inverse problems involve frequently complex systems for 

which several variables have to be defined contemporary, resulting in 

challenging and onerous analysis. In this context, the PCE theory 

represents an useful framework particularly suitable to perform GSA, and 

can return preliminary important information about the set of parameters 

that effectively control the system. Only the latter are conveniently 

included in the subsequent optimization or calibration process. In this sense 

this approach not only reduces the computational demand associated with 

onerous analysis, that would not be practically developable on original 

complex formulations, but also steers the analysis itself towards the key 

aspects of the problem [Ciriello et al., 2013]. 
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1.3 RESEARCH OUTLINE  

A first version of a computational framework based on the PCE theory 

and constructed in the MATLAB environment is presented. Chapter 2 

illustrates the details of the capability and structure of the numerical code 

together with some test examples to clarify and validate the approach. The 

key applications developed are then described in the subsequent chapters. 

These applications comprise problems related to the propagation of 

variance and GSA as well as parameter calibration, model selection criteria 

and experiment design. All these applications involve problems of flow and 

transport in porous materials. The methodologies and tools proposed are 

widely applicable to different environmental and civil engineering 

scenarios. The platform of the code has been conceived to be adaptable to 

different contexts and to be readily modifiable according to specific target 

case studies. Furthermore, the code has been designed to obtain consistent 

results in the context of GSA and RA at a reduced computational cost.  

Chapter 3 presents an application of the GSA methodology to a novel 

analytical formulation describing flow and displacement of non-Newtonian 

fluids in porous media. The adoption of the PCE-based numerical code in 

this context has been aimed at mapping the influence in space-time of the 

parameters governing the physical processes involved to provide improved 

model predictions and support design of experimental campaigns. 

Comparison against a traditional Monte Carlo approach is also included in 

the analysis. 

Chapter 4 illustrates the application of GSA and RA to scenarios 

involving complex numerical models. The migration of radionuclides from 

a radioactive waste repository is considered with reference to a real case 

study. In this context GSA and RA represent major steps to assess the 
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hazard related to contamination of water reservoirs and human health. The 

proposed approach has proved to be highly relevant at this level of 

modeling complexity allowing a critical reduction of the computational 

time associated with model runs. Furthermore, the PCE surrogate model, 

obtained with the implemented numerical code, has returned accurate 

results when compared against those obtained through the original model. 

The last application described in Chapter 5 is related to a different 

class of problems involving parameter calibration and model selection in 

the presence of tracer migration in laboratory scale porous media.  

  

 



2. Model reduction strategy 
 

 

SOMMARIO 

In questo capitolo viene presentata la tecnica di riduzione dei modelli 

basata sulla teoria dell’espansione in Caos Polinomiale introdotta da 

Wiener [1938] e sviluppata in campo ingegneristico da Ghanem and 

Spanos [1991] nel quadro degli elementi finiti stocastici. Tale tecnica vede 

applicazioni in campo civile ed ambientale relativamente recenti e tuttora 

rappresenta un campo di ricerca in evoluzione. Il metodo dell’espansione in 

Caos Polinomiale prevede la proiezione del modello originale in uno 

spazio di Hilbert generato da un’opportuna base di polinomi scelta in 

funzione della distribuzione di probabilità associata ai parametri incerti in 

ingresso. Questa operazione consente di disporre di un modello surrogato 

in forma polinomiale in grado di ridurre drasticamente i tempi di calcolo 

necessari per lo svolgimento di analisi complesse quali quelle descritte nel 

precedente capitolo. Una volta inquadrata la tecnica in modo esaustivo, la 

versione base di un codice di calcolo sviluppato in ambiente MATLAB, 

volto alla definizione di un modello surrogato generato secondo questa 

tecnica, viene presentata in questo capitolo. Il codice è concepito secondo 

criteri di flessibilità ed efficienza in modo che possa essere facilmente 

adattabile a diversi casi studio relativi a modelli stocastici di natura 

analitica o numerica caratterizzati da un insieme di parametri incerti in 

ingresso modellabili quali variabili random indipendenti. Se i parametri in 

ingresso mostrano un certo grado di dipendenza o piuttosto sono descritti 

attraverso processi stocastici, estensioni al codice base che prevedono 
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rispettivamente l’adozione della trasformata di Nataf e dell’espansione di 

Karhunen-Loeve, sono inclusi nella trattazione presentata in questo 

capitolo. Alcuni casi applicativi utili a chiarire i passaggi fondamentali per 

la definizione dell’espansione in Caos Polinomiale sono inclusi nella parte 

conclusiva del capitolo. Una di queste applicazioni fa riferimento al 

contributo “Analisi di sensitività globale ed espansione in Caos 

Polinomiale: un’applicazione a flussi di filtrazione satura”  di V. Ciriello, 

V. Di Federico, e A. Guadagnini, presentato in occasione del XX 

Congresso dell’Associazione Italiana di Meccanica Teorica e Applicata 

(AIMETA, 2011).  
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2.1 THE POLYNOMIAL CHAOS EXPANSION (PCE) THEORY 

2.1.1 Chaos representation of model response 

The Polynomial Chaos Expansion (PCE) technique involves the 

projection of model equation into a probabilistic space, termed Polynomial 

Chaos, to construct an approximation of the model response surface.  

Let ),,( tfy xp  be a selected model that can be described as a 

relationship between M input parameters, collected in vector 

 Mppp ,...,, 21p , and the model response, y, evaluated at spatial location 

x and time t. If values of input parameters are uncertain they can be 

modeled as random variables with assigned distributions. This renders the 

model response random in turn. Here, the latter is assumed to be scalar to 

exemplify the approach; anyhow this does not affect the generality of the 

technique. For what concerns the probabilistic representation of model 

inputs they are treated in the following as independent random variables.   

Consider further the model response to be a second-order random 

variable, i.e. y belonging to the space of random variables with finite 

variance,  F,PΩLy ,2 , where Ω  is the event space equipped with  -

algebra F  and probability measure P . The probabilistic space defined 

above represents an Hilbert space with respect to the inner product 

 2121
2

, yyEyy
L

  that induces the norm  2
11

2

yEy
L
  [Blatman and 

Sudret, 2010]. Under this assumption, y can be approximated through the 

Polynomial Chaos Expansion (PCE) technique [Ghanem and Spanos, 

1991] and the approximation converges in the L2-sense according to 

Cameron and Martin [1947]. The resulting formulation constitutes a meta- 

(or surrogate) model, y~ , of y . This meta-model is a simple polynomial 
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function which is expressed in terms of a set of independent random 

variables, collected in vector ζ , as 

        




1

0

,,,
~~ P

j
jj tatfy pζxpζx .              (2.1) 

Here,    !!! qMqMP   is the number of terms employed in the 

polynomial representation of y , and q  is the maximum degree considered 

in the expansion; ja  represent the unknown deterministic coefficients of 

the expansion while j  denote the suitable multivariate polynomial basis 

in the Hilbert space containing the response (i.e. the basis that generates the 

probabilistic space). In the following the dependence of ja  from spatial 

location x and time t  will be omitted for the sake of brevity. 

Wiener [1938] first introduced the PCE by adopting Hermite 

Polynomials as a basis for the approximation of Gaussian processes. 

Different types of orthogonal polynomials are required for optimum 

convergence rate in the case of non-Gaussian processes (Table 2.1), as the 

probability distribution of input parameters influences the choice of the 

polynomial basis in (2.1). In this regard, Xiu and Karniadakis [2002] 

introduced the Askey family of hypergeometric polynomials (generalized 

PCE), to extend the approach to other possible distributions.  

Once the appropriate kind of polynomials is identified, the set of 

independent random variables ζ  automatically stems from orthogonality 

condition, as the multivariate polynomial basis has to be orthonormal with 

respect to the joint PDF of ζ . The variables collected in ζ  are then related 

to the input parameters in p  via a simple isoprobabilistic transform 

[Sudret, 2008]. 
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Distribution of random inputs Polynomial basis Support 

Continuous 

Gaussian Hermite polynomials   ,  

Gamma Laguerre polynomials  ,0  

Beta Jacobi polynomials  ba,  

Uniform Legendre polynomials  ba,  

Discrete 

Poisson Charlier polynomials  ...2,1,0  

Binomial Krawtchouk 

polynomials 

 N,...,1,0  

Negative binomial Meixner polynomials  ...2,1,0  

Hypergeometric Hahn polynomials  N,...,1,0  

Table 2.1. Distributions of random input and respective polynomial basis in the 

Wiener-Askey scheme. 

2.1.2 Computation of the expansion coefficients 

The traditional approach for the computation of the expansion 

coefficients in stochastic finite element analysis consists in the 

minimization, in the Galerkin sense, of the residual present in the balance 

equation [Sudret, 2008; Ghanem and Spanos, 1991]. This solving method 

is identified as intrusive, requiring onerous and specific implementation in 

the finite element code [Sudret, 2008; Webster et al., 1996].  

A non-intrusive regression-based approach, comparable with the 

response surface method widely used in science and engineering, can be 

employed to calculate the coefficients ja  appearing in (2.1) upon 

minimization of the variance of a suitable residual,  , typically defined as 

the difference between the surrogate model response, y~ , and the solution 

given by the original model, y , with respect to the vector of the unknown 

coefficients a  [Sudret, 2008]: 
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        












  apζpa  , 

~
   ,   

22 ffEArgMinEArgMin  ,            (2.2)  

with E[·] denoting expected value.  

The optimum set of regression points in the (random) parameter space 

is determined on the basis of the same arguments adopted for integral 

estimation through Gaussian quadrature; the method employs the roots of 

the polynomial of one order higher than q, to assure proper sampling of the 

region associated with largest probability in the distributions of the input 

parameters (Figure 2.1). The latter approach is denominated the 

probabilistic collocation method [Huang et al., 2007; Webster et al., 1996]. 

The vector a  that optimizes the regression expressed in (2.2) can be 

determined in form of matrix calculation as 

  '
1

yΨΨΨa
TT 

 ,                (2.3) 

where: 

 i
jij Ψ ,   1,...0;,...1  PjNi .             (2.4) 

Here N  is the number of regression points, 'y  is the vector denoting 

the model response at these points, while the product ΨΨ
T

 defines the so-

called information matrix. Solving (2.3) requires a minimum of PN   

regression points. One typically selects PN   to avoid singularity in the 

information matrix. Figure 2.2 depicts P , that is proportional to the 

dimension of the problem, against the number of random input parameters, 

M, for different degrees of the expansion, q . It is possible to observe that 

even in case of complex models with several parameters, the number of 

model runs required to compute the PCE surrogate model remains 

definitely lower with respect to the number of simulations typically 
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required by Monte Carlo (MC) analysis. 

 

 

Figure 2.1. Example of sampling in the probability distributions of an input 

parameter to constitute the set of regression points.  

 

 

Figure 2.2. Number of unknown expansion coefficients, P, against M for different 

values of q. 

Input p1 

Input p1 

PDF of p1 

Model;  

PCE 
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2.1.3 The Nataf transform  

Correlation amongst random parameters can be included in the 

methodology by applying the Nataf transform [Nataf, 1962].  

Let  Mppp ,...,, 21p  be the vector of correlated random input 

parameters. When the marginal CDFs,   MipF ii
,...,1  ,p  , and the 

correlation matrix,  
MMij 

 ρ , are known, an isoprobabilistic transform 

can be applied to transform p  in a vector  Mzzz ,...,, 21z  of standardized 

normal random variables: 

  ii pF
ip

1z  ,  Mi ,...,1 ,                              (2.5) 

where  1  is the inverse standard normal CDF.  

The joint probability density function related to the variables collected 

in z  is given by: 

 
   









 

zρz

ρ

ρz
1

0
T

0

0
2

1
exp

det2

1
,

M
M


 ,                  (2.6) 

where  
MMij 

 00 ρ  represents the respective correlation matrix.  

According to the Nataf transform theory, the approximate joint PDF 

 pf  may be expressed as 

 
     

     
 0

21

p2p1p
,

...

...
21 ρzpp M

M

M

zzz

pfpfpf
f M 

 


 .               (2.7) 

To determine the correlation matrix  
MMij 

 00 ρ  in the previous 

equation, any two random variables  ji pp ,  are considered and the linear 
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correlation between them results: 

     
   
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ij dzdzzz
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j
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i
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1
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,, 
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




 (2.8) 

where 
ip , 

jp , 
ip , 

jp  are the means and standard deviations of ip  and 

jp  respectively. 

Once 0ρ  is obtained, it can be decomposed following Cholesky as 

T
000 ΓΓρ  ,                       (2.9) 

where 0Γ  is the lower triangular matrix. 

Finally the independent and dependent standard normal random 

vectors, ζ  and z  respectively, are related as follows   

ζΓz  0 .                                 (2.10) 

With the adoption of the Nataf transform the problem of correlation 

among input parameters is reduced to the set of assumptions required for 

the application of the PCE [see e.g. Li et al., 2011]. 

2.1.3 The Karhunen-Loeve Expansion (KLE) 

The representation of random fields can be included in this framework 

based on the PCE theory through the adoption of the Karhunen-Loeve 

Expansion (KLE) [Ghanem and Spanos, 1991]. The latter characterizes 

stationary and non-stationary random process in terms of uncorrelated 

random variables   k : 

       


M

k
kkk xfxx

1

,  ,                         (2.11) 
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 x  being the mean of the process, k  and  xfk  the eigenvalues and 

eigenfunctions of the covariance function  21, xxC  respectively; M is the 

number of terms of the expansion. 

The deterministic eigenfunctions and the eigenvalues derive from the 

solution of the homogeneous Fredholm integral equation of the second 

kind: 

     21121, xfdxxfxxC kkk
D

 .                         (2.12) 

For most of the covariance functions, numerical method are required 

to solve equation (2.12). In this context, the adoption of a traditional 

Galerkin approach results in dense matrices onerous to be computed and 

inverted. A more efficient method is adopted in this work, based on a 

Wavelet-Galerkin scheme proposed in Phoon et al. [2002]. According to 

this approach from the Haar mother wavelet function,  x , (Figure 2.3) a 

complete set of orthogonal functions is defined over the domain [0,1] in 

two steps:  

   kxax j
jkj  2,  ,                          (2.13) 

        2  ,  ,1 ,0 kixxx j
kji   .                            (2.14) 

Here, ja  represents the amplitude of the function (set to 1), 

1,...,1,0  mj  the dilatation constant and 12,...,1,0  jk  the translational 

constant respectively; m  is the maximum wavelet level. 

The orthogonality condition can be written as 

    ijjji hdxxx   
1

0

,                              (2.15) 
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where ih  is a constant and ij  represents the Kronecker-delta function. 

 

 

Figure 2.3. Number of unknown expansion coefficients, P, against M for different 

values of q. 

 

In this framework the eigenfunction  xfk  can be properly 

approximated as a truncated series of Haar wavelets:  

      




1

0

)()(
N

i

kT
i

k
ik Dxxdxf  ,                          (2.16) 

where 
)(k

id  are the wavelet coefficients and 
mN 2  [Phoon et al., 2002]. 

The expression of the covariance function can be obtained through the 

application of the 2D wavelet transform as follows:   

     2121, xAxxxC T  ,                             (2.17) 

       
1

0

1

0
211221,

1
dxdxxxxxC

hh
A ji

ji

ji  .                         (2.18) 

The original problem expressed by equation (2.12) is reduced to the 

following eigenvalue problem: 
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    )()( kT
k

kT DxDHAx   ,                                       (2.19) 

where H  is a diagonal matrix constituted by the elements ih  defined in 

(2.15) [Phoon et al., 2002].  

2.2 GLOBAL SENSITIVITY ANALYSIS (GSA) 

2.2.1 The ANOVA decomposition and Sobol indices  

Consider the model function )(pfy  , representing the relationship 

between the random output y and the vector p  of M independent random 

model parameters. Suppose that the latter are defined in the M-dimensional 

unit hypercube, .MI  If )(pf  is integrable, the following representation 

holds: 

     MM
Mji

jiij

M

i
ii pppfppfpfff ,...,,...,)( 21,...2,1

11
0 



p    (2.20) 

where  MI
dff pp)( 0  is the mean of the model output and, e.g., 

  1 0~)()( MI iii fdfpf pp , is the function obtained by integrating over all 

parameters except ip .   

Assuming the validity of the following condition: 

  0,... 
1

11,...  


s

s

ssI

i

ik
kiiii dpppf ,   MsMii s ,...1 ,...1 1                 (2.21) 

where indices sii ,...,1 , define the set  
sii pp ,...,

1
 of random model 

parameters, the 
M2  summands in (2.20) are orthogonal functions and 
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condition (2.21) renders representation (2.20), which is typically termed 

ANOVA decomposition [Archer et al. 1997], unique. 

The total variance, V , of the model due to the uncertainty of the M 

parameters is: 

  
 Mii

iiI
s

s
M VfdfV

...1
,...

2
0 

2

1

1
pp ,                      (2.22) 

where   


s

s

sss I

i

ik
kiiiiii dpppfV

1

111
,..., 2

,...,...  is the partial variance, expressing 

the contribution due to the interaction of parameters  
sii pp ,...,

1
. The 

generic s-order Sobol index 
siiS ,...1
 is defined as [Sobol, 1993]: 

VVS
ss iiii ,...,... 11

                           (2.23) 

The sum of these indices over all possible combinations of parameters 

is unity. The first-order or principal sensitivity index, iS , describes the 

significance of the parameter ip  considered individually, in terms of the 

fraction of total output variance which is attributed to the variability of ip  

by itself. Higher-order indices 
siiS ,...1
 account for the variance attributable 

to the simultaneous variability of a group of parameters. The overall 

contribution of the variability of a given parameter ip  to the output 

variance is described by the total sensitivity index 
iTS : 


i

si iiT SS


,...1
,   iiskkii ksi  ,1,:,...1 .                      (2.24) 

The evaluation of the indices (2.23) requires multiple integrations of 

the model  f  and its square, for various combinations of the parameters. 

This is traditionally achieved by MC simulation [Sobol, 2001] and the 
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associated computational cost can soon become prohibitive  when the 

model is complex and/or the number of parameters is large [Sudret, 2008]. 

2.2.2 PCE and GSA 

The entire variability of the original model is conserved in the set of 

expansion coefficients [Ghanem and Spanos, 1991], rendering PCE a 

powerful tool for GSA as the Sobol indices can be calculated analytically 

from these coefficients without additional computational cost [Sudret, 

2008]. Manipulating y~  by appropriate grouping of terms allows isolating 

the contributions of the different (random) parameters to the system 

response as: 

     
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ζ

         (2.25) 

  denoting a general term depending only on the variables specified by the 

subscript. 

The mean of the model response coincides with the coefficient of the 

zero-order term, 0a , in (2.25), while the total variance of the response and 

the generic Sobol index, calculated through the PCE, respectively result: 

       

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Calculation of  2
E  can be performed following, e.g., Abramowitz 

and Stegun [1970]. 
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2.3 THE MATLAB TOOLBOX 

This chapter is devoted to the presentation of the developed MATLAB 

computational framework based on the PCE theory. The numerical tool is 

designed to be applicable to different environmental and civil engineering 

scenarios when parameters and boundary conditions are uncertain. In these 

cases, direct or inverse problems involving, e.g., risk analysis and 

optimizations under uncertainty need to be solved. 

The first version of the code has been thought to be adaptable to 

different contexts and to be modifiable in straightforward manner. Figure 

2.4 depicts the structure of the main program of the toolbox. Following the 

script, in the first function, Setting ( ), the user is required to set the number 

of uncertain parameters, M, and the maximum degree of the PCE 

approximation, q. The latter is typically selected to be equal to 2. If 

necessary, it is then subsequently increased to improve the accuracy of the 

approximation. The number of terms of the expansion, P, is then defined. 

The subsequent step is the definition of the set of regression points (see 

Section 2.1.2). From the knowledge of the distribution type associated with 

the uncertain input parameters, the user can choose the polynomial basis 

that optimizes the convergence rate (see Table 2.1). Figure 2.4 considers a 

case in which model parameters are uniform distributed and the Legendre 

Chaos is selected. The Legendre Chaos and the Hermite Chaos are 

implemented in this first version of the code as they are the most 

commonly used. In view of this, the function LegendreRegP ( ) returns 

automatically the set of regression points to optimize the computation of 

the expansion coefficients. Each regression point corresponds to a 

combination of values for the vector ζ  (see Section 2.1.1). 
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% SFERA v1.0 - MAIN PROGRAM 

% Version: 25/9/2012 

clc 

clear variables 

% PROBLEM SETTING 

Setting(); 

% REGRESSION POINTS DEFINITION  

LegendreRegP(); 

% PCE GENERATION  

LegendrePCE();  

% REGRESSION-BASED APPROACH  

TransfRegP(); 

PCECoef(); 

% GSA through PCE 

LegendreGSA(); 

Figure 2.4. Basic main program of the MATLAB toolbox 

 

The function LegendrePCE ( ) builds the multivariate polynomial 

expansion which is then computed at the standardized regression points 

previously identified. At this stage the coefficients, ai, are still unknown. 

Note that, up to this point, the only information which is requested from the 

user are the values of q and M and the identification of the suitable basis of 

polynomials. 

In the subsequent steps the PCE-based surrogate model is defined 

according to the specific of the particular target scenario, i.e. on the basis 

of (i) the original analytical or numerical model, and (ii) the uncertainty 

associated with model parameters. The function TransfRegP ( ) returns the 

combinations of model parameters collected in p and corresponding to the 



Model reduction of stochastic groundwater flow and 

transport processes - Valentina Ciriello  

35 

 

 

 

standardized regression points ζ  which were previously computed. As 

described in Section 2.1.1, p and ζ  are related via a simple isoprobabilistic 

transform. This transform is performed by calling the function 

LegendreIsopTr ( ) as depicted in Figure 2.5 where N is the number of 

regression points that are collected in the rows of the matrix CSI. The user 

is required to modify this function by introducing the distributions of the 

model input parameters for the selected case study. 

 

 

function  TransfRegP() 

… 

for i=1:N 

    X(i,:)=LegendreIsopTr(CSI(i,:)); 

end 

… 

end 

 

 

function  [X]=LegendreIsopTr(CSI1) 

PCSI=unifcdf(CSI1,-1,1); 

%Function test 1 

%x1: uniformly distributed in [-0.5;0.5] 

ax1   = -0.5; 

bx1   = 0.5; 

X(1)  = unifinv(PCSI(1),ax1,bx1); 

%x2: uniformly distributed in [-0.5;0.5] 

ax2   = -0.5; 

bx2   = 0.5; 

X(2)  = unifinv(PCSI(2),ax2,bx2); 

end 

Figure 2.5. Isoprobabilistic transform of the set of regression points. 
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Continuing with the Main program, the function PCECoef ( ), 

depicted in Figure 2.6, evaluates the original model at the combinations of 

model parameters corresponding to the standardized regression points and 

computes the expansion coefficients in vector a trough the regression-

based approach described in Section 2.1.2. The function ModelEval ( ) is 

called in the script. This function is the only part that the user is required to 

change with the original model considered. 

Finally, once the PCE surrogate model is built, the function 

LegendreGSA ( ) returns analytically the Sobol indices for the GSA, 

according to what is described in Section 2.2.2.  

 

 

function PCECoef() 

… 

for ind=1:N 

    fY(ind)=ModelEval(X(ind,:)); 

end 

… 

end 

 
 

function [y]=ModelEval(I) 

% Evaluation - regression points 

% Function test 1 

x1=I(1); 

x2=I(2); 

y=4*(x1^2)+3*x2; 

end 

Figure 2.6. Regression-based method for the definition of the PCE surrogate-

model. 
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2.4 TEST CASES AND VALIDATION 

In this section some application examples of the numerical code 

developed for PCE-based analysis are provided. A first simple 

mathematical function is adopted to clarify the key steps run by the code; 

then a case study in the context of groundwater flow is considered and a 

comparison against a traditional MC approach is presented. Finally, some 

examples related to the implementation of the Karhunen-Loeve expansion 

is provided. 

2.4.1 PCE of a polynomial function 

We start the illustration of our suite of examples by considering a 

simple polynomial format which enables one to illustrate the key steps 

embedded in the application of the numerical code based on the model 

reduction strategy presented in the first two sections of this chapter.  

Consider the model function 2
2
121 34),( ppppfy  , p),( 21 pp  

being the vector of uncertain input parameters. Suppose that both 1p  and 

2p  are uniformly distributed in the range  5.0;5.0 . The (statistical) 

moments of y  and the Sobol indices can be analytically determined upon 

calculation of integrals. These theoretical results are compared in the 

following with those returned by the numerical code. The latter proceeds 

according to these steps: 

 

 Step 1. Problem setting. 

In this test case the number of uncertain parameters is M  = 2. The 

maximum degree selected for the expansion is conveniently set as q  = 2. 

The associated PCE is then formed by 6P  terms. The adopted 
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distributions for the parameters suggests to resort to the Legendre Chaos 

polynomial basis [Xiu and Karniadakis, 2002]. Therefore, the PCE is 

expressed in terms of the two random variables, 1  and 2 , which are 

uniformly distributed within  1;1 . Note that 1  and 2  represent 

standardized parameters which are related to 1p  and 2p  through an 

isoprobabilistic transform. 

 

 Step 2. Identification of the optimum set of regression points. 

The set of regression points is made by pairs  21,  which are 

identified in the parameter space. Values for 1  and 2  are chosen 

amongst the roots of the Legendre polynomial of degree 3 (i.e., 1q ) upon 

imposing the criterion of being closest to the origin and symmetric with 

respect to it [Webster et al., 1996; Sudret, 2008]. Table 2.2 collects the set 

of regression points returned by the numerical code for this test case. 

 

1  0 -0.775 0 0.775 0 -0.775 0.775 -0.775 0.775 

2  0 0 -0.775 0 0.775 -0.775 -0.775 0.775 0.775 

Table 2.2. Regression points for the selected polynomial function test case. 

  

 Step 3. Definition of the Polynomial Chaos Expansion (PCE). 

The numerical code calculates the univariate Legendre polynomials of 

degree included in  q,0  for each standardized parameter. The summands 

of the multivariate polynomial of order q  are then obtained through all the 

possible multiplicative combinations (of degree not exceeding q ) between 
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two univariate polynomials in 1  and 2 , respectively. The Legendre 

Chaos expansion of the original model for this test case is: 

2
25214

2
32211021

2

3

2

3
0),(

~~
1

  aaaaaafy . (2.28) 

 

 Step 4. Computation of the expansion coefficients. 

The expansion coefficients in (2.28) are computed according to the 

regression based strategy discussed in Section 2.1.2. In this application the 

number of regression points, N , required to solve the problem is 

.6 PN  The coefficient values returned by the code are: 

0  ;
3

2
  ;

2

3
  ;

3

1
541320  aaaaaa .                       (2.29) 

The second order PCE of the original model is finally obtained by 

substituting (2.29) in (2.28), i.e.: 

2
221 12

3
),(

~~   fy .                         (2.30) 

 

 Step 5. Uncertainty Quantification (UQ) and Global Sensitivity 

Analysis (GSA). 

The mean and variance of y~  are 
3

1~
0  ay  and 

  883.0
~
yV , 

respectively. The calculated partial variances and Sobol indices are 

presented in Table 2.3. Note that these coincide with the analytical values 

which can be obtained through integral computation for this simple test 

case. 
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 yV
~

1  
 yV
~

2  
 yS
~

1  
 yS
~

2  
 yS
~

2,1  
 yST
~

1  
 yST
~

2  

80.0  75.0  106.0  894.0  000.0  106.0  894.0  

Table 2.3. Variances and sensitivity indices for the polynomial function test case. 

 

2.4.2 PCE for pumping tests in non-uniform aquifers 

Let consider a fully penetrating well, deriving a constant flow, Q , 

from a non-uniform confined aquifer. In particular the configuration 

discussed in Butler [1988] is studied here. In the latter, depicted in Figure 

2.7, the well is inserted at the center of a disk of radius R , embedded in an 

infinite matrix. The disk and the matrix are considered both uniform with 

respect to the flow properties.   

 

 

Figure 2.7. Domain schematic. 

 

Flows in the disk and matrix are described by the following equation: 
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where s  represents the drawdown in material i , r  is the radial direction, 

iS  and iT are the storage coefficient and the transmissivity of material i  (

1i  denotes the disk while 2i  denotes the matrix). 

To solve the problem the following initial and boundary conditions are 

set:  

Q
r

s
Trw

rw








1
1

0
2lim  .                                   (2.32) 

  0,2  ts .                           (2.33) 

    ,  ,00,0, 21  rrrsrs w .                         (2.34) 

where wr  is the radius of the well. Finally conditions of continuity at the 

disk-matrix interface are included: 
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An analytical solution of (2.31)-(2.36) is available in the Laplace 

space: 
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where 1s , 2s  represent the transformed drawdown in the Laplace space, p  

is the Laplace-transform variable, jI  is the modified Bessel function of the 

first kind and order j , jK  is the modified Bessel function of the second 

kind and order j , and 11 TpSN   and 22 TpSA . Equations (2.37)-

(2.38) require a numerical inversion with e.g. the algorithm of Stehfest 

[1970]. 

Starting from this formulation [Butler, 1988] a specific case study is 

defined in which the uncertain model parameters are the transmissivities of 

the disk and the matrix and the storage coefficients, considered equal for 

the two materials. Each of these three variables is associated with a log-

normal distribution and coefficient of variation equal to 0.5. The means of 

the distributions are 
6105 S , smT /108 23

1

 , smT /105 23

2

  

(values typical of sand). The model responses of interest are the 

drawdowns in the two materials.  

The PCE of second, third and fourth order are adopted as surrogate 

models on which GSA is performed. 

Figure 2.8 depicts the total sensitivity indices related to the three 

uncertain parameters versus the radial distance from the well. It’s 

observable that the influence of S  increases far from the well while the 

reverse is true for 1T . The importance of the uncertainty in 2T  has a 

maximum value at the interface between the two materials. The 
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interactions among the parameters is negligible as total and principal 

sensitivity indices are significantly similar.  

 

Figure 2.8. Total and principal sensitivity indices computed with the PCE of order 

2 (R = 500 m ; t = 5000 s ; Q = 0.01 m3/s). 

 

 

Figure 2.9. Comparison between the total sensitivity indices computed with the 

PCE of order 2 (Pol2) and through a traditional Monte Carlo framework (number 

of simulations = 1000, 5000). 

 

As the sensitivity indices are almost constants with respect to the 

degree of the expansion (not shown), the results depicted are referred to the 

second order.  
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In Figure 2.9 a comparison between the sensitivity measure computed 

through PCE and a traditional MC framework is shown. The results of PCE 

appear substantially confirmed; furthermore, the latter tend to the MC-

based values as the number of MC simulations increases. The advantage in 

terms of accuracy is added to the computational saving, equal to three 

orders of magnitude for the examined case.  

 

 

Figure 2.10. Variance maps for different times computed through the second-order 

PCE. 

 

Figure 2.10 reports the maps of variances (total and partials) inside 

the domain for different times. For early times the drawdown in the disk is 

influenced only by the local properties of the system while the 

transmissivity of the matrix does not produce effects. This is physically 

consistent because the drawdown is initially confined in the material 

around the well. On the contrary, when tending to the stationary condition 

the process is dominated by the properties of the matrix even if around the 

well the transmissivity of the disk conserves a relevant effect. For what 

-3.00

-2.00

-1.00

0.00

0 100 200 300 400 500 600 700 800 900 1000

distanza radiale dal pozzo

t = 300 s t = 2000 s t = 5000 s
-3.00

-2.50

-2.00

0 100 200 300 400 500 600 700 800 900 1000

distanza radiale dal pozzo

t= 300 s t = 2000 s t = 5000 s

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

0 100 200 300 400 500 600 700 800 900 1000

distanza radiale dal pozzo

t = 300 s t = 2000 s t = 5000 s
-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0 100 200 300 400 500 600 700 800 900 1000

distanza radiale dal pozzo

t= 300 s t = 2000 s t = 5000 s

 Vln  SVln

 
1

ln TV  
2

ln TV

  

  

r r 

r r 



Model reduction of stochastic groundwater flow and 

transport processes - Valentina Ciriello  

45 

 

 

 

concerns the drawdown in the matrix, the process is influenced only by the 

local properties, especially for late times. 

2.4.3 KLE of some known covariance functions 

In order to test the implementation of the Karhunen-Loeve Expansion 

according with the numerical method discussed in section 2.1.3, some well 

known covariance functions are here considered and the results obtained in 

Phoon et al. [2002] are adopted as a comparison.  

 

1) Test covariance function 1: first-order Markov process defined in [-

1;1]; exponential covariance function                    .  

The eigenvalues obtained with the implemented code are reported in 

Table 2.4. 

 

   N=8 N=16 N=32 N=64 N=128 

1 1.1630 1.1527 1.1502 1.1495 1.1494 

2 0.4042 0.3942 0.3918 0.3911  0.3910 

3 0.1693 0.1600 0.1578 0.1572  0.1571 

4 0.0916 0.0824 0.0803 0.0797  0.0796 

5 0.0595 0.0499 0.0478 0.0473  0.0472 

6 0.0441 0.0337 0.0316 0.0311  0.0310 

7 0.0361 0.0246 0.0225 0.0220  0.0218 

8 0.0323 0.0191 0.0168 0.0163  0.0162 

9  0.0154 0.0131 0.0126  0.0125 

10  0.0130 0.0105 0.0100  0.0099 

Table 2.4. Eigenvalues of the first-order Markov process for different maximum 

Wavelet levels of the Wavelet-Galerkin approach. 
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For this test case, Figure 2.11 also depicts the 8
th
 and 10

th
 order 

eigenfunctions. 

 

 

 

Figure 2.11. 8
th

 and 10
th

 order eigenfunctions for exponential covariance 

 

2) Test covariance function 2: Random process defined in [-1;1]; squared 

exponential covariance function                    
 
. 

The eigenvalues obtained with the implemented code are reported in 

Table 2.5.  

 

3) Test covariance function 3: Wiener–Levy process in [0,1]; covariance 

function                    . 
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The eigenvalues obtained with the implemented code are reported in 

Table 2.6. 

 

   N=8 N=16 N=32 N=64 N=128 

1 1.3078 1.3051 1.3044 1.3042 1.3042 

2 0.5378 0.5364 0.5361 0.5360 0.5360 

3 0.1315 0.1333 0.1338 0.1339 0.1339 

4 0.0206 0.0222 0.0226 0.0227 0.0227 

5 0.0022 0.0027 0.0028 0.0029 0.0029 

6 0.0002 0.0003 0.0003 0.0003 0.0003 

7 0.0000 0.0000 0.0000 0.0000 0.0000 

8 0.0000 0.0000 0.0000 0.0000 0.0000 

9  0.0000 0.0000 0.0000 0.0000 

10  0.0000 0.0000 0.0000 0.0000 

Table 2.5. Eigenvalues of the squared exponential covariance for different 

maximum Wavelet levels of the Wavelet-Galerkin approach. 

 

   N=8 N=16 N=32 N=64 N=128 

1 0.4066 0.4056 0.4054 0.4053 0.4053 

2 0.0464 0.0454 0.0451 0.0451 0.0450 

3 0.0176 0.0165 0.0163 0.0162 0.0162 

4 0.0097 0.0086 0.0084 0.0083 0.0083 

5 0.0065 0.0053 0.0051 0.0050 0.0050 

6 0.0050 0.0037 0.0034 0.0034 0.0034 

7 0.0043 0.0028 0.0025 0.0024 0.0024 

8 0.0039 0.0022 0.0019 0.0018 0.0018 

9  0.0018 0.0015 0.0014 0.0014 

10  0.0015 0.0012 0.0011 0.0011 

Table 2.6. Eigenvalues of the Wiener-Levy process for different maximum 

Wavelet levels of the Wavelet-Galerkin approach. 
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2.5 FINAL REMARKS 

In this chapter the first version of a MATLAB-based comprehensive 

computational framework based on the PCE theory is described. The code 

has been designed to obtain consistent results in the context of GSA and 

RA at a reduced computational cost.  

Once the basis of the PCE theory have been revised, the main features 

of the numerical code are provided also with the aid of some test examples. 

In particular it is shown that the proposed methodology (a) provides a 

surrogate model in a simple polynomial form on which is possible 

extending the number of runs for simulation purposes (b) allows 

identifying the different influence of the uncertain model parameters (c) 

leads to considerable saving of computational time while keeping 

acceptable accuracy. 

 

 

 



3. Application to analytical 

formulations 
 

 

SOMMARIO 

In questo capitolo si presenta lo sviluppo di una nuova formulazione 

analitica utile ad interpretare i fenomeni chiave legati allo spiazzamento di 

fluidi non-Newtoniani nel sottosuolo. Tale formulazione è accompagnata 

da un’analisi approfondita del modello ottenuto, capace di tener conto 

dell’incertezza associata ai parametri rilevanti del problema. Le dinamiche 

di un’interfaccia stabile e mobile in geometria radiale sono considerate 

all’interno di un dominio poroso saturato da due fluidi, entrambi non-

Newtoniani, assumendo che pressione e velocità siano continue 

all’interfaccia e che la pressione iniziale sia costante. La legge del moto 

considerata per entrambi i fluidi è una legge di Darcy modificata. 

Accoppiando le leggi del moto non lineari con l’equazione di continuità e 

tenendo conto degli effetti di compressibilità, si ottiene un sistema di 

equazioni alle derivate parziali del secondo ordine non lineari. 

Considerando che i due fluidi abbiano lo stesso indice reologico, n, è 

possibile trasformare le equazioni precedenti attraverso l’introduzione di 

una variabile auto-simile. Ulteriori trasformazioni delle equazioni che 

includono le condizioni all’interfaccia, mostrano per n<1 l’esistenza di un 

fronte di compressione dinnanzi all’interfaccia mobile. Risolvendo le 

equazioni ottenute si ottengono, in forma chiusa per qualsiasi valore di n, la 

posizione dell’interfaccia, del fronte di compressione e la distribuzione 



50 Application to analytical formulations 

 

 

 

della pressione. A partire dal modello precedentemente descritto, le analisi 

relative alla propagazione dell’incertezza e alla sensitività globale sono 

sviluppate con il codice di calcolo introdotto nel precedente capitolo. 

Queste analisi hanno permesso di verificare come l’incertezza legata ai 

parametri chiave del problema influenzi le variabili di stato di interesse. La 

bontà dei risultati ottenuti attraverso il codice basato sull’espansione in 

Caos Polinomiale è stata verificata attraverso un confronto con un 

approccio tradizionale di tipo Monte Carlo. Da tale confronto non è emersa 

soltanto l’accuratezza dei risultati ottenuti ma anche il sensibile risparmio 

in termini di onere computazionale pur trattandosi di un’applicazione che 

vede coinvolta una formulazione di tipo analitico. Il lavoro presentato in 

questo capitolo è incluso in Ciriello and Di Federico [2013], a valle di 

studi analoghi sul flusso di fluidi non-Newtoniani nel sottosuolo (Di 

Federico and Ciriello [2012], Ciriello and Di Federico [2012]). 
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3.1 NON-NEWTONIAN DISPLACEMENT IN POROUS MEDIA 

Displacement phenomena in porous media involving non-Newtonian 

fluid behavior are of considerable interest in several areas of engineering 

and physics. In petroleum engineering, various substances injected into 

underground reservoirs to enhance oil recovery, by improving the overall 

sweeping efficiency and minimizing instability effects, reveal a nonlinear 

stress-shear rate relationship and other non-linear effects [Wu and Pruess, 

1996]: these include dilute polymer solutions, emulsions of surfactants and 

foams. On the other hand, heavy and waxy oils are often found to exhibit 

non-Newtonian characteristics at reservoir conditions [Pedersen and 

Ronningsen, 2000]; therefore a situation may be envisaged in which a non-

Newtonian fluid injected into a reservoir displaces another non-Newtonian 

fluid with different rheological characteristics. A similar situation may 

arise in environmental remediation efforts geared towards in situ treatment, 

where injection of substances having nonlinear rheological properties such 

as colloidal or biopolymer suspensions is employed to remove, or favor the 

removal of, liquid pollutants from contaminated soils; relevant examples 

include DNAPLs remediation by means of colloidal liquid aphrons [Li Yan 

et al., 2011], and the use of xanthan gum to enhance mobility and stability 

of suspensions of nanoscale iron employed in reactive barriers [Comba et 

al., 2011]. As in situ bioremediation may create polymers with non-

Newtonian characteristics [Hung et al., 2010], a subsequent injection may 

result in displacement of a non-Newtonian fluid by another. Similar 

situations may arise in industrial engineering, where non-Newtonian flows 

occur in filtration of polymer melts, food processing, and fermentation 

[Chabra et al., 2001], and in orthopedic applications, where injectable 
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cements used in a variety of bone augmentation and bone reconstruction 

procedures also display a complex rheology [Lewis, 2011]. 

The displacement phenomenon of a fluid by another in a porous 

domain has been extensively investigated in the literature when either fluid, 

or both, exhibit non-Newtonian behavior. Pascal [1984a] adopted 

Muskat’s frontal advance model to study steady-state immiscible 

displacement of a Bingham fluid by another in plane/radial geometry. 

Steady-state displacement, and its stability, were analyzed in Pascal 

[1984b] for power-law fluids with yield stress in plane geometry, and in 

Pascal [1986] for power-law fluids in radial geometry; capillarity was 

added to the model in Pascal [1988]. In Pascal and Pascal [1988], 

transient plane displacement of a power-law compressible fluid by another 

was considered. In Pascal [1990] and Pascal [1992], transient plane/radial 

displacement of a power-law fluid by another was considered, allowing for 

two-phase flow behind the displacement front but neglecting 

compressibility. An analytical solution for piston-like displacement of 

power-law dilatant fluids in plane and radial geometry was derived in Chen 

and Liu [1991]. In Wu et al. [1991] an analytical solution of Buckley–

Leverett type to two-phase flow determined by the displacement of a 

Newtonian fluid by a non-Newtonian power-law one was obtained and 

validated by a numerical model. Wu and Pruess [1998] developed a 

numerical simulator for multiphase flow in porous media, including the 

power-law and Bingham models. A novel two-phase numerical simulator 

incorporating non-Newtonian behavior was proposed in Zhu et al. [2002]. 

Tsakiroglou [2004] generalized the macroscopic equations of the two-

phase flow in porous media accounting for capillarity for the case of a 

shear-thinning displacing fluid, and developed a numerical scheme of 

inverse modeling to estimate model parameters from unsteady-state 
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experiments. Other researchers investigated the onset of instabilities in 

displacement of non-Newtonian fluids experimentally [Al-Attar, 2011] or 

theoretically [Kim and Cho, 2011].  

If a fingering instability does not develop at the interface between 

displacing and displaced fluid, the frontal advance theory may be 

considered an approximate yet acceptable description of the displacement 

mechanism, with the advantage of providing analytical solutions, which in 

turn may prove useful as benchmarks against which numerical solvers are 

tested. An example of such solutions was provided by Pascal and Pascal 

[1988], who derived a similarity solution for planar transient immiscible 

displacement of a power-law compressible fluid by another with the same 

flow behavior index. The study of the radial case (e.g. flow away from a 

wellbore), which represents a plausible simplification of the geometry 

involved in several possible applications, is developed in this work. The 

assumption of identical flow behavior index for displacing and displaced 

fluid is retained to derive a closed-form solution in the format of a system 

of algebraic nonlinear equations. As values on flow behavior index in real 

applications, especially connected to reservoir engineering, tend to cluster 

around 0.6-0.8 [Di Federico et al., 2010], the proposed solution may 

provide a qualitative insight on relevant physical phenomena also for fluids 

whose flow behavior index differ to some extent. The problem is 

formulated in dimensionless form for different types of boundary 

conditions in the origin of the flow domain (assigned pressure or flow rate), 

and novel closed-form expressions of the pressure field in the displacing 

and displaced fluids for a generic value of the flow law exponent are 

derived generalizing to two fluids the results of Ciriello and Di Federico 

[2012]; a discussion of deterministic results is then provided.  



54 Application to analytical formulations 

 

 

 

Uncertainty plagues virtually every effort to predict the behaviour of 

complex physical systems; in the problem under investigation, it affects to 

various degrees: a) the properties of the porous medium, due to its inherent 

spatial heterogeneity and lack of complete characterization; b) the 

descriptive parameters of the fluids involved, having a complex rheological 

behavior. In the first case, a random field description [e.g., Dagan, 1989] 

represents the most complete methodology. In the sequel, to exemplify the 

approach and achieve easily interpretable indications, the key problem 

parameters are modeled as independent random variables having an 

assigned probability distribution. 

In this work, the adoption of GSA conducted by means of PCE allows 

to study how uncertainty affecting selected parameters propagates to state 

variables adopting the benchmark analytical model of non-Newtonian 

radial displacement derived earlier. The goodness of the results obtained by 

the PCE is then assessed by comparison against a traditional Monte Carlo 

(MC) approach. 

3.2 ANALYTICAL MODEL AND SIMILARITY SOLUTION 

3.2.1 Flow law for power-law fluid in a porous media  

Flow of Newtonian fluids in porous media is governed by Darcy’s 

law. Its extension to non-Newtonian fluids is complex, due to interactions 

between the microstructure of porous media and the rheology of the fluid, 

even in the creeping flow regime. The scientific literature of the past 

decades includes numerous works dedicated to this problem: for exhaustive 

reviews see [Chabra et al., 2001]. A sizable part of them deals with power-

law fluids, described by the rheological Ostwald-DeWaele model, given for 

simple shear flow by 
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1


n
m   ,                                                                       (3.1) 

in which   is the shear stress,   the shear rate, m [
21  nTML ] and n  

indices of fluid consistency and flow behavior respectively, with 1n , 

1  or 1  describing respectively pseudoplastic, Newtonian, or dilatant 

behavior. The power-law model, itself a simplification of more complex, 

and realistic, rheological behavior, is nevertheless often adopted in both 

porous media and free-surface flow modeling for its simplicity [Ruyer-Quil 

et al., 2012]. The corresponding modified version of Darcy’s law takes in 

the literature the two equivalent forms [Cristopher and Middleman, 1965; 

Pascal, 1983; Nield and Bejan, 2006] 

vvvv
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,                          (3.2) 

where gzpP   is the generalized pressure, p  the pressure, z  the 

vertical coordinate,   the fluid density, g  the specific gravity, v  the 

Darcy flux, k  the intrinsic permeability coefficient [
2L ], ef  the effective 

viscosity [
2 nnTML ], 

*k  the generalized permeability [
1nL ]; the ratio 

efk  , termed mobility, is given by [Pascal and Pascal, 1985] 
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where   denotes the porosity. For 1n , the effective viscosity ef  

reduces to conventional viscosity  , and Eq. (3.2) reduces to Darcy’s law 

 vkP  . Earlier literature reviews [e.g. Di Federico et al., 2010] 

demonstrate that the bulk of applications to non-Newtonian flows in porous 
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media involve pseudoplastic fluids with n  mainly in the range 0.5÷1, yet 

dilatant behavior is sometimes encountered.  

3.2.2 Problem formulation 

 

 

Figure 3.1. Domain schematic (either wp  or wQ  is assigned).  

 

A well of radius wr  located in the center of a porous domain of 

infinite horizontal extent is considered. Constant thickness h , and uniform 

properties, are assumed to analyze the dynamics of a moving interface due 

to injection at the well of a non-Newtonian fluid into the domain, initially 

saturated by another non-Newtonian fluid (Figure 3.1); both fluids, 

displacing and displaced, are of power-law pseudo-plastic behavior with 

the same consistency index n . The interface between the fluids is 

considered to be stable and sharply defined, so that a piston-like 

displacement exists. The pressure and velocity fields are assumed to be 

continuous at the interface; the pressure is taken to be constant and equal to 

ep  in the domain occupied by the displaced fluid at time 0t ; the 

displacing fluid is injected at a constant pressure wp  greater than the 

ambient pressure ep , or at a given injection rate  tQw . 
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The flow and continuity equation for both fluids ( 1i  for the 

displacing, 2i  for the displaced) are: 

n
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where the Darcy velocities iv  are the one-dimensional counterparts of 

(3.2). In (3.4)-(3.5) r  denotes the radial spatial coordinate, t  time,   and 

k  the domain porosity and permeability, ip  and pfii ccc 0  the 

pressures and total compressibility coefficients in the two flow regions, 

with fic  being the fluid compressibility coefficient and pc  the porous 

medium compressibility coefficient. The relative influence of fluid and 

medium behavior on the total compressibility coefficient may vary widely, 

depending on their nature, and ranges from cases where one is negligible 

compared to the other to instances where the two effects are of the same 

order. In the CO2 storage application presented by Zhou et al. [2008], brine 

and formation take the respective compressibilities 
10105.3 fc Pa

-1
 and 

10105.4 pc Pa
-1

. In enhanced oil recovery applications, the fluid 

compressibility coefficient typically lies in the range 
91051  Pa

-1
 

[Pascal, 1991], while according to Pascal and Pascal [1988], the total 

compressibility coefficient 0c
 
may vary between 

8101   and 
8105  Pa

-1
, 

implying a larger influence of medium compressibility. An example 

illustrating the differences between compressibilities for different fluids is 

the water–oil displacement case study presented by Fokker and Verga 
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[2011], where water, oil and rock compressibility are taken equal 

respectively to 
10105.4  , 

9103.1  and 
10105   Pa

-1
. In general, 

oscillations between typical fluid compressibility values seem to be of one 

order of magnitude, while formation compressibility varies in a larger 

interval [Di Federico and Ciriello, 2012].    

Substituting (3.4) in (3.5) one obtains for the two fluids ( 2,1i ): 
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where    trptrpi ,, 1  for  tr 0  and    trptrpi ,, 2  for

   rt , with  t  being the interface position; since the injection 

starts at 0t ,   00  . 

The initial condition for the displaced fluid is 

eprp )0,(2 .                             (3.7) 

Designated boundary conditions at the well wrr  are either constant 

pressure wp  or flow rate )(tQw , indicated in the sequel as b.c. 1) and 2)),:  

  ww ptrp ,1 ,                             (3.8) 
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The expression of the injected flow rate for the second-type boundary 

condition is taken to be 

  c
w tQtQ 0 ,                           (3.10) 
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where  00 Q  is the injection intensity and c  a real number. Lastly, the 

pressure within the displaced fluid at infinity equals the ambient pressure, 

i.e.  

e
r

ptrp 


),(lim 2 .                                      (3.11) 

At the moving interface, the pressure and velocity fields are 

continuous; thus 

     ttpttp ,, 21   ,                                            (3.12) 
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in which V  is the common value of the Darcy velocity at the interface. 

The following dimensionless variables are then defined ( 2,1i ):  
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where L  is an arbitrary length scale of the order of the domain’s thickness 

h , 

  nnnnnn
kLcmT

21
0

)1(1
01

1
1

                          (3.15) 

is a timescale, and 0k  a reference permeability. With m 10 hL , 

18
01 Pa10 c , n

1 sPa 1 m , 
212

0 m10k , one has  s 105T 1 day 

for 5.0n . The dimensionless form of (3.4) and (3.5) is therefore (primes 

are dropped for convenience) 
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where the quantities  
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reduce for 1n  to KA  and 1n , and 

    2112 mmkkM efef   , 0102 cc , 0kkK  , (3.21a,b,c) 

are respectively the mobility ratio, the compressibility ratio, and the 

dimensionless permeability.  

Initial and boundary conditions (3.7), (3.8) and (3.11), and condition 

at the interface (3.12) remain unchanged in dimensionless form. Boundary 

condition (3.9) becomes  
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Interface condition (3.13) reads in dimensionless form (primes 

omitted) 
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3.2.3 Similarity solution  

Adopting the similarity variable 
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equations (3.16)-(3.17) and (3.18)-(3.19) take the form 
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where 1  is linked to the position of the moving interface by 

   nntt  1
1 .                          (3.29) 

The first-kind and second-kind boundary conditions at the well (3.8) 

and (3.22) become respectively 

ww pp )(1  ,                           (3.30) 
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where  trww ,  . Initial and boundary conditions (3.7) and (3.11) 

expressed in terms of   transform into 
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.                          (3.32) 

The conditions at the interface (3.12) and (3.23) become 
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The interface velocity takes the form  
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Integrating (3.35) with the initial condition   00   yields 
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Coupling (3.29) and (3.36) leads to the following expression for 1   
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and taking (3.34) and (3.37) into account yields 
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Equations (3.27)-(3.28) are Bernoulli differential equations; their 

integration with (3.38) yields respectively  
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From (39) it is evident that when 1n , 02 ddp for  
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Equations (3.40) and (3.45) show for a pseudoplastic fluid ( 1n ) the 

existence of a compression front ahead of the moving interface, whose 
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dimensionless position and velocity *  and *V  (defined in analogy to   

and V ) are given by 
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At and beyond the compression front, the displaced fluid Darcy 

velocity 2v  is null; hence, the fluid remains at the constant ambient 

pressure ep  for *  . Therefore, (3.40) holds in the interval 

*1   , and the boundary condition (3.32) is replaced for 1n  by 

  epp *2  .                           (3.47) 

The velocities of displacing and displaced fluid can then be derived as 
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The actual value of the front position 1  in (3.41)-(3.49) may be 

derived by means of the boundary condition at the well (either (3.30) or 

(3.31)), the interface condition (3.33), and (3.47).   

For b.c. 1) (assigned constant pressure at the well), taking (3.30) and 

(3.47) into account, the integration of (3.39)-( 3.40) yields respectively 

      ww nbaInbaIpp  ,,,,,, 11111  ,           (3.50) 

       ,,,*,,, 22222 nbaInbaIpp e  ,                       (3.51) 

where ( 2,1i )  
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with 12 F  being the hypergeometric function. Appendix A reports simpler 

expressions of (3.52), valid for certain special values of flow behavior 

index n .   

On the other hand, (3.50)-(3.51) and the interface condition (33) give 
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Note that in (3.50) and (3.53),  wnbaI ,,, 11  may be set to zero given 

that 0w  since  w . As the total pressure drop p  between well 

and reservoir is known, the only unknown in the implicit algebraic 

equation (3.53) is 1 ; once 1  is determined, *  is then calculated 

through (3.45), and the pressure distributions behind and ahead the moving 

interface are evaluated via (3.50)-(3.51). 

Finally, the injection flow necessary to maintain wp  at the well under 

the approximation 0w  is given by  
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that is a decreasing function of time for a pseudoplastic fluid. 
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For b.c. 2) (assigned time-variable flow rate at the well), using (3.31) 

and (3.38) with 0w   yields again (3.54). A self-similar solution is 

possible in this case only when  

     nn
w tQtQ  11

0 ,                        (3.55) 

with 0Q  being the injection intensity defined in (3.10) and non-

dimensionalized via (3.14). Taking (3.54) and (3.55) into account, the 

value of 1  is determined solving the implicit algebraic equation 
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Once 1  is known, the position of the compression front *  is 

derived via (3.45), while the pressure in the displaced fluid  2p  is given 

again by (3.51), albeit with a different value of * . To derive the pressure 

in the displacing fluid  1p , (3.39) is integrated between   and 1 , 

yielding with the help of (3.34) 
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For w  , (3.57) gives the pressure  wp  at the injection well 

when the time variable injection rate is given by (3.55).  

When 1n , no pressure front is present and boundary condition 

(3.32) holds; integrating (3.39)-(3.40) yields for assigned constant pressure 

at the well (b.c. 1) an integral which is divergent in the origin 0w ; 

therefore no similarity solution exists in this case. For assigned flow rate at 

the well (b.c. 2), a self-similar solution is possible only for 31  n  and 
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when the injection rate is given by (3.55), which for dilatant fluids is an 

increasing function of time. Hence integrating (3.39)-(3.40) with (3.31), 

(3.32), (3.33) and (3.55) gives (note that in this case 0ib )   
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       ,,,,,, 22222 nbaInbaIpp e  ,                       (3.59) 

where  ,,, 11 nbaI ,  111 ,,, nbaI  are given by (3.52), and for 1,   

[Gradshteyn and Ryzhik, 2000]  
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Again in (3.58)-(3.59) the displacement front position 1  is derived 

solving (3.56). 

When 1n  (a Newtonian fluid displacing another one), the situation 

is qualitatively analogous to the dilatant case, and a similarity solution 

exists only for assigned constant injection rate 0Q  at the well. The position 

of the interface 1  can be derived, under the assumption 0w , solving 

the implicit equation  

    hQA  0
2
1

2
1 4/exp  ,                         (3.61) 

and the pressure field is given by  
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where  Ei  is the exponential integral. 

3.3  UNCERTAINTY PROPAGATION AND SENSITIVITY 

ANALYSIS 

In this section the behavior of the responses of interest (i.e.  t , 

 t*  and the pressure increment in the domain with respect to the ambient 

value  p ) is discussed as functions of the dimensionless model 

parameters n , M ,  ,   and K , (a) by means of a deterministic analysis, 

and (b) modeling them as stochastic variables and considering the overall 

effect of their uncertainty.  

As far as the deterministic analysis is concerned, 2.0  and 1K  is 

selected as a reference case; to grasp the influence of relative fluid mobility 

and compressibility, the following combinations for the mobility and 

compressibility ratios M  and   are considered: I) 2.0M , 2.0 ; II) 

2.0M , 5 ; III) 5M , 2.0 ; IV) 5M , 5 .  

In Figures 3.2a-c, the interface location   is depicted as a function of 

time for the above combinations and b.c. 1) with 1wp , 1.0ep  (

9.0p ) and 75.0,67.0,50.0n  respectively; these values cover quite 
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well the range of variation of n  for pseudoplastic fluids in field cases [Di 

Federico et al., 2010  and references therein]. Inspection of Figures 3.2a-c 

reveals that, for given value of flow behavior index n , the interface 

advances slowly when the displaced fluid is less compressible and less 

mobile than the displacing one (case I), while it is fastest when the 

displaced fluid is more compressible and more mobile than the displacing 

one (case IV). Upon comparing results for different values of n , it is seen 

that the interface position is an increasing function of flow behavior index. 

Differences between results at late limes for different values of n are more 

pronounced for case I. This indicates, at least for the range of values of 

parameters examined here, that the maximum displacement for assigned 

well pressure is achieved with large values of the power law model 

exponent n, and of the compressibility and mobility ratios   and M . 

Figures 3.2d-f show the compression front location *  as a function 

of time for the same boundary conditions and cases I-IV listed above, 

respectively for 75.0,67.0,50.0n . As expected, the compression front 

advances fastest when the displaced fluid is more mobile, but less 

compressible than the displacing one (case III); the compression front is 

slowest for case II, when the displaced fluid is less mobile and more 

compressible than the displacing one. The compression front location is an 

increasing function of flow behavior index; in relative terms, this effect is 

compounded for cases I and III, when the displaced fluid is less 

compressible than the displacing one. Upon comparing Figures 3.2d-f with 

Figures 3.2a-c, it is noted that the compression front location is farther 

from the interface location when the displaced fluid is less compressible 

than the displacing one (cases I and III). The above conclusions hold true 

for all values of flow behavior index, with differences between the two 

fronts increasing with n . 



70 Application to analytical formulations 

 

 

 

 

Figure 3.2. a) Front position  t  for injection at prescribed pressure versus time 

for 9.0p , 2.0 , 1K , cases I-IV, 50.0n ; b) as a) but 67.0n ; c) as 

a) but 75.0n ; d) as a) but compression front position  t* ; e) as d) but 

67.0n ; f) as d) but 75.0n . 
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When assigned flux in the origin is considered (i.e. b.c. 2)), the front 

position at a given time is not a function of  mobility and compressibility 

ratio, but only of flow behavior index; thus Figure 3.3a represents the front 

advancement over time for b.c. 2) with 1h , 2.00 Q  and 

75.0,67.0,50.0n ; note that these values of flow behavior index 

correspond to injection rates in the origin decreasing with time respectively 

as 
14.020.033.0 ,,  ttt ; corresponding results are thus not strictly 

comparable; the front advances further for larger values of n  at late times, 

while at small times the reverse is true.  

Figures 3.3b-d show the compression front location  t*  as a 

function of time for b.c.2) with the same values of 0Q  in the cases I-IV 

listed above, respectively for 75.0,67.0,50.0n . As for b.c. 1), the 

compression front advances fastest in case III and slowest in case II; cases I 

and IV yield the same results since the location of the compression front is 

a function of the ratio between mobility and compressibility ratios. As for 

b.c. 1), the relative distance between the compression front and the 

interface location is greatest for case III and smallest for case II. In turn, 

the distance between the two fronts increases with the value of flow 

behavior index.  

Figures 3.4a-b show for b.c. 1) with 9.0p , 50.0n  and case II, 

the effect of a variation of K  and   respectively on the position of the 

interface; Figures 3.4c-d do the same for the location of the compression 

front. It is seen that a permeability increase by a factor of ten has a 

significant effect on the interface and compression front position; less so a 

variation of porosity in the range 0.150.30.  



72 Application to analytical formulations 

 

 

 

Finally, Figures 3.5a-b show the behavior of pressure in the displacing 

and displaced fluids,  1p  and  2p , as a function of   for selected 

cases with 50.0n , 5M   (case IV), 1K , 20.0 ; Figure 3.5a 

does so for b.c. 1) with 1wp  and 1.0ep ; Figure 3.5b for b.c. 2) with 

1h , 1.0ep  and 2.00 Q . In both cases, note the discontinuity in the 

pressure derivative at the interface location 1  and the pressure asymptote 

at the compression front location * . 

 

 

Figure 3.3. a) Front position  t  for injection at prescribed rate versus time for 

2.00 Q , 2.0 , 1K , cases I-IV, and 75.0,67.0,50.0n ; b) as a) but 

compression front position  t*  and 50.0n ; c) as b) but 67.0n ; d) as b) 

but 75.0n . 
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Figure 3.4. a) Front position  t  for injection at prescribed pressure versus time 

for 9.0p , case II, 50.0n , 2.0  and 10,5,2,1K ; b) as a) but 

compression front position  t* ; c) as a) but 1K  and 30.0,25.0,20.0,15.0

; d) as c) but compression front position  t* . 

 

In the following the stochastic nature of the parameters involved in the 

proposed model is considered, representing them as independent random 

variables to exemplify the approach. This assumption makes the analysis 

consistent with the previous deterministic one and enables to investigate 

the salient features of the proposed solution, not affecting the generality of 

the approach. Furthermore, if the spatial variability of some of the 

parameters involved has to be investigated for specific characterization 

purposes, the PCE-based approach can be combined with the Karhunen-
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Loeve expansion to represent the stochastic processes in terms of 

uncorrelated random variables [Spanos and Ghanem, 1989; Ghanem, 

1998].  

 

 

Figure 3.5. Pressure in the domain for injection at prescribed pressure versus 

similarity variable  for  50.0n , 5M  (case IV), 1K , 2.0  and a) 

1wp , 1.0ep ; b) 1h , 1.0ep , 2.00 Q . 

 

 

Random variable Distribution 

n U(0.40-0.60) 

  U(4-6) 

M  U(4-6) 

K U(0.80-1.20) 

  U(0.16-0.24) 

Table 3.1. Intervals of variability of the selected uniformly distributed random 

model parameters 

 

An hypothetical case study (i.e. two specific fluids and a porous 

domain) is simulated and the way in which the uncertainties associated 

with the values of the same five parameters influence the model responses 

is analyzed by means of Global Sensitivity Analysis (GSA) performed 
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through the Polynomial Chaos Expansion (PCE) technique. Uniform 

distributions reported in Table 3.1 are considered under a boundary 

condition of assigned pressure at the well with 1wp  and 1.0ep  (

9.0p ).  

Figures 3.6a-b depict the mean and associated standard deviation (6a) 

and the total sensitivity indices (6b) of displacement front position  t  as 

a function of time. The uncertainty in the front position is found to 

increase, as expected, with time, doing so linearly except for very early 

times; the largest contribution to the total variance at any time is due to 

medium permeability and porosity in almost equal fashion, while the flow 

behavior index contributes very little; the variance of flow behavior index, 

initially the highest, exhibits a non-monotonic behavior; compressibility 

and mobility ratios do not play a role. The total sensitivity index of 

permeability and porosity are almost equal and increase from zero to 50% 

for dimensionless time around 5 and then slightly decreases with increasing 

time. Correspondingly, the sensitivity to flow behavior index is initially 

close to 100%, then decreases to almost zero, and again increases with time 

reaching 10%.  

Figure 3.6c-6d do the same as Figures 3.6a-6b for the pressure front 

position  t* . While the variance of pressure front again increases 

linearly with time, its value is much larger than that associated with the 

displacement front. The largest contribution to variance is here due by far 

to flow behavior index, then to porosity and permeability, and lastly to 

compressibility and mobility ratios. The total sensitivity index of flow 

behavior index, initially largest, decreases to almost zero for very early 

times, then increases again reaching 60% at late times. The influence of 

permeability and porosity is almost equal and increases sharply for very 
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early times, reaches a peak, then slowly decreases to 10% for late times; 

the indices of the compressibility and mobility ratios, almost identical 

between them, exhibit a similar behavior but lower values.  

 

 

Figure 3.6. a) Front position  t  versus time and associated uncertainty 

calculated with the PCE of order p = 2; b) as a) but total sensitivity indices (

 TS ,  ,,,, KMn ); c) as a) but calculated for compression front position 

 t* ; d) as b) but calculated for compression front position  t* . 

 

An analogous analysis (not shown) for intervals of variability of 

random model parameters  smaller (10%) and larger (30%) than those 

reported in Table 3.1 (20%) reveals a behavior over time of total and 

partial variances of the two fronts qualitatively similar to that shown in 
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Figure 3.6, with variance values increasing with increasing variability. 

Consequently, the behavior of sensitivity indices is remarkably similar to 

that shown in Figure 3.6.      

When the sensitivity to uncertainty of the pressure increment in the 

domain      eppp    is examined (not shown), the sensitivity 

indices exhibit a very irregular behavior, especially near the position of the 

displacement and pressure fronts; for small values of similarity variables 

(small radius/large times), the impact of flow behavior index is the largest, 

while approaching the displacement front the influence of porosity and 

permeability prevails; between the displacement and pressure fronts, the 

indices of porosity and permeability remain the highest, while sensitivity to 

flow behavior index drops to almost zero; the influence of compressibility 

ratio, and, to a lesser extent, mobility ratio increases approaching the 

compression front. 

Throughout all calculations first order sensitivity indices exhibited 

insignificant differences from total ones, indicating negligible interaction 

among different inputs.   

3.4 ACCURACY AND EFFICIENCY OF THE APPROACH 

The PCE-based approach allows to obtain, through a simple analytical 

post-processing, all the results presented in the previous section, i.e. when 

the PCE-surrogate model is available all the information about the 

variability of the model response is conserved in the set of expansion 

coefficients, resulting in considerable savings in computational time. 

In the selected case study, for each model response of interest, 

surrogate models are calibrated with the PCE at different orders, resorting 

to the Legendre Chaos space because the uncertain input parameters are 
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associated with uniform distributions [Xiu and Karniadakis, 2002; Sudret, 

2008]. Results obtained through the second-order PCE exhibited negligible 

(or very minor) differences with higher order ones (generally 1-10%); thus 

only results for order 2 are reported. 

The reliability of the results obtained through the PCE-based surrogate 

model is here analyzed by comparison against a traditional approach in 

which the sensitivity indices are estimated in a Monte Carlo (MC) 

framework; this validation step, not shown in previous work on non-

Newtonian flows [Di Federico and Ciriello, 2012; Ciriello and Di 

Federico, 2012], can be performed examining a considerable number of 

realizations, since a benchmark analytical solution is available; when a 

complex numerical model is investigated [Ciriello et al., 2012], the 

excessive computational cost entails a limited amount of MC simulations. 

Validation  is useful to assess: (a) the quality of the algorithm adopted to 

obtain the PCE approximation, (b) the applicability of the technique to this 

specific model, (c) the extent of computational saving. In particular is 

shown the comparison between the total and partial variances related to the 

front position  t  in the selected case 9.0p . Due to the non-

negligible computational cost associated with Monte Carlo simulations 

(about 7 seconds for each model run, i.e. about 2 hours for 1000 iterations 

for each time instant, on a standard computer with a 2 GHz processor), the 

approach is exemplified by considering only four time instants (t = 1, 5, 10, 

15) and a fixed value of flow behavior index, 50.0n ; this allows using 

the simpler expressions (A.1) of Appendix A for calculations. Note that 

this simplification does not affect the following validation approach. The 

distributions of other random parameters are again uniform with the same 

mean values of those reported in Table 3.1 and with a selected variability 

of %10  around the mean value for each one.  
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 t 1 5 10 15 

MC 

Nsim = 1000 

V 4.32E-03 1.26E-02 2.05E-02 2.73E-02 

V(ϕ) 2.33E-03 5.52E-03 8.85E-03 1.25E-02 

V(K) 2.14E-03 6.03E-03 8.98E-03 1.43E-02 

V(M) 4.00E-05 3.00E-04 1.18E-03 3.90E-04 

V(α) 4.00E-05 2.80E-04 1.22E-03 4.00E-04 

MC 

Nsim = 5000 

V 4.32E-03 1.29E-02 2.00E-02 2.63E-02 

V(ϕ) 2.04E-03 6.29E-03 1.03E-02 1.33E-02 

V(K) 2.11E-03 6.29E-03 1.04E-02 1.22E-02 

V(M) 5.00E-05 2.60E-04 5.80E-04 3.40E-04 

V(α) 4.00E-05 2.80E-04 5.80E-04 3.70E-04 

PCE 

p = 2 

V 4.31E-03 1.26E-02 2.00E-02 2.62E-02 

V(ϕ) 2.16E-03 6.31E-03 1.00E-02 1.31E-02 

V(K) 2.14E-03 6.26E-03 9.94E-03 1.30E-02 

V(M) 1.00E-05 2.00E-05 2.00E-05 3.00E-05 

V(α) 1.00E-05 2.00E-05 3.00E-05 4.00E-05 

Table 3.2. Comparison between the total variance ( V ) and partial variances (

 V ,  ,,, KM ) calculated for the front position  t  at selected time 

instants, with the PCE of order p = 2 and with a different number of Monte Carlo 

iterations (Nsim = 1000, 5000). 

 

Table 3.2 reports, for the considered time instants, the total variance of 

the model response, i.e.  t , and the partial variances due to the 

uncertainty on , K, M and α, calculated with the PCE of order 2 and with a 

different number of Monte Carlo iterations (Nsim = 1000, 5000). It is 

observed that there is a fine agreement between the variances evaluated via 

Monte Carlo simulations and those predicted by the PCE, especially when 

considering the total variance and the partial variances associated with  

and K; furthermore the difference between the results of the two methods 

generally decreases as the number of Monte Carlo iterations increases, 

even though convergence of Monte Carlo results is not attained. The saving 

in computational time is crucial as the calibration of the coefficients of the 
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surrogate model requires only 15 sampling points in the space of the four 

selected uncertain parameters for each time instant. This advantage is even 

more important in the complete GSA discussed in the previous section, in 

which also n is considered uncertain. In that case the number of model runs 

necessary for the calibration are 21 and 116 (respectively for second and 

third order PCE) and only the PCE method allows to investigate the 

sensitivity of the presented similarity solution quite continuously in time.  

3.5 FINAL REMARKS 

A novel analytical solution to non-Newtonian radial displacement of a 

power-law fluid by another in porous media has been derived in self-

similar format under the assumptions of the frontal advance theory. The 

analysis: 

(i) extends to motion of two fluids the analytical approach and results of 

[Ciriello and Di Federico, 2012] on flow of a single power-law 

fluid, taking compressibility effects into account; 

(ii) may be used as a benchmark for complex numerical models; 

(iii) allows to investigate the key processes and dimensionless parameters 

involved in non-Newtonian displacement in porous media. 

The PCE-based approach adopted allows to: 

(iv) perform a complete Global Sensitivity Analysis of the benchmark 

solution by considering the uncertainty associated with key 

dimensionless parameters involved; 

(v) derive the variance associated with model outputs with no additional 

computational cost;  

(vi) obtain accurate results when compared with traditional simulations 

conducted in a MC framework. 
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Appendix 3A. Closed-form results 

The hypergeometric function 12 F  in (3.57) reduces to simpler 

analytical functions if )1/( lln   where l  is a positive integer. For 

3,2,1l , corresponding to 43,32,21n , these are respectively 

[Gradshteyn and Ryzhik, 2000]: 

  32,21,, 321  iiii babaI  ,                      (A.3.1) 

  5433,32,, 538312  iiiii bbaabaI i  ,         (A.3.2) 

  71912564,43,, 734192252413  iiiiiiii bbabaabaI  .  (A.3.3) 
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4. Application to a high-

complexity numerical model  
 

 

SOMMARIO 

In questo capitolo, il codice numerico sviluppato e presentato nelle 

precedenti sezioni viene applicato ad un modello numerico di elevata 

complessità rendendo possibile lo sviluppo di indagini approfondite ed 

accurate, non perseguibili attraverso metodi di simulazione tradizionali a 

causa dell’elevato onere computazionale. In particolare, l’utilizzo 

combinato delle tecniche di Analisi di Sensitività Globale e di espansione 

in Caos Polinomiale è adottato in riferimento ad un modello di trasporto di 

contaminanti per la valutazione del livello raggiunto dalla concentrazione 

di radionuclidi in corrispondenza di un assegnato punto di controllo in un 

acquifero eterogeneo. La migrazione di radionuclidi nel mezzo poroso è 

conseguente al rilascio degli stessi da un deposito sub-superficiale di scorie 

radioattive. La conduttività idraulica dell’acquifero è modellata come un 

processo stocastico stazionario nello spazio. L’incertezza caratterizzante i 

primi due momenti statistici della concentrazione di picco dei radionuclidi 

al punto di controllo è esaminata come conseguenza di una parziale 

conoscenza (a) dei parametri del variogramma della conduttività idraulica, 

(b) del coefficiente di ripartizione associato al radionuclide, e (c) della 

dispersività idrodinamica alla scala di interesse. Queste quantità sono 

trattate come variabili stocastiche. Un’Analisi di Sensitività Globale della 

risposta del sistema è quindi svolta in un contesto numerico di tipo Monte 
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Carlo, basato su di un processo di campionamento nello spazio dei 

parametri ritenuti incerti. Gli indici di Sobol sono adottati come misura di 

sensitività allo scopo di fornire una stima dell’influenza dei parametri 

incerti sui momenti statistici della concentrazione di picco di contaminante. 

Il calcolo degli indici è sviluppato impiegando la tecnica dell’espansione in 

Caos Polinomiale. Si dimostra che la metodologia proposta consente di 

estendere il numero di simulazioni Monte Carlo fino ad ottenere la 

convergenza dei momenti della concentrazione di picco, a fronte di un 

notevole risparmio computazionale e mantenendo un’accuratezza 

apprezzabile. L’applicazione della tecnica dell’espansione in Caos 

Polinomiale ad un modello di complessità pari a quello esaminato 

rappresenta un possibile nuovo approccio per la caratterizzazione 

dell’incertezza legata alle previsioni modellistiche e la conseguente 

gestione ottimale di sistemi articolati. Lo studio presentato in questo 

capitolo è incluso in Ciriello et al. [2012]. 
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4.1 RADIONUCLIDE MIGRATION IN THE GROUNDWATER 

ENVIRONMENT  

Performance assessment of radioactive waste repositories aims at 

evaluating the risk of groundwater contamination due to potential release 

of radionuclides. Modeling the whole chain of processes involved in this 

analysis is extremely challenging and requires complex theoretical and 

numerical models to couple radionuclide migration within the repository 

and in the groundwater environment. Uncertainty associated with, e.g., 

incomplete knowledge of initial and boundary conditions, nature and 

structure of the groundwater system and related key parameters is to be 

added to the list of difficulties [e.g., Tartakovsky, 2007; Winter, 2010; 

Volkova et al., 2008 and references therein]. 

The analysis of the uncertainty associated with the first two 

(statistical) moments of the peak solute concentration, detected at a given 

location, is considered in this Chapter. The source of uncertainty is the 

incomplete/imprecise knowledge of the values of a set of hydrogeological 

parameters characterizing the system [Rubin, 2003; Zhang, 2002].  

The Polynomial Chaos Expansion (PCE) technique is adopted to 

analyze the uncertainty affecting the outputs of a numerical model of 

radionuclide migration in an aquifer, following a release from a near 

surface repository. The outflow from the repository is modeled within the 

Monte Carlo (MC) framework proposed by Cadini et al. [2012]. 

Radionuclide migration in the aquifer is modeled through an Advection-

Dispersion-Reaction-Equation (ADRE). The aquifer hydraulic conductivity 

constitutes a (second-order stationary) randomly heterogeneous field. The 

model outputs of interest are the first two (statistical) moments (i.e., mean 

and variance) of the peak concentration at a given control location in the 
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aquifer. The focus of the study is the investigation of the way 

incomplete/imprecise knowledge of (a) the correlation scale, , of the 

variogram of the log-conductivity field, (b) the partition coefficient 

associated with the migrating radionuclide, kd, and (c) the longitudinal 

dispersivity at the scale of interest, L, propagates to the selected 

(ensemble) moments of the output distribution. 

Global Sensitivity Analysis (GSA) is performed jointly with PCE to 

compute the Sobol indices associated with the three selected uncertain 

parameters (, kd, L). The latter are treated as independent random 

variables. The PCE-based surrogate model which is derived is then 

employed to perform an exhaustive set of MC simulations to analyze the 

target moments of interest. 

4.2 NUMERICAL MODEL OF MIGRATION IN A RANDOMLY 

HETEROGENEOUS AQUIFER 

The approach is exemplified by considering an environmental 

problem related to the performance assessment of a radioactive waste 

repository. A MC-based simulation technique is employed to describe 

radionuclide release at the repository scale. This model of release of 

radionuclides, i.e., Pu239
, from the repository is linked to a groundwater 

flow and transport numerical model to simulate radionuclide migration 

within a heterogeneous aquifer. 

The aquifer hydraulic conductivity is modeled as a second-order 

stationary stochastic process in space. The first two (statistical) moments 

(i.e., mean and variance) of the peak concentration, detected at a given 

control location in the aquifer, are considered as the target model 

responses. As mentioned in Section 4.1, uncertainty associated with these 
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quantities is considered to be a consequence of incomplete knowledge of 

(a) the correlation scale of the variogram of the log-conductivity field (b) 

the partition coefficient associated with the migrating radionuclide, and (c) 

the dispersivity associated with the spreading of the reactive solute plume 

at the scale of observation. 

4.2.1 Repository representation and modeling of release history 

The conceptual repository design considered in the performance 

assessment illustrated in this study has been proposed by ENEA 

[Marseguerra et al., 2001a, b] and has similarities with the currently 

operative disposal facility of El Cabril in Spain [Zuolaga, 2006]. 

Following Cadini et al. [2012], the repository is modelled as a one-

dimensional (along the vertical direction) system. The major containment 

structures of the disposal facility are the waste packages, the modules or 

containers, the cells and the disposal units. A typical waste package 

consists in a steel drum containing the radioactive waste and immobilized 

in a concrete matrix. The geometrical setting of the waste packages, 

modules and disposal units is taken from Cadini et al. [2012]. 

In agreement with typical engineering scenarios, it is considered that 

[Marseguerra et al. 2001a, b]: (i) the modules are identical; (ii) the mass 

transport occurs chiefly along the vertical direction; and (iii) lateral 

diffusive spreading is symmetric. Radionuclides transition across the 

compartments is described stochastically. Under the assumption that solute 

displacement can be modeled as a Markovian process, the transition rates 

can be identified from the classical advection/dispersion equation. Non-

Fickian transport could also be included according to existing conceptual 

schemes [Berkowitz et al. 2006 and references therein] where the relevant 
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transport parameters can be estimated by detailed data analysis at the 

temporal and spatial scales at which the processes of interest occur. 

For the purpose of this example, the numerical code MASCOT 

[Marseguerra and Zio, 2001; Marseguerra et al., 2003; Cadini et al., 

2012] is adopted to compute the probability density function of the release 

of Pu239
 from the modules. Details of the initial and boundary conditions, 

computations and the resulting temporal dynamics of the radionuclide 

release history are illustrated in Cadini et al. [2012]. 

4.2.2 Radionuclide migration in the groundwater system 

For simplicity and for the purpose of illustrating the methodology, 

radionuclide transfer time within the partially saturated zone is disregarded 

and only contaminant residence time within the fully saturated medium is 

analyzed. This assumption may be regarded as conservative because it 

tends to overestimate the radionuclide concentration detected downstream 

of the repository. This can also be considered as a viable working 

assumption in the presence of shallow reservoirs. The effect of processes 

occurring within the partially saturated region may require an additional 

ad-hoc analysis, which is outside the scope of this work and does not alter 

the methodological framework of the work. 

Groundwater flow and contaminant transport are modeled within a 

two-dimensional system. As mentioned earlier, the (natural) log-

transformed hydraulic conductivity, Y(x) (x denoting the space coordinate 

vector), is modeled as a second-order stationary spatial random function. 

For this example, the parameters of the variogram of Y have been selected 

as representative of a field case study. The latter is not specifically reported 

for confidentiality reasons. However, note that the particular choice of 
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these values does not affect the generality of the methodology. Log-

conductivity is characterized by an isotropic variogram of the exponential 

type, with sill 21.12  . For the purpose of this illustrative example, the 

variogram sill is fixed and its correlation scale is considered as an uncertain 

parameter because of its poor identifiability due to typical horizontal 

spacing of available field-scale measuring locations. MC realizations of 

Y(x) have been generated by employing the sequential Gaussian scheme 

implemented in the code GCOSIM3D [Gómez-Hernández and Journel, 

1993]. 

 

 

Figure 4.1. Sketch of the adopted two-dimensional groundwater flow domain, 

including the repository projection (R) and the selected control point (W), for a 

selected realization of the log-conductivity field. 
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A two-dimensional domain of uniform lateral side equal to 2000 m is 

considered. As an example, a selected realization of the log-conductivity 

distribution is depicted in Figure 4.1 together with the repository projection 

(R), with sides equal to 50 m and 80 m, and the target control point (W), 

located 960 m downstream of the repository fence line. 

The domain is discretized into square cells with uniform side of 10 m, 

ensuring that there are at least four log-conductivity generation points per 

correlation scale. Each of the 8  5 cells located under the repository 

projection area receives the release of a cluster of 4 × 3 columns of 5 

modules [see also Cadini et al. 2012]. These cells are modeled through a 

recharge boundary condition so that a time-dependent influx solute mass is 

injected in the porous medium according to a suitable discretization in time 

of the calculated outflow from the repository. As in Cadini et al. [2012], 

the incoming water flow [m
3
/y] from the repository is set at a constant 

value equal to ,Sqdin   2.21dq [m/y] being the water Darcy flux at 

the bottom of the 5 modules column and S [m
2
] being the area of the source 

cells. The associated radionuclide concentration [Bq/m
3
] released to the 

aquifer is then: 

    inoutin tpdfAtC  0                            (4.1) 

where A0 = 1.6  106 [Bq] is the total activity of Pu239
 (which is assumed 

to be uniformly distributed) in the repository at a reference time t = 0 and 

)(tpdfout  [y
-1

] is the release probability density function from the 

repository. The adopted Pu239
 activity level corresponds to the Italian 

inventory [Enea, 2000] and justifies the assumption of disregarding 

solubility-limited release. 
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In the example presented, the concentration of Pu239
 within the 

repository is 423914
0

239 1030.21096.2   Pu
slrepAr

Pu
rep CVNAC 

[mol/m
3
], r = 0.28761  10

4
 [y

-1
] being the Pu239

 constant decay, AN  the 

Avogadro constant, while repV  is the total volume of the repository and 

239Pu
slC  is the solubility limit of Pu239

. Additional details are presented in 

Cadini et al. [2012]. 

Base groundwater flow in the aquifer is driven by a constant hydraulic 

head drop between the East and West boundaries, resulting in a unit 

average head gradient. No-flow conditions are assigned to the North and 

South boundaries. 

Simulations of the steady state flow problem for each log-conductivity 

realization are performed with the widely used and tested finite difference 

code MODFLOW2000 [McDonald and Harbaugh, 1988]. Radionuclide 

migration in the groundwater system is then modeled through the classical 

Advection-Dispersion-Reaction Equation (ADRE), where the partition 

coefficient, dk , governing sorption of the contaminant onto the host solid 

matrix and the longitudinal dispersivity, L  (for simplicity, transverse 

dispersivity is assumed to be equal to 0.1 L ), are considered to be random 

variables. A uniform effective porosity of 0.15 is considered. 

4.3 GSA AND VALIDATION 

The three random parameters selected are assumed to be uniformly 

distributed within the intervals reported in Table 4.1. The degree of 

variability of dk  has been selected according to ENEA [1997] and Nair 

and Krishnamoorthy [1999]. The range of variability of  is compatible 
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with the selected domain dimension and grid size Δ, and consistent with 

the typical scarcity of a sufficiently large number of closely spaced Y 

measuring points. It is also consistent with the adopted two-dimensional 

setting which relies on local scale transmissivities deriving from vertical 

integration of conductivity values [see, e.g., Neuman et al., 2007 and 

references therein for a distinction between local and regional 

transmissivities].  

With reference to the dispersivity parameter, the recent theoretical 

analysis of Porta et al. [2012] shows that modeling transport problems 

associated with fast, homogeneous chemical reactions via a continuum-

scale model with the same format of an ADRE should entail considering a 

dispersion coefficient which depends on reactive rather than conservative 

transport features. In this context, it is observed that there are still no 

conclusive and unifying theoretical findings relating dispersivities to 

different heterogeneity (and numerical resolution) scales to capture the 

peak concentration behavior within a reactive flow system at the field 

scale. For the purpose of this illustrative example, a simplified approach is 

followed and the simulations are confined within the sampling space αL = 

5-7 Δ. Note that the dispersivity values adopted are larger than those 

stemming from first-order theories based on non-reactive transport [Rubin 

et al., 1999]. They allow considering enhanced dispersion values which are 

comprised within the range of variability of apparent longitudinal 

dispersitivities that have been estimated from a set of field tracer studies 

worldwide, including estimates obtained from the calibration of numerical 

models against hydraulic and concentration data for large-scale plumes in 

heterogeneous media [see, e.g., Neuman, 1990, and Neuman and Di 

Federico, 2003 and references therein]. 
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Random Variable Distribution 

Partition Coefficient, dk  








g

l

g

l
U 3;1  

Longitudinal Dispersivity, L   mmU 70;50  

Correlation length of log-conductivity,    mmU 100;40  

Table 4.1. Intervals of variability of the selected uniformly distributed random 

model parameters. 

 

The model response, i.e., the radionuclide peak concentration, pc , at 

the control point and its statistical moments are then, in turn, random. As 

introduced before, we perform the analysis in a numerical MC framework 

according to the following steps: (a) a set of 100fN  fields of Y are 

generated by GCOSIM for given values of the random parameters sampled 

within the intervals presented in Table 4.1; (b) groundwater flow and 

transport are solved and (sample) mean, pc , and standard deviation, 
pc , 

of the peak concentration are computed; (c) steps (a) and (b) are repeated 

for different sampling points in the random parameters space; and (d) GSA 

is performed to discriminate the relative contribution of the random 

parameters to uncertainty of pc  and 
pc . Note that due to the random 

nature of Y(x), GSA is performed on the (sample) moments of pc  rather 

than on its actual value calculated at the selected control location for each 

random realization. Conceptually, this is equivalent to performing a GSA 

of the results stemming from the solution of transport equations satisfied by 

the (ensemble) moments of the evolving concentrations [e.g., Guadagnini 

and Neuman, 2001 and Morales-Casique et al., 2006 a,b for conservative 

solutes]. 
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The procedure illustrated is rather cumbersome when considering the 

solution of the full system model, because of the large number of 

simulations required, so that a GSA might become impractical. Therefore, 

the PCE technique is adopted and expansions of order p = 2, 3 and 4 are 

derived for both pc  and 
pc . The Legendre Chaos space is considered, 

because the uncertain input parameters are associated with uniform 

distributions. 

 

 

Figure 4.2. Total Sensitivity Indices, TS (Ω); Ω =  , L , dk , Total Variance, V , 

and Partial Variances, V (Ω); Ω =  , L , dk , calculated for pc  and p = 2, 3, 4. 

 

 
Figure 4.3. Total Sensitivity Indices, TS (Ω); Ω =  , L , dk , Total Variance, V , 

and Partial Variances, V (Ω); Ω =  , L , dk , calculated for 
pc  and p = 2, 3, 4. 
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The calibration of the coefficients of the surrogate models requires 

RN 10, 38 and 78 (respectively for p = 2, 3, 4) sampling points in the 

space of the three selected uncertain parameters. In this example, this 

corresponds to MCN 1000, 3800, 7800 runs of the full model of 

groundwater flow and transport. Calculation of the Sobol indices is then 

performed with negligible additional computational requirements. 

Figure 4.2 reports the dependence of the Total Sensitivity Indices, TS  

(left), and variances, V  (right), of pc  on the degree of polynomial 

expansion, p. Figure 4.3 reports the corresponding results for 
pc . Note 

that TS  and V  are not dramatically influenced by the degree of 

polynomial expansion selected for both moments. The good agreement 

obtained between Total and Principal Sensitivity Indices (not shown) 

implies that the effects of parameter interactions can be neglected in this 

example. Figure 4.2 reveals that dk  and L  are the parameters which are 

most influential to pc , regardless of the degree of expansion adopted and 

for the selected uncertainty intervals in the parameter space. On the other 

hand, the log-conductivity correlation scale,  , and (to a lesser degree) the 

dispersivity, L , strongly influence 
pc , while dk  does not have a 

significant impact for the specific values adopted in the case study. The 

uncertainty associated with the mean peak concentration is thus related 

mostly to the spatial structure of heterogeneity and to the strength of the 

dispersion phenomena, and less to the considered geochemical scenario.  

A corresponding investigation performed on the travel time of 
pc  

yields a sensitivity index close to one (not shown) for dk , revealing that 
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the partition coefficient governs the time of arrival of the peak 

concentration to the control point in the selected case study. 

 

 

Figure 4.4. Dependence of the (a) mean and (b) standard deviation of 
pc  on the 

number of Monte Carlo iterations performed with the calibrated surrogate models. 

 

 

Figure 4.5. Dependence of the (a) mean and (b) standard deviation of 
pc  on the 

number of Monte Carlo iterations performed with the calibrated surrogate models. 

 

The calibrated surrogate models allow extending with negligible 

computational cost the number of MC simulation runs which can then be 

considered to compute the mean and standard deviation of pc  and 
pc . 

Figures 4.4 and 4.5 respectively depict the dependence of these quantities 
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on the number of MC runs performed with the calibrated surrogate models. 

Even as the values of mean and standard deviation of pc  and 
pc  are 

analytical counterparts of the corresponding surrogate models, this kind of 

analysis enables one to identify the number of simulations required to 

attain convergence of the sample moments for the selected case study ( 

410 ). Therefore, this procedure is useful to address the complexity of the 

case study and supports the adoption of a surrogate model to assess the 

uncertainty associated with the model response at reasonable 

computational costs. It also allows to develop the subsequent risk analysis 

through the computation of the complete CDFs associated with the 

statistical target moments in a MC framework with the calibrated surrogate 

models. 

The reliability of the results obtained through the PCE-based surrogate 

model has been analyzed by comparison against a number of full model 

runs performed by uniform sampling of Ns = 100 points in the random 

parameters space, corresponding to a total of 
410  random realizations of 

Y(x). The limited amount of sampling points selected is due to the 

excessive computational cost associated with the full model run (about 4 

min for each simulation on a standard computer with a 3.16 GHz 

processor). 

Figure 4.6 reports the relative fraction, F (%), of the mean 

concentration values, 
SM

p l
c  (l = 1, 2, …, Ns), calculated with the PCE at 

different orders (p = 2, 3, 4) and comprised within intervals of width w = ±

 
p

FM

c
l

 , ± 2  
p

FM

c
l

 , and ± 3  
p

FM

c
l

  centered around 
FM

p l
c , 

FM

p l
c  

and  
p

FM

c
l

  respectively being the mean and standard deviation of the peak 
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concentration computed by means of the full system model. As previously 

indicated, the latter is based on a standard MC solution of radionuclide 

migration within NMC = 100 log-conductivity realizations for each 1  l  

Ns.  

 

 

Figure 4.6. Relative fraction, F (%), of the mean concentration values, 
SM

p l
c  (l 

= 1, 2, …, Ns) calculated with the PCE at different orders (p = 2, 3, 4) which are 

comprised within intervals of width w = ±  
p

FM

c
l

 , ± 2  
p

FM

c
l

 , and ± 3  
p

FM

c
l

  

centered around 
FM

p l
c ; 

FM

p l
c  and  

p

FM

c
l

  respectively are the mean and 

standard deviation of the peak concentration computed through the full system 

model on the basis of a standard Monte Carlo analysis of radionuclide migration 

within NMC = 100 log-conductivity realizations for each l. 
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It can be seen that at least 40% of the values calculated with the 

surrogate models of different order are comprised within the intervals of 

width ± 
FM

cp
 , while about 75% of the results are included within intervals 

not exceeding ± 2
FM

cp
 . According to this criterion, Figure 4.6 suggests 

that in our example the best results appear to be provided by the PCE of 

order p = 2. 

 

Model Mean of 
pc  Standard Deviation of 

pc  

Full system model 2.738E-06 3.241E-07 

Surrogate model p = 2 2.407E-06 7.175E-08 

Surrogate model p = 3 3.190E-06 1.887E-07 

Surrogate model p = 4 2.538E-06 3.462E-07 

Table 4.2. Values of the mean and standard deviation of 
pc  calculated with the 

full model and the surrogate models on the basis of 100 sampling points in the 

random parameter space. 

 
 

Model Mean of 
pc  Standard Deviation of 

pc  

Full system model 4.061E-07 8.169E-08 

Surrogate model p = 2 4.708E-07 3.310E-08 

Surrogate model p = 3 4.278E-07 5.719E-08 

Surrogate model p = 4 4.530E-07 1.321E-07 

Table 4.3. Values of the mean and standard deviation of 
pc  calculated with the 

full system model and the surrogate models on the basis of 100 sampling points in 

the random parameter space. 

 

To complement these results, Table 4.2 reports the mean and standard 

deviation of pc  calculated on the basis of the Ns =100 sampling points in 
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the random parameter space for each model (standard MC and surrogate 

models of different order). Table 4.3 reports the corresponding results for 

pc . The limited number of simulations does not allow to attain complete 

convergence of the target moments. However, it is possible to observe that 

the PCE of order p = 4 provides the best approximation of both the mean 

and standard deviation of pc  calculated with the full model. In other 

words, the Total Sensitivity Indices for pc  calculated with the PCE of 

order p = 4 are candidates to provide the best indications for a GSA, as one 

might expect. Finally, it can be noted that the PCE of order p = 3 best 

approximates the mean and standard deviation of 
pc  calculated with the 

full model on the basis of the simulations performed. 

4.4 RISK ANALYSIS 

On the basis of the results reported in Section 4.3 the analysis then 

considers the computation of the complete CDFs associated with pc  and 

pc . This is done in a MC framework upon relying on the calibrated 

surrogate models because the computational cost associated with the 

original full model is unaffordable. The number of MC simulations 

performed is equal to 
410 , which leads to convergence of the first two 

moments of pc  and 
pc , as suggested by the results of Section 4.3. 

Figures 4.7 and 4.8 depict the calculated CDFs of pc  and 
pc , 

respectively.  
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Figure 4.7. CDF of 
pc  computed with 10

4
 MC simulations with the available 

surrogate models. 

 

 

Figure 4.8. CDF of 
pc  computed with 10

4
 MC simulations with the available 

surrogate models. 
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The computation of the entire distributions of the key-system 

variables is crucial in several fields of engineering, and especially referring 

to groundwater contamination problems and human health impacts due to 

possible radionuclide ingestion.  

4.5 FINAL REMARKS 

This chapter is devoted to the presentation of an approach to perform a 

Global Sensitivity Analysis (GSA) of a high-complexity theoretical and 

numerical model descriptive of the potential release of radionuclides from 

a near surface radioactive waste repository and the subsequent contaminant 

migration in a groundwater system. Uncertainty stems from incomplete 

knowledge of the variogram and transport parameters (i.e., the correlation 

length of the variogram of log-conductivity, the partition coefficient 

associated with the migrating radionuclide and the dispersivity at the scale 

of interest) and from the random nature of the hydraulic conductivity field. 

The target system responses are the first two (ensemble) moments of the 

peak concentration at a given control point. GSA has been performed 

through the Polynomial Chaos Expansion (PCE) technique, leading to the 

following key results: (a) the analysis of the Sobol indices has revealed that 

the (sample) mean of the peak concentration is strongly influenced by the 

uncertainty in the partition coefficient and the longitudinal dispersivity, and 

the effects of these parameters shadow the impact of the spatial coherence 

of the log-conductivity field at the scale analyzed and for the selected space 

of parameter variability; (b) on the other hand, the log-conductivity 

correlation scale is the most influential factor affecting the uncertainty of 

the standard deviation of the peak concentration in this example; and (c) 

the PCE surrogate models allow extending, with negligible computational 
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cost and acceptable accuracy, the number of MC iterations and attain 

convergence of the selected target moments. 

The results support the relevance of adopting the proposed model 

reduction technique for complex numerical models. This methodology 

allows performing in-depth analyses which would be otherwise unfeasible, 

thus severely limiting the capability to represent the relevant processes 

involved in a target environmental scenario. 
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5. Sensitivity-based strategy 

for model calibration 
 

 

SOMMARIO 

In questo capitolo, gli strumenti sviluppati e presentati nelle precedenti 

sezioni, vengono utilizzati nel contesto di problemi di tipo inverso quale la 

calibrazione dei parametri. Una nuova strategia generale basata sull’Analisi 

di Sensitività Globale e sui criteri di discriminazione dei modelli viene 

introdotta ed impiegata per (a) calibrare i parametri chiave di alcuni 

modelli impiegati per l’interpretazione di esperimenti di trasporto di 

traccianti a scala di laboratorio, (b) classificare tali modelli e (c) stimarne il 

grado relativo di verosimiglianza attraverso il calcolo della probabilità a 

posteriori. Per l’applicazione di tale metodologia si fa riferimento 

all’esperimento di trasporto conservativo condotto in un mezzo poroso 

uniforme presentato da Gramling et al. [2002]. L’Analisi di Sensitività 

Globale è condotta su tre modelli di trasporto: (a) la classica equazione di 

advezione-dispersione, (b) una formulazione a doppia porosità con 

trasferimento di massa fra regioni a diversa mobilità, e (c) l’approccio del 

Continuous Time Random Walk. Per lo sviluppo dell’Analisi di Sensitività 

Globale si ricorre all’utilizzo della tecnica dell’espansione in Caos 

Polinomiale applicata alle equazioni governanti dei tre modelli selezionati, 

schematizzandone i parametri chiave come variabili aleatorie indipendenti. 

I risultati ottenuti mostrano che l’approccio proposto consente di 

identificare (a) l’importanza relativa dei parametri da cui dipende la 
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risposta di ciascun modello, (b) le coordinate spazio-temporali in cui la 

risposta di ciascun modello risente maggiormente dell’indeterminatezza dei 

rispettivi parametri. L’Analisi di Sensitività Globale è conseguentemente 

impiegata per la stima dei parametri dei modelli, condotta secondo il 

criterio di massima verosimiglianza e sviluppata sulla base di sottoinsiemi 

di osservazioni corrispondenti alle coordinate spazio-temporali in cui la 

risposta di ogni modello risulta maggiormente sensibile. Infine, l’impiego 

di criteri di identificazione dei modelli consente di (a) classificare i modelli 

di trasporto selezionati rispetto all’esperimento a cui ci si riferisce in questo 

studio, (b) associare a ciascun modello una probabilità a posteriori per ogni 

sottoinsieme di osservazioni individuato per la stima dei parametri. La 

calibrazione basata sull’Analisi di Sensitività Globale è in grado di 

restituire un’approssimazione sufficientemente accurata dell’intero insieme 

di dati sperimentali, pur essendo sviluppata a partire da sottoinsiemi di 

dimensione minima costituiti dalle osservazioni a cui la risposta di ciascun 

modello è più sensibile. La metodologia proposta è del tutto generale ed 

estendibile a differenti contesti e casi applicativi. Il lavoro presentato in 

questo capitolo è incluso in Ciriello et. al [2013] attualmente in fase di 

revisione su Water Resources Research.  
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5.1 INTERPRETATION OF TRANSPORT EXPERIMENTS IN 

LABORATORY-SCALE POROUS MEDIA 

Selection of an appropriate quantitative model and associated 

parameter calibration are key issues in the interpretation of transport 

experiments in natural and reconstructed porous media. The assessment of 

model sensitivity to parameter uncertainty and comparison amongst 

different models on the basis of model selection criteria are at the core of 

an appropriate methodology to address this problem. Key sources of 

uncertainty associated with modeling of processes governing conservative 

transport in porous media at different scales of observations include 

hydraulic and transport parameters (e.g., hydraulic conductivity, porosity, 

and dispersivity) and boundary conditions (e.g., the concentration at the 

source location or the fluid flow rate). Sensitivity of a model response to 

these parameters typically varies in space and time. An important step of a 

parameter estimation procedure is to identify locations in the system where 

the model is most sensitive to its parameters. This, in turn, constitutes the 

basis for model-based experiment design and interpretation [e.g., Fajraoui 

et al., 2011 and references therein]. 

A useful approach for the design, analysis and interpretation of 

conservative transport experiments in porous media is based on Global 

Sensitivity Analysis (GSA). The latter provides a convenient and powerful 

way to identify space-time locations where a model is most sensitive to its 

unknown parameters. GSA is applied in several fields of engineering 

[Saltelli et al., 2000; Sudret, 2008] and it has also be used to illustrate the 

way design of laboratory-scale experiments and parameter calibration 

based on the classical Advection-Dispersion Equation (ADE) model can be 

improved [Fajraoui et al., 2011].  
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However, a detailed study of parameter sensitivity for the design and 

interpretation of laboratory-scale conservative transport experiments based 

on a set of alternative process-based models has not been undertaken. Most 

notably, quantification and comparative analysis of the sensitivity of 

widely used transport formulations such as (a) a dual-porosity (DP) model 

with mass transfer between mobile and immobile regions [Huang et al., 

2003; Bai et al., 1995], and (b) the Continuous Time Random Walk 

(CTRW) [e.g., Berkowitz et al., 2006 and references therein] to their 

parameters has not been reported in the literature. 

Here, the focus consists in the conservative transport experiment 

presented by Gramling et al. [2002], performed within a laboratory 

chamber filled with a uniform reconstructed porous medium. The selected 

candidate interpretive model are: (a) the classical advection-dispersion 

equation (ADE), (b) a dual-porosity (DP) scheme with mass transfer 

between mobile and immobile regions, and (c) the Continuous Time 

Random Walk (CTRW) formulation. The space-time distribution of solute 

concentration along the chamber is considered as the system state against 

which (a) perform a PCE-based GSA, (b) analyze the sensitivity of each 

model to its parameters, (c) explore the feasibility of estimating key model 

parameters based on a limited set of data, measured at locations determined 

by the results of the GSA, (d) apply formal model discrimination criteria to 

quantify (in a relative sense) the ability of these alternative models to 

interpret experimental observation, and (e) assess the predictive ability of 

the selected models.  

The employed methodology allows quantification of (a) the relative 

importance of the parameters associated with each model tested, and (b) 

the space-time locations where the system state is most sensitive to model 

parameters. This information is relevant for model-based experiment 



Model reduction of stochastic groundwater flow and 

transport processes, Valentina Ciriello  
109 

 

 

 

design and robust parameter calibration at affordable computational cost. 

In this application, parameter calibration is performed within a Maximum 

Likelihood context [e.g., Carrera and Neuman, 1986]. Model identification 

(discrimination) criteria are then employed to (a) rank the alternative 

models selected and (b) estimate the model relative degree of likelihood 

through a posterior probability measure for the selected case study [Ye et 

al., 2008; Bianchi Janetti et al., 2012, and references therein]. 

5.2 CASE STUDY EXPERIMENT  

Chamber length (cm) 36 

Chamber cross section (cm
2
) 5.5  1.8 = 9.9 

Average grain size (cm) 0.13 

Porosity 0.36 

Flow rate (mL/min) 2.67 

Velocity (cm/s) 1.21  10
-2 

Hydrodynamic dispersion coefficient
(*)

 (cm
2
/s) 1.75  10

-3 

Chamber dispersivity
(*)

 (cm) 0.145 

Grain Peclet number 2.24  10
3
 

Reynolds number 0.157 

Observation times (s) 532 / 1023 / 1523 / 2023 

Table 5.1. Experimental conditions of the conservative transport experiment of 

Gramling et al. [2002]. 
(*)

 Values calibrated by Gramling et al. [2002] on the basis 

of the measured concentration profiles. 

 

Gramling et al. [2002] illustrate the results of a conservative transport 

experiment performed in a laboratory-scale, glass (rectangular) flow 

chamber filled with millimeter-sized grains of cryolite. A solution of 
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CuEDTA
2-

 (at 0.01 M concentration) was injected continuously into the 

chamber, displacing a solution of Na2EDTA
2-

 with initial concentration of 

0.02 M. The authors report the relative concentration profiles of CuEDTA
2- 

at four different times (1 = 532 s, 2 = 1023 s, 3 = 1523 s, and 4 = 2023 

s), from which about 380 measurements of solute concentration can be 

derived. The main characteristics of the experiment are summarized in 

Table 5.1. 

5.3 DESCRIPTION OF THE SELECTED TRANSPORT 

MODELS  

In the following, the main features of the competing models that we 

adopt to represent the migration of a conservative solute in a uniform 

porous medium are summarized. These model are: (i) the classical ADE, 

(ii) a DP scheme with mass transfer between mobile and immobile phases, 

and (iii) the CTRW formulation. A one-dimensional transport scenario is 

considered, following the usual practice adopted in interpretation of flow-

through laboratory chamber experiments such as that reported in Gramling 

et al. [2002]. 

Key flow and transport parameters are represented as independent 

random variables and analyze how the uncertainty associated with their 

values propagates to solute concentrations through the three selected 

transport models. Table 5.2 reports the input random parameters and the 

corresponding probability distributions adopted in this study. Uncertain 

parameter values are generally assumed to be distributed normally, with the 

exception of parameters whose range of variability may entail negative 

values that have no physical meaning. A lognormal distribution is adopted 

for these latter parameters. Mean parameter values were selected on the 
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basis of (a) calibration results obtained by Gramling et al. [2002] (with 

reference to dispersivity, effective velocities and medium porosity), or (b) 

preliminary calibration against the complete dataset. Values of parameter 

standard deviation were selected to ensure that relatively wide intervals in 

the parameter space were explored, while minimizing the possibility of 

sampling negative values in the case of Normal distributions. 

 

 

Parameter Model Distribution Mean 
Standard 

Deviation 

Effective velocity 

(v) 
ADE Normal 1.21  10

-4
 m/s 1.00  10

-6
 m/s 

Flux (q) DP Normal 4.356  10
-5

 m/s 5.11  10
-7

 m/s 

Longitudinal 

dispersivity (αL) 
ADE /DP Lognormal 1.45  10

-3
 m 4.50  10

-4
 m 

Mobile porosity (f) DP Normal 0.36 3.00  10
-3 

Mass transfer (K) DP Normal 1.00  10
-5

 1/s
 

3.00  10
-6

 1/s 

Transport velocity 

(v) 
CTRW Normal 1.21  10

-4
 m/s 1.00  10

-6
 m/s 

Generalized 

dispersion 

coefficient (D) 

CTRW Normal 1.75  10
-7

 m
2
/s 5.44  10

-8
 m

2
/s 

Exponent of TPL 

distribution (β) 
CTRW Normal 1.97 9.85  10

-2
 

Characteristic 

transition time (t1) 
CTRW Lognormal 6.6 s 3.3 s 

Cut-off time (t2) CTRW Lognormal 100 s 50 s 

Table 5.2. Model parameters and adopted sampling distributions.  
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5.3.1 Advection-Dispersion Equation model 

The one-dimensional ADE describing solute migration in 

homogeneous porous media can be written as 

x

txc
v

x

txc
D

t

txc













 ),( ),( ),( 
2

2

.              (5.1) 

Here, ),( txc  is solute concentration at location x and time t, /qv   is 

average flow velocity (q and  respectively being Darcy flux and medium 

porosity) and D is hydrodynamic dispersion ( vD L , with L  the 

longitudinal dispersivity). The following initial and boundary conditions 

are considered: 

;)0,( 0cxc   ;),0( 0ctc   c'(L, t) = 0 .              (5.2) 

An analytical solution can be found in Laplace space by rewriting 

(5.1)-(5.2) as 

0),(~),(~),(~

2

2

 uxcu
dx

uxcd
v

dx

uxcd
D ; ;),0(~ 0

u

c
uc  ,0),('~ uLc        (5.3) 

where c~  is the Laplace transform of c and u is the Laplace parameter. The 

solution of (5.3) is 

,),(~
21

xx
ekekuxc  


                                                              (5.4) 

where 
D

u

D

v

D

v


2

2

42
  and 1k , 2k  are constants to be determined. 

Substituting the transformed boundary conditions in (5.3) into (5.4) leads 

to 
)1(

0
1

URu

URc
k


  and 

)1(

0
2

URu

c
k


 , with 

L

L

e

e
R










, 








U . The 

analytical solution is then inverted numerically by the algorithm of Stehfest 
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[1970]. Effective velocity and dispersivity are here considered as model 

parameters whose values are affected by uncertainty (Table 5.2). 

5.3.2 Dual Porosity model 

The DP scheme considers mass transfer between a mobile and an 

immobile phase which are assumed to constitute the porous domain. This 

conceptualization of mass-transfer processes is typically employed to 

represent pore-scale mass fluxes that are not explicitly described by a 

continuum Darcy-scale model such as the ADE. In this context, the 

immobile domain represents pore-scale low velocity regions where solute 

mass can enter and retained, so that its displacement is delayed when 

compared to the advance of mass within mobile regions [Huang et al., 

2003; Bai et al., 1995]. The corresponding mathematical formulation is 

provided by the system of partial differential equations 

x

txc
q

x

txc
D

t

txc
f

t

txc
f


















 ),( ),( 
'

),(
)1(

),( 
2

2*

                      (5.5a) 

 ),( ),( 
),(

)1( *
*

txctxcK
t

txc
f 




                                                 (5.5b) 

where c and *c  are the solute concentrations in the mobile and immobile 

regions. Here, f  is the fraction of mobile pore space in the porous medium, 

K is the rate of mass transfer between mobile and immobile fluid flow 

regions, and 'D  = L q. Let consider for c the initial and boundary 

conditions (5.2), while *c  is subject to the following initial and boundary 

conditions: 

*;)0,(* 0cxc   *;),0(* 0ctc   0),(*' tLc  .                                     (5.6) 

Transforming the equations into Laplace space renders 



114 Sensitivity based strategy for model calibration 

 

 

 

Kuf

uxcK
uxcuxc

dx

uxcd
q

dx

uxcd
D




)1(

),( ~ 
),( *~   ,0),( ~ 

),( ~),( ~
'

2

2

       (5.7) 

,0),('~),('~   ;),0(~   ;),0(~ **
0

*
0  uLcuLcucucucuc             (5.8) 

where c~  and *~c , respectively, being the transformed variables of c  and 

*c , and 













Kuf

Kuff
u

)1(

)1(
 . The solution of (5.7) is given by (5.4), 

where 
''4'2 2

2

DD

q

D

q 
 

. Here, the selected model parameters with 

uncertain values are (Table 5.2) Darcy velocity, q , the mobile porosity of 

the medium, f , the mass transfer rate, K , and the longitudinal 

dispersivity, 
L . 

5.3.3 Continuous Time Random Walk model 

The CTRW framework is based on a conceptual picture of solute 

particles undergoing multiple spatial transitions according to a distribution 

of lengths, and characterized by a distribution of travel times. For a 

conservative solute, the nature of the domain heterogeneity and the flow 

regime determine the functional form of the transition time distribution and 

the associated parameter values. The CTRW approach has been shown to 

be particularly effective in quantifying non-Fickian (or anomalous) 

transport behavior, characterized by early arrival and long time tailing of 

solute in measured breakthrough curves, over a wide range of length scales, 

types of porous and fractured media, and associated degrees of spatial 

heterogeneity. The governing transport equation can be formulated as 

[Berkowitz et al., 2006] 
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or more conveniently in Laplace space as  
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where the memory function )(
~

uM , which accounts for the unknown 

heterogeneities below the level of measurement resolution, is given by 

 )(~1)(~)(
~

1 uψuψutuM  .                                                            (5.11) 

In (5.10)-(5.11), t1 is a characteristic transition time, c0(x) is the initial 

condition, and v and D are the transport velocity and generalized 

dispersion coefficient, respectively, based on the first and second moments 

of the transition length probability density function divided by the 

characteristic time. The transport velocity, v, is distinct from the average 

fluid velocity, v, and they need not be equal (vψ is averaged across the 

tracer particles, while v is averaged across all water particles). This is in 

contrast to the ADE and DP models, for which these velocities are 

identical. Similarly, the dispersion coefficient D has a different physical 

interpretation than in the ADE and DP models [see Berkowitz et al., 2006, 

for a detailed discussion]. 

The transition time distribution, (t), determines the probability rate 

for a transition time t between sites in the medium, and thus controls the 

overall nature of the transport. A truncated power law (TPL) formulation of 

(t) has been shown to describe transport in a diverse set of physical 

scenarios [Dentz et al., 2004; Berkowitz et al., 2006]. It contains a “cut off” 

time t2 of the power law that allows evolution from non-Fickian 
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(anomalous) behavior to Fickian behavior at long times. The TPL can be 

written as 
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Here, n is a normalization factor,  is a parameter characterizing the nature 

of the dispersive transport, the cut-off time t2 >> t1, and (a, s) is the 

incomplete gamma function. The TPL behaves as a power law for t1 << t 

<< t2, and decreases exponentially for t >> t2. The overall transport is 

Fickian for  > 2, while decreasing  leads to increasingly dispersive 

transport. Further discussion on the choice of these parameters and their 

effect on concentration tailing as a function of flow velocity is given in 

Berkowitz and Scher [2009]. Referring to (5.10) and (5.11), appropriate 

choice of (t) allows recovery of the ADE and double porosity models as 

special, limit cases of these equations (e.g., for a purely exponential (t), 

)(
~

uM = 1, and the ADE is obtained).  

Equation (5.10) together with appropriate boundary conditions is 

solved using the CTRW Matlab Toolbox [Cortis and Berkowitz, 2005;]. 

Selected model parameters with uncertain values are (Table 5.2) transport 

velocity, v, the generalized dispersion coefficient, D, the exponent  and 

the cut-off times t1 and t2. 

5.4 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION 

AND MODEL QUALITY CRITERIA 

Let N  be the number of available observations of the model response 

Y  collected in the vector  **
1

* ,... NYYY . The covariance matrix of 
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measurement errors, YB , is here considered to be diagonal with non-zero 

terms equal to the observation error variance 2
i  [Carrera and Neuman, 

1986]. Denoting by  NYY ˆ,...ˆˆ
1Y  the vector of model predictions at 

locations where measurements are available, the ML estimate X̂  of the 

vector of the M  uncertain model parameters can be obtained by 

minimizing with respect to X  the negative log likelihood criterion: 

  


N

i
Y

i

i N
J

NLL
1

2
2lnln 


B ,                                                (5.13) 

where  2* ˆ
iii YYJ  . The criterion (5.13) includes the weighted least 

square criterion [Carrera and Neuman, 1986; Bianchi Janetti et al., 2012 

and references therein]. Here, minimization of (5.13) is achieved using the 

iterative Levenberg-Marquardt algorithm as embedded in the code PEST 

[Doherty, 2002]. 

Alternative competing models which can be used to interpret available 

system states can be ranked by various criteria [e.g., Neuman, 2003; Ye et 

al., 2004, 2008; Neuman et al., 2011; Bianchi Janetti et al., 2012 and 

references therein], including: 

MNLLAIC 2 ,              (5.14) 
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where the Akaike information criterion, AIC, is due to Akaike [1974], AICc 

to Hurvich and Tsai [1989] and KIC to Kashyap [1982]. In (5.16), Q  
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represents the Cramer-Rao lower-bound approximation for the covariance 

matrix of the parameter estimates [see Ye et al., 2008 for details]. Such a 

covariance matrix provides a measure of the quality of parameter estimates 

and of the information content carried by data about model parameters. 

Embedding Q in the formulation allows KIC to indicate that selecting a 

model with a high number of parameters might not be justified in the 

presence of a limited and/or poor quality set of data. 

These model discrimination criteria can also be employed to assign 

posterior probability weights to the various tested models, thus quantifying 

prediction uncertainty. The posterior probability related to model Mk (k = 1, 

..., NM, with NM the number of available process models) is calculated as 

[Ye et al., 2008]: 
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here ICk = ICk  ICmin, with ICk being either AIC (5.14), AICc (5.15) or 

KIC (5.16) and ICmin = minICk its minimum value over the competing 

models considered; p(Mk) is the prior probability associated with each 

model. In this application no prior information is available consequently it 

is convenient to set p(Mk) = 1/NM, so that all models are associated with 

equal prior probability. The adoption of model identification criteria and 

posterior model probabilities allows ranking of the candidate models 

analyzed on the basis of their associated posterior probabilities and 

discrimination among them in a relative sense. Such a study has not yet 

been conducted with reference to the interpretation of laboratory-based 

transport experiments in conjunction with a sensitivity-driven calibration of 

model parameters. 
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5.5 SENSITIVITY-BASED MODELING STRATEGY 

The presented modeling and interpretation strategy is developed 

according to the following steps: 

1. selection of a transport model; 

2. definition of probability distributions for model parameters whose 

values are uncertain and need to be calibrated against measurements 

of state variables; 

3. computation of the PCE-approximation of the selected model at 

(space-time) locations of interest: this requires computation of the 

coefficients ),( txa j  by means of, e.g., a regression-based approach 

[Sudret, 2008; Ciriello et al., 2012]; 

4. analytical derivation of the Sobol indices: the total and principal 

sensitivity indices are calculated for each model parameter at all 

(space-time) locations of interest (note that when these indices differ 

significantly throughout the system, then the effect of interactions 

among parameters might not be negligible and additional terms need 

to be computed); 

5. identification for each parameter of (i) the overall influence on the 

model response through the average of the associated total sensitivity 

indices, and (ii) the space-time locations where local maxima of such 

total sensitivity indices occur; 

6. identification of the sensitivity-based calibration datasets: in the 

application, this leads to identifying subsets of the concentration 

measurements presented in Gramling et al. [2002, their Figure 4]; 

7. ML estimation (5.13) of model parameters upon considering (i) the 

complete sets of concentration measurements corresponding to the 
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first, second and third observation times presented in Gramling et al. 

[2002, their Figure 4], and (ii) sensitivity-based data subsets; 

8. repetition of steps 1-7 for all tested models; 

9. computation of model quality criteria (5.14)-(5.16) and posterior 

probability weights (5.17) to rank the interpretive capability of the 

selected models for each calibration set; 

10. assessment of the predictive capability of each model by comparison 

of model results against observations collected at space-time locations 

which are not employed in the parameter calibration procedure. 

5.6 RESULTS AND DISCUSSION 

Here the results of the application of the sensitivity-based strategy are 

presented to the specific case study described in Section 5.2. Implications 

to model-based experimental design are also reported. 

5.6.1 GSA of the selected transport models 

Table 2 reports the uncertain parameters considered for the three 

selected models, together with the corresponding probability distributions 

adopted. For each model analyzed, the analysis was performed by 

employing a PCE at different orders (p = 2, 3, 4). For illustration purposes, 

the results obtained through a PCE of order 2 are reported here. These do 

not differ significantly from those obtained with higher order PCE (not 

shown). Note that the quantitative results illustrated are tied to the specific 

experimental setup considered. While different experimental settings (in 

terms of, e.g., flow domain and configuration and transport scenario) might 

lead to different results, the application of the GSA-based methodology is 
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general and allows discrimination of the relative effects of the different 

model parameters considered. 

Figure 5.1 juxtaposes the concentration profiles, c(x), of the 

conservative experiment reported by Gramling et al. [2002] and the related 

total sensitivity indices of the parameters associated with the ADE for 

given observation times. Curves in Figure 5.1 represent the spatial 

distribution of the total sensitivity indices associated with the ADE 

parameters and calculated for each observation time on the basis of the 

PCE technique. These curves allow identification of the locations in the 

chamber where the ADE is highly or poorly sensitive to its parameters 

depending on the local values of the total sensitivity indices. 

Corresponding depictions for the DP and CTRW formulations are 

presented in Figure 5.2 and Figure 5.3, respectively.  

 

 

Figure 5.1. Space-time concentration profiles from Gramling et al. [2002, Figure 

4] and Total Sensitivity Indices ( TS (Ω), Lv  , ) associated with the 

parameters of the ADE model. 

 



122 Sensitivity based strategy for model calibration 

 

 

 

Figure 5.1 shows that the sensitivity indices of the two parameters 

appearing in the ADE (i.e., v and αL) are in general anti-correlated. 

Locations where the effects of a parameter are dominant are clearly 

identifiable by a sharp local peak or by persistently high values of the total 

sensitivity index. It’s observable that in general the uncertainty associated 

with the velocity dominates the transport process in the proximity of the 

inflection point of the concentration profiles. This location corresponds to 

solute center of mass and is associated with virtually vanishing sensitivity 

to dispersivity. In contrast, dispersivity appears to play a dominant role 

close to the tails of the concentration profile. This result is consistent with 

the format of the ADE, where dispersivity is linked to the spreading of the 

concentration distribution around the center of mass, while the 

displacement of the center of mass is typically governed by advective 

processes. 

 

 

Figure 5.2. Space-time concentration profiles from Gramling et al. [2002, Figure 

4] and Total Sensitivity Indices ( TS (Ω), Kfq L  , , , ) associated with the 

parameters of the DP model. 
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With reference to the DP formulation, Figure 5.2 reveals that the role 

of the mass transfer coefficient, K, appears to be less significant at the 

advancing solute front than at locations in the upstream part of the 

concentration profiles. This observation is consistent with the main effect 

of this parameter which is associated with delayed diffusion of solute from 

immobile to mobile regions. The total sensitivities to Darcy velocity and 

porosity are very similar for the four observation times, the system state 

appearing to be slightly more sensitive to Darcy flux than to porosity. 

Dispersivity plays a relevant role in the DP formulation, being the most 

important parameter for earlier times. The effect of dispersivity on the 

variance of the system response tends to decrease with time, consistent 

with the increased impact of advective processes with solute residence 

time. 

 

 

Figure 5.3. Space-time concentration profiles from Gramling et al. [2002, Figure 

4] and Total Sensitivity Indices ( TS (Ω), 21  , , , , ttDv  ) associated with the 

parameters of the CTRW model. 

 



124 Sensitivity based strategy for model calibration 

 

 

 

Figure 5.3 clearly shows that the parameter β appearing in the CTRW 

formulation always plays the most prominent role, the importance of D 

being significant only for the observations available at earliest times. The 

transport velocity v and the two characteristic times t1 and t2 display a 

similar behavior and appear to be only marginally relevant in this case 

study and for the selected variability interval. This is likely related to the 

relative uniformity of the reconstructed porous medium where the entire 

spectrum of transition times can be sampled by solute particles migrating 

through the system. These findings imply that β and D are the only 

relevant parameters for model calibration in the experimental setting 

considered here, because they encapsulate the key information on the 

variability of the system response. 

Comparison of Figures 5.1 and 5.2 indicates that the main features of 

the spatial distribution of the sensitivities of the parameters (i.e., 

dispersivity and velocity/flux) that appear within both the ADE and DP 

formulations are qualitatively similar. These formulations are sensitive to 

all parameters, albeit with various degrees and at different locations. On the 

other hand, it is noted that the CTRW model is essentially sensitive to only 

two parameters.  

To complete the analysis, Table 5.3 reports the mean values of the 

total sensitivity indices associated with the uncertain parameters, as 

calculated on the basis of the complete available data set (i.e., considering 

the four concentration profiles presented in Gramling et al. [2002]). This 

allows ranking the global importance of each parameter and provides 

valuable information for the parameter calibration step. 
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Model Parameter Mean values of ST 

ADE Longitudinal dispersivity (αL) 0.581 

ADE Effective velocity (v) 0.435 

DP Longitudinal dispersivity (αL) 0.356 

DP Flux (q) 0.346 

DP Mobile porosity (f) 0.178 

DP Mass transfer (K) 0.147 

CTRW Exponent of TPL distribution (β) 0.905 

CTRW Generalized dispersion coefficient (D) 0.174 

CTRW Characteristic transition time (t1) 0.012 

CTRW Cut-off time (t2) 0.012 

CTRW Transport velocity (v) 0.010 

Table 5.3. Mean values of the total sensitivity indices calculated on the complete 

set of available concentration data. 

 

One can observe that for each selected model, the sum of the mean 

values of the total sensitivity indices associated with the parameters is 

generally larger than unity. This is due to contributions of parameter 

interactions to the variance of the model output. Table 5.3 suggests that this 

contribution is globally negligible for the three models tested, as the sum of 

the mean values of the total sensitivity indices associated with the 

parameters of a given model is close to unity. Further note that Figures 5.1 

and 5.2 indicate that the principal and total sensitivity indices virtually 

coincide at almost all space-time locations for the ADE and DP models. On 

the other hand, Figure 5.3 indicates the occurrence of a non-negligible 

mutual influence between β and D. The effect of the interaction between 

these two parameters is confined within a small region close to the domain 

boundaries. Because this effect is modest and restricted to very limited 

areas, computation of the second-order Sobol indices is not performed. 
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The PCE technique provides a surrogate model which is formulated in 

terms of the model parameters. The quality of the approach and results 

presented here were assessed by comparing concentration profiles obtained 

by a given model and the corresponding PCE approximation (not shown) 

for several sets of parameter values randomly sampled within the ranges of 

variability indicated in Table 5.2. It was found that the concentration 

profiles calculated with the complete model and its PCE approximation 

were essentially identical in all cases (not shown).  

5.6.2 Parameter calibration and model identification criteria 

Calibration of the parameters of the three selected models to available 

concentration data is performed on the basis of the results and observations 

presented in the previous section. Different subsets are considered of the 

available database upon which model calibration is performed. This allows 

assessing the influence of the selection of measurement (space-time) 

location on the quality of the parameter calibration results and application 

of model discrimination criteria analysis. 

Table 5.4 lists the different data subsets adopted, including the 

number of data points associated with each of these. As an example, Figure 

5.4 depicts the location of the measurement points selected for subset 4 in 

Table 5.4. The first three available concentration profiles are considered 

separately in their entirety (sets 1, 2, 3 in Table 4) to investigate time-

dependence of the parameters. GSA methodology is then applied by 

selecting sets of observation points which are most sensitive to the 

parameters. In particular this is done by selecting such sets within different 

concentration profiles (sets 4 and 5 in Table 5.4) and considering different 

sample sizes (sets 5 and 6 in Table 5.4). This procedure enables (i) 
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investigation of the possibility of optimizing the use of information content 

associated with observations for calibration purposes, and (ii) adoption of 

the remaining observations to validate model predictions. 

 

Subset Description 
Number of 

observations 

1 All observations from concentration profile at 1 110 

2 All observations from concentration profile at 2 73 

3 All observations from concentration profile at 3 92 

4 Most sensitive observations from concentration profile at 1 20 

5 Most sensitive observations from concentration profiles at 

2 and 3 
20 

6 Most sensitive observations from concentration profiles at 

2 and 3 
40 

Table 5.4. Calibration sets for the three selected models. 

 

Table 5.5 reports the values of the model parameters obtained upon 

performing calibration on the basis of the different data subsets presented 

in Table 5.4. For each estimated parameter Table 5.5 also reports the ratio, 

R, of the difference between the lower and upper limit identifying the 95% 

estimate confidence limits and the estimated value. As expected, this ratio 

is smallest for the model with the smallest number of parameters. In 

particular, it is noted that the quality of the estimate of parameters t1 and t2 

of the CTRW model is relatively poor, consistent with the observation that 

the model is not sensitive to these two parameters as revealed by the GSA 

(Figure 5.3). 

From examination of Table 5.5, it’s observable that in the ADE model 

the (calibrated) value of the velocity, v, does not depend on the particular 

choice of subset. A similar observation can be made with reference to the 
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flux, q, in the DP model which exhibits variations of only a few percent 

amongst different subsets. On the contrary, calibration of dispersivity, αL, 

for both the ADE and DP models appears to be impacted by the choice of 

the data subset, with calibration values decreasing slightly over time 

(subsets 1, 2, 3). Calibrated porosity, f, in the DP model virtually coincides 

with the average value of its distribution in all calibration subsets. The 

mass transfer coefficient, K, exhibits a calibrated value associated with 

subsets relative to early observation times (subsets 1, 4) which is 

significantly higher than that resulting from calibrating the model against 

data taken at later times.  

 

 

Figure 5.4. Concentration profile at time 1 from Gramling et al. [2002] and 

sensitivity-based observation subset 4 (Table 5.4) selected for the ADE, DP and 

CTRW models. 
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With reference to the CTRW model, the cut-off time, t2, is remarkably 

stable for all subsets considered, regardless of the lack of model sensitivity 

to this parameter. A similar observation can be made for the characteristic 

transition time, t1, with the only exception of the scenario corresponding to 

the adoption of the first concentration profile as a calibration subset (subset 

1). The generalized dispersion coefficient, D, is associated with calibrated 

values which virtually coincide with the average of the selected distribution 

with the only exception of the early observation times (subsets 1, 4). The 

calibration values of the exponent of the TPL distribution, β, and transport 

velocity, v, show opposing trends over time. Note that large calibrated 

values of v are found for early observation times, while the reverse is true 

for β (subsets 1, 2, 3).  

From Table 5.5 it is shown that the confidence intervals related to the 

estimates of v for the ADE model tend to overlap for all data subsets with 

the exception of the case associated with early observation times (subsets 1 

and 4) where the calibrated velocity is associated with relatively large 

confidence intervals. Dispersivity values are also statistically 

indistinguishable for the calibrations based on the GSA results and for 

subsets 2 and 3. This indicates that selection of a smaller set of data points 

does not affect notably the values of the estimated parameters in this 

example. Confidence intervals associated with the DP model appear to be 

still relatively small for the first two data subsets where a large amount of 

data is adopted and tailing behavior associated with delayed diffusion is 

visible in the experimental concentration curves. All subsets selected 

render statistically equivalent results for the calibration of q, f, and K. 

Dispersivity calibration results observed for the ADE also hold for the DP.  

With reference to the CTRW model, it is noted that all confidence 

intervals associated with the estimated parameters tend to significantly 
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overlap. Parameter β, which is also the most influential to the system 

behavior, is the one which is best estimated for this experimental setting. 

As the cut-off times t1 and t2 are not influential for the case study, model 

calibration is also performed by setting t1 and t2 at the mean values of their 

distributions and estimating the remaining three parameters. In this case, 

the estimated values of v, D and β virtually coincide with those listed in 

Table 5.5. As expected, the width of the resulting confidence intervals 

decreases significantly, with values of R which are generally one order of 

magnitude lower than those presented in Table 5.5 (not shown). 

 

 

Model Parameter Subset 1 Subset 2 Subset 3 

  C R C R C R 

ADE v 1.22E-04 7.03E-03 1.21E-04 6.91E-03 1.20E-04 5.76E-03 

ADE αL 1.53E-03 1.13E-01 1.25E-03 2.01E-01 1.04E-03 2.71E-01 

DP q 4.51E-05 5.09E-01 4.39E-05 4.55E-01 4.35E-05 6.17E+00 

DP αL 1.18E-03 1.76E-01 1.04E-03 3.43E-01 8.93E-04 7.90E-01 

DP f 3.60E-01 5.09E-01 3.60E-01 4.60E-01 3.60E-01 6.17E+00 

DP K 5.17E-05 7.69E-01 1.42E-05 1.24E+00 5.57E-06 5.52E+00 

CTRW v 1.39E-04 2.62E+01 1.33E-04 4.47E+00 1.30E-04 2.37E+00 

CTRW D 2.20E-07 6.52E+00 1.72E-07 2.79E+01 1.73E-07 8.43E+00 

CTRW Β 1.87E+00 1.20E+01 1.89E+00 3.47E+00 1.91E+00 1.46E-01 

CTRW t1 6.00E+00 2.41E+02 6.60E+00 4.53E+02 6.50E+00 1.20E+02 

CTRW t2 1.00E+02 8.86E+02 1.00E+02 3.43E+02 1.01E+02 1.23E+02 
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Model Parameter Subset 4 Subset 5 Subset 6 

  C R C R C R 

ADE v 1.24E-04 1.67E-02 1.21E-04 6.81E-03 1.21E-04 6.07E-03 

ADE αL 2.29E-03 4.65E-01 2.65E-03 2.65E-01 2.45E-03 2.45E-01 

DP q 4.48E-05 2.95E+00 4.36E-05 4.21E+00 4.12E-05 2.48E+00 

DP αL 1.80E-03 3.58E-01 2.71E-03 3.45E-01 2.38E-03 2.92E-01 

DP f 3.53E-01 2.95E+00 3.60E-01 4.20E+00 3.40E-01 2.48E+00 

DP K 4.29E-05 2.97E+00 3.65E-06 9.73E+00 2.08E-06 6.46E+00 

CTRW v 1.11E-04 4.76E+01 1.21E-04 1.32E+01 1.21E-04 5.96E+00 

CTRW D 1.67E-07 2.48E+01 1.75E-07 1.67E+01 1.75E-07 1.09E+01 

CTRW β 2.09E+00 3.17E+01 1.97E+00 3.54E+00 1.97E+00 1.81E+00 

CTRW t1 6.60E+00 9.76E+02 6.60E+00 3.26E+02 6.60E+00 2.27E+02 

CTRW t2 1.00E+02 6.79E+02 1.00E+02 7.12E+02 1.00E+02 3.67E+02 

Table 5.5. Calibrated values, C, of model parameters and ratio, R, of the difference 

between the lower and upper limits identifying the 95% estimate confidence limits 

and C. 

 

Comparison amongst the competing models for each calibration set is 

then possible on the basis of the model identification criteria (5.14)-(5.16) 

and posterior probabilities (5.17). Table 5.6 presents the value of NLL 

(5.13) together with model identification criteria results (i.e., AIC (5.14), 

AICc (5.15), KIC (5.16)) for the selected competing transport models and 

each calibration subset. The posterior probability calculated on the basis of 

the AIC (5.14) criterion is also included for completeness. Evaluating 

posterior probability according to the other discrimination criteria 

considered does not produce significantly different results. 

Note first that the posterior model weights indicate that one model 

always has a markedly high degree of likelihood at the expense of the 

remaining two, depending on the set of observations considered. For 

example, considering the second and the third concentration profiles 
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(subsets 2, 3), respectively, clearly renders the DP and CTRW as the best 

interpretive models. In contrast, extracting only the most sensitive 

observations from these two profiles (subsets 5, 6) results in the ADE being 

clearly preferable to the other transport models. The DP emerges as the 

best modeling choice for the early-time observations (subsets 1, 4). 

 

Subset 

ADE 

NLL (19) AIC (20) AICc (21) KIC (22) 
Posterior 

prob. (23) 

1 -708.010 -704.010 -703.897 -651.400 0.000 

2 -452.809 -448.809 -448.635 -397.710 0.050 

3 -541.258 -537.258 -537.121 -485.623 0.000 

4 -138.268 -134.268 -133.518 -90.339 0.021 

5 -158.358 -154.358 -153.608 -107.734 0.995 

6 -292.599 -288.599 -288.266 -240.207 0.999 

Subset 

DP 

NLL (19) AIC (20) AICc (21) KIC (22) 
Posterior 

prob. (23) 

1 -756.196 -748.196 -747.811 -660.817 1.000 

2 -462.715 -454.715 -454.118 -369.526 0.950 

3 -546.255 -538.255 -537.789 -459.326 0.000 

4 -149.936 -141.936 -139.079 -70.802 0.979 

5 -151.796 -143.796 -140.938 -70.937 0.005 

6 -282.237 -274.237 -273.060 -195.469 0.001 

Subset 

CTRW 

NLL (19) AIC (20) AICc (21) KIC (22) 
Posterior 

prob. (23) 

1 -460.696 -456.696 -456.583 -425.746 0.000 

2 -413.792 -409.792 -409.618 -371.524 0.000 

3 -568.758 -564.758 -564.622 -517.224 1.000 

4 -117.316 -113.316 -112.566 -94.097 0.000 

5 -93.840 -89.840 -89.090 -65.580 0.000 

6 -186.613 -182.613 -182.28 -151.501 0.000 

Table 5.6. Results from model calibration and identification criteria (6a. ADE; 6b. 

DP; 6c. CTRW). 

 

It is interesting to observe that the identification criteria AIC (5.14) 

and AICc (5.15) render almost identical values, and very close to NLL 

(5.13), for all of the scenarios tested. This implies that the contribution of 
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NLL dominates over the influence of the number of parameters associated 

with the selected models in the calculation of these model selection criteria. 

Note that the lowest value of a given model identification criterion 

indicates the most favored model (according to the criterion itself) at the 

expense of the remaining models. The identification criterion KIC (5.16) is 

generally in line with the results of the remaining criteria, with the 

exception of subset 4, for which CTRW is favored over DP. Note that KIC 

values differ from NLL (5.13) as KIC also contains the expected 

information content through the parameter covariance matrix. 

The predictive capability of the selected models is then explored by 

comparison of calibrated model outputs against concentrations values and 

profiles which were not employed during the calibration step. For the 

purpose of illustration, the calibration values of parameters resulting from 

subsets 2 and 5 are considered in the following. 

Figure 5.5 (first row) depicts the comparison between the four 

measured concentration profiles and the modeling results obtained through 

the ADE when the parameters are calibrated on the basis of the most 

sensitive observations taken at the second and third concentration profiles 

(i.e., subset 5). The insert in each figure is a scatterplot of the model results 

versus measurements. Figure 5.5 (second row) presents corresponding 

results based on the ADE when parameter calibration is performed on the 

basis of the complete set of observations available for the second 

observation time (subset 2). Figures 5.6 and 5.7 illustrate corresponding 

results for the DP and CTRW models, respectively. The picture is 

complemented by Table 5.7, which reports the mean square error (MSE) 

between data and model predictions calculated for each observation time 

and model. 
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Figure 5.5. Comparison among the four concentration profiles of Gramling et al. 

[2002] and modeling results obtained through the ADE model with parameters 

calibrated on the basis of (top) the most sensitive observations taken at 2 and 3, 

i.e., subset 5 in Table 5.4, or (bottom) the complete set of observations available 

for 2, i.e., subset 2 in Table 5.4. 

 

Figure 5.6. Comparison among the four concentration profiles of Gramling et al. 

[2002] and modeling results obtained through the DP model with parameters 

calibrated on the basis of (top) the most sensitive observations taken at 2 and 3, 

i.e., subset 5 in Table 5.4, or (bottom) the complete set of observations available 

for 2, i.e., subset 2 in Table 5.4. 

 

Analysis of the results reported in the first rows of Figures 5.5, 5.6, 

and 5.7 reveals that the sensitivity-based calibration of each model returns 

an acceptable approximation (accurate in the case of the CTRW model) of 
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all four profiles even though only 20 observations are used out of a total of 

380 data points available. It is remarkable to note that the best predictive 

power, assessed through Figures 5.5-5.7 and Table 5.7, is associated with 

the CTRW model even as the posterior probability weight associated with 

the ADE is clearly dominant in this case (Table 5.6). 

 

 

Figure 5.7. Comparison among the four concentration profiles of Gramling et al. 

[2002] and modeling results obtained through the CTRW model with parameters 

calibrated on the basis of (top) the most sensitive observations taken at 2 and 3, 

i.e., subset 5 in Table 5.4, or (bottom) the complete set of observations available 

for 2, i.e., subset 2 in Table 5.4. 

 

With reference to the analysis performed on the basis of the 

calibration performed on subset 2 (second rows in Figures 5.5, 5.6, and 

5.7), the DP model stands out as the best alternative in fitting the 

observations (Table 5.6) but is not equally adequate to predict the 

remaining concentration profiles, especially for late time. This appears to 

be linked to the observed tendency of the mass transfer coefficient to be 

associated with larger values at early times. The CTRW model, which 

includes the ADE and the DP model as particular cases, appears to return 

the best prediction capability also in this case. 
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Subset 2 5 

ADE: 

MSE 

 8.87E-04 1.66E-03 

 4.74E-04 2.60E-03 

 7.63E-04 3.12E-03 

 1.61E-03 5.01E-03 

DP:  

MSE 

 9.77E-04 1.81E-03 

 4.14E-04 2.79E-03 

 8.82E-04 3.34E-03 

 2.46E-03 5.38E-03 

CTRW: 

MSE 

 6.30E-04 9.39E-04 

 2.02E-04 4.19E-04 

 1.57E-04 2.87E-04 

 9.34E-05 9.04E-04 

Table 5.7. Model validation in terms of mean square error (MSE) for each of the 

four concentration profiles (corresponding to observation times i, i = 1, 2, 3, 4) 

and observation subsets 2 and 5 (Table 5.4). 

5.6.3 Implications for experiment design 

The sensitivity-based methodology presented here has direct 

implications for the analysis of the interpretive capability of models for a 

given case study. GSA allows identification of (i) the parameters that may 

play an important role in model interpretation, thus providing an answer to 

the question related to which parameters can be estimated; (ii) convenient 

space-time locations where measurements should be collected to be used 

during the model calibration step, thus providing an indication about where 

one should concentrate measuring efforts; and (iii) reduced sets of 

observations with relevant information content for parameter calibration, 

thus providing an indication about the amount of data that needs to be 

collected. 

The first key point above highlighted has been shown to be relevant in 

this case study for, e.g., the CTRW model because GSA reveals a markedly 
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different degree of influence of the (uncertain) parameters on the model 

output. Note that the parameters which are less relevant for this model are 

associated with the worse calibration results, in terms of relative width of 

confidence intervals (see Table 5.5), suggesting the possibility of excluding 

these parameters from the analysis of the model interpretive capability for 

the selected case study. Excluding t1 and t2 from model calibration results 

in a significant improvement in the reduction of the confidence intervals 

associated with the remaining parameters. This supports the relevant role of 

the GSA based approach in the parameter identification process. 

The second and the third key points evidenced are particularly 

relevant in light of the need to optimize the number of measurements. This 

becomes particularly relevant when the analysis is performed in a multi-

model context, as done in this work. When a set of multiple models is 

employed, it becomes relevant to explore the possibility of optimizing the 

set of measurement points to properly calibrate the parameters associated 

with each model, given that each model can display large sensitivity to 

parameters within different space-time intervals. This kind of analysis is 

exemplified in Figure 5.4, where one can observe that regions with high 

sensitivity to parameters overlap for the different models, thus guiding in 

optimizing the experimental effort in terms of number of measurements to 

be collected. 

5.7 FINAL REMARKS 

Application of a complete methodology for sensitivity-based 

parameter calibration applied to transport models in porous media has been 

illustrated. The potential of the methodology for model-driven 

experimental design is demonstrated through an application to a 
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conservative transport experiment [Gramling et al., 2002]. The 

methodology is articulated according to the following steps: (i) selection of 

one or more competing interpretive models for the transport problem 

considered; (ii) identification of space-time locations which are most 

influenced by the uncertainty in model input parameters via a complete 

GSA performed through the PCE method; (iii) calibration of model 

parameter within a Maximum Likelihood context, considering subsets of 

measurements associated with the space-time locations which are most 

sensitive to model parameters; (iv) ranking of selected models by means of 

model quality criteria and estimating the relative degree of likelihood of 

each model by means of a weight, or posterior probability; and (v) model 

validation with the available observations which are not employed in the 

calibration step. 

As shown this GSA-based approach allows identification of (i) the 

relative importance of model-dependent parameters, and (ii) the 

observations carrying the largest information content for parameter 

calibration and model identification purposes. The investigation on the 

interpretive capability of three selected conservative transport models (i.e., 

ADE, DP model and CTRW) through the methodological framework 

illustrated leads to the following key results and conclusions: 

1. Results from the ADE model are most sensitive to velocity at locations 

close to the solute center of mass, while sensitivity to dispersivity is 

largest close to the tails of the concentration distribution. The role of 

the mass transfer coefficient in the DP model is less significant at the 

advancing solute front than at the upstream tail of the concentration 

profiles. Dispersivity is the most important parameter in the DP model 

for earlier times, its effect decreasing with time. While both the ADE 

and DP models are sensitive to all parameters, albeit with various 
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degrees and at different locations, for the transport experiment 

considered, the CTRW model is sensitive chiefly to , characterizing 

the nature of the dispersive transport; the role of D is of some 

importance only for the observations available at earliest times. 

2. Posterior model weights indicate that one model always has a markedly 

high degree of likelihood, at the expense of the remaining two models, 

depending on the set of observations considered. Model ranking is 

highly dependent on the subset of observations considered. The DP 

model renders the best approximation for the early-time observation 

subsets, while the ADE is preferable when the GSA-based observation 

sets are considered. The CTRW model is not excessively penalized in 

the ranking based on the adopted identification criteria despite its 

larger number of parameters. 

3. The best predictive power, assessed through the validation results 

presented in Figures 5.4-5.6 and Table 5.7, is always associated with 

the CTRW model, even in the cases where the posterior probability 

weight associated with either the ADE or the DP model is clearly 

dominant. The GSA-based calibration of each model returns an 

acceptable approximation (remarkably accurate in the case of the 

CTRW model) of all available concentration profiles even as 

calibration is performed using minimum sets of observations 

corresponding to the most sensitive (space-time) locations. 
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Conclusions 
 

The focus of the present work consists in developing a comprehensive 

solution for the characterization of the uncertainty associated with model 

responses in environmental and civil engineering scenarios. With this 

purpose, a numerical tool based on the Polynomial Chaos Expansion theory 

has been developed and tested. Several novel applications to flow and 

transport problems in porous media have been proposed at the laboratory 

and field scale. Each application showed the potential of the methodology 

towards expanding the ranges of research in this field at an acceptable 

computational cost. Others applicative contexts are being explored, such as 

risk-based or performance-based design (coastal groundwater management, 

shallow geothermics, water distribution networks), with the dual aim of 

optimizing the use of natural and water resources and preserving them in 

the long term. 
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