
Alma Mater Studiorum · Università di Bologna

Dottorato di ricerca in
Informatica

Ciclo XXV

Settore concorsuale di a�erenza: INF/01
Settore scienti�co disciplinare: 01/B1

A universal delta model

Presentata da: Gioele Barabucci

Coordinatore dottorato:

prof. Maurizio Gabbrielli

Relatore:

prof. Fabio Vitali

Esame �nale anno 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Dottorato

https://core.ac.uk/display/11014284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

1 Introduction 7

1.1 Research problem . 10

1.2 Research goal . 11

1.3 Proposed solution . 11

1.4 Structure of the dissertation . 12

I Expressing deltas 15

2 A missing piece: a universal delta model 17

3 State of the art in document comparison models 21

3.1 Models embedded in algorithms . 22

3.1.1 Algorithms for generic documents (sequences) 22

3.1.2 Algorithms on trees and XML trees 24

3.1.3 Algorithms for ontologies . 26

3.1.4 Algorithms for source code 27

3.2 Standalone models . 27

3.3 Problems with existing delta models 32

II The universal delta model 33

4 A formal model of documents, deltas and operations 35

5 Structure of diff algorithms 39

5.1 File input phase . 40

5.2 Alignment of common parts . 40

5.3 Detection and representation of differences through changes 41

5.4 Refinement of delta . 42

5.5 Delta serialization and output . 43

3

4 CONTENTS

5.6 Relation between changes, operations and rules 43

6 Documents 47

6.1 Documents and abstraction levels . 48

6.2 Elements and element relations . 52

6.3 Document structure . 54

6.4 Equivalence between documents and comparability 54

7 Deltas 57

7.1 Deltas . 57

7.2 Change relations . 58

7.3 Special deltas . 59

8 Changes 61

8.1 Changes . 62

8.2 Encapsulation justification . 63

8.3 Classification of changes . 64

9 Objective properties of changes and deltas 65

9.1 Objective properties of changes . 65

9.2 Objective properties of deltas . 66

10 Operations 69

10.1 Operations . 69

10.2 Parameters . 70

10.3 Semantics, conditions and effects . 70

10.4 Composition . 71

11 Catalog of operations 73

11.1 Operations on trees . 73

11.2 Operations on lists . 76

11.3 Operations on XML trees . 77

11.4 Example of extension: Operations on DocBook documents 80

12 Serialization of deltas 83

12.1 Data structure model in UML . 83

12.1.1 The Change class . 84

12.1.2 The Delta class . 86

12.1.3 The Hunk class . 87

CONTENTS 5

III Applying and testing the universal delta model 89

13 Practical applications of the model 91

14 Quality assessment of deltas and algorithms 93

14.1 Comparing quality of diff algorithms 95

14.2 Quality is domain-dependent . 98

14.3 A top-down approach to measure the quality of deltas 100

14.4 Metrics for delta evaluation . 103

14.4.1 Precision . 103

14.4.2 Conciseness . 104

14.4.3 Meaningfulness . 105

14.4.4 Aggregation . 106

14.5 Applying metrics . 107

14.5.1 A two-phase process to evaluate algorithms through metrics . 107

14.5.2 Experimental results on XML diff 109

14.6 Conclusions and future works . 114

15 Evolution of ontologies 117

15.1 Introduction . 117

15.2 The discovery process . 117

15.2.1 Chains of ontologies . 118

15.2.2 Creation of deltas . 118

15.2.3 Refinement of deltas . 119

15.2.4 Clustering of changes . 120

15.3 Results from the analysis of a chain 120

16 Conclusions 123

Bibliography 125

Sitography 133

6 CONTENTS

Chapter 1

Introduction

The only constant is change.

Heraclitus

More and more contemporary human knowledge is stored in electronic docu-

ments, see the enormous number of web pages, text documents, photos and music

files spread all over the hard discs of the world, or centralized repositories of knowl-

edge such as Wikipedia or OpenStreetMap. All these documents are seldom static,

they are constantly changing: sometimes they are changed by their original au-

thors, other times they are collectively edited, yet other times they are modified

by automated bots. Regardless of who or what makes these modifications, what

can be observed is a continue status of flux of this mass of documents: they are

constantly being changed.

The study of how these documents change can provide deep insights about

how knowledge and culture evolve. The history of edits made to notable pages on

Wikipedia contains a treasure trove of interesting facts: changes in the way a topic

is seen in the media, modifications brought by the passing of time, corrections to

factual data to reflect new discoveries, etc. The ability to analyze how documents

change is a key point to be able to understand how knowledge has changed and

how it may change in the future.

A common way to analyze how documents change is the extraction of differences

between two documents, usually between two revisions of the same document. The

document that describes the differences that have been found is called the delta

between the first document, the source, and the second document, the target.

There are fields in which the deltas themselves are important and subject of

debate. Deltas are the basis of the code review process employed by many software

project, especially open source projects. In projects that use code reviews, mod-

ifications to the source files are not directly committed by the contributor to the

7

8 CHAPTER 1. INTRODUCTION

core repository. Instead, the changes are submitted to the project discussion lists

as deltas and reviewed by other members of the project that can approve them or

offer advice on how to improve the proposed modification so it can be accepted.

In this case, deltas are used to concentrate the attention of the reviewers on what

has changed, sparing them from having to review the whole codebase every time a

modification is proposed. Other examples of the importance of deltas as standalone

documents can be found in philology and textual criticism in particular. Textual

criticism studies the differences between different copies of a manuscript to try to

reconstruct a version of the manuscript that is a near as possible to original intent

of the author. The differences between these copies are analyzed instead of the

complete manuscript, putting in evidence the parts of the documents that provide

the most interesting clues.

Deltas can be generated in three ways: by writing by hand the list of modifi-

cations to be done to a document, by recording the actions of the author of the

modifications while they modify the document or by comparing two files containing

two versions of a document, the source and the target version. The first case, the

direct creation of the deltas can be seen in the field of law making: acts usually

do not create new laws but amend the existing ones. For example, the US Copy-

right Term Extension Act changed the text of the US copyright law extending the

duration of the copyright protection from 75 years to 95 years. The fact that the

content of the act focuses only on what is being changed and do not repeat the

complete text of the law, highlights the message of the lawmakers: “we have not

changed the copyright regime, we only changed this specific aspect of it, the length

of the protection”. The second case, tracking the actions of the author, is the way

word processing tools manage the changes introduced during the editing process.

The traces of the user’s actions are seen by these tools as the description of what

has changed, regardless of what has been changed in the content of the document.

The third case, the comparison of two revisions of a document, is the normal way

to extract a list of things that have been changed if no explicit summary of the

modifications exists and there is no access to the traces left by the author while

modifying the document. This is the way in which differences between source code

files are customarily shown; this is also the only technique that makes it possible to

compare documents that are just representations of other documents, for example

electronic representations of ancient documents stored on parchments.

Comparing documents to extract a list of changes is not a novel idea, but

the ability to perform these tedious comparisons with automatic tools allows the

development of interesting systems. Take for example the use of versioning systems,

systems that keep track of all the versions of a document, allowing the retrieval

of older versions. The feasibility of these systems is in big part due to the fact

9

that they do not need to store complete copies of the tracked files, only the deltas

between two subsequent versions. This greatly reduces the amount of data that

must be stored or transferred in order to save a new version. Another example

is the generation of the stemma codicum of a manuscript, i.e. the study of all

the available copies of a manuscript to infer which copy has been copied from

which so to trace how culture used to spread in a certain historical period through

the analysis of repeated copying mistakes or adjustments. To generated a stemma

codicum, a philologist has to analyze many different versions of the same document

and to figure out what is the best arrangement of these copies in terms of what has

been copied from what: are there strong clues that the copy A of the manuscript

has been copied from the copy B, that in turn has been copied from the copy

C or does it make more sense to think of both A and B as independent copies

of the common ancestor C? These questions must be answered for all the copies

that are being analyzed and this may mean dozens of possible comparisons. The

use of automatic comparison tools relives the scholars from the need to perform

these comparisons by hand, allowing them to focus on analyzing the small deltas

that have been found instead the complete documents. Yet another example of

processes that can be simplified by the use of automatic comparison tools is the

creation of amendments during the debate of a bill in a parliament. Before a bill

is approved and becomes and act, members of parliament and other authorities

can submit amendments to the proposed text. These amendments are instructions

on how to change the text that is being debated (e.g., “remove comma n. 4”

or “modify �lifetime pension� to read �4-year pension�”) that are voted by a

legislative assembly. If an amendment is approved, the text of the bill is changed

as specified in the amendment. The amendments are usually written by hand by

the staff of the member of parliament that wants to propose them. The creation of

these amendments require careful drafting because they must obey to all the formal

rules about their content and their style before they are eligible for discussion in

the parliament and can be voted on. An alternative to this cumbersome and error-

prone task is the generation of amendments from a modified copy of the original

text. First the member of parliament edits the text of the bill, then this modified

text is compared with the original text, then a delta is extracted and, finally, an

amendment is generated by rewriting the changes found in the delta using the rules

prescribed by the legal system. This technique, that is faster than the manual way

of creating amendments and ensures that all the legal rules are followed, cannot be

implemented without the availability of automated comparison tools.

The core of the automated comparison tools are the difference algorithms, also

called diff algorithms. The purpose of a diff algorithm is to compare two documents,

the source and the destination document, and to produce a third document, the

10 CHAPTER 1. INTRODUCTION

so called patch that describes in precise terms which changes must be done to the

source document to make it become identical to the target document. For example,

if the source document is the sentence “the sky is blue” and the target document is

“the night sky is dark”, a diff algorithm may produce the patch “add ‘night’ after

the first word; replace ‘blue’ with ‘dark”’.

Many different algorithms have been designed over the years. The main mo-

tivation behind the creation of new algorithms is, historically, the desire to have

algorithms that run faster or use less memory. In the recent times, however, other

algorithms have been designed to address different problems. First, new algorithms

started taking into account some qualities of the generated patch: for instance the

number of change instructions needed to express the found modifications or the

readability of the patch itself. In addition to this, various specialized algorithms

have been designed, to compare documents stored using the same file format or

conceptual model. These specialized algorithms exploit their knowledge of files

formats to identify changes more precisely. Specialized algorithms are also able

to ignore small modifications that do not changes the meaning of the content for

examples the amount of white space in XML documents.

1.1 Research problem

Although all diff algorithms operate in a similar way and produce conceptually

similar deltas, it is hard for tool makers to move from an algorithm to another, to

enable the use of multiple algorithms in the same tool or to analyze the behavior

of a set of algorithms to understand which one fits better a certain situation.

In principle, all the diff algorithms operate in the same way: first, similar

portions of the two compared documents are detected and aligned, second, the

different parts are analyzed and changes are generated, then the changes are refined

in order to optimize the generated delta and, finally, these changes are saved in a

certain format, to be used by patching tools or other tools. Also in principle, the

data structures used by these algorithms are all the same, or, at least, they are all

exported in the same way.

In practice, however, all the existing algorithms operate in their own peculiar

way: they use their own vocabulary to express what they are doing and which

changes they have detected, they also use different data structures and completely

different serialization formats to store the found changes.

This heterogeneity makes it hard to compare how the algorithms work and to

isolate the parts that they have in common from those in which they differ. It is

also hard for tool-makers to change the used algorithm once a tool has been built

based on a particular algorithm.

1.2. RESEARCH GOAL 11

It is reasonable to say that all the discussed problems can be traced back to

a main issue: the lack of a shared formal model of documents and deltas. If

algorithms and tools were based on such a shared model, it would become much

easier to change existing algorithms (for instance, to support a little variation of

a document format), to compare the behavior of these algorithms and also their

output, to write tools able to use more than one diff algorithm.

1.2 Research goal

The main goal of this thesis is to answer the following questions:

• Is it possible to formalize what it means to find differences between docu-

ments?

• Is it possible to find a single shared formalization that can be used by any

diff algorithm working on any kind of document?

1.3 Proposed solution

The proposed solution is a model that abstracts and formalizes all the parts that

are common to most diff algorithms:

• The concept of document (What is a document made of? What does it mean

that a document is in a certain “format”? What about the fact that some

documents carry the same knowledge although they have different content?).

• The concept of delta and changes (What exactly are these change objects

detected by diff algorithms? How can we bundle these changes together, so

that they form an identifiable unit? Are there changes that express more

meaning than others?).

• What changes can be detected (Do all the algorithms recognize the same set of

changes? Are certain changes related to other changes? What about changes

that make sense only when comparing documents of a certain format?).

• How to achieve interoperability between the algorithms that produce changes

and the tools that apply them (How should these changes be stored when

returned through an API? How should they be written into files that are

meant to be used by different tools? How to deal with the fact that some

tools are able to generate changes that may not be understood by other

tools?).

12 CHAPTER 1. INTRODUCTION

This proposed model provides a groundwork on top of which it is possible to create

new algorithms, redefine the existing ones and analyze them with automatic tools.

The fact that this model is not only a conceptual model but also a mathematical

formalization makes it possible to write tools that perform analysis that previously

could only be carried out by humans.

1.4 Structure of the dissertation

This dissertation is structured in three parts: problem, solution and applications.

The first part introduces the problem of the heterogeneity of the delta models

used by the algorithms described in literature. Specifically, chapter 2 describes the

problem in detail and with practical examples while chapter 3 reviews many models

found in literature, not only explicit models but also implicit models emerging from

the code or from the output of the existing algorithms.

The second part is dedicated to the model proposed as a solution to the research

problem. This second part begins with an overview of the model in chapter 4 and

continues with formal and informal definitions of the concepts that compose the

model. Chapter 5 illustrates with a simple meta-algorithm the abstract structure

that can be found behind any diff algorithm. Chapter 6 describes the concept

of “document” and formalizes the relation between all the format that are used,

one on top of the other, to encode the knowledge carried in the document itself.

Chapter 7 formalizes the concept of delta as a set of changes to be done to a source

document to turn it into the desired target document. Chapter 8 formalizes what

a “change” is, how changes in the same delta are related to each other and how

they can be classified. Chapter 9 presents a list of properties of changes and deltas

that provide objective data about the changes that have been found. Chapter 10

describes the concept of “operation”, i.e. what is the meaning of a change and

how the document is to be modified when a change is applied; later, chapter 11

presents a catalog of possible changes, starting from basic universal operations and

concluding with domain-specific operations. Last, chapter 12 shows various data

structures for internal use or in APIs that can be used to encode the formalism

previously described; these data structures are models as UML classes.

The third part presents some practical applications of the model. Chapter 13

gives an overview of what applications are made possible by the adoption of this

models. Chapter 14 describes in detail how to evaluate, in an automated and

objective way, the “quality” of the deltas produced by an algorithm, relying on

some of the properties made explicit by the model. In the same chapter, it is

shown how it is possible to show the behavior of an algorithm through the deltas

is produces, without looking at its code. Chapter 15 is, instead, devoted to the

1.4. STRUCTURE OF THE DISSERTATION 13

presentation of a technique for the identification of the various phases that occur

during the development of an ontology (for example the initial creation of the class

hierarchy, the later refinement, the documentation of certain properties, etc.). This

identification is possible thanks to a novel diff algorithm for OWL ontologies, also

presented in the same chapter; the development of this diff algorithm has been

made substantially easier by the adoption of the proposed delta model.

The last chapter, chapter 16, summarizes the new scientific findings contained

in this dissertation and positions the proposed model with regards to the existing

state of art.

The dissertation ends with a bibliography of published results and a sitography

of resources available over the web.

14 CHAPTER 1. INTRODUCTION

Part I

Expressing deltas

15

Chapter 2

A missing piece: a universal

delta model

One of the problems faced by tools that rely on comparison algorithms is that

it is hard to swap the used algorithms in favor of another or to integrate two or

more algorithms at the same time. The main reason behind this problem is that

different algorithms produce deltas in different formats and using different delta

models; in practice the main drawback is the big amount of changes required to

move from using an algorithm to another. This problem makes it also harder for a

tool to support multiple algorithms at the same time, for example to compare the

same files at two different abstraction levels. The adoption of a single delta model

could make it simpler to change from a comparison algorithm to another; this delta

model could be employed directly by algorithms as their own internal model but

could also be used as a intermediary model to and from which translate the model

used by current algorithms.

There are many reasons why a tool would be interested in changing its under-

lying algorithm. Historically efficiency has been the main concern behind this kind

of changes: in some cases to move to an optimized implementation of the same al-

gorithm already in use (e.g. from MJD Diff [58] to Ned Konz’s Algorithm::Diff [62],

two implementations of the Hunt-Szymanski algorithm [24]), in other cases to use

an algorithm with a different computational complexity or with different trade-offs

between comparison speed and required memory (e.g. from [36] to [35]). Another

reason for a tool to change the algorithm it uses is the fact that, for some doc-

uments, specialized algorithms can produce much “better” deltas or detect more

meaningful changes, for example a tool that shows subsequent revisions of a book

in the XML-based DocBook format [68] may prefer a tool that can detect special-

ized changes like “a paragraph has been split in two” instead of “the XML subtree

17

18 CHAPTER 2. A MISSING PIECE: A UNIVERSAL DELTA MODEL

rooted on the <para> element has been removed and two subtrees with <para>

elements as root elements have been added”. More recently, license concerns with

the library that implements comparison algorithms have become another common

reason for replacing the used algorithm.

Algorithms are not only replaced in tools, they are also added along the existing

ones so that they can be used together or chosen at runtime by the user. There

are two main reasons why the use of a single algorithm in a tool may not be

enough. First, users may be interested in different kinds of comparisons: a fast but

imprecise comparison, a comparison that takes longer to be performed but reports

a smaller and more focused set of changes or, also, a comparison that analyzes

only some aspects of a document (e.g. its structure and not its textual content).

Tools such as Oxygen XML Diff & Merge [65] provide the user with a choice

between these algorithms fulfilling these different requirements, while still showing

the found changes in the same graphical interface. Another justification for the

need of multiple diff algorithms is that many electronic documents can be seen as

expressing different abstraction levels, each requiring its specialized diff algorithm.

An example of this are OWL ontologies [59]: physically they are stored as text files,

conceptually they express collections of facts about classes, properties and entities

but are also meant to be interpreted in more abstract terms as Description Logic

axioms, generating interpretation sets and similar mathematical objects [63]. Tools

such as Ecco [20] allow users to compare two ontologies at different levels: how do

their classes and properties differ? how differently are their entities connected?

how do the (possible infinite) generated interpretation sets differ? Each of these

levels of abstraction requires a specific diff algorithm. Tools that want to offer a

comprehensive representation of the modifications between two ontologies must be

able to present a view of the difference for each of the abstraction levels, this means

that multiple algorithms must all be implemented in the tool.

Although it is an often-desired operation, it is not easy for toolmakers to replace

the algorithms used and the libraries that implement them, mostly because each

algorithm uses its own internal conceptual model (i.e. the view of what is a dif-

ference and what kinds of differences exists and can be detected) and serialization

format (i.e. the data structures used to manipulate the elements of the model).

The models and formats used are not based on a commons shared specification.

While some formats are more widespread than others, said formats are often lim-

ited to their original narrow domain, they are often underspecified and they rely

on assumptions buried in the source code of their reference implementation. The

“unified patch” format, described at [67], shows all these flaws: its usefulness is lim-

ited to line-based textual documents, its model of changes is very basic and is not

thoroughly documented, the syntax used to point inside the referenced documents

19

is a byproduct of certain implementations.

The fact that most algorithms use their own model of what is a document or

what is a change, creates a conceptual mismatch that must be overcome in order

to integrate a new algorithm in a tool. Take, for instance, a tool that shows differ-

ences between text files based on the Myers algorithm [35]. The list of changes the

tool receives from the algorithm contains changes that tells which lines have been

added or removed, where line means a string of characters between \n characters.

Suppose now that this tool wants to use instead bsdiff [64] as its comparison algo-

rithm. First, the bsdiff algorithm works on single characters, not lines. This means

that the tool will have to modify the way it interprets the pointer supplied in the

changes. Second, the bsdiff algorithm produces ADD (with the meaning of “copy”)

and INSERT operations, not the ADD and REMOVE operations that the Myers

algorithm produces. This means that the tool will have to modify also the way it

processes the received list of changes.

The conceptual mismatch between different algorithms is only one one face of

the problem. The other face of the problem is the way the produced information is

encoded in data structures sent across the API boundaries, i.e. how the deltas are

serialized. Almost no two implementations of diff algorithms share the same API

or data structures. Similarly, only few implementations produce output files based

on the same file format, the notable exception being line-based text diff tools. As

a result of this, tools that use diff algorithms must write different wrappers or code

path in order to be able to manipulate the deltas produced by the algorithms, even

though these objects are not very different in their content and structure.

An analysis of the existing diff models and format across various domains shows

that beneath this sea of incompatible models and formats lies a sizable core of

shared notions. For example, most algorithms produce insert and delete operations

plus some peculiar operations; the semantics of these operations is similar across

different algorithms; the file formats used to save the found deltas they all look

very similar. The purpose of my thesis is that it is possible to express in a single

model the basic features common to all document formats, fields of application

and comparison algorithms. On top of that layers of specialized features can be

built, providing a nice way to reduce these higher level features into sets of features

describe in the common core.

The idea of creating models for deltas that can be shared between different diff

algorithms is not novel: there are several attempts at creating reference standalone

models. However, all these models have some shortcomings, analyzed in chapter 3.

The main limitation of all these models is that they all focus on a single kind of

documents, for example XML (e.g., [47], [41]) or OWL (e.g., [38], [55]).

The solution proposed in this thesis, in chapters 4 to 11, defines a universal

20 CHAPTER 2. A MISSING PIECE: A UNIVERSAL DELTA MODEL

delta model based on the definition of a set of concepts related to deltas and the

diff process: the definition of what is a document, the concepts of delta and changes,

an extensible catalog of possible operations.

Chapter 3

State of the art in document

comparison models

The need for a shared conceptual model arises in different contexts and has been

already been discussed in various fields. First, a shared model is needed to allow

the exchange interoperable deltas between different programs (e.g. diff applica-

tions and merge applications). Then, it is useful to decouple the algorithm that

compares the documents from its output, making it easy to change the algorithm

or the implementation used in a tool. Having deltas expressed in a single model

allows also the comparison of the quality and properties of the generated deltas,

making it possible to to objective comparisons of the available algorithms from

their outputs instead of relying on more subjective analysis. However, regardless

of the importance of having a single shared model, most of the current algorithms

do not use one such model, relying instead on their own ad-hoc models, often un-

documented and embedded in the code of the reference implementation. Shared

models have been proposed in literature, but these models are meant for use in a

single particular field, for example [41] is limited to deltas on XML documents, [55]

focuses only on RDF documents, and [28] only on OWL ontologies.

The existing models found in literature can be divided in two main categories:

models embedded in algorithms and standalone models. In order to review the

embedded models it is necessary to analyze also the mechanisms behind the algo-

rithm for which they have been defined; the coupling between the two is often so

strong that the models cannot be discussed without referring to some details of

the algorithms themselves. The review of the standalone models, instead, can be

performed more in depth and in more abstract terms with the only caveat of these

models being focused on one particular format or one document domain only.

While all these models have they pros and cons, the following analysis provides

21

22CHAPTER 3. STATE OF THE ART IN DOCUMENT COMPARISONMODELS

a solid beginning point for the extraction of a common core of functionalities and

the subsequent development of an extensible catalog of operations, all components

of the formal model described in the second part of this dissertation, from chapter 4

to chapter 12.

3.1 Models embedded in algorithms

Most of the models used by diff algorithms are not standalone models: some of

them are implicit models that arise from the details of an algorithm, other are are

small ad-hoc data structures used while processing the documents, yet other are

broad descriptions of what can be detected by an algorithm. Regardless of the fact

that these models are not documented independently from enclosing algorithms,

they are the models used in practice and, as such, it is not possible to propose an

alternative to them without first carrying out a thorough analysis of them.

3.1.1 Algorithms for generic documents (sequences)

3.1.1.1 Hunt-McIlroy

The Hunt-McIlroy algorithm [23] is the algorithm used by the original UNIX diff

program.

The Hunt-McIlroy algorithm sees documents as sequences of lines. More pre-

cisely, documents are seen as sequences of numbers because what the algorithms

operate over is an hash of the content of the line, not the content itself.

This algorithm detects three operations: addition, deletion and modification

of a line. The detected changes are later serialized in a script for the UNIX line-

oriented text editor qed.

The “modifications” changes are not detected by main algorithm, that concerns

itself only with solving the LCS problem, but by the serialization phase, where ad-

ditions and deletions that hit the same non-common contiguous portion of sequence

are rewritten into changes.

3.1.1.2 Myers (GNU diff)

The Myers algorithm [35, 33] is the foundation of the GNU diff tool. The Myers

algorithm is a greedy algorithm that runs in O (ND) time and O (N) space.

Instead of computing, like the previous algorithms, a solution to an LCS prob-

lem between the source document and the target document, the Myers algorithm

solves a shortest edit script problem (SES), a problem dual to LCS. The length

of the edit script is measured by counting the number of changes to be generated,

without any additional weighting process. The list of changes to be generated is

3.1. MODELS EMBEDDED IN ALGORITHMS 23

selected among the many possible by applying a special case of the single-source

shortest path to the edit graph. The edit graph, illustrated in figure 3.1, is a graph

in which the nodes are all the possible alignment between the elements of the source

document and that of the destination document and the edges are the possible tran-

sitions between these alignments; diagonal edges exist between identical elements,

horizontal edges express that a element is available only in the source document,

vertical edges that an element is available only in the destination document.

Figure 3.1: An example of edit graph for Myers algorithm (extracted from [35])

The Myers algorithm can detect two operations: addition and deletion. These

operations mirror the moves found by the algorithm over the edit graph: additions

are moves over vertical edges, removals are moves over horizontal hedges. During

the serialization stage, sequences of consecutive additions or consecutive deletions

24CHAPTER 3. STATE OF THE ART IN DOCUMENT COMPARISONMODELS

are grouped together.

3.1.1.3 Burns-Long

The Burns-Long algorithm [11] improves other greedy LCS algorithms such as

Myers’ [35] by computing in O (1) a delta that can be serialized to a patch with a

near-optimal size.

This algorithm operates on sequences of bytes over which a rolling checksum

is calculated. The algorithm uses this rolling checksum to scan the target file and

find subsequences that appear also in the source file. All the data in the target file

that cannot be matches in the source file is regarded as an addition.

Given the way it operates, the Burns-Long algorithm detects two operations:

addition and copy. Instead of emitting deletion changes as most of the other al-

gorithms, The B-L algorithm produces copy changes that move pieces of the a

sequence to be kept over a sequence to be deleted, as depicted in figure 3.2. This

choice (using overwriting copy changes instead of deletion changes) is fundamental

to the speed and memory performance of the algorithm, but has two main draw-

backs. First, all the copy operations must be present in the serialized patch, this

means that the size of the patch is going to be O (N) unless some sort of range

compression mechanism is used (Burns-Long has one such mechanisms). Second,

neither the delta nor the patch can be reversed, i.e. the patches produced by the

Burns-Long algorithm cannot be transformed and applied to the target document

to obtain the source document. This happens because the copy changes do not

contain enough information about the pieces of document that will be overwritten,

a piece of information necessary to reverse the delta.

3.1.1.4 bsdiff

The bsdiff algorithm [64] is an O ((n+m) log n) algorithm that find differences

between files at the binary level. Similarly to [11], it produces patches based on

two operations: COPY and INSERT.

3.1.2 Algorithms on trees and XML trees

3.1.2.1 Faxma/Fuego diff

The Faxma algorithm [32] is a greedy diff algorithm for XML documents. Like

other XML diff algorithms its computational complexity is O (n) in the best case

and O
(
n2
)

in the worst case. Faxma tries to balance the speed of comparison,

the ability to detect non-basic operations (moves) and the generation of a compact

patch.

3.1. MODELS EMBEDDED IN ALGORITHMS 25

Figure 3.2: Addition and copy operations in Burns-Long (extracted from [11])

Faxma works by aligning sequences of XML XAS event tokens [27] (e.g. StartEle-

ment(e), EndElement(e)) instead of performing its computations directly on the

trees of the XML documents. Working with XAS events instead of trees of nodes

allows Faxma to reduce the problem of matching identical parts of the XML trees

to the well-studied problem of aligning sequences. Once the two documents have

been transformed into sequences of XAS event tokens, the matching algorithm start

refining the list of found changes, looking first for long matching sequences, then

trying to refine the list of different sequences by searching for matching sequences

of smaller size. The outcome of this process is a list of insertions and copies. How-

ever, this generated list is a list of XAS event tokens, not fit to describe what are

the found changes in terms of operations on nodes and trees. The found differences

are thus later serialized in an ad-hoc format, turning the list of possibly non-well

formed elements into a well formed XML document.

The set of operations detected by Faxma as stated in [32], consists of four

operations: insertions, deletions, updates and moves. In practice, however, only

insertions and copies are produced by Faxma. Delete operations are detected as a

by-product of the matching algorithm and are later discarded during the generation

of the XML patch as the patch is not meant to be reversible, so is it not necessary to

serialize the found deletions. The lack of update operations is due to the fact that

26CHAPTER 3. STATE OF THE ART IN DOCUMENT COMPARISONMODELS

the matching phase is only able to find either matching or non-matching sequences

of events and has no concept of “same element with different content”, as the

algorithm only deals with XAS events, not proper elements.

3.1.3 Algorithms for ontologies

3.1.3.1 PROMPTDiff

In [37], Noy et al. present an algorithm for the detection of changes between OKBC

ontologies [12], later extended to allow the comparison of RDF and OWL ontologies.

PROMPTDiff is a fixed point algorithm that focuses on ontology mapping. The

idea is to create a delta that resembles a list of mappings between the structure of

the source ontology and the modified structure of the target ontology. This list of

mapping is equivalent in practice to a list of operations to be carried out on the

source ontology, but highlight the declarative aspect of the comparison made by

PROMPTDiff.

PROMPTDiff works directly at the OKBC level (or at the OWL level in later

versions), without taking into account the serialization format used to store the

ontology on disk.

The mappings produced by PROMPTDiff, i.e., the detected operations, are:

• add/delete, for addition and deletion of axioms;

• split/merge, for single concepts that have been split in multiple concepts and

viceversa (e.g., the case of the Wine class being split in three classes White

wine, Rosé wine and Red wine);

• map, equivalent to a copy instruction.

The PROMPTDiff algorithm detects these mappings using a set of heuristics, whose

application order is stated in a dependency graph to make sure that the rules

that produce the most meaningful mappings or that produce mappings used by

other heuristics are applied first. As in other similar fixed point algorithms, the

computation stop when none of the heuristic rules can be applied to the set of

obtained mappings or when there are no more mappings to be further processed.

3.1.3.2 OntoVCS

The OntoVCS library [54] compares OWL ontologies to produce a delta of the

changed axioms. The delta produced by OntoVCS are unordered sets of changes.

The list of possible changes that OntoVCS can produce is exactly the number of

statements defined by the OWL specifications, e.g., ClassDeclaration, DataProp-

ertyDeclaration, AnnotationPropertyDomain, SubClassOf, etc. For each of these

statements two operations are defined: the addition of it and the removal of it.

3.2. STANDALONE MODELS 27

The comparison is carried out at the OWL level, so that it is possible to compare

ontologies stored using different serializations. The accompanying patching tool is

able to apply the produced deltas to ontologies stored in any format, even a third

format different from that of the source and target ontology.

An interesting feature present in OntoVCS is the fact that it records in its

patches additional information about the source and target. For example it stores

information about the two serialization formats used, the list of imported ontologies

(that have no impact on the diff at the OWL level and so could be ignored or

discarded), the various IDs used for explicit versioning. This allow the patching

tool to produce an ontology that, although not exactly equivalent bit-per-bit with

the target document, contains, at least, all the additional information useful for its

use with ontology tools.

3.1.4 Algorithms for source code

The problem of finding differences between documents has also been explored in

the field of software development and source code files.

The are various algorithms and tools available for finding differences between

revisions of source files, specialized in various programming languages: Java [2],

Verilog [18], C [34]. There are also programming-language-agnostic algorithms that

compare abstract syntaxes trees [22, 30, 26, 40] (the efficacy of which is compared

[44]). In addition to source code, algorithms and tools have been proposed for

compiled binary files [53] or UML uses cases [19].

It is interesting to note that the model used in these algorithms do no differ much

from what is used in the field of XML documents: the basic operations recognized

are those that operate on the structure of the graph, later these operations are

analyzed in search of clues that can justify the detection of more meaningful changes

or the aggregation of a set of changes in a single more structured change. The

operations used in the deltas generated by these algorithms have little in common

with each other, but this is understandable as each of these algorithms deal with a

very precise kind of document, for which there is often an established vocabulary

of refactoring operations.

3.2 Standalone models

3.2.1 Rönnau-Borghoff

Rönnau and Borghoff presents in [41] a standalone versioning model for XML

document, based on previous similar work [42]. This model defines what an XML

document is composed of and a catalog of 3 operations on nodes and sequences

28CHAPTER 3. STATE OF THE ART IN DOCUMENT COMPARISONMODELS

of nodes (i.e. addition, delete and update). In addition to these, the model also

defines a fingerprinting mechanism to help resolving conflicts during the merging

process and an XML patch format. The DocTreeDiff algorithm [43] uses this model

for its deltas.

It is manifest that one of the main focuses of this model is to make sure that

the delta contains enough information to be used in non-perfect scenarios, for

instance when its must be applied to a document that differs from the source

document. Indeed, the delta contains enough information that it is possible to

reverse it without accessing the original document, as long as the delta does not

contain update changes.

This model has three main limitations. First it operates only on XML doc-

uments. The second limitation is that its fingerprinting mechanism works on

canonicalized XML fragments [56], this means that the deltas produced by the al-

gorithms and tools that used this model cannot be trusted to produce bit-perfect

target documents once applied. This is a minor issue because the patched docu-

ments are equivalent at the XML level to the target documents. The last, more

fundamental issue, is that this model is very focused on elements, making text

nodes, attributes, comments and other XML nodes “second-class citizens”. For

instance, additions of attributes are detected but are reproduced as updates of the

containing element; similar things happens with text nodes and processing instruc-

tions. The consequence of this focus on elements is that the produced delta is less

explicit or understandable than a delta produced under a model that differentiate

between the many types of nodes present in an XML document.

3.2.2 The Delta ontology for RDF/N3

The Delta ontology [55] proposes a model the description of deltas for RDF

graphs. In this model the differences between two RDF documents are expressed

with two sets of operations: insertions and deletions. The two basic operations

diff:insertion and diff:deletion are implemented as specializations of a generic diff:re-

placement operation. This model also defines the difference between weak and

strong deltas. Weak deltas are deltas that can only be applied correctly to a

document identical (at the RDF level) to the document use as source document to

generate the delta; strong deltas, instead, contain enough context information to

be applied correctly also to documents that are slightly different from the one used

in the original comparison.

The two operations defined by the model (i.e., insertion and deletion) operate

only on whole RDF statements, not on single parts of the statements such as the

subject or the predicate of a statement. This means that the deltas are a bit coarse,

but this also allows for the redefinition of the diff:insertion and diff:deletion opera-

3.2. STANDALONE MODELS 29

tions inside the RDF/N3 framework. In fact, it is possible to formalize the relation

between diff:replacement and diff:insertion/diff:deletion using the N3 formula

{ ?F diff:replacement ?G }

log:implies

{ ?F diff:deletion ?F; diff:insertion ?G }

Although the set of available instruction is very basic, and so is the way the are

defined, the fact that these operations on RDF graphs are fully defined in terms of

other RDF + N3 statements allows for potentially interesting manipulations and

introspection opportunities.

3.2.3 Klein

In [28] Klein proposes a framework to classify the various changes that can

happen during the development of ontologies. The main contribution of [28] is

an extensive ontology of changes that describe what changes can happen at the

structural level and what other changes can be detected by considering two or

more structural changes as part of a more meaningful change. This model is not

linked to a particular algorithm, although it has been partially implemented in the

PROMPTDiff tool [37].

In the Klein model the output of an algorithm, i.e. the delta, is called the

transformation set and is a set of changes that, once applied, turn the source

ontology into an ontology equivalent to the target ontology.

The changes that are contained in the transformation set can be either basic or

complex changes. The basic changes are additions and removals of basic ontology

statements, e.g. class declarations or the specification of the domain of properties.

The complex changes are changes created aggregating other basic changes.

3.2.4 Papavassiliou et al.

The papers [50, 38, 51] introduce and develop a framework for the definition of

changes in knowledge bases based on RDF/S [60]. The same papers present also an

algorithm based on that framework. The underlying delta model divides changes in

in two categories: basic changes and composite changes. Basic changes are changes

that have a direct impact on the RDF/S graph and a 1-to-1 mapping to modification

to the RDF/S semantics that can be inferred from the graph. Composite changes,

instead, are changes that have been generated aggregating other basic changes.

The main peculiarity of this model is the way changes are formally defined: a

change is a tuple (δ1, δ2, φ) where

• δ1 is the set of the required added triples, i.e. the triples that must be in the

target ontology but not in the source ontology,

• δ2is the set of the required deleted triples, i.e. the triples that must be in the

30CHAPTER 3. STATE OF THE ART IN DOCUMENT COMPARISONMODELS

source ontology but not in the target ontology,

• φ is the required additional conditions that must be fulfilled before the change

can be generated.

An example of composite change that follows this definition is the following Change Domain

operation.

• Change Change Property (a, b, c)

• Intuition Change the domain of property a

• Arguments

– b = old domain of a

– c = new domain of a

• δ1(Required added triples) ∀c ∈ C : (a,domain, c)

• δ2 (Required removed triples)∀b ∈ B : (a,domain, b)

• φ (Required conditions)

– (a, type,property) ∈ Cl (V 1)∧
– (a, type,property) ∈ Cl (V 2)∧
– (a,domain, b) ∈ V 1∧
– (a,domain, c) ∈ V 2∧
– ¬Cond (Specialize Domain (a, b, c))∧
– ¬Cond (Generalize Domain (a, b, c))

• Subsumed basic changes

– ∀c ∈ C : Add Domain (a, c,)

– ∀b ∈ B : Delete Domain (a, b)

• Inverse change

– Change Domain(a, c, b)

This particular way of defining the composite changes is the cause of the main

drawback this model: given that the definition of the changes contain the rules

that must be followed to generate it, it is hard to design an algorithm that is able

to detect the same changes but using different detection rules. A way to address

this problem would be to separate the definition of the detection rules from the

intended meaning of the change itself.

3.2. STANDALONE MODELS 31

3.2.5 Vion-Dury

The model presented in [46, 47] formalizes a calculus for the application of

changes to XML documents. It is composed of various parts: a model of XML

documents, a formalization of paths over XML nodes and operations on them, a

calculus that describes how to application of single changes to deltas with multiple

changes modifies the documents. The changes are based on three basic operations

(called “atomic transformations”): INS, DEL, NOP. This model does not explicitly

takes into account complex changes for domain-specific purposes, but describes a

similar functionality: the composite transformations. Composite transformations

are transformation obtained composing smaller transformations applying them one

after the other or in parallel.

The field of application of this model is limited to XML documents. This limi-

tation is not only a willful restriction made to focus on a certain class of documents,

i.e. XML documents, but it is also of technical nature: the reliance of the model

on paths, hierarchical paths, makes it hard to extend this model to other types of

documents where the elements are not structured in a hierarchical way or where it

is not possible to enumerate and order the elements using a total order, for example

in a graph. On the other hand, the use of paths instead of opaque IDs or finger-

prints makes it possible to make explicit and rigorous many properties of the patch

process. Paths are of key importance, for instance, for the definition of orthogo-

nal deltas (deltas that can be independently applied) or for the transformation of

snapshot compositions into equivalent sequence compositions.

An interesting characteristic of the Vion-Dury model is the fact that its formal

representation of XML documents mixes the concept of an XML tree with details

of its serialization. This mix between the two levels of abstraction can be seen

by looking at the order of the attributes. In the XML model the attributes are

unordered but one order must be chosen when writing the XML tree to a file.

The Vion-Dury model follows a similar approach: it defines a total order for the

attributes, preserving the order on which they appear in the file, but ignores this

order during the comparisons.

This model lacks an explicit mechanism to define domain-specific operations on

top of the available atomic transformations. This is, however a problem that can

be easily overcome because the model already describes a mechanism to combine

transformations into more complex deltas. The main missing point is the defini-

tion of parameters for the complex transformations. Take, for example, a WRAP

operation that can be described in terms of additions and deletions of nodes and

subtrees. In order to perform its task, the WRAP operation requires the specifi-

cation of a node to add as the wrapper and the list of paths to be wrapped and

the list of the paths of the nodes to be wrapped. The definition of the WRAP

32CHAPTER 3. STATE OF THE ART IN DOCUMENT COMPARISONMODELS

operation would also need a way to describe how to map the parameters of the

WRAP operations to that of the single INS and DEL operations it is made of.

These two features are not available in the model as published in [46, 47].

3.3 Problems with existing delta models

To recap, the flaws found in existing models can be classified broadly according to

the following categories:

• focus on a single kind of document,

• are specific to a single algorithm,

• do not address the fact that the same document can be seen at different

abstraction levels.

The main limitation of all the existing models is that they are defined only for

a particular kind of documents, e.g., line-based text files, XML, OWL ontologies,

etc. While this is understandable from the point of view of simplicity and facility

of implementation, it also forces the restatement of the very similar same concepts

for each new kind of document.

The fact that many models are strictly coupled with a specific algorithm is

also a concern. This fact leads to two problems. First, these models are not

explicitly defined and documented, thus they must be extracted from the steps of

the algorithm or from the code of the implementation. Second, they only model

the parts of the delta that are strictly needed by the algorithm in which they are

found.

Another problem with most of the models analyzed in this chapter is that they

ignore the fact that, in many cases, documents are composed of parts with different

“behaviors” and that a document can be seen at different abstraction levels, some

of which are compatible and comparable, other which are not. Take for example

the case of literary XML documents. They are normal XML documents in which

the main content is the text contained in the elements. Diff algorithms for XML

documents that want to address the text nodes in a particular way should be able to

reflect the fact that the operations on text nodes are different from the operations

on content of the text nodes are different from those that can be made on the tree

structure formed by the other nodes, mainly element nodes.

The conclusion that arises from the analysis of the state of art is that there is

a big overlap of concepts and “view of the world” between all the existing models.

These similarities are, however rarely recognized, and, in fact, have not yet been

exploited to create a universal delta model.

Part II

The universal delta model

33

Chapter 4

A formal model of

documents, deltas and

operations

Keep it simple, make it general,

and make it intelligible.

Douglas McIlroy

As shown in section 3.1, almost no two algorithms share the same underlying

model of document or delta yet they are all based around the same principles:

documents as sequences of comparable elements, the detection of basic operations,

the refinement of these operations based on some additional knowledge of the doc-

ument format or domain. My main contribution is a single model of document and

deltas. This model is able to express deltas produced by different algorithms on

different kinds of documents and based on arbitrary sets of recognized operations.

It must be underlined that this unified model is not competing with the other ex-

isting models; we are not, thus, in the despicable situation illustrated in figure 4.1:

what is currently available are not models that try to be universal: either they

focus on a single kind of document, or only prescribe their own set of operations

to be used or they are just models implicitly defined by the data structures of the

diff algorithms. On the contrary, this model offers a way to bridge together all the

existing delta models and to make these deltas interoperable.

35

36CHAPTER 4. A FORMALMODEL OF DOCUMENTS, DELTAS ANDOPERATIONS

Figure 4.1: XKCD comic strip on the proliferation of standards

This model is composed of three main parts:

• a definition of what “a document” is and what makes two documents “the

same”

• a definition of what “deltas”, “changes” and “operations” are and

• an extensible catalog of operations that diff algorithms could recognize in

general or when operating over specific formats or domain.

First of all it is necessary to define what constitutes a document. Without a

formal definition of what a “document” is and what is it composed of, it w/ould

not be possible for algorithms to refer unambiguously to the parts of it that have

changed or have not. It is also important to be able to define precisely when two

documents or two pieces of documents are “the same”, a non-trivial task when

dealing with formats that admit more than one equivalent representation.

The second part of a diff model is the conceptualization of what constitutes a

delta, how multiple changes interact with each other and how they are used to turn

the source document into the target document.

A formalization of what docs and deltas are would be incomplete and inappli-

cable without a catalog of possible operations that can be detected between two

documents. The purpose of the catalog is to document what are the possible op-

erations and, thus, provide a shared definition and operational semantics of these

operations. Aside some basic operations (e.g. addition, removal) and other opera-

tions already defined in some domains (e.g. WRAP for trees, CHANGE-DOMAIN

for ontologies), it is still an open research question what is the best set of operations

to be used. It is not even known what makes a set of operations better than oth-

ers: some authors strive to find the set of operations that minimizes the produced

edit scripts, other focus on how meaningful these operations are, yet others aim

37

at describing operations that fit their domain of application. For this reason the

presented catalog is extensible in multiple dimensions and directions: additional

format- or domain-specific operations can be added on top of existing operations,

new operations can be added to the existing sets, operation can even be removed

or ignored while keeping the produced deltas understandable by other tools.

The intended purpose of this universal delta model is to provide a reference

model that can be used by any diff algorithm working on any kind of document.

This model is meant to be used for both for the formal definition of the algorithms

and for their practical implementation, simplifying the study of such algorithms

and the adaptation of tools to accept new algorithms.

38CHAPTER 4. A FORMALMODEL OF DOCUMENTS, DELTAS ANDOPERATIONS

Chapter 5

Structure of diff algorithms

All the algorithms illustrated in chapter 3 work on the same basic principles or, in

other words, there is a single structure that encompasses all these diff algorithm.

function diff(S, T)
S ← read (source) ; T ← read (target)
A← alignment (S, T)
∆initial ← changes (S, T,A)
∆← refine (S, T,A,∆initial)
Φ← serialize (∆)
return Φ

end function

Figure 5.1: Generic structure of diff algorithms

This common structure, briefly described in figure 5.1, is composed of the fol-

lowing steps, discussed more in detail in the rest of this chapter.

File input the source and target document are read and interpreted.

Alignment of common parts the parts of the documents that are identical are

recognized as such.

Detection and representation of differences the parts of the documents that

are not identical are studied and an initial set of changes and change candi-

dates is generated.

Refinement of delta the initial set of changes is refined, choosing the most ap-

propriate changes among all the candidates and aggregating certain changes

into more complex changes.

Delta serialization and output the refined set of changes is serialized into a

patch file (to be stored or send to other applications) or a number of data

39

40 CHAPTER 5. STRUCTURE OF DIFF ALGORITHMS

structures (to be returned through an API).

The fact that we can identify a single structure for such a variety of algorithms

resonates with the idea that it is possible to define a single delta model to be used

in any diff algorithm.

5.1 File input phase

The two files that represent the two documents to be compared are read and

decoded. The intended purpose of the file input phase is to turn the bits of which

the files are composed into data structures that faithfully represent the content

stored in those files.

During this file input phase, the content of each file is first read as a sequence

of bits, later these bits are interpreted as sequences of information elements. For

example block of 8 bits can be interpreted as ASCII characters, strings of variable

length (from 8 bits to 32 bits) can be interpreted as UTF-8 encoded UNICODE

codepoints, blocks of 128 bits can be interpreted as IEEE 754 [25] quadruple-

precision binary floating-point numbers.

Sometimes the decoding phase does not end here: the decoded elements are

interpreted again to create another, more structured representation of the content

of the document. This is the case, for example, with XML documents. The first

decoding step will transform the sequence of bits into a sequence of UNICODE

codepoints. These codepoints are then interpreted according to the grammar of

XML, generating an XML tree. This last step, generating a new representation

based on the representation previously generated of the same file can be repeated

many times, depending on the file format used by the files that are being compared

and the level of abstraction at which the diff algorithm operates. The stack of the

various levels of abstraction of a document and its relation to serialization formats

is described in chapter 6.

5.2 Alignment of common parts

Once the two document have been read and turned into appropriate data structures,

the diff algorithm starts looking for parts of the documents that are identical or

equivalent, so to establish a relation between these common parts, a so called

alignment between the elements of the document. The purpose of the alignment

phase is to create an initial small working environment for the part of the diff

algorithm that detects and processes the changes. After the alignment phase, the

algorithm knows which part of the document are of interest: those that have not

been aligned (e.g., because they do not appear in one of the documents) or have

5.3. DETECTION ANDREPRESENTATIONOF DIFFERENCES THROUGH CHANGES41

not been aligned perfectly (e.g., because they have been moved or changed only

slightly).

How the alignment phase is performed is one of the two defining characteristics

of a diff algorithm, the other being how to classify the found differences.

This alignment can be implemented in a myriad of ways, each with its pros

and cons under different aspects. The alignment can be more or less precise (e.g.,

using heuristics to consider equivalent elements that are 90% similar), require a

single pass over the data or many passes (e.g., a greedy algorithm will run in a

single pass, but losing the ability to find the optimal alignment), use more or less

memory (e.g. to store more the on possible alignment candidate) or, even, tuned

to react to certain features of the document content (e.g. preferring the alignment

of <p> elements over the alignment of <h2> elements).

5.3 Detection and representation of differences through

changes

After the alignment phase, the diff algorithm knows in which points the two docu-

ments differ. It must now encode what it has found into a set of changes, i.e., a set

of statements that describe what it is has found in terms of operations to perform

on the source document to make it become identical to the target document.

Diff algorithm distinguish one another by the way in which they detect and

encode these changes. Take, for example, the two strings “the summer love” and

“the lovely summer”. These two strings have various characters in common. A

possible alignment is to consider unchanged the strings “The ” and “ ” (This

alignment is depicted with underlines in figure 5.2). This is just one of the possible

alignments between these two strings, but is one that makes it possible to represent

the found differences in many contrasting ways. It is possible to list some of the

detectable sets of changes.

1. The summer love

2. The lovely summer

Figure 5.2: Alignment of two strings

1. Two word deletions, then two word additions:

• the word “summer” has been removed,

• the word “love” has been removed,

42 CHAPTER 5. STRUCTURE OF DIFF ALGORITHMS

• the word “lovely” has been added in position 4,

• the word “summer” has been added in position 11.

2. One word deletion, then the addition of two letters, then a word addition:

• the word “summer ” has been removed,

• the two letters “ly” have been added in position 8,

• the word “summer” has been added in position 11.

3. One word motion, then the addition of two letters:

• the word “ love” has been moved to position 3,

• the letters “ly” have been added in position 8.

4. One word motion (“summer”), then the addition of two letters:

• the word “ summer” has been moved to position 9,

• the letters “ly” have been added in position 8.

These are only few of the possible sets of detectable changes, but enough to illus-

trate the fact that different algorithms can produce different deltas. In this case,

diff algorithms that cannot recognize move operations, for instance because they do

not want to spend time looking for possible candidates, will not be able to produce

the deltas 3 and 4, although they are shorter and look quite good from the point

of view of readability. It must be noted that all these suggested deltas are correct

deltas; the difference between these deltas is that some of them may have qualities

that can make some user prefer them over others, for example because they are

more readable.

If a perfect diff algorithm existed, it would be able to produce a small delta,

in a little time and detecting many different kinds of changes. However, this is

not possible in many cases because of computational bounds: Zhang et al. [52]

demonstrated that in many cases the ability to detect more than two types of

changes while producing a minimum number of such changes is akin to solve the

exact cover by three sets problem, thus NP-hard.

5.4 Refinement of delta

The delta that emerges from the changes detection/representation phase is rarely

the delta that is later produced as the final output of the algorithm. Once this first

delta is generated, most algorithm refine it through the use of aggregation rules.

5.5. DELTA SERIALIZATION AND OUTPUT 43

For instance algorithms such as Hunt-McIlroy [23] process the initial delta look-

ing for two peculiarities: sequences of similar changes that operate on adjacent lines

(e.g., deletion of line 3, deletion of line 4, deletion of line 5) or pairs of additions and

deletions that operate on the same line (e.g., removal of existing line 5, addition

of a new line 5). When the algorithm discovers that it has generated sequences of

similar changes it produces, instead of them, a range change that says, continuing

with the existing example, deleted lines from 3 to 5. Similarly when it discovers

that two changes operate on the same line, it generates an updated changes instead

of a pair of additions and deletion changes.

The rules used to aggregate these initial changes, defined as atomic changes

in chapter 8, into more structured changes, defined as complex changes in the

same chapter 8, are not always explicit. sometimes they are formally stated and

the diff algorithm has a recognizable refinement phase, more often, however, this

refinement is done together with the serialization phase and the aggregation rules

are hidden in the serialization steps.

5.5 Delta serialization and output

The last phase of any diff algorithm is the serialization of the changes it has found

into something that is usable by other applications, either a patch file, to be stored

or sent over the net, or a set of data structures, to be used as part of an API.

This serialization step implies the existence of a formally defined set of rules

that state how to generate a set of data structures or a sequence of bits. In most

implementation of diff algorithms this set of rules has been created ad-hoc, usually

mapping the internal data structures to very similar text instruction, for algorithms

working on text files, or XML elements, for algorithms dealing with XML files. The

only exception to this situation are the algorithms for line-based text documents.

The implementations of such algorithms often offer the ability to serialize the found

delta using a shared format, the unified diff format [67]. Most implementations of

other algorithms however, serialize their deltas using their own serialization format.

5.6 Relation between changes, operations and rules

One of the finest point of this proposed delta model, and of diff algorithms in

general, is the relation between the concepts of change, operation and rule. Briefly:

changes are statements generated by an algorithm to affirm that it has detected

a certain difference;

operations are names used in the changes to describe what has been detected;

44 CHAPTER 5. STRUCTURE OF DIFF ALGORITHMS

rules are formalizations of when it is acceptable for an algorithm to generate a

change that state that a certain operation is to be applied to certain pieces

of data.

From the point of view of the diff algorithm, there exists a set of operations that

it has been designed to recognize, for example, ADD-WORD, REMOVE-WORD,

ADD-LETTERS, MOVE-WORD. From its catalog of operations it knows that

the ADD-WORD operation has two parameters w and p, and that the semantics

of the ADD-WORD operations is that the word w has been added to the source

document in position p, shifting the content present at position p + 1 to position

p+1+length(w). The algorithms also know the semantics of all the other operations

it can detect. In addition to this knowledge about the semantics of the operations,

the algorithm also has a set of rules that it applies to the data of the documents

being compared and to the set of already found changes to know what are the

changes to be generated to describe the differences. For example, the rule for

ADD-WORD may be “An ADD(w,p) change can be generated if word w appears

document T in position p but not in document S at the same position”. Similarly,

the rule for MOVE-WORD may be “A MOVE(w,p1,p2) change can be generated

if word w appears in document T in position p2 but not in position p1 and appears

in document S in position p1but not in position p2”. Depending on how the rules

are processed and applied, the algorithm will generate, if we consider the example

in section 5.3, one of the following deltas:

1. REMOVE-WORD(“summer”, 4),

REMOVE-WORD(“love”, 11),

ADD-WORD(“lovely”, 4),

ADD-WORD(“summer”, 11)

2. REMOVE-WORD(“summer ”, 4),

ADD-LETTERS(“ly”, 8),

ADD-WORD(“summer”, 11)

3. MOVE-WORD(“ love”, 3),

ADD-LETTERS(“ly”, 8)

4. MOVE-WORD(“ summer”, 9),

ADD-LETTERS(“ly”, 8)

All these deltas are correct and the preference for one over the others is a matter of

what the designer of the algorithms want to emphasize. For example, an algorithm

may be designed to find as many MOVE changes as possible, considering them

more concise than pairs of REMOVE/ADD changes, or, on the contrary, to avoid

5.6. RELATION BETWEEN CHANGES, OPERATIONS AND RULES 45

MOVE changes because they are known to cause problems in tools that will use

the generated delta.

From the point of view of a consumer of the delta, the correct understanding

and application of the changes is independent from the rules that generated the

delta itself. The only requirement for a correct application of the delta is that the

diff algorithm that produces the delta and the tool that uses the delta use the same

catalog of operations, giving to each operation the same meaning.

46 CHAPTER 5. STRUCTURE OF DIFF ALGORITHMS

Chapter 6

Documents

This chapter defines what a “document” is, what it is composed of and how it can

be compared to other documents.

Documents are the mean through which knowledge is stored, transmitted and

processed. Although the pure knowledge is the subject of interest to be stored,

in order to be processed by automated tools, it must be transformed into a finite,

representable set of symbols. The quality of these transformations from pure

knowledge to symbols can vary much depending on many factors: experience, fa-

miliarity with the domain, suitability of the tools. Knowledge representation [10]

and information architecture [49] are two fields of scientific inquiry that deal with

the fine aspects of how to go from pure knowledge to more structured symbolic

representations of it.

The set of choices one makes about how to structure the pure knowledge in a

document forms the so called model of the document. The model describes, for

instance, if the information is organized in a linear or in a hierarchical fashion, or

what are the possible fields to use to store the information (e.g., the given name of

a person goes in the field called “FirstName”, not “Name” or “GivenName”, while

the last name goes in the field called “SName”, not “Surname”). The content of the

document, shaped according to the chosen model is transformed into a sequence of

bits using a format, i.e. a set of rules that states how to map a certain aspect of

the model (e.g., a certain field or a value) into a string of bits.

In contemporary documents, format rules do not usually translate models di-

rectly into strings of bits. Instead, formats translate from high-level models into

lower-level models. A model that is widely used a lower level on top of which other

models are defined is XML. Many document formats are now XML-based, this

means that the specifications of the document format indicate how to translate

their constructs into XML trees, not strings of bits. The translation of these XML

47

48 CHAPTER 6. DOCUMENTS

trees into bits is delegated to the grammar of XML, not embedded directly in the

document format. This situation leads to the vision of a document as a “cake” of

stratified abstraction level, each with its own model. This effect can be seen clearly

in XHTML documents: at the bottom of this cake lays the bitstream level where

all the information is stored as binary digits; on top of that it is possible to see a

textual document made of UNICODE characters (the textual level) that, in turn,

can also be interpreted as an XML document (the XML level). The topmost level

(the HTML level) is formed by the content of the document modeled using the

specification of HTML. This last level is probably the only one of interest for the

user. Diff algorithms, however, rarely work at the topmost abstraction level; most

of the times documents are compared at their bitstream level (e.g., binary diff), at

the textual level (e.g., in versioning systems) or at the first non-textual abstraction

level (e.g., XML). While all these comparisons are equally valid and correct, the

lower the compared abstraction level is, the less meaningful the produced deltas

are bound to be.

At each abstraction level different there are different kinds of elements that

can be used to store the document knowledge. At the textual level there are

characters, that can be binary octets, as is the case in ASCII, or longer strings

of variable length, as is the case in UTF-8; at the XML level there are nodes,

comments, processing instruction, etc. The whole content of a document at a

certain abstraction level is fully described by the set of its elements and the set of

relations between them. The elements carry the data of the document, the element

relations store additional information about the elements, for example their order

in the document or the way they are nested in each other.

6.1 Documents and abstraction levels

Definition 1 (Document). A document (D) is a finite unit of stored knowledge,

whose content is available at various levels of abstraction (DLn).

D = (DL0
, DL1

, . . . , DLn
)

Definition 2 (Level of abstraction). A level of abstraction (DLn
) is a view on a

document where the stored information is seen as a group of elements (En) and

relations between elements (Rn) created according to a certain model (M).

DLn ≡ (En, Rn,M)

Documents must be finite in size, otherwise they would not be processable,

at least not in practical terms. Streamed documents may be seen as documents

6.1. DOCUMENTS AND ABSTRACTION LEVELS 49

of infinite size, at least in theory. Streamed documents are, however, internally

processed in chunks; practically speaking these chunks are the individual documents

upon which the programs operate.

A peculiarity of almost all electronic documents is that they have a single repre-

sentation in terms of bits but multiple interpretations. For example, current word

processing documents, e.g. ODT files, are, at the same time:

• a series of binary octets,

• a series of Unicode codepoints (i.e. text characters) encoded in UTF-8,

• an XML tree,

• an ODT document.

These different views on the same file can be seen as a stack of abstraction levels,

shown in figure 6.1.

bitstream DL0

Unicode DL1

XML DL2

ODT DL3

Figure 6.1: Stacked abstraction levels in ODT files

Definition 3 (Bitstream level). The lowest level of abstraction (DL0
) is the bit-

stream level where where the knowledge is represented as a series of binary digits

ordered according the constraints imposed by the employed conceptual model and

serialization format.

Definition 4 (File). A file is the representation of a document at its bitstream

level.

The lowest level of any electronic document is always the bitstream level, where

all the information is encoded as a series of bits. Although very raw, this level is

the one at which most of the text-based diff algorithms and all of the binary diff

algorithms work. Algorithms that work at this abstraction level generate deltas

that produce bit-perfect copies of the target document once applied, something

that not all the algorithms working at higher level can guarantee.

50 CHAPTER 6. DOCUMENTS

Definition 5 (Model). A model is a specification that indicates how the pieces of

information are to be thought of and how they relate to each other.

Definition 6 (Format). A format is a set of rules that specify how a document

(D1) modeled according to a model (M1) can be transformed into a document (D2)

based on another model (M2), usually a simpler lower-level model.

FM1,M2
(D1) = D2

The first step in shaping information into an electronic document is the choice

of a model. Take, for example, a chapter in a book. In the HTML 4 model [61] a

chapter starts when an element “h2” is used and its associated paragraphs are all

the “p” elements that appear before the next “h2”. In contrast, in the DocBook 5

model [68] a chapter is identified by a “chapter” element and its paragraphs are

all the “para” elements enclosed in it. The model used in a document is seldom

chosen directly by the user, most of the times it is chosen by the application used

to create the document.

Once the information has been assembled in a structure that fits the chosen

model, it must be serialized according to the rules of its format in order to be stored

in a file. The difference between a model and a format is that the model prescribes

abstract data structures and connection between, the format, instead, describes

how to store these data structures into bits or elements of the underlying model.

To continue with the previous example, the format used to serialize DocBook trees

is XML, the DocBook trees are thus written as XML trees. The conversion is quite

straightforward because DocBook has been designed from the beginning as an

XML-based format. Once the DocBook XML trees have been generated, they are

serialized as sequences of characters following the rules of the XML serialization

rules. The serialization process is not over yet. The serialization rules of XML

produce sequences of Unicode codepoints, not bytes. To get a sequence of bytes we

must serialize these codepoints into bits, for instance using the UTF-8 format. To

recap: the serialization of a DocBook document goes through these steps (depicted

in figure 6.2):

1. the application models the user content as a DocBook structure;

2. the DocBook structure is turned into an XML document according to the

DocBook specs;

3. the XML document is turned into a sequence of Unicode codepoints according

to the XML production rules;

4. the sequence of Unicode points is turned into a sequence of bits according to

the UTF-8 rules.

6.1. DOCUMENTS AND ABSTRACTION LEVELS 51

bitstream DL0

Unicode DL1

XML DL2

DocBook DL3

FUnicode,bitstream(DL1
)

FXML,Unicode(DL2
)

FDocBook,XML(DL3
)

Figure 6.2: Serialization steps for a DocBook document

Not all the stacks of abstraction levels in a document are linear. Given a file

there is only one possible stack of abstraction level. The converse does not hold:

given a more abstract level, there may be different sub-stacks leading to different

bitstream representations. This is the case for models that can be serialized using

different syntaxes. Examples of this are RDF, that can be serialized using XML,

N3 or other syntaxes, or the meta-models such as EARMARK/FRETTA [7] that

can be used to encode any hierarchical document into a set of RDF statements.

Yet another example is XML Schema that can be serialized using the canonical

XML syntax or an alternative syntax such as XDTD [8]. Figure 6.3 illustrates the

different possible stacks of abstraction level for an XML Schema document using

two different syntaxes for a given XML Schema.

bitstreamDL
′
0

bitstream DL
′′
0

UnicodeDL
′
1

Unicode DL
′′
1

XMLDL
′
2

XDTD DL
′′
2

XML Schema DL3

Figure 6.3: Possible different abstraction level stacks for XML Schema

52 CHAPTER 6. DOCUMENTS

6.2 Elements and element relations

At each abstraction level the content of the document is stored in elements. De-

pending on the abstraction level, the document will be seen as a composition of

different types of elements: bits at the bitstream level, characters at the ASCII

level, nodes at the XML level. At certain levels more than one type of elements

can be found: for example, at the XML level the possible element types are nodes,

processing instruction, comments, characters, entity references, etc.

The set of elements by itself is not enough to represent the content of a document

in its entirety. The other needed piece of information is the relation between

elements: what is the sequence in which these elements appears? are they nested?

The element relations are used to store information about the way the elements

are structured in a document at a certain abstraction level.

Definition 7 (Element). An element (e) represents the smallest addressable unit

of content in a document at a certain abstraction level. Each element is composed

of data (D), a type (T) and an univoque identified (ID).

e ≡ (D,T, ID)

Definition 8 (Element relation). An element relation r describes the relation t

that exists between the element a and the element b.

r ≡ (t, a, b)

The selection operators for the relation r are r.Type, r.A and r.B.

r.Type =t

r.A =a

r.B =b

Definition 9 (Sequence relation). A sequence relation r indicates that element a

follows element b under a strict total order relation.

r ≡ (:sequence, a, b)

The selection operators for all the sequence relations is Rsequence.

Rsequence ≡ {r ∈ R : r.Type = :sequence}

Definition 10 (Containment relation). A containment relation r indicates that

the element a contains the element b.

6.2. ELEMENTS AND ELEMENT RELATIONS 53

r ≡ (:contains, a, b)

The selection operators for all the containment relations is Rcontainment.

Rcontainment ≡ {r ∈ R : r.Type = :contains}

Definition 11 (Reference relation). A reference relation r indicates that element

a makes a references to element b.

r ≡ (t, a, b)

where t 6∈ {:sequence, :contains}

Element relations are used to describe the fact that certain elements contain

references to other elements.

An example of element relations can be found in RDF documents. Each state-

ment with an object predicate has as its object another RDF entity. In practical

terms the RDF statement “#jack likes #jane” is formalized with the docu-

ment Dr shown in figure 6.4.

e1 = (#jack,RDF-entity,RDF-ID (#jack))

e2 = (#jane,RDF-entity,RDF-ID (#jane))

E = {e1, e2}
R = {(likes, e1, e2)}

Dr = (E,R)

Figure 6.4: Element relations for RDF statement “#jack likes #jane”

A similar situation occurs in documents that contain separate logical blocks

with links between elements of these blocks. For instance, the document format for

legal documents Akoma Ntoso [4, 3, 6] employs such a structure in its documents.

The content of the document is strictly divided in different blocks (each with its

own logical model and authoriality information) and the elements of the logically

more abstract layers refers to pieces of the more concrete layers via local identifiers.

For instance, the legal analysis of the outcome of a judgment, contained in the

judicial block, refer to the exact words used to justify the judge sentence via

the XML IDs of the elements in the body block.

54 CHAPTER 6. DOCUMENTS

6.3 Document structure

While all the documents are linear in the bitstream form, at more abstract level

the information is often modeled in non-linear ways. For example XML documents

are seen as particular hierarchical documents and RDF knowledge bases as graphs

of linked resources. There are various special cases of document structure that can

be identified.

The most general kind of document structure is the graph structure, as it does

not impose any limit on the kind of relations that exist between the elements of

the document. The hierarchical structure, instead, requires that only containment

and sequence relations are used, thus limiting the ability to create arbitrary links

between elements. Last, the linear structure impose that not even containment

relations be used, only sequence relations are allowed and they also need to form

a total order over the elements.

Definition 12 (Graphical document). A graphical document is a documents whose

elements are linked by relations of any kind.

Definition 13 (Hierarchical document). A hierarchical document (or tree docu-

ment) is a document where elements are linked using only containment and se-

quence relations.

IsDocHierarchical (D) ≡ D.R = D.Rorder ∪D.Rcontainment

Definition 14 (Linear document). A linear document is a document whose ele-

ments are linked using only sequence relations and the sequence relations define a

total order over the elements of the document.

IsDocLinear (D) ≡D.R = D.Rorder∧
AllElementOrdered (D.E,D.R)

6.4 Equivalence between documents and compa-

rability

As explained in chapter 5, the key concept used by diff algorithms is that of equality

between parts of documents. What is equal in both documents is aligned, what is

different is analyzed and reported as the difference between the two documents.

The concept of equality can, in most cases be substituted with that of equiv-

alence, i.e. equality modulo some details in the format used to store the doc-

ument. For example, the two XSL statements in figure 6.5 are equivalent at

6.4. EQUIVALENCE BETWEEN DOCUMENTS AND COMPARABILITY 55

the XSL abstraction level (both declare a variable whose value is the content of

doc//info/@title) but not at the XML abstraction level nor at any other lower

level.

Listing 6.1: Inline variable value selection

<xsl:variable name="title"
select="$doc//info/@title" />

Listing 6.2: Nested variable value selection

<xsl:variable name="title">
<xsl:value-of select="$doc//info/@title" />

</xsl:variable>

Figure 6.5: Two equivalent XSL documents

The concept of equality must be defined for each element type of an abstraction

level. Without their definition, it would not be possible to compare documents at

that abstraction level.

Definition 15 (Equality relation). An equality predicate eqL at level L returns

whether the equality relation for that abstraction level holds for the compared two

documents or elements.

Definition 16 (Equivalence). For each equivalence predicate and relation there

is an associated pair of equivalence modulo format predicates and relations that

performs a comparison taking into account only the model of that abstraction level,

not its format. An equivalence predicate returns whether the equivalence relation

for that abstraction level holds for the compared two documents.

The point of using difference algorithms is finding parts of documents that

differs, i.e. that are not the “same”. The concept of difference relies thus on that

of equivalence: without an equivalence relation between documents or parts of

document it would not be possible to highlight what is different.

The simplest equivalence relation one can think of is the bitstream-level equiva-

lence, it is also universal because all the electronic documents must have a bitstream

representation. However, comparisons at the bitstream level, the so called binary

comparisons, produce low quality deltas in almost all cases. Knowledge of the used

format allow the production of deltas that are both smaller and more readable. In

fact, many comparisons are higher text comparisons or format specific comparison.

This means that more equivalence relations are needed, one for each model.

Another aspect that must be taken into account when comparing documents

is that some of their abstraction levels may not be comparable, i.e. there is no

equivalence relation defined between the models used at the same abstraction layer.

56 CHAPTER 6. DOCUMENTS

Take, for example, the abstraction levels of two OWL ontologies, the first saved

using the RDF/XML serialization, the second using the RDF/N3 serialization,

illustrated in figure 6.6.

bitstream

Unicode

XML

RDF

OWL

Ontology 1

bitstream

Unicode

N3

RDF

OWL

Ontology 2

comparable, meaningful

comparable, meaningful

not comparable

comparable, not meaningful

comparable, not meaningful

Figure 6.6: Abstraction levels for two OWL ontologies in different serialization

In this case there are levels at which is sensible to compare, levels where it is not

possible to compare and levels where a comparison is possible but with probable

poor results. At the topmost abstraction level, both files are seen as collection of

OWL axioms. These axioms are hard to compare because finding equivalent axioms

is not a computationally trivial task [29]; on the other hand, a comparison between

these two levels would probably produce an high quality result. A comparison

at the second level is possible because the RDF spec provide a way to identify

equivalent axioms in an RDF document. On the contrary, a comparison between

an XML document and an RDF document is not possible as there is equality

relation defined for this combination of models. Comparison at the lowest level

is possible as both models are based on Unicode and produce a bitstream in the

end. However, these comparisons will hardly produce anything useful: the most

probable delta that can be produced at these levels is a trivial delta in which all

the content of the source document is removed and replaced with all the content

of the second document. This phenomenon appears also when the compared files

are two different serializations of the exact same ontology.

Chapter 7

Deltas

The purpose of a diff algorithm is to find a list of differences that exist between

two documents. A delta (section 7.1) represents this list of differences. In its most

basic form a delta is just a container of found changes, usually a list. However,

more advanced algorithms do not just produce plain lists of changes, for instance

Papavassiliou et al. [38] aggregates changes in other changes and these aggregation

relations must be recorded somewhere. The change relations (section 7.2) are

the objects used to store information about these aggregations and about other

relations between changes, for example the order in which the changes must be

applied by a patching tool. Related to the application order relations is the concept

of edit script. An edit script (definition 21) is a particular kind of delta where

all the changes are connected by an application order relation, forming a strictly

ordered chain of changes. Another particular kind of delta are the reversible deltas

(definition 22): deltas that contain enough information that can also be used not

only to transform the source document into the target document, but also the other

way around: they can be used to transform the target document into the source

document.

7.1 Deltas

The output of a diff algorithm is a so called delta. A delta is a collection of changes

and change relations. The changes stored in the delta are the changes detected by

the algorithm. The change relations are objects used to describe various relations

that may exist between changes; for example, an application order relation between

c1 and c2 states that the change c1 must be applied before c2 is applied in order

for the delta to be correct.

Definition 17 (Delta). A delta ∆S,T is a tuple of changes (C) and change rela-

57

58 CHAPTER 7. DELTAS

tions (R) that describes how to transform the source document (S) into the target

document (T).

∆S,T ≡ (C,R)

Definition 18 (Empty delta). An empty delta is a delta that contains no changes.

∆empty ≡ (∅, ∅)

Deltas are used to group together the changes found by an algorithm during

or after the comparison of two documents. As such, they may be regarded as the

main output of a diff algorithm but also as the working object used by an algorithm

during its computations.

The delta as defined here is only a conceptual modelization of the results of a

diff algorithm. In order to be used in practice, deltas must be serialized, either into

concrete data structures, in case the algorithm is used as a library inside a bigger

application, or as a file, in case the delta is to be stored or transmitted to external

applications. Various possible serializations, suitable for different environments,

are described in chapter 12.

7.2 Change relations

The changes by themselves are not enough to constitute a working delta. There

are various other pieces of information about the changes that must be recorded

for the delta to be useful. The most basic additional information that is needed is

the order in which the changes must be applied, or the lack of such an order (i.e.,

when changes do not depend on each other). Another useful information about

the changes is whether they have been assembled starting from other changes or if

they have been natively detected. All these pieces of information are recorded in

the delta using change relations (the set R in definition 23).

In general terms, change relations are objects used to record that a certain

relation exists between a certain changes. The meaning and the intended effects of

a change relation are described by the kind of that relation.

Definition 19 (Change relation). A change relation is a tuple describing the fact

that there exist a relation of type K between the changes C1 and the set of changes

C2.

r = (K,C1, C2)

where Kis the relation kind, C1, C2 ⊂ C

7.3. SPECIAL DELTAS 59

Not all the changes present in a delta have the same role. Some are meant to

be read by patching tools to reconstruct the modified document, other changes are

used to justify the presence in the delta of other more sophisticated changes. The

relations between the found changes are stored in R, the set of change relations.

Change relations can be used to store relations between sets of changes and

other sets of changes (e.g., “changes 3, 7, 89 must all be applied before changes

4, 12, 72”), but more commonly they put in relation a single change with a set of

changes (e.g., “change 34 encapsulates changes 12, 13, 21”).

Definition 20 (Application order relation). An application order relation is a kind

of change relation (K = application order) that is used to define the order in which

changes are meant to be used. Rapplication order is the set of all the application order

relations.

Rapplication order ≡ {r | r ∈ R, r.K = application order}

The application order relation is the most basic type of change relations. A

single application order relation describes what changes must be applied before

applying what changes. Taken all together, the application order relations define

a partial order over the changes.

7.3 Special deltas

There are cases in which algorithms produce deltas with particular properties. One

such kind of deltas are the edit scripts: deltas where the order in which the changes

must be applied is completely specified. Another special kind of deltas are the re-

versible deltas: deltas that are meant to be used to transform the source document

into the target document but that, additionally, can be reversed so that the reversed

delta can be used to recover the source document from the target document; the

particularity of reversible deltas is that they contain enough information to make

the reversing process feasible, a property not shared by all deltas.

Definition 21 (Edit script). An edit script is a delta in which the application

order is a strict total order defined for all changes in the delta.

Edit script are the most common kind of deltas produced by current implemen-

tations of the diff algorithms. What most implementations produce is a simple list

of changes, to be applied one after the other in the specified order. Edit script have

their origin in the way the first patches were produced, as small scripts for text

editors. For instance, the original UNIX diff [23] produced a script written using

the instruction of the UNIX qed editor. As such, these patches were small program-

60 CHAPTER 7. DELTAS

ming scripts rather than explicit recording of the changes between the compared

documents.

Edit script have a main drawback: the fact that the tools that use them must

follow the order in which the changes are applied. This means that the tools are not

free to apply only certain parts of the delta, even if they are logically independent.

Definition 22 (Reversible delta). A reversible delta is a delta where all the nega-

tive changes contain the same data that it would be needed in the opposite positive

change.

In order for a delta to fulfill its intended purpose, it must contain enough infor-

mation to run a copy of the source document into a copy of the target document.

This means that the delta must carry all the data that is in the target document

but not in the source document. There is, on the contrary, no need for a delta to

carry any information about the data that is only in the source document but not

in the target document, i.e. deleted data. For example, a delta could simply say

“delete characters 7 to 12” instead of “delete characters 7 to 12: the word ‘happy”’.

However, if the delta has no information about what has been deleted, it will not

be possible to invert the delta to generate another delta that turns the target doc-

ument into the source document. A reversible delta contains all the information

about the data present in the source but not in the target document, allowing the

inversion of the delta itself.

Chapter 8

Changes

The differences found by a diff algorithm are expressed as a set of changes. Each of

these changes (section 8.1) describes an operation that must be done on the source

document to reconcile one of the found documents, in other words to make the

source document more similar to the target document.

Some of these changes are considered atomic (definition 25) because they are

found and generated by the algorithm looking only at the content of the source

and target documents. Other changes, instead, have been generated by analyz-

ing some of the changes that have already found. This happens for instance in

the Hunt-McIllroy algorithm [23] where pairs of additions and deletions changes

are aggregated into update changes or in Papavassiliou et. al [38] where sim-

ilar pairs of basic changes on ontologies such as DomainRemoved (prop, d1) and

DomainAdded (prop, d2) are aggregated intoDomainChange (prop, d1, d2). Changes

of this latter kind, generated taking into account also other changes, are called com-

plex changes (definition 26) and the link between the generated changes and the

changes used to generate it are recorded through encapsulation relations (definition

24), a kind of change relation.

The generation of complex changes follows rules dictated by the algorithms,

for example an update requires the presence of an addition and of a deletion on

the same element. These changes that are used to justify the generation of a

complex change are the main encapsulated changes (definition 28). All the other

changes that are encapsulated in a complex change because they are allowed to be

encapsulated but whose presence is not required by the rules are deemed additional

encapsulated changes (definition 29).

Not all the complex changes are generated for the same reason. Some complex

changes are used to express in a concise way that the same operation has been

applied over adjacent elements. These complex changes are range changes (defini-

61

62 CHAPTER 8. CHANGES

tion 30). Similarly, structural changes (definition 31) are changes that group other

changes to make it explicit that the encapsulated changes follow a certain structure.

An example of a structural change is the removal of a subtree in an XML tree: the

removal change will encapsulate many other node-removal changes, mimicking the

hierarchy found in the original XML document. Another kind of complex changes

are meaningful change (definition 32): changes that encapsulate other changes in

order to convey a certain meaning to that group of changes; for instance the mean-

ingful change DOCBOOK-SECTION-SPLIT encapsulates at least the operations

XML-ELEMENT-SPLIT and an XML-ELEMENT-ADD(‘title’).

8.1 Changes

Definition 23 (Change). A change is the application of an operation to the source

document, or part of it, with the intent of reconciling a difference.

c ≡ (op, params)

Definition 24 (Encapsulation relation). An encapsulation relation is a kind of

change relation that links a container change to its encapsulated changes.

Rencapsulation ≡ {r | r ∈ R, r.K = encapsulation}

Encapsulation is a mechanism used by many algorithms to produce more mean-

ingful deltas: once basic differences have been found, these differences are matched

together producing a bigger change that encapsulates the matched smaller changes.

Definition 25 (Atomic change). An atomic change is a change that does not

encapsulate any other change.

Catomic ≡ Ċ ≡ {c | c ∈ C, ∀r : r ∈ Rencapsulation, r = (k, c1, c2), c /∈ c1}

For most algorithms, atomic changes are the only changes present in the gener-

ated deltas. The most common kinds of atomic operations are addition and removal

changes.

Definition 26 (Complex change). A complex change is a change that encapsulates

at least one other change.

Ccomplex ≡ C̄ ≡
{
c | c ∈ C,
∀r : r ∈ Rencapsulation, r = (k, c1, c2) , c1 = {c} , c2 6= ∅

}

8.2. ENCAPSULATION JUSTIFICATION 63

Complex changes are generated by algorithms during their refinement (or match-

ing) phase: during that phase changes already detected are grouped according to

the algorithm rules into more meaningful changes.

An example of a complex change generated from atomic changes is the UP-

DATE change. An UPDATE change is generated aggregating two atomic changes:

an ADD change and a REMOVE change. Obviously not all pairs of ADD and

REMOVE changes can be aggregated into UPDATE changes: the aggregation can

happen only if certain conditions are fulfilled, in the case of UPDATE, the ADD

and the REMOVE changes must both operate on elements that share the same

position in the document. The concept of encapsulation justification is explained

more in depth in section 8.2.

Definition 27 (Top level change). A top level change is a change that has not

been encapsulated in any other change.

CTopLevel ≡ Ĉ ≡ {c | c ∈ C, ∀r : r ∈ Rencapsulation, r = (k, c1, c2) , c 6∈ c2}

8.2 Encapsulation justification

A complex change can be generated only if all the necessary other changes that con-

tribute to its meaning are available. For example, the OWL-CLASS-ADDED(Person)

change cannot be generated without the presence of a OWL-CLASS-DECLARED(Person)

change. There are however other changes that could be encapsulated by a OWL-

CLASS-ADDED(Person) change, but that, by themselves are not enough to jus-

tify the generation of that change. For example, a OWL-DOCUMENTATION-

ADDED(Person) change could be encapsulated by a OWL-CLASS-ADDED(Person)

change, but, on the contrary, the simple presence of a OWL-DOCUMENTATION-

ADDED(Person) change is not enough to justify the generation of an OWL-CLASS-

ADDED(Person) change.

Definition 28 (Main encapsulated changes). The main encapsulated changes is

the subset of encapsulated changes without which the generation of the encapsu-

lating complex change could not be justified.

Definition 29 (Additional encapsulated changes). The additional encapsulated

changes is the subset of encapsulated changes that are not needed to justify the

generation of the encapsulating complex change.

64 CHAPTER 8. CHANGES

8.3 Classification of changes

Complex changes are generated for different purposes. These purposes can be clas-

sified in three groups: range changes, structural changes and meaningful changes.

The range changes are the complex changes that have been generated to group

together a sequence of similar operations done to adjacent elements for example

REMOVE-LINES(8, 12) groups together the changes REMOVE-LINE(8), REMOVE-

LINE(9), . . . , REMOVE-LINE(12). Structural changes are, instead, generated

when a certain structure is recognized in a group of changes, for instance REMOVE-

SUBTREE encapsulates various REMOVE-ELEMENT changes on elements that,

together, form a proper subtree. Last, meaningful changes are generated to con-

vey a certain meaning to a group of changes when taken together, for example

HTML4-REMOVE-CHAPTER groups changes such as a HTML4-REMOVE-H2

and various HTML-REMOVE-PARAGRAPH.

The aim of an algorithm influences heavily the kind of complex changes it

generates: algorithms that want to create concise deltas will support and detect

range changes as they allow the generation of deltas with fewer top-level changes.

Differently, algorithms that make an effort to find more advanced changes (e.g.

NDiff [17]) or to generate domain-specific changes (e.g. PROMPTDiff [37] or OnEX

[21]), will try to generate as many structural and meaningful changes as possible,

using their knowledge of the domain to find meaning in the already generated

changes.

Definition 30 (Range change). A range change is a change that encapsulates

similar changes made to a range of elements.

Definition 31 (Structural change). A structural change is a change that encap-

sulates changes into a structure that resembles the structure of the elements in the

document or the way the users made their modifications.

Definition 32 (Meaningful change). A meaningful change is a change that encap-

sulates different changes with the purpose of providing a meaning to that group of

changes.

Chapter 9

Objective properties of

changes and deltas

The way changes and deltas have been defined in the previous chapters allows

for the definition of objective properties that can be calculated using only the

information present in the changes and in the delta.

These properties are not very interesting by themselves but they form the ba-

sis for more meaningful analyses such as those shown in chapter 14 (analysis of

the qualities of deltas) and chapter 15 (detection of development phases of OWL

ontologies).

9.1 Objective properties of changes

The objective properties of changes deal with two aspects of the changes as defined

in the proposed model: the way changes are encapsulated (e.g., population, depth)

and the data contained in them (e.g., modified elements, touched elements).

Definition 33 (Population of a change). The population of a change is the total

number of changes of which a change is composed of, including itself and the

recursive closure of the encapsulated changes.

Population (c) = 1 + |Ec|
where Ec = {e | (c, e) ∈ E ∨ ∃x1, x2, . . . , xn : (c, x1) , (x1, x2) , . . . , (xn, e) ∈ E}

Definition 34 (Depth of a change). The depth of a change is the maximum number

of encapsulation layers that must be crossed to reach an atomic change.

65

66 CHAPTER 9. OBJECTIVE PROPERTIES OF CHANGES AND DELTAS

Depth (c) = 1 + max
e∈E

Depth (e)

Definition 35 (Width of a change). The width of a change is the number of

distinct changes encapsulated directly inside the change.

Width (c) = |Ec|

Definition 36 (Touched elements of a change). The number of touched elements

of a change is the number of distinct pieces of information that are included as

part of the change or of the encapsulated changes.

TouchedElements (c) = |Dc|
where Dc = {d | (c, d) ∈ D}

Definition 37 (Modified elements of a change). The number of modified elements

of a change is the minimum number of elements that must be modified by the

change to fulfill its purpose. This number is always equal or less than TouchedEle-

ments.

ModifiedElements (c) =

arg min
n

{
φ (S, cn) = φ (S, c) , T ouchedElements (cn) = n

}
where φ (D, c) is the application of c to D

and cn is a change equivalent to c

9.2 Objective properties of deltas

The objective properties defined for deltas are used to aggregate the homonymous

properties of the enclosed changes (e.g., population, modified elements) or to pro-

vide an overview of the delta itself (e.g., number of top level changes).

Definition 38 (Population of a delta). The population of a delta is sum of the Pop-

ulation property of all the top level changes.

Population (δ) =
∑

c∈TopLevel(δ)

Population (c)

Definition 39 (Touched elements). The number of touched elements of a delta

is the sum of the NumberTouchedElements property of all the top level changes.

9.2. OBJECTIVE PROPERTIES OF DELTAS 67

NumberTouchedElements (δ) =
∑

c∈TopLevel(δ)

NumberTouchedElements (c)

Definition 40 (Modified elements of a delta). The number of modified elements

of a delta is the minimum number of distinct pieces of information that must be

modified in order to turn S into T .

NumberModifiedElements (δ) =

arg min
n

{
φ (S, δn) = T,NumberTouchedElements (δn) = n

}
where φ (D, δ) is the application of δ to D

and δn is a delta equivalent to δ

Definition 41 (Number of top-level changes of a delta). The number of top-level

changes of a delta is the number of changes that are not encapsulated in any other

change.

NumberOfTopLevel (δ) = |TopLevel (δ)|

Definition 42 (Separability degree of a delta). The separability degree of a delta

is number of maximally connected graphs (using changes as vertex and references

to other changes as edges) that can be found in a delta.

Separability (δ) = |{Ii}|

where Ii = {c|c ∈ δ.Changes,
∀rc : r ∈ R, r = (t, c, rc) ∨ r = (t, rc, c) ,

c ∈ Ii, rc ∈ Ii, rc /∈ In 6=i}

Deltas with an high separability degree can easily be split in smaller independent

deltas, making it easier to isolate individual changes and to apply only a part of a

delta.

68 CHAPTER 9. OBJECTIVE PROPERTIES OF CHANGES AND DELTAS

Chapter 10

Operations

Once an algorithm has detected a difference, it records it as a change. The kind of

the change is called its operation. For example, the change “ADD(’Hello’, ’32’)”

has operation “ADD”. This means that the diff algorithm has detected a change

that fits the description and the semantics of the ADD operation and that the data

on which it has detected this change, i.e., the parameters of the operation, are the

string “Hello” and the position index “32”.

In order for these operations to be understood by the tools that read the deltas,

each operation must have an associated semantics. The semantics of the operations

operates on three objects: the arguments of the operation, the content of the source

document and the content of the target document. Using this information, the

semantics of an operation describe how to transform a part of the source document

into a part of the target document.

Not all algorithms detect the same set of operations. It is the task of the

designers of an algorithm to decide which operations it should or should not detect.

As discussed in section 3, it is quite common for algorithms to waive the ability to

recognize many different operations to achieve a lower computational complexity.

10.1 Operations

An operation is a function that describes the effects of a change. While a change

states that “something” must be done to a certain part of the document, an oper-

ation defines how to perform that “something”.

Definition 43 (Operation). An operation is a function that takes a document (D)

and a list of parameters (P) and returns a new document (D).

op : D × P → D

69

70 CHAPTER 10. OPERATIONS

The application of an operation transforms a part of the source document into

a part of the target document using a list of parameter to modify its behaviour.

10.2 Parameters

The parameters of an operation are used by the semantics of the operation itself

to understand on which parts of the document the operation must operate and to

supply data that is not present in the source document, for example elements that

have been added and are present only in the target document. There are two

types of parameters: pointer parameters (that are used to refer to a single element

of a document, e.g. “the third byte” or “the first child of the forth child of the root

node”) and data parameters (that carry immediate data elements, e.g. a string of

bytes or an XML node).

Definition 44 (List of parameters). The list of parameters of an operation defines

which pieces of data must be supplied for its application.

P = (p1, p2, . . . , pn)

Definition 45 (Pointer parameter). A pointer parameter is an operation param-

eter that refers to a document element through a pointer.

There two main kinds of pointer parameters: position pointers (for linear struc-

tures) and ID pointers (for graphs). Pointers to linear structures are simple 0-based

integers that point to the position between two element, i.e. the pointer n points

at the position between element n and n+ 1. These pointers can be used only on

linear documents (or linear portions of documents) for which an order is defined

via sequence relations. For document where an order is not defined or for portions

of documents for which an order is not defined (e.g. the attributes of XML doc-

uments) ID pointers must be used. An ID pointer id points to the element e for

which the relation e.ID = id holds.

Definition 46 (Data parameter). A data parameter is an operation parameter

that is composed of the actual data used to perform the operation.

10.3 Semantics, conditions and effects

The semantics of an operation define how the application of the operation together

with the parameters stored in the corresponding change modifies the document it

operates on. Given the definition of a document (see definition 1), the semantics

of an operation is defined in terms of set operations, i.e. additions and removals of

10.4. COMPOSITION 71

elements and relations from the sets of which a document is made of. Operations

can be classified depending on how the elements and the relations of the document

are manipulated by the semantics of the operation. The four classifications, or

polarities, are: neutral operations, positive operations, negative operations and

bipolar operations.

Definition 47 (Neutral operation). A neutral operation is an operation that does

not modify neither the set of elements, nor the set of relations of a document.

Definition 48 (Positive operation). A positive operation is an operation that adds

new elements or relations to the document but does not remove any existing element

or relation.

Definition 49 (Negative operation). A negative operation is an operation that

removes some of the existing elements or relations from the document but does not

add any new element or relation.

Definition 50 (Bipolar operation). A bipolar operation is an operation that adds

to the document new elements or relations and, at the same time, removes some

of the existing element or relation.

10.4 Composition

The composition of operations is the mechanism through which it is possible to

define complex operations in terms of simpler operations. This mechanism reflects

the way atomic and complex changes work: a complex change aggregates atomic

changes or other complex changes; the operation used by the aggregating complex

change is a composition of the operations of the aggregated changes.

In practical terms, the composition of operations is obtained requiring the ap-

plication of other operations as part of the semantics of the operation itself. These

applications are done via the apply function.

72 CHAPTER 10. OPERATIONS

Chapter 11

Catalog of operations

This chapter presents a catalog of operations to be used as operations in changes.

The first part of the catalog describes the basic operations: addition and removal.

On top of these basic operations, various kinds of complex operations are defined.

The complex operations are stacked in layers: first structural changes are defined

(e.g. TREE-REMOVE, for hierarchical documents), on top of these, format-specific

changes are defined (e.g. XML-TREE-REMOVE, for XML documents), then

domain-specific operations (e.g. DOCBOOK-SECTION-REMOVE, for DocBook

documents), sub-domain-specific operations (e.g. DOCBOOK-INTRODUCTION-

REMOVE, for DocBook documents written using a particular set of guidelines)

and so on.

In deltas that are meant to be processed by tools different from those used to

create the deltas, it is fundamental for the producer and the receiver of the delta to

understand down to the smallest detail the operations used in the delta, otherwise

the application of the delta would produce a document that is not identical to the

desired target document.

11.1 Operations on trees

The operations described in this section operate on hierarchical documents as de-

fined in definition 13.

tree-child-add

The tree-child-add operation is used to add an element to the ordered set of children

of an element in a tree document.

Parameters

e (element) child to add

73

74 CHAPTER 11. CATALOG OF OPERATIONS

eparent (element) parent element

p (position) position of added child

Conditions

length (childrenOf (eparent)) ≤ p

Effects

E′ = E ∪ {e}
R′ = R ∪ {(:contains, eparent, e)}

∪ {(:sequence, ep−1, e) , (:sequence, e, ep)}
\ {(:sequence, ep−1, ep)}

tree-child-remove

The tree-child-remove operation is used to remove an element from the ordered set

of children of an element in a tree document.

Parameters

e (element) child to remove

Conditions None

Effects

eparent = parentOf (e)

p = positionAmongSiblings (e)

E′ = E \ {e}
R′ = R \ {(:contains, eparent, e)}

\ {(:sequence, ep−1, e) , (:sequence, e, ep+1)}
∪ {(:sequence, ep−1, ep+1)}

tree-children-add

The tree-children-add operation is used to add a set of elements to the ordered set

of children of an element in a tree document.

Parameters

{e1, e2, . . . , en} (set of elements) elements to be added

eparent (element) parent element

p (position) position at which the elements will be added

11.1. OPERATIONS ON TREES 75

Conditions

length (childrenOf (eparent)) ≤ p
AllElementOrdered (B,R)

Effects

ep−1 =elementInPos (p− 1)

ep =elementInPos (p)

E′ = E ∪ {e1, e2, . . . , en}
R′ = R ∪ {r : ∀e ∈ {e1, e2, . . . , en} , (:contains, eparent, e)}

\ {(:sequence, ep−1, ep)}
∪ {(:sequence, ep−1, e1) , (:sequence, en, ep)}

tree-children-remove

The tree-child-add operation is used to remove a set of elements from the ordered

set of children of an element in a tree document.

Parameters

{e1, e2, . . . , en} (set of elements) elements to be removed

Conditions None

Effects

∀e ∈ {e1, e2, . . . , en} , apply tree-remove-child (e)

tree-node-wrap

The tree-node-wrap operation is used to move a set of element inside a wrapper

element.

Parameters

ew (element) wrapper element

B = {b1, b2, . . . , bn} (set of elements) wrapped elements

Conditions

∀b ∈ B : b ∈ E
AllElementOrdered (B,R)

Effects

E′ = E ∪ {ew}

76 CHAPTER 11. CATALOG OF OPERATIONS

R′ = R \ {r ∈ Rcontainment : (r.A = ew, r.B = b)}
\ {r ∈ Rorder : (r.A 6∈ B ∨ r.B 6∈ B)}
∪ {∀b ∈ B : (:contains, ew, b)}

tree-node-unwrap

The tree-node-wrap operation is used to remove an element and move its children

to the parent of the remove element.

Parameters

e (element) the element to unwrap

Conditions

hasParent (e)

Effects

eparent =parentOf (e)

pos =positionAmongSiblings (e)

upgradedChildren = childrenOf(e)

apply tree-child-remove (e)

apply tree-children-remove (e)

apply tree-children-add (upgradedChildren, eparent, pos)

11.2 Operations on lists

The operations described in this section operate on linear documents as defined in

definition 14.

sequence element add

The sequence-element-add operation is used to add an element to a sequence.

Parameters

e (element) element to be added

p (position) position where the element will be added

Conditions

length (D) ≤ p

11.3. OPERATIONS ON XML TREES 77

Effects

E′ = E ∪ {e}
ep =elementInPos (p)

ep−1 =elementInPos (p− 1)

R′ = R \ {r ∈ Rorder : r.B = ep}
∪ {(:contains, ep−1, e) (:contains, e, ep)}

sequence element remove

The sequence-element-remove operation is used to remove an element to a sequence.

Parameters

e (element) element to be removed

Conditions

e ∈ E

Effects
E′ =E \ {e}

ep−1 = elementInPos (pos (e)− 1)

ep+1 = elementInPos (pos (e) + 1)

R′ =R \ {(:contains, ep−1, e) , (:contains, e, ep+1)}
∪ {(:contains, ep−1, ep+1)}

11.3 Operations on XML trees

The following operations are used to manipulate XML trees. Differently from the

normal trees, the XML elements can be parents of two different sets of children: or-

dered children (elements and nodes in general) and unordered children (attributes).

For this reason some XML operations are specialized for attributes.

xml-child-add

The xml-child-add operation is used to add a child to the set of ordered children

of an XML node.

Parameters

e (element) child to add

eparent (element) parent element

p (position) position of added child

Conditions

length (childrenOf (eparent)) ≤ p

78 CHAPTER 11. CATALOG OF OPERATIONS

Effects

apply tree-child-add (e, eparent, p)

xml-child-remove

The xml-child-remove operation is used to remove a child from the set of ordered

children of an XML node.

Parameters

e (element) child to remove

Conditions None

Effects

apply tree-child-remove (e)

Ra ={r : r ∈ R, r = (:contains attribute, e, a)}
A = {a | ∃r : r ∈ Ra, r.B = a}

E′ = E \A
R′ = R \Ra

xml-children-add

The xml-children-add operation is used to add a set of children to the set of ordered

children of an XML node.

Parameters

{e1, e2, . . . , en} (set of elements) elements to be added

eparent (element) parent element

p (position) position at which the elements will be added

Conditions None

Effects

apply tree-children-add ({e1, e2, . . . , en} , eparent, p)

xml-children-remove

The xml-children-add operation is used to remove a set of children from the set of

ordered children of an XML node.

Parameters

{e1, e2, . . . , en} (set of elements) elements to be removed

11.3. OPERATIONS ON XML TREES 79

Conditions None

Effects

apply tree-children-remove ({e1, e2, . . . , en})

xml-attribute-add

The xml-attribute-add operation is used to add an attribute to the set of attributes

of an XML node.

Parameters

a (element) attribute to be added

e (element) element to which the attribute will be added

Conditions None

Effects

E′ = E ∪ {a}
R′ = R ∪ {(:contains attribute, e, a)}

xml attribute remove

The xml-attribute-remove operation is used to remove an attribute from the set of

attributes of an XML node.

Parameters

a (element) attribute to be removed

Conditions None

Effects

e =elementWithAttribute (a)

E′ = E \ {a}
R′ = R \ {(:contains attribute, e, a)}

xml-element-split

The xml-element-split operation is used to split an XML element in two. The

second part of the content of the XML element is added to a newly created element

of the same type and with the same data (e.g. the same element name for elements).

80 CHAPTER 11. CATALOG OF OPERATIONS

Parameters

e (element) element to split

p (position) position at which the content of the elements must be split

Conditions

length (childrenOf (e)) ≤ p

Effects

Eafter = {ec : ec ∈ childrenOf (e) , positionAmongSiblings (ec) ≥ p}
apply xml-children-remove (Eafter)

enew = (e.Data, e.Type, new-XML-ID)

pnew = positionAmongSiblings (e)+1

apply xml-child-add (enew, eparent, pnew)

apply xml-children-add (Eafter, enew, 0)

11.4 Example of extension: Operations on Doc-

Book documents

The following operations show how it is possible to define operations at higher

abstraction level based on the composition of operations defined at the lower ab-

straction levels. In the case of DocBook, the underlying abstraction level is the

XML level, whose operations are used to define the semantics of the domain-specific

DocBook operations.

docbook-paragraph-split

The docbook-paragraph-split operation is used to split a paragraph (a para el-

ement) in two. After the docbook-paragraph-split operation is applied, the first

part of the content of the paragraph remains in the original paragraph while the

second part is put in a newly generated para element placed just after the orig-

inal paragraph. An example of the effect of docbook-paragraph-split is shown in

figure 11.1 (with some whitespace removed for clarity).

Parameters

para (element) paragraph to be split

p (position) position inside para where the paragraph will be split

Conditions None

Effects

apply xml-element-split (para, p)

11.4. EXAMPLE OF EXTENSION: OPERATIONS ONDOCBOOKDOCUMENTS81

Listing 11.1: Before

<sect1>
<title>Introduction</title>
<para>It was a dark and stormy night. The
wind howled and twigs and leaves scuffled.</para>

</sect1>

Listing 11.2: After

<sect1>
<title>Introduction</title>
<para>It was a dark and stormy night.</para>
<para>The wind howled and twigs and leaves
scuffled.</para>

</sect1>

Figure 11.1: Effects of docbook-paragraph-split

docbook-section-split

The docbook-section-split operation is used to split a section (e.g., a sect1 ele-

ment) in two. After the docbook-section-split operation is applied, the first part

of the content of the section remains in the original section while the second part

is put in a newly generated section placed after the original section and titled with

the supplied title. An example of the effect of docbook-section-split is shown in

figure 11.2 (with some whitespace removed for clarity).

Parameters

sect (element) section to be split

p (position) position inside sect where the section will be split

title (element) the title element of the new section

Conditions None

Effects

apply xml-element-split (sect, p)

sectnew = xmlElementAfter (sect)

apply xml-children-add (title, sectnew, 0)

82 CHAPTER 11. CATALOG OF OPERATIONS

Listing 11.3: Before

<sect1>
<title>Introduction</title>
<para>It was a dark and stormy night.</para>
<para>The wind howled and twigs and leaves
scuffled.</para>

</sect1>

Listing 11.4: After

<sect1>
<title>Introduction</title>
<para>It was a dark and stormy night.</para>

</sect1>
<sect1>

<title>First words</title>
<para>The wind howled and twigs and leaves
scuffled.</para>

</sect1>

Figure 11.2: Effects of docbook-section-split

Chapter 12

Serialization of deltas

The model presented in the previous sections is a purely conceptual model. In

order to be used it needs to be implemented. This implementation takes various

forms depending on the use it is meant to fulfill. For use inside the implementation

of algorithms, it will take the form of data structures, usually classes and objects.

Instead, when the delta is to be transmitted to other separate applications or

devices, it will be serialized in a file whose content will be modeled following the

rules of a format.

Section 12.1 shows a set of data structures illustrated using UML diagrams.

These data structures are meant to be used directly inside diff algorithms or for

objects exported through an API.

These serialization formats are the last piece needed to have a thriving ecosys-

tem of tools: using one of these formats, tools can offer real interoperability between

tools, not only at the conceptual level but also in practical terms.

12.1 Data structure model in UML

The following UML model provides a concrete way to represent changes and deltas

as data structures to be used inside the implementation of the diff algorithms and

of the tools that use them.

In brief, the UML model consists of three main classes: Change, Delta and

Hunk. The Change class is an abstract class used as the basis for the classes of the

objects that will record single changes. The Delta class is used to group together

various changes without caring about the order in which they are intended to be

applied or whether they are related to each other. In contrast with the Delta class,

the Hunk class is used to group together independent sets of changes and of the

order in which they are supposed to be applied.

83

84 CHAPTER 12. SERIALIZATION OF DELTAS

Figure 12.1: Overview of the classes

12.1.1 The Change class

Changes are represented as instances of the class Change. The methods of each

change are used to access some of its relations either implicitly or explicitly: en-

capsulation relations are modeled through methods that return sets of changes, the

application order relations are modeled externally, in the Delta and Hunk classes.

The methods of the Change class are used to calculate the properties of each

changes: population, depth, etc.

The Change class contains several virtual methods. These methods are declared

as virtual because it is not possible to have a single way to compute their value, as

it must be calculated in a different way depending on the type of change.

Figure 12.2: The Change class

12.1.1.1 encapsulated changes method

The encapsulated changes method returns the set of changes encapsulated by

the change. The parameter recursive specifies whether the returned set should

contain only the top level changes (recursive = false) or also recursive closure

of all the encapsulated changes (recursive = true).

12.1. DATA STRUCTURE MODEL IN UML 85

This method does not distinguish between necessary changes (without which

the generation of the encapsulating change cannot be justified) and the additional

changes (that can optionally be encapsulated but only once the necessary conditions

for the generation of the change have been satisfied). Necessary and additional

changes can be retrieved using, respectively, the main changes method and the

additional changes method.

12.1.1.2 main changes virtual method

The main changes method returns the set of changes without which the genera-

tion of the change itself would not be justified, as explained in section 8.2.

12.1.1.3 additional changes virtual method

The additional changes method returns the set of changes that have been

encapsulated with the change but that are not necessary for the generation of the

change itself, as explained in section 8.2.

12.1.1.4 population method

The population method returns an integer with the value of the population

property for the change, as defined in definition 33.

12.1.1.5 depth method

The depth method returns an integer with the value of the depth property for the

change, as defined in definition 34.

12.1.1.6 width method

The width method returns an integer with the value of the width property for the

change, as defined in definition 12.1.1.6.

12.1.1.7 touched elements virtual method

The touched elements virtual method returns an integer with the value of the

touched elements property for the change, as defined in definition 34.

This method is virtual because the calculation of the number of touched ele-

ments differ from change to change.

12.1.1.8 modified elements virtual method

The modified elements virtual method returns an integer with the value of the

modified elements property for the change, as defined in definition 34.

86 CHAPTER 12. SERIALIZATION OF DELTAS

Figure 12.3: The Delta class

12.1.2 The Delta class

The Delta class models the structure of a delta, described in chapter 7, and of its

properties, described in chapter 9.

The Delta class is meant to be used to return the result of the computation of

a diff algorithm but could also be used internally by the algorithm to keep track of

the changes it has produced.

12.1.2.1 changes attribute

The changes attribute contains the set of all changes contained in the delta, i.e.

the set C of definition 17.

12.1.2.2 hunks attribute

The hunks attribute contains the set of all hunks that compose the delta. Hunks

and their intended use are described in 12.1.3.

12.1.2.3 top level changes method

The top level changes attribute contains the set of the top level changes con-

tained in the delta, i.e. all the changes that have not been encapsulated in other

changes.

12.1.2.4 population method

The population method returns an integer with the value of the population

property for the delta, as defined in definition 38.

12.1.2.5 touched elements method

The touched elements method returns an integer with the value of the number

of touched elements property for the delta, as defined in definition 39.

12.1. DATA STRUCTURE MODEL IN UML 87

12.1.2.6 modified elements method

The modified elements method returns an integer with the value of the number

of touched elements property for the delta, as defined in definition 40.

12.1.2.7 separability degree method

The separability degree method returns an integer with the value of the

separability degree of the delta, as defined in definition 42.

12.1.3 The Hunk class

The Hunk class is used to store together changes that are meant to be applied to-

gether and in a certain order, similarly to the edit scripts as defined in definition 21.

The existence of the Hunk class is justified by the fact that many algorithms pro-

duce edits scripts rather than generic deltas.

Figure 12.4: The Hunk class

The definition of the methods of the Hunk class correspond to the homonymous

methods of the Delta class.

88 CHAPTER 12. SERIALIZATION OF DELTAS

Part III

Applying and testing the

universal delta model

89

Chapter 13

Practical applications of the

model

The model presented in the previous chapters provides a solid foundation for prac-

tical application and significant analyses. The following chapters discuss how the

presented model has been successfully applied in two different fields: the analysis

of the qualities of the deltas produced by various algorithms and the development

of a tool that is able to analyze the various phases of development through which

an OWL ontology has gone through.

In section 14, the presented unified model is used to evaluate how fit an al-

gorithm is for use in a certain environment for a certain task. This analysis is

necessary because users rarely know which of the many different algorithms is the

best for the problem they are trying to solve: the needs of a programmer are dif-

ferent from the needs of an editor that works with books in an XML format. This

evaluation is based on a series of metrics calculates looking at the delta produced by

an algorithm. The behavior of an algorithm (whether it creates redundant deltas,

how precise or broad it is in the discovery of changes, its preference towards the

creation of smaller or larger changes, etc.) is thus inferred from its output, not by

looking at its code or its inner details.

Section 15 shows how the unified model helps the development of tools used to

analyze copious amount of data. That section presents a tool that can be used to

study the evolution of various documents, in this case of OWL ontologies. This

tool employs a newly-developed algorithm to detect how a document has evolved,

version after version. This analysis highlights the existence of various common

phases during the development of ontologies, e.g. the “growth” phase, the “link to

other ontologies” phase, the “documentation” phase, etc. The use of the unified

model allows the same tool to be used to study other kinds of documents with few

91

92 CHAPTER 13. PRACTICAL APPLICATIONS OF THE MODEL

changes to the tool.

Chapter 14

Quality assessment of deltas

and algorithms

This chapter presents a formal way to describe the quality (and qualities) of diff

algorithms through the analysis of the produced deltas. Historically, designers of

diff tools were mainly concerned about the computational complexity of the algo-

rithms and the length of the produced edit scripts. Recently users started giving

more relevance to the quality of deltas, designing tools that could produce better

results: more readable, more usable, more natural. In contrast with the existing

subjective way of evaluating algorithms, this section presents a multidimensional

set of objective metrics to evaluate and compare the deltas produced by different

algorithms to highlight what are their qualities and what are the most fit for use in

a certain task.1

The automatic comparison of two different revisions of a document and the

compilation of a list of changes that happened between those revisions are com-

mon tasks. The lists of changes, usually called deltas, diffs or patches, are used for

many purposes: programmers review source code diffs to avoid adding bugs and to

understand which parts of the code has changed; editors and collaborating writers

similarly signal changes they made to solicit comments; law makers compare pro-

posals during the discussion and approval of a bill; philologists use the differences

between documents to recreate the stemma codicum of a text, the history of its

development and its imperfect copies.

Surprisingly enough, the quality of these deltas is not a key factor when design-

ing and comparing diff tools. In fact, assuming that two algorithms are both correct

- i.e. able to produce deltas that can be applied to the older document in order to

1These results have been extracted from [5].

93

94CHAPTER 14. QUALITY ASSESSMENT OF DELTAS AND ALGORITHMS

obtain the newer one - they are mainly evaluated by comparing their performance.

One of the reasons behind this fact is that historically such a research has been

carried on by the database community, that has to deal with huge quantities of

data and to reduce space and time consumption. It is not a case that almost all the

experiments in the literature follow the same pattern: the authors first compare the

computational complexity and the execution time of the algorithms, then evaluate

the quality of the results.

The quality of an algorithm is often expressed in terms of its capability to

reduce the size of the produced delta. As summarized in [15]: “quality is described

by some minimality criteria [. . .] Minimality is important because it captures to

some extent the semantics that a human would give when presented with the two

versions”.

There is now a growing interest in characterizing more precisely the quality of

deltas, in order to design algorithms that better fit the real needs of the users.

For example, in [17] and [51] the authors strive to create a “better” delta, a delta

that feels more “natural” to its users than a delta produced by a more canonical

algorithm.

The focus of this chapter is, in fact, on measuring and comparing the quality

of the deltas produced by diff algorithms. The chapter proposes a shift in the

evaluation of such algorithms: instead of evaluating their execution process (for

instance in terms of memory and time consumption), algorithms are compared by

analyzing the output they produce.

This chapter introduces a framework for measuring the quality of these output

through an objective evaluation process based on the properties defined in chapter

9. The basic idea consists of extracting numerical indicators from deltas (such as

the number of detected changes, the number of touched elements, the number of

high-level changes) and aggregating them into more complex quantitative metrics.

These indicators can be associated to quality requirements and evaluated to decide

whether or not the algorithm that produced that delta is ‘better’ than others in a

given context.

This chapter is structured as follows. Section 14.1 describes more in depth the

diff algorithms that focus less on speed or size and more on qualitative aspects. Sec-

tion 14.2 discusses how the same concept of “quality” can have different meanings

according to users’ needs and preferences. Section 14.3 introduces our top-down

solution, a set of aggregated metrics, in section 14.4. The application of the met-

rics is presented in section 14.5: we introduce a two-phase method to evaluate the

existing algorithms and we present experimental results on some well-known XML

diff tools, before concluding in section 14.6.

14.1. COMPARING QUALITY OF DIFF ALGORITHMS 95

14.1 Comparing quality of diff algorithms

It is hard to compare the quality of the output of diff algorithms. First of all,

because different algorithms might produce different deltas that are all correct. In

fact, a potentially infinite number of sequences of changes could be applied to build

a document from another one.

There is a further tricky issue. As highlighted by [43] “all approaches make

use of different delta models, which makes it difficult to measure the quality of the

resulting deltas”: not only the algorithms select different sequences of changes, but

they even use their own internal model and recognize their own set of changes.

Consider that some of them detect moves while others do not, or that the same

name is used for different operations by different algorithms.

It is not a coincidence that most algorithms have been evaluated by only taking

into account their computational complexity and execution time, and considering

quality as a second-class dimension to evaluate.

This is particularly true in the context of XML diff, with few exceptions. In

[17] the authors introduced the notion of naturalness of a diff algorithm. The nat-

uralness indicates the “capability of producing an edit script that an author would

recognize as containing the changes she/he effectively performed when editing a

document”. The authors presented a taxonomy of natural operations on literary

documents and an algorithm, called JNDiff, able to capture (most of) those oper-

ations. The focus is on the quality of deltas in terms of readability and accuracy

for human users, so that JNDiff shows lower performance (but still acceptable) in

comparison to faster algorithms.

The idea of looking for deltas that better describe operations on literary doc-

uments has also been investigated by DocTreeDiff [43, 41]. The authors analyzed

patterns in editing office documents and extracted rules for their identification. In

particular, they studied the mapping between high-level changes and consequences

on the underlying XML tree. The quality of the result of DocTreeDiff, in compar-

ison to other algorithms, was measured by counting the number of edits contained

in the deltas. In the same paper, the authors sketched out an original approach to

measure quality. They suggested to compare the mixture of changes listed in the

deltas. The analysis is quite preliminar but shows a great variability of types of

changes on the experimental data set, with evident differences between the results

of different algorithms running on different documents. Such a variability could be

an indicator of the ability of an algorithm to detect a larger and more precise set

of changes.

The measurement of the number of edits is a quite common solution, experi-

mented also by Xandy [31] and X-Diff [48]. This kind of comparison requires to

study the internal structure of the delta. Nonetheless, in the context of XML diff

96CHAPTER 14. QUALITY ASSESSMENT OF DELTAS AND ALGORITHMS

where deltas are usually serializable into XML files, that is very easy through sim-

ple XPath expressions. The fact that each algorithm recognizes a different set of

operations still remain an open issue. The absolute number of edits, in fact, is

heavily influenced by the set of available operations and the way each algorithm

combines them.

To solve this issue, many XML diff algorithms relate the quality to the size of

the deltas they produce. This is the approach of XyDiff [15], whose evaluation has

confirmed that the delta size is not optimized but the efficiency is very high. Even

if not precise, as it does not investigate the nature of changes and their internal

relationships, such evaluation can be fully automated and makes it possible to

compare heterogeneous deltas.

A slightly different process has been proposed for measuring the quality of

Faxma [32]. The authors compared algorithms by comparing the size of com-

pressed deltas. The motivation is that: “[the authors] expect to get results that are

less dependent on the encoding and more closely related to the amount of actual

information. The difference in output size due to some tools generating XML and

others binary diffs should be mitigated by compression”. This approach goes into

details of the deltas but it reduces the noise generated by implementation choices of

each algorithm. It is also interesting to notice that it has been proposed for an algo-

rithm that does not produce an edit-script, i.e. a plain sequence of changes, rather

a mix of references to unchanged content from the original document and newly

inserted fragments. Such a format-independent evaluation is the easiest possible

comparison between deltas intrinsically different.

A finer measurement has been proposed in the early days of tree-based diff

algorithms, by [13]. They basically employed an edit cost model. The idea is to

pre-define a cost for each type of change and to measure the overall cost of the delta

as the sum of the costs of each detected change. In the same paper the authors also

introduced an algorithm that minimizes this cost. Such approach gives users the

possibility of ‘tuning’ the results of the algorithm by giving different weights to each

operation. The fact that costs are decided a priori, on the other hand, does not

take into account other information that could be meaningful, for instance about

the amount of nodes from the original document eventually stored in the delta.

This dimension has been recently used as quality indicator in [45]. This work

is on detecting changes between unordered XML data by exploiting SQL queries

instead of DOM-based representations and calculations. The quality of the pre-

sented algorithm is measured by measuring the ratio between the number of nodes

in the produced delta and the number of nodes in the ideal one.

The idea of comparing the quality of deltas is gaining relevance for ontology diff-

ing as well. This problem is even more complex than diffing tree-based documents.

14.1. COMPARING QUALITY OF DIFF ALGORITHMS 97

One of the reasons is that ontologies contain a lot of implicit information that can

be derived, for instance, by inheritance or inference. The fact that a diff algorithm

takes or not this data into account has a great impact on the delta quality.

In [51] the authors introduced multiple differential functions to compute deltas,

and argued that deltas cannot be considered correct in any context. In particular,

they distinguished deltas containing only changes over explicit tuples and deltas

working on inferred tuples too. Moreover they introduced some differential func-

tions to calculate the smallest deltas and to accept/avoid redundancy in the final

result. The paper also identifies some properties of the deltas such as reversibility,

size minimality and redundancy elimination. These characterizations help design-

ers to evaluate the quality of the delta produced by each approach and to decide

which is the most appropriate for a given context.

Another tricky issue in diffing ontologies is that some changes might not be

worth detecting as they are not effective. Consider for instance, the deletion of

a triple that could be directly inferred by the others: should it be included in a

delta? In which circumstances? In [20] authors discussed the importance of dealing

with both effectual and ineffectual changes, in order to improve the quality of the

delta. More important, they introduced a classification of changes that also takes

into account ineffectual changes. The basic idea is that even those changes that do

not affect the final set of (inferred) tuples are worth analyzing as they can provide

users with information about the evolution of the ontology and/or about errors

(for instance, detecting the duplication of an axiom).

There is a further tricky issue when detecting changes between ontologies. The

most common operations on ontologies, in fact, generate a lot of small and scat-

tered changes, that are worth interpreting and understanding as a whole. Consider

for instance the introduction of a new class with some properties: a syntactical ap-

proach would produce a delta with a long list of changes (add class, add properties,

add relations, etc.), while a more meaningful delta should recognize the higher-level

operation. For these reasons, several ontology diff designers are striving for more

accurate and flexible approaches to characterize deltas.

In [38] the authors discussed the need of a high-level set of changes that should

be detected in order to produce deltas that are “more intuitive, concise, closer

to the intentions of the ontology editors” and that “capture more accurately the

semantics of changes”. They proposed both a set of high-level changes, described

in a formal way, and an algorithm to detect them. From authors’ perspective,

in fact, the more the delta contains high-level changes, the more its quality and

effectiveness is high.

The work of [39] stressed on the importance of letting users decide which changes

should be detected and how. The authors, in fact, introduced the idea of viewpoints

98CHAPTER 14. QUALITY ASSESSMENT OF DELTAS AND ALGORITHMS

(i.e., each ontology designer has her/his own needs and should be able to define

the set of complex changes she/he is interested in) and proposed a language to

describe complex changes, called CDL (Change Definition Language). CDL is built

on temporal logic and allows designers to express changes as differences between

the current and the previous version of an ontology. Examples of changes that can

be defined with CDL are: modification of the range of a property, introduction of a

new subsumption relation, deletion of an object property, transformation of a data

property into an object one, etc.

The aggregation of atomic changes into more complex structures that better

capture the editing process has also been studied for XML database schema evo-

lution [14]. The authors discussed a taxonomy of high-level changes and how each

change can be expressed as combination of smaller units. The overall objective is

to maximize the number of complex changes in order to improve the readibility

and quality of the deltas. As stated by the same authors, however, the model is

incomplete and does not cover all possible XML DTDs and schemas.

In conclusion, these definitions of “quality” have all been created to capture a

single use of deltas, in very different contexts. We rather believe that is not enough

to measure the quality of a delta as a single value. A better approach is to think

of deltas as objects that have multiple evaluable dimensions, each able to capture

one facet of quality. There are in fact contrasting needs and expectations in the

same definition of such dimension.

14.2 Quality is domain-dependent

Users in different domains have different requests and expectations for a diff system.

Not only these requests are different, often they also conflict with each other: for

example in certain cases a cursory summary of what has changed is enough, in

others an extreme level of detail is needed. These conflicting objectives are one

of the reasons behind the existence of a myriad of specialized diff tools: each one

is tuned for a specific activity. This heterogeneity makes it difficult to evaluate

whether a certain diff system is suitable for use in a certain scenario.

There are many examples of how different algorithms can influence the fitness of

the produced deltas in a particular environment. For example, there are two main

algorithms used to produce diffs from two revisions of a source file: Hunt-McIlroy

[23] and Patience [57]. Using lines as basic units of comparison, the first algorithm

is able to create a very compact edit script that contains only the minimal number

lines that has been added or removed. This compactness is a desirable property

when the size of the generated patches matters, for example if they are used to store

the history of that file. Differently, the Patience algorithm produces patches trying

14.2. QUALITY IS DOMAIN-DEPENDENT 99

to lump together “local modifications”, i.e. changes happened between blank lines

or other similar conventions used to divide text files in sections. This mechanism

attempts to reproduce the way changes are seen by programmers, although the

patches produced using this technique are more verbose than those produced by

Hunt-McIlroy.

The algorithm used to find the differences is not the only component that

influences the perception of how good a delta is, the format in which the delta

is stored or visualized also plays an important role. An example of this are two

widespread formats: the contextual [66] and the unified [67] patch format . The

contextual format shows for each change some lines common to both the source

and target document, then it shows the modified part of the text, first how it

was in the original document, then how it is in the modified one. The unified

format, instead, shows only the modified document, highlighting lines that have

been touched by the changes, but without showing what was present in those lines

in the original version. We can say that the conceptual delta schema of the unified

format defines only the Add and Del operations, while contextual format also

generates Update changes grouping together pairs of Add and Del changes that

operate on the same line. It follows that the contextual format is more suitable

for patches that are meant to be reviewed in detail, while the unified format offers

a simpler representation that hides details not useful to who is only interested in

seeing which parts of a document have been changed.

Another fact that impacts the quality of the deltas is whether the algorithm that

generates them is specialized for use with certain formats. If an algorithm knows the

inner details of a file format, it can easily produce more natural deltas. Take for ex-

ample an XML document in which several attributes have been changed. When the

original and the modified document are compared using a plain text diff, the pro-

duced delta will look like that in figure 14.1: correct but unnatural because full of

unneeded details and repetitions like “line 6 changed from<stanza id=’first’

tone-of-voice=’whisper’> to<stanza id=’intro’ tone-of-voice=’whisper’>”

or “characters 6 + 12 . . . 6 + 16 have been removed and intro has been added

at offset 6 + 12”. On the contrary, the deltas produced by the XML tool will

be more precise and concise, as they can say “the value of attribute id in node

/text/stanza[1] has been changed from first to intro”.

Nonetheless different XML tools might produce very different deltas, that are

all correct but whose quality is very different. Consider for instance the simple case

shown in figure 14.2: a bold style is added to a small fragment of a paragraph by

wrapping it into a new element.

Delta A is useful to rebuild the modified document from the original one. On

the other hand, it uses a lot of space and it is not precise. Delta B is more compact

100CHAPTER 14. QUALITY ASSESSMENTOF DELTAS ANDALGORITHMS

--- a.xml
+++ b.xml
@@ -4,5 +4,5 @@

<autor id="#ak9881jg2"/>
</meta>

-<stanza id=’first’ tone-of-voice=’whisper’>
+<stanza id=’intro’ tone-of-voice=’whisper’>

<verse>an so it is</verse>
<verse>just like you said</verse>

Figure 14.1: XML files comparison with a pure-text tool

- original -
<p>A bold text.</p>

- modified -
<p>A bold text.</p>

- delta A -
<p>A bold text.</p>
<ins><p>A bold text.</p></ins>

- delta B -
<p>A bold<ins>bold</ins> text.</p>

- delta C -
<p>A <b diff:wrap=’wrap’>bold text.</p>

Figure 14.2: Wrapping a text fragment in bold in XHTML

and precise but does not recognize exactly the editing action performed by the

author, that is instead fully captured by delta C. Although simple, this example

gives an idea of how much it is difficult to find, and even to define, which is the

best delta when diff-ing tree-based documents.

14.3 A top-down approach to measure the quality

of deltas

The previous discussion has shown that is very hard to find a conclusive definition

for the “quality” of a delta. It is even more complex to translate such a dimension

into one or more objective dimensions that can be evaluated automatically. To solve

this issue we propose a top-down approach inspired by the Goal-Question-Metric

approach (GQM) [9].

GQM is hierarchical measurement process. It starts defining ‘Goals’, i.e. pur-

poses of the measurement: each goal, in turn, is characterized by specifying the

14.3. A TOP-DOWNAPPROACH TOMEASURE THEQUALITY OF DELTAS101

object of the measurement (what is being evaluated?) and the viewpoint (who

is interested in such evaluation? what for?). This last aspect is very important:

the assumption is that any measurement cannot be disjoint by the users who will

eventually perform it.

Like for software, the perceived quality of deltas is dependent from who is

evaluating it. Thus, we first identify the goal of the evaluation by identifying the

users are interested in it and the domain it will be applied to.

There are many goals that could be identified: e.g., “verify whether an algo-

rithm is suitable for backups of big files”, “verify whether an algorithm is suitable

for showing differences between two HTML files”, “verify whether an algorithm is

suitable for direct use by coders”, “verify whether an algorithm is suitable for de-

tecting changes between data-centric documents”, etc. However, this chapter does

not set a predefined set of users and goals as it is expected that different domains

will have different goals and only their users can specify them. Nonetheless, goals

can be all summarized in one general meta-statement:

GOAL: Verify whether the algorithm fits user’s need

The second step of GQM deals with ‘Questions’. In this step each goal is

broken down into several questions. The same approach can be applied to define

and evaluate the quality of a delta. Consider for instance the following scenario:

the goal of the user is to “verify if a diff algorithm [produces a delta that] is suitable

for storing differences in a filesystem”. Sysadmin will be interested in some aspects

of the output: they probably prefer a delta that does not waste space; they might

also be interested in reading changes line-per-line, with a layout similar to the ones

they are used to deal with; another requirements might be that the delta stores all

information about deleted content (this is not always true, as some algorithms keep

only references to the original resources). Thus, we need to formulate questions

associated to these quality requirements that give sysadmin insights about the

nature of the delta and the behavior of the algorithm that generated it.

Space consumption is definitely an interesting parameter to evaluate. It is actu-

ally been taken into account by several researchers in the past [64, 32]. Nonetheless,

we believe there is a more precise evaluation besides the absolute measurement of

the space used by the delta. It is interesting, in fact, to understand whether or not

that space is actually required or the delta contains a lot of redundant information.

The first question we propose is in fact:

Q1: Does the delta waste space?

It is not always true that the extra information included in a delta is useless.

102CHAPTER 14. QUALITY ASSESSMENTOF DELTAS ANDALGORITHMS

In many case, it can be very useful for the final users to contextualize changes.

The context is not strictly necessary but helps users understand what has being

changed and where. This leads to a contrasting question:

Q2: How much information about the context of changes is stored in the delta?

Consider, for instance, the case of programmers that look for differences in

source code. They expect the presence of a certain amount of context around the

changed parts. New programmers will ask for a much bigger context, as they do not

have the ability to recognize code parts using only few lines and conciseness is only

an hindrance to them. On the other hand, conciseness is an important parameter

for the sysadmins that use deltas to only backup files (that will be primarily read

by other applications, instead of human users).

Given that shorter deltas are easier to understand, another plausible question

for evaluating the fitness of the deltas is:

Q3: How much is the delta summarized?

The answer to this question can be seen from two different angles: either the

delta is short because it is composed of few changes (i.e., the algorithm tried hard to

produced as few changes as possible) or because many changes have been grouped

into composed changes (e.g., a pair of addition and deletion changes can be grouped

in single update change).

Related to these aspects, there are two other questions that would be interesting

to take into account:

Q4: Does the algorithm prefer simple or composite changes?

Q5: Is the algorithm able to identify domain-specific changes?

These last two questions are of interest for the users who have to understand

the content of a delta, not just to apply it. For example developers of visualization

tools need to analyze the content of a delta to create the corresponding graphical

representation; for them having deltas that contain domain-specific changes may

allow the generation of more precise and interesting visualizations.

The last step of GQM is the most important for our purposes. It consists of

defining so called ‘Metrics’: quantifiable pieces information that are associated to

every question in order to answer it in a quantitative way. We apply a similar

approach: the basic idea consists of extracting quantitative indicators from a delta

14.4. METRICS FOR DELTA EVALUATION 103

(such as the number of detected changes, the number of touched elements, the

number of high-level changes) and aggregating them into more complex metrics

(such as precision, meaningfulness) that can be combined with atomic indicators

in order to give quantitative measurements about deltas. These parameters can

be evaluated to answer the above-discussed questions and decide whether or not a

delta achieves a given goal.

The introduction of the metrics requires a preliminary step, to make it possible

to apply the same evaluation process to algorithms very different among each other.

In fact, we need to establish a common conceptual schema on top of which metrics

will be built. We present it in the following section, together with a small thesaurus

of technical terms. Later, we will go into details of the metrics and their atomic

building blocks (i.e. quantifiable properties of deltas).

14.4 Metrics for delta evaluation

Based on the quantifiable properties that we defined in the previous section, we can

now define a series of metrics that represent the many dimensions among which it

is possible to evaluate the deltas. These metrics are meant to capture quantitative

data that can answer questions like those introduced in Section 14.3.

Differently from the previous properties, the selection and the definition of these

metrics are domain-oriented. We expect to find new ways of combining the same

atomic indicators to answer new questions in the future. In fact, the set of goals

and questions in our model is open.

Like with properties, for each metric M there is a specialized version Mtp that

uses the property Proptp instead of Prop.

To simplify the explanation of these metrics we will base our examples on the

two XML documents shown in figure 14.3 and some possible deltas generated by

algorithms with different characteristics, shown in figure 14.4.

14.4.1 Precision

Precision indicates how many non modified elements have been included in the

delta. Values of precision near 1 indicate that the delta contains almost only

information about the occurred modifications; values near 0 indicate that almost

all the information carried in the delta is redundant.

Precision (δ) =
modified-elements (δ)

touched-elements (δ)

Some algorithms produce deltas that contain redundant information in order

to make the delta more readable while other prefer to avoid redundancy as much

104CHAPTER 14. QUALITY ASSESSMENTOF DELTAS ANDALGORITHMS

Listing 14.1: Source document

<info>
<author>John Doe</author>

</info>

Listing 14.2: Target document

<info>
<author>

<name>John</name>
<surname>Doe</surname>

</author>
</info>

Figure 14.3: Example modified XML document

as possible, focusing on reducing the length of the delta.

There are cases where extreme precision is required, for example when trans-

mission bandwidth or storage space is scarce. In these cases every repeated byte

is a wasted byte. Some algorithms go to great lengths to produce very precise

deltas [64]. On the other hand, deltas that are too precise are very hard to read

and interpret by a human, For this reason some algorithms include a bit of context

around the real modification, so that the user can understand better what is being

changed and where. This metric is an important indicator to answer, for example,

the questions Q1 and Q2 shown in section 14.3.

The tradeoff represented by the Precision metric can be seen clearly comparing

two possible ways to express the modifications made to the author element in the

example, illustrated in figure 14.4. The first delta removes the subtree rooted

on author and adds the new version of the same, the second delta wraps some

characters with elements. For both deltas the number of modified elements is 2:

the number of elements that must be added. The number of touched elements is,

instead, different for each delta: 19 (4 elements and 15 characters) for the first

delta and 11 (2 elements and 9 characters) for the second one. The precision of the

first delta is thus lower than that of the second: 0.10 (i.e. 2
19) versus 0.18 (i.e. 2

11).

14.4.2 Conciseness

Conciseness indicates how much the changes found in the delta have been grouped

into bigger changes. A very concise delta is a delta whose number of top-level

changes has been reduced through the use of the various encapsulation mechanisms.

Conciseness (δ) = 1− number-of-top-level (δ)

population (δ)

14.4. METRICS FOR DELTA EVALUATION 105

Listing 14.3: Delta 1

A.1: REMOVE-TEXT(John Doe)
A.2: REMOVE-ELEM(<author/>)
A.3: ADD-ELEM(<author/>, <book/>)
A.4: ADD-ELEM(<name/>, <author/>)
A.5: ADD-TEXT(John, <name/>)
A.6: ADD-ELEM(<surname/>, <author/>)
A.7: ADD-TEXT(Doe, <surname/>)

Listing 14.4: Delta 2

B.1: WRAP(John, <name/>)
B.2: WARP(Doe, <surname/>)

Listing 14.5: Delta 3

C.1: REMOVE-TEXT(John Doe)
C.2: ADD-TEXT-ELEMS(<name>John</name><surname>Doe</surname>,

<author/>)
C.2.1: ADD-TEXT-ELEM(<name>John</name>, <author/>)

C.2.1.1: ADD-ELEM(<name/>, <author/>)
C.2.1.2: ADD-TEXT(John, <name/>)

C.2.2: ADD-TEXT-ELEM(<surname>Doe</surname>, <author/>)
C.2.1.1: ADD-ELEM(<surname/>, <author/>)
C.2.1.2: ADD-TEXT(Doe, <surname/>)

Figure 14.4: Possible deltas for <author>

Algorithms can reduce the number of changes needed to express the modifica-

tions by grouping small changes into bigger changes, sometimes at the expenses of

clarity or redundancy.

Question Q3 in section 14.3 can be answered by using this metric.

The amount of conciseness for the deltas shown in figure 14.4 can be calculated

if the encapsulated changes are taken into account. The figure 14.5 illustrates

how the shown changes encapsulate, in fact, smaller changes from which they have

been deduced. The conciseness of the first delta (1 − 7/7 = 0) is smaller than the

conciseness of the second delta (1 − 2/9 = 0.778). This reflects the fact that the

second delta has been made more concise by the detection of complex changes.

14.4.3 Meaningfulness

Meaningfulness indicates how much of the delta conciseness is due to the use of

complex changes. An high meaningfulness score indicates that the algorithm has

been able to express much of what has been changed using meaningful changes,

106CHAPTER 14. QUALITY ASSESSMENTOF DELTAS ANDALGORITHMS

B.1: WRAP(John, <name/>)
B.1.1: REMOVE-TEXT(John Doe)
B.1.2: ADD-TEXT-ELEM(<name>John</name>,

<author/>)
B.1.2.1: ADD-ELEM(<name/>, <author/>)
B.1.2.2: ADD-TEXT(John, <name/>)

B.2: WARP(Doe, <surname/>)
B.2.1: = B.1.1
B.2.2: ADD-TEXT-ELEM(<surname>Doe</surname>,

<author/>)
B.1.2.1: ADD-ELEM(<surname/>, <author/>)
B.1.2.2: ADD-TEXT(Doe, <surname/>)

Figure 14.5: Possible delta for <author> (delta 2 expanded)

going beyond the simple detection of atomic changes.

Meaningfulness (δ) =
number-top-levelcomplex (δ)

number-top-level (δ)

This metric, combined with the next one, can be used to give a quantitative

answer to the questions Q4 and Q5 in section 14.3.

The examples in figure 14.4 show two very different levels of abstraction: the

first delta is composed of atomic changes only so its meaningfullness values is 0.

On the contrary, in the second delta all the atomic changes have been grouped into

complex Wrap changes, making its meaningfullness value 1.

14.4.4 Aggregation

Aggregation indicates how much of the inner parts of the delta, not only of its

topmost level, is expressed using complex changes instead of atomic changes. The

better suited a conceptual diff schema is, the more likely an algorithm is to ag-

gregate atomic changes into complex changes; an algorithm that know HTML

operations will be able to detect more complex changes than an algorithm limited

to XML operations or, even, to pure text.

Aggregation (δ) =
number-atomic-in-complex (δ)

populationatomic (δ)

= 1− number-top-levelatomic (δ)

populationatomic (δ)

Together with the previous metric, the value of Aggregation can be used to

answer the questions Q4 and Q5 in section 14.3.

While this metric is positively correlated to abstraction, it focus on measuring

14.5. APPLYING METRICS 107

how much has been aggregated in complex changes rather than whether complex

changes have been used to express the most superficial level of the delta.

The three examples deltas in figure 14.4 show three different levels of aggrega-

tion: the first delta has not been aggregated at all (1− 7/7 = 0); in the second all

the atomic changes have been aggregated (1 − 0/3 = 1); in the third most of the

atomic changes have been aggregated, but not all (1− 1/5 = 0.8).

14.5 Applying metrics

The main use of the metrics is to allow the evaluation of the fitness of an algorithm

in a certain context, by analyzing the characteristics of the deltas it produces. In

this section we explain how to apply these metrics to existing algorithms and we

present the results of their application on three well-known XML diff tools.

14.5.1 A two-phase process to evaluate algorithms through

metrics

The delta model and metrics are independent from a specific data format. Such a

level of abstraction, on the one hand, makes it possible to capture relevant pecu-

liarities of changes and to compare heterogeneous input; on the other, it requires a

further step for measuring actual delta files. In fact, deltas need to be translated

into the universal data model, on top of which metrics can be applied.

There is also another tricky issue. The algorithms use deltas as conceptual

objects during their computations while the result of said computation is stored or

transmitted in form of serialized files, i.e. patches. These patches almost always

contain few information about the changes found and their encapsulation, even if

that information has been detected and exploited by the algorithm. The point is

that the algorithms produce an output that is optimized for the application that

is expected to process it and to use it for re-building the newer document form the

older one. That means, for instance, that changes are ordered in a way that does

not necessarily match the order they were applied, rather the order expected by

the application; or that some types of changes are aggregated at the end of the

delta (for instance, all those involving attributes in the case of most XML diffs).

A harder problem is that some information is hidden in such serialized formats.

For instance, some changes that the algorithm calculates as aggregates might be

finally stored as separate (small) changes and linked each others through identifiers.

This is the strategy used by JNDiff [17] and XyDiff [15]: this choice does not

match the conceptual model behind the algorithm, rather it is a way to simplify

the backward application of the patch.

108CHAPTER 14. QUALITY ASSESSMENTOF DELTAS ANDALGORITHMS

There is even a worse scenario. Consider for instance Faxma [32]. It does not

generate a sequence of edit operations but a format that uses XPath-like expressions

to refer to the unchanged fragments of the original document and, among them,

interposes the newly inserted elements and attributes. This guarantees a very

limited use of memory and resources (that is what authors wanted) but makes

it impossible to identify the deleted content from the patch. In this case, the

information needed to apply the metrics is totally absent, not only hidden.

Thus, the process of applying metrics to study algorithms can be refined in two

steps:

1. interpretation: the pre-processing analysis in which the algorithm’s internal

model is made explicit and mapped into the universal one;

2. evaluation: the actual measurement of atomic indicators and aggregated met-

rics on the pre-processed delta.

While the second step can be generalized and automated (and we actually imple-

mented some tools for this purpose, mentioned in the following section), the first

one is different for each algorithm. More important, it requires users to understand

the basic functioning of the algorithm.

In fact, there are two approaches to this problem: (1) patching the imple-

mentations to store more information in the patches or (2) deducing the missing

information from the patches knowing how the serialization process works.

Yet, in both cases these reconstructed deltas are only approximations of the real

deltas internally used by the algorithms. They are however the only means that

makes the use of these metrics possible, short of rewriting the implementations of

the algorithms to produce a dump of the internal representation of the processed

deltas. It must also be noted that there are various degree of approximation, as

show in figure 14.6: the patches themselves (Φ) can serve as a very crude approx-

imation of the initial delta (∆), better approximations can be generated with the

addition of knowledge about how an algorithm works (the various functions σ̃−1,

approximate inverse of the serialization function σ).

∆ (delta) ∆′′ ∆′ Φ (patch)

σ

σ̃−11
σ̃−12

Figure 14.6: From delta to patch and back

Finally, note that the preliminary interpretation is to be done once for each

14.5. APPLYING METRICS 109

algorithm and, from then on, the quality of [the output of] the algorithm can be

evaluated in a fully objective manner.

14.5.2 Experimental results on XML diff

In order to test the applicability of the metrics on real deltas we studied three

well-known XML diff tools: JNDiff [17], XyDiff [15] and Faxma [32]. We run exper-

iments on the same dataset used to evaluate the ‘naturalness’ of JNDiff, available

at http://twprojects.cs.unibo.it/jndiff-tests/. It consists of five documents, each

available in two versions:

• The first two documents are taken from the evaluation of DocTreeDiff [43]:

the first one (identified as LETTER from now on) is a one-page letter while

the second is a bibliography of about 15 pages (identified as BIBLIO in the

rest of the section). They are both in the XML format used by Open Office

2.x and available on the Web.

• Two others, respectively called DL1184 and DL2221, are XML-encoded leg-

islative acts and bills. They are highly structured in articles, clauses and

paragraphs and follow precise rules to encode textual content.

• The last one, identified as PROTOCOL, is an XHTML document containing

the specification of a web protocol, used for a schoolwork project. It is struc-

tured in sections and subsections and contains a lot of internal references and

code snippets.

We selected this dataset for three main reasons:

1. Input documents are real and taken from heterogeneous sources. Some of

them, in turn, were used to evaluate the quality of other diff algorithms.

Thus, they cover a wide range of cases. Moreover, they are very different

in terms of size, depth, number of elements and attributes, and internal

structure.

2. We know the internal structures of the documents and the types of changes

applied to them. Thus, we can verify whether or not there is a relation

between the types of documents/changes and the behavior of each algorithm.

3. Last but not least, we know the algorithms quite well, from our previous anal-

ysis of published papers, of their internal documentation and source code.

Thus, we can perform the above-mentioned interpretation of deltas in rea-

sonable time and with reasonable confidence.

http://twprojects.cs.unibo.it/jndiff-tests/

110CHAPTER 14. QUALITY ASSESSMENTOF DELTAS ANDALGORITHMS

Precision Conciseness Meaningfullness Aggregation Economy

BIBLIO

JNDiff 0.23 0.39 0.13 0.42 0.43

XyDiff 0.09 0.01 0 0.01 0.9

Faxma 0.09 0.95 0.21 0.96 0

Trivial 0.07 0 0 0 0.9

LETTER

JNDiff 0.38 0 0 0 0.34

XyDiff 0.28 0 0 0 0.17

Faxma 0.44 0.58 0.15 0.62 0

Trivial 0.18 0 0 0 0.84

DL1184

JNDiff 0.26 0.54 019 0.59 0.26

XyDiff 0.05 0 0 0 0.76

Faxma 0.06 0.69 0.18 0.73 0

Trivial 0.03 0 0 0 0.88

DL2221

JNDiff 0.43 0.64 0.38 0.74 0.28

XyDiff 0.08 0.28 0.21 0.33 0.32

Faxma 0.07 0.79 0.26 0.83 0

Trivial 0.03 0 0 0 0.87

PROTOCOL

JNDiff 0.26 0.38 0.14 0.42 0.24

XyDiff 0.06 0.25 0.07 0.26 0.07

Faxma 0.06 0.56 0.09 0.58 0

Trivial 0.06 0 0 0 0.89

Table 14.1: Evaluating metrics for all algorithms on all files of the dataset

According to the previous schema, we first interpreted the results of each algo-

rithm. For JNDiff and XyDiff we constructed augmented patches from the patches

generated by the reference implementations. The changes found in the original

patches, almost all atomic changes, have been grouped in complex changes simi-

lar to those used internally by these algorithms. For Faxma we patched the code

available at https://github.com/ept/fuego-diff to produce a low-level dump of the

changes detected internally instead of refining the produced patches; the new code

is available at https://github.com/gioele/fuego-diff. We could not augment the

patches generated by the original code because the serialization format lost too

much information as discussed earlier. For instance, Faxma does not store any in-

formation about deleted content (the delta only contains references to the original

source intermixed with newly added and/or updated content); furthermore, in the

Faxma’s deltas there is no way to understand the difference between an update

and an addition of content, concepts that are present in the algorithm and in the

implementation but are not made explicit in the serialized file. Once we started

extracting the changes directly from the code, we managed to obtain a reasonable

approximation that gave us good insights about the behavior of this algorithm too.

The evaluation phase was fully automated. Table 14.1 shows all results we

collected. Each column represent a metric. Rows are clustered in five groups, one

https://github.com/ept/fuego-diff
https://github.com/gioele/fuego-diff

14.5. APPLYING METRICS 111

for each input document. For each document, the table shows the value of each

metric calculated on each algorithm.

In order to complete our evaluation we also included an implementation of

the trivial algorithm for diffing XML files that, when diffing documents A and

B, produces a delta with two operations: the deletion of the whole document A

and the insertion of the whole document B. This delta is correct and makes it

possible to rebuild the newer document from the older one. On the other hand,

it provides too little information and is very far from being useful to understand

what changed between the two documents. It is anyway interesting to verify if the

metrics highlight clearly such ‘bad’ behavior.

Conciseness, meaningfulness and aggregation could be evaluated in an absolute

way by measuring and aggregating atomic indicators with straightforward XPath

expressions.

The overall value of precision (including the precision on elements, attributes

and texts) has been approximated. The precision indicates the ratio between the

modified elements and the touched ones. An exact value could be calculated by

knowing exactly what changed and by looking manually at exact modified nodes

for each algorithm. A faster but still reliable process consists of considering the

number of modified nodes as equal to the minimum amount of modified content

between the two input documents. This value can be calculated easily by using

external binary diff tools on the isolated content; this value provides a reasonable

round-up, since any other algorithm cannot have a higher precision (as it cannot

modify a lower number of nodes).

Given that the population value indicates the total number of changes each delta

is composed of, absolute values of deltas produced by different algorithms vary a lot

and cannot be compared directly. We synthesized a new dimension, called economy,

to compare the population scores. To solve the problem we first calculated the

magnitude of each population, as Palgorithm = log10 (Population (δ)) and then

calculated:

Economy (δ) =

= 1 − Palgorithm
max (PJNDiff , PXyDiff , Pfaxma, Ptrivial)

Thus, we obtained a economy score between 0 and 1, with higher values for

lower (normalized) values of population. This normalization is also the reason

why, for each document, there is always an algorithm with economy equal to zero

(the one with highest population).

112CHAPTER 14. QUALITY ASSESSMENTOF DELTAS ANDALGORITHMS

The results of the application of the metrics to documents BIBLIO, PROTO-

COL and DL2221 are summarized with a different view in Figure 14.7.

The documents are written in three different formats and differ a lot in terms

of internal structures and dimensions. Nonetheless all the web graphs for a certain

algorithm look similar, while there are big differences in the graphs generated by

different algorithms. This is an important finding: the algorithms show a quite

regular behavior and the metrics are able to capture that behavior correctly.

The other interesting point is that these plots highlight clearly some peculiarities

of each algorithm. First of all, consider the results of the trivial algorithm. It scored

a very high economy (since only two changes were detected) but obtained a zero

score for meaningfulness, conciseness and aggregation since it does not try to give

a higher-level interpretation of changes. For the same reason, the precision is the

lowest one in all cases. Note that a mere evaluation of the number of edits would

have given a very high-quality score to the delta produced by this algorithm.

Consider also the behavior of Faxma wrt aggregation and conciseness. These

two dimensions are related each other and capture whether or not an algorithm

is able to aggregate changes or only generates mostly atomic change. Both these

values are very high for Faxma since the algorithm builds large complex changes

in the form of “move” changes. These “move” changes are the mechanism used by

Faxma to move big chunks of documents without the need to delete and re-add

the same data in different position. Notice also that this does not mean that the

majority of changes are very meaningful: rather, the complex changes generated by

Faxma are just large containers of smaller similar changes; Faxma also tries hard

in generating as few changes a possible. These two factors lead Faxma to produce

deltas with low meaningfullness values. However, this helps Faxma with two of its

aims: move changes are translated in “copy” operations in their patch format and

reduces the number of changes to be stored in the patch; the ability to produce

higher-level interpretation of changes is exchanged for more speed and less space

requirements.

The low values of XyDiff in almost all metrics also confirm some of its char-

acteristics. The algorithm, in fact, gives much importance to performance and

does only consider the size of the delta as indicator of quality. Being a greedy

algorithm, it is not able to refine the already generated changes, for example the

deletion of three sibling nodes would appear as three separate atomic change delet-

ing one node, not as a complex change enclosing all the three siblings; this reduces

meaningfulness and conciseness. Its greedy nature also generates unneeded deletion

changes when subtrees are deleted: one change is generated for each hierarchy level

of that subtree; this makes the delta redundant and the overall economy score very

low. Another emergent behavior of XyDiff is that fine-grained updates are often

14.5. APPLYING METRICS 113

expressed as couples of insertions/deletions of large subtrees with a lot of common

parts; this reduces drastically the precision score.

The results on JNDiff are also meaningful. The algorithm, in fact, works very

well on textual changes and is able to aggregate fine-grained modifications on text

nodes into aggregated changes. On the other hand, such aggregation is not equally

precise on elements and some structural changes that could be aggregated are left

disjoint. This is the reason why results are generally good but there is no clear

dominance on any dimension. It is also interesting to note that JNDiff tries to

limit the amount of nodes involved in each change, in order to be as much faithful

as possible to what authors actually did on the document. This is confirmed by

the value of precision, that is the highest one in all cases. Similarly, the fact that

JNDiff tries to reduce the number of detected edits influences the economy score,

that is always quite high.

The experiments on the other two documents produced slightly different results.

A deeper analysis, however, shows that even these results are consistent with what

we discovered so far about metrics and algorithms’ peculiarities. The plot related

to DL1184 is shown in Figure 14.8.

The plot looks apparently different from the previous ones: the economy score

of XyDiff, in fact, is much higher than the others. Though, we expected an opposite

behavior from an algorithm that tends to repeat information and to not express

abstract and concise changes.

These results depend on the nature of changes applied to the document: a lot of

small structural changes on a single flat element. While all other algorithms tend

to fragment that change into smaller ones (obtaining a higher number of edits),

XyDiff detects a large change without being too precise in detecting sub-changes.

This implies that the economy is very high while all other metrics are low. In

this case, the internal strategies of the algorithm fits very well with this test case

because it has a record-like structure that is similar to that of a database, the class

of documents XyDiff has been designed for.

The final plot, related to document LETTER and shown in Figure 14.9, looks

again very different from the others. However, it confirms that the metrics are able

to capture some peculiarities of each algorithm when dealing with some types of

changes. In this case, in fact, the precision of Faxma is very high. The reason is

that Faxma is very precise in detecting moves and aggregations of sequences after

the deletion of interposing elements. Since the modifications on this document

were mainly attributes updates, moves and a few changes on text elements (and

no one on mixed content-models) Faxma worked very well. It is not a case that,

simultaneously, the results of JNDiff get worse: the capability of detecting changes

on mixed content-models and produce a small set of edits is not very helpful in this

114CHAPTER 14. QUALITY ASSESSMENTOF DELTAS ANDALGORITHMS

content. That is the reason why conciseness and aggregation are a bit lower than

usual.

For similar reasons - since the impact of nested changes and fine-grained textual

modifications is very low - the values of precision and economy for XyDiff are a bit

higher than the previous cases.

In conclusion, experiments confirmed that the metrics are able to capture

the general behavior of an algorithm, although they only operate on its output.

Whereas the output is peculiar, these metrics can also be used as indicators of

anomalies or occurrences of specific classes of changes.

We could even envision a document-based comparison of diff results. Users

could run different algorithms on the same documents and decide which is the

best fit for that specific case. This approach would not be too expensive but

would provide users a finer selection process. That is also in line with our initial

assumption: the measurement of quality cannot be an absolute and unique value

but has to be inflected for each context and for each user.

14.6 Conclusions and future works

This chapter presented a set of objective metrics and a methodology for the evalu-

ation of the qualities of the deltas produced by diff algorithms. These metrics are

based on the delta model described in section 14.4. The results in section 14.5.2

show that the values of these metrics reflect real properties of the analyzed algo-

rithms, for example the tendency to detect many localized small changes instead

of fewer big changes.

A distinctive point of these metrics is that their values can be calculated in a

totally automated way, without resorting to any human intervention or judgment.

The fact that these values can be calculated in an unsupervised way opens the way

to additional exploitations of these metrics. One possible application is the use

of these metrics as a fitness function in genetic algorithms to calculate the best

parameters for parametrized diff algorithms. For instance, JNDiff has a threshold

parameter that indicates the percentage of content that needs to be changes in a

block of text to make the algorithm emit a single big update change instead of

many smaller changes. Now this parameter must be set manually by the users of

JNDiff; with the use of the presented metrics it would be possible for a user to say

“find the highest threshold value that makes JNDiff generate deltas with an high

conciseness value”.

14.6. CONCLUSIONS AND FUTURE WORKS 115

Figure 14.7: Evaluating metrics on documents BIBLIO, PROTOCOL and DL2221

116CHAPTER 14. QUALITY ASSESSMENTOF DELTAS ANDALGORITHMS

Figure 14.8: Evaluating metrics on document DL1184

Figure 14.9: Evaluating metrics on document LETTER

Chapter 15

Evolution of ontologies

This chapter describes OntoEv, a tool that analyzes chains of ontology versions and

extract trends about how the ontology have been developed and what are the most eas-

ily modified entities. The basis of the tool is new algorithm similar to PROMPTDiff

[37] and Papavassiliou 2009 [38] but based on the proposed delta model. The OntoEv

tool is available as a work in progress at http://barabucc.web.cs.unibo.it/ontoev/.

15.1 Introduction

The reason beyond the creation of OntoEv is the desire to be able to identify

and study the various phases of the development that happens during the devel-

opment of ontologies without having to resort to change summaries or versioning

information, things that are rarely available for ontologies found “in the wild”,

and, anyway, of little use when the this analysis is to be performed on dozens of

ontologies.

The development of ontologies can be carried out in many ways. Sometimes

ontologies are developed starting from a known domain vocabulary, other times

properties are designed first and classes added later as a structure emerges, yet

other times it is the opposite: the classes are created first and properties are added

as the need arises. Through the analysis of chains of versions of ontologies it is

possible to highlight these changes, spotting trends and development patterns.

15.2 The discovery process

OntoEv takes a chain of ontologies snapshots (a linear sequence of snapshots of

an ontology in chronological order) and produces a report that shows the phases

of development that the ontology has gone through. The analysis performed by

117

http://barabucc.web.cs.unibo.it/ontoev/

118 CHAPTER 15. EVOLUTION OF ONTOLOGIES

Onto Ev is composed of four steps: first it produces a basic delta with the changes

detected between each pair of subsequent versions; then this delta is refined into

a more meaningful delta containing complex changes specifically identified for use

with the OWL model; later the changes stored in the delta are clustered into

broad development activities (e.g. “documentation”, “link to external ontologies”,

“growth”, etc.); finally, a visual report is generated, highlighting the flow of the

development activities through the chain of versions.

15.2.1 Chains of ontologies

OntoEv operates on chains of ontologies, i.e. linear sequences of different versions

of ontology files. An example of ontology chain is the set of revisions of the FOAF

ontology :

• http://xmlns.com/foaf/spec/20100809.rdf

• http://xmlns.com/foaf/spec/20100101.rdf

• http://xmlns.com/foaf/spec/20091215.rdf

• etc.

The chains used during the development and testing of OntoEv have been retrieved

using the Watson search engine [16] and its module for the discovery of chains based

on similarity measures [1].

15.2.2 Creation of deltas

The initial delta, internally referred to as the structural delta, is produced by

the OntoVCS [54] library. The deltas produced by OntoVCS, already analyzed in

section 3.1.3.2, are atomic changes that only represent additions and deletions of

RDF or OWL constructs. An example delta produced by OntoVCS is the list of

changes shown in figure 15.1.

+ SubClassOf(testbed:Slope testbed:Land_Feature)
- SubClassOf(testbed:Slope testbed:Thing)
+ DataPropertyRange(testbed:is_manmade xsd:boolean)
+ Declaration(DataProperty(testbed:is_manmade))
+ AnnotationAssertion(rdfs:label testbed:is_manmade "is_manmade"@en)
+ DataPropertyDomain(testbed:is_manmade testbed:Natural_Feature)
+ AnnotationAssertion(rdfs:comment testbed:is_manmade

"indicates whether a feature is manmade or natural.")

Figure 15.1: Delta produced by OntoVCS

http://xmlns.com/foaf/spec/20100809.rdf
http://xmlns.com/foaf/spec/20100101.rdf
http://xmlns.com/foaf/spec/20091215.rdf

15.2. THE DISCOVERY PROCESS 119

15.2.3 Refinement of deltas

The initial delta produced using OntoVCS is not rich enough in information to be

used for any kind of advanced analysis of the modification made to the ontology.

For this reason a new algorithm has been developed to refine this initial delta. The

new algorithm aggregates the initial changes into complex meaningful changes that

try to match the intent of the user that lead to the detected changes.

The aggregation process of the OntoEv algorithm is a fixed point algorithm

similar to PROMPTDiff [37], already discussed in section 3.1.3.1. The algorithm

iteratively process all the changes trying to match each candidate with a set of

preconditions dictated by the defined aggregation rules. Of all the rules whose

preconditions are met by the candidates, the most “complex” is applied. The

application of the rule aggregates the matched candidates into a complex change

and replaces the matched candidates in the set of candidates with the generated

complex change. The convergence of this fixed point algorithm is guaranteed by

the monotonicity of the aggregation process: there are no rules that generate more

changes than the number of changes they aggregate.

This refinement process augment the delta with meaningful changes that allow

the development of simpler analysis. The initial delta show in figure 15.1 is refined

by the algorithm into the delta shown in figure 15.2.

ClassSpecialization(Slope)
+ ClassSubClassOfAdded(Slope) { subclass of Land_Feature }
+ ClassSubClassOfRemoved(Slope) { subclass of Thing }

DataPropertyOntologyExpansion(is_manmade)
+ DataPropertyDeclarationAdded(is_manmade)
+ DataPropertyConstraintsAddition(is_manmade)

+ DataPropertyDomainAddition(is_manmade)
+ DataPropertyDomainAdded(is_manmade) {

domain: Natural_Feature }
+ DataPropertyRangeAddition(is_manmade)

+ DataPropertyRangeAdded(is_manmade) {
range: boolean }

+ ClassDocumentationAdded(is_manmade) {
comment: "indicates whether a ..." }

+ ClassDocumentationAdded(is_manmade) {
label: "is_manmade"@en }

Figure 15.2: Delta refined by OntoEv

120 CHAPTER 15. EVOLUTION OF ONTOLOGIES

15.2.4 Clustering of changes

Once a delta with meaningful changes has been generated by the OntoEv algorithm

these changes are clustered and classified. For instance, changes such as DataProp-

ertyConstraintsAddition and ClassSpecialization are classified as ontology refactor-

ing while changes such as DataPropertyOntologyExpansion and ClassAddition are

classified as ontology expansion.

15.3 Results from the analysis of a chain

The reports generated by OntoEv analyzing the set deltas calculated on the chain

highlights various aspects of what has changed: the various phases that can be seen

in the development of the ontology, the complexity of the changes that have been

made and what are the entities that have received the most attention during the

development of the ontology.

The change in development focus is shown, as depicted in figure 15.3, by

Figure 15.3: Example of development flow

The complexity metric shows how much an ontology has changed during a

certain revision. For example the ontology shown in figure 15.4 has been developed

mostly through simple changes, a fact that is highlighted by the high number of

changes of complexity 2 in all the 8 revisions of the ontology. The complexity

graph shows at the same time how much an ontology has changed (the height

of the stacked bars) and how convoluted are the changes (the distribution of the

complexity on the horizontal axis).

Finally, the OntoEv tools reports what are the entities that received most atten-

tion. There are various actions that OntoEv takes into account to calculate what

are the entities that have been modified the most: first it calculated the number

of their properties have been changed, the the number of refactoring changes that

15.3. RESULTS FROM THE ANALYSIS OF A CHAIN 121

Figure 15.4: Example of complexity report/graph

happened to them and, finally, the number of times they have been referred to in

changes made to other entities.

122 CHAPTER 15. EVOLUTION OF ONTOLOGIES

Chapter 16

Conclusions

The goals of this thesis are to formalize what it means to find differences between

documents and to find a single shared formalization that can be used by any algo-

rithm to describe the differences found between any kind of comparable documents.

The main contribution of this thesis is a universal model of deltas and documents.

This model meets the given goals as it is able to express deltas produced by differ-

ent algorithms that operate on different kinds of documents and that are based on

arbitrary sets of recognized operations.

The goals of this thesis must be fulfilled for both theoretical and practical

reasons. From a theoretical point of view, without a shared formalization of diff

algorithms and deltas it is difficult to compare different algorithms, their abilities

and their performances. From a practical point of view, the lack a single formal-

ization and reference API makes it hard or impossible to create tools that support

more than one diff algorithm, a need that is often need, for example, for XML-

based formats like DocBook where one may be interested in seeing the differences

both at the XML level and at the DocBook level.

The starting point of this research has been the analysis of the way existing

algorithms operate and how they store the information about the differences they

have found. In addition to the models embedded in the algorithms, also standalone

models have been studied and compared. The analysis of all these models showed

that they all perform similar operations and operate on similar data structures;

this means that it is possible to unify all these models under a single model.

The main scientific contribution of this thesis is a universal delta model that

can be used to represent the changes found by an algorithm. The main part of this

model are the formal definition of changes (the pieces of information that records

that something has changed), operations (the definitions of the kind of change that

happened) and deltas (coherent summaries of what has changed between two doc-

123

124 CHAPTER 16. CONCLUSIONS

uments). The fundamental mechanism that makes the changes as defined in the

universal delta model a very expressive tool, is the use of encapsulation relations

between changes. In the universal delta model, changes are not simple records of

what has changed, they can also be combined into more complex changes that ex-

press the fact that the algorithm has detected a more nuanced kind of change. For

example, the change represent the addition of a chapter heading and the changes

representing the the addition of the several single paragraphs can all be encapsu-

lated into a more meaningful change that describe the addition of a chapter.

In addition to the main entities (i.e., changes, operations and deltas), the model

describes and defines also documents and the concept of equivalence between doc-

uments. As a corollary to the model, there is also an extensible catalog of pos-

sible operations that algorithms can detect, used to create a common library of

operations, and an UML serialization of the model, useful as a reference when

implementing APIs that deal with deltas.

The model has been successfully used in two experiments. In the first experi-

ment, described in chapter 14, the model is exploited to compare the qualities of

deltas generated by various algorithms. Among these qualities one can find the

precision of a delta (how much non-needed information is contained in the delta)

or its conciseness (how many changes are used to describe the differences between

two documents). The analysis of the qualities is based on data extracted in an

objective way from the deltas, deltas that have been modeled using the universal

delta model. This methodology removes much of the subjectivity from the analysis

of deltas, making it possible to create automatic tools that perform quality analysis

on the deltas without human supervision. In the second experiment, instead, the

universal delta model is used to express the differences between various snapshots

of an OWL ontology. The produced deltas are used to detect the various phases of

development the ontology has gone through, for example when documentation has

been added to it or when the main focus of development has been the integration

of other external ontologies.

The two experiments highlighted that the use or the conversion of deltas to the

universal delta model does not reduce the expressivity of the existing deltas. On

the contrary, the model allows the creation of more meaningful deltas and makes

it easier to write tools that perform significant analysis on the deltas.

The universal delta model presented in this thesis acts as the formal groundwork

upon which algorithm can be based and libraries can be implemented. It removes

the need to recreate a new delta model and terminology whenever a new algorithm

is devised. It also alleviates the problems that toolmakers have when adapting their

software to new diff algorithms. The universal delta model forms a solid foundation

for future research in the field of difference algorithms.

Bibliography

[1] Carlo Allocca. Automatic identification of ontology versions using ma-

chine learning techniques. In Grigoris Antoniou, Marko Grobelnik, Elena

Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leen-

heer, and Jeff Z. Pan, editors, The Semantic Web: Research and Applications

- 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete,

Greece, May 29-June 2, 2011, Proceedings, Part I, volume 6643 of Lecture

Notes in Computer Science, pages 352–366. Springer, 2011.

[2] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. A dif-

ferencing algorithm for object-oriented programs. In 19th IEEE International

Conference on Automated Software Engineering (ASE 2004), 20-25 September

2004, Linz, Austria, pages 2–13. IEEE Computer Society, 2004.

[3] Gioele Barabucci, Luca Cervone, Angelo Di Iorio, Monica Palmirani, Silvio

Peroni, and Fabio Vitali. Managing semantics in XML vocabularies: an ex-

perience in the legal and legislative domain. In Proceedings of Balisage: The

Markup Conference 2010, volume 5 of Balisage Series on Markup Technologies,

2010.

[4] Gioele Barabucci, Luca Cervone, Monica Palmirani, Silvio Peroni, and Fabio

Vitali. Multi-layer markup and ontological structures in Akoma Ntoso. In

Pompeu Casanovas, Ugo Pagallo, Giovanni Sartor, and Gianmaria Ajani,

editors, AI Approaches to the Complexity of Legal Systems. Complex Sys-

tems, the Semantic Web, Ontologies, Argumentation, and Dialogue - Interna-

tional Workshops AICOL-I/IVR-XXIV Beijing, China, September 19, 2009

and AICOL-II/JURIX 2009, Rotterdam,The Netherlands, December 16, 2009

Revised Selected Papers, volume 6237 of Lecture Notes in Computer Science,

pages 133–149. Springer, 2010.

[5] Gioele Barabucci, Paolo Ciancarini, Angelo Di Iorio, and Fabio Vitali. Measur-

ing quality of diff algorithms: quantitative metrics. Submitted for publication

in IEEE Transactions on Knowledge and Data Engineering.

125

126 BIBLIOGRAPHY

[6] Gioele Barabucci, Monica Palmirani, Fabio Vitali, and Luca Cervone. Long-

term preservation of legal resources. In Kim Normann Andersen, Enrico

Francesconi, Åke Grönlund, and Tom M. van Engers, editors, Electronic Gov-

ernment and the Information Systems Perspective - Second International Con-

ference, EGOVIS 2011, Toulouse, France, August 29 - September 2, 2011.

Proceedings, volume 6866 of Lecture Notes in Computer Science, pages 78–93.

Springer, 2011.

[7] Gioele Barabucci, Silvio Peroni, Francesco Poggi, and Fabio Vitali. Embed-

ding semantic annotations within texts: the FRETTA approach. In Sascha

Ossowski and Paola Lecca, editors, Proceedings of the ACM Symposium on

Applied Computing, SAC 2012, Riva, Trento, Italy, March 26-30, 2012, pages

658–663. ACM, 2012.

[8] Gioele Barabucci and Fabio Vitali. XDTD as a simple validation language for

XML-based legal documents. In Guido Governatori, editor, Legal Knowledge

and Information Systems - JURIX 2009: The Twenty-Second Annual Confer-

ence on Legal Knowledge and Information Systems, Rotterdam, The Nether-

lands, 16-18 December 2009, volume 205 of Frontiers in Artificial Intelligence

and Applications, pages 1–10. IOS Press, 2009.

[9] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal Ques-

tion Metric approach. In Encyclopedia of Software Engineering. Wiley, 1994.

[10] Ronald J. Brachman and Hector J. Levesque. Knowledge Representation and

Reasoning. Morgan Kaufmann, 2004.

[11] Randal Burns, Al C. Burns, and Darrell D. E. Long. A linear time, constant

space differencing algorithm. In Performance, Computing, and Communica-

tions Conference, 1997, pages 429–436. IEEE International, feb 1997.

[12] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and James

Rice. Okbc: A programmatic foundation for knowledge base interoperability.

In Jack Mostow and Chuck Rich, editors, Proceedings of the Fifteenth Na-

tional Conference on Artificial Intelligence and Tenth Innovative Applications

of Artificial Intelligence Conference, AAAI 98, IAAI 98, July 26-30, 1998,

Madison, Wisconsin, USA, pages 600–607. AAAI Press / The MIT Press,

1998.

[13] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jen-

nifer Widom. Change detection in hierarchically structured information. In

H. V. Jagadish and Inderpal Singh Mumick, editors, Proceedings of the 1996

BIBLIOGRAPHY 127

ACM SIGMOD International Conference on Management of Data, Montreal,

Quebec, Canada, June 4-6, 1996, pages 493–504. ACM, 1996.

[14] S. V. Coox. Axiomatization of the evolution of XML database schema. Pro-

gramming and Computer Software, 29(3):140–146, 2003.

[15] Grégory Cóbena, Serge Abiteboul, and Amélie Marian. Detecting changes in

XML documents. In Rakesh Agrawal and Klaus R. Dittrich, editors, Pro-

ceedings of the 18th International Conference on Data Engineering, San Jose,

CA, USA, February 26 - March 1, 2002, pages 41–52. IEEE Computer Society,

2002.

[16] Mathieu d’Aquin and Enrico Motta. Watson, more than a semantic web search

engine. Semantic Web, 2(1):55–63, 2011.

[17] Angelo Di Iorio, Michele Schirinzi, Fabio Vitali, and Carlo Marchetti. A nat-

ural and multi-layered approach to detect changes in tree-based textual docu-

ments. In Joaquim Filipe and José Cordeiro, editors, Enterprise Information

Systems, 11th International Conference, ICEIS 2009, Milan, Italy, May 6-

10, 2009. Proceedings, volume 24 of Lecture Notes in Business Information

Processing, pages 90–101. Springer, 2009.

[18] Adam Duley, Chris Spandikow, and Miryung Kim. Vdiff: a program differenc-

ing algorithm for verilog hardware description language. Autom. Softw. Eng.,

19(4):459–490, 2012.

[19] Mohamed El-Attar. UseCaseDiff: an algorithm for differencing use case mod-

els. In 9th International Conference on Software Engineering Research, Man-

agement and Applications, SERA 2011, Baltimore, MD, USA, August 10-12,

2011, pages 148–152. IEEE Computer Society, 2011.

[20] Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Ecco: a hybrid diff

tool for OWL 2 ontologies. In Pavel Klinov and Matthew Horridge, editors,

Proceedings of OWL: Experiences and Directions Workshop 2012, Heraklion,

Crete, Greece, May 27-28, 2012, volume 849 of CEUR Workshop Proceedings.

CEUR-WS.org, 2012.

[21] Michael Hartung, Toralf Kirsten, Anika Gross, and Erhard Rahm. Onex:

Exploring changes in life science ontologies. BMC Bioinformatics, 10, 2009.

[22] Susan Horwitz. Identifying the semantic and textual differences between two

versions of a program. In Bernard N. Fischer, editor, Proceedings of the ACM

SIGPLAN’90 Conference on Programming Language Design and Implementa-

tion (PLDI), White Plains, New York, USA, June 20-22, 1990, pages 234–245.

ACM, 1990.

128 BIBLIOGRAPHY

[23] J. W. Hunt and M.D. McIllroy. An algorithm for differential file comparison.

Technical Report 41, AT&T Bell Laboratories Inc., 1976.

[24] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing

longest subsequences. Communications of the ACM, 20(5):350–353, 1977.

[25] IEEE Task P754. IEEE 754-2008, Standard for Floating-Point Arithmetic.

IEEE, New York, NY, USA, August 2008.

[26] Daniel Jackson and David A. Ladd. Semantic diff: a tool for summarizing

the effects of modifications. In Hausi A. Müller and Mari Georges, editors,

Proceedings of the International Conference on Software Maintenance, ICSM

1994, Victoria, BC, Canada, September 1994, pages 243–252. IEEE Computer

Society, 1994.

[27] Jaakko Kangasharju and Tancred Lindholm. A sequence-based type-aware

interface for XML processing. In M. H. Hamza, editor, Internet and Multi-

media Systems and Applications, EuroIMSA 2005, Grindelwald, Switzerland,

February 21-23, 2005, pages 83–88. IASTED/ACTA Press, 2005.

[28] Michel Klein. Change Management for Distributed Ontologies. PhD thesis,

Vrije Universiteit Amsterdam, August 2004.

[29] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Logical difference

and module extraction with cex and mex. In Franz Baader, Carsten Lutz,

and Boris Motik, editors, Proceedings of the 21st International Workshop on

Description Logics (DL2008), Dresden, Germany, May 13-16, 2008, volume

353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[30] J. Laski and W. Szermer. Identification of program modifications and its

applications in software maintenance. In Software Maintenance, 1992. Pro-

ceerdings., Conference on, pages 282 –290, nov 1992.

[31] Erwin Leonardi and Sourav S. Bhowmick. Xandy: A scalable change detection

technique for ordered XML documents using relational databases. Data &

Knowledge Engineering, 59(2):476–507, 2006.

[32] Tancred Lindholm, Jaakko Kangasharju, and Sasu Tarkoma. Fast and simple

XML tree differencing by sequence alignment. In Dick C. A. Bulterman and

David F. Brailsford, editors, Proceedings of the 2006 ACM Symposium on

Document Engineering, Amsterdam, The Netherlands, October 10-13, 2006,

pages 75–84. ACM, 2006.

[33] Webb Miller and Eugene W. Myers. A file comparison program. Softw., Pract.

Exper., 15(11):1025–1040, 1985.

BIBLIOGRAPHY 129

[34] Gilles Muller, Yoann Padioleau, Julia L. Lawall, and René Rydhof Hansen.

Semantic patches considered helpful. Operating Systems Review, 40(3):90–92,

2006.

[35] Eugene W. Myers. An O(ND) difference algorithm and its variations. Algo-

rithmica, 1(2):251–266, 1986.

[36] Narao Nakatsu, Yahiko Kambayashi, and Shuzo Yajima. A longest common

subsequence algorithm suitable for similar text strings. Acta Informatica,

18:171–179, 1982.

[37] Natalya Fridman Noy and Mark A. Musen. PROMPTDIFF: a fixed-point

algorithm for comparing ontology versions. In Rina Dechter and Richard S.

Sutton, editors, Proceedings of the Eighteenth National Conference on Arti-

ficial Intelligence and Fourteenth Conference on Innovative Applications of

Artificial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada,

pages 744–750. AAAI Press / The MIT Press, 2002.

[38] Vicky Papavassiliou, Giorgos Flouris, Irini Fundulaki, Dimitris Kotzinos, and

Vassilis Christophides. On detecting high-level changes in RDF/S KBs. In

Abraham Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana

Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, editors, The Se-

mantic Web - ISWC 2009, 8th International Semantic Web Conference, ISWC

2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings, volume 5823 of

Lecture Notes in Computer Science, pages 473–488. Springer, 2009.

[39] Peter Plessers, Olga De Troyer, and Sven Casteleyn. Understanding ontology

evolution: A change detection approach. Journal of Web Semantics, 5(1):39–

49, 2007.

[40] Shruti Raghavan, Rosanne Rohana, David Leon, Andy Podgurski, and Vinay

Augustine. Dex: a semantic-graph differencing tool for studying changes in

large code bases. In 20th International Conference on Software Maintenance

(ICSM 2004), 11-17 September 2004, Chicago, IL, USA, pages 188–197. IEEE

Computer Society, 2004.

[41] Sebastian Rönnau and Uwe M. Borghoff. Versioning XML-based office docu-

ments. Multimedia Tools and Applications, 43(3):253–274, 2009.

[42] Sebastian Rönnau, Christian Pauli, and Uwe M. Borghoff. Merging changes

in XML documents using reliable context fingerprints. In Maria da Graça

Campos Pimentel, Dick C. A. Bulterman, and Luiz Fernando Gomes Soares,

editors, Proceedings of the 2008 ACM Symposium on Document Engineering,

Sao Paulo, Brazil, September 16-19, 2008, pages 52–61, 2008.

130 BIBLIOGRAPHY

[43] Sebastian Rönnau, Geraint Philipp, and Uwe M. Borghoff. Efficient change

control of XML documents. In Uwe M. Borghoff and Boris Chidlovskii, editors,

Proceedings of the 2009 ACM Symposium on Document Engineering, Munich,

Germany, September 16-18, 2009, pages 3–12. ACM, 2009.

[44] Jason Stanek, Suraj Kothari, and Kang Gui. Method of comparing graph

differencing algorithms for software differencing. In 2008 IEEE International

Conference on Electro/Information Technology, EIT 2008, held at Iowa State

University, Ames, Iowa, USA, May 18-20, 2008, pages 482–487. IEEE Com-

puter Society, 2008.

[45] Sathya Sundaram and Sanjay K. Madria. A change detection system for un-

ordered XML data using a relational model. Data & Knowledge Engineering,

72:257–284, 2012.

[46] Jean-Yves Vion-Dury. Diffing, patching and merging XML documents: toward

a generic calculus of editing deltas. In Apostolos Antonacopoulos, Michael J.

Gormish, and Rolf Ingold, editors, Proceedings of the 2010 ACM Symposium

on Document Engineering, Manchester, United Kingdom, September 21-24,

2010, pages 191–194. ACM, 2010.

[47] Jean-Yves Vion-Dury. A generic calculus of XML editing deltas. In Matthew

R. B. Hardy and Frank Wm. Tompa, editors, Proceedings of the 2011 ACM

Symposium on Document Engineering, Mountain View, CA, USA, September

19-22, 2011, pages 113–120. ACM, 2011.

[48] Yuan Wang, David J. DeWitt, and Jin yi Cai. X-Diff: an effective change

detection algorithm for XML documents. In Umeshwar Dayal, Krithi Ramam-

ritham, and T. M. Vijayaraman, editors, Proceedings of the 19th International

Conference on Data Engineering, March 5-8, 2003, Bangalore, India, pages

519–530. IEEE Computer Society, 2003.

[49] Richard Saul Wurman. Information architects. Graphis Inc, 1997.

[50] Dimitris Zeginis, Yannis Tzitzikas, and Vassilis Christophides. On the foun-

dations of computing deltas between RDF models. In Karl Aberer, Key-Sun

Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B.

Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi,

Guus Schreiber, and Philippe Cudré-Mauroux, editors, The Semantic Web,

6th International Semantic Web Conference, 2nd Asian Semantic Web Con-

ference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007,

volume 4825 of Lecture Notes in Computer Science, pages 637–651. Springer,

2007.

BIBLIOGRAPHY 131

[51] Dimitris Zeginis, Yannis Tzitzikas, and Vassilis Christophides. On computing

deltas of RDF/S knowledge bases. ACM Transactions on the Web, 5(3):14,

2011.

[52] Kaizhong Zhang, Jason Tsong-Li Wang, and Dennis Shasha. On the editing

distance between undirected acyclic graphs and related problems. In Proceed-

ings of the 6th Annual Symposium on Combinatorial Pattern Matching, pages

395–407, 1995.

[53] Xiangyu Zhang and Rajiv Gupta. Matching execution histories of program

versions. In Michel Wermelinger and Harald Gall, editors, Proceedings of the

10th European Software Engineering Conference held jointly with 13th ACM

SIGSOFT International Symposium on Foundations of Software Engineering,

2005, Lisbon, Portugal, September 5-9, 2005, pages 197–206. ACM, 2005.

132 BIBLIOGRAPHY

Sitography

[54] OntoVCS. http://code.google.com/p/ontovcs/. accessed Nov 26,

2012.

[55] Tim Berners-Lee and Dan Connolly. Delta: an ontology for the distribution of

differences between RDF graphs. http://www.w3.org/DesignIssues/

Diff, 2009. accessed Nov 26, 2012.

[56] John Boyer and Glenn Marcy. Canonical XML Version 1.1. Rec-

ommendation, W3C, May 2008. http://www.w3.org/TR/2008/

REC-xml-c14n11-20080502/. Latest version available at http://www.

w3.org/TR/xml-c14n11.

[57] Bram Cohen. Patience diff advantages. http://bramcohen.

livejournal.com/73318.html, 2010. accessed Nov 26, 2012.

[58] Mark-Jason Dominus. Algorithm::diff: Longest common subsequence algo-

rithm. http://perl.plover.com/diff/Diff.pm, 1999. accessed Nov

26, 2012.

[59] W3C OWL Working Group. OWL 2 Web Ontology Language Document

Overview. Recommendation, W3C, November 2009. http://www.w3.org/

TR/2009/REC-owl2-overview-20091027/. Latest version available at

http://www.w3.org/TR/owl2-overview/.

[60] Ramanathan V. Guha and Dan Brickley. RDF Vocabulary Description Lan-

guage 1.0: RDF Schema. Recommendation, W3C, February 2004. http:

//www.w3.org/TR/2004/REC-rdf-schema-20040210/. Latest version

available at http://www.w3.org/TR/rdf-schema.

[61] Arnaud Le Hors, David Raggett, and Ian Jacobs. HTML 4.01 Spec-

ification. Technical report, 1999. http://www.w3.org/TR/1999/

REC-html401-19991224. Latest version available at http://www.w3.

org/TR/html401.

133

http://code.google.com/p/ontovcs/
http://www.w3.org/DesignIssues/Diff
http://www.w3.org/DesignIssues/Diff
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/
http://www.w3.org/TR/xml-c14n11
http://www.w3.org/TR/xml-c14n11
http://bramcohen.livejournal.com/73318.html
http://bramcohen.livejournal.com/73318.html
http://perl.plover.com/diff/Diff.pm
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/html401
http://www.w3.org/TR/html401

134 BIBLIOGRAPHY

[62] Ned Konz. Algorithm::diff: Compute intelligent differences between two files

/ lists. http://search.cpan.org/˜nedkonz/Algorithm-Diff/lib/

Algorithm/Diff.pm, 2002. accessed Nov 26, 2012.

[63] Peter F. Patel-Schneider, Boris Motik, and Bernardo Cuenca Grau.

OWL 2 Web Ontology Language Direct Semantics. Recommen-

dation, W3C, November 2009. http://www.w3.org/TR/2009/

REC-owl2-direct-semantics-20091027/. Latest version available at

http://www.w3.org/TR/owl2-direct-semantics/.

[64] Colin Percival. Naive differences of executable code. http://www.

daemonology.net/bsdiff/, accessed Nov 26, 2012, 2003.

[65] SyncRO Soft SRL. oXygen XML diff & merge. http://www.oxygenxml.

com/xml_editor/xml_diff_and_merge.html, 2012. accessed Nov 26,

2012.

[66] The GNU Diffutils authors. Comparing and Merging Files, chapter Detailed

Description of Context Format. 2012. https://www.gnu.org/software/

diffutils/manual/html_node/Detailed-Context.html, accessed

Nov 26, 2012.

[67] The GNU Diffutils authors. Comparing and Merging Files, chapter Detailed

Description of Unified Format. 2012. https://www.gnu.org/software/

diffutils/manual/html_node/Detailed-Unified.html, accessed

Nov 26, 2012.

[68] Norman Walsh. The DocBook schema version 5.0. Technical report, OA-

SIS, 2008. http://docbook.org/specs/docbook-5.0-spec-cd-03.

html.

http://search.cpan.org/~nedkonz/Algorithm-Diff/lib/Algorithm/Diff.pm
http://search.cpan.org/~nedkonz/Algorithm-Diff/lib/Algorithm/Diff.pm
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.daemonology.net/bsdiff/
http://www.daemonology.net/bsdiff/
http://www.oxygenxml.com/xml_editor/xml_diff_and_merge.html
http://www.oxygenxml.com/xml_editor/xml_diff_and_merge.html
https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Context.html
https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Context.html
https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html
https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html
http://docbook.org/specs/docbook-5.0-spec-cd-03.html
http://docbook.org/specs/docbook-5.0-spec-cd-03.html

