
M O N I TO R I N G C O M P L E X P R O C E S S E S
TO V E R I F Y S Y S T E M C O N F O R M A N C E

A D E C L A R AT I V E R U L E - B A S E D F R A M E W O R K

stefano bragaglia

march 2013





A L M A M AT E R S T U D I O R U M – U N I V E R S I TÀ D I B O LO G N A
deis – department of electronics, computer science and systems

Ph.D. Course in
electronics, computer science and telecommunications

Cycle X X V

Examination Sector 0 9 / H 1
Scientific Disciplinary Sector I N G - I N F / 0 5

M O N I TO R I N G C O M P L E X P R O C E S S E S
TO V E R I F Y S Y S T E M C O N F O R M A N C E

a declarative rule-based framework

Candidate: Supervisor:
stefano bragaglia full prof. paola mello

Advisor:
dr. federico chesani
Ph.D. Course Coordinator:

full prof. alessandro vanelli coralli

Final Examination Year 2 0 1 3



Stefano Bragaglia: Monitoring Complex Processes to Verify System Con-
formance, A Declarative Rule-based Framework © March 2013.

website:
http://ai.unibo.it/People/StefanoBragaglia

e-mail:
stefano.bragaglia@unibo.it

http://ai.unibo.it/People/StefanoBragaglia
mailto:stefano.bragaglia@unibo.it


«Success consists of going from failure to failure without loss
of enthusiasm.»

— Winston Churchill
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di ispirazione. Li ringrazio per avermi dato disciplina e supporto in-
condizionato per affrontare qualsiasi compito con entusiasmo e de-
terminazione. Senza il loro affetto e sostegno, non mi sarebbe stato
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S O M M A R I O

Negli ultimi 60 anni, i computer e i programmi hanno favorito
incredibili avanzamenti in ogni campo. Oggigiorno, purtroppo,

questi sistemi sono così complicati che è difficile – se non impossibile
– capire se soddisfano qualche requisito o mostrano un comporta-
mento o una proprietà desiderati. Questa tesi introduce un approccio
a posteriori Just-In-Time (JIT) per effettuare il controllo di conformità
ed identificare appena possibile ogni deviazione dal comportamento
desiderato, ed eventualmente applicare qualche correzione.

Il framework dichiarativo che implementa il nostro approccio – in-
teramente sviluppato su una promettente piattaforma open source
di Production Rule System (PRS) chiamata Drools – si compone di
tre elementi: 1. un modulo per il monitoraggio basato su una nuova
implementazione efficiente di Event Calculus (EC), 2. un modulo gen-
erale per il ragionamento ibrido (il primo del suo genere) che sup-
porta ragionamento temporale, semantico, fuzzy e a regole, 3. un
formalismo logico basato sul concetto di aspettativa che introduce
le Event-Condition-Expectation rules (ECE-rules) per valutare la con-
formità globale di un sistema. Il framework è anche accompagnato
da un modulo opzionale che fornisce Probabilistic Inductive Logic
Programming (PILP).

Spostando il controllo di conformità da dopo l’esecuzione ad ap-
pena in tempo, questo approccio combina i vantaggi di molti metodi
a posteriori e a priori proposti in letteratura. Si noti che, se le azioni
correttive sono fornite esplicitamente, la natura reattiva di questo
metodo consente di conciliare le deviazioni dal comportamento desi-
derato non appena questo viene rilevato. In conclusione, la metodolo-
gia proposta introduce alcuni avanzamenti per risolvere il problema
del controllo di conformità, contribuendo a colmare il divario tra
l’uomo e la tecnologia, sempre più complessa.
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S U M M A R Y

Over the last 60 years, computers and software have favoured in-
credible advancements in every field. Nowadays, however, these

systems are so complicated that it is difficult – if not challenging – to
understand whether they meet some requirement or are able to show
some desired behaviour or property. This dissertation introduces a
Just-In-Time (JIT) a posteriori approach to perform the conformance
check to identify any deviation from the desired behaviour as soon
as possible, and possibly apply some corrections.

The declarative framework that implements our approach – entirely
developed on the promising open source forward-chaining Production
Rule System (PRS) named Drools – consists of three components: 1.
a monitoring module based on a novel, efficient implementation of
Event Calculus (EC), 2. a general purpose hybrid reasoning module
(the first of its genre) merging temporal, semantic, fuzzy and rule-
based reasoning, 3. a logic formalism based on the concept of expec-
tations introducing Event-Condition-Expectation rules (ECE-rules) to
assess the global conformance of a system. The framework is also
accompanied by an optional module that provides Probabilistic In-
ductive Logic Programming (PILP).

By shifting the conformance check from after execution to just in
time, this approach combines the advantages of many a posteriori
and a priori methods proposed in literature. Quite remarkably, if
the corrective actions are explicitly given, the reactive nature of this
methodology allows to reconcile any deviations from the desired be-
haviour as soon as it is detected. In conclusion, the proposed method-
ology brings some advancements to solve the problem of the con-
formance checking, helping to fill the gap between humans and the
increasingly complex technology.
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A B S T R A C T

Over the last 60 years, computers and software have favoured in-
credible advancements in every field. Computerised systems

have allowed to provide answers to increasingly complex problems in
less and less time. Nowadays, however, these systems are so compli-
cated that it is difficult – if not challenging – to understand whether
they meet some requirement or are able to show some desired be-
haviour or property. Therefore, the problem of verifying whether a
system conforms to a set of requirements is very common.

In literature several solutions already exists, however modern sys- Solutions present in
Literature and their
limitations

tems are distributed, heterogeneous and hybrid. It means that com-
ponents may have distinct natures, making it difficult to understand
whether a property is maintained across the whole system. They can
be localised elsewhere or be provided as black boxes so that check-
ing whether they are operating properly could be rather complicated.
They can also be almost freely assembled together or replaced at run
time, thus defeating the ability to verify anything in advance. On one
hand, it follows that sometimes a priori methods can not be applied
simply because, for the above reasons, some critical information on
the system is missing before it is started. A posteriori methods, on
the other hand, are sometimes inadequate because they asses the con-
formance after execution, when some valuable resources may have
been already depleted by an undesired behaviour that is emerging
on the system. Last but not least, modern systems start to consider
the users as integral part of the workflow by delegating actions to
them and relying on their feedback. This introduces a new level of
complexity to the problem since humans deal with information with
a precision and a detail level which is somehow different from those
of computers.

This thesis aims to perform a conformance check that still qualifies The proposed
approachas an a posteriori approach, but in a way that allows to identify the de-

viations from the desired behaviour of the system as early as possible.
The approach follows the philosophy of JIT, widely used in industries
and already borrowed by computer science (see JIT compilers): rather
than deferring the whole check after execution, the analysis is per-
formed step-by-step as soon as something happens. This still allows
to identify all the deviations, but it also gives a chance to intervene
almost in time and possibly spare precious resources. Such a goal
is achieved by employing a monitoring tool that assists the system
during execution and a Decision Support System (DSS) that observes
any complex process that is running on the system to produce a con-
formance score and possibly apply some corrections or rewards. The
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resulting framework is the first contribution of this thesis: the moni-
tor consists of an efficient and unobtrusive novel implementation of
the EC based on forward rules, while the DSS revolves around expecta-
tions – a concept introduced to define the desired behaviour of a sys-
tem – and uses ECE-rules (an adaptation of Event-Condition-Action
rules (ECA-rules) towards expectations) to reason about them.

Much emphasis has also been given to the expressive power of the
framework to ease the tasks where human interaction is involved.
Humans, for example, have a different understanding of time than
computers: a deadline a few hours away is still considered roughly
met, even if it was missed by a couple of minutes. Generally speaking,
they tend to express qualitative opinions on things, rather than pre-
cisely quantify their extension. Humans are also naturally inclined
to use specific terms in place of more general ones and still apply
their thinking to the latter. The second contribution of the thesis is a
general-purpose reasoning module that we have specifically adopted
to improve the reasoning power of the conformance framework. This
module which is based again on Reactive Rules (RR) to favour its
coupling with the rest of the framework, takes advantage of (some
concepts of) Fuzzy Logic (FL), Temporal Logic (TL) and Description
Logic (DL) to respectively deal with imprecise definitions, to take care
of time and to correctly subsume concepts. To the best of our knowl-
edge, no other tool is available with a similar potential.

By shifting the conformance check from after execution to just inImpact of the method

time, this approach combines the advantages identified in literature
of a posteriori methods by properly addressing all the deviations sur-
facing on the system with the predisposition that is typical of a pri-
ori methods to possibly prevent inappropriate behaviours. One of
the most remarkable consequences arising from the adoption of this
methodology is that it becomes possible to intervene on the domain
by exploiting the reactive nature of the framework as soon as some
change on the system takes place. In the domain of Service-Oriented
Architecture (SOA), for example, the Quality of Service (QOS) could
be imposed whenever the Service Level Agreement (SLA) is about to
be violated if the appropriate corrective actions are available. The
same principle could be exploited to trigger processes of Knowledge
Base Revision (KBR) on the domain, since any violation of an ex-
pected behaviour could be interpreted as the result of a misleading,
imprecise or incorrect implementation of a norm. One thing of no
less importance is the expressive richness of the tool that enables to
deal with interesting socio-technical scenarios such as Computerised
Clinical Guidelines (CCG). In these contexts, in fact, users expect the
computers to understand them and reason with their own modali-
ties, while apparently they have been programmed in a more rational
way to simplify their operation or improve their raw computational
efficiency.
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1 I N T R O D U C T I O N

«There is nothing more difficult to take in hand, more perilous
to conduct or more uncertain in its success than to take the
lead in the introduction of a new order of things.»

— Niccolò Machiavelli
Italian writer and statesman, Florentine patriot,

author of ‘The Prince’, 1469-1527

This year we are celebrating the centenary of life and work of
Alan M. Turing, one of the putative fathers of Artificial Intel-

ligence (AI). In such an occasion, it is natural to look back and see
what scientific results have been achieved since the foundation of this
discipline in 1950 [179]. In this time period, the disciplines that are re-
lated to AI have multiplied and many important research results were
obtained. Thanks to a virtuous loop, the complexity of the problems
and software systems that solve them has grown pairwise with the
technological advances: the more impressive were the results and the
more ambitious were the new challenges to address.

Nowadays software is so complicated that it is difficult to deter-
mine if it complies with the requirements and expectations of both
programmers and final users, even with the help of appropriate au-
tomated tools. This depends on the heterogeneous, distributed, open
nature of their architecture and on the complex, possibly disclosed
or even malicious nature of single components. This issue is so gen-
eralised and widespread to become itself a reference problem that
justifies a new specific discipline. The results of this research field
are particularly important because they can be applied to several do-
mains.

An application field that is often cited in this regard is that of Web Technical domains

Services (WSs) and Service-Oriented Architecture (SOA) in general.
These technologies represented a real revolution, back in the ’70s as
the software was considered as monolithic until that point in com-
puter science history. Today those seminal ideas are still changing
the world if we consider the great interest that Cloud Computing (CC)
is attracting. CC, in fact, still relies on basically the same technolo-
gies but it proposes them in an innovative, and for some aspects,
even more extreme way. WSs become the atoms for huge architec-
tures and services that are highly pervasive, continuous, distributed
and even more heterogeneous – as it considers various possible inter-
action models. The typical SOA’s problems of Quality of Service (QOS)

1
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versus Service Level Agreement (SLA) become more complicated as
they now also include the handling of points of variability, (semi-
automatic) service composition and orchestration. If we consider the
underlying hardware, it also raises problems of load balancing, clus-
tering, service migration both at a level of Platform as a Service (PaaS)
and Infrastructure as a Service (IaaS), in contrast with the former vi-
sion of Software as a Service (SaaS).

The socio-technical domain is another interesting field. This termSocio-technical
domains is used to refer to systems in which both humans and machines are

expected to interact to reach a common goal.
A typical use-case is Computerised Clinical Guidelines (CCG). These

systems aim to perform the same tasks that were once performed
only by humans. They try to assist the humans in their duties by
simplifying, speeding up, double checking the human contribution.
These improvements balance in a way the better understanding that
humans have which allow them to effectively take proper shortcuts,
but they also cut out any biased opinion that they could have. Al-
though the general concept is clear, guidelines are usually considered
as very complicated to handle. They can specify which sequence of
steps to take to reach a goal, possibly allowing some of the steps to
be skipped, moved, added or modified. At other times, they express
more or less precisely the domain thus limiting the degrees of free-
dom of the human actor and expressly specifying which steps must
be avoided at any cost.

It is mandatory to stress the difference between machine-oriented
and human-oriented tasks: in the former case, the performance of the
actor are quite regular and any requirement or expectation about its
behaviour may be precisely quantified and planned in time; in the
latter case, however, this is not true anymore as humans consider
deadlines and quantities in a more gradual, relaxed way. On top of
that, the domain knowledge is sometime only partially explicated,
making the problem even harder. In addition, sometimes the guide-
lines involve more actors with different roles – doctor, patient and
administrative/legal employee, for instance – whose understanding
and judgement on a specific instance may be conflicting. Therefore
the technical part of the system has to consider and reconcile all of
the above aspects.

These considerations also apply to other fields like eTourism, busi-
ness processes or plant semi-automation just to name a couple of
them, where sometimes the domain constraints and implications are
less critical, but not less important.

In these use-cases, the ultimate goal may vary from the minimi-
sation of costs to the maximisation of profit, from the reduction of
pollutant to favouring some positive side effects. No matter the ob-
jective, these systems must also ensure some results for the humans
that are taking part into the supplying or fruition of the service as the
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satisfaction of the eTourism customer or the personal safety of the
workers of a plant.

In case of frequently repeated tasks, the technical part that assists
humans could also analyse the executions to infer relations between
tasks and properly rephrase or rearrange the sequence of steps of
a task to improve it. In a plant or hospital, for example, long shifts
may imply a degradation of the quality of the final product or ser-
vice as humans get tired so the machine could suggest to perform
first the most delicate steps when humans are still focused and well
motivated.

All the problems that we have sketched in the above paragraphs re- Complex processes

quire the possibly reiterated execution of a sequence of steps by one
or more actors with different roles to produce a concerted effort in a
specific direction. As we have seen, the forms and methods of alter-
ation that are both admissible or undesired in the sequence are many.
For this reason, we decided to call complex processes these executions
of tasks. For a complete and detailed definition of complex processes,
we refer to the work by Urovi and Stathis [180].

In this dissertation we propose an improvement to one of the pos-
sible approaches that tries to determine whether a complex process
is carried out in a satisfactory manner. This method qualifies as a pos-
teriori, but it rather aims to provide its contribution Just-In-Time (JIT),
as long as the process evolves. This kind of methods is composed of
two main components: the first one is a monitoring module which
observes what is happening on the underlying domain to figure out
which is its current state, the second is a comparison module in which
the current state is confronted with the desired outcome to determine
whether the complex process is progressing nicely.

This issue has already been addressed in literature and several so- Solutions present in
Literaturelutions have already been proposed. They can be grouped into two

main categories. A first group of solutions proposes to perform an a
priori static analysis of the systems under investigation to determine
if they were built in a way to meet some specific rules, paradigms or
standards. This approach is typically named compliance checking. The
solutions of the second group, instead, are designed to analyse a pos-
teriori the execution log of the systems being verified to state if their
manifested behaviour had fulfilled some specific rules, paradigms or
standards. We call this approach conformance checking.

Many of them already tackle the problem in a rigorous and precise Our own view

way, and few are already exploring the most promising direction to
take. Our contribution, instead, focuses on flexibility and expressiv-
ity. We have seen, on one hand, that socio-technical systems require
a more sophisticated semantics to cope with the processes. These sys-
tems, in fact, must not only be able to handle both machine and hu-
man tasks, but also to adapt to any specific use-cases where the per-
mitted amount of relaxation and graduality varies. In addition, we
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Figure 1.1: Pyramid of process correctness, as devised in [92].

strive to give the domain modellers an effective tool to represent the
problem and tune the sensitivity of the method to the domain needs.

The remainder of this introductory Chapter is organised as follows.
We first introduce the idea of process correctness and then we provide
some terminology for the domain. In the following, we review the
state-of-the-art approaches that are being researched in the literature,
organising them in cross-organisational processes, process flexibility
and business process compliance works. The concluding part of the
Chapter is devoted to present our approach in more detail, taking
special care in presenting what are the main contributions of this
work.

1.1 process correctness

As suggested by Knuplesch, Reichert, Mangler, Rinderle-Ma, and Fd-
hila in [92] for Business Process Modelling (BPM), the correctness of
complex processes is assessed when three conditions are met. These
conditions are layers that build one on top of each other, forming a
pyramidal structure as in Figure 1.1. The shape of this structure is jus-
tified by the fact that the conditions of each level act as prerequisite
for the following level. These levels of correctness – namely syntac-
tical correctness, behavioural correctness and semantic correctness – are
discussed below.

syntactical correctness This layer refers to the correct usageSyntactical
Correctness and composition of the items of the underlying meta-model. Exam-

ples of syntactical constraints include the existence of start and end
events, as well as the proper use of the possible kinds of edges such



1.2 domain terminology 5

as the control flow edges that may only connect flow elements like
tasks, gateways and events, or data flow edges that connect tasks with
data objects. As pointed out in the opening of this section, the syn-
tactical correctness of a process is a prerequisite for the behavioural
correctness, since the behaviour of a syntactically incorrect model is
not defined.

behavioural correctness This layer requires a process model Behavioural
Correctnessto be executable therefore it involves properties like the absence of

deadlocks and livelocks. Moreover it depends upon the proper flow
of data: data objects, for instance, must be written first before they
can be read. With respect to the (dynamic) process changes, the state
and data consistency must be preserved: an instance of a running
process must not incur in any deadlock, lifelock, or data-flow error
when it dynamically migrates its execution to a new version of the
process model. In the context of cross-organisational processes, the
compatibility between the public processes of the different partners
requires their composition to be a behaviourally correct process. The
conformance requires the private process of a partner to implement
the behaviour of his public process. Also in this case, the behavioural
correctness is prerequisite for the semantic correctness.

semantic correctness This layer requires that a process model Semantic
Correctnesscomplies with any rule that is stemming from regulations, standards

and laws and imposed to the model. The business process compli-
ance, for instance, is an example of semantic correctness. Therefore
each possible execution of a process must not violate any compliance
rule. In case of a set of compliance rules, the consistency of each sin-
gle rule is not enough as their conjunction has to be satisfiable at the
same time. Notice, in fact, that it is possible to model a process that
complies with each rule of the compliance rules set.

1.2 domain terminology

In [52], Depaire et al. introduce a precise formal terminology to un-
ambiguously address the problem. Processes implicitly define an ex-
pected behaviour, however deviations may happens due to both need
for flexibility or incomplete description of the process. From this
standpoint, deviations are not always undesired departures from a
standard behaviour or norm. The identification of these kinds of de-
viation and their organisation in a hierarchy of concepts is every day
increasingly important for conformance checking to help determine to
which extent reality conforms to the designed process model and to
which extent it deviates, cf. as a reference [2, 153, 154, 183, 194].

The term deviation is used to denote a process execution that is Deviations
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Exception! Anomaly!

DEVIATION 

Figure 1.2: A hierarchical view of the several classes of process deviation,
as devised in [52].

somehow not conforming to the normative process model. It is pos-
sible to identify several kinds of deviations that can be collected in a
suitable hierarchy, as shown in Figure 1.2. A first distinction is based
on the deviation’s acceptability. As mentioned, in fact, not every de-
viation is necessarily despicable.

In effect, on one hand we have deviations that are desirable be-Exceptions and
anomalies cause they improve the process by guaranteeing - for instance - the

flexibility that is necessary to react fast and operate efficiently. These
deviations are called exceptions. On the other hand, the unforeseen
deviations from the process model that provoke an undesirable effect
which results detrimental are denoted as anomalies.

exceptions This kind of deviations can be further divided into ex-Explicit and implicit
exceptions plicit exceptions and implicit exceptions (Figure 1.2). The difference be-

tween them is that the former are well known and precisely codified,
while the latter are typically not depicted in the model or described
as rules and in general tentatively adopted. Although the implicit
exceptions typically retain their provisional nature and they rarely
become regular procedures, depending on how much responsive and
dynamic is the system or the organisation, they can of course be pro-
moted to explicit exceptions or even to norms or rules. In both cases,
they bring desirable improvements on the evolving of the process as
they provide mechanics to treat degenerate cases or shortcuts to reach
the goal faster or better. If we consider socio-technical processes 1,
for instance, explicit exceptions are usually well consolidated within
the framing system or organisation: they are often expressed as rule-

1 A socio-technical process is a process that involves some human task, action or feed-
back.
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-bases and they represent best practices to handle specific sub-tasks
within the general guidelines. An employee that asks the permission
to skip a less relevant activity to a supervisor, for instance, is a clear
example of implicit exception that is occasionally allowed to operate
more efficiently and reach a goal quickly.

Notice that the distinction between an explicit exception and a full-
-fledged guideline is typically a rather subjective choice. In general
terms, in fact, it is up to the system or to the organisation itself to
determine what to consider as a norm or as an exception within the
processes. In this regard, an indicator that is often used is frequency
since it could indicate the most probable nature of a path.

anomalies As mentioned above, anomalies are undesirable devia- Operational errors,
errors and fraudstions that can be divided into operational errors and frauds (Figure 1.2).

It is evident that, given their unwanted nature, anomalies are never
depicted in the process models and many efforts are usually made
to avoid them as they are potentially harmful. Operational errors, or
simply errors, typically are the mistakes that happen during a process
execution that are caused by flaws of the underlying information sys-
tem, by the unintentional human misuse or both. In a purely technical
process as a Web service, for example, a programming “bug” could
deviate the flow of execution from the expected behaviour. A simple
misunderstanding perpetrated by a human that is completing a task
within a socio-technical system or an organisation leads to an error
as well. Frauds refer to any deliberate action deceptively performed
by an actor which is purposely executed for personal gain against the
system or the organisation. As the reader may guess, it is the worst
kind of process deviation.

1.3 state of the art

In this section we report the state-of-the-art research works as bril- The domain in
reviewliantly outlined in [92]. The authors have identified three main areas

of interest – cross-organisational processes, process flexibility and business
process compliance – that will be addressed below. These works and
their relationships are summarised in Figure 1.3 on the next page.

1.3.1 Cross-organisational Processes

The modelling of cross-organisational processes have been discussed
for several years now. Widespread standards such as WS-BPEL or
BPEL4WS 2, WS-CDL 3 and RosettaNet 4 are already available, as

2 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

3 http://www.w3.org/2002/ws/chor/edcopies/cdl/cdl.html

4 http://www.rosettanet.org/

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.w3.org/2002/ws/chor/edcopies/cdl/cdl.html
http://www.rosettanet.org/
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Figure 1.3: Summary on the state of the art works on processes, as devised
in [92].

well as powerful modelling frameworks and formalisms like Let’s
dance [198], iBPMN [51] and BPMN 2.0 [11].

Interaction patterns are further identified in [22] where well-defined
patterns for message exchanges between partner processes are de-
scribed. For privacy reasons, the definition of a choreography is usu-
ally restricted to those activities that are relevant for the message
exchanges between the involved partners. In particular, the partners
publish narrowed views on their own private processes [104, 117].

Several top-down approaches have been proposed to determine
whether private processes comply with the corresponding public pro-
cesses starting from a choreography of public ones [50, 120, 182]. In
addition, a set of transformation rules that allows to obtain the pri-
vate process corresponding to a public one thanks to a stepwise en-
richment process that preserves inheritance is included in [185]. These
rules can also be used to evolve the private processes without chang-
ing their public view. Works like the one in [174] enable the opposite
practice to interconnect existing partner processes, for instance, where
a bottom-up approach is defined to check whether processes can in-
teract successfully or not. Furthermore, it proposes a solution that is
suitable for both central and distributed architecture that allows for
both the dynamic matching and the execution of cross-organisational
processes thanks to a shared registry for public processes.
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Finally, the Formal Contract Language independently addresses the
scenario of the modelling of both process choreographies and private
processes, permitting the conformance check between choreographies
and processes [75].

1.3.2 Process Flexibility

Any issue that is related to process flexibility has been debated for
more than a decade [56, 137, 150, 192]. Existing approaches, however,
mainly consider flexibility for processes orchestration like in the case
of those workflows implementing a private process and being exe-
cuted by a single process engine. Pockets of Flexibility [157] and
Worklets [1], for instance, are approaches in which the processes are
executed on the basis of a loosely or partially specified model that
is fully specified only at run-time. In this context, the relevant tech-
niques are called late modelling and late composition of process frag-
ments as well as declarative modelling [134].

The so-called Dynamic Process Adaptation (DPA), in turn, repre- Dynamic Process
Adaptationsents the ability of any implemented process to cope with excep-

tional situations. On the one hand, this includes the handling of ex-
pected exceptions, which can be anticipated and thus be captured
within the process model [138]. On the other hand, it also covers
the handling of non-anticipated exceptions, which are usually ad-
dressed through structural adaptations of single process instances
based on well-defined change patterns (for instance by adding, delet-
ing or moving activities) [189]. A particularly interesting problem is
to ensure the behavioural correctness of a process instance in terms
of state and data consistency [150]. The approaches that are similar to
ADEPT [139] guarantee the behavioural correctness of the modified
process model instead.

Besides that, there are some methods to support the end users Approaches based on
changesin reusing ad-hoc changes [190] and in limiting changes to autho-

rised users [191]. Another central aspect concerns process schema
changes [35, 149, 151] such as the ability of the implemented process
to change when the business process evolves. Congruent problems in
this context affect the handling of the instances of the running pro-
cesses that were created according the obsolete version of the model
but are also required to use the fresh specification from that point
on [35, 151]. Notice that the issue of behavioural correctness is ra-
ther critical as it is testified by the generally huge number of active
instances that are affected by a change in a given process. The trace-
ability of changes and the mining of dynamic processes are relevant
issues as well. They are closely related to the evolution of processes.
Both issues are addressed in a few existing frameworks [38, 79].

There are only a few approaches that handle the changes of dis- Changing processes
and choreographiestributed processes and choreographies. The rationale behind [136],
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for example, is that partitioned workflows can be changed in a con-
trolled way. In [133], service changes in the context of choreographies
are distinguished in shallow and deep. On one hand, the effects of
shallow changes like changes in the services version, interface or op-
erations are restricted to the single service. On the other hand, deep
changes have cascading effects that are disseminated in the whole
choreography. Unfortunately, no approach for a comprehensive solu-
tion is provided.

1.3.3 Business Process Compliance

In many domains, the execution of processes is subject to compli-
ance rules and restrictions that stem from laws, regulations, or guide-
lines such as the Basel or Sarbanes-Oxley acts. The lifecycle phase inLogic based

approaches which the compliance check is performed and a strategy applied is
the element that discerns the existing approaches that allow ensur-
ing compliance of business processes with imposed compliance rules.
In addition, several other paradigms and formalisms define process
models and compliance rules [58]. The compliance rules are often con-
sidered as restrictions to the extent in which process activities may
be executed. In this context, there are a few formalisations for compli-
ance rules in temporal logic, namely Linear Temporal Logic (LTL) [16]
and Computational Tree Logic (CTL) [69]. Other formalisations empha-
sise the modalities of compliance rules by means of Deontic Logic
(obligations and permissions) [4, 71]. Since these approaches are ra-
ther complicated, a pattern-based method is addressed to encapsulate
logic [57]. Some graphical notation to model compliance rules also ex-
ists [16, 105, 114]. The integration of compliance rules throughout the
lifecycle of processes is discussed in [91, 113, 115].

The verification of whether process models fulfil compliance rulesState space
approaches at design-time is addressed by several model checking techniques [16,

69, 94, 105]. These approaches depend on the exploration of the state
space of the process models, thus the likely explosion of the states’
search space represents a big obstacle for any practical application.
In order to deal with this issue, graph reduction and sequencing tech-
niques for parallel flows and predicate abstraction methods were pro-
posed [16, 90, 105]. Among these approaches, there are a few that
do not rely only the control-flow perspective: a method that exploits
state-based data objects is suggested in [17], while [90] enables data-
-aware compliance checking for larger data-domains and [94] consid-
ers additional temporal constraints.

A few algorithms were also introduced to allow a more efficientCompliance Rule
Graphs compliance design-time verification than model checking for cycle-

-free processes [75, 193]. The run-time checking and monitoring of
compliance is covered by the following methods. Process models,
for instance, are enriched with a semantic layer of internal controls
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in [130]. Another framework for the compliance monitoring based
on common event standards is presented in [70]. In [27], instead, the
monitoring and enforcement of compliance within process collabora-
tions is outlined. Furthermore, the fine-grained compliance diagnos-
tics is enabled at run-time by means of Compliance Rule Graphs (CRGs)
in [116] and coloured automata in [118].

In order to complement the design-time and run-time compliance Declarative
approacheschecking, some formulas in LTL were used to check process logs for

compliance, proposing backward compliance checking of logs as a
method [184]. Declarative approaches [4, 71, 134] were proposed as
well to ensure compliance in a formal elegant way. In these systems,
processes are described by means of a set of rules, therefore the rules
to impose compliance simply need to be added to the process defini-
tion to ensure the business process compliance.

Notice that the procedure for the conformance checking that is out-
lined in this dissertation is affine to some of the works presented in
this section.

To summarise, there are several approaches that are mixing aspects
of both compliance of cross-organisational processes, as well as their
changes. Only a few of them, however, discuss issues related to flexi-
bility in the contest of business process compliance. Even fewer solu-
tions address the business process compliance of cross-organisational
processes. Ultimately, the interplay of change and compliance in the
context of cross-organisational processes has not been practically ad-
dressed yet, as reported in Figure 1.3 on page 8.

1.4 main contributions of the dissertation

As suggested at the beginning of this Chapter, our approach fits in
well with the conveyed concept of process correctness, placing itself in
the group of Figure 1.3 on page 8 for Business Process Compliance some-
where near the boundary with Cross-Organisational Processes. Also no-
tice that it tries to address all the kinds of process deviations that
have been identified.

Our methodology is based on two main steps and a few other ad- The general picture

ditions to further improve the expressivity and capabilities of the ap-
proach. The two mandatory steps consist in a monitoring framework
to assist the domain and in a tool to measure the distance between
the state of a process and its ideal state. The optional addendum in-
cludes additional evaluators – such as semantic, fuzzy and probabilis-
tic – that bring the adaptability and accuracy of the whole method to
a new level by decoupling the problem of assessing the conformance
of a complex process from the one of measuring how distant it is from
the expected. The two steps that are needed to address this kind of
problem do not present any particular novelty with respect to what is
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already present in literature, however the choice to implement it in a
Production Rule System (PRS) environment is rather fresh since it has
a few implications that still need to be partially investigated. The way
in which the collateral evaluators support the main process, instead,
is rather new as well as the technical choices that we have made to im-
plement them. The following paragraphs describe in details the main
contributions of this dissertation.

In Chapter 2 on page 21 we present the Event Calculus (EC), aMonitoring and
Event Calculus wellknown theoretical framework to reason about actions and their

effects on a domain, which is often adopted to monitor systems. The
Chapter contains an introduction, a brief survey and an analysis of
the most peculiar variants of EC. Since our goal is to implement a JIT
framework for the evaluating the conformance of a complex process
almost in real time, we paid particular attention to efficiency issues
and solutions to overcome them. Then we have introduced a general
architectural pattern to implement the EC in a PRS in a robust way.
We also provided a guideline for users to successfully model any
domain. The last section of the Chapter is devoted to the implementa-
tions: we have identified some property of the EC and we show how
to exploit them to realise efficient declarative forward-chaining imple-
mentations. In particular we introduce first a Boolean version of EC as
well as a generic multi-valued version which interfaces with the Fuzzy
Logic (FL) extension of the adopted PRS thus providing the fuzzy EC.
We have also compared our efficient variants of EC with other similar
proposals that are already available in literature, obtaining compara-
ble results.

The second mandatory step for a tool assessing the conformanceEvent-Condition-
Expectations

rules
of complex processes relates to handling the expected behaviour of
these processes. In Chapter 4 on page 91 we introduce expectations:
the concept that we use to express the desired behaviour of processes
to be compared with their current state.

The Chapter opens with a brief survey on this context and then
it continues presenting the concept of Event-Condition-Expectation
rules (ECE-rules). These rules are forward rules in which we directly
express and manage the concept of expectation of a complex pro-
cess. They conceptually derive from Event-Condition-Action rules
(ECA-rules), that were first conceived to address the idea of active rules.
The central part of the Chapter focuses on the practical details to en-
able such rules in a modern PRS.

In this regard, we present a possible grammar to tackle them and
we outline the architectural choices that are needed to empower them.
We also describe the meta-model behind expectations – showing their
possible states and patterns of evolution – and the additional reactive
rules and optimisations that are needed “under the hood” to manage
them. The last part of the Chapter focuses on the concept of global
conformance.
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Expectations introduce the idea of fulfilment, violation and repaired
violation however they produce a conformance evaluation which can
be considered as dull in many cases. Socio-technical systems, for in-
stance, require at least a more gradual evaluation of deadlines de-
pending on whether they refer to a human or synthetic actor. In this
vein, other finegrained evaluators may be introduced to ease the rea-
soning and more precisely asses the conformance of the complex pro-
cesses.

These evaluators are implemented by the optional steps discussed
above and will be described in the following paragraphs. The results
provided by these evaluators are combined together in the way that
the domain modeller has suggested to provide a global score of con-
formance for execution being monitored of a complex process. The
Chapter also contains an ongoing example that shows how the mod-
elling of a domain improves thanks to the idea of global conformance
with respect to the plain and simple case in which ECE-rules are only
used.

Chapter 3 on page 77 contains the first corollary contribution that Fuzzy semantic
rulesbased hybrid
reasoner

enhances the process of determining the global conformance of pro-
cesses.

In particular, this Chapter is about the implementation of a single
component that is capable of semantic, fuzzy and rule-based reason-
ing at the same time. The presentation starts with a review of the
works and implementations that are currently available. According
to the findings of our search, our component is the first to include all
these kinds of reasoning at the same time but other similar works are
appearing now.

The Chapter encompasses the description of the architecture of a
first prototype which adopted distinct external tools to provide the
several flavours of reasoning. This choice was motivated by the fact
that dedicated tools generally allow deeper reasonings, however, they
typically produce much overhead to keep their single knowledge base
synchronised. The Chapter therefore also includes a description of
tightly-coupled and slightly less expressive variant of the reasoner.
This variant implements a fuzzy version of the Tableaux algorithm
by means of Reactive Rules (RR) to provide the functionalities that
are expected by Description Logic (DL) and Fuzzy Logic (FL). As the
reader will see, this implementation also includes ideas coming from
Mixed-Integer Linear Programming (MILP) and Object-Oriented Pro-
gramming (OOP) to overcome some practical threats.

The Chapter is concluded by an explanation of the meaning be-
hind the augmented expressivity of the tool and a necessary con-
sideration about its usage. This tools, in practice, merges two parts
that operate according to contrasting principles: the Open World As-
sumption (OWA) and Closed World Assumption (CWA). The adoption of
the more ductile fuzzy semantics works around this limitation, how-
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ever specific operators are needed to interpret the results according to
those assumptions, as needed. This is the reason why no tool allows
yet to mix those assumptions in a single reasoning, but component
like our contribution allow to seamlessly manage together reasonings
of different nature.

Finally, the Chapter proposes a long example which should help to
better understand the capabilities of this reasoner.

A second corollary contribution is presented in Appendix B onProbabilistic
graph-based

problems with rules
page 183 and focuses on Probabilistic Inductive Logic Programming
(PILP). In this Appendix we briefly introduce some well known for-
malisms to reason about probability with rules and, in particular,
Logic Programs with Annotated Disjunctions (LPADs). We basically
show how this kind of problems usually consists in a search of paths
within connected graphs or, more properly, in determining the proba-
bility that at least a path exists between two given nodes of the graph.

The remaining part of the Appendix is devoted to some original
declarative implementations realised within a PRS. The first proposal
is named topological approach, as it tries to identify specific topological
patterns in the graph and to replace them with probabilistically equiv-
alent edges. Unfortunately, there are a few topological patterns that
cannot be tackled in this way, so we propose a second method named
flow approach as it resembles some well-known flow algorithms. The
idea behind this approach is to propagate the probability through
the network as the water in the pipes of an aqueduct. Unfortunately
this method fails on graphs with undirected edges which, on the con-
trary, are quite common. We also propose a more classical approach
which first finds all the paths between the chosen terminal nodes,
then build a diagrammatic representation – using Binary Decision
Diagrams (BDDs) for instance – and finally efficiently compute the
equivalent probability by visiting such a diagram. This method is
general and solves any kind of problem, however it uses a strategy
that is more suitable for backward-chaining environments rather than
forward-chaining ones.

Notice that this kind of reasoning is not strictly necessary to com-
pute the global conformance of a complex process, however we be-
lieve that it could bring some interesting contributions. Therefore we
have decided to include it as an Appendix. Also notice that in the
conclusions of this work we have mentioned a few suggestions for fu-
ture works that should address and overcome the current limitations
of this approach.

Appendix A on page 153 contains an introduction to PRSs where weBackground
information on

Production Rule
Systems

describe their semantics and principles of operation. The Appendix
also contains several examples to assist the reader that is not familiar
with this kind of tools in learning Drools – a rather interesting and
widespread open source implementation of a PRS – and get started
with its language. The Appendix includes similar discussions and
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examples to start using Drools’ temporal and fuzzy extensions: Drools
Fusion and Drools Chance. Notice that this Appendix probably does
not contain any theoretical or practical original contribution, however
it has a long series of commented original examples and explanations
that testimony at least a considerable effort for teaching.

Last but not least – before the final Chapter 6 on page 143 in which Applications and
conclusionswe draw and comment some conclusion about the work sketched in

this dissertation and we propose a few ideas to further refine it with
future work – Chapter 5 on page 111 contains a showcase of practical
applications that have been developed using the tools presented in
this thesis.

1.5 on the choice of the development tool

Most of the research carried out within the conformance checking
domain – and virtually any contribution from our research group
– involves logical tools and, specifically, prolog. These softwares are
particularly interesting because they rigorously represent and enforce
the reasoning by means of rules. According to our experience, how-
ever, such aspects are very appraised in academy but not in industry.
This is probably due to to the fact that the latter are more compelled
by compatibility issues with the rest of the existing software infras-
tructure rather than fascinated by the possibility to demonstrate the
soundness of the computation. It follows that, although the business
world is rich of interesting use cases, it is often difficult to involve cor-
porations on research topics like that. Conversely, PRSs originate from
the business sector and are viewed with suspicion by some research
groups as partially unsound applications that could wrongly super-
sede the former tools. Probably, however, the truth lies somewhere
between these two positions.

Despite both systems are based on the concept of rule, they differ
in some implementation details and for their more congenial areas of
usage. prolog, for instance, is a tool that tries to determine whether
it is possible to demonstrate a goal by concatenating the available
rules and facts. PRSs, instead, have a generative behaviour that tries
to determine which rules are activated by the current facts’ status to
assert new facts (possibly with a cascading effect). The differences
between specific technical aspects of these software like backward-
chaining, forward-chaining, backtracking, unification and pattern matching
are discussed in Appendix A.1 on page 153. The point is that PRSs
are typically based on the same tools that are used by corporations
(such as C/C# and Java). These environments host several packages,
libraries and tools which can be easily integrated, thus opening new
possibilities. Consider, for instance, that there are several packages
to provide semantic capabilities to a Java application, while there are
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almost no similar extension in prolog 5 (see Chapter 3 on page 77 for
more details). Moreover, most of the PRSs have embraced OOP and
Complex Event Processing (CEP) allowing a direct interaction with
the corporations’ Document Object Models (DOMs) while responding
to the events that are going on their application domains.

The motivation behind the choice of a PRS as the implementation
platform is to seize the opportunity to acknowledge all the possible
industrial use cases and involve corporations into the sound practice
of conformance checking, while taking advantage of the large amount
of software available to identify new applications and opportunities.

With respect to the choice of the specific PRS, we have considered
several alternatives. At the moment, there are a few commercial plat-
forms and a plethora of implementations for educational purposes or
at hobby level. The latter are so many that it is almost impossible to
list and categorise all of them. Most of them are basic non optimal
implementations of the RETE algorithm based on several program-
ming languages and lacking many characteristics of modern PRSs.
(Those characteristics are introduced and discussed in the following
paragraph.) The reader that wants to evaluate those lesser implemen-
tations can simply find them by querying any search engine with
keywords like “production rule systems”, “rete implementations”,
“forward chaining rule engines” or similar.

Commercial PRSs includes CLIPS 6 (a public domain software tool
for building expert systems, Drools 7 (a Java open source Business
Rule Management System (BRMS)), DTRules 8 (a open source rule en-
gine for Java based on Decision Tables), ILOG rules 9 (IBM’s own
BRMS), JESS 10 (a rule engine for Java that is a superset of CLIPS),
Lisa 11 (a rule engine written in Common Lisp) and OpenL Tablets 12

(a business centric open source BRMS) (more pointers to some of
those systems are provided in Appendix A on page 153). Among
these, only a few support all the features that are expected in a mod-
ern PRS like the support to Decision Tables/Spreadsheets, Temporal
Logic (TL), CEP and FL, for instance. The leading PRS is perhaps Rete-
NT, a very efficient implementation in C by Forgy, the man who first
proposed the RETE algorithm [63]. According to some benchmarks
published by Sparkling Logic 13, the company that Forgy joined as in-
vestor and strategic advisor, Rete-NT is deemed to be a few hundreds
times faster than the original algorithm and generally faster than any

5 At the moment there are a few projects that aim to do so but, to the best of our
knowledge, the only comprehensive work is the M.Sc. thesis by Herchenröder [81].

6 http://clipsrules.sourceforge.net/

7 http://www.jboss.org/drools/

8 http://dtrules.com/

9 http://www-01.ibm.com/software/websphere/ilog/

10 http://herzberg.ca.sandia.gov/

11 http://lisa.sourceforge.net/

12 http://openl-tablets.sourceforge.net/

13 http://my.sparklinglogic.com/index.php/about-sparkling-logic

http://clipsrules.sourceforge.net/
http://www.jboss.org/drools/
http://dtrules.com/
http://www-01.ibm.com/software/websphere/ilog/
http://herzberg.ca.sandia.gov/
http://lisa.sourceforge.net/
http://openl-tablets.sourceforge.net/
http://my.sparklinglogic.com/index.php/about-sparkling-logic
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other implementation. Over the past few decades, while at Carnagie
Mellon University, Forgy has also contributed to various versions of
OPS (which is said to be the short for “Official Production System”),
a milestone implementation (formerly in Lisp and later in BLISS 14)
of the RETE algorithm that – back in time – was able to scale up to
larger problems involving hundreds or thousands of rules. A version
of OPS maintained by RuleWorks 15 which includes several optimisa-
tions is also available, however both Sparkling Logic’s and RuleWorks’
implementations are commercial.

Our choice was guided by the availability of the source code, mod-
ern features and corollary projects. A vibrant community support-
ing the open source development of the tool was also regarded as
a plus. With respect to all these aspects, Drools was the best candi-
date. Therefore throughout this thesis we assume that the reader is
at least familiar with the main concepts of PRSs and this software in
particular. The reader that is not accustomed with them may find an
introductory presentation in Appendix A on page 153.

14 Much less famous than Lisp, BLISS is considered one of the best known systems
programming language until C; more information on this language is available on
Wikipedia: http://en.wikipedia.org/wiki/BLISS_programming_language.

15 http://www.ruleworks.co.uk/uguide/rwug1.html

http://en.wikipedia.org/wiki/BLISS_programming_language
http://www.ruleworks.co.uk/uguide/rwug1.html
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2 E V E N T C A LC U L U S

«The best way to keep good actions in memory, is to refresh
them with new.»

— Thomas Carlyle,
Scottish Historian and Essayist,

leading figure in the Victorian era, 1795–1881

In this Chapter we will introduce the Event Calculus (EC) – a well
known formalism to reason about events and their effects on a

domain, and we will present our own implementations based on
Reactive Rules (RR). These tools will be used to monitor systems as
the representation of their state will be used later to assess their con-
formance.

In particular, we provide a brief introduction to EC where we dis-
cuss its philosophy and modes of operations, as well as some of its
variants. Then we outline a classical problem of EC as an example in
order to clarify its principles of operation. In the following section
we finally present the general architecture of our tool and we discuss
the process that led us to define different versions of the calculus. All
these versions are optimised to process the occurring events as fast
as possible, and they include modes of operations that are suitable
for contexts where events are supposed to be notified in reasonable
time or with a delay that scrambles the expected chronological order.
We have also adapted these efficient modes of operations to work in
a context where only Boolean values are used to model the status of
the domain, and in a more general one where any kind of data is
allowed. The latter case, combined with the fuzzy extension of our
reference Production Rule System (PRS), allows to make use of fuzzy
linguistic variables on any of these domains (i. e. empty or full to de-
scribe the filling level of a tank whose capacity is 100 litres). Last but
not least we report the extensive test case that we have conducted
on these implementations and some experimental evidence of their
performances.

Please notice that we will often refer to the architecture and the
way of functioning of a PRS during this Chapter. Providing a compre-
hensive presentation about this topic is out of the scope of this disser-
tation, however, the key concepts are summarised in Appendix A on
page 153 for the sake of the reader’s understanding.

21
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2.1 fundamentals of event calculus

The Event Calculus (EC) is a well known logic-based formalism to
reason about actions and their effects on a domain. It was introduced
for the first time by Kowalski and Sergot in 1986 [98] and after more
than 25 years is still subject of much research. It has been adopted
in a variety of domains, such as cognitive robotics [162], planning
[165], service interaction [119] and composition [152], active databases
[61], workflow modelling [42], legal reasoning [60], business process
management [196], computerised clinical guidelines [175], service-
oriented computing [83] and multi-agent systems [195].

As for other similar languages – the most prominent of which isThe basics: event
and fluent probably the Situation Calculus (SC) [123], it is essentially based on

only two concepts: the event and the fluent. An event is defined as any
thing that occurs at any given time on a domain that causes at least a
partial change of its state. In a way, the events are notifications of the
occurrence of some actions on the domain of relevance. For this rea-
son, several authors use the terms “event” and “action” interchange-
ably 1. Consequently, the notification of events causes some modifi-
cations that are specific of the single actions as they occur on the
domain. A fluent instead is any single measurable aspect of the do-
main that is subject to change over time. Roughly speaking, they may
be considered as variables that may take different values in the course
of the time. Therefore, the set of all the variables that are needed to
define a problem also provides an operational description. If we con-
sider it as a Finite State Machine (FSM), any full assignment of these
variables identifies one of its possible states. When contextualising
these assignments in time, we can define peculiar states – such as the
initial state or the current state, or even consider them in sequences to
describe the behaviour of the domain.

As the reader may see, being based on only two concepts makesSome properties:
- simplicity the formalism very simple, but not simplistic. Simplicity is a good

property for a language, provided that it does not limit its extent.
Simple languages, in fact, generally require less resources to be un-
derstood and interpreted. The resulting implementations are usually- robustness

simpler to maintain and also more robust. Complicated tools, in fact,
generally can perform more sophisticated tasks but they tend to be
easier to break or to be misused. This formalism is also regarded as- versatility

quite versatile because of its modular approach that decomposes the
domain state into simpler fluents. Complex or large problems, in fact,
can be destructured in smaller pieces – up to the detail level of the
individual fluents – and be handled seamlessly. In addition to these
properties, it is also sound and reliable. In effect, unlike other similar- soundness

formalisms (like some initial implementations of SC which is arguably

1 A few authors, instead, distinguish between actions as events perpetrated by some
subject, and events that are originated by no specific source.
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the oldest special-purpose knowledge representation formalism, de-
signed to axiomatise knowledge of actions and their effects) it is not
affected by the frame problem. This is a quite common problem in
Artificial Intelligence (AI) that arises when a dynamical domain is
going to be expressed in logic without explicitly specifying the con-
ditions that are not affected by each action. Its name is supposed to
derive from the technique used by animated cartoonists called “fram-
ing” where the currently moving parts of the cartoon that are used
to display actions are superimposed on the still picture which depicts
the background of the scene. The way in which the EC overcomes this
problem has been deeply investigated [163]: it has been recognised to
be similar to the successor state axioms of the more recent versions of
SC [141], and also formalised in terms of circumscriptions [122].

Most of the implementations are realised in prolog (the only ex- Formalisation of the
calculusception that we are aware of is the implementation formalised in

eXtensible Markup Language (XML) and coded in Java that was de-
veloped by Farrell, Sergot, Sallé, and Bartolini in 2005 to to represent
contracts and automatically keep track of their normative state), the
language that was originally used to define the EC. In those works,
the EC is introduced by using statements that pertains to the Horn
subset of classical logic augmented with Negation as Failure (NAF).
This subset includes clauses – precisely Horn clauses – that are dis-
junctions of literals with at most one positive literal [82]. NAF is the
non-monotonic inference rule that is used in logic programming to
derive the negation of a predicate from the failure to derive the pred-
icate itself [43].

The essence itself of EC is contained in the following sentence that Core axiom

describes its main operating principle:

• a fluent is true in a given time instant t if and only if

– 1. it was initially true, or

2. it has been made true in the past

– and has not been made false in the meantime.

This statement, commonly called core axiom, translates into the fol-
lowing predicates which respectively recall the meaning of the three
conditions above:

holdsAt(F, T)←
initially(F), T0 < T ,¬clipped(F, T0, T).

holdsAt(F, T)←
happens(Ei, Ti), initiates(Ei, F), Ti < T ,¬clipped(F, Ti, T).

clipped(F, Ts, Tf)←
∃E, T : [happens(E, T), terminates(E, F), Ts < T , T < Tf].

In this formalisation, E, F and T (and its siblings T0, Ti, Ts and Tf) are
terms respectively indicating an event, a fluent and a time (initial time,
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Axiom Meaning

holdsAt(F, T) Fluent F holds at time T

initially(F) Fluent F holds from the initial time

happens(E, T) Event E happens at time T

initiates(E, F, T) Event E initiates fluent F at time T

terminates(E, F, T) Event E terminates fluent F at time T

clipped(F, T1, T2) Fluent F is terminated by an event in (T1, T2)

Table 2.1: The Event Calculus ontology.

Event Calculus !
axioms"

LOGICAL MACHINERY 

WHAT HAPPENS WHEN 
initially, happens !
and < formulae"

WHAT EVENTS DO 
initiates and terminates !

formulae"

WHAT’S TRUE WHEN 
holdsAt formulae"

Figure 2.1: Operating diagram of the Event Calculus machinery.

generic subsequent time, start time and final time). < is simply a total
ordering relation over time instants. Generally the time is represented
by numbers in R, Z or N.

As suggested by the core axiom formalisation itself, additional aux-Auxiliary axioms

iliary domain-dependent axioms are needed to complete the defini-
tion of any problem. These auxiliary axioms include temporal informa-
tion about occurring events provided by the happens(E, T) predicate
and knowledge about the starting configuration of the domain thanks
to the initially(F) predicate, as well as causal information binding
events with their effects on fluents by means of the initiates(E, F, T)
and terminates(E, F, T) predicates. In particular, these predicates are
used to express that an event E is potentially responsible of the switch-
ing of a fluent F state, by respectively starting or ending at time T a
time interval in which the fluent holds. The clipped(F, T1, T2) pred-
icate is used instead to determine whether a fluent has been set to
false by an event within a given timeframe. Last but not least, the
holdsAt(F, T) predicate is used to query the Knowledge Base (KB) to
understand whether a fluent holds at a given instant. All these ax-
ioms are collected and briefly explained in Table 2.1 that authors of-
ten call Event Calculus ontology. Notice that the above formalisation
has been defined in terms of Boolean values, but it may be gener-
alised. Some details about a possible generalisation are provided in
Chapter 2.3.4 on page 54.

The general mode of operation of the EC is sketched in Figure 2.1.General mode of
operation In the following, we use the typical predicate/arity notation of pro-
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log to refer to the axioms. It recalls a definition of EC as “a logical
mechanism that infers what’s true when given what happens when and
what actions do” [164]. This machinery, in practice, uses initially/1
statements coming from the what happens when input to define the
initial state of the domain. Then, any time a happens/2 predicate
from the same input source is notified, it looks up for the correspond-
ing initiates/3 or terminates/3 statement. They are provided as be-
havioural information on the what events do input. Once they have
been identified, their effects are applied to the current state to build
the representation for the new state. The machinery finally uses the
holdsAt/2 predicate to determine if a fluent holds in the state of the
states sequence that is associated with the given time t. Such infor-
mation representing what’s true when is returned as output. Notice
that the “<” axiom is required to determine temporal precedence: its
definition, however, is not relevant provided that it satisfies integrity
constraints like transitivity and anti-symmetry [158].

When we use what happens when and what events do as input and Deductive reasoning

what’s true when as output, like in the case that we have just de-
scribed, the machinery performs deductive reasoning. Typical tasks of
this reasoning style include temporal projection or prediction: they are
generally used to determine the outcome of a known sequence of ac-
tions. This is the kind of reasoning that we will exploit to perform
monitoring. As an additional evidence of the versatility of EC, con-
sider that other reasoning styles can be obtained just by permuting
the input and output of the machinery. For instance, if what events Abductive reasoning

do and what’s true when serve as input and what happens when as
output, the machinery performs abductive reasoning. Abduction is gen-
erally used to hypothesise sequences of actions that lead to a desired
state. Generally speaking, however, it solves tasks referring to tempo-
ral explanation or postdiction, certain kinds of diagnosis and planning.
Finally, inductive reasoning focuses on what’s true when and what hap- Inductive reasoning

pens when to return what events do. It performs certain kinds of learn-
ing, scientific discovery and theory formation and, generally, it is used to
supply a set of rules or a theory by considering the effects of actions
that accounts for the observed data.

We will now see a few variants of the EC, paying particular atten-
tion to their different behaviour that has a sensible impact on perfor-
mances.

2.1.1 Families of Event Calculus Variants

Over the years, a large number of variants of the EC has been pro-
posed, each with its own characteristics and peculiarities. The family The EC family tree

tree in Figure 2.2 on the next page collects a few remarkable ver-
sions that we believe to be relevant from the standpoint of systems
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BEC / OEC 
(Kowalski, Sergot – 1986)!

EEC / BEC 
(Miller, Shanahan – late 90’s)!

FEC 
(Miller, Shanahan – late 90’s)!

SEC 
(Kowalski – 1992)!

CEC 
(Chittaro, Montanari – 1994)!

REC 
(Chesani, Mello, "

Montali, Torroni – 2010)!

Figure 2.2: A (very partial) family tree of the Event Calculus variants.

monitoring, and shows their mutual relationships. These variants are
summarised and compared in the following paragraphs.

The root ancestor on top of the tree is the formalism introduced inOriginal EC

the first place by Kowalski and Sergot in 1986 [98]. Some authors refer
to it as Basic Event Calculus (BEC) [36] or Original Event Calculus
(OEC) [129].

A second variation that directly stems from this one was suggestedClassic variants:
SEC, FEC and EEC in 1992 by Kowalski [95]. Compared to the previous one, this is a re-

formulation based on time instants rather than intervals. It includes
the notion of time instants, of course, as well as the idea of event
types, incompatible fluents and initial state of fluents (specifically,
the axiom initially(F)) [129]. Shifting the focus from the intervals
to the instants, it is considered a simplified version of EC to the
point that it is conveniently referred as Simple Event Calculus (SEC) 2

[129, 158, 164]. In the following years, other authors have contributed
to the development of the EC by proposing new variants. Miller and
Shanahan, for example, have introduced the Full Event Calculus
(FEC) and Extended Event Calculus (EEC) (sometimes called BEC [36],
but it should not be confused with the OEC discussed above). The FEC
owes its name to the fact that it considers a more complete formalisa-
tion: with respect to the BEC, in fact, it includes some axioms such as
¬initially(F), ¬holdsAt(F, T) or declipped(F, T1, T2) that provide the
dual formulation of the axioms of EC and a new axiom releases(E, F, T)
which is used to state that a fluent is not subject to inertia after the
happening of an event [164]. Similarly, the EEC has been called in
this way because it is an extension of the FEC: it adds a couple of
more axioms – namely cancels(E1,E2, F), cancelled(E, F, T1, T2) and
trajectory(F1, T , F2,D) – that ease the handling of concurrent events
and continuous changes [164]. Both these features may play a key
role in treating complex processes across systems in some domains
like Service-Oriented Architecture (SOA) where events with contrast-
ing effects on a fluent’s state may occur simultaneously or one during

2 Sometimes some authors use simplified or simpler in place of simple.
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the other’s progressing 3. Regardless of the number and type of avail-
able axioms, all these variants operate in the same way: any time the
occurrence of a new event is notified, the history of the changes oc-
curred on the fluents’ values is discarded and computed again from
scratch. This is due to the fact that, in logic, predicates can not be
“notified”, but simply be true or false. Therefore, each time the KB
is changed, the resolution mechanism that is typical of the prolog EC
implementations needs to find a derivation that explains why the con-
clusion holds. This mechanism tries to unify the current goal with the
clauses and eventually the facts that are asserted in the KB. In prac-
tice, every time it rebuilds the same derivation, eventually appending
something to address the new knowledge.

To address this inefficiency, a new group of variants has been intro- Incremental
variants: CEC and
REC

duced. Any time we can assume that the goal remains fixed (the goal is
always determining when fluents hold) and the narrative grows towards
the future (new events are generally appended to the current end of
the history), in fact, the domain is said to be causal 4 and we can con-
clude that small changes in the input cause only small alterations on
the output [128]. Such idea goes by the name of common-sense law of
inertia and tells us that only a few fluents are affected by the occur-
rence of an event. In other words, it suggests that updating the fluents’
history requires much less computational resources than recomputing
it. A first example that derives from SEC (see Figure 2.2 on the facing
page) is the Cached Event Calculus (CEC). This variant by Chittaro
and Montanari introduces Maximal Validity Intervals (MVIs) – axioms
in the form mvi(F, T1, T2) representing an uninterrupted interval in
which a fluent holds – to decouple the current state of a fluent from
the fluent itself and to provide a general data structure in which to
cache its history [40]. Upon its introduction, an MVI is typically open
which means that its initial time is bound while its final time is not 5.
Unbound final times may be set in a second time. In any case, the
MVIs whose final time is bound are called closed. In principle, the no-
tification of the occurrence of a new event causes the closure and/or
the introduction of one or more MVIs. Notice that it is possible to
determine whether a fluent holds in a given time by properly query-
ing its set of MVIs: if there is an MVI that includes that instant, then
the fluent holds at that time 6. The Reactive Event Calculus (REC) is
an advanced, more efficient implementation of the CEC that has been
introduced in 2010 [39]. It is also based on MVIs and their assertion

3 One basic assumption of the EC is that events can not occur at the same time; some
domains like SOA, however, may be so dense (of events) and the time granularity so
poor that it is not possible to determine the exact order of events.

4 A domain is causal when the clipping and declipping of a fluent only depends on
past or present events.

5 The closing time of an open MVI is usually considered equivalent to infinite.
6 Given a fluent, for each instant of time there is at most one MVI that includes it.
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Event Description w.r.t. Fluent F initially false

e1 Declipping event at T1 (> T0)

e2 Clipping event at T2 > T1 (> T0)

e3 Declipping event at T3 > T2 > T1 (> T0)

e4 Delayed declipping event at T4, T3 > T4 > T2 > T1 (> T0)

Table 2.2: Narrative of events used to compare the modes of operation of
SEC, CEC and REC.

and retraction 7 from the KB to keep the history updated, however
it adopt a more streamlined and light-weight algorithm. The differ-
ence between the two approaches becomes evident when considering
any application domain where, for some reason, the events may be
reported with a not neglectable delay that prevents their processing
in strict chronological order. On one hand, CEC is a bit cumbersome
but robust to unordered events; on the other hand REC is faster but
it becomes extremely inefficient when it deals with delayed events.
Every time there is a delay in the reporting of an event, a backtrack-
ing procedure triggers: the last few operations are cancelled until the
system state preceding the delayed event is reverted, then the effects
of all the abrogated events are applied again but in the right order
and the correct state of the system is restored. Notice that the back-
tracking procedure may introduce too much overhead in presence of
several delayed events, thus it is advisable to adopt the REC only in
those domains where it is reasonably safe to believe that events are
notified in time.

In the next few lines, we will present an example to compare theComparison between
SEC, CEC and REC modes of operation of SEC, CEC and REC. We will consider a simple

narrative of events that affect a single fluent that is initially false.
In order of notification, these events are a declipping event, a clipping
event, another declipping event and, finally, a further delayed declipping
event that actually occurred before the previous event but was no-
tified only after it. These events are summarised and explained in
Table 2.2.

Figure 2.3 on the facing page shows the different behaviour of the
three variants. Each part of the Figure is devoted to a variant and it
is divided into blocks. Each block is dedicated to the processing of
an event and it shows the steps that the variant takes to apply the
effects of the notified event to the fluent history. The first step only
introduces the event that is being notified while the other steps rep-
resent the atomic operations that are needed to properly update the

7 A criticism that is moved against these variants is that they are destructive as they
also relay on retract/1 – and not only on assert/1 – to operate: by purging some
information from the KB, in fact, it becomes impossible to guarantee any formal
property of the calculus.
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(a) Simple ec (b) Cached ec (c) Reactive ec

Figure 2.3: Comparison between the modes of operation of some variants
of Event Calculus.

history of the fluent. Roughly speaking, the more steps are present in
a block, the more inefficient the variant is.

Each step is sketched with a compact graphical representation of Graphic language:
- timethe events and fluents. The horizontal dashed gray line is the time axis

in which the time values grow towards right. The events are depicted - events

as vertical cyan arrows: downward and upward arrows respectively
represent clipping and declipping events. The event to be processed
that has just been notified is coloured in dark red. Finally the history
of a fluent is drawn with a segmented yellow line. This line can jump -fluents

between two levels which represent respectively the true (top) and
false (bottom) values. Notice that we do not adopt a special graphic
convention to represent delayed events. However it is very easy to
spot delayed events because they are coloured in dark red and they
have at least another (cyan) event on their right.

The notification of the first event produces the same result with First event

all the three variants: SEC, CEC and REC simply change the otherwise
empty history of the fluent by setting it to true starting from the time
of occurrence of the event.

The behaviour of the variants starts to differ when the second event Second event

is notified. It is a clipping event so we expect to interrupt the validity
interval that started earlier. SEC drops the previous result and recre-
ates from scratch an updated history by replaying all the events in
the right temporal order: in practice, with a first step it applies again
the effects of the previous event, and then the effects of the current
event with an additional step. Both CEC and REC, instead, directly up-
date the former state by applying the effects of the second event only.
Notice that they require less steps to process the event.
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The third event is a declipping event so it will start another validityThird event

interval for the fluent. The behaviours manifested by variants during
the processing of the previous event is confirmed and, in a sense, em-
phasised. Upon the notification of the occurrence of the event, SEC
clears the history and plays the whole narrative one event at a time
to build the updated history of the fluent. Once again, CEC and REC
simply update the past history of the fluent. This brings us to a con-
sideration: while CEC and REC always require a single step to compute
the new result, each time SEC takes a number of steps that is propor-
tional to the length of the narrative. Roughly speaking, the longer is
the narrative and the more ineffective is the basic variant. Narratives
usually tend to become very long.

When we consider events that may be notified with some importantFourth event

delay, the behaviour of CEC and REC also changes. The only effect of
the notification of the delayed event is to anticipate the opening of
the validity interval that was introduced by the previous event. SEC
insists with its usual behaviour: the fluent history is first cleared and
then rebuilt by applying one by one the effects of the events that
make up the narrative. Now CEC and REC operations are different
with respect to the past. On one hand we have CEC which is robust
to delays. It manifest the same behaviour as before: the effects of
the current event are addressed in a single passage. REC, on the other
hand, needs to restore the fluent’s state history prior to the time when
the delayed event actually occurred. Then it applies back the effects
of the delayed event and cancelled events, taking care to following
the correct temporal order – much like the SEC generally does. So,
generally speaking, REC is usually faster than CEC because it makes
less checks thanks to its additional assumptions. However, it becomes
slower in a measure that is proportional to the amount of delay with
whom the event is notified. An attentive reader may wonder why
REC generally outperforms CEC: it is due to the fact that events are
generally notified in time and when their notification is in late, the
delay is usually small.

Notice that REC handles delayed events by triggering a backtrackingSome considerations

procedure. This procedure relies of course on the backtrack feature that
is available in all the backward-chaining tools like prolog. The reference
platform that we are going to use to implement our versions of EC,
however, is a forward-chaining tool so it does not provide backtracking.
PRSs, in fact, have a shared memory in which they store the facts
about the domain and another memory in which they cache rules.
The rules are triggered by the stored facts and, as a result, they just
change the set of facts. The mechanism with whom PRSs determine
if some rule is activated by the facts in memory is extremely efficient,
thus we can conclude that approaches similar to CEC are preferable
when they are implemented on efficient forward-chaining platforms.
In that case it is better to identify all the boundary conditions that may
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PWRAVAIL 

LIGHTON 

SWITCHON 
turnOn!turnOff!pwrRest!pwrFail!

CLIK! 

initially TRUE 

CLIK! 

Figure 2.4: A simple flashlight with batteries, a switch and a led diode to
project light and the Event Calculus terms to represent it.

occur during the event notifications and address them with specific
rules whose consequence is to apply the required change of the fluent
history. Such rules will be discussed in Chapter 2.3.4 on page 44.

Finally, very recently we became aware of an interesting new work
on EC by Artikis, Sergot, and Paliouras [15]: due to its recency, we
had not the opportunity to set up a proper analysis and performance
comparison, however it will be subject of future work.

2.2 the flashlight example

In this section we present a simple problem that has been frequently
used in literature as a reference example. It is indeed very compact,
but it includes every possible aspect of the EC therefore it qualifies in
all respects as a full example.

This problem is presented in graphical form in Figure 2.4. As the Description of the
problemreader can see, the flashlight contains a set of batteries that are wired

to a switch and a led diode. When the batteries are charged and the
switch is set to on, the led is expected to project out some light. If
we want to model this example in EC, we have to provide a complete
description of our domain. In other words, we have to identify the
complete list of events and fluents that are needed to depict the do-
main, and we have to determine the initial state of each fluent. If any
piece of this information is lacking, the EC can not guarantee mean-
ingful results 8. The information needed to address this problem is
already included in Figure 2.4. The actions with whom we can inter-
act with the flashlight are the following:

pwrfail – the batteries are depleted,

pwrrstr – the batteries have been replaced or recharged,

turnoff – the switch has been pressed to open the circuit,

8 It has been shown, in fact, that the EC may return incorrect results if the information
about the domain is incomplete [164].
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turnon – the switch has been pressed to close the circuit.

The fluents, whose set of values defines the state of the domain are:

pwravail – the batteries have some charge,

switchon – the switch is completing the circuit to the flashlight,

lighton – the led is projecting light.

Notice that Figure 2.4 on the preceding page also mentions the initial
state of the pwrAvail fluent that is true: so the batteries are initially
charged. By convention, it is assumed that the initial state of every flu-
ent whose initial value is not explicitly stated is false. Therefore both
switchOn and lightOn are false, meaning that the circuit is initially
open and the light is off. Then we have to state all the causal rela-
tions between the events and the fluents’ values that the events are
trying to set. A turnOn event, for example, initiates a time interval
in which switchOn and lightOn (but only if contextually pwrAvail is
true) hold. A pwrFail event, instead, always terminates both pwrAvail
and lightOn.

A table is a convenient way to keep track of this data and to reasonBest practices

about a domain’s model: the rows of the table refer to fluents, and
columns to events. In addition, the first column always refer to the
initial state of the fluents. Now imagine to be a knowledge engineer
who is going to define a problem. His work starts by setting up a list
of all the fluents that he believes are needed to model the state of the
domain. The elements of this list will be the headers of the row of
the table. Than he puts the initial value 9 beside each fluent. Later, he
prepares as many columns as the number of events that he thinks that
may happen on the domain. Each column is labelled with one of the
names of these events. Finally, he fills in the cells of these columns. He
uses a dash to indicate that the event of that column has no effect on
the fluent on the row. An upward or downward arrow tells that the
event of that column respectively initiates or terminates the fluent
on the row. Any additional condition that must be met in order to
apply the effects of an event to a fluent is added beside the arrow.
The name of a fluent, for example, means that we expect the given
fluent to hold at the time in which the event happens. A preceding
exclamation mark negates such condition. Other conditions may be
specified as well, such as time instant, intervals or delay (opportunely
included in parenthesis). The table that is obtained by applying this
procedure to this example’s domain is shown in Table 2.3 on the next
page. Notice that this best practice can be very tedious, especially for
larger domains, but it helps to make fewer modelling mistakes.

The resulting theory, expressed in terms of First Order Logic (FOL)FOL formalisation
of the problem

9 Notice that this step may be postponed to the end of the modelling process.
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events
fluents initially pwrFail pwrRstr turnOff turnOn

lightOn false ↓ ↑, switchOn ↓ ↑, pwrAvail

pwrAwail true ↓ ↑ – –

switchOn false – – ↓ ↑

Table 2.3: Synoptic diagram depicting the model of the flashlight’s domain.

(a) Depleted batteries, open circuit (b) Depleted batteries, circuit closed

(c) Charged batteries, circuit open (d) Charged batteries, circuit closed

Figure 2.5: Admissible configurations on the flashlight’s domain.

predicates, is the following:

initially(pwrAvail).

initiates(turnOn, switchOn, T)←
happens(turnOn, T).

terminates(turnOff, switchOn, T)← happens(turnOff, T).

initiates(pwrRest,pwrAvail, T)← happens(pwrRest, T).

terminates(pwrFail,pwrAvail, T)← happens(pwrFail, T).

initiates(turnOn, lightOn, T)←
happens(turnOn, T),holdsAt(pwrAvail, T).

terminates(turnOff, lightOn, T)← happens(turnOff, T).

initiates(pwrRest, lightOn, T)←
happens(pwrRest, T),holdsAt(switchOn, T).

terminates(pwrFail, lightOn, T)← happens(pwrFail, T).

As the reader may guess, the set of combinations of all the possi- The problem as a
FSMble values of the fluents represents the set of its states. The config-

urations that the flashlight may reach – depleted batteries, open circuit
(Figure 2.5a), depleted batteries, closed circuit (Figure 2.5b), charged bat-
teries, open circuit (Figure 2.5c) and charged batteries, closed circuit (Fig-
ure 2.5d) – are summarised in Figure 2.5. In this fashion, the domain
is really like a Finite State Machine (FSM) and the events are the ac-
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Figure 2.6: A possible trace of execution on the flashlight’s domain.

tions that shift the domain from one state to another. The history of
the domain, in this case, is the collection of single fluents’ histories
that are update after the notification of each event.

The Figure 2.6 shows the effects of a sequence of actions on the do-Graphic language

main. The Figure is composed of several stripes: each stripe has a tag
on the left that tells which entity it relates to. If a strips is coloured in
cyan, it relates to one event; if it is coloured in yellow, to a fluent. An
event in more detail contains a cyan horizontal line that represents
the time flowing (from left to right). From time to time, a vertical
upwards arrow resembling a Dirac delta function appears. It indi-
cates that an event of the given type occurred in that very moment. A
fluent in more detail contains instead a segmented yellow line. This
line runs between two values: false (the lowest) and true (the other).
Therefore, depending on the causal information given in Table 2.3 on
the preceding page, the occurrence of events can make the fluents to
change state.

In particular, we start from a configuration in which only the pwrA-An instance of the
problem vail fluent is holding (equivalent to the state described by Figure 2.5c

on the previous page) and then, every 2 time units, we apply one of
the following event: turnOff, turnOn, turnOn, pwrFail, pwrRstr and
turnOff.

1. As the first turnOff event occurs, nothing happens since the
circuit is already open and we stay in the former state (see again
Figure 2.5c on the preceding page).

2. When the first turnOn event occurs, the switchOn fluent be-
comes obviously true as well as the lightOn fluent because the
batteries are charged; the state in Figure 2.5d on the previous
page becomes then the current state.

3. When the second turnOn event occurs, we simply reaffirm the
current state 10.

10 Notice that, in general, this is not always true.
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4. Then a pwrFail occurs and the batteries become depleted (re-
sulting in pwrAvail to become false) and the led is consequently
off (lightsOn is also false); this state is depicted by Figure 2.5b
on page 33.

5. A pwrFail is the next event to occur so the changes that we have
just made are reverted and the current state is again the one in
in Figure 2.5d on page 33.

6. The last event of our trace is a turnOff which opens the circuit
(switchOn is false) and turns the light off (lightOn is false), like
in Figure 2.5d on page 33.

The final state is curiously equal to the initial one (see Figure 2.5c
on page 33). It is obviously not necessary that initial state and final
state coincide, but it may be a desirable property in certain domains.
Also notice that the domain is not passed through all the possible
states (the state described in Figure 2.5a on page 33, for example, is
never reached), but this is also a coincidence.

2.3 architectural outline of the tool

The following sections provide a detailed description of the architec-
ture of the tool. First we introduce some guidelines that we consid-
ered to design the system architecture. Then we explain why we have
organised it into two cascading stages and how the component is sup-
posed to work. After that we describe in details the rule sets that are
used in both the transformation stage and operational stage. With re-
spect to this second stage, we introduce the case with only Boolean
variables and the one with any kind of variables. In both cases, we
show how to deal with narratives that may include substantial delay
in the notification of events.

2.3.1 Stratification of Terms

Although the EC variant that we have identified is sufficiently stream-
lined, robust and versatile, it can still be misused and lead to un-
wanted errors.

This issue, in particular, is not specific to our implementation, but Misusing a system

rather a common problem in computer science. In every software
system, in fact, there is sensitive data upon which the application de-
pends to decide what actions to take and which results to return. If
this data is not properly protected, it may be changed without com-
plying with the assumptions made for the proper functioning of the
system and almost certainly produce unpredictable outcomes. In our
case, for example, we use the clipped/3 predicate to keep track of
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Figure 2.7: Stratification of Event Calculus terms and definitions for a
proper use of the machinery.

any event occurrences that set the state of a fluent to false. Deter-
mining whether an event holds in a given time – the kind of answer
that we expect to receive from our system – directly depends on this
information. So, if this data is left somehow unattended, the user
could interfere with it without doing it on purpose. Notice that, with
the term “user”, we mean both the final user of an application and the
application developer who may inadvertently tamper the calculus by
improperly using its objects. This could also affect the tool developer
since otherwise the bugs could have more serious effects.

For instance, the user could add insignificant data or introduce in-
correct changes or even arbitrarily delete some of the available infor-
mation. In all these cases, the procedure that computes the output of
the system would have received an improper set of clipped/3 notifi-
cations, with the result that a plausible but wrong answer is returned.
Notice that the user might not notice the error because of the plausi-
ble answer and assume the wrong data as valid.

Stratification or, more precisely local stratification, is a technique thatLimiting the misuse
of systems is used to control the access to the sensitive data of a system [41]. Lit-

erally, it refers to the building up of anything in layers. The idea is
that each layer provides an interface to the preceding layer by means
of which it can be used. In turn, each layer relies on the interface
of the layer that follows to perform its tasks. In each layer the vari-
ables are local, so their value is not visible from the preceding layer.
Therefore, the most sensitive data and the most delicate operations
are implemented in the innermost layer which is protected from the
user’s direct interaction by the more external layers of the system. In
this way, the user can only interact with the application through the
methods provided by the interface of the outermost layer. This layer
is strictly programmed to interact with its inner layer in the proper
way and, ultimately, to safely access the sensible data in the inner
layers as the chain of calls crosses the layers.

The layers that we intend to use for handling our implementationStratifying the EC

are sketched in Figure 2.7. As the reader can see, we have 3 layers:
the layer closest to to user serves to provide the description of the
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Figure 2.8: Architectural pattern adopted for the tool which shows what
subsystem handles the knowledge pertaining to each layer of
the stratification.

problem to solve, instead the two innermost layers together imple-
ment the EC machinery. The outermost of these two layers contains
the definitions of the terms that can be used to define problems: they
are, in practice, the interface of the layer. It also contains some rules
that translate these terms in a form that is suitable for the innermost
layer: they embody the concept of interaction with the following level.
The innermost layer, instead, contains the definitions and rules that
are necessary to compute the current state of any instance of the prob-
lem. The layers that are coloured in red are not directly accessible to
the user, while those in green are. In particular, the user is granted
read-only access to the innermost green layer, while he has both read
and write rights on the outermost since it represents the specification
of the problem. Finally, notice that the representation of each layer
contains the names of its terms and rules or a generic description of
the tasks that they aim to accomplish. The Figure 2.7 on the facing
page does not intend to provide an exhaustive discussion on these
entities, as all the details about them are available in the following
sections.

2.3.2 General Architecture

Figure 2.8 summarises the architectural outline of our implementa- General diagram
and mode of
operation

tion. As the reader may see, it is organised in two cascading stages.
The first stage is called “transformation stage” because it takes a repre-
sentation of a problem in terms of Java objects and translates it into
a set of corollary declarations and rules. These statements are passed
to the second stage named “operational stage” as it provides the mech-
anism that powers the core of the EC machinery. This is actually the
stage that performs the monitoring.

Both stages are realised with a PRS so each has a Working Mem-
ory (WM) for facts and a Production Memory (PM) for rules. The WM
of the transformation stage is initially empty while the PM contains
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the set of rules that is discussed in Chapter 2.3.3. As the user asserts
problem descriptors into the WM of the first stage, declarations and
rules for the second stage are generated. The declarations are notified
to the WM of the operational stage and the rules are included in its
PM where they join the rules that implements the EC that will be intro-
duced in Chapter 2.3.4 on page 44. As the occurrence of the events is
notified to the second stage, the core rules compute the current state
of the domain and make it available as output. Notice that all the
axioms pertaining to what happens when and the initially axioms of
what events do are passed as objects to the transformation stage. The
happens axioms of what events do, instead, are directly notified to
the operational stage as temporal events. The second stage returns of
course the desired information about what’s true when.

Notice that approaches like this that are organised in stages areTransformation as a
pattern quite common and they can be abstracted into a structural software

pattern. There may even be more complicated cases in which the num-
ber of cascading stages is more than two, or in which the interconnec-
tions between stages are more dense. The invariant is that each stage
transforms available information to make it available for subsequent
stages. Some advanced PRSs like the one that we adopted allow to
implement all these logical stages within the same physical instance.
In the case of our reference platform, the feature to exploit to achieve
such result is called entry-point. The entry-points grant the logical par-
titioning of the WM and therefore they can help in keeping the stages
separated.

2.3.3 Transformation Stage

As we have explained, this stage is responsible for the definition of
the domain and for its translation in a form that is suitable for feed-
ing the EC machinery. This step is necessary both to hide the more
sensible entities that power the EC machinery from the user and to
provide a convenient way to deal with the domain definition on the
PRS platform that we are using. This tool, in fact, is used to assert
and retract Java objects from its WM to define a domain, while the EC
machinery needs declarations and rules to properly operate it.

As a result of this reification process, we introduce five classesConcepts to
transform. . . whose meaning is to present the specific events, fluents and fluents’

initial states that characterise the domain as well as the contexts in
which an event starts or ends a validity interval of some fluent. List-
ing 2.1 on the facing page contains these definitions. There are a
Fluent object (line 1) and an Event object (line 5), both with a sin-
gle name field. Any instance of these classes means that there is a
fluent (or event) in the current domain with that exact name. We have
an Initially object (line 9) holding a reference to a fluent, a fluent
that is supposed to be initially true. There are also two more defi-
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1 declare Fluent

2 name : String

3 end

4

5 declare Event

6 name : String

7 end

8

9 declare Initially

10 fluent : String

11 end

12

13 declare Initiates

14 event : String

15 fluent : String

16 condition : String

17 end

18

19 declare Terminates

20 event : String

21 fluent : String

22 condition : String

23 end �
Listing 2.1: Basic concepts that are objects of the transformation

process.

nitions that are very similar to each other introducing respectively
the Initiates (line 13) and Terminates (line 19) objects. They both
contain an event field, a fluent field and a condition field. Their
meaning is that if the notification of the given event occurs, the value . . . and their

meaningof the given fluent changes to true or false (depending on whether
it is an instance of Initiates or Terminates) if need be, provided that
the given condition is verified.

Typical conditions are, for example, to verify whether a fluent holds
in a given time instant or interval. Notice that all the fields that we
have discussed above are strings, so we assume that they contain
valid expressions. Genuine expressions for event, fluent and name

fields are alphanumerical sequences of characters, possibly starting
with a capital letter. It is also a good practice to append the “Event”
or “Fluent” suffix to the sequence of characters to immediately recog-
nise its qualifying class. A condition, instead, is any sequence of
“holdsAt” and “holdsFor” 11 expressions. Their syntax is respectively
“holdsAt( <fluent>, <time> )” and “holdsFor( <fluent>, <time>

11 Notice that, unlike what happens in [? ], it is trivial to implement the hodsFor pred-
icate in a PRS with extended Complex Event Processing (CEP) support like Drools
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, <time> )”, where <fluent> is any valid fluent identifier and <time

> an absolute time value or $t, a symbol that corresponds to the
current time instant.

We call “problem” any set of instances of such reified concepts thatProblem and
instance of a

problem
provides a general representation of a domain. Problems are trans-
lated into sets of declarations and rules that complement the reason-
ing core of the EC machinery. We call the resulting KB “instance of the
problem” as it specialises the general problem to a specific case. These
cases are characterised by different narratives of events notifications.
These complementary sets of declare and rule make up a so-called
Drools Rule Language (DRL) resource – a convenient logical unit in
which to store a KB that is addressed by specific Application Program-
ming Interfaces (APIs) of the underlying PRS that ease its loading into
any instance of the reasoner.

We decided to use a StringBuilder object to accumulate the resultsObtaining the
results of the translation process. Notice that the presence of a StringBuilder

into the WM is also used as the triggering condition for the set of
transformation rules. Once the transformation process is completed,
the final DRL resource is embedded into the StringBuilder that is
returned by means of the following query 12:

1 import java.lang.StringBuilder;

2

3 query instances ()

4 StringBuilder()

5 end �
Listing 2.2: Query of convenience to retrieve the StringBuilder

including all the embedded resources.

For example, any Event or Fluent object is translated into a declareTranslating
declarations statement which makes the system aware of the domain-specific

Event or Fluent with the appropriate name. In practice, they extend
the generic declaration of Event or Fluent that is provided by the
core EC reasoner (not to be confused with the declaration of Event

and Fluent introduced above). As we can see in the Listing 2.3 on
the next page, any time a StringBuilder and a Fluent (line 1) or an
Event (line 12) are found, a declare statement is appended to the
StringBuilder.

The expressions of initial states can be translated in a similar fash-Translating initial
states ion: Initially objects activate a rule which inject the definition of

another rule with an empty premise. This rule triggers as soon as the
operational stage starts and inserts an instance of the Declip object
with a reference to the initial time 13 into the WM. As we will see,

because all the Allen’s temporal operators are backed and it suffice to apply the
includes operator between a fluent’s MVI and the desired target interval.

12 Multiple instances of the problem may be generated in a single pass by inserting
several StringBuilder objects into the WM at the same time.

13 The initial time is always assumed as 0 by convention.
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1 rule "Include Fluent"

2 salience 5

3 no-loop

4 when

5 $i: StringBuilder()

6 Fluent( $s: name )

7 then

8 $i.append(String.format(

9 "declare %s extends Fluent\n end\n\n", $s));

10 end

11

12 rule "Include Event"

13 salience 4

14 no-loop

15 when

16 $i: StringBuilder()

17 Event( $s: name )

18 then

19 $i.append(String.format(

20 "declare %s extends Event\n end\n\n", $s));

21 end �
Listing 2.3: Transformation rules for Event and Fluent statements.

1 rule "Include Initially"

2 salience 3

3 no-loop

4 when

5 $i: StringBuilder()

6 Initially( $f: fluent )

7 then

8 $i.append(String.format(

9 "rule \"initially %s\"\n", $f));

10 $i.append("salience 1\n");

11 $i.append("when\n");

12 $i.append("then\n");

13 $i.append("\tinsert( new Declip($f, 0) );\n");

14 $i.append("end\n\n");

15 end �
Listing 2.4: Transformation rules for Initially statements.

this piece of information is equivalent to the given initial state (see
Listing 2.4).

The same process applies to Initiates and Terminates concepts. Translating rules

Any instance of these classes is converted into a rule whose premise
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INITIATESDESC 
 − event: String"
 − fluent: String"
 − condition: String"

 + Constructors!
 + Getters!
 + Setters!

TERMINATESDESC 
 − event: String"
 − fluent: String"
 − condition: String"

 + Constructors!
 + Getters!
 + Setters!

EVENTDESC 
 − name: String"
 + Constructors!
 + Getters!
 + Setters!

FLUENTDESC 
 − name: String"
 + Constructors!
 + Getters!
 + Setters!

INITIALLYDESC 
 − name: String"
 + Constructors!
 + Getters!
 + Setters!

Figure 2.9: Java classes at user’s disposal as descriptors to connote prob-
lems.

identifies a notification of the given Event, the given Fluent and the
given Condition – if it is not empty – and the consequence consists
in asserting a Declip or Clip object and retracting the same notifica-
tion. The Event and Fluent cited in the translated rule refer to the
definitions inside the core stage. Therefore any time a StringBuilder

and an Initiates (line 1) or a Terminates (line 21) are found, a rule

statement is appended to the StringBuilder (see Listing 2.5 on the
next page).

Notice that this way of representing the domain is based on theAssumption of
uniqueness assumption that every concept is unique while the underlying PRS al-

lows for every reified concept to have any number of instances whose
fields have the same values. The presence of multiple instances for the
same concept does not spoil the correctness of the reasoning but it can
lead to issues. The PRS platform does not allow to have several decla-
rations or rules with the same name. Even if we manage to implement
a mechanism that makes their identifiers unique – by adding an in-
cremental numeric suffix to their names, for example – we incur in
inefficiencies. Multiple copies of the same concept, in fact, introduce
redundant declarations and rules which trigger the core stage rules
several times, leading to a waste of both memory and computational
resources.

We addressed this issue by introducing the five Java classes thatSingleton concepts

are sketched as simplified UML’s class diagrams in Figure 2.9 and
an additional set of rules that works on them. The user is free to
instantiate any number of these problem descriptors to define the
domain. When they are passed to the transformation stage, however,
they trigger a set of rules whose purpose is to verify if an equivalent
object is already present in the WM. If the check fails, such equivalent
object is logically asserted into the WM. Notice that the underlying
PRS automatically retracts a logical assertion when the user retracts
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1 rule "Include Initiates"

2 salience 2

3 no-loop

4 when

5 $i: StringBuilder()

6 Initiates( $e: event, $f: fluent, $c: context )

7 then

8 $i.append(String.format(

9 "rule \"%s initiates %s (if %s)\"\n", $e, $f, $c));

10 $i.append("when\n");

11 $i.append(String.format("\t$e: %s( $t: time )\n", $e));

12 $i.append(String.format("\t$f: %s()\n", $f));

13 if (!$c.isEmpty())

14 $i.append(String.format("\t%s\n", $c));

15 $i.append("then\n");

16 $i.append("\tinsert( new Declip($f, $t) );\n");

17 $i.append("\tretract( $e );\n");

18 $i.append("end\n\n");

19 end

20

21 rule "Include Terminates"

22 salience 1

23 no-loop

24 when

25 $i: StringBuilder()

26 Terminates( $e: event, $f: fluent, $c: context )

27 then

28 $i.append(String.format(

29 "rule \"%s terminates %s (if %s)\"\n", $e, $f, $c));

30 $i.append("when\n");

31 $i.append(String.format("\t$e: %s( $t: time )\n", $e));

32 $i.append(String.format("\t$f: %s()\n", $f));

33 if (!$c.isEmpty())

34 $i.append(String.format("\t%s\n", $c));

35 $i.append("then\n");

36 $i.append("\tinsert( new Clip($f, $t) );\n");

37 $i.append("\tretract( $e );\n");

38 $i.append("end\n\n");

39 end �
Listing 2.5: Transformation rules for Initiates and Terminates

statements.
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the object that triggered its insertion into the WM. Therefore the rules
in the Listing 2.6 on the next page control the assertion of Fluents
(line 1), Events (line 9), Initiallys (line 17), Initiates’s (line 25) and
Terminates’s (line 33), guaranteeing that they are singletons. With this
addition, the rest of the translation process that we have described
above works seamlessly.

2.3.4 Operational Stage

This section is devoted to the presentation of all the rule-bases that
we have developed to address the EC. In particular we will see how
to implement the versions that adopts only Boolean variables or uses
any kind of variables. In both cases, we will show how to deal with
domains with negligible or substantial delay in the notification of
events.

Boolean Cached Event Calculus

As seen in Chapter 2.3 on page 35, the second stage of our system
implements the core EC machinery. In addition to the declarations and
rules that are inherited by the translation process, this stage requires
a few other statements to work properly.

In this section we discuss the set of statements that realises the
version of EC that works on Boolean fluents which can only assume
the values true or false.

In the following paragraphs, we will analyse the configurations ofGraphical
conventions events and fluents that are typically faced in this context. These con-

figurations are summarised in Figure 2.10 on page 46. The Figure in-
cludes several cases; for each case there are two diagrams: the top di-
agram represents the domain state upon the notification of the event
to be processed, and the bottom one the new state of the domain that
is reached after that the effects of the event under processing are ap-
plied. To this aim, we introduce a set of graphical conventions that
will be used to describe these configurations. These conventions ex-
tend those already adopted in Figure 2.3 on page 29 and in Figure 2.6
on page 34. We use a horizontal dashed gray line to represents the
time axis: past instant are on the left and more recent ones on the
right. As before, events are drawn as cyan arrows: downward arrows
indicate clipping events and upward arrows declipping events. Also
as before, the event being coloured in dark red is the event that is be-
ing processed. Finally, fluents are sketched by means of a segmented
yellow line that toggles between two values – true and false – in
reply to events notification.

irrelevant events It may happen that the notification of an event
does not imply any change to the domain’s state. This is the simplest
case to consider as there is no need to update the fluents’ history and
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1 rule "Fluent (Singleton)"

2 when

3 FluentDesc( $n: name )

4 not Fluent( name == $n )

5 then

6 insertLogical( new Fluent($n) );

7 end

8

9 rule "Event (Singleton)"

10 when

11 EventDesc( $n: name )

12 not Event( name == $n )

13 then

14 insertLogical( new Event($n) );

15 end

16

17 rule "Initially (Singleton)"

18 when

19 InitiallyDesc( $f: fluent )

20 not Initially( fluent == $f )

21 then

22 insertLogical( new Initially($f) );

23 end

24

25 rule "Initiates (Singleton)"

26 when

27 InitiatesDesc( $e: event, $f: fluent, $c: context )

28 not Initiates( event == $e, fluent == $f, context ==

$c )

29 then

30 insertLogical( new Initiates($e, $f, $c) );

31 end

32

33 rule "Terminates (Singleton)"

34 when

35 TerminatesDesc( $e: event, $f: fluent, $c: context )

36 not Terminates( event == $e, fluent == $f, context ==

$c )

37 then

38 insertLogical( new Terminates($e, $f, $c) );

39 end �
Listing 2.6: Rule base supervising the assertion of concepts to ensure

that they are unique.
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(a) Clip event outside any MVI (b) Declip event during an open MVI

(c) Clip event during an open MVI (d) Declip event outside any MVI

(e) Delayed Clip event during a
closed MVI

(f ) Declip event (with delay) between
MVIs

(g) Delayed Clip event during a
closed MVI with other declip
events

(h) Delayed Declip event between
MVIs with other Clip events

Figure 2.10: Initial configuration and outcome of the possible cases of up-
dating the history of Boolean fluents due to the notification of
Clip and Declip events.

consequently we do not need to introduce any rule. This category
includes the configurations depicted in Figure 2.10a and Figure 2.10b.
They refer to the notification of a Clip event outside any MVI and of
a Declip event inside an MVI respectively. In either case, no action is
required because each event tries to impose a value that is already set
in the target fluent.

in-time meaningful events The second simplest case to consider
is presented in Figure 2.10c and Figure 2.10d. This time, the events
occur in a context with some boundary conditions that require some
changes to the fluent history. In particular, we have cases where a
Clip event occurs during an MVI and a Declip event that instead is
not happening during any MVI.

Notice that if we assume that the events are notified with at mostProperty of haste

a short delay, then all events will be notified by following the proper
temporal order. In fact, if the delay of an event is long enough to make
the notification slide before some other events, then the chronological
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1 rule "Clip event during an open MVI"

2 when

3 $e: Clip( $f: fluent, $te: time )

4 $m: MVI( fluent == $f, this includes $e, $im: init )

5 then

6 modify( $m ) {

7 setLength($te - $im);

8 }

9 retract( $e );

10 end �
Listing 2.7: Handling in-time Clip events during open MVIs with

Boolean fluents.

order of the events is not respected by the notification. In other words,
if we know for sure that the delay is negligible than we can conclude
that the event that is being processed is always the most recent event
appearing on the diagram. Since we are going to refer to this conclu-
sion several times, we have named it property of haste. Notice that the
validity of this property has a great influence on the way in which
the system operates: when this hypothesis is valid, in fact, we can get
rid of any notified event just after having processed it, because the
observation of the current fluent’s state is enough to decide how to
update the history.

Therefore, when this property applies and a Clip event occurs
within an MVI, then we can conclude that this MVI is open since no
event other than the one that we are processing has occurred after its
introduction. Consequently, the rule that implements this case simply
cuts the tail of the open MVI at the time instant in which the event hap-
pens. The rule that handles this situation is reported in the Listing 2.7.
The premise of the rule identifies the Clip event $e to be processed,
assigning its fluent and time fields to the variables $f and $te re-
spectively (line 3). Then it looks for a MVI object $m for the fluent $f
that includes the event $e and exposes its initial time as $im (line 4).
The consequence of the rule plans to modify the MVI $m by adjusting
its duration to $te - $im (lines 6–8) and to retract the event $e from
the WM (line 9).

In a similar fashion, the dual case refers to a Declip event that
occurs after any MVI that may already be present on the domain. If
the property of haste is valid, in fact, no event or MVI is more recent
than the event under processing. Therefore the expected outcome of
such notification is the introduction of a new open MVI that starts at
the same time in which the event occurs. The rule that embodies this
case is presented in the Listing 2.8 on the next page. The premise
of the rule is quite similar to the premise of the dual one. We now
consider a Declip event $e rather than a Clip event (line 3) and we
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1 rule "Declip event (after any MVI)"

2 when

3 $e: Declip( $f: fluent, $te: time )

4 not MVI( fluent == $f, this includes $e )

5 then

6 insert( new MVI($f, $te, Long.MAX_VALUE) );

7 retract( $e );

8 end �
Listing 2.8: Handling in-time Declip events after any MVI with Boolean

fluents.

verify that there is no MVI that includes $e (line 4). The consequent
consists of two actions: the introduction of a new (open) MVI object
with infinite duration (Long.MAX_VALUE) at time $te (line 6) and, of
course, the retraction of $e from memory (line 7).

delayed meaningful events with no interleaving The config-
urations that are addressed here are very similar to those that we have
introduced in the previous paragraph. We still have a Clip event and
a Declip that are respectively occurring during an MVI and outside
MVI, however in this case the property of haste does not apply.

This simple difference has two serious implications. The first impli-Implications of
delayed events cation is that it is always possible to find at least another more recent

event than the one that we are processing. The second is that it is no
longer possible to discard events upon processing because we might
need them later to decide how to update the fluent status in case of
delayed events. The reasons behind this second motivations will be-
come clear in the following paragraph. It suffices to know for now
that the presence of the more recent event involves different actions
from those performed in the previous case.

If we consider the configuration of a delayed Clip event occurring
during a closed MVI as in Figure 2.10e on page 46, the difference is
not really evident. We still cut the tail of the MVI and the time of
occurrence of the event, but then we do not retract it. The rule that
captures this behaviour is available in the Listing 2.9 on the next page.
As it is very similar to the one that we have seen before (we just
removed the action retracting $e) there is no need to further comment
on it.

When we look at the dual case described in Figure 2.10f on page 46,
the effect of the late notification of a Declip event before an MVI is
quite different. We have to identify the MVI that is immediately fol-
lowing the event under processing and stretch its duration so that it
starts at the same time in which the delayed event actually occurred.
The Listing 2.10 on the next page includes the code for the rule that
handles this situation. The first part of the premise is similar to the
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1 rule "Delayed Clip event during a closed MVI"

2 when

3 $e: Clip( $f: fluent, $te: time )

4 $m: MVI( fluent == $f, this includes $e, $im: init )

5 then

6 modify( $m ) {

7 setLength($te - $im);

8 }

9 end �
Listing 2.9: Handling delayed Clip events during closed MVIs with

Boolean fluents.

1 rule "Declip event before an MVI"

2 when

3 $e: Declip( $f: fluent, $te: time )

4 not MVI( fluent == $f, this includes $e )

5 exists Sample( fluent == $f, this after $e )

6 accumulate(

7 Sample( fluent == $f, this after $e, $tt: time )

8 $t: min($tt)

9 )

10 $m: MVI( fluent == $f, init == $t.longValue(), $lm:

length )

11 then

12 modify( $m ) {

13 setInit($te);

14 if ($lm < Long.MAX_VALUE)

15 setLength($lm + $t.longValue() - $te);

16 }

17 end �
Listing 2.10: Handling delayed Declip events before any MVI with

Boolean fluents.

premise of the equivalent rule of the former paragraph. In addition,
we have to establish that there is at least another event after $e (line 5).
Notice that we define both the Clip and Declip events in terms of a
common ancestor Sample. If such event exists, we iterate (line 6) over
all of them (line 7) to determine the one that is closest to the $e (line 8).
In our hypothesis, this event is a Declip so there should be an MVI ob-
jects $m for $f that starts there (line 10). The consequence modifies
$m (line 12) by both setting its initial state to $te (line 13) and ad-
justing its length to $lm + $t.longValue() - $te (line 15) if it is not
supposed to be infinite (line 14).
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delayed meaningful event with interleaving Now, we con-
sider an even more complicated case. As we pointed out while intro-
ducing the property of haste, we can not retract event notifications after
their processing in all those domains where it is reasonable to assume
that the events can be notified with significant delay. As we have seen,
some events have no influence on fluents history, but anyway they re-
main latent until the notification of a delayed event does not draw
them back in the game. In Figure 2.10g on page 46, for example, we
consider the case of a Clip event that occurs during a closed MVI,
however there is (at least) another event. This event is necessarily a
Declip event because a Clip would have been already processed by
one of the rules that we have already discussed. In Figure 2.10h on
page 46 is described the dual case where there is at least a Clip event
between the Declip event being notified and the MVI that follows it.

If we generalise this fact, we can conclude that there can be anyInterleaving

number of events between of a given type between two other events
of the opposite type. Notice that each pair of contiguous events of
the same type has no effect on the fluent history, while a pair of
contiguous events of different type always produces a change in the
fluent state. We call interleave, or interleaving, the alternation of events
of the same type and of different types. Notice that keeping track of
interleaving is mandatory because sequences of events of the same
type usually do not produce effects, but the delayed notification of
an different event can always fall within the sequence and break it
into subsections. The events that pertain to each subsection share the
same kind, however passing from sequences of one type to another
always causes some changes to the fluents.

In addition, it is important to identify the situations where the in-
terleaving applies because the actions needed to update the history
are different. If we consider again the configuration depicted in Fig-
ure 2.10g, for example, we notice that we still need to cut the tail
of the closed MVI that includes the event that is being notified, but
we also need to add another closed MVI where the interleaving occurs.
The Listing 2.11 on the facing page shows the code of the rule that ad-
dresses this situation. The premise of the rule gains a few additional
constraints with respect to the previous case to determine whether an
interleaving event exists (line 5).

If so, the rule iterates over the events of the sequence (line 7) to
identify the exact time instant in which the interleaving occurs (line 8).
The consequence of the rule includes an action to modify the MVI

object $m (line 11) by adjusting both its initial time to $t (line 12) and
duration to $lm + $te - $t.longValue() (line 14) if it is not infinite
(line 13) and another to insert a close MVI object with initial time $im

and duration $te - $im.
Similarly, the dual case portrayed in Figure 2.10h is slightly sim-

pler because it only requires to introduce a closed MVI when a de-
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1 rule "Delayed clip event during an MVI with interleaving

"

2 when

3 $e: Clip( $f: fluent, $te: time )

4 $m: MVI( fluent == $f, this includes $e, $im: init,

$lm: length )

5 exists Declip( fluent == $f, this during $m, this

after $e )

6 accumulate(

7 Declip( fluent == $f, this during $m, this after $e,

$tt: time )

8 $t: min($tt)

9 )

10 then

11 modify( $m ) {

12 setInit($t);

13 if ($lm < Long.MAX_VALUE)

14 setLength($lm + $te - $t.longValue());

15 }

16 insert( new MVI($f, $im, $te - $im) );

17 end �
Listing 2.11: Handling delayed Clip events during MVIs with

interleaving and Boolean fluents.

layed Declip event occurs before an MVI where other Clip events are
also present. The rule that solves this case is very similar to the pre-
vious one and it is included in the Listing 2.12 on the next page. The
premise of the rule addresses Declip events rather than Clip events
(line 3) and Clip interleaving events instead of Declip events (lines 5–
10), but the overall structure is maintained. The consequent of the
rule only assert a new closed MVI object to include the effects of the
interleaving of events (line 12).

The rules that we have presented in the previous paragraphs de- Boolean lite and full
modefine two stand-alone complete components implementing the EC with

Boolean variables. The two variants address the cases in which the
events that are being notified have neglectable delay or with a de-
lay so significant that the notification of events can no longer follow
the proper temporal order. Both these components require a com-
mon set of declarations that we report in the following Listing only
once to reduce the length of the presentation: These declarations in-
clude the statements that define the original Fluent and Event objects
(lines 1–2 and 4–8 respectively) that the user extends to identify the
domain when the transformation stage takes place. Notice that these
objects bear the same name of the concepts introduced in that stage
but, as we explained in Chapter 2.3.3 on page 38, they have not to be
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1 rule "Delayed declip event between MVIs with

interleaving"

2 when

3 $e: Declip( $f: fluent, $te: time )

4 not MVI( fluent == $f, this includes $e )

5 exists Sample( fluent == $f, this after $e )

6 accumulate(

7 Sample( fluent == $f, this after $e, $tt: time )

8 $t: min($tt)

9 )

10 exists Clip( fluent == $f, time == $t.longValue() )

11 then

12 insert( new MVI($f, $te, $t.longValue() - $te) );

13 end �
Listing 2.12: Handling delayed interleaving Declip events between

MVIs with interleaving and Boolean fluents.

confused with each other. It also contains the declarations for Clip

(line 17) and Declip (line 20) as an extension of a common generic
Sample (line 10–15), as well as for MVI objects (lines 23–30). Finally
two queries complete this set of statements: they identify whether a
fluent is true in a given instant (lines 32–35) or interval (lines 37–41)
of time.

If we assume that the property of haste applies, we can collect the
rules that we have introduced while discussing the notification of in-
-time meaningful events to convey a rule base for the EC on events
that is reasonable to suppose that are notified in proper temporal
order. We refer to this simpler and more specific EC context with the
name of lite mode. These rules are exactly the same as before, but
nevertheless we report them in Listing 2.14 on page 54 for the reader’s
convenience.

Now we discuss the more general case that covers events that may
be notified with a non negligible delay with respect to their occur-
rence time and interleaving. This mode of operation which we named
full mode combines aspects coming from all the situations that we have
analysed above. Unfortunately, merging together all the rules that we
have discussed so far in a single rule base is not enough. We will
discuss below the few changes that were needed to properly address
the domain. The resulting rule base for dealing with EC in full mode is
reported in Listing 2.15 on page 55 and Listing 2.16 on page 56.

The first two rules are equivalent to those in the lite mode, as they
handle the events that occur at the end of the narrative (lines 1–11

and 13–20). With respect to those rules, we have included a constraint
that verifies that there are no events that are more recent that the
one being processed (lines 6 and 17). Moreover we have removed
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1 declare Fluent

2 end

3

4 declare Event

5 @role(event)

6 @timestamp(time)

7 time : long

8 end

9

10 declare Sample

11 @role(event)

12 @timestamp(time)

13 fluent : Fluent

14 time : long

15 end

16

17 declare Clip extends Sample

18 end

19

20 declare Declip extends Sample

21 end

22

23 declare MVI

24 @role(event)

25 @timestamp(init)

26 @duration(length)

27 fluent : Fluent

28 init : long

29 length : long

30 end

31

32 query holdsAt( Fluent $f, long $t )

33 exists MVI( fluent == $f,

34 $i: init <= $t, $t - $i < length )

35 end

36

37 query holdsFor( Fluent $f, long $ti, long $tt )

38 exists MVI( fluent == $f, $ti <= $tt,

39 $i: init <= $ti, $ti - $i < length,

40 $i: init <= $tt, $tt - $i < length )

41 end �
Listing 2.13: Declarations for Boolean Event Calculus shared by lite and

full mode.



54 event calculus

1 rule "Clip event during an (open) MVI"

2 when

3 $e: Clip( $f: fluent, $te: time )

4 $m: MVI( fluent == $f, this includes $e, $im: init )

5 then

6 modify( $m ) {

7 setLength($te - $im);

8 }

9 retract( $e );

10 end

11

12 rule "Declip event (after any MVI)"

13 when

14 $e: Declip( $f: fluent, $te: time )

15 not MVI( fluent == $f, this includes $e )

16 then

17 insert( new MVI($f, $te, Long.MAX_VALUE) );

18 retract( $e );

19 end �
Listing 2.14: Lite mode for Boolean Event Calculus.

the actions that were retracting the events upon processing from the
consequences of the rules. Then we have addressed the case of events
whose notification is suffering from substantial delay but at least not
from interleaving.

Since the rule that handles delayed Clip events without interleav-
ing has the same consequent of the first rule above, we have decided
to merge them in a single rule (lines 1–11). In this regard, we have
relaxed the constraint that verifies that there are no events that are
more recent than the event being processes to verify that there is no
such Declip event (line 6). The rule that handles the dual case of de-
layed Declip events without interleaving (lines 22–38) is exactly the
same as before.

The rules that address the cases of delayed events with interleaving
(lines 40–56 and 58–70) close the rule base. Notice that they also are
exactly the same as those introduced earlier.

Fuzzy Cached Event Calculus

The two modes of operation presented above are extremely powerful,Beyond Boolean EC

but possibly not sufficiently versatile. Many EC implementations are
limited to Boolean values to describe the state of the domain. This
practice is justified by the fact that, in general, it is always possible to
decompose the compound state of a domain in simpler terms, until
atomic terms (that are actually Booleans) are reached. Although pos-
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1 rule "Clip event during an (open) MVI" +

2 "Delayed Clip event during a (closed) MVI without

interleaving"

3 when

4 $e: Clip( $f: fluent, $te: time )

5 $m: MVI( fluent == $f, this includes $e, $im: init )

6 not Declip( fluent == $f, this during $m, this after

$e )

7 then

8 modify( $m ) {

9 setLength($te - $im);

10 }

11 end

12

13 rule "Declip event after any MVI"

14 when

15 $e: Declip( $f: fluent, $te: time )

16 not MVI( fluent == $f, this includes $e )

17 not Sample( fluent == $f, this after $e )

18 then

19 insert( new MVI($f, $te, Long.MAX_VALUE) );

20 end

21

22 rule "Delayed Declip event before an MVI without

interleaving"

23 when

24 $e: Declip( $f: fluent, $te: time )

25 not MVI( fluent == $f, this includes $e )

26 exists Sample( fluent == $f, this after $e )

27 accumulate(

28 Sample( fluent == $f, this after $e, $tt: time )

29 $t: min($tt)

30 )

31 $m: MVI( fluent == $f, init == $t.longValue(), $lm:

length )

32 then

33 modify( $m ) {

34 setInit($te);

35 if ($lm < Long.MAX_VALUE)

36 setLength($lm + $t.longValue() - $te);

37 }

38 end �
Listing 2.15: Full mode for Boolean Event Calculus (first part).
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39 rule "Delayed Clip event during a (closed) MVI with

interleaving"

40 when

41 $e: Clip( $f: fluent, $te: time )

42 $m: MVI( fluent == $f, this includes $e, $im: init,

$lm: length )

43 exists Declip( fluent == $f, this during $m, this

after $e )

44 accumulate(

45 Declip( fluent == $f, this during $m, this after $e,

$tt: time )

46 $t: min($tt)

47 )

48 then

49 modify( $m ) {

50 setInit($t);

51 if ($lm < Long.MAX_VALUE)

52 setLength($lm + $te - $t);

53 }

54 insert( new MVI($f, $im, $te - $im) );

55 end

56

57 rule "Delayed Declip event after any MVI with

interleaving"

58 when

59 $e: Declip( $f: fluent, $te: time )

60 not MVI( fluent == $f, this includes $e )

61 exists Sample( fluent == $f, this after $e )

62 accumulate(

63 Sample( fluent == $f, this after $e, $tt: time )

64 $t: min($tt)

65 )

66 exists Clip( fluent == $f, time == $t.longValue() )

67 then

68 insert( new MVI($f, $te, $t.longValue() - $te) );

69 end �
Listing 2.16: Full mode for Boolean Event Calculus (second part).

sible, it is not always appropriate to reason in this way. Sometimes it
is simply more convenient to choose among a multi-valued array of
options, be they (sets of) integers, reals, enumerations or even more
like strings and Abstract Data Types (ADTs) possible states. All these
options, in fact, provide an abstraction for dealing with ranges of val-
ues much larger than Boolean. Integers, Z, and reals, R – for instance
– have their own domains. Enumerations are sets of options by defi-
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nition. Strings may be such a thing, if they are considered as ordered
sequences of characters. And any full assignment of the fields of an
ADT identifies a specific configuration among all the possible combi-
nations that are given by computing the power set of the domain of
each field.

In addition, if we consider that these richer ranges can be used as Many-valued EC
and Fuzzy Logicdomains of fuzzy sets, we can imagine to use fluents like linguistic

variables. This is made possible by the adoption of this richer formula-
tion of the EC on one side and of Drools Chance – the Drools variants
that supports imprecise reasoning and degrees of truth in rules – on
the other. A fuzzy set is a pair (U,m) where U is virtually any set
and m : U → [0, 1] a matching function that returns a degree. For
each x ∈ U, in fact, the value m(x) is called the grade of membership
of x in (U,m). Linguistic variables are non-numeric variables that are
usually adopted in fuzzy applications. They have the usuals domains,
however they define linguistic terms to identify specific distribution
of admitted values. A typical example is the linguistic variable age
which ranges over the possible interval [0, 125] but uses more conve-
nient terms like young, adult or old to identify specific “segments” of
age. If we define appropriate matching functions for young, adult or
old on the same interval [0, 125], we can determine the degree of mem-
bership of each value of age to each linguistic labels and it becomes
possible to go from crisp values to linguistic labels (fuzzification) and
vice versa (defuzzification). This very short and simple introduction
to fuzzy logic does not pretend to be exhaustive, but it is intended
to suggest to the reader the great advantages in expressiveness that
this technology brings into play. The interested reader may find more
details on fuzzy logic and PRS in Appendix A on page 153.

In the following paragraphs we will focus on the differences be- Main practical
differencestween this new formulation and we will present the code to process

it. A first important shift from the previous version is the type of flu-
ents’ values. We have defined them as Java Objects so that virtually
anything – any instance of any class – can be assigned as a fluent’s
value. This small but profound change also affects the way in which
MVIs are handled. In Boolean formalisations, fluents could get only
two values so it was very convenient to connote one as default value
(i. e. false). In this way, it suffices to keep track of only the intervals
in which the fluent assumes the other value (true) because the other
intervals are obtained by difference 14. With many values, however,
choosing a default value for each possible data type is completely
arbitrary since different problems – or even different models for the
same problem – that use the same data type, may require different
default values.

14 This practice applies only to the positive half of the time axis, where the point of
separation coincides with the starting time of the operations on the domain that is
usually considered as 0.
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In this regard, we have decided to initialise all the fluents’ valuesProperty of
membership to null. A fluent is null when it is in an undefined state that persists

until the happening of an event imposes a specific value to it. This
choice leads to an important implication: the history of any fluent
is always fully described in terms of MVIs from the initial time on
forward. When an event happens, in fact, it may partition an MVI
into two MVIs with different values. Such operation, however, does
not introduce any temporal discontinuity between MVIs. This leads to
the definition of an important property for this EC formalisation. This
property, named property of membership, states that the notification of
any event is always included in exactly one MVI. Such property will be
exploited to simplify the rules that implement the calculus.

With respect to the encoding approach that applies to the BooleanOther practical
implications case, notice that it is still applicable but it would be an unnecessary

complication. If we were embracing this philosophy, in most cases
(precisely n− 1, where n is the number of possible values) we would
need a reference to the value itself within the MVI to properly track
it. In the remaining case, instead, we would interpret the absence of
any MVI as a suggestion that the fluent assumes the default value in
the corresponding time interval. In this case, a discontinuity in the
temporal sequence of the MVIs means the implicit presence of an MVI
referencing the default value. On one side, this approach saves a little
memory but, on the other side, it requires more complicated sets of
rules to take care of the two different ways of denoting MVIs. Such a
memory gain, however, is quite marginal, certainly not as dramatic
as in the Boolean case. Roughly, the gain ratio due to this encoding
technique is 1 to n therefore it quickly drops from the 50% of the
Boolean case towards 0%, as n increases. Another aspect to consider
is that more complicated and populated sets of rules, require more
computational resources to activate and are more difficult to maintain.
The adoption of a PRS mitigates the overhead introduced by larger
rule bases, but it does not eliminate it. For all these reasons, we have
opted for a single, more compact and efficient ruleset at the expense
of a slightly higher memory consumption.

Another consequence of this choice is that all the transitions fromAdditional features

one value to another are treated in the same way. In other words, all
the kinds of notification events that we were used to have collapse
in a single type of event. This fact further simplifies the rule-set. In
the Boolean case, in fact, we were used to deal with Clip and Declip

events, but now we just have Samples. With respect to the events no-
tification of the Boolean case, a Sample also contains a reference to
the specific value that is going to be set on the fluent. Notice that
Sample is a private class of this stage, just as Clip and Declip are
for the Boolean case. Therefore the user can not directly interact with
Samples, but just indirectly through the more external layers of the
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tool. In effect, the presence in the Sample of a reference to the value
to be set in fluent opens up new possibilities, as it is shown below.

This value can be interpreted as either an absolute value or as a Absolute and
relative valuesrelative value. Samples with absolute values work exactly like the Clip

and Declip that we have seen before: they impose the value that
they contain to the fluent. The only difference is that the value is
now explicitly maintained in a field rather than being implicit in the
type. Relative values, instead, require to be processed before being
imposed to fluents. Processing means that the value that they carry
must be added to the current value of the fluent to determine the
value to set. On one hand, the adoption of relative Samples poses
some threats: MVIs are always initially set to null so adding a relative
value to this value does not make sense. This problem can be easily
solved by checking whether the current value of the fluent is null

before doing the addition: if so, we consider the relative value as
an absolute value, otherwise we proceed with the sum. Notice that,
despite a further small complication, the adoption of Sample with
relative values can help to introduce the idea of trajectories suggested
by the EEC.

We have preferred the Samples with absolute values to stick with
the simplicity of the solution. Notice that we are not loosing in gener-
ality because relative values are treated accordingly, they just require
an additional query to retrieve the current value: the provided delta
is combined with the retrieved value and an absolute value is issued.
The only tricky case would be dealing with relative statements on
fluents whose state is still undefined. Possible solutions to this prob-
lem are the following. We could constrain the end user to provide an
absolute statement first in order to set the fluent’s state, but this is
an unrealistic assumption. Conversely, we could establish a default
initial value for each fluent, but this is equally unreasonable. Ulti-
mately we could simply decide to leave the fluent’s state undefined.
This last option is more practicable even if it allows longer initial tran-
sients. The rules to govern these cases are trivial to implement for a
developer which is proficient with Drools syntax. We have not simply
because absolute values were already covering all our needs.

Notice that it is possible to have systems where Samples with abso-
lute values and with relative values coexist. In both cases, passaging
the Samples is an external operation that does not interfere with the
ruleset for the EC that are presented below.

Now we describe the possible configurations that can occur when Graphic conventions

a new Sample event is notified and then we introduce the rules that
handle this peculiar formulation of the EC. Figure 2.11 on the next
page summarises all these cases. It adopts graphical conventions that
are similar to those used before. The time axis is still represented as
a horizontal dashed gray line (with increasing values towards right).
Cyan upward arrows are still used to indicate when Sample events
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(a) Irrelevant sample (b) In time meaningful sample

(c) Delayed meaningful sample with
no interleaving

(d) Delayed meaningful sample with
interleaving

Figure 2.11: Initial configuration and outcome of the possible cases of up-
dating the history of many-valued fluents due to the notifica-
tion of sample events.

take place. In this context, however, their length has a different mean-
ing: it gives a rough measure of the specific value that is going to be
set on the fluent: the longer the arrow, the higher the value. Since this
metaphor is not valid for some value types, we say that the length of
the arrow helps to distinguish between values when no proportion
between length and value holds. For those types, in fact, it is always
possible to introduce a mapping function that linearises the values in
the range. The Sample that is being notified is still coloured in red.
The history of a fluent is represented again by a collection of contigu-
ous MVIs. Their values are used to determine the height of the steps of
a staircase function that describe the history of the fluent in a graph-
ical way. The resulting staircase function is rendered as a segmented
yellow line as before.

The Figure 2.11 uses these graphical conventions to convey the de-Possible
configurations scription of a few meaningful configurations of Sample and MVI ob-

jects. Each part of this Figure contains two diagrams: the top one
presents the fluent history upon notification of the Sample in dark red,
and the bottom one the history after that the effects of the Sample are
applied.

irrelevant sample A Sample event that does not affect any fluent
is still the simplest case to consider, as no rule is needed to take
care of that. A possible example is shown in Figure 2.11a where a
Sample event (whose values is exactly the same as the valued of the
including MVI) is notified. Please notice that, according to the property
of membership, an MVI that includes the event always exists.
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1 rule "In-time meaningful sample"

2 when

3 $s: Sample( $f: fluent, $v: value )

4 $m: MVI( fluent == $f, this includes $s, value != $v )

5 then

6 update( $m ) {

7 setLength($s.getTime() - $m.getInit());

8 }

9 insert( new MVI($f, $v, $s.getTime(), Long.MAX_VALUE) )

;

10 retract( $s );

11 end �
Listing 2.17: Handling in-time Samples.

in-time meaningful sample The second configuration is present-
ed in Figure 2.11b on the facing page. In this example, the value of
the Sample event is different from the value of the MVI during which
the event is received. We can make two assumptions here: the first is
again that such MVI always exists (property of membership) and the sec-
ond that the event that is being processed is always the most recent
(property of haste). These conditions are translated into two statements
forming the premise of the rule that handles this kind of configu-
rations. You can find the code that handles this case in the Listing
(lines 3 and 4) at the end of this paragraph.

Before that, consider that the property of haste applies also to the
event that created the MVI that we have just identified, so we can
conclude that it must be necessarily an open MVI. Moreover, it allows
us to say that the MVI that is going to be added, will be an open MVI
too. It follows that the consequence of the rule will cut the tail of the
former open MVI at the time instant of the Sample event just received
and then it will append a new open MVI to the end of the history
whose value is the same carried by the event. The consequence of
this rule is presented in Listing 2.17 (lines 11–17):

delayed meaningful sample with no interleaving The case
discussed in this paragraph is sketched in Figure 2.11c on the facing
page. The Sample event under scrutiny is notified with a substantial
delay that allows some subsequent events to be processed before its
notification. With this premise, we can only consider the property of
membership to be valid, but not the property of haste. Because of this
delay, we can conclude that there is always at least a Sample event
(and consequently an MVI) following the event that is being examined,
or otherwise we would fall back into the previous case.

In addition to those considerations (which are also valid for the
paragraph below), we assume that there is no “interleaving” between
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1 rule "Delayed meaningful sample with no interleaving"

2 when

3 $s: Sample( $f: fluent, $v: value )

4 $m: MVI( fluent == $f, this includes $s, value != $v )

5 accumulate(

6 Sample( fluent == $f, this after $s, $tt: time )

7 $t: min($tt)

8 )

9 $e: MVI( fluent == $f, init == $t.longValue(), value

== $v )

10 then

11 update( $m ) {

12 setLength($s.getTime() - $m.getInit());

13 }

14 update( $e ) {

15 setInit($s.getTime());

16 setLength($e.getLength() + $t.longValue() - $s.

getTime());

17 }

18 end �
Listing 2.18: Handling delayed Samples with no interleaving.

the values of the notified event and the subsequent one or, in other
words, that they bring the same value. The Listing at the end of this
paragraph shows the premise that identifies this configuration: the
Sample event is retrieved and chained to the MVI $m that includes it as
before (lines 3 and 4), then the rule iterates over the Samples of the
same target fluent that follow $s to identify the least recent (lines 5–8)
and finally its corresponding MVI $e is returned (line 9).

With respect to the expected outcome, the consequence of the rule
is responsible for cutting the tail of the MVI $m at the time in which the
delayed event was expected (lines 11–13) and the MVI $e is extended
towards left to fill the gap between them (lines 12–15). The full content
of the rule is available in Listing 2.18:

delayed meaningful sample with interleaving The last pos-
sible case is shown in Figure 2.11d on page 60. Most of the consid-
erations included in the former paragraph apply here too. The only
difference is that the value of the Sample event is different from the
value of the subsequent MVI (the values are interleaving).

Accordingly, the premise of the rule that tackles this case is also
very similar to that of the previous case. The difference relies in the
statement (line 9) that aims to verify that the values of the Sample $s

and of the subsequent MVI are not the same.
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1 rule "Delayed meaningful sample with interleaving"

2 when

3 $s: Sample( $f: fluent, $v: value )

4 $m: MVI( fluent == $f, this includes $s, value != $v )

5 accumulate(

6 Sample( fluent == $f, this after $s, $tt: time )

7 $t: min($tt)

8 )

9 exists MVI( fluent == $f, init == $t.longValue(),

value != $v )

10 then

11 update( $m ) {

12 setLength($s.getTime() - $m.getInit());

13 }

14 insert( new MVI($f, $v, $s.getTime(), $t.longValue() -

$m.getInit()$) );

15 end �
Listing 2.19: Handling delayed Samples with interleaving.

The consequence of the rule still cares to cut the tail of MVI $m

(lines 11-13) and, in this case, to assert a new MVI of value $v to fill
the temporal discontinuity that the first action introduced (lines 14

and 15). The full code is included in Listing 2.19.
Once again, the above rules may be combined together to provide Fuzzy lite and full

modetwo organic stand-alone reasoning modules. The first addresses the
simpler case in which both the properties of haste and the property
of membership hold and, in analogy to the choices made earlier, we
named it lite mode. The second addresses the more general case in
which only the property of membership holds and attention must be
paid to the interleaving of events. This mode of operation is called
instead full mode.

Both modes requires a few declarations and queries to interact with
the module. They are provided only once in the following Listing to
keep the presentation short. It contains a definition of Fluent (line 1

and 2) and Event (lines 4–9) to provide the parent class types for
the translation that takes place in the transformation layer. Then it
contains a declaration of both a Sample and MVI object that are needed
by the rules. The Sample object (lines 11–17) has a reference to the
fluent to which it refers, to a value and to the time instant in which it
occurs. The MVI object (lines 19–27) holds a reference to the fluent to
which it refers, to a value and to its initial instant and duration. The
two queries that follows, holdsAt (lines 29–32) and holdsFor (lines 34–
38), are used to determine wether a fluent $f has a value $v at a time
instant $t or interval [$ti,$tt).
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1 declare Fluent

2 end

3

4 declare Event

5 @role(event)

6 @timestamp(time)

7 value : Object

8 time : long

9 end

10

11 declare Sample

12 @role(event)

13 @timestamp(time)

14 fluent : Fluent

15 value : Object

16 time : long

17 end

18

19 declare MVI

20 @role(event)

21 @timestamp(init)

22 @duration(length)

23 fluent : Fluent

24 value : Object

25 init : long

26 length : long

27 end

28

29 query holdsAt( Fluent $f, Object $v, long $t )

30 exists MVI( fluent == $f, value == $v,

31 $i: init <= $t, $t - $i < length )

32 end

33

34 query holdsFor( Fluent $f, Object $v, long $ti, long $tt

)

35 exists MVI( fluent == $f, value == $v, $ti <= $tt,

36 $i: init <= $ti, $ti - $i < length,

37 $i: init <= $tt, $tt - $i < length )

38 end �
Listing 2.20: Declarations for fuzzy Event Calculus shared by lite and

full mode.
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1 rule "In time meaningful sample"

2 when

3 $s: Sample( $f: fluent, $v: value )

4 $m: MVI( fluent == $f, this includes $s, value != $v )

5 then

6 update( $m ) {

7 setLength($s.getTime() - $m.getInit());

8 }

9 insert( new MVI($f, $v, $s.getTime(), Long.MAX_VALUE) )

;

10 retract( $s );

11 end �
Listing 2.21: Lite mode for fuzzy Event Calculus.

Listing 2.21 presents instead the lite mode. Although this context
is much more complicated than its Boolean equivalent, a single rule
is enough to fully manage the case. We have presented this rule in
the second paragraph of this section that is about in-time meaningful
samples (see Listing 2.17 on page 61), but we repeat it in Listing 2.21

for the reader’s convenience.
Finally, Listing 2.22 on the following page and Listing 2.23 on

page 67 introduce the set of rules that constitute the full mode. The
whole mode consists of 3 rules only. The first one is the same rule
that we have introduced above for the lite mode (lines 1–11); we just
modified it to conform to the case of events with delay. In practice we
verify that the notified Sample $s is the most recent event (line 5) and
we do not retract it as it could serve later to assess the interleaving
during the notification of other events. The last two rules are exactly
the same rules that we have introduced in the last two paragraphs
that are about delayed meaningful samples with or without interleav-
ing (see Listing 2.18 on page 62 on lines 13–30, and Listing 2.19 on
page 63 on lines 32–46) to handle the cases of events notified with
non neglectable delay.

2.4 experimental evidences

This section presents the experiments that we have conducted on our
implementations of EC. In the first part of the section we introduce the
test suite that we have built to empirically asses the correctness of our
work. The second part contains instead the result of the comparison
between our implementations and their prolog counterparts as well
as some evidences about memory consumption.



66 event calculus

1 rule "In time meaningful sample (interleaving-safe)"

2 when

3 $s: Sample( $f: fluent, $v: value )

4 $m: MVI( fluent == $f, this includes $s, value != $v )

5 not Sample( fluent == $f, this after $s )

6 then

7 update( $m ) {

8 setLength($s.getTime() - $m.getInit());

9 }

10 insert( new MVI($f, $v, $s.getTime(), Long.MAX_VALUE) )

;

11 end

12

13 rule "Delayed meaningful sample with no interleaving"

14 when

15 $s: Sample( $f: fluent, $v: value )

16 $m: MVI( fluent == $f, this includes $s, value != $v )

17 accumulate(

18 Sample( fluent == $f, this after $s, $tt: time )

19 $t: min($tt)

20 )

21 $e: MVI( fluent == $f, init == $t.longValue(), value

== $v )

22 then

23 update( $m ) {

24 setLength($s.getTime() - $m.getInit());

25 }

26 update( $e ) {

27 setInit($s.getTime());

28 setLength($e.getLength() + $t.longValue() - $s.

getTime());

29 }

30 end �
Listing 2.22: Full mode for fuzzy Event Calculus (first part).

2.4.1 Assessing the Correctness of the Calculus

Before testing the efficiency of our implementation we need to verify
its correctness.

In this regard, we have created a very large test suite that containsTest suite and test
cases more than 4,000 individual test cases. Each test case consists of an

initialisation, an execution and a comparison phase. During the initiali-
sation phase, a new empty instance of the EC component is created.
We have introduced here an additional, special test case which aims
to verify that this operation is successful. During the execution phase
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31 rule "Delayed meaningful sample with interleaving"

32 when

33 $s: Sample( $f: fluent, $v: value )

34 $m: MVI( fluent == $f, this includes $s, value != $v )

35 accumulate(

36 Sample( fluent == $f, this after $s, $tt: time )

37 $t: min($tt)

38 )

39 exists MVI( fluent == $f, init == $t.longValue(),

value != $v )

40 then

41 update( $m ) {

42 setLength($s.getTime() - $m.getInit());

43 }

44 insert( new MVI($f, $v, $s.getTime(), $t.longValue() -

$m.getInit()$) );

45 end �
Listing 2.23: Full mode for fuzzy Event Calculus (second part).

we take a fictional narrative of events and we simulate the notifica-
tion of one event at a time. Depending on the cases, the events may
be notified in the right temporal order or not, as delay may interfere.
Finally, during the comparison phase the memory content of the com-
ponent is processed to make sure that it only contains instances of the
objects that correspond to the events that have been notified earlier
and to the objects that describe the resulting expected trace. If so, the
test case is successful, otherwise it fails.

We decided to take into account all the possible narratives that can Testing narratives

be achieved by building sequences of Clip and Declip events that
are no longer than 5 elements. The narratives obtained in this way
are permutations with repetitions of the 2 events above. Each choice
between a Clip or a Declip is independent so, if l is the length of
a narrative, the number of permutations is 2l. The events of each
of these narratives are associated with a progressive timestamp so
they can be considered as unique even though we allowed repetitions
during their construction. Notice that since we notify the events of a
narrative by following the order in which they appear, we can con-
clude that they all correspond to narratives in where the delay on
the notification of events is negligible. In order to consider all those
narratives in which events can be received with substantial delay, for
each narrative we generate all the possible permutations of events. In
this way, the timestamp associated with each event is still the same
and only the order with whom events are passed to the component
changes, thus simulating the delay. Since the events are now unique
within each narrative, these permutations are permutations with no
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length narratives permutations total
l 2l l! amount

0 1 1 1

1 2 1 2

2 4 2 8

3 8 6 48

4 16 24 384

5 32 60 3840

63 94 4283

Table 2.4: Figures about the amount of test cases in the test suite.

repetitions. If we still denote the length of a narrative with l, in this
case the number of permutations is l!.

These figures are summarised in Table 2.4 where the terms nar-Some figures about
the test suite ratives and permutations respectively refer to the permutations with

repetitions and without repetitions described above. Since we plan to
consider narratives no longer than 5 events, the total amount of test
cases that we obtain with the above criteria is given by the following
formula:

5∑
l=0

(2l · l!) = (1+ 2+ 8+ 48+ 384+ 3, 840) = 4, 283

If we also consider the special test case for the instantiation of the
component, the total number of single tests becomes 4,284. Each nar-
rative is processed by a different instance of the EC machinery during
the execution phase. Then the content of each WM is checked during
the comparison phase. The purpose of this step is to verify that the
memory contains only those instances that describe the expected fi-
nal state for each narrative. Notice that we have prepared a similar
set of narratives for the many-valued case by using Samples and two
integer values (0 and 1).

We have implemented these test cases using JUnit 15 for all the
modes of operation introduced in Chapter 2.3 on page 35. The execu-
tion of this test suite results in a complete success as no errors are
reported.

15 http://junit.sourceforge.net

http://junit.sourceforge.net
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2.4.2 Considerations on Efficiency

After the empirical verification of the correctness of our implementa-
tion, we want to assess its efficiency compared to other solutions as
well as its memory consumption.

Our terms of comparison are of course the efficient implementa- Prolog interpreters

tions of CEC and REC which inspired our work. Since CEC and REC only
cover the Boolean case, we will compare only the full and lite mode of
our Boolean implementation. As CEC and REC are built on a prolog
platform, first we have conducted a survey to identify the best open
source or freely usable systems that are currently available. Among
our findings, the most promising openly avaialable interpreters were:
B-Prolog 16, SWI-Prolog 17, tuProlog 18 and YAP Prolog 19. In order to de-
termine which interpreter guarantees the best overall performances,
we executed all the prolog EC implementations using the same narra-
tives that we prepared for the comparison that are described in the
following paragraph labelled “Test narrative”.

With the first narrative, REC clearly outperformed CEC since it is the
most favourable case for the former variant. The second narrative sees
CEC to win because it is the worst case scenario for REC. Moreover, the
difference in performance is not as great as we supposed before per-
forming the test. In the third narrative, the comparison is tighter and
it appears to be the most unbiased case. For this reason, we decided
to elect the fastest prolog system among those that were previously
identified by only using this narrative. With all the interpreters, REC
generally appears to be quite faster than CEC. Among these, B-Prolog
and YAP Prolog are the fastest. More specifically, B-Prolog is actually
faster than YAP Prolog, but due to its aggressive strategy on memory
allocation, more than a few executions were not able to complete for
lack of free memory. For this reason, we have preferred YAP Prolog to
B-Prolog to perform the rest of the experiments.

So we have prepared a narrative of events to feed the EC imple- Test narrative

mentations. This narrative has to fulfil some requirements: it must be
meaningful but not trivial, so that we can easily determine the cor-
rect status of the domain in reply to the occurrence of the narrative’s
events, as well as simple but long enough to appraise the efficiency
of each implementation. With respect to these requirements, narrative
that we have introduced as an example in Chapter 2.2 on page 31 and
shown in Figure 2.6 on page 34 is a good candidate. However, being
composed of only 6 events, we had to repeat it a hundred times to
get a narrative with a decent length of 600 events.

Starting from this narrative – which is clearly totally ordered as
no event is delayed – we have derived two other narratives. In the

16 http://www.probp.com/

17 http://www.swi-prolog.org/

18 http://tuprolog.alice.unibo.it

19 http://www.dcc.fc.up.pt/~vsc/Yap/

http://www.probp.com/
http://www.swi-prolog.org/
http://tuprolog.alice.unibo.it
http://www.dcc.fc.up.pt/~vsc/Yap/
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first one, the events are rearranged in reversed chronological order
to simulate a delay for each event that is inversely proportional to its
position in the sequence. In the last one, instead, the events are scram-
bled in a way that simulates the occasional delay of a few events. In
particular, all events in the narrative have equal probability of being
delayed to slip after 0, 1, 2, 3, 4 or 5 other events respectively.

The next step of the experimentation is to feed the lite and full modeSingle execution
times with the same scrambled narrative and to compare the results with

the figures that we have obtained above. These results are presented
in Figure 2.12 on the facing page and Figure 2.13 on page 72. The
numbers presented in Figure 2.12, in particular, show the times (in
milliseconds) that are required to process each single event. CEC is
the slowest system. The full mode is sensibly faster but nevertheless it
ranks as the third. The second fastest system is the lite mode whose
events are almost always processed in 1 millisecond. The fastest so-
lution is REC for which the Figure 2.12 reports processing times of 4

milliseconds or, generally, 0 milliseconds.
Clearly, a measure of 0 milliseconds is not realistic. Such value is

due to the different scale with whom elapsed time is measured in Yap
Prolog and Drools: Yap Prolog uses nanoseconds while Drools millisec-
onds. Therefore the times measured in Yap Prolog have been truncated
up to milliseconds to allow the comparison with those read in Drools,
thus introducing the above misunderstanding. If we imagine to round
up all the results computed by Yap Prolog during the experiments (as
it internally happens in Drools), all the readings of 0 milliseconds
would instead be of 1 millisecond. Since the performance of REC is
also characterised by a non-negligible set of readings of 4 millisec-
onds, we can even conclude that the lite mode is faster. However, due
to the narrow difference between the two fastest solutions, it is safer
to consider the comparison a tie.

The times presented in Figure 2.13 on page 72 are conversely cumu-Cumulative
execution times lative. Each value, in practice, is obtained by accumulating the time

to process all the previous events plus the time required to handle the
current one. In this scale, the CEC and the full mode are still the slow-
est. In particular, CEC is faster for problems up to approximately 300

events and then the full mode starts to perform better. As the reader
can see, the CEC curve is steeper so the full mode should be increas-
ingly faster for longer narrative. REC and lite mode are still the fastest,
of course. In particular, REC seems to outperform the lite mode but,
again, we must consider that the times coming from the prolog in-
terpreter have been truncated up to milliseconds, thus distorting the
comparison.

As we have explained for Figure 2.12, each reading of 0 millisec-
onds should be considered instead as of 1 millisecond. If we keep into
account this higher time in all the readings done in Yap Prolog, we ac-
cumulate up to an additional 600milliseconds for applying the effects
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of all the 600 events of the narrative. However, since the rounding up
introduces an average error up to half a millisecond, it is more reason-
able to suppose that this execution time needs to be increased of 300
milliseconds. Now, if we imagine to add this figure to the value that
we can read in Figure 2.13 on the preceding page for handling all the
600 events of the current trace, we can finally make a fairer compari-
son. The distance between the running times for the whole narrative
of REC and the lite mode shown in Figure 2.13 is slightly less than 200
milliseconds: with the above additional 300milliseconds, REC appears
to be slower than the lite mode for about 100 milliseconds.

Notice that these considerations may be extended to each event of
the narrative. This result corroborates our findings about Figure 2.12.
In addition, if we consider the steepness of the two curves (without
even correcting the running times for REC), we notice that the lite
mode’s curve is milder, suggesting that this tool is faster, especially
when dealing with long narratives.

Finally, Figure 2.14 on the following page compares the memory Memory footprint

footprint of lite and full mode only. As the reader can see, the full mode
has a rather erratic memory consumption while the lite mode shows
a linear consumption. These different behaviours are due to the re-
tention strategy of events in memory: the full mode always keeps data
in memory, while the lite mode dispose objects from memory when it
is safe to believe that they are no more needed (see Chapter 2.3.4 on
page 44). The peaks on the full mode curve in the Figure correspond to
the activation of the garbage collection mechanism that frees memory
to make room for new events. Similar peaks should also appear on
the lite mode curve, but later in time because its more parsimonious
use of the memory. Since garbage collection introduces overhead, we
can conclude that the full mode trades its robustness towards delayed
events with this overhead.

2.5 summary

In this Chapter we have summarised the most important aspects of
Event Calculus (EC) and we have compared a few variants to identify
the most efficient one. Then we have outlined the general architecture
of our proposal and we described the way it works. We also showed
how the knowledge provided by the user is transformed into a form
suitable for the EC machinery. We have also introduced two imple-
mentations of this machinery: one uses only Boolean variables, and
the other any kind of variables. We also explained how this second
implementation implicitly supports Fuzzy Logic (FL). In both cases,
we showed how to deal with plain ordered narratives or narratives
afflicted by delay in the notification of events. As a concluding step,
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we have described the tests that we conducted on these implementa-
tions to asses their correctness and to evaluate their efficiency.

In the following Chapters we will introduce other complementary
tools that can improve the expressiveness of our system and to check
the conformance of the domain.





3 H Y B R I D R E A S O N I N G

«For everything you have missed, you have gained something
else, and for everything you gain, you lose something else.»

— Ralph Waldo Emerson
American Poet, Lecturer and Essayist, 1803–1882

This Chapter introduces our advanced hybrid reasoner that can per-
form rule-based reasoning, semantic reasoning and fuzzy reason-

ing. We believe the novelty of this tool to be undisputed as, to the best
of our knowledge, it is the first – and yet the only – system that can
perform homogeneously those kinds of reasoning at the same time. It
improves the way Production Rule Systems (PRSs) work by introduc-
ing operators that can perform subsumption within rules and handle
approximation or imprecision within facts. It is not mandatory to use
this tool to monitor a system and evaluating its compliance with re-
spect to some desired behaviour, however its adoption introduces in-
teresting new possibilities in this regard. The domain and the desired
behaviour, for instance, could be expressed by means of an ontology
where the dimensions are expressed in fuzzy terms: this information
could be automatically accessed by some other rules to evaluate the
conformance of the system.

Notice that it was our desire to also include probabilistic reasoning
into the tool: our results, however, were not as conclusive as those
presented in this Chapter, so we have opted not to report them here.
The interested reader, however, can find a close examination of the
work done in this regard in Appendix B on page 183.

3.1 introduction and related works

In recent years, there has been a growing interest in combining on-
tologies with rules. Many works focusing on the theoretical aspects
of such integration have surfaced, sometimes leading to concrete so-
lutions [14, 78, 84, 111, 126, 127]. These solutions, however, usually
deal with only “crisp” concepts while real domains typically benefit
from fuzzy expressiveness. In a similar way, we have seen the intro-
duction of fuzzy reasoning in the context of both ontologies [173] and
PRSs [93, 132].

From a practical viewpoint, despite several rule engines and on- Integration between
rules and ontologiestology reasoners are currently available, only a few of them support

77
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semantic reasoning – or, more generally speaking, Description Logic
(DL) – as well. Jena (and JenaBean) 1, for example, includes a generic
rule based inference engine that can easily cooperate with the sup-
ported reasoners. Hammurapi Rules 2 is another Java rule engine that
leverages Java language semantics to express relationships between
facts as ontologies do. Algernon 3 is an efficient and compact Protégé 4

extension supporting both forward and backward chaining rules that
persists information in ontologies. Another solution is SweetRules 5,
an integrated toolkit based on Java for business rules in the semantic
Web, revolving around several standards that are related to both the
RuleML and World Wide Web Consortium (W3C).

This is probably due to the general lack of fuzzy reasoners: despiteIntegration between
rules and fuzziness a few are under development (such as DeLorean 6), FuzzyDL 7 seems

to be the only mature Java-based solution that we managed to find.
Fuzzy Logic (FL), instead, is possibly the only non-Boolean logic which
has been integrated in mainstream open source Business Rule Man-
agement System (BRMS). Several rule engines currently support FL:
most of them treat it “in a broad sense” by supporting various mathe-
matical theories, much fewer implementations consider it as a formal
theory that supports the human way of reasoning based a mathemat-
ical model [131]. Clips 8 and Jess 9, two of the first and most famous
rule-based systems, have a proper fuzzy extension which is respec-
tively FuzzyClips 10 and FuzzyJess 11 but, unfortunately, they are no
longer maintained. Drools 12 natively supports FL as a part of the ex-
perimental extension called Drools Chance 13 [124] which enhances ev-
ery formula by annotating it with a degree that models partial truth.

To the best of our knowledge, the only tools that are currently sup-Integration between
ontologies and

fuzziness
porting FL statements within ontologies are the already cited Fuzz-
yDL [173] and FuzzyOWL2 14, a plug-in for Protégé by the same au-
thors that provides an intuitive User Interface (UI) to deal with fuzzy
ontologies.

With respect to the integration of semantic knowledge with otherOther examples of
integration kinds of reasoning, some attempts have been made to exploit the com-

mon ground in First Order Logic (FOL) of Logic Programming (LP) and
DL by means of LP clauses. The instances of this intersection has been

1 http://jena.apache.org/, http://code.google.com/p/jenabean/
2 http://www.hammurapi.com/

3 http://algernon-j.sourceforge.net/

4 http://http://protege.stanford.edu/

5 http://sweetrules.semwebcentral.org/

6 http://webdiis.unizar.es/~fbobillo/delorean.php

7 http://gaia.isti.cnr.it/straccia/software/fuzzyDL/fuzzyDL.html

8 http://clipsrules.sourceforge.net/

9 http://www.jessrules.com/

10 http://www.nrc-cnrc.gc.ca/eng/projects/iit/fuzzy-reasoning.html

11 http://www.csie.ntu.edu.tw/~sylee/courses/FuzzyJ/FuzzyJess.htm

12 http://www.jboss.org/drools/

13 https://github.com/droolsjbpm/drools-chance

14 http://gaia.isti.cnr.it/straccia/software/FuzzyOWL/index.html

http://jena.apache.org/
http://code.google.com/p/jenabean/
http://www.hammurapi.com/
http://algernon-j.sourceforge.net/
http://http://protege.stanford.edu/
http://sweetrules.semwebcentral.org/
http://webdiis.unizar.es/~fbobillo/delorean.php
http://gaia.isti.cnr.it/straccia/software/fuzzyDL/fuzzyDL.html
http://clipsrules.sourceforge.net/
http://www.jessrules.com/
http://www.nrc-cnrc.gc.ca/eng/projects/iit/fuzzy-reasoning.html
http://www.csie.ntu.edu.tw/~sylee/courses/FuzzyJ/FuzzyJess.htm
http://www.jboss.org/drools/
https://github.com/droolsjbpm/drools-chance
http://gaia.isti.cnr.it/straccia/software/FuzzyOWL/index.html
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named Description Logic Programs (DLPs) [78] and a specific reso-
lution method has been proposed from them [84]. dlpconvert [127],
for instance, is a tool the converts the DLP fragment of OWL ontolo-
gies to datalog clauses. Some techniques to reason on DL within the
SHOIN and SHIQ families other than the usual tableau algorithms
have been proposed as well: some exploit the bottom-up inference
method that is typical of datalog and Deductive Databases (DDs) [126],
others adopt the top-down prolog own resolution mechanism to deal
with large data sets of individuals [111]. Although not actively main-
tained, FRIL 15 [19] – a prolog-like language and interpreter that aims
to integrate LP and FL – is indeed worth a mention. Another exam-
ple of technology that integrates rules with ontology is Web Service
Modelling Language (WSML), a formalism of the Web Service Mod-
elling Ontology (WSMO) framework that drops the full compatibility
with OWL to support rules [46]. The MARS [25] is a framework with
a declarative modelling style that focuses on the rule layer of the
Semantic Web (SW). Its rather general language has been designed to
specify rules for the SW, however, it is not equipped with any specific
reasoning technique for SW services.

3.2 developing the tool

The development of this component has gone through two iterations. Loosely- vs.
Tightly-coupled
approaches

Our first idea was to identify a set of flexible and powerful tools,
and put them together within a single tool. It was justified by the fact
that loosely-coupled architectures usually require a little less research
efforts – and a bit more engineering work – than tightly-coupled ones,
converging in less time to a usable prototype. Another aspect of no
less importance to consider is the expressivity of the resulting tool.

In loosely-coupled solutions, in fact, each tool that is part of the
framework can use its own means at full potential, with respect to
the relevant domain of application. Conversely, according to whether
the domains of application of the single components are completely
orthogonal with respect to each other or not, all the joint operations
require more efforts to coordinate and complete a single hybrid task.
Tightly-coupled solutions, instead, typically compromise on the spe-
cific kind of operations to perform on the several domains of applica-
tion of these reasoning styles. By finding a sort of common ground, it
results that the overall expressiveness of the final tool is reduced but
its internal architecture is sensibly better.

In the following sections we will introduce both our attempts by
describing the loosely and tightly-coupled ones first, and later by jus-
tifying such direction.

15 http://fril.sourceforge.net/

http://fril.sourceforge.net/
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Figure 3.1: System architecture of the tentative version of the hybrid rea-
soner.

3.2.1 The Loosely-Coupled Hybrid Reasoner

As you can see in Figure 3.1, our loosely-coupled prototype sports aArchitecture of the
loosely-coupled tool rules reasoner (Drools 16 marked by the number 1), a semantic rea-

soner (Pellet 17 marked by the 2) and a fuzzy reasoner (FuzzyDL 18

marked by the 3). It was our intention to give them equal relevance
within the final software, however we preferred to use Drools as host
component for the others due to its natural operational capabilities.

It follows that the Rule-based System (RBS) takes care of data in-Dispatching
requests to modules put and output: the factual knowledge about the domain is loaded

in its own Working Memory (WM) and then propagated to the seman-
tic and fuzzy reasoners. The rules given by the user to manage the
domain are loaded as well and included into the Production Mem-
ory (PM) of the PRS. The premises of these rules are allowed to use
the subsumptions operators isA and ~isA 19. The subsumption is a
cognitive process that allows humans to naturally interpret domain
entities as instances of more general classes aiding their categorisa-
tion. Such process exploits the intrinsic hyponym-hypernym relation-
ship that intervenes between the entities and the categories to whom
they pertain or between categories to determine whether a specific
concept qualifies as a member of a more general structure. In partic-
ular, we use the first operator to deal with crisp knowledge and the
latter to cope with imperfect or imprecise knowledge on the reference
domain.

These non-standard operators that we have managed to include inCustom operators as
points of variability our prototype. The PRS of choice provides in fact a plug-in mecha-

nism that allows to introduces new operators called Custom Opera-
tors (COs). Each CO needs to implement an interface that forces the
developer to deal with the operands and to compute the result of the
operation on such operands. The operands may be one or two in case
of an unary (both prefixed or postfixed) or a binary operator. In our
context two operands are required: the first is either any instance or

16 http://ww.jboss.org/drools

17 http://clarkparsia.com/pellet/

18 http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html

19 Notice that the ~ symbol is used by convention to denote fuzzy operators or defini-
tions.

http://ww.jboss.org/drools
http://clarkparsia.com/pellet/
http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
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class type present in the WM and the second a class type. Our oper-
ation consists in determining which entities or concepts correspond
to the given operands and to ask to the proper reasoner (semantic
or fuzzy semantic) the answer to return. In other words, any time a
constraint involving a CO is evaluated, the proper external reasoner is
called synchronously.

This solution, however, proved to be cumbersome and difficult to Evaluating the
solutionuse and, in the end, very inefficient. With respect to the first issue,

the inconvenience in using this component comes from the fact that
the user is required to model the domain three times – one for each
kind of reasoning supported by the component – and that he must
be consistent in his definitions. Notice that this is not a trivial task as
the several submodules may adhere to different assumptions.

The semantic reasoners (both in their crisp and fuzzy declinations),
for example, work in Open World Assumption (OWA) while PRSs typ-
ically work in Closed World Assumption (CWA). CWA, on one hand, is
a quite common and a definitely strong assumption that makes the
inference to generally derive much information, as anything that is
not explicitly stated is presumed to be false. OWA, on the other hand,
is an assumption with a more conservative approach where only the
information that can be safely derived from data is considered, pos-
sibly introducing an undecided group of data for whom it was not
possible to determine the truth. This is a limitation that afflicts many
hybrid commercial tools as well. Indeed, semantic reasoning is typ-
ically performed presuming the OWA, while PRS generally requires
rules to be evaluated in CWA: such important difference makes impos-
sible to define a unified semantics for both the reasoning paradigms.

The problem of the consistency among different models of the same
domain is partially lessened by the usage of tools that simplify the au-
tomatic conversion from one model to the others. This idea has some
obvious limitations: semantic and fuzzy semantic models are typi-
cally richer than object-oriented models, so richer knowledge bases
can always be impoverished but the opposite operation is rarely pos-
sible as crucial information would be missing. There are a few tools
like the JenaBean 20 extension to the Jena 21 framework that we have
used in this prototype, for example, that allows to pass from a seman-
tic domain to an object-oriented one but nevertheless the conversion
is never completely accurate due to the shift of paradigm.

The most obvious lack of this solution, however, is its poor ef-
ficiency. Consider that each time a semantic operation is involved,
the dedicated tool for these tasks may determine that, due to the
changes occurred onto the knowledge base since last execution, some
instances or concept are now different than before. In addition to the

20 http://code.google.com/p/jenabean/

21 http://jena.apache.org

http://code.google.com/p/jenabean/
http://jena.apache.org
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Figure 3.2: System architecture of the definitive version of the hybrid rea-
soner.

specific answer requested by a CO 22 call, this new information should
be propagated as well to the other models. This update, however, may
trigger other threads of reasoning that result in additional informa-
tion that needs to be propagated further. As the reader may under-
stand, simple actions may result in not negligible overhead due to
the continuous synchronisation of submodules that is exponentially
proportional to the number of them.

All these considerations suggested us to move towards the tightly-
coupled solution that is described below.

3.2.2 The Tightly-Coupled Hybrid Reasoner

Figure 3.2 shows the architectural diagram of our tightly-coupled im-Architecture of the
tightly-coupled tool plementation. In order to reduce the problems that we had identified

with the former contribution, we decided to merge the individual
models in a single knowledge base to get rid of the representation
issues and the overhead due to the dispatching of knowledge across
models.

The resulting component has the shape of any common instance of
our reference PRS, but includes a subsystem that is dedicated to fuzzy
semantic reasoning. The whole component can understand ontolo-
gies expressed in a slightly modified Manchester syntax 23 to cope with
fuzzy declarations, as well as models defined in the typical Drools
Chance syntax adapted to the fuzzy semantic case. The resulting com-
ponent has an expressiveness that is comparable with ALC+, the At-
tributive Concept Language with Complements identified by Baader, Hor-
rocks, and Sattler that is the basis of many other DLs [18].

If we look inside the component, we can recognise the same lay-Principles of
operations of the tool

22 Please notice that Drools provides some Java interfaces and abstract classes that
need to be extended to create a CO. Drools also offer an Application Programming
Interface (API) to plug-in any COs and made them available to the user. More details
on how to define and use COs is available in the official documentation of Drools
(http://www.jboss.org/drools/documentation).

23 The Manchester syntax for OWL! (OWL!) was chosen because of its much greater
readability by human beings.

http://www.jboss.org/drools/documentation
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ered pattern that we have introduced in Chapter 2.3.2 on page 37.
In this case, the first stage is again a transformation stage (marked
by the number 1 in Figure 3.2) while the second stage (marked by
the number 2) implements a Fuzzy Tableau for the given domain. As
the reader can see in Figure 3.2), the domain knowledge is loaded
into the WM of both stages. The PM of the preparation stage is already
filled with a set of rules that are equivalent to the steps of a Fuzzy
Tableau algorithm. These rules are triggered by the domain knowledge
and produce a second set of rules that is stored into the PM of the
second stage whose purpose is to perform the typical tasks of any
(fuzzy) semantic reasoner: to determine whether the model is consis-
tent, to make explicit all the implicit knowledge on the domain that
can be safely derived from the model and, lastly, to properly classify
the residual facts or domain entities that are present in the WM. Our
declarative implementation of the Fuzzy Tableau algorithm is freely in-
spired to the reference implementation by Straccia and subsequent
work [28, 112, 172, 173].

Readers who have a good knowledge of DL and know how a Tableau Fuzzy logics and
Tableaux algorithm:
backtracking as
mixed-integer linear
programming

algorithm works, may wonder how it is possible to implement an al-
gorithm that relies on backtracking so much in a system that does not
support this feature at all. In a classic Tableau algorithm, in fact, each
time that an expression is tested there is a sequence of actions that
need to be taken to determine the result that best match with the ex-
pression. When an instance is going to be classified, for example, the
algorithm tries to build the best concept that contains the instance by
considering the rest of the knowledge that is available. This process
often ends up in impasse , so the last few inconclusive steps have
to be reverted and other explanations considered. The semantics of
FL, however, relies on continuous ranges rather than plain alternative
discrete values.

In a context of Boolean values, for instance, a variable may either
be true or false, but not both at the same time.

A fuzzy variable ranges from 0.0 to 1.0, where 0.0 corresponds to
false and 1.0 to true. It may assume any value in between (0.35 for
example) and be either false with a degree of 0.35 or true with a
degree of 0.65 at the same time. In other words, FL always considers
each option and its alternatives at the same time, thus not requiring
any backtracking. Then, testing a single expression means to test all
the possible alternative results at once, or determine the truth degree
of each of them.

Notice that at the beginning of this procedure the whole range of
values is eligible for each result, so any additional condition that is
considered by any given result becomes a constraint that reduces the
domain to some extent. Therefore the original problem turns out to be
a Mixed-Integer Linear Programming (MILP) problem that we delegate
to a third-party component to be solved. This is the reason why the
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architecture of our hybrid reasoner includes a dedicated MILP solver
– marked by the number 3 in Figure 3.2. The interpretation that is
given to the degrees of truth that are returned by the Fuzzy Tableau
will be discussed with more details in the following section.

Now, readers that are fond on Object-Oriented Programming (OOP)Object-oriented
programming and

Description Logics:
multiple inheritance

as introspection

may wonder how our reference PRS manages to promote or demote
an instance to a given class that is present in the hierarchy of con-
cepts for the domain. Typical implementations of PRS use triples in
the form (subject, predicate, object) to store the knowledge about the
domain, while Drools uses Plain Old Java Object (POJO) objects (see
Chapter A on page 153 for additional information). With the former
approach, the knowledge is “ground in pieces” so small that it suffices
to retract the triple that binds the entity to its current concept and
assert another one that binds it to the new concept to “move” the
entity from one to another. Notice that the rest of the information
about the entity is left unchanged, meaning that the whole operation
is not costly. With the latter approach, this is simply not feasible as
the operation would involve the updating of the whole object. Many
packages like the aforementioned JenaBean framework introduce use-
ful approaches to solve the problem by creatively adopting design
patterns [67].

At first we decided to follow this route as well, defining a sub-
architecture that was making intensive usage of the Decorate pattern
to provide a flexible method of moving instances across the hierarchy
of classes without allocating large amount of memory. This solution
required a pre-emptive phase during which all the base classes were
identified as well as their possible combinations (to support the multi-
ple inheritance). For each class – basic or composite – all the support
interfaces and classes required by the Decorate pattern were gener-
ated, also providing methods to add and remove the traits of a class
to the instance. It is easy to see that this process has an exponential
complexity in the number of the basic concepts and thus it is only
feasible for small toy-like domains.

We abandoned this solution and moved forward another approach
much similar to traits or mixins like in Scala 24. The concepts are now
defined as traits and the instances are simple objects that manage a
key-value map (where the keys are the names of the fields and val-
ues just their values) and a vector of the traits associated with the
objects. We also provide a global object that favours the promotion
and demotion of instances by assigning or removing traits to an ob-
ject, and that intercept any get/set operation that is redirected to the
proper key-value entry of the target instance. This is possible thanks
to Java’s introspection and reflection. In this way, objects are still seen as
objects and more importantly can be accessed as objects, even if they
have been crumbled in pieces like in the approach with triples. Notice

24 http://www.scala-lang.org

http://www.scala-lang.org
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Figure 3.3: Meaning of interpretations: crisp values, imprecise values, uncer-
tain values and “necessity” and “possibility” of uncertain values.

that when a trait that was exporting some fields is removed from an
instance, the underpinned key-value entry is kept for possible later
usage. On the contrary, when a trait with new fields is added, the
corresponding entries are generated and initialised (if values are pro-
vided). As in many Aspect Oriented Programming (AOP) frameworks,
fields with the same name but coming from distinct traits are unified
only if it is expressly required by the domain.

The Semantics of the Degrees of Truth

Many works on FL refer the practice to enrich fuzzy predicates of Fuzziness in a
narrow sense:
understanding
gradual evaluations

deeper meaning – often indicated as “fuzzy in a narrow sense” [131]
– that goes beyond their typical usage in control systems [101]. The
pictures in Figure 3.3 try to introduce in a simple way a possible usage
of the fuzzy degrees of truth to model the vagueness and uncertainty
that is required in some domains.

As the reader can see, on the far left (Figure 3.3a) we have a possible Crisp values

assignment of a Boolean value in a “crisp” context. The value may
either be true or false (as in this example), so we have a very limited
set of alternatives to choose from to model the specific aspect of the
domain under consideration.

If we relax the domain of this value to the range of real values in Imprecise values

the interval [0.0, 1.0], we introduce imprecision to the model (see Fig-
ure 3.3b). If we use 0.24 as a value we mean that the aspect of the
domain that we are considering is not exactly false, but something
that more or less closely resembles it. This vagueness may be used
to model several things such as the confidence of the data, the sta-
tistical evidence that we have collected on the data, the sentiment of
a community about the data or virtually anything. Notice that, for
instance, we say that we consider the domain aspect under examina-
tion as false with a confidence of 0.76 or, conversely, that it is true
with a confidence of 0.24 with a single assignment. In other words,
FL keeps open both the former options by annotating them with the
appropriate degree.
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Now imagine to determine the value of our target domain aspectImprecise and
uncertain values according to some other feature of the domain by applying some

other operational rule. Initially all the values in the range [0.0, 1.0] are
admissible, but then the aforementioned actions may determine that
some these values are no more valid and restrict the range. If the pro-
cess is aggressive enough, the range may be reduced to a single value
and we fall back to the previous case. Otherwise, we have determined
two values in the interval [0.0, 1.0] that identify the residual range (see
Figure 3.3c). Here we use two real values to define the target domain
aspect instead of one: this additional degree of freedom allows us to
introduce uncertainty. It means that we do not know exactly the im-
precise value of the aspect that we are modelling, but only where we
can presumably find it. This additional option is used for example
in Transferable Belief Models (TBMs) to model the fact that we may
improve the precision with whom we know the given domain aspect
as we revise our knowledge about the model.

The end points of the residual interval may have an additionalPossibility and
necessity of a

conclusion
meaning if we contextualise them to the fuzzy semantic reasoning
that we have introduced above. As we have explained, each fuzzy se-
mantic expression in our component is translated into a MILP problem
whose solution is delegated to the external MILP solver. Each solution
returned by the solver is given in terms of double degrees of truth,
the residual ranges that we have just introduced. Each range, in prac-
tice, tells how much we can consider an entity to pertain to a given
concept – or not. The two endpoints become a measure of this consid-
eration (see Figure 3.3d) 25: the lower bound (that is closer to the false
terminal value) tells us that we can consider the entity as a member
of such concept no less than this degree. In other words, it tells us
how necessarily the entity is related to the given concept. Conversely
the upper bound (that is closer to the true terminal value) tells us
how easily the instance under examination qualifies as a member of
the given concept. In other words it tells us how possibly it is related
to that concept. In a way, we can say that the pos and nec operators
allows us to respectively retrieve the OWA and CWA degrees of truth of
any given statement.

Notice that it is always possible to pass from a model with a richerPassing from model
to another semantics to a poorer representation. Consider the case of the single

degree of truth that is used to model vagueness: the continuous range
may be flattened to its discrete terminal endpoints and the value that
is closest to the given value chosen. This procedure is sometimes as-
similated to the so-called defuzzication process. We have also intro-
duced two unary CO – nec and pos – to respectively return the lower
and upper bound of any residual range of truth. These operators are
used to flatten a two-dimensional model into a single dimensional

25 This formal connection to fuzzy modal logic is still object of study as it is not yet
commonly accepted by the scientific community.
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representation and pass from a richer model to a simpler one, in a
similar fashion of defuzzification.

An example of usage is provided in the following section to further
clarify the capabilities of our hybrid reasoner.

3.3 example of usage

In the following paragraphs we present some examples with the aim
of clarifying the principle of operation of the component that we have
introduced in the central part of this Chapter.

The example below partially revives a use case that we have stud- An example in
eTourism: why
OWA is needed

ied a in the context of an Italian research project focusing on eTourism
that also proved to be very useful when trying to explain the differ-
ence between OWA and CWA. The full example will be introduced in
more details in the Chapter 5.3 on page 119. Tour operators takes ad-
vantage of intelligent information systems to propose the right offers
to customers. The choice of the right offer comes from a rigorous pro-
cess of customers and offers classification. We consider now the case
of “advanced accommodation services” that are basically hotels which
provide additional services to the customers. One of this extra ser-
vices is a shuttle service to bring the customers to some ski resorts
and back. An advanced accommodation service is therefore defined
as an accommodation service with some employee and a shuttle ser-
vice operated by an employee to drive customers to ski. Notice that
when the hotel owners insert their data into tour operators’ databases,
they do not know which employee will exactly operate each run of
the shuttle service, nevertheless they know that they can offer such a
service. This is the typical way of reasoning of OWA. Although many
tools allows to read ontologies, they just interpret those definitions as
if in CWA with the result that those hotels do not qualify as advanced
accommodation services as the driver of the shuttle is not explicitly
stated. These systems typically work around the problem by adopt-
ing a different model and forcing the user to tick some checkboxes
instead.

Listing 3.1 on the following page shows an example of how to de- Semantic definition
of conceptsclare semantic concepts: the concept AdvancedAccommodation is de-

rived from the Accommodation concept (line 1) and further refined by
the requests that a shuttle is needed (line 2, “== true” is implicit) and
that at least one employee will drive the shuttle (line 5). By using the
connective and, or and the negation not it is possible to define any
kind of conjunctions or disjunctions of compound concepts, includ-
ing mutually disjunctive concepts. The concepts Accomodation and
Employee are not included to keep the presentation simple.

Because of the above definition, any hotel with a shuttle and at Subsumption
operators in rulesleast a person to drive it qualifies as an advanced accommodation ser-
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1 declare AdvancedAccommodation as Accommodation

2 and HasShuttle

3 and HasDriver some Employee

4 end �
Listing 3.1: Semantic declarations.

1 rule "Advanced Adv. Services to wealthy Customers with

no family"

2 filter 0.75

3 when

4 $c: Customer(

5 this ~isA Wealthy.class,

6 not this isA Married.class )

7 not exists Customer( age ~seems young,

8 isChildOf == $c )

9 $o: Offer( this isA

10 AdvancedAccommodation.class and Adventure.class )

11 then

12 EmailSvc.send($.getAddress(), $o);

13 end �
Listing 3.2: Subsumption operators in action.

vice and the entity is properly promoted to the more specific concept.
Now, imagine that we want the information system of the tour oper-
ator to automatically send advanced accommodation service that is
adventurous offers to wealthy single customers, where adventurous
offers are defined as offers involving dangerous activities as extreme
snowboarding or kitesurfing, for instance, and posh singles are un-
married customers with no children and a high income. The rule in
Listing 3.2 tries to do so. In this case, we want the rule to identifyCrisp evaluation

any couple (customer, offer) whose elements are of the desired type
so that we can automatically send the offer to the customer (line 11).
First of all we check that the customer under scrutiny is not mar-
ried (line 6) by triggering a semantic subsumption reasoning with the
CO isA. Then we verify that this customer is not the parent of any
other young customer (line 7). Notice that the condition on the age
of a child is tested with another CO which triggers fuzzy reasoning.
It follows that the field age has been defined as a fuzzy partition on
an integer range. More details on FL within our reference PRS are
available in Appendix A on page 153. Last but not least, we requireFuzzy evaluation

the customer to also qualify as a wealthy customer (line 5): notice
that this time we have used the fuzzy semantic subsumption opera-
tor ~isA therefore the evaluation will return a degree of truth rather
than a crisp Boolean value. The attentive reader may remember that
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fuzzy semantic evaluations compute the desired result together with
its alternatives, so it happens that any customer qualifies as wealthy
possibly with a low degree. In this regard, the filter statement in
line 2 discards any customer whose degree of wealth is lower than
0.75. With respect to the offers, we do a similar selection by subsump-
tion (line 8) however we explicitly state a composition of concepts as
a term of comparison for the isA operator. Although the result is sim-
ilar, in this case we implicitly define a compound concept on the fly
and we test the instance $o against it.

At last, consider that we could further refine the behaviour of the Taking advantage of
gradual evaluationrule thanks to the use of pos and nec operators. If we replace line 5

with this nec ~isA Wealthy.class, for instance, we mean that we
are only interested into customers that are necessarily wealthy at
least at a degree of 0.75. We obtain a more evident difference in the
behaviour of the rule if we replace line 8 and 9 with the following:

9 $o: Offer( this pos ~isA

10 AdvancedAccommodation.class and Adventure.class ) �
In this case, in fact, we allow a wider range of offers to qualify for
the advertising as we consider valid all the instances that potentially
qualify as advanced accommodation services that are adventurous.

This tool is still work in progress and it is currently incubated
within JBoss repositories as a collateral Drools open source project.
The intention is to make available for download as soon as it becomes
enough stable. Some ideas presented in this Chapter have managed
to reach the mainstream development branch of the official Drools dis-
tribution and will be released with the next upcoming major release
of the software.

3.4 summary

In this Chapter we have presented our state-of-the-art research on hy-
brid reasoning that combines rule-based, semantic and fuzzy reason-
ing styles. We first reviewed the research done in this regard, identi-
fying projects and technologies . Then we have described the develop-
ment process that led to the implementation of our original contribu-
tion in the field, emphasising its limits, the way in which we managed
to overcome them and its remarkable features. The first version was
based on a loosely-coupled approach that was easier to achieve but
plagued by poor ease of use and performance. The second final ver-
sion was oriented towards a tightly-coupled approach that required
a substantial research effort and properly addressed the former limi-
tations. Finally we presented the fuzzy semantics of the module and
a selection of explanatory examples.
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This components represents the results that we have achieved in
our effort to make the way of reasoning of a PRS more similar to the
human beings one, both in terms of expressiveness (with fuzziness)
and modalities (with subsumption). We have taken extra care to make
the component as much self-contained and modular as possible so
that it can effectively cooperate with the tool that we have introduced
in the previous Chapter and the one that we will introduce in the
following one.
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«Blessed is he who expects nothing, for he shall never be dis-
appointed.»

— Alexander Pope
English Poet, 1688-1744

In the last ten years, we have seen the prospering of models and
technologies for developing, deploying, and maintaining Informa-

tion and Communication Technology (ICT) systems based on hetero-
geneous and distributed components. Moreover, paradigms such as
Service-Oriented Architectures (SOAs), Web Services (WSs), Cloud
Computings (CCs), Business Process Management Systems (BPMSs)
have been already largely adopted by the ICT industry. When looking
at the medical and healthcare context, Computerised Clinical Guide-
lines (CCG) [44], care plans, and clinical decision support in general
aim to ensure that care standards can be implemented reliably and
effectively.

All these solutions – and many others as well – allow for increas-
ingly complex systems, while the adoption of standards pushes for
the use of heterogeneous, third-party software and hardware compo-
nents. As a consequence, assuring the correct behaviour of the com-
plex processes that take place in such systems is becoming a more
and more difficult task. To this end, approaches based on the notion
of conformance have been proposed. Roughly speaking, the expected
behaviour of a process is specified a-priori, by means of some formal
language. Then, the complex system is observed at run-time, and the
behaviour that is observed externally is compared with those expec-
tations. In case they are not met by the observations, some alarms
or managing procedures are triggered. This contradicts the opening
quote of this Chaptersince, from out point of view, expectations can
be used to determine whether a system is behaving correctly and, pos-
sibly, to nudge it towards the right direction, if it is deviating from
there.

In this Chapter, in fact, we introduce the concept of expectation as
the concept around which our criteria for the global conformance of
the complex processes revolves. The rest of the Chapter is organised
as follows: we first better contextualise the problem by discussing
some related works and then we introduce expectations as the most
iconic concept of Event-Condition-Expectation rules (ECE-rules), an
evolution of the well-known Event-Condition-Action rules (ECA-rules)

91
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towards the evaluation of conformant processes. We also discuss the
concepts that are needed to properly handle expectations and the
changes that are required to enable them within the definition of the
standard rules of a Production Rule System (PRS). An example is
provided as well to further clarify these concepts. Then we describe
the architecture of the tool, the metamodel behind it, the typical life-
-cycle of an expectation and, last but not least, the set of static and
dynamically generated standard rules that are needed to seamlessly
handle expectations. In the last part of the Chapter we present our
idea of global conformance as a user-definable function to compute
a conformance score of a process. We also show how to take advan-
tage of other forms of reasoning to further refine the conformance
evaluation. In particular, the self-contained modules that we have pre-
sented in this dissertation – or even any other third-party component
– could be used, provided that they return their evaluations as de-
grees of truth (see Chapter 3.2.2 on page 85). In this regard, we also
show how fuzzy temporal evaluation is addressed as it is an aspect
that was not properly covered by any of the other tools that we have
introduced in the previous Chapters. The procedure discussed here
could also be used to address similar complex cases that we have not
considered in this work. The Chapter is concluded by an advanced ex-
ample that shows how the same problem considered before could be
solved by considering the contributions of several custom evaluations
to compute the overall global conformance score.

4.1 introduction and related works

Assuring that a complex process is progressing correctly is a task that
is becoming more and more difficult. The traditional debugging tech-
niques alone, in fact, may not be sufficient because of the intrinsic
complexity of the overall system or because it is not possible to in-
teract with some of its parts, either because they involve third-party
components or human tasks. In these contexts, the Just-In-Time (JIT)
monitoring techniques could contribute in some way since they verify
whether the system behaves correctly while it is executing.

What typically happens is that the developer specifies in advanceBeyond traditional
approaches the correct outcome that the system should exhibit in reply to some in-

put or sequence of inputs. By observing the inputs, a JIT monitor tries
to guess what effects are produced on the system in a time that ap-
proximates the real-time. Then the output of the system is compared
with the excepted outcome to check whether they match. A positive
answer means that the system is deemed to be conformant. This ap-
proach can also be exploited to verify the conformance of complex
processes against some high-level constraints or specifications. The
Quality of Service (QOS) criteria, for instance, must be continuously
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monitored and proper actions must be taken any time the system de-
viates from the standard behaviour. Legal aspects, medical guidelines
and even business constraints could be subject to monitoring as well.

A common idea is to use rules in the most general sense, to ex- Conformance as
monitoring of
expectations

press the system’s desired behaviour. These rules are exploited to
codify both the conditions under which a behaviour is manifested
– be they a specific set of inputs or peculiar pattern describing the
system current state – and the expectations about the system out-
puts. Our proposal is to extend rules to naturally support conditions
and expectations when analysing and handling a system’s deviations.
This idea, however, is rather consolidated and shared among differ-
ent fields that are related in some way to the computer science. In all
these domains, the (close to) real-time process of systems monitoring
is regarded as a possible solution to assess the conformance between
them and the expected behaviours.

In [6], for instance, the deontic concepts and operators that can be Approaches in
literatureused to represent norms, obligations and similar concepts have been

identified and converted into Abductive Logic Programming (ALP) theo-
ries. Although supported by a different scope and motivations, a com-
mon background is introduced that also fits with the semantics of our
proposal. In the field of Multi-Agent Systems (MASs), instead, a few so-
cial approaches are been defined to specify which interactions among
agents are admissible in terms of expected behaviours. These ap-
proaches also define accomplishment or transgression of behaviours
in terms of deviation from the expected. The framework SCIFF [5],
for example, mainly focuses on a logic-based notion of expectations
and their fulfilment or violation. The commitments, as throughly inves-
tigated by Singh et al. [53, 167, 178] or Fornara and Colombetti [64],
are considered as promises coming from agents’ interaction where
“debtor” agents become committed towards a “creditor” to bring about
a given property, meaning that it is expected to make it true. In the
context of Business Process Modelling (BPM), van der Aalst et al. pro-
pose declarative languages focusing on the properties that the system
should exhibit. The DecSerFlow language [186], for instance, allows
the users to specify which business activities are expected or prohib-
ited to execute as a consequence of the execution or prevention of
other executed activities. In the domain of legal reasoning and nor-
mative systems, Governatori and Rotolo [73, 74, 76, 77, 156] propose
temporal logic frameworks and languages to represent legal contracts
between parties: these tools are primarily focusing on compliance is-
sues and simulate the possible course of actions of a system to evalu-
ate whether the contract agreements are indeed respected.

Most of these approaches, and many others, are implemented in a Conformance in a
broader senseway to provide only a boolean answer to the problem of conformance.

In other words, the question that these system are trying so answer is
whether the observed behaviour is conformant with the expected behaviour,
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and such answer may only be yes or no. According to our everyday
experience, however, a richer, more informative answer is generally
required in most cases. Sometimes, in fact, a given delay in a tem-
poral deadline is still acceptable, only meaning that an execution is
more or less flawless. Other times, the place in which an action is exe-
cuted may settle in a plain success, a failure or something in between.
Finally, there are cases in which an evident deviation from the ex-
pected behaviour may lead to a satisfactory evaluation or, conversely,
a proper execution may not qualify as well as expected due to other
contextual reasons.

In this regard, we propose to decouple the conformance problem
from the representation of the answer and to dynamically bound by
a function which singularly measures each context. In particular, we
propose to replace the over-simplifying Boolean answers in favour
of gradual answers such as degrees in the interval [0, 1]. Thanks to
this assumption, it is possible to introduce several custom evaluators
which provide answers in this range by considering all the different
aspects that are involved in the specific context. Then, a flexible and
robust methodology is exploited to combine these single contribu-
tions and provide an overall gradual evaluation of the conformance
problem.

The following example may help to ground the discussion: con-
sider a robot that is capable to move autonomously and suppose it
has to reach a certain position within a given time limit. The robot
may decide to move slowly but accurately, arriving exactly where
you want even if slightly late. Conversely, the robot might decide to
reach the destination as quickly as possible, even at the expense of
the accuracy of its final position. In both cases, a Boolean evaluation
of the conformance of the robot’s actions with respect to the expected
outcome would be a failure, while it would be almost a success (a
value relatively close to 1.0) if we were using the degrees of truth. In
particular, such result would arise from the combination of the eval-
uation of the robot’s spatial and temporal performance: the inverse
of the distance between the final and desired position for the spatial
dimension of the task and 1.0 (if in time) or the inverse of the de-
lay for the temporal dimension of the task. Moreover, consider that
additional context information – such as the fact that no route is pos-
sible from the current position to the given destination – could lead
to evaluate the fact the robot did not move at all as a full success.

4.2 event-condition-expectations rules

The ECE-rules have been imagined by loosely following the idea of
ECA-rules. ECA-rule is a term that is used to refer to the typical struc-
ture of active rules, as in Event-driven Architecture (EDA) and Active
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Database System (ADS). As suggested by their name, these rules tradi-
tionally consists of three parts:

event – the signal that triggers the invocation of the rule,

condition – a logical test that, if successfully passed, it causes the
action to be executed,

action – a set of updates or invocations on the contextual data.

This distinction was introduced by the early research on ADSs where
the term ECA-rule appeared for the first time. ECA-rules can also be han-
dled by rule engines that are based on advanced variants of the Rete
algorithm for processing rules [59, 160]. Those engines, in effect, of-
ten natively support the concept of events, perform tests of local data
to assess conditions and properly restructure the object attributes as
actions. In ADSs, the condition is typically a query to the database
whose result (if not trivial) is passed to the action as a parameter to
update the database. In either cases, data updates are considered as
internal events: as a consequence, the execution of a ECA-rule’s action
can match the event of another ECA-rule, thus triggering it if the con-
dition is met as well.

As the reader may guess, ECE-rules are similar for two thirds to From actions to
expectationsECA-rules: they are invoked as well by some external signal (the event)

and their execution is subject to some logical condition. The differ-
ence between them relies in the last part of the rule which expresses
expectations on the behaviour rather than actions. Here the operative
part of the rule is used to outline the directions in which the system
is expected to evolve from the snapshot of the domain that is identi-
fied by the happening of the event and the fulfilment of the condition.
The concept of expectation is general and orthogonal with respect to
the definitions of deviations provided in Chapter 1.2 on page 5. In
other words, exceptions (both implicit and explicit) and anomalies
(such as operational errors or even frauds) can be modelled in terms
of expectations.

From a practical viewpoint, our implementation of the ECE-rules Adapting rules to
handle expectationsquite closely resembles the typical structure of Drools rules. We have

extended the original parser of Drools to make it understand both
the regular expressions and the new definitions of expectations. Stan-
dard statements do not require additional processing and are directly
passed to the underlying Drools’ engine. The information about expec-
tations, instead, is redirected to a dedicated software layer for further
interpretation (see Chapter 4.3 on page 98).

As the reader can see in Figure 4.1 on the following page that The grammar of
expectationspresents the production rules to parse ECE-rules expressed in EBNF

syntax, in fact, the default parsing strategy of a 〈rule〉 is maintained
unaltered. This is not the case of the rule 〈consequence〉 which is over-
written by a production which seeks to identify a (possibly empty)
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〈rule〉 ::= ‘rule’, 〈id〉, 〈attribute list〉,
‘when’, { 〈pattern〉 }, ‘then’, 〈consequence〉, ‘end’;

〈consequence〉 ::= { 〈expectation block〉 }, { 〈java statement〉 };

〈expectation block〉 ::= 〈expectation list〉, { ‘or’, 〈expectation list〉 };

〈expectation list〉 ::= 〈expectation〉, { ‘and’, 〈expectation〉 };

〈expectation〉 ::= [ 〈id〉, ‘:’ ], ‘expect’, [ ‘not’ | [ ‘one’ ], 〈id〉, ‘:’ ],
〈pattern〉, 〈follow-up〉;

〈follow-up〉 ::= [ ‘on’, ‘fulfilment’, 〈fulfilment block〉 ],
[ ‘on’, ‘violation’, 〈violation block〉 ];

〈fulfilment block〉 ::= ‘{’, { 〈repair〉 }, 〈consequence〉, ‘}’;

〈violation block〉 ::= ‘{’, { 〈repair〉 }, 〈consequence〉, ‘}’;

〈repair〉 ::= ‘repair’, 〈id〉, ‘;’;

Figure 4.1: The sub-grammar covering ECE-rules, in EBNF form.

sequence of 〈expectation blocks〉 first, and then a (possibly empty) se-
quence of 〈java statements〉 as before. Passing through 〈expectation
lists〉, each 〈expectation block〉 turns out to be a disjunction of conjunc-
tions of 〈expectations〉. Each 〈expectation〉 – to which an 〈id〉 can be
associated – is introduced by the ‘expect’ keyword and it requires
a 〈pattern〉 and a 〈follow-up〉. The 〈pattern〉 is still a regular Drools
pattern, while the 〈follow-up〉 comes down to a couple of optional
blocks – namely the 〈fulfilment block〉 and the 〈violation block〉 – that
are respectively introduced by the keywords ‘on’ ‘fulfilment’ and ‘on’
‘violation’. Notice that the definition of 〈expectation〉 can be further
refined by using two optional keywords: ‘not’ and ‘one’. In the for-
mer case, the keyword “negates” the following 〈pattern〉with the same
semantics of standard Drools patterns. In the latter, instead, the key-
word ‘one’ is used to distinguish between two possible behaviours:
sometimes, in effect, it is appropriate that any set of facts or events
that match the premise of an ECE-rule also triggers an expectation,
while some other times it is required to activate only once and ne-
glect any additional activation after the first. Each 〈fulfilment block〉
and 〈violation block〉 is encompassed in curly brackets and contains a
possibly empty list of 〈repair〉 statements (that will be discussed in
a moment) and a 〈consequence〉 as well. As the reader can guess, the
reference to a 〈consequence〉 in this spot allows the definition of nested
expectations. Notice that the nesting of expectations to express com-
plex constructs is not mandatory as the default behaviour of the PRS
to join objects from several patterns (see Appendix A on page 153)
can be exploited as well. Also notice that the semantics of these blocks
agrees with the common sense: the 〈fulfilment block〉 refers to the case
in which an expectation is met and conversely the 〈violation block〉 to
the opposite case. Finally, the 〈repair〉 production is a Java-like state-
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1 rule "ECE-Rule Example"

2 when

3 $m: Message($s: sender, $r: receiver, content == "HELO

")

4 then

5 $e: expect one Message( sender == $r, receiver == $s,

6 content == "+ACK", this after[0, 10s]

$m )

7 on fulfilment {

8 insert(new Message($s, $r, "MAIL"));

9 }

10 on violation {

11 expect Message( sender == $r, receiver == $s,

12 content == "+RDY", this after[0, 2m] $m )

13 on fulfilment {

14 repair $e;

15 insert(new Message($s, $r, "MAIL"));

16 }

17 on violation {

18 insert(new Message($s, $r, "STOP"));

19 }

20 }

21 end �
Listing 4.1: An example of ECE-rule with nested expectations

mimicking the behaviour of a trivial mail server muffled
by requests.

ment introduced by the keyword ‘repair’ and concluded by a ‘;’. It
requires a mandatory 〈id〉 to identify the expectation that needs to be
repaired. This construct is used to acknowledge the system that an ex-
pectation that was violated can be now considered as fulfilled. As it
is reasonable to assume, the 〈repair〉 statements only affect violations:
any attempt to repair a fulfilment simply has no effect. The reference
to the 〈repair〉 production in the 〈fulfilment block〉 should not be sup-
pressed as it allows to repair a (nested or joined) violated expectation
from a fulfilled one.

example The following Listing 4.1 presents an introductory rep- What to expect from
expectationsresentative of ECE-rule which models the expected behaviour of a

toy mail server. In this example, the exchange of messages between
the server and the client is realised by introducing an appropriate
Message into the Working Memory (WM) of the PRS. Each Message is
declared as a Drools Fusion event so that it is automatically contextu-
alised in time (see Appendix A.3 on page 164) and it has a sender,
receiver and a content. This ECE-rule can be interpreted as follows:
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Figure 4.2: Outline of the system architecture that copes with ECE-rules.

each time a client tries to handshake with the server (line 3), the same
server (line 5) is expected to reply within ten seconds (line 6). Notice
that several replies may be issued because of possible transmission
problems, but only the first one actually triggers the following eval-
uation. If the server fulfils this requirement, the client proceeds with
the interaction by requesting the list of new messages (line 8). If this
expectation is disregarded possibly because the server is muffled by
requests, a new nested expectation is introduced (line 11). This nested
expectation requires the server to send a message to the client that is
listening for communications within two minutes to notify that the
peak of requests has passed and it is now ready to serve it (line 12).
If this is the case, the former violated expectation is considered as
compensated (line 14), the compound expectation is considered as a
success and the client finally asks for the list of new emails (line 15).
If this expectation is also not satisfied, the compound expectation is
regarded as a failure and the client cancels its request (line 18).

4.3 meta-model and supporting rules

As in many other cases (some of which are presented in this disser-Architecture of the
module tation: see, for example Chapter 2.3 on page 35 and Chapter 3.2.2 on

page 82) the implementation of the system for ECE-rule is organised
in two layers as sketched in Figure 4.2. In this case, however, only
the second layer is a proper PRS. The first layer in fact implements
a preprocessing stage (marked by the number 1) which reads both
standard Drools statements and rules augmented with expectations.

This task is achieved by extending the default Drools parser withThe preprocessing
layer functions to recognise additional or overridden productions (as de-

scribed in the previous Chapter 4.2 on page 94). The result of the
parsing process is an Abstract Syntax Tree (AST) with a regular and
recursive structure that is derived from the default grammar plus
the extension in Figure 4.1. Any standard piece of data is directly
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Figure 4.3: The meta-model for the expectations in ECE-rules.

passed to the WM and Production Memory (PM) of the underlying op-
erational stage (that is identified in Figure 4.2 by the number 2) while
any expression that is related to expectations is locally processed be-
fore being redirected to the following layer. By firing all the rules of
this second layer, the domain with expectations is properly managed
producing some output.

As already mentioned, the main concept of this extension is the ex- The operational
layer: expectations’
meta-model

pectation. Expectations can be combined in disjunctions of conjunc-
tions of expectations or in nested expectations. This ability to com-
bine into more complex structures is quantitatively expressed in the
top part of Figure 4.3 where it is suggested by the adoption of the
Composite structural pattern [67]. This choice has only an explicative
value since expectations are precisely maintained in AST structures.
Notice however that for each kind of expectation that is specified by
the domain an Expectation is introduced. This object contains fields
to hold additional information or constraints about the expectation
such as the label that is used to collect together the expectations refer-
ring to a single context. In addition to Expectation objects, there are
several instances of Closed, Failure, Fulfilled, Pending, Repaired,
Success and Violated that are used to decorate each expectation and
keep track of how its state evolves over time. Notice that all these
objects are defined as Drools Fusion events of null duration with the
sole exception of the Expectation whose starting time is set to the
time in which the triggering set of facts or events is individuated and
the duration is determined by the time in which the expectation is
satisfied or blatantly violated.

expectation rules Notice in particular that as soon as a trigger- Enabling
expectationsing set of facts or events of an expectation is found an open Expectation
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decorated as Pending is asserted in the WM. Notice that expectations
are converted into standard rules that are passed to the operational
layer to be properly handled. Each (simple) expectation, in effect, is
automatically translated into a set of standard rules composed. The
first rule is precisely used to generated the Expectation and Pending

instances: any time the event and the condition of the ECE-rule are met
and there are no Expectation objects for that activation, a properly
initialised instance of both Expectation and Pending is added into
WM. The second rule is optional and it is only available if the keyword
one is present in the definition. This rule is used to defuse the expecta-
tion mechanism after the first success: it triggers on a Pending object
and the first set of facts or events that match that the 〈pattern〉 that is
specified by the expectation. As a consequence, it retracts the Pending

object from the WM, so that the expectation is no more active for that
activation. The process of activation of these two rule is depicted in
Figure 4.3 on the previous page by the two little lightning symbols
between the Expectation and the Pending objects. The idea that this
symbol wants to convey is that an activation, being composed of an
event and a condition, also contains temporal information.

The next couple of rules are mandatory as they detect fulfilments
and violations of the given expectation. The rule for fulfilments has
the same premise as above; its consequence is to assert a Fulfilled

instance to further decorate the given activation of the Expectation.
In Figure 4.3 a lightning symbol is used as well to indicate the evo-
lution of the expectation from Pending to Fulfilled as it involves a
〈pattern〉 which is often resolved to an event and a condition too. The
complementary rule for violations has a similar premise; in this, how-
ever, the pattern for the set of facts or events that fulfil the expecta-
tion is negated. The consequence is clearly the assertion of a Violated

object for the given activation of the Expectation. Since the expecta-
tions typically contain temporal constraints, the meaning is that any
expectation that is not satisfied within the given temporal deadline
is considered as violated. Because of this reason, the state transition
of the expectation from Pending to Violated is sketched as a dashed
arrow.

The last couple of rules is optional: they are only required if the
user has specified some Java statement into the 〈fulfilment block〉 or
〈violation block〉 of the expectation. Their premises are exactly like the
premises of the two mandatory rules above and their consequences
are simply the Java statements provided by the user, if any. Notice that
the last four rules have higher salience than the second rule as oth-
erwise they would be prevented from triggering for the anticipated
disappearance of the Pending instance for the current activation. Also
notice that nested expectations are managed accordingly by gener-
ating similar sets of rules in whose premises the 〈patterns〉 and the
references to the Pending instances are accumulated.
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repair rules Each time that a 〈repair〉 statement is encountered Repairing
expectationswithin ECE-rules, a repair rule is added to the PM of the PRS that re-

alises the second layer of the component (see Figure 4.2). The premise
of these rules follows the same conventions of those introduced above:
they contain a combination of conditions coming from 〈patterns〉 and
Pending instances that are needed to identify the specific follow-up
block in which they are contained. The consequence of these rules
simply asserts a Repaired instance for the activation of the current
Expectation. As already discussed in Chapter 4.2, an Expectation

that is Repaired is fully equivalent to a Fulfilled expectation. We
decided however to introduce a different state to distinguish the ex-
pectations that are repaired in a second time from those that are im-
mediately satisfied.

success/failure rules With respect to the simpler case above, Evaluating
expectationsfulfilled or repaired expectations are obviously considered as suc-

cesses while violated ones as failures. Assessing successes and fail-
ures for any expectation activation is performed by an apposite set of
rules. For each activation, in fact, there is a rule whose premise looks
for an Expectation and a matching Fulfilled or Repaired instance.
As a consequence, that rule asserts a Success instance for the given
Expectation. In a similar fashion, there is a rule whose premise iden-
tifies any Expectation that is matched by a Violation, whose conse-
quence asserts instead a Failure instance for the given Expectation.

Each nesting level of nested expectations is still precisely treated in
this way. In this context, a further complication is the possibility to is-
sue 〈repair〉 statements if a block for another expectation. Notice how-
ever that once the all the repairs are applied, the logic defined by the
rules above still applies. The case of disjunctions of conjunctions of
expectations, unfortunately, is slightly more complicated. Once each
single expectation of a compound statement is evaluated, their values
may be combined together to provide the overall equivalent evalua-
tion. The formulas to combine conjunctions and disjunctions of expec-
tations are provided in Table 4.1 on the following page. These combi-
nation formulas are enforced by means of another set of rules. Two
rules (that are recursively applied to cover formulas with several argu-
ments) handle the conjunction of expectations. These rules are used to
generate a Success or a Failure instance for the conjunction accord-
ing to the state of two expectations: in particular, if only one of the
inputs is a Failure, the conjunctions is a Failure as well, otherwise
it is a Success (see Table 4.1a). Another couple of rules manages the
complementary case of the disjunction of expectations: in this context,
only two Failure instances as input lead to the assertion of a Failure

instance for the conjunction. In all the other occurrences, a Success

is generated (see Table 4.1b). Thanks to these rules, a Fulfilled or
Violated Expectation may be evaluated as a Success or a Failure
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Table 4.1: Combination formulas for the disjunctions of conjunctions of ex-
pectations.

(a) and formula

and S1 R1 F1

S2 S S F

R2 S S F

F2 F F F

(b) or formula

or S1 R1 F1

S2 S S S

R2 S S S

F2 S S F

. These state transitions are reported in Figure 4.3 on page 99: the
more typical of them are sketches as solid arrows, other as dotted ar-
rows. This typographical convention is used to distinguish between
the most common transitions and the more uncommon ones. Notice
however that this does not mean that those transitions are prohibited
as they may happen on cross-referencing expectations.

world closure rules Expectations are typically managed by con-Keeping the
expectations

consistent
sidering them closed towards the past, but open towards the future.
Therefore some issues may arise when dealing with expectations that
are still simply pending. Expectations that are still open, in effect,
are not reported as failures by the monitoring framework when the
system is suddenly halted. The procedure that identifies all the pend-
ing expectations and discloses them as unresolved with respect to
the open time horizon is called “closure”. Again, it is implemented
by a set of rules that are fed into the PM of the operational layer’s
PRS. The deliberate halting of the monitoring framework is preceded
by the assertion of a special Shutdown event into the WM. This object
matches with the first part of the premises of the rules that identify
all the open exceptions. A rule flags the Expectation as Violated if
it contains a positive 〈pattern〉 (the expected behaviour did not man-
ifest) and as Fulfilled if it is negated (no undesired behaviour has
occurred). In addition to the assertion of these instances, a Closed ob-
ject is generated as well to set apart closed expectations from the rest.
This transition is represented as a dashed lightning in Figure 4.3 on
page 99 to underline the special context in which it takes place. No-
tice that the set of rules for assessing the Success and Failure condi-
tion for each Expectation are applied before definitively halting the
framework. The Listing 4.2 on the next page depicts the operational
semantics of these rules.

optimisations The current state of expectations is also stored inImproving the
implementation a field of any Expectation instance. A set of ghost rules that mim-

ics the behaviour of the rules introduced in the previous paragraphs
and addresses this field instead of the instances of the state objects
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1 rule "Closure - positive expectations"

2 when

3 Shutdown()

4 $e: Expectation(

5 status == Status.PENDING,

6 negated == false )

7 then

8 $e.setStatus(Status.FULFILLED);

9 $e.setClosed(true);

10 end

11

12 rule "Closure - negated expectations"

13 when

14 Shutdown()

15 $e: Expectation(

16 status == Status.PENDING,

17 negated == true )

18 then

19 $e.setStatus(Status.VIOLATED);

20 $e.setClosed(true);

21 end

22

23 query "Closed expectations" ()

24 Expectation( closed == true )

25 end �
Listing 4.2: Operational semantics of the rules for the world closure.

is provided. This allows us to insert a special object Lite which pre-
vents the creation of any instance of the state objects. This second set
of ghost rules can be disabled as well by asserting an instance of a
special object Full. Consider that, it is not obviously possible to dis-
able both sets of rules at the same time without tampering with the
correctness of the framework. Therefore the assertion of an instance
of one of those special objects causes the retraction of any instance
of the opposite type that is currently included into the WM. This solu-
tion is motivated by the fact that preventing the generation of all the
instances of these state objects possibly spares several computational
resources. The adoption of the full mode is, however, strongly recom-
mended as the reification of the state of any Expectation instance
allows to keep track of the history of a process and extract statistics
about it. The amount of violated activations of an expectation with re-
spect to the amount of informations can highlight some critical steps
and suggest a process of Knowledge Base Revision (KBR) to detect
frauds and operational errors or promote exceptions to full-fledged
norms (see Chapter 1.1 on page 4). In those domains in which sparing
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resources is mandatory, it is possible to introduces adhoc rules that
purge outdated objects from the WM (see Appendix A.3 on page 164).

4.4 global conformance

In the previous section we have introduced and detailed the notionsBeyond the strict
evaluation of
expectations

of fulfilment and violation with respect to the single expectation, as
well as the concepts of success and failure that encompass more com-
plicated aggregation of expectations.

They have introduced the concept of both local conformance and
compound conformance, but the notion of global conformance of
a whole system should be considered as well. Such kind of confor-
mance could be simply defined as the logical composition of individ-
ual conformance values, but we rather adopt a more sophisticated
model in which users can introduce other criteria into the evaluation
process. Metrics that are typically addressed as such criteria include
– but are not limited to – semantic, statistic, gradual or imprecise
reasoning, etc. Therefore, this evaluation process can virtually use
any desired powerful matching function – be it regular expressions,
fuzzy pattern matching or Prolog unification, for example – it just
need a flexible, robust mechanism to combine these contributions to
a unique global score.

This vision guided the development of the main contributions dis-Considering other
contributions cussed in this dissertation. All the components, in fact, are designed

to be modular: any of the addressed reasoning techniques is handled
by a self-contained set of rules and declarations; these cores can coex-
ists within the WM and PM of a same PRSs and produce results in par-
allel. Notice moreover that any additional self-contained module that
can share a PRS memories is a valid candidate as well. The only dis-
criminating requisite is that any specific evaluator to be implemented
as a Custom Operator (CO) that returns a degree as a result of its com-
putation. The Drools Chance system, in effect, is already able to com-
bine these degrees with a great level of flexibility (see Appendix A.4
on page 171).

The fuzzy evaluation of time aspects is a feature that we have iden-Fuzzy deadlines

tified as extremely important and that we have not addressed yet.
In this case it is not sufficient to put aside different components to
accomplish it. In particular, in effect, Drools Fusion supports all the
Allen’s (crisp) temporal operators [7, 9, 10] and Drools Chance fuzzy
expressiveness, but together they do not provide fuzzy temporal eval-
uation out of the box. In order to achieve this feature, we have decided
to stick with the following approach: defining new COs for any spe-
cific fuzzy temporal need. At the moment, in fact, we have not con-
sidered any specific time formalism even though we are aware that
many are available in literature. As an example, consider some recent
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work within the MAS research community stressing on the importance
of temporal aspects like deadlines [177]. The decision to implement
adhoc evaluators is due to the fact that they greatly vary from case to
case. Socio-technical systems for the CCG, for example, may need very
relaxed evaluation of temporal constraints as several low-priority hu-
man tasks are involved. Technical systems, such as Web services for
example, many require a more rigorous assessment of temporal as-
pects. In some cases like the handling of QOS and Service Level Agree-
ment (SLA), a given margin of imprecision still applies while in other
contexts more oriented towards strict real-time evaluation not.

Since a rule-based semantic module is already available (see Chap- Considering other
optionster 3 on page 77), a more organic approach based on ontologies could

be developed. We could define a top- or upper-level ontology to deal
with any kind of temporal requirements so as to provide a reference
to the knowledge modeller to precisely describe the specific tempo-
ral needs of any given domain. The semantic module could interpret
these statements and automatically create the equivalent COs to be
used within rules. Approaches like this are probably the only ones
that can manage this great variability.

However, we wonder whether it is advisable to follow this idea.
On one hand, in fact, many leading researchers emphasise the ben-
efits deriving from a similar approach such as the reusability of the
same established knowledge in several ontologies, the ability to more
easily perform deep reasoning over the knowledge in a broad sense
or even the advantage of providing a universal shared “dictionary”
with whom to express the knowledge. On the other hand, other re-
searchers that, instead, are more concerned about the practical feasi-
bility of these approaches, argue that the definition of an upper-level
ontology and the acquisition of the competences to properly use it
are too costly for any average task.

Many players and vendors in the real world, in effect, prefer to
internally develop their ontologies from scratch as it drastically re-
duces the time-to-market of their applications rather than adopting
something that could lead to consistency problems with updates or
even potentially promotes the sharing of their own competitive ad-
vantages. It is not our intention to fuel this debate as both positions
have quirks and perks. However, given our practical experience in the
field of eTourism where ontologies play a central role and the finding
that the monitoring tasks in which we are interested involve practi-
cal limitations due to their necessity of reactively responding to the
changes, we have decided to stick with the simpler, more practical
and effective approach.

example In the Listing 4.3 on the following page, we take again The true power of
expectations with
global conformance

the same domain introduced in the Example 4.2 on page 97. This
time, however, we also consider different kinds of custom evaluators
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1 rule "Advanced ECE-Rule Example"

2 filter 0.8

3 when

4 $s: Service( this isA MailServer.class )

5 $r: Request( service == $s, $t: time )

6 ?holdsAt( MonitorOn, $t; )

7 then

8 @Imperfect(kind=="userOp")

9 $e: expect one Message( service == $s,

10 $d: delay ~inTime $r, this ~isA Reply.

class )

11 on fulfilment {

12 $s.setQuality(Quality.OPTIMAL);

13 }

14 on violation {

15 @Imperfect(family==MvlFamilies.GODEL)

16 $en: expect Service( this != $s, this after[0, 2m]

$r )

17 on fulfilment {

18 repair $e;

19 $s.setQuality(Quality.GOOD);

20 }

21 on violation {

22 $s.setQuality(chance.getDegree());

23 insert(new Fine((1.0 - chance.getDegree()) * 100))

;

24 }

25 }

26 end �
Listing 4.3: A more advanced example of ECE-rule on the same subject

of Example 4.1 on page 97 where various contributions
of different nature are considered to asses a global
conformance score.

to compute a score of global conformance for the specific execution
that is being monitored. In line 3, for instance, the use the seman-
tic isA CO to identify the services that are defined as mail servers
(see Chapter 3 on page 77). In line 6, instead, we exploit Event Cal-
culus (EC) to verify the condition that the monitoring framework is
operative (see Chapter 2 on page 21). Starting from line 9, the exam-
ple starts to consider expectations. The annotation on line 8 tells the
engine to combine the scores coming from the evaluation of the main
expectation with the contributions of any possible nested expectation
by using the a user defined strategy (see Appendix A.4 on page 171).
In particular, the expectation on line 9 relies on the fuzzy semantic
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operator ~isA to determine whether a message looks like a Reply

(line 10, see Chapter 3 on page 77) and on the fuzzy temporal CO
~inTime to determine whether the replay was received reasonably in
time (line 10, see Chapter 4.4 on page 104). In case of fulfilment, we
set the value equivalent to the fuzzy linguistic label OPTIMAL of the
linguistic partition Quality for the current server (see Appendix A.4
on page 171).

In case of violation, we have a plain nested expectation (line 16).
In this case, the annotation on line 15 tells that the contributions
for determining the global conformance coming from this violation
branch have to be combined according to the Gödel semantics (see
Appendix A.4 on page 171). Fulfilling this nested expectation leads
to tagging the server with the fuzzy linguistic label GOOD (line 19),
as above. In case of violation, instead, the quality of the service is
directly set to the current degree of the global conformance score
(line 22, see Appendix A.4 on page 171). That value, however, is also
used to compute the amount of the fine that the mail service provider
has to pay for failing to honour the agreed SLA on the QOS (line 23)
that in this example is issued by inserting a Fine instance into the
WM. Finally, notice that the ECE-rule only focuses on serious violation
of the protocol as the rule attribute filter on line 2 ignores any vio-
lation whose global conformance score is lower than 0.8. Also notice
that this example does not consider any statistical evaluator to asses
the global conformance, but it could be used as well (see Appendix B
on page 183).

4.5 summary

This Chapter includes the implementation of the mechanism that we
propose to handle the deviations in complex processes (see Chapter 1

on page 1). This contribution is currently incubated by JBoss as a
satellite project and features from it are progressively going to be
included into the mainstream component in the upcoming releases.
After a brief introduction on the problem where the most distinctive
related works are discussed, we have introduced our idea of Event-
-Condition-Expectation rules (ECE-rules) as an evolution of ECA-rules
to assess the conformance of processes.

Then, we have discussed the changes that need to be introduced
to the syntax of Drools to make it understand expectations while in-
troducing the concepts that distinguish them. An extensive example
further clarifies this concept. In the following part of the Chapter we
have sketched the diagram that represent the system architecture. We
have also defined the meta-model behind ECE-rules depicting all the
possible states and transitions of the expectations. We have also de-
scribed in details the set of static and dynamically generated rules
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that are needed to assist expectations during their whole lifetime and
a few optimisations as well.

In the last part of the Chapter we have introduced the concept of
Global Conformance with which we believe it is possible to bring the
conformance checking to a new level. This approach, in fact, allows
us to take advantage of any additional specific evaluator to better
asses the conformance of a process and to return a unique score that
considers all these contributions. By doing so, we have also addressed
a practical and a theoretical way to interpret temporal deadlines in a
more gradual way, according to the requirements of the domain. The
Chapter is closed by an advanced take of the same example intro-
duced before in which we show how all the scientific contributions
of this dissertation (see Part i on page 21) can be organically used to
estimate the complex processes conformance. A few practical appli-
cations of these contributions are reported in the following Part.
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5 P R A C T I C A L A P P L I C AT I O N S

«In theory, there is no difference between theory and practice.
But, in practice, there is.»

— Johannes Lambertus Adriana van de Snepscheut
Dutch Computer Scientist and Educator, 1953-1994

This Chapter contains a few examples of practical applications in
which the theoretical contributions discussed in the previous

Part are applied. In a few contexts, a specific use case only addresses
one of the suggested contributions, but generally they include all.
This Chapter ultimately aims not only to show that the theoretical
aspects discussed so far are really applicable, but also to underline
effectively they improve the solutions in a few domains. In particular
we will discuss an example in Computerised Clinical Guidelines (CCG)
where we use the Kinect, a motion sensing device by Microsoft 1, and
some Machine Learning (ML) techniques to monitor senior citizens to
identify dangerous health conditions and a more standard approach
to help providers to identify diseases and properly assist patients. An-
other use case is eTourism, where we show how the theoretical contri-
butions of this thesis can be exploited to implement a precise recom-
mendation system of touristic offers. The central part of the Chapter is
devoted to the Web Service (WS), Service-Oriented Architecture (SOA)
and Cloud Computing (CC): a first example, in fact, stems from the im-
plementation of a formal and efficient monitor for services in a SOA
environment that is further extended to manage the Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS) layers as well as
a second example in where we show how our contributions can solve
complex orchestration problems. Last but not least, we show how to
efficiently control a Waste-Water Treatment Plant (WWTP) with our
technologies.

5.1 real-time pose prediction
and monitoring

The application that is being described in this section was carried out
as part of the Depict project of the former Department of Electronics,

1 http://www.microsoft.com/en-us/kinectforwindows/
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Figure 5.1: Operating Diagram of the Pose Prediction and Monitoring
framework.

Engineering and Systems (DEIS) and the EU-FP7 Farseeing project by
coordinating the work of some students.

These projects focus on the implementation of a Decision SupportUse case

System (DSS) that remotely detects possible falls of elderly people
and draw the attention of the medical staff and possibly the law en-
forcement personnel to assist the patient. The software is supposed
to recognise any scene in which the senior citizens being monitored
fall due to some illness or disease and, if the situation persists, to
raise an alarm. In this kind of applications, both recall and precision
are important.

The recall, for instance, is the fraction of proper falls that are recog-
nised: it is mandatory not to miss any false negative 2 because early
intervention significantly increases the chances of life saving and re-
covery. The precision, instead, is the fraction of reported falls that are
actually falls: although a low precision is acceptable, it is advisable
to minimise the number of false positives 3 in order to maximise the
available resources. Each false alarm, in fact, usually involves sending
a rescue team which is both a waste of money (moving people) and
an inadequate allocation of resources (the personnel in a false rescue
mission is not available in the event of a further real emergency).

Our approach adopts several technologies, both hardware and soft-Involved
technologies ware. From the hardware standpoint, it revolves around the Kinect, a

motion sensing input device by Microsoft formerly introduced as an
accessory for the XBox 360 video game console and later adopted
in several Computer Vision (CV) research projects. From the point
of view of the software bundle, our approach mainly makes use of
Weka 4, a collection of ML algorithms for Data Mining (DM) tasks by
Weikato University, New Zealand and a tool providing an implemen-
tation of Predictive Model Markup Language (PMML) 5 based on Drools
Chance [169]. These tools process the information captured by the
Kinect to provide the input for the original components that we de-
scribed in the Part i on page 21.

Figure 5.1 shows the general operating principle of our prototype.General architecture

2 In this context, a false negative is a falls that is not opportunely identified.
3 A false positive is any action like a suddenly sitting or standing still while sleeping,

that is interpreted as a fall.
4 http://www.cs.waikato.ac.nz/ml/weka/

5 https://github.com/droolsjbpm/drools-chance/tree/master/drools-pmml

http://www.cs.waikato.ac.nz/ml/weka/
https://github.com/droolsjbpm/drools-chance/tree/master/drools-pmml
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Figure 5.2: Skeletal features in a frame as in a typical pose acquisition ses-
sion.

First of all, we needed to set up a software stack to properly interact
with the Kinect. There are several libraries that accomplish this task
that are similar for characteristics, capabilities and ease of use: our
choice is OpenNI (or Open Natural Interaction), an industry-led library
bearing the same name of the non-profit organisation that develops
it, focusing on “certifying and improving interoperability of natural user
interface and organic user interface for natural interaction devices, applica-
tions that use those devices and middleware that facilitates access and use of
such devices” 6. This software is often complemented by the Processing
library 7, an open source programming language and environment
for creating images, animation, and interactions and the NiTE middle-
ware 8 that understands the hand gestures and fully body movements
and translates them into inputs suitable for software applications. As
the reader can see, the data coming from the Kinect is redirected to-
wards three routes (identified by the numbers 1, 2 and 3) which may
be active in different times, so first we have wrapped an adapter dec
around the software stack to decouple the source of information from
the parts that consume it.

The first path stemming from the dec adapter loads the information Operating principle:
first taskin a simple storage service which takes the skeletal poses captured by

the Kinect and interpreted by the software stack at a rate of 30 frames
per second. Each pose consists of twenty quintuplets in which the

6 http://www.openni.org

7 http://processing.org

8 http://www.primesense.com/nite

http://www.openni.org
http://processing.org
http://www.primesense.com/nite
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first integer value is the identifier of the joint, the following three real
values are the coordinates x, y and z of the joint and the last real value
is an estimation of the reliability of the measured joint’s position (see
Figure 5.2 on the previous page).

The joints identified on the user’s skeleton are the following: hip
center (or centre of mass, identified with the key-number 0), spine (1),
shoulder center (or centre of shoulders, 2), head (3), left shoulder (4), left
elbow (5), left wrist (6), left hand (7), right shoulder (8), right elbow (9),
right wrist (10), right hand (11), left hip (12), left knee (13), left ankle (14),
left foot (15), left hip (16), left knee (17), left ankle (18) and left foot (19).

The last value gives a measure of the reliability of the pose just
acquired: a value of 0.0 is returned when the tracking fails and the
coordinates are useless, 1.0 is returned when the tracking produces
valid data and, finally, 0.5 is returned when the tracking enables the
so-called skeleton heuristics to fix the coordinates of the few joints that
were not properly acquired. In order to learn appropriate poses, we
have discarded all the frames including joints detected with confi-
dence lower than 1.0 and we have stored the remaining ones.

The second task performed by the framework is ML: this step takesOperating principle:
second task as input the poses that we have previously stored or those directly

captured by the hardware and tries to “learn” the features that set
each of them apart from the others. In particular, we have decided
to learn the following poses (and sub-poses in parenthesis): sitting,
standing (walking, hands-up), crouching, laying or fallen.

In order to make this process more robust, we have used a set of
poses related to four different individual for body mass and height.
The we have configured WEKA to perform supervised learning by
considering several predictive models. In particular, we have adopted
four learning algorithms pertaining to three different categories: Multi-
-Layer Perceptron (MLP), Decision Tree (DT) – J48, Logistic Model
Tree (LMT) – and Support Vector Machine (SVM). A MLP is a fully-
-connected feed-forward Neural Network (NN) with at least three layers
(input, hidden, output). This NN uses Backpropagation (BP) to reduce
the error between the output and the expected value for each input.
A DT is a tree-like diagram where nodes represents variables, arcs pos-
sible assignments and leafs predicted values for the goal variable by
each path. The DT is built from the training set – the poses – and the
validation set – the categories of poses. We adopted the J48 algorithm
and the LMT. The SVMs, instead, represent the instances of the training
set as points in a multi-dimensional space and tries to build hyper-
-plans to separate them into categories. More details on the learning
process and the configuration of each single algorithms is available in
[54], it suffice to say that the best model is passed to the classifying
process as a PMML file.

The third task performed by the framework is the real-time clas-Operating principle:
third task sification of the poses captured by the Kinect. To this aim, we use
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Figure 5.3: Event notification of the predicted poses: raising both hands up
from standing and lowering one hand down at a time.

the Drools Chance extension for PMML which basically takes the best
model that was learnt during the previous step to build a NN out of
reactive rules which transforms each pose into an event notifications.

These events have a timestamp and represent the possible poses
that we are considering: sitting, standing (walking, hands-up), crouching,
laying or fallen. They are passed to the Event Calculus (EC) machin-
ery that is already initialised with the domain model. This model
introduces as many main fluents as the number of possible events: is
sitting, is standing (is walking, has hands-up), is crouching, is laying and
is fallen. So anytime the NN predicts a pose and notifies it as an event,
the EC machinery sets its corresponding fluent to true, making false
all the others (see Figure 5.3). We have also defined a few derived
fluents such as is fine, feels sick, is critical and is dying whose value is
set also taking advantage of expectations.

Roughly speaking, as long as the subject continues to move (mean-
ing passing from one pose to another or performing a continuous
action like walking or keeping the hands raised up)we consider him
in good health. Since we expect him to do something in a given times-
pan to testimony his health, if he does not we consider him sick. A
prerecorded message is played to ask the subject to raise his hands
up if he feels fine: if he does so, we consider him fine again otherwise
he is considered critical and some assistance is sent to his place. Once
arrived on site, the paramedical staff may decide if he is really dying
and take action to stabilise him or determine the false positive and
reset the state of the subject accordingly.
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A video demonstration of this application is available at the follow-
ing address: http://youtu.be/mVyCEufGq4E.

With these mutually exclusive fluents, we want to give a measureConclusions

of the state of health of the subject being monitored so the whole
system can be seen as a way to compute an elaborate fitness function
for him. Of course, this approach is just a proof-of-concept that still
needs to be evaluated by the medical partners of the projects. The
procedure, in fact, requires some more fine tuning to minimise further
the number of unneeded interventions. The height of the mass centre
of the subject from the ground, in fact, could be used to determine
if the subject has fallen or is sleeping. Such information may also be
used to extend or reduce the time interval during which an action is
required to consider the subject fine. In addition, we plan to introduce
an affine transformation to move the origin of the 3D space from
the Kinect to the centre of mass of the subject as in other domains it
seemed to improve the accuracy of the learning and a Kalman filter
to reduce the effects of the noise from the acquired data.

5.2 computerised patient monitoring and
evaluation of clinical history

This application was realised in conjunction with some members of
the Health Sciences and Technologies – Interdepartmental Centre
for Industrial Research (HST-ICIR) of the University of Bologna, the
Depict project of the former Department of Electronics, Engineering
and Systems (DEIS) and the Knowledge Management Research (KMR)
team at San Diego Naval Health Research Center working on the U.S.
Navy Knowledge Management Repository II Project.

This use case was proposed by KMR group which aims to developUse case

functional ontologies and semantics that are typically required to de-
fine operational constraints to the execution of a rule. Notice that the
opinions reported below do not necessarily state or reflect those of
their respective employers, the United States Navy, the Department
of Defence, or the United States Government, and shall not be used
for advertising or product endorsement purposes. The operational con-
straints are meta-level rules aiming to supervise the domain by estab-
lishing expectations for the clinical context for which a given rule was
designed for. In other words, they help to ensure that any resulting
event or behaviour is appropriate for the setting. They can be used,
for instance, to adapt the recommendations for a blood transfusion in
a trauma case when the patient belief is that of a Jehovah’s Witness.

Keeping the logic of a discreet medical decision separated fromSome desiderata

that used by operational rules to manage generic clinical context has
considerable implications. The rules that provide support to decisions
should be authored with a focused clinical perspective. The final re-

http://youtu.be/mVyCEufGq4E
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sult, however, depends on other orthogonal perspectives that the un-
derlying knowledge management system must precisely orchestrate.
It follows that the execution of the rules does not necessarily require
them to be activated all together at once or not activated at all. This
evaluations of constraints rather resembles a cascading effect whose
effect, once aggregated, is to ensure that the overall system behaviour
is nuanced and individualised. This separation of concerns helps to
clarify what are the best clinical practices on the basis of the avail-
able evidences and what are the non-medical restrictions on the care
delivery that are imposed by the context and the individual patient.

The following scenario was considered as use case. After returning A specific scenario

from a yearlong deployment, a United States Marine is seen by his
physician. The doctor’s Clinical Decision Support System (CDSS) col-
lects all relevant information about him and feeds it into a Post Trau-
matic Stress Disorder (PTSD) predictive model [169] that estimates
that he has a 35% risk of developing PTSD within the next three years.
Recognising, however, that several important historical facts about his
past medical history are missing, the patient is asked to take an online
survey at home. When he forgets to complete the survey, the system
automatically sends a reminder SMS text prompting the Marine to
complete the requested task. When he does so, the system then auto-
matically recalculates the risk score. This time the risk is 80% and the
confidence acceptably narrow, so an alert is instantly generated.

In the wake of what we have presented in Chapter 4 on page 91 Principle of
operationsabout Event-Condition-Expectation rules (ECE-rules), the various con-

tributions that we have presented in the Part i on page 21 can be used
to model the above use case. The Listing 5.1 on the next page contains
an abstract solution to such a problem. The first rule (lines 1-22) man-
ages the results of the PTSD predictive model evaluation represented
by a HasRisk object (line 5) which also binds together a patient $pat
(line 3) with a provider $prov (line 4). Notice that the evaluation of a
predictive model within a rule engine is out of the scope of this work,
but the interested reader can find the details in [169]. We expect the
confidence of the results to be above a given threshold C_THOLD if
the predictive model works properly (line 7). So, when the prediction
is reliable enough (line 8), we expect the risk factor for PTSD of the
patient to be below a given value R_THOLD) line 10). If this nested
expectation is fulfilled, we log the patient as safe (line 12). Other-
wise we have a violation and a specific procedure (that was undis-
closed for privacy reasons) is applied (line 15). Notice, however, that
a prediction that is not accurate enough means that more informa-
tion is needed (line 18). Such information is requested by inserting a
Message object into the Working Memory (WM) of the Production Rule
System (PRS) whose effect is to trigger another rule which effectively
sends a SMS from the provider $prov to the patient $pat to request
the completion of a questionnaire (line 20).
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1 rule "Risk factor evaluation"

2 when

3 $pat: Patient( ... )

4 $prov: Provider( ... )

5 $risk: HasRisk( $pat, $disease, $factor, $conf; )

6 then

7 expect HasRisk( this == $risk, confidence > C_THOLD )

8 on fulfilment { // prediction is reliable

9 expect HasRisk( this == $risk, factor < R_THOLD )

10 on fulfilment {

11 log($pat + " safe");

12 }

13 on violation { // manage high risk patient

14 }

15 }

16 on violation { // request info from patient

17 insert(new Message($prov, $pat, "quest"));

18 }

19 end

20

21 rule "Fill Questionnaire Request Protocol"

22 when

23 $m: Message( $prov, $pat, "quest"; )

24 not Answers( $pat, $prov, "quest"; )

25 then

26 $e: expect Message( $pat, $prov, $answ;

27 this ~inTime[0,T] $m )

28 on fulfilment {

29 insert(new Answers($pat, $prov, "quest", $answ));

30 }

31 on violation { // TT > T, give patient more time

32 expect Message( $pat, $prov, $answ;

33 this ~inTime[0,TT] $m )

34 on fulfilment {

35 repair $e;

36 insert(new Answers($pat, $prov, "quest", $answ));

37 }

38 on violation {

39 alert($prov);

40 insert(new SMS($prov, $pat, "quest"));

41 }

42 }

43 end �
Listing 5.1: Abstract simplified example of ECE-rules to asses the risk

factor of a Marine to suffer from the Post Traumatic Stress
Disease.



5.3 advanced recommendation systems in etourism 119

The second rule (lines 24-45), in fact, triggers on the assertion of
such Message instances (line 26), provided that the additional condi-
tion that answers for the questionnaire are not yet available (line 27)
is verified. Therefore we expect the patient $pat to send his $answ

back to the provider $prov (line 29) roughly within a time T (line 30).
In case of fulfilment, we assert the Marine’s answers into WM (line 32)
so that the ECE-rule that we are currently considering does not trig-
ger again anymore. Notice that as soon as the above answers become
available, other ECE-rules will trigger to further assist the patient $pat
. In case of violation, the protocol is expected to give more time TT

(line 37) to the patient $pat to provide his answers (line 36). If the
Marine does so, his answers are asserted into WM with the same out-
comes as above (line 40) and the violation of the root-level expecta-
tion $e is considered as repaired (line 39). If he does not, the Marine’s
provider $prov is alerted (line 43) and the patient is pressed with an-
other SMS to complete the questionnaire (line 44). Notice that the
same policies could have been written using standard rules, but the
proposed syntax makes the definition more compact and, most of all,
ensures that the results of the constraint checks are recorded formally.
The additional time that the Marine may take to fill the questionnaire,
in fact, could be considered as a further symptom of PTSD to be taken
into account. Finally, notice that this second rule takes advantage of
some of the additional features that we have described in Chapter 4.4
on page 104 to better asses the conformance of the human task with
the expected behaviour.

5.3 advanced recommendation systems in
etourism

This application was developed within the Italian MIUR PRIN 2007
project No. 20077WWCR8 on “Correlation Forms Among Italian Style,
Tourism Flows and Consumption Trends of Made in Italy” as a use case
to show the potential of the tool for hybrid reasoning that we have
presented in Chapter 3 on page 77.

The use case consists in a DSS for the tourism domain where on- Use case

tologies are used to formally describe customers’ profile and tour
operators’ offers and rules are exploited to evaluate the consistency
of such information and possibly to suggest the proper offers to the
right client. In this applicative context, in fact, the turnover is very
large and the competitors are very aggressive, so a targeted advertis-
ing can result in a competitive advantage and big gains. The overall
architecture of the DSS is sketched in Figure 5.4 on the following
page: the hybrid reasoner is the core of the framework, suitably sup-
ported by a persistence layer. The hybrid reasoner is initially fed with
fuzzy, semantic and rule-based knowledge about the domain. These
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Figure 5.4: Architecture of a Decision Support System for eTourism combin-
ing, fuzzy, semantic and rule-based information.

knowledge bases are built upon studies on the domain, other similar
ontologies that are publicly available and on the insight of domain
experts. The principle of operation of the tool is the following: ini-
tially tour operators and customers insert respectively touristic offers
and personal information into the DSS, these pieces of information
are processed in order to classify the instances in memory into mean-
ingful categories and, finally, the offers that fall into each category are
recommended to the clients of the relevant groups and a feedback for
the tour operator may also be generated.

example A first preliminary example is the following. SupposeA typical scenario

that the domain expert decides that “cultural package tours should be
preferably offered to senior customers” (see the resulting Listing 5.2 on
the next page). Here, the concepts of “senior” and “cultural” are not
yet properly defined in an ontological sense, but it uses some object
fields as ontological relationships and evaluates them in a possibly
fuzzy manner. A “cultural” offer is an offer that is located at least in a
place (line 6) that is somehow related to art or history (line 5). Notice
that the correlation with history is precisely evaluated that requires
an explicit or implicit definition of a place as such, while the corre-
lation with art is evaluated more loosely leaving the engine to deter-
mine this degree. Similarly, a “senior” customer is a customer whose
age seems old according to some fuzzy partition on age provided by
the domain expert (line 7). Therefore the following rule triggers any
time a couple (customer,offer) that matches the above conditions is
found, with the result that a mail is sent to the customer to advertise
that offer 9 (line 9). Notice that a rather high filtering value is used

9 In this example, the task of sending an email is carried out by asserting a Mail object
into WM.
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1 rule "Cultural offers to senior customers"

2 filter 0.85

3 when

4 $p: Place(

5 this isA HistoryPlace or this ~isA ArtPlace )

6 $o: Offer( hasPlace == $p )

7 $c: Customer( age ~seems Age.OLD )

8 then

9 insert(new Mail($c.getMail(), "Offer!", $o));

10 end �
Listing 5.2: Example of hybrid rule in eTourism.

to ensure that only the really relevant offers are sent to interested
customers (line 2).

As the reader can see, this kind of hybrid rules can be very ex- Some desiderata

pressive, allowing the knowledge engineers to express particularly
refined reasonings. The true potential of the tool, however, allows
reasonings that are much more interesting than this. As we said, in
this domain the tour operators struggle to let the customers have ac-
cess to the most suitable offers. In practice, due to the high number
of customers, offers, technologies and competing tour operators that
strive to offer the same service, there is a gap between customers and
offers which prevents the former to reach the latter. As the reader
can see in Figure 5.5 on the following page, such gap is bridged over
thanks to two distinct levels of reasoning. The first involves vertical
reasonings that allows to move from the specific instance to its gen-
eral category and vice versa. The subsumption mechanism provided
by the Description Logic (DL) part of the hybrid reasoner covers this
type of reasoning. On one side of the Figure, in fact, it is possible to
pass from Customer instances to a Stereotype classes and back, while
in the other from Offer instances to Typology classes and back. The
other level of reasoning is horizontal and binds together Stereotype

and Typology classes. The number of concepts at this higher level of
abstraction is much smaller, so it is easier for a domain expert to ex-
press the correct combinations. This task is performed by a matching
function that implements such combinations. Notice that both levels
of reasoning are completely decoupled but they outline an alternative
path that allows the customers to bridge over the gap and reach the
much desired customised offers.

example A first, intermediate passage to make the previous exam- Improving the
scenariople as general as just outlined requires the definition of all the stereo-

types and typologies into ontological terms. When these definitions are
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Figure 5.5: The recommendation mechanism inside the hybrid reasoner as
the sum of vertical and horizontal reasoning processes.

1 rule "Cultural offers to senior customers"

2 filter 0.85

3 when

4 $o: Offer( this isA CulturalOffer )

5 $c: Customer( this isA SeniorCustomer )

6 then

7 insert(new Mail($c.getMail(), "Offer!", $o));

8 end �
Listing 5.3: Example of intermediate hybrid rule in eTourism.

finally available, the previous rule – involving only the vertical rea-
soning processes – becomes as follows 10:

Unfortunately, the pairings between Typology and Stereotype ob-A higher level of
abstraction jects are hardcoded inside the rules. If one imagines to implement

the horizontal reasoning process by describing the connections sug-
gested by the domain expert inside the domain ontology, the whole
recommendation process encompassing all the stereotypes and ty-
pologies becomes more flexible and it could be implemented by a
single rule. If we suppose, for instance, that the matching function
is expressed by means of a relationship matches between instances
pertaining to the concepts Typology and Stereotype and that the ab-
straction process is evaluated with fuzzy subsumption, we obtain the
rule in Listing 5.4 on the next page. In this case, in fact, the rule iden-
tifies the Stereotype (line 4) and Typology (line 6) of any couple of
Customer (line 5) and Offer (line 7). Then it determines if an associa-
tion between Stereotype and Typology exists and, if so, it implicitly
computes the strength of such correlation (line 6). If it is too weak,

10 Fuzzy evaluation implicitly comes into play in the semantic statements of the ontol-
ogy
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1 rule "Offers to customers"

2 filter 0.85

3 when

4 $s: Stereotype ( )

5 $c: Customer ( this ~isA $s )

6 $t: Typology( matches some $s )

7 $o: Offer( this ~isA $t )

8 // Get the ADT for priorities, defined as:

9 // Map<Customer, Map<Offer, Degree>>

10 ?priorities( $p; )

11 then

12 Queue queue = $p.getQueue($c);

13 queue.insertOrd($o, chance.getDegree());

14 end �
Listing 5.4: Example of advanced hybrid rule in eTourism.

namely a result whose degree is lower than 0.85, the activation is
purged from the Agenda of the PRS. Conversely, we retrieve a refer-
ence to the data structure that holds the results in order of relevance
on a per customer basis (line 10), so that we can update it as a result
of the activation of the rule (lines 12 and 13). Notice that we still dis-
card the results that are too irrelevant, but we organise the surviving
ones in ordered queues to populate the customer’s home page of a
eTourism site with a list of offers presented in order of relevance in
which he may be interested.

5.4 monitoring and conformance of services

This use case is provided by the former Department of Computer Sci-
ence (DCS) now Department of Computer Science and Engineering
(DISI) of the University of Bologna and carried out as part of the
Depict project of the former Department of Electronics, Engineering
and Systems (DEIS) now Department of Computer Science and Engi-
neering (DISI) of the University of Bologna and the EU-FP7 Farseeing
project.

The goal of this work is to verify whether it is feasible to use our Use case

rule-based implementation of the EC to observe the state of a WS
server in a context of SOA. Instead of using a traditional WS frame-
work, we conducted our experiments on a new, very promising tech-
nology called Jolie that was introduced by the former Department of
Computer Science (DCS) of the University of Bologna. Jolie11 is a full-
-fledged programming language and development platform based

11 http://www.jolie-lang.org/

http://www.jolie-lang.org/
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Figure 5.6: The graphical output of the service that displays the outcome of
the deductive reasoning performed by the Event Calculus mod-
ule when observing the first steps of a Jolie server: starting and
ending events for services and sessions are captured (cyan, top)
and their effects are reflected on their fluents (light orange, bot-
tom).

upon the service-oriented programming paradigm, suitable to both
the rapid prototyping of new services or the composition of exist-
ing ones to deliver new functionalities. It offers an easy to learn syn-
tax, a formal theoretical semantics and a strongly modular approach.
Thanks to its extensible development Application Programming Inter-
faces (APIs), Jolie is suitable to make lightweight services, very com-
plex SOA or bridge systems based on different technologies or com-
munication standards. Being so highly customisable, it is an ideal
candidate for monitoring to verify that it is conformant to user’s re-
quirements and possibly to adapt its future behaviour according to
its past performances. As explained in the continuation of this sec-
tion, such attempt in the automation of the server is matter of future
work, while the initial purpose of this study is simply to determine
whether it is feasible to observe such a complex domain with EC and
possibly to extract its features in soft real-time. According to the Just-
-In-Time (JIT) philosophy, in fact, any type of intervention is possible
only if the monitoring is sufficiently responsive.

The Jolie interpreter relies on a Virtual Machine (VM) implementedPrinciple of
operations in Java that is capable of both deploying new services on the fly and
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keeping track of each working session and all their inner operations.
We have modelled our EC knowledge base accordingly:

• we extract the notification of initiation and termination of each
session and all the operations in it and we feed it to the deduc-
tive reasoner as events,

• sessions and operations become fluents whose activity intervals
have to be determined.

We have slightly modified the behaviour of the Jolie’s VM which now
sends any of this information to each proper monitoring service that
registered itself to the server. We have have implemented a simple
monitor service which basically logs any notification and displays it
in a separate web page, as well as a more complicated full-fledged
monitor based on EC. This second monitor is organised as a Model-
View-Control (MVC) application:

• the Model is a service containing an instance of the EC module
that consumes any notification to maintain a representation of
the current internal state of the server,

• the View is a graphical application that depends on the Model’s
content to draw the last few steps of the server’s history (see
Figure 5.6 on the facing page for a small excerpt of an execution
trace),

• the Control at the moment does not allow any change and it is
simply concerned with the initialisation of all the components
of the pattern.

Finally, we have prepared an additional scripted service that orches-
trates some calls to a few fictitious trivial services that were deployed
on the Jolie VM in a repetitive pattern. Despite the not too excessive
complexity of the services and of the interaction patterns, we had
evidence that the deductive EC monitor managed to handle all the
information flow originated by the Jolie interpreter without incurring
in any particular problem.

We have further modified this infrastructure to take advantage of Further
improvementsour forward multi-valued version of the EC and handle richer indica-

tors of the server state like the amount of available free memory or
the reply time. At the moment we have just finished to update the
View and we are going to submit the entire system to new tests. If
the software passes this additional test phase, it will be used as a key
component in the following research that is briefly discussed below.

This new research is carried out in collaboration with also the De- Towards the Cloud
Computing domainpartment of Mathematics of the University of Padua as well as ital-

ianaSoftware 12 and CRS4 13 on focuses on the PaaS and IaaS aspects

12 http://www.italianasoftware.com

13 http://www.crs4.it

http://www.italianasoftware.com
http://www.crs4.it
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that are related with the management of a Software as a Service (SaaS).
The problem that we would like to solve is the negotiation of the re-
sources. Here the service, the platform and the infrastructure are seen as
independent agents that are collaboratively working in the common
environment in a way that is possibly profitable for everyone. The
service, for example, may realise that it is struggling to serve clients
as the free memory drops or the reply time raises. Therefore it may
ask the platform to deploy a new copy of the service to which it can
divert part of its traffic. The platform, however, may realise in a sim-
ilar way that all the resources that it handles are allocated to other
services and ask the infrastructure to provide a new VM where to
migrate some services and balance the computational load between
them. The opposite scenario is possible as well: the infrastructure may
need to reserve some computational power to a given customer, so it
asks to all the platforms the it operates if it is possible to free some
VMs. The platform in turn can ask to the service that deploys if some
copies may be merged or some service even suspended to free re-
sources. Notice that the interaction may be started by the platform
that tries to rationalise the active services to return some resources
to the infrastructure and possibly get back some monetary discount.
The desired goal is to use the ECE-rules to model the above interaction
patterns and execute them. Notice that fuzzy partitions and labels
could be used as well to make those ECE-rules more intuitive for the
domain engineers that will implement the management policies in
each level.

At the moment we are identifying the variables that we believe thatA tentative solution

are needed to address the problem. We have built a model of the do-
main that we internally use to represent the state of an agent and the
type of actions that we expect him to perform. The code contained
in Listing 5.5 on the next page shows a possible execution in which
a poor Quality of Service (QOS) of services of a given kind (real-time
services) or associated to a given class of customers (premium cus-
tomers) trigger an interaction with the underlying layer to improve
it. Unfortunately, however, it still consists in a toy example as we are
currently trying to extend it to the real case.

The event that triggers this ECE-rule is the receiving of a Request

between a client $c and a service $s (line 4). We verify the corollary
conditions for that service $s by semantically checking that it is a
RealTime or a Premium service (line 6) and by noting the memory
roughly seems full (line 7). In this context, the service is expected to
reply (line 10) as immediately as it can (line 11) so, in case of violation,
it negotiates with the platform $p the deployment of a new service
like $s to hopefully better serve the client $c (line 13).
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1 rule "Example policy"

2 filter 0.7

3 when

4 $r: Request( $c: client, $s: service )

5 Service( this == $s,

6 this isA RealTime or this isA Premium,

7 resource ~seems Memory.FULL )

8 ?platform( $p; )

9 then

10 expect Reply( service == $s, client == $c

11 this ~seems Time.INSTANT )

12 on violation {

13 negotiate($p, $s, $c);

14 }

15 end �
Listing 5.5: Example policy for the automatic handling of SaaS, PaaS

and IaaS.

5.5 engineering the policy-making life
cycle

The following considerations are work in progress that is carried on
for the e-POLICY EU-FP7 STREP project No. 288147.

It aims to support policy makers in their decision process across Use case

a multi-disciplinary effort aimed at engineering the policy making
life-cycle. In particular, global and individual perspectives on the de-
cision process are finally merged and integrated for the first time. The
project focuses on regional planning and promotes the assessment of
economic, social and environmental impacts during the policy mak-
ing process (at both the global and individual levels). For the indi-
vidual aspects, e-POLICY aims at deriving social impacts through
opinion mining on e-participation data extracted from the web. To
aid policy makers, citizens and stakeholders, e-POLICY heavily relies
on visualisation tools providing an easy access to data, impacts and
political choices. The e-POLICY case study is the Emilia Romagna Re-
gional Energy plan. e-POLICY aims to provide a tool that supports
the regional planners when they create an energy plan that is in line
with strategic European and national objectives, consistent with finan-
cial and territorial constraints, participated including opinion mining
results, well assessed from an environmental perspective and opti-
mal with respect to one or more metrics. In addition to the regional
plan, e-POLICY will provide a portfolio of implementation instru-
ments (namely fiscal incentives, tax exemption, investment grants)
for pushing the society and the energy market to go in the direction
envisaged by the plan.
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Figure 5.7: Tentative workflow for the e-POLICY architecture.

This project is very ambitious because it tries to combine severalDesiderata

technologies that are greatly different from each other. These tech-
nologies are not only based on different assumptions and perspec-
tives, but they also have contrasting operating modes, executions
times, involved actors with diverse roles. From a purely technical
point of view, integrating such systems is a non-trivial challenge. A
first step in this direction consists in converting each partner’s proto-
type into a WS. SOA was introduced in fact to minimise the impact of
local technical choices on large scale heterogeneous systems by defin-
ing standards and effectively decouple each single part from the oth-
ers. What SOA unfortunately does not address is the semantics of the
interactions. Consider for example one of the partners’ services 14: it
is very likely that it requires some other data – possibly some results
computed by other services – to provide its answer (see Figure 5.7).
Some of these services have fast computation time and they provide
an answer in almost no time. Others, unfortunately, require long sim-
ulation process, so they can provide their answer only after a long
wait. In order to make answers always available, a persistence layer is
needed to cache results for later use. Nevertheless, a persistence layer
is not sufficient to completely solve the problem as a service may al-
ways need an updated set of input which has not yet been computed
by other services. Visualisation tools, for instance, may need to ac-
cess several alternative sets of results for each single problem since
they need to show the users a few alternative results depending on
the most common input parameters. If a user moves the parameters

14 The generic service is any service listed on the right side of Figure 5.7 plus the
front-end service.
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out of the most typical intervals, however, new swift computations
or long simulation may be needed again. Consider that the final tool
will have at least two kind of users, the policy maker – which uses the
software to see the outcome of some possible choices before promul-
gating the policy, and the domain or regional expert – that tunes the
components to the specific territory. If we assume that each service
loads the configurations that are specific of a territory at the time of
its deployment, we delegate to the persistence layer the maintenance
of this information and the system should be able to handle both
kinds of users with no need for any additional technology or service.

Currently, two prototypes of the various services of the systems are Outlining a possible
scenarioavailable and the others will follow soon so we started to do some ex-

periments with them. Our idea is to build an additional service as
suggested in Figure 5.7 on the facing page(possibly reusing the same
technology presented in the previous section) to include an intelli-
gent orchestrator which keeps track of the state of the information
included into the persistence layer (see Chapter 2 on page 21) whose
reasoning core is based on ECE-rules (see Chapter 4 on page 91) and
hybrid reasoning (see Chapter 3 on page 77). At the moment, due
to the low amount of practical and realistic use cases, we can only
conclude that the mechanism for the intelligent management of per-
sistence is based on the concept described by the pseudo code avail-
able in the following Listing 5.6. The first rule is an ECE-rule whose
meaning is that each time a service requests some data, that data
is expected to be provided within a couple of seconds. If so, the re-
quest is evaded and the expectation is archived as a success. If not, a
Guard object is asserted into the WM for later use and the client is no-
tified with a message that warns him that the computation will take
a lot, and a new message will inform him when the results will be
available to see, letting him playing with other settings whose results
are possibly already available. The Guard object mentioned above is
a condition for a new rule that triggers when the data that is being
computed will eventually become available. When such a condition
applies, the rule repairs the violated expectation that is still pending,
retracts the Guard which is obviously no more needed and finally
notifies the client about the now available results.

Notice that other customised rules will be needed as well to dele-
gate a computation to one of the services or even orchestrate a few
services to provide a complex result. This is probably the most in-
tellectually exciting and challenging aspect of the problem to solve.
Unfortunately it is not possible to start to work on a possible solution
until the dependencies between services, and the data that is sup-
posed to be exchanged between them is clearly identified. It is our
intuition, however, that the kind of hybrid reasoning that we have
described in this dissertation will address the problem, especially if a
simple ontology that models the orchestration is provided.
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1 rule "Managing persistence"

2 when

3 $r: Request( $c: client, $id: data )

4 then

5 $e: expect Data( this == $id, this after[2s] $r )

6 on fulfilment {

7 // results available or computed on the fly

8 }

9 on violation {

10 insert(new Guard($id, $e, $c));

11 notify($c);

12 }

13 end

14

15 rule "Notifying completion of simulation"

16 when

17 $g: Guard( $id: data, $e: expectation, $c: client )

18 Data( this == $id )

19 then

20 repair($e);

21 retract($g);

22 notify($c);

23 end �
Listing 5.6: Declarative pattern to address the persistence problem in

e-POLICY.

5.6 formal verification and control
of sequencing batch reactors

This practical application is the result of a joint work with the Pro-
tezione Unità Tecnica Valutazioni Ambientali – Laboratorio Protezione
e Gestione della Risorsa Idrica (UTVALAMB-IDR) of the Agenzia
nazionale per le nuove tecnologie, l’energia e lo sviluppo economico
sostenibile (ENEA), the Dipartimento di Ingegneria Idraulica, Ambien-
tale, Infrastrutture viarie, e Rilevamento (DIIAR) of the Politecnico
di Milano and the Biomedical Informatics Department of the Arizona
State University.

Given the complexity of a water treatment plant, its automatedUse case

management requires an organic combination of different pieces of
information, from background knowledge to control policies. The
various criteria need to be evaluated almost in real-time, matching
them against data coming from various sources, including the probes
installed on the plant. Depending on the result of the evaluation,
appropriate actions have to be taken. When an Environmental De-
cision Support System (EDSS) is dedicated to implementing these
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functionalities, it is essential that it can be integrated with the infor-
mation sources and the control channels, effectively closing the loop
between the plant and itself. Moreover, the internal structure of the
EDSS should be flexible and modular to deal with the various sub-
-tasks. An overview of possible EDSS architectures can be found for
example in [168], where a prototype architecture is also discussed,
which has been evolved to integrate the concepts discussed in this
paper.

The architecture we propose is based on an Enterprise Service A general
architectureBus (ESB), where events are collected and routed to those subsys-

tems for which they are relevant. The approach, in fact, is based on a
combination of a SOA and Event-driven Architecture (EDA), where the
interaction between the services can either be tightly coupled, loosely
coupled or even decoupled as needed. These components have sev-
eral roles, such as services for data storage, user interaction, internal
event delivery and external integration.

In this section we will cover the work that revolves around the Principle of
operationcomponent that handles the knowledge about the domain and ex-

hibits the more interesting reasoning capabilities. This component
formalises and enacts some control policies for the Sequencing Batch
Reactor (SBR) that have already been partially used in some of our
previous works, however we propose here a new model that extends
and reconciles the available expertise in a more general, robust and
elegant way being based on the theoretical contributions described
in this dissertation. In fact, we argue that the role of the SBR control
system consists essentially in monitoring the state of the process and
any factor influencing it, tracing its progress and ultimately trying to
ensure that its outcome matches the plant operator’s expectations in
terms of effectiveness and efficiency. This goal is reached by:

a. defining an adequate event and fluent ontology to model the
state of the process and its relevant events,

b. incorporating a (complex) event processing system which deliv-
ers or generates the events appropriately,

c. using the EC formalism to infer the state of the process on the
basis of the detected events,

d. using the ECE-rule to define the desired behaviour and link the
policies and actions to be executed in case of informations and
violations.

wwtp ontology Figure 5.8 on the following page sketches a fic-
titious and idealised representation description of a WWTP operated
with SBR. In order to provide a formal model of the domain, we are
in the process of authoring a full ontology which contains and de-
fines the concepts that are related to the automation and control of
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Figure 5.8: An idealised sketch of a Waste-Water Treatment Plant operated
with a Sequencing Batch Reactor.

the WWTP. This activity is still work in progress, so at the moment we
use a simplified version which contains some of the relevant concepts
and their properties and provides a proof-of-concept of the vocabu-
lary used by the EC and ECE-rules. All events have at least a timestamp
and may have different payloads to store the information that they are
notifying. We use the following lexicographic convention: if Payload
is the name of a payload, then PayloadEvent and PayloadFluent are
respectively the names of the event and fluent that have such payload.
As seen in Chapter 3 on page 77, these definitions are later converted
into classes and interfaces or other equivalent definitions for properly
executing the domain. An outline of the relevant events and fluents
is shown in Table 5.1 and Table 5.2 on the facing page.

In particular, events and fluents are defined at different levels ofThe scenario

abstraction, according to the Complex Event Processing (CEP) princi-
ples. At the lowest level of abstraction, events are used to capture and
deliver the values collected by the probes installed in the plant. In par-
ticular, different type of Sample instances are relative to different phys-
ical and chemical signals collected in the tank. In our concrete system,
the raw samples are first preprocessed (denoising, outlier filtering, er-
ror interval estimation, etc.) and then streamed into the various signal
processing submodules which try to extract more relevant events and
states. When dealing with SBRs, Trend and TrendChange objects are
particularly relevant: a trend is a state related to the first time deriva-
tive of the time series, and may be further specified in Stable, Rising
or Falling. Other trends might be defined (e. g. Oscillating), but
are not usually part of the SBR domain. Dually, a TrendChange is an
event marking the transition from one trend to another: in particular,
we are interested in Apex (local minima and maxima) and Knee (stabil-
ising rising or falling trends followed by a new stabilising or falling
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Event Properties Description

Sample Signal, Amount, Fil-
tered

Probe-sampled data

TrendChange Signal, Type, Exten-
sion, Slope

Characteristic points
(max, min, . . . )

EndReaction ReactionId Reaction complete

NewCycle CycleId Start of treatment cy-
cle

NewPhase PhaseId Start of process
phase

Switch PhaseId Process phase to set

Next Switch to next phase

Table 5.1: List of events with properties and description for the Sequencing
Batch Reactor.

Fluent SubTypes Description

Trend Rising, Stable, . . . Signal trends

Process Denitrification, Nitri-
fication, . . .

Chemical processes

Phase Idle, Load, . . . Treatment phases

Cycle UrbanCycle, . . . Cycles

Table 5.2: List of fluents with sub-types and description for the Sequencing
Batch Reactor.

trend) since they usually allow to identify characteristic points in the
process.

At an intermediate level of abstraction, we use events and fluents to
model the bio-chemical processes taking place within the tank, such
as the cited nitrification and denitrification. On top of this, we model
the cycle and its phases, using one fluent for each phase. So, the state
of IdlePhase, LoadPhase, AnoxicPhase, AerobicPhase, SettlingPhase
, DrawPhase and DischargePhase determines whether the current cy-
cle is in a given phase or not. The commutation between two phases
is marked either by the Switch event, making the source and tar-
get phases explicit in the transition, or by the Next event, implicitly
switching from the current phase to the next, as defined by the canon-
ical treatment cycle (see Figure 5.8).

complex event detection Our system is completely agnostic with
respect to the way the events are generated or detected. This, in the-
ory, would allow to include a number of the different techniques
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1 rule "EndOfDenitrification - EC"

2 when

3 $max: Max( $time: timestamp, signal == "pH" )

4 $dkn: FallingKnee( signal == "ORP",

5 this overlaps[-5m,5m] $max )

6 $den: ?denitrification()

7 ?holdsAt( $den, $time; )

8 $aph: ?anoxicPhase()

9 ?holdsAt( $aph, $time; )

10 then

11 insert(new EndOfDenitrification(...));

12 end �
Listing 5.7: Recognition based on Event Calculus of the

EndOfDenitrification event.

for the process phase detection among those available in literature.
From an architectural perspective, they can either be deployed as in-
dependent, external services or even embedded within the reasoning
component, exploiting the concept of hybrid knowledge base [31]. Re-
gardless of their integration mechanism, they can be roughly divided
in two categories:

pattern-matching techniques where Sample 7→ lstinline

characteristic point techniques where Sample 7→ lstinline 7→
EndReaction

The former category uses sub-symbolic data processing techniquesThe scenario

– i. e. neural networks, Principal Component Analysis (PCA), clustering,
etc. – to analyse the time series, while the latter include an interme-
diate step where characteristic points in the signals (correlated to the
process) are first detected and then used to recognise the state of ad-
vancement of a process. The second category is particularly interest-
ing, since it can be revisited and analysed in the context of CEP and EC.
First of all, some techniques focus on the identification of Trend ob-
jects (more or less explicitly as fluents) and use TrendChange events to
mark the transitions, (clipping and declipping the fluents as needed)
while others look directly for the relevant characteristic points and ig-
nore the intermediate behaviour of a signal. Trend and TrendChange,
then, can be used to define the conditions for the recognition of an
EndReaction. For example, it is well known that the contemporary
detection of a local maximum in the pH and a falling knee in the
Oxidation-Reduction Potential (ORP) during the anoxic phase is an
indicator of the completion of the denitrification reaction.

This could easily be modelled in terms of reactive EC in a form sim-
ilar to the one shown in Listing 5.7. Notice, however, that our frame-
work would also support the stronger form shown in Listing 5.8. This
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1 rule "EndOfDenitrification - ECE"

2 when

3 $max: Max( $time: timestamp, signal == "pH" )

4 $den: ?denitrification()

5 ?holdsAt( $den, $time; )

6 $aph: ?anoxicPhase()

7 ?holdsAt( $aph, $time; )

8 then

9 expect $dkn: FallingKnee( signal == "ORP",

10 this overlaps[-5m,5m] $max )

11 on fulfilment {

12 insert(new EndOfDenitrification(...));

13 }

14 end �
Listing 5.8: Recognition based on Event-Condition-Expectation rules

of the EndOfDenitrification event.

alternative version would state that, while the denitrification process
is taking place during the anoxic phase, the detection of a local max-
imum in the pH can only happen at roughly the same time a knee is
detected in the ORP, leading to the recognition of the end of the pro-
cess, otherwise it will be considered a violation. In our system, we
actually prefer the first form, since the signals are noisy and spurious
local trend changes are not uncommon, but we still support rules of
the latter form as monitoring guards.

state management The cyclic nature of the SBR plant allows to
model its core functioning with the seven fluents introduced in the
domain ontology, one for each phase. The current state determines
univocally the plant configuration for that phase, which is obtained
issuing an appropriate set of commands to the plant actuators. While
production rules can manage this aspect directly, we preferred to sep-
arate the state management from the control aspects. In particular, we
modelled the operational aspects of the plant management as a busi-
ness process and delegated its execution to a workflow engine [30]. In
a nutshell, we used the business process to reflect the current state of
the plant, while the fluents model the process from the perspective of
the monitoring system. The socio-technical business process, then, in-
cludes external human tasks to model the actual process phases and
internal tasks to configure the plant appropriately. The fluents and
the external tasks are synchronised, assuming that the plant reconfig-
uration is instantaneous. These levels of separation allow to decouple
the general principles, suitable for any SBR, from the concrete, con-
text dependent details such as the specific commands and channels
to interact with the plant. While preferable from a conceptual point
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of view, in our case this does not even imply an integration overhead,
since the platform acts as a hybrid rule-process engine.

The scope of this work, then, will remain focused on the processThe scenario

management aspects, assuming that an appropriate subsystem trans-
lates the currently decided state into an appropriate set of commands
for the plant. The state, then, can be controlled using two main types
of events, Switch and Next. Switch(from, to) assumes that the flu-
ent associated to from is currently holding, terminates it and initiates
the fluent associated to the phase to. The event Next, instead, is used
to abstract away the sequence of the phases, potentially allowing to
reconfigure the sequence to apply different treatment processes. In-
ternally, Next is mapped into Switch by simple rules which could
be expressed in pseudo-language as Next() and ?holdsAt( $anoph,

$time; ) 7→ Switch($anoph, $aerph).
The use of Next and Switch further decouples the act of commut-

ing from one phase to another from the policy adopted to make the
switch. At least two of the most diffused policies can be integrated
trivially:

• Manual Policy The events are generated directly, through some
user interface,

• Reaction Complete Policy According to this optimal policy, the
Next event is generated when an EndReaction event is detected
while the appropriate Phase holds.

The third classic policy that sets a fixed duration for the phases
can be modelled in a slightly different way, as shown in Listing 5.9.
We assume that a notification event is generated upon entering a new
phase, such as the anoxic phase. This event triggers an expectation for
a Switch within a deadline, corresponding to the maximum allowed
duration for that phase. In case that no explicit Switch is detected, the
system is forced to commute to the next phase. This representation
has several advantages. First of all, it allows to express the basic pol-
icy, which is more often than not delegated to a component different
from the EDSS, in the same logic framework as the more intelligent
ones. Second, it can be integrated with other policies which will usu-
ally override it. Third, it will apply in case none of the more optimal
policies is applicable: in this sense, a commutation triggered by a vio-
lation will highlight the fact that something has not gone as expected
in the system, potentially triggering some kind of diagnostic process.

However, other types of commutation policies are possible and can
be added incrementally, provided that their final output is a Switch or
Next event. For example, the ‘‘Abort policy’’ can be considered the
dual of the ‘‘Reaction complete’’ policy, since it opts for a commu-
tation when it is clear that the current process cannot be completed,
so it would be useless to wait for the phase to reach its maximum
duration.
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1 rule "Anoxic Phase Watchdog"

2 when

3 $init: NewPhase( $time: timestamp, $id: id=="anoxic" )

4 $aph: ?anoxicPhase()

5 holdsAt( $aph, $time; )

6 then

7 expect $swt: Switch( from == "anoxic",

8 this after[0,90m] $init )

9 on violation {

10 insert(new Next());

11 }

12 end �
Listing 5.9: Example of a maximum phase duration policy.

process compliance The rule in Listing 5.9 is a relevant exam-
ple of a more general class of rules which can be added to the EDSS
knowledge base. In fact, water treatment processes are characterised
by a high degree of variability and noise, which has to be added to
the measurement noise introduced by the probes and the observation
noise introduced by the estimation algorithms. For this reason, the
consistency of each measured or estimated quantity or states should
be checked. The notion of expectation is particularly suitable in this
context, since it allows to introduce soft constraints 15 to describe the
ideal behaviour of the system in a given circumstance, as defined
by the domain experts. The fulfilment (respectively the violation) of
these expectations may lead to the execution of appropriate manage-
ment policies, or – in the case of violations – diagnostic and recov-
ery procedures. However, an expectation is weaker than a constraint,
since its violation usually denotes something which is possible but
undesirable, as opposed to something which is impossible or prohib-
ited.

In practice, a relevant amount of domain and process knowledge
can be formalised in terms of expectations, and used to define soft
constraints on the whole execution of the process, in terms of both
desired and undesired behaviour. This approach generalises the idea
of automating the plant management by trying to recognise the end
of the process reactions (implicitly assuming that the process is suc-
cessful). Here the plant automation, instead, is achieved by continu-
ously monitoring the process, trying to recognise both desired and
undesired situations and acting accordingly.

For a process to be considered ideal several expectations are in- The scenario

volved at different levels of abstraction: these expectations, then, can
be formalised as ECE-rules which use the domain events and fluents

15 Typically in Computer Science, soft constraints are constraints that can be violated
in opposition to hard constraints that must be always satisfied.
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as triggers and conditions. Most of the events defined in Table 5.1 are
involved in at least one expectation criteria. The criteria themselves
may derive from literature, domain expertise or statistics on the his-
torical data.

sample All signals have expected ranges during the various process
phases. The Dissolved Oxygen (DO) concentration is expected
to be close to 0 during the anoxic phase, around 2mg/l during
the nitrification process and then saturate to around 6mg/l for
the rest of the aerobic phase. The pH is expected to stay within
the range 6-8. Redox potential is expected to be negative during
the denitrification process (roughly −200mV), strongly negative
during the anoxic phase, after the end of the denitrification pro-
cess, but to become positive (around 200mV) during the aerobic
phase.

trendchange Trend changes are expected to be present and corre-
lated temporally over different signals, since they are indicators
of the completion of the process reactions. Other trend changes,
or the same trend changes without an appropriate temporal cor-
relation, are generally not expected.

endreaction The end of denitrification is expected to be recognised
only during the anoxic phase; likewise, the end of nitrification
is admissible only during the aerobic phase.

switch Some transitions are not allowed or meaningful, such as com-
muting to the load phase from any phase different from the idle
phase (following the discharge which is expected to have emp-
tied the tank).

Likewise, expectations may be expressed on some of the fluents
themselves:

trend pH and ORP are indicators of reactions, so are not expected to
be stable during the process. The DO concentration, instead, is
expected to be stable (at different levels) while the reactions are
taking place.

process The duration of the nitrification and denitrification pro-
cesses should be compatible with the expected average dura-
tions, conditioned by factors such as the period of the year, the
time of the day and the current weather (temperature and rain).

The use of ECE-rules has the advantage that fulfilments (respectively
violations) can be managed explicitly, especially in the case of positive
expectations (respectively negative) within the rules. Moreover, the
reification of expectations, informations and violations also facilitates
the addition of specific additional rules, facilitating the expansion of
the system, and makes the full process automatically more traceable,
since any of these relevant events is implicitly recorded.
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5.7 summary

This Chapter is a showcase for some of the practical applications that
have been addressed thanks to the theoretical aspects and technolo-
gies that have been presented in this dissertation. This thesis, in fact,
tries to show how these contributions can be interesting and innova-
tive from a research point of view, and this Chapter strives to present
their several practical implications in many application fields. This
Chapter, in particular, includes two applications in CCG one involv-
ing machine learning and human interfaces through a Kinect and the
other a double human interaction between providers and patients,
a very refined recommendation system in the context of eTourism,
a quite complex use case that stems from SOA and covers some as-
pects of CC, a contiguous problem that involves the effective handling
and orchestration of services and, last but not least, a foray into auto-
mated controls domain and industrial plants in where we show how
our contributions may handle WWTP in a better and greener way.
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F I N A L C O N S I D E R AT I O N S





6 L A S T T H O U G H T S

«Now this is not the end. It is not even the beginning of the
end. But it is, perhaps, the end of the beginning.»

— Sir Winston Leonard Spencer-Churchill
British Orator, Author and Prime Minister during

World War II, 1874-1965

This Chapter that concludes the dissertation contains some final
reflections to draw the conclusions. These conclusions are pre-

sented in a proper section after that the main contributions of this
work are summarised. After that, we propose some additional in-
sights which aim to suggest directions for further and new research.
Despite being the concluding Chapter, the thesis still contains inter-
esting Appendices. In the first one, we introduce Production Rule
Systems (PRSs) and we discuss some interesting features of one of
them. This Appendix contains introductory notions on Rete-based
Rule-based Systems (RBSs) that should assist the reader who is not
very familiar with this topic and provide the pieces of informations

This is not original research, but it assists the reader who is not
very shod on RBSs based on the Rete algorithm during the reading of
the dissertation that takes those concepts for granted. In addition, the
several original examples included in that Appendix can be consid-
ered as an effort to improve author’s teaching skill. The second Ap-
pendix focuses instead on solving probability graph problems within
a PRS environment. Although this topic was not initially considered,
it proved to have some interesting potential after some tests on pre-
liminary proofs of concept. Since this work is still in progress, we
decided to present in an Appendix rather than in a separate Chapter.

6.1 conclusions

In this dissertation, we have faced the problem of assessing the con- A quick summary of
this thesis’ contentformance of a complex process with respect to a description of the

expected behaviour while the process evolves. This a well-known
problem in literature that spans across several fields such as Cloud
Computings (CCs) and Web Services (WSs) or more generally speaking
Service-Oriented Architecture (SOA), in Multi-Agent System (MAS),
Business Process Modelling (BPM) and Computerised Clinical Guide-
lines (CCG), just to name a few.
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The approach that we have followed is also adopted by a number of
other researchers in the scientific community. This approach initially
consists in assisting the domain where the processes take place while
they evolve in order to always have an updated representation of its
state. We have addressed this task by introducing an optimised im-
plementation of the Event Calculus (EC) based on forward rules (see
Chapter 2 on page 21). This implementation is inspired by the most
famous and performing families of EC and it exploits the features of
the underlying PRS (in particular its ability to reason about tempo-
ral events) to meet some common criteria of robustness and usability,
even enabling more advanced reasonings thanks to Fuzzy Logic (FL).

Then we have introduced a framework with whom we compare the
current state of the domain with some definition of ideal behaviour
that was provided in advance (see Chapter 4 on page 91). This com-
parison adheres to the Just-In-Time (JIT) philosophy, meaning that it
is computed in line, as the domain’s process execution progresses
and the monitor detects these changes. Such framework still takes ad-
vantage of forward rules for its implementation and introduces the
concept of expectation as a way to express the desired outcome that a
process should ideally match. The expectations may be seen as well
as a method to decouple the comparison process from the evaluation
process that determines the extent to which the actual behaviour cor-
responds to the ideal one. This is achieved by aggregating the results
of several evaluations into a single conformance score. This method
is general and flexible as it allows the knowledge engineers to tune
the comparing function in the most suitable way for the domain. We
called global conformance the outcome of this operational method (see
Chapter 4.4 on page 104). In this way it becomes possible to precisely
manage different domains and obtain values for different executions
of the same process that are comparable with each other.

This additional degree of freedom enables the possibility to include
several customised reasoning styles to better evaluate every possible
domain, provided that they return a result in form of a degree to be
accumulated in a single global conformance score. In this regard, we
have introduced another module that is based again of forward rules
that combines Description Logic (DL) and FL reasoning with the rule-
based reasoning style (see 3 on page 77). To the best of our knowledge,
this is the first piece of software that tries to combine together these
technologies so tightly. Such result is not trivial for both the involved
practical and theoretical aspects. From a practical point of view, in
fact, the Tableaux algorithm had to be partially rearranged as some
features (like backtracking) were not available in the host environment.
In this context, FL not only increased the expressiveness of the tool
but also allowed us to overcome this limitation by providing an al-
ternative way to compute the results in parallel – with no need of
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backtracking – by solving Mixed-Integer Linear Programming (MILP)
problems.

From a theoretical viewpoint, instead, we had to face the forced
cohabitation of almost opposing background assumptions. RBSs, in
fact, typically adopt Closed World Assumption (CWA): an aggressive
simplified assumption that allows to consider as false anything that
is not explicitly asserted as true. Any DL, instead, adheres to Open
World Assumption (OWA): a much more conservative assumption that
allows to consider true or false only the facts that can be deducted by
the knowledge base, and unknown all the other cases. Once again, the
FL proved to be the solution: every reasoning is performed according
to FL since it allows a possibly more expressive but at least richer do-
main modelling and then specific Custom Operator (CO) are provided
to allow the user to interpret those results as in CWA or OWA. Notice,
however, that it is still difficult to imagine a rule involving aspects
that need to be addressed in CWA rather than in OWA at the same time,
but this framework at least allows to practically and feasibly include
rules working in OWA and CWA within the same rule base.

Also notice that this approach could be extended towards other
kinds of logics or technologies, as it is suggested in Appendix B on
page 183 where some efforts are described to support Probabilistic
Inductive Logic Programming (PILP) within a PRS.

6.1.1 Some considerations

The general approach that we have adopted in this dissertation – Less is more

which can be summarised in monitoring and verification of confor-
mance – is not really innovative as it is already largely addressed in
literature (see Chapter 1 on page 1). Our goal was however to make
the approach more adoptable and, in a sense, more user friendly. For
example, we have devoted much time and resources to understand
how to make the approach more flexible and expressive as possible.
With respect to other available solutions, it consisted initially in un-
derstanding what parts or features it was possible to hive off. This
may sound counterintuitive, but it is the only way to make space
for additional features. Also notice that, in some cases, getting rid of
something means to relax some constraints, possibly leading to bet-
ter overall results or performances. An example of such behaviour
is the adoption of FL which actually simplified the implementation
in forward rules of the Tableaux algorithm. Another example is the
concept of a generic conformance function to whom delegate the con-
formance checking that is defined by the user on a domain basis. In
other former solutions, for instance, such evaluation was encoded so
precisely to force the user to over-complicated domain modelling to
address specific needs like the relaxed temporal evaluation of human
tasks in socio-technical systems. Moreover, we were able to fill the
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empty space left by applying this streamlining approach with addi-
tional challenging styles of reasoning.

Once such a method is outlined, it is possible to introduce as many
additional evaluators to make it more and more adaptable and pow-
erful. While this is a big advantage it also poses a serious problem
of knowledge representation. As we have noticed while developing
the hybrid reasoner in Chapter 3, it is not easy to mix several kinds
of knowledge together as they may refer to different assumptions or
semantics, requiring the user to be consistent in all its definitions.
We will discuss and propose a possible solution to this issue in the
following section.

It is also interesting to consider and discuss about the main differ-Comparison with
very similar

solutions
ences between our own contribution and other rule-based approaches
(based on Prolog) which are affine and already adopted in the past
by our research group. Both approaches are declarative and it is the
author’s opinion that it represents a major advantage over former ap-
proaches. The declarative paradigm allows to express the logic of a
computation without describing its control flow. Complex instances
of a problem can be solved more easily and clearly by only focus-
ing on what computation to perform rather than how to compute it:
the rule base for both variants of EC in Chapter 2 on page 21 and
the handling of expectations in Chapter 4 on page 91 are an example.
The most evident difference between these approaches relies instead
in the chaining. The more classic solutions adopt backward-chaining
while our contribution uses forward-chaining. The state-of-the-art im-
plementations of both these sub-paradigms, in fact, include optimisa-
tions that make the comparison a draw, in the sense that no platform
clearly outperforms the other so the user is free to choose the one
that he likes the most or that best fits his other project requirements.
The comparison between the expressiveness of the two solutions may
be considered a draw as well as they both are versatile and include
several modules addressing specific issues.

One of the greatest criticism that is moved against modern forward-Limitations of our
solution -chaining RBSs is that they are downgraded by side effects. These

implementations, in fact, are not referentially transparent as they try
to ground a purely functional style on Object-Oriented Programming
(OOP). Backward-chaining tools like Prolog, instead, are generally
praised for their logical soundness which is used, for example, to
formally prove some property of a computed result. There are recent
works, as it is emerged from the analysis of other Prolog-based imple-
mentations of the EC, in which those advantages are traded for speed
thus making the distinction between the two approaches increasingly
blurred.

If we want to determine a discriminating aspects between the twoSome very personal
final considerations models at any cost, we can say that the former continues a longer

tradition in where it is possible to find inspiring solutions and works
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and the latter is more intuitive and easier to learn. This intuition relies
on the perception that the generative approach is simpler to imagine
and the pattern matching easier to master with respect to unification.
Once again, especially in the second case, it depends on the tastes
and preferences of the user, so it is really difficult to find a reason
that makes a system generally preferable over the other. This conclu-
sion is supported by much research that has been done to determine
similarities and differences between these kinds of rules to define gen-
eral common languages to express that are capable to express both of
them.

6.2 future work

One of the first aspects that still need to be properly addressed is Improving global
conformance:
languages for proper
knowledge
representation

to determine a proper language to express this kind of problems. At
the moment, in fact, we adopt a language that ultimately relies on a
slightly modified version of the Drools grammar. Such result, however,
is not easy to achieve because it should reconcile assumptions and
semantics that are very different from each other.

Another non-trivial drawback consists in the variability that we
have introduced by considering a customisable function for assessing
the global conformance. In effect, if we allow the user to customise the
evaluation function at will, we can expect that – sooner or later – they
will introduce concepts that may collide with the assumptions that
we have made, voiding the feasibility of our approach. This freedom
must be limited in some way to ensure the accuracy of the method, as
the reader can imagine, however, it is not easy to understand where
and how to put these constraints.

If we assume to have found this compromise, we could adopt a
DL-based technique similar to the one that we have described for the
specific case of expectations in Chapter 4. This method requires the
definition of a top-level or at least upper-level ontology that contains
an outline of what it is possible to express with the tool. Notice that
the open nature of ontologies would allow to extend it to include
other possible kind of evaluators that might prove to be useful to
compute the conformance.

We may force these extensions to derive from other basic concepts
or associations in order to limit in a way what the user could add to
some safe principle. Notice that such approach often leads to reason
about a domain at meta-level. Ontologies support this kind of higher-
level reasoning, but it typically implies the explosion of the reasoning
complexity. This happens, for example, with OWL ontologies where
the more complex instances are not tractable (OWL-Full). Recently,
however, the introduction of OWL2 includes a wiser characterisation
that suggests possible developments.
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Another interesting candidate is Semantics of Business Vocabulary
and Business Rules (SBVR) that combines formal logic with modelling
in natural language. It defines an environment which natively sup-
ports a few formal modality in where to define ontologies and rules
in a natural way. Although initially intended as a tool to facilitate the
logical reasoning between humans, there are already some software
implementations. Many are abandoned and no longer available, but
at least one is currently supported and still in active development 1.
These improvements could be regarded as a term of comparison to
guide the research in the field of knowledge representation for con-
formance problems as well.

Another interesting topic to investigate is how to properly solveProbabilistic
inductive logic

programming and
knowledge base

revision

probabilistic inductive graph problems with PRSs. The generative and
highly-parallelisable nature of these system suggests possible improve-
ments over former solutions, many of them based on Logic Program-
ming (LP) platforms like Prolog.

As the reader may have noticed, some introductory work is pre-
sented in Appendix B on page 183. We have presented three ap-
proaches that solve problems of increasing complexity in an elegant
way thanks to the combined contribution of the declarative forward-
-chaining rules. The most general solution, however, requires an ex-
ternal imperative tool to determine an efficient strategy to determine
probability by means of Binary Decision Diagrams (BDDs).

This step however breaks some advantages of the proposed archi-
tecture. The issue could be addressed instead by introducing a new
set of rules to handles BDD within the current PRS’s Working Mem-
ory (WM) with no need to rely on external tools which need to dupli-
cate the representation of the current problem instance. In addition,
a few other solution based on even more efficient diagram represen-
tations have been proposed.

In either cases, it would be interesting to implement them in for-
ward rules and compare the performances of these implementations.
On top of that, some effective grammar could be introduced to ex-
press this kind of probabilistic graph problems in a more abstract,
higher level. The resulting system would provide an additional eval-
uator for the global conformance as well as a stand-alone tool for
Knowledge Base Revision (KBR).

Imagine, for instance, a two-layered architecture like that described
in the Part i on page 21 of this dissertation: the first layer would per-
form any kind of reasoning required to handle the underlying do-
main, and the second some statistical analysis about the computation
on the companion layer. The statistical analysis could detect unex-
pected results and trigger probabilistic reasoning to determine possi-
ble actions to fix it. Similar approaches, for example, are successfully
exploited in Machine Learning (ML) and Deductive Reasoning (DR).

1 http://rulemotion.com

http://rulemotion.com
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Although there are many other small or off-topic things or to try, Towards purely
functional
Production Rule
Systems

there is at least one last interesting topic to investigate. As suggested
above, forward-chaining RBSs are often blamed not to be referentially
transparent or to lack any meaningful semantics. This is a recurring
criticism which apparently has not yet been satisfactorily resolved.

On the contrary, many high-profile implementations have taken an
opposite direction by hybridising with OOP imperative languages that
are particularly appreciated by development teams but introduce yet
more potentially harmful side effects. As an example, consider for
instance a simple rule base. It consists of two rules that are both trig-
gered by the presence in the WM of a given fact: however, the first
asserts an additional fact while the second retracts the triggering fact.
This rule base can be expressed by the following informal writing:

a→ b.

a→ ¬a.

In absence of further details, it is unclear whether the expected result
is an empty knowledge base (the second rule triggers for first) or a
knowledge base containing the fact b only (the first rule triggers first
and then the second) when the triggering fact a is asserted.

Depending on the implementations and current configuration of
the conflict resolution system of the Agenda (for more detail, see Ap-
pendix A on page 153), in fact, either rules may trigger first leading
to the two distinct outcomes. There are already a few works suggest-
ing to use the stable model semantics of Answer Set Programming (ASP)
to model the several contexts that we may identify by triggering the
rules with different contexts [102, 103]. Notice that it would be possi-
ble to overcome many of the limitations mentioned above by adapting
PRSs to this semantics.

Another criticism that is often directed at PRSs is that any operation
involving its WM – despite being similar database transactions – is
not ACID. ACID in fact is a very common acronym in Data Base Man-
agement System (DBMS) which summarises the characteristics that a
database must exhibit to qualify as a purely transactional: atomicity,
consistency, isolation and durability. In this regard, in effect, several
authors believe that if PRS were ACID, they could adopt the same se-
mantics of databases. A clear semantics or other solutions to make
them more functional, in fact, would make the tool for global confor-
mance and any PRSs in general more formal.
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A D R O O L S

«The golden rule is that there are no golden rules.»

— George Bernard Shaw
Irish literary Critic, Playwright and Essayist.

1925 Nobel Prize for Literature, 1856-1950

This Appendix provides a brief introduction to Production Rule
Systems (PRSs). This Chapter is not meant to be a complete and

exhaustive commentary on the architecture, the operating mode and
the advanced features of modern declarative forward-rules systems.
It is rather an agile collection of references to the environment where
the more practical contributions of the thesis have been developed,
organically gathered in a single place for the reader’s convenience.
Although it contains no original scientific contribution from the au-
thor, it represents an effort on divulgation – especially in relation to
teaching tasks – as it formulate a few meaningful examples on the
topic.

The reader that is specifically interested in these topics may find
more detailed and useful insights in Forgy’s seminal work [62] or
in Doorenbos’s Ph.D. dissertation [55] on the rete algorithm which
typically operates rule-based systems. Details on other common opti-
misations for PRS may be find in Batory’s work (see [23] as a starting
point).

a.1 production rule systems

Rules are one of the most common and basic way to represent the
knowledge in many areas of Artificial Intelligence (AI). There are
of course several kinds of rules and logics to support them. Among
these, logic programs and production rules are probably the most com-
mon form of rules. They are both based on an argument form that Rule of inference:

modus ponensdefines a function which takes some premises and returns a conclu-
sion. This way of reasoning is called modus ponendo ponens (the Latin
for “the way that affirms by affirming”), often abbreviated in Modus
Ponens (MP). More formally if one proposition P implies a second
proposition Q and P is true, MP concludes that Q is also true. This
implication translates into the following formula:

P → Q,P
∴ Q

153
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Consider the following syllogism as an example:

• P → Q: if an apple contains poison then it is harmful,

• P: this apple is poisoned,

• ∴ Q: therefore, this apple is harmful.

Both are widely used, yet there is a great deal of confusion and dis-Comparing
production rules

and logic programs
agreement about their differences and mutual relationship [97]. The
rules of PRSs – also called Rule-based Systems (RBSs) – have the form
“if conditions then actions” and appears to be similar to conditionals
in logic. The most popular textbook on AI [155, p. 286], for example,
considers production rules as mere conditionals for forward reason-
ing. One of the main textbooks on Cognitive Science (CS) [166, p. 43],
however, asserts that “rules are if-then structures” that, despite being
“very similar to the conditionals”, “they have different representational and
computational properties”. A logic program, instead, is presented as “a
programming language that uses logic representations and deductive tech-
niques” [176], but it is also included “among the production systems
widely used in cognitive simulations” [166].

The most famous language for logic programs is probably prolog.Distinctive features
of logic

programming
It is rooted in First Order Logic (FOL), a formal logic used in sev-
eral disciplines to express theories about some topic of interest. Un-
like many other programming languages, prolog is declarative as it
expresses the logic of a computation without describing its control
flow [108]. In these systems, in effect, the program logic is expressed
in terms of relations – represented as facts and rules – and the com-
putation is initiated by running a query over these relations [106].
Here rules are called clauses and they have an head and a body each.
A body consists of conjunctions and disjunctions of predicates that are
called the clause’s goals. Therefore an head becomes true whenever
its body is true. Conjunctions and disjunctions can only appear in
the body, not in the head of a rule. Clauses with empty bodies are
called facts and are always true. Because of the peculiar way of en-
tailing clauses, these tools are said to embrace the backward-chaining
philosophy. Any time a query is called, in fact, the interpreter tries
to resolve it with the heads of available clauses, possibly assigning
any free variable with ground terms of the domain. This strategy is
called unification and it is one of the most distinguishing features of
this kind of systems. If the body of the matching clause is not empty,
the predicates contained therein are added to the set of conditions to
satisfy for a positive response to the query and the whole procedure
is applied recursively. In conclusion, whenever the interpreter man-
ages to trace a query back to some facts, a solution is found. Such
process is known as Selective Linear Definite clause resolution with
Negation as Failure (SLDNF) and it is performed by investigating a
derivation – a set of conditions that represent a possible justification
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Figure A.1: Architectural outline of a Production Rule System.

– for the query at a time. When the current derivation leads to no
progress or further derivations are needed, the interpreter undos the
last operation in favour of the following resolving clause and then
continues with the derivation. This behaviour is called backtracking
and it is another peculiar aspect of these systems.

Rules in PRSs are called instead productions and they primarily ex- Distinctive features
of production rulespress some behaviour that transforms the available information about

the domain in new information. A PRS in practice provides the mech-
anism necessary to execute productions in order to achieve some goal
for the system. Each productions consist of two parts: a sensory pre-
condition which is often called Left-Hand Side (LHS) representing the
conditional expression of an if statement, and an action which is said
Right-Hand Side (RHS) and embodies the consequent then part of the
statement. When the premise of a precondition matches the current
state of the world, the production is said to be activated or triggered.
When the consequence of a production is eventually executed, the
production is said to have fired. A typical PRS is a computer program
that contains three databases and performs three different actions (see
Figure A.1). The first memory contains all the productions and it is
called Production Memory (PM); the second maintains the data about
the current state, knowledge or belief and it is named Working Mem-
ory (WM); the last one is said Agenda and stores the activations of all
the productions.

The first action performed by any PRS is the pattern matching. This
task is accomplished by building a network of constraints singularly
called patterns which correspond to premises of the productions. The
algorithm that manages the creation and usage of the network is
called rete (the Latin for “network”) [62]. The network is fed with
the domain knowledge and gradually filters it to identify the data
sets that fulfil the preconditions of some production. For each similar
set, an activation that includes a reference to both the production and
the data set is generated and passed to the Agenda.

When more than a production is activated at the same time, the
PRS requires a mechanism to prioritise them and decide which one to
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execute first. The activations simultaneously stored in the Agenda are
called conflict set and the process the tries to impose an order relation
over them is named conflict resolution. This is the second task that is
demanded to any PRS and it is probably the most fragile part of the
whole system. Depending on the specific implementations, the con-
flict resolution may decide to favour certain activations than others,
or even to discard some. Therefore it is easy to understand why these
systems produce different results depending on the implementation
choices and for a long time they were considered not really rigorously
logic tools [96].

The last task performed by PRS is execution which takes the already
ordered activations and fires them one at a time. The firing of a pro-
duction consists in performing its actions. There are two main kinds
of action: logical actions and side effects. The logical actions relate to the
revision of belief about the knowledge on the domain that is obtained
by asserting or retracting data from the WM. As a result, the new
state of the world may activate again some of the productions and
entail the chaining of rules. This cascade propagation of rules is said
forward-chaining in opposition to what happens in logic programming
systems. Notice that the threads of reasoning that are achieved in this
context by concatenation are somehow similar to the derivations that
are obtained with SLDNF resolution. Nevertheless they result to be in-
verted by construction and they are all build simultaneously instead
of one at a time. Conversely side effects are actions that do not in-
volve operations on the WM but have some irreversible effect on the
domain, like the consumption of some precious resource 1.

Starting from the operating principles described above, we can con-Final arguments

clude that these systems perform more or less the same task but they
follow two almost opposite approaches. They rely, in fact, on the same
rule of inference MP but they make different assumptions so that
the resulting systems are not perfectly interchangeable. From a more
practical stand-point, PRSs generally use more memory than prolog.
The reasons behind this statement are essentially two. The first de-
pends on the fact that the WM is a distributed and redundant memory
to speed up the pattern matching process, as we will see in the fol-
lowing section. This is why we have represented it in Figure A.1 with
a dashed stroke rather than with a continuos line as the PM and the
Agenda. The second motivation depends on the different exploration
strategy of the two solutions. prolog essentially performs a depth-first
search finding a solution at a time; a PRS instead adopt a breadth-first
search that determines solutions in parallel. If we consider this argu-
ment in a more abstract way, we can also conclude that PRSs generally
perform better than prolog implementations. This qualitative consid-
eration does not imply that PRSs are faster than prolog interpreters
on single runs (in practice it really depends on the specific implemen-

1 The irreversible nature of these actions suggests why backtracking is not supported.
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tations and the nature of the problem being solved) but in a general
sense. When the first goal is answered, in fact, prolog still needs to
determine any other solution while the PRS has already computed
all of them. PRS are therefore preferable when we can assume the
alternation of a processing phase and an interrogation phase which
involves several queries at the same time.

The reference system that we have chosen to implement our con- Introducing the
Drools platformtributions is Drools 2, JBoss’ free open source alternative of its En-

terprise BRMS. Drools is an open source “knowledge modelling and
business logic integration suite” with several modules. The core pro-
duction system is called Drools Expert. With respect to standard im-
plementations, it uses Java Plain Old Java Objects (POJOs) as facts to
represents the knowledge about the domain rather than (subject, pred-
icate, object) triples similar to the N-triples of Semantic Web (SW) (see
inputs in Figure A.1). Drools Expert therefore combines the power
of declarative programming that stems from the adoption of the rete
algorithm for productions’ premises with the practicality and com-
fort of Java Object-Oriented Programming (OOP) for the productions’
actions. Drools also addresses many specific contexts by introduc-
ing modules. Among these, we will cover Drools Fusion and Drools
Chance later in this Chapter. Drools Fusion 3 is the official exten-
sion of Drools that allows temporal reasoning within productions and
facts, and Complex Event Processing (CEP). Drools Chance is a novel
entry among modules which is about to become an official exten-
sion as well. It focuses on the uncertain and imprecise reasoning
and provides routines to seamlessly manage and propagate these fig-
ures through productions. It is described in Sottara’s Ph.D. disser-
tation and currently incubated in https://github.com/droolsjbpm/

drools-chance.
Notice that an appropriate introduction to Drools would require A clarification on

the purpose of this
Appendix

a more elaborate and detailed discussion on the specific tools men-
tioned above, as well as the others that are part of their ecosystem.
It would also require a meticulous explanation of all the terms of its
syntax, the meaning of its annotations, the semantics of its concepts
and methods (like, for instance, not, modify, update, insert, retract,
accumulate, extends, salience and so on) 4 – especially because the
same syntax of Drools has been chosen as specification language.

Such a detailed explanation, however, would involve an amount of
work that is at least comparable to that required for this dissertation.
Therefore we have preferred to provide an introduction to the tool by
means of practical examples that allow the reader to familiarise with
it and get an insight of the operational semantics of its commands.
We suggest the reader that is interested in reading the above details

2 http://www.jboss.org/drools/

3 http://www.jboss.org/drools/drools-fusion.html

4 Annotations, lists and other peculiar aspects of the Drools dialects derive from OOP
and, in particular, from the underlying Java environment.

https://github.com/droolsjbpm/drools-chance
https://github.com/droolsjbpm/drools-chance
http://www.jboss.org/drools/
http://www.jboss.org/drools/drools-fusion.html
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OBJECT 

MEMBER 
 − name: String"
 − board: String"
 + Constructors!
 + Getters!
 + Setters!

PERSON 
 − name: String"
 − age: int"
 + Constructors!
 + Getters!
 + Setters!

COURSE 
 − subject: String"
 − teacher: Professor"
 + Constructors!
 + Getters!
 + Setters!

PROFESSOR 
 ..."
 − dept: String"
 + Constructors!
 + Getters!
 + Setters!

STUDENT 
 ..."
 − course: Course!
 + Constructors!
 + Getters!
 + Setters!

Figure A.2: The hierarchy of classes used in the example.

to visit the Drools Web site with the official documentation 5 or to
read one of the books about this specific tool [13, 20, 33].

a.2 introductory example

This example involves the bunch of related classes that is sketchedDomain description

in Figure A.2. The Figure uses a Unified Modelling Language (UML)
class diagram with relaxed conventions about constructor, getter
and setter methods that are just sketched. This diagram describes a
portion of the world in which there are Courses, Persons and Member

s. Persons are characterised by a name (represented by a string) and
an age (an integer). Courses, instead, are characterised by a subject

(a string) and a teacher which is a reference to a Professor, a spe-
cialised instance of a Person. A Professor inherits all the fields of a
Person and also belongs to a department dept (encoded as a string).
The domain also includes another specialised class of Persons that
is Student: this class contains a reference to a Course that the stu-
dent is attending in addition to the usual fields of a Person. Members
associates a person (a Person) to a board (a string).

The Listing A.1 on the next page shows how to express the same
hierarchy of concepts with Drools Rule Language (DRL) statements: itDRL formalisation:

facts first declares a Person as an entity with a name: String and an age:

int (lines 1–4), it extends that class to introduce a Professor with
an additional dept: String field that is initialised to "Engineering"

(lines 6–8) and a Student with a course: Course field (lines 10–12),
then it connotes any Course with a subject: String and a teacher:

Professor (lines 14–17) and finally it introduces a Member with a
person: Person and board: String.

5 http://www.jboss.org/drools/documentation

http://www.jboss.org/drools/documentation
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1 declare Person

2 name: String

3 age: int

4 end

5

6 declare Professor extends Person

7 dept: String = "Engineering"

8 end

9

10 declare Student extends Person

11 course : Course

12 end

13

14 declare Course

15 subject: String

16 teacher: Professor

17 end

18

19 declare Member

20 name: String

21 board: String

22 end �
Listing A.1: The drl statements to introduce the hierarchy of classes in

Figure A.2 on the preceding page.

The Knowledge Base (KB) on this domain is completed by the rule DRL formalisation:
rulesand the query that are included in Listing A.2. Let us consider the

rule first. The rule presented here helps to automatically fill the seats
of a hypothetical Advisory Board for AI. This board will include all the
professors older than 50 years old that are teaching some AI course. As
a consequence of the rule’s activation, any person that is eligible of
being member of such a board are endorsed for their role by asserting
a Member object that basically binds its name to that given subject.

Let us analyse the specific parts of this rule in detail. The premise
of the rule is a compound pattern that consists of two (simple) patterns.
Each pattern refers to a specific class of objects of the KB; notice that
there may be multiple patterns that relate to the same class of ob-
jects within the same premise. Each pattern is composed of several
constraints: the first is about the class type itself; the others refer any
comparison involving the values of the fields of the class. The assign-
ments of objects or fields to labels (also called variables) do not really
constraint the matching objects but, for practical reasons, they are
handled in the same way.

The first pattern (line 4), in particular, selects all the professors
older than 50 and binds the instances itself of Professor and its name
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1 rule "AI board"

2 salience 5 // rule attributes

3 when

4 $p: Professor( $n: name, age > 50 )

5 Course( $s: subject == "AI", teacher == $p )

6 then

7 System.out.println($n + " is a member of " + $s + "

board");

8 insert(new Member($n, $s));

9 end

10

11 query students( String $n, int $a, String $s )

12 Student( $n := name, $a := age, $c: course )

13 Course( $s := subject, this == $c )

14 end �
Listing A.2: A simple Knowledge Base on the hierarchy of classes in

Figure A.2 on page 158.

field to the variables $p and $n respectively for a later use. The sec-
ond pattern (line 5) identifies all the courses whose subject is "AI"

and held by the above professor $p. The subject, associated to the
label $s, is also returned for later use.

Notice that this second pattern makes use of the $p variable that
was introduced by the first one: this cross-reference between patterns
binds together de facto the instances that are singularly determined
by the two sets of constraints so that only the couples that satisfy this
additional cross-reference requirement are identified by the rule.

The consequence of the rule includes a sequence of actions that must
be applied to each set of objects filtered by the premise, as soon as
they are found. In particular, this consequent logs a message on the
screen (line 7) and introduces a new instance of a Member object to
instruct the WM of the adequacy of $n as board member for $s (line 8).

Let us consider now the query. The parametric query on lines 11–DRL formalisation:
queries

14 of Listing A.2 works in a way that is similar to a rule’s premise.
Queries, in effect, are like rules without actions and, in fact, they only
return the sets of instances that match with their compound pattern.

With reference to the specific example, for instance, the query iden-
tified by the name students discovers all the triples name $n, age $a

and subject $s of all the students attending a course. Notice that
we have again a cross-reference that binds together the instances of
Students and Courses. Queries can be called from both the external
Java world to return some values that are present in the WM and the
premise of the rules. In the latter case, there are several ways to in-
teract with queries, as exemplified by Listing A.3. The simplest mode
of interaction is presented in lines 1 and 2: the query identifies all
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1 student()

2 student( $s == "AI" )

3 student( "Harry Smith", 25, "AI"; )

4 ?student( $n, $a, "AI"; ) �
Listing A.3: Ways of interaction with queries.

the entries that match the pattern (line 1), possibly applying all the
constraints that are expressed within the call (line 2). The second call,
for instance, returns name and age of all the students that are attend-
ing AI courses. Since assigning every single parameter in this specific
fashion could be tedious, an alternative positional syntax is provided.

This modality is activated by expressing the ordered list of param- Positional queries

eters that are going to be passed to the query separated by commas
and terminated by a semicolon (line 3). Notice that, by default, each
field of any class receives an index equal to the position of its def-
inition itself within the declaration. These indices are used to pass
the value of each parameter to the appropriate field. It is possible,
of course, to bypass the default numeration by annotating each field
with a statement like @position(1), where the number precisely in-
dicates the index to be assigned to the field of the class that is being
defined.

By preceding the call with a “?” (line 4), the engine knows that the Pull-only queries

query is pull-only. Usually, in fact, each time that a set of instances
that satisfies the query becomes available in the WM, the query is
reactivated and the new result is notified. corollaryPull-only calls, in-
stead, respond with the list of matching instances that are currently
present in the WM, without reactivating in a second time in case new
knowledge becomes available.

Since query calls can be nested one inside another, the authors of Backward- and
forward-chainingour reference PRS claim that this feature enables backward-chaining rea-

soning within a forward-chaining tool. Although backward-chaining
reasoning is generally more expressive and sophisticated than that,
we can consider it a first rudimentary approximation.

Last but not least, notice the usage of the “:=” assignment symbol
within the query declaration in Listing A.2. This symbol lets the en-
gine to autonomously interpret the statement as an assignment or an
equivalence constraint, depending on whether the involved variable
is bound or free. If the variable is set, in fact, it is used to filter the
instances that do not match with the current value; conversely this
value is assigned to the variable and returned as an output.

Considering again the parallel with forward-chaining tools, the au- Unification

thors of our reference PRS call this feature unification because it resem-
bles the way in which variables are managed in those systems.

Now we focus again on the rule in Listing A.2 on the facing page to Building a RETE
networkunderstand how patterns are interpreted to generate rete networks



162 drools

Professor 
name 

age > 50 

α 

β 

α 

$p 
$n 

$s 

Course 
subject == “AI” 

teacher == $p 

teacher == $p 

entrypoint! α (contraint) node!

β (join) node!

(distributed) memory!

leaf (activation) node!

Figure A.3: The RETE equivalent to the premise of the rule in Listing A.2
on page 160.

that efficiently filter objects instances. The diagram in Figure A.3 rep-
resent the rete network that is generated starting from the premise of
the rule in Listing A.2 on page 160 (lines 19–27). In this Figure, you
can recognise entry-point nodes (drawn as black circles), constraints
or α nodes (red, blue or orange dots – more details will follow), joins
or β nodes (green trapeziums), (α or β) memories (gray cylinders)
and activation or leaf nodes (purple triangles).

Each pattern that is part of the premise becomes a chain of nodesConstraint nodes
and α memories which departs from an entry-point like the default one in Figure A.3.

Each pattern refers to an object class and the first node of each chain,
in effect, is a constraint on the class type that is mentioned (red con-
straint nodes). The first pattern of the rule in Listing A.2, for instance,
predicates over Professor objects, while the second over Course ob-
jects. Notice that the first pattern also assigns the instances of Listing-
Professor that it identifies to the symbol $p for later use.

Then the constraints on the fields values of the objects of each pat-
tern are resolved one at a time (blue constraint nodes). The first chain,
for example, assigns the name of the Professor to the symbol $n and
then it verifies that the age of the individual that is being processed
is higher than 50. Conversely, if the age is less than or equals to 50,
the whole individual does not qualify as a matching instance of the
pattern and it is discarded. Only the objects that manage to cross all
the nodes of the chain fully satisfy the corresponding pattern.

These objects are stored in an α memory (gray nodes) to be ready
for subsequent efficient propagation in other parts of the rete net-
work. Notice that there are generally several α memories in a rete
network and it is possible that the same individual satisfies several
patterns and therefore appears in several memories. In a moment we
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will see that β memories behave in the same way. This is the reason
why the WM which is a collection of all these memories is said to be
distributed and redundant.

With respect to the second pattern, we have a node which combines
an equality constraint for the field subject to the value "AI" and its
assignment to the symbol $s. The following node is more complicated
to handle because it refers to a symbol that appears in another pattern
which may not be available yet (orange constraint nodes). It is evident
that the evaluation of such constraint must be deferred to a later time
when the foreign value will be available.

At the moment, a dummy node which judges as valid every in-
stance that passes by, is inserted in its place. The proper constraint
node is displaced after the join node that merges the chains provid-
ing the objects with the fields that act as terms of comparison for
the constraint. The individuals who do not meet this requirement are
discarded at this point.

As individuals accumulate in α memories, the β node (green node) Merge nodes and β
memoriesuse them to generate all the possible pairs 6 and propagates them

(gray nodes). If some constraint has been postponed, as in our case, it
is evaluated now. After the deferred nodes there is a βmemory which
contains all the pairs of individuals meeting the cross-referencing con-
straint. This memory improves the efficiency of the system making
the results of the matching process immediately available to anything
that wishes to use this data in other parts of the rete network. It
works just like the α memories that we have already seen: the only
difference is that they contains tuples of objects rather than single
objects.

At the end of each (possibly compound) chain of nodes that cor- Entry-points and
activation nodesrespond to a whole premise of a rule there is a leaf node (purple

nodes). So, as long as instances are introduced into the WM, they are
injected into the rete network via the entry-point. Notice that it is pos-
sible to define additional entry-points and that the patterns may hook
specific initial nodes with the construct from entry-point "name" ra-
ther than the default one. Therefore they can be used to partition
the WM and allow even more refined reasoning where it is appropri-
ate to keep separated different sources of information. Regardless of
the entry-point, these instances flow through the network possibly
combined in tuples until they are filtered by a node or they reach
an activation node. Whenever a tuple hits a leaf node, an activation
of the rule that is associated to the leaf node on this tuple is gener-
ated and appended to the Agenda. Notice that the rules also allow to
reason in the so-called negative logic, which means that patterns and
constraints can be negated to let the engine “recognise the absence”

6 A merge node computes the power set of the two incoming sets of instances. These
nodes, therefore, can potentially produce a large number of tuples that consume
resources; fortunately cross-references constraints and hashing techniques keep the
memory consumption low.
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(instead of the presence) of objects of a given kind in the WM. It means
that negated patterns and constraints are positively verified when no
object matching them is asserted into the WM or when the last match-
ing object is retracted from the WM so that its deletion “propagates”
through the rete 7.

a.3 processing temporal information

In 2002, Luckham has proposed an “emerging technology for buildingComplex events
processing and managing information systems” 8 whose goal is to process all the

multiple events that are occurring on a target domain in order to
identify meaningful events within this “event cloud” and take proper
measures. This discipline, which is called CEP [109, 110], uses tech-
niques like the detection of complex patterns of many events, the
event correlation and abstraction, the event categorisation thanks to
relationships between events such as causality, membership, and tim-
ing to deal with large amount of information. It has been successfully
applied to Business Activity Monitoring, Business Process Manage-
ment, Enterprise Application Integration, Event-Driven Architectures,
Network and business level Security and Real time conformance to
regulations and policies.

As the reader may guess, although CEP cannot be reduced (acciden-Drools Fusion

tally or intentionally) to a RBS augmented with the support to Event-
-driven Architecture (EDA), PRS natively supporting the idea concept
of event do provide several CEP features. In this regard JBoss offers
Drools Fusion, a module for behavioural modelling that enables event
processing capabilities within Dools Expert’s rule engine. Such result
is possible because events are now understood and handled as first
class citizens for the platform, features were added to identify sets
of interesting events out of the stream of events, to detect relevant
relationships among events and, of course, take appropriate actions
accordingly.

So, what exactly is an event? Events are special entities that rep-Events

resent some significant change in the state of the application domain
that are associated with a specific temporal context. They have several
unique and distinguishing characteristics, like having a timestamp
(and possibly a duration), being usually immutable, having strong
temporal constraints and relationships. They can be used as well to
express subpatterns in the premise of the rules by predicating on both
the presence or the absence of matching individuals.

Events can be defined from generic facts by properly decorating
them with the “event” role. If we consider the legacy POJO in List-

7 Notice that the propagation of a deletion through a given RETE works much like the
migration of electron holes in semiconductors.

8 http://complexevents.com/event-processing/

http://complexevents.com/event-processing/
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1 package example;

2

3 import java.util.Date;

4

5 /**
6 * Payload object

7 */

8 public class MobileCall {

9 private String dialler;

10 private String diallee;

11 private Date startTime;

12 private long durationTime;

13 ...

14 } �
Listing A.4: Legacy payload objects.

1 import example.MobileCall;

2 import java.util.Date;

3

4 declare MobileCall

5 @role( event )

6 end �
Listing A.5: Legacy objects as events.

ing A.4 that abstracts the features of a phone call, we can automati-
cally turn it into an event by annotating an homonymic declaration
with @role(event) (see Listing A.5). Notice that any declaration of
facts is implicitly (if not explicitly) annotated with @role(fact).

From that point on, the PRS treats any MobileCall instance as an Binding events with
timesevent by autonomously setting its timestamp to the time of its as-

sertion and (possibly) updating its duration. These time values are
stored in a couple of fields of the system class which decorates the
payload instances to declare events and therefore they do not coincide
with the fields startTime and durationTime that we have introduced
above. Timestamp and duration, in fact, are transparently managed
by the engine with respect to the user. Notice that, by default, the
duration of a Drools Fusion event is set to 0: such events are said
to be point-in-time events; events with non-empty duration are called
instead interval events.

Sometimes, however, it is appropriate to directly access these val- Accessing time
valuesues: the engine offers primitives to bind them with some explicit

fields of the POJO by further annotating the declaration with labels
like @timestamp(...) and @duration(...), as in Listing A.6 on the
next page. Unfortunately, these annotations override the default be-



166 drools

1 import example.MobileCall;

2 import java.util.Date;

3

4 declare MobileCall

5 @role( event )

6 @timestamp( startTime )

7 @duration( durationTime )

8 end �
Listing A.6: Explicating the events’ temporal data.

1 declare MobileText

2 @role( event )

3 @timestamp( sent )

4 @expires( 5m )

5 dialler: String

6 diallee: String

7 sentTime: Date = new java.util.Date()

8 text: String

9 end �
Listing A.7: Declaring native events.

haviour of the engine and consequently the times must be manually
managed by the user. When new instances of MobileCall are gener-
ated, for instance, the user must specify the values for all the fields of
the object thus including startTime and durationTime, whose default
values are overwritten. The problem of their non-automatic assign-
ment can be partially mitigated by the forcing an additional explicit
assignment of the current time value, as in Listing A.7 (line 7). Notice
that this time we have declared the POJO MobileText directly within
the rule engine environment, therefore with no need to import it from
the external Java world. The Listing above (line 4) also introduces an-Disposing

dispatched events other feature of EDAs: just like planes, events can have an Estimated
Time of Arrival (ETA) which defines a sort of deadline after which it is
assumed that their journey through the KB is over, having delivered
their information content. So, according to this metaphor, events are
no more needed after reaching their destination: the engine knows
how to identify and dispose these events from memory, freeing re-
sources and scaling well on growing volumes. With reference to the
above Listing, for example, when mobile texts are sent, the infrastruc-
ture that takes over them tries to deliver them immediately or, if it
is not possible, to do so within few minutes – i. e. 5 minutes. Thus,
after 5 minutes, it is assumed that the messages are sent or that their
missed delivery is notified. In either cases, the events representing
an attempt to send a test are no more needed and the annotation
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1 rule "Counts chars sent by a mobile in last few texts"

2 when

3 accumulate(

4 MobileText( dialler == ID, $t: text )

5 over window:length( 10 ),

6 $c: sum($t.length)

7 )

8 then

9 System.out.println("Chars: " + $c);

10 end

11

12 rule "Counts the texts sent by a mobile in the last day"

13 when

14 accumulate(

15 $t: MobileText( dialler == ID )

16 over window:time( 1d ),

17 $c: count($t)

18 )

19 then

20 System.out.println("Texts: " + $c);

21 end �
Listing A.8: Example of rules with sliding windows.

@expires(...) tells the engine that it is safe to mark them as dispos-
able for the next Garbage Collector (GC) execution.

This behaviour also applies in the context of sliding windows. The Sliding windows

sliding windows mechanism is indeed a way to restrict the events
to consider to the last few of them that are falling inside a moving
time window which is anchored to the current time instant. There
are basically two kind of sliding windows: those based on a time in-
terval and those maintaining a queue of fixed length. The Listing A.8,
for instance, contains an example of both kinds of sliding windows.
The first rules accumulates the number of characters (line 6) of the
last ten texts (line 5) sent by a given mobile (line 4): the keywords
over window:length introduce the number of the last few events that
we want to consider. Similarly, the second rule counts the number
of texts (line 17) over the last day (line 16) sent by the same mobile
(line 15). Here the keywords over window:time introduce the width
of the temporal interval that we want to consider, or how far back
in time with respect to the current time we want to look for events.
Notice that the temporal horizon imposed the statement in line 16

conflicts with the much shorter ETA of five minutes suggested earlier.
The temporal extension of the rule engine has a mechanism that re-
solves such conflicting statements which promotes the higher value
as the proper threshold for the disposability of events. The engine
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E1 before E2!
( E2 after E1 )"

E1 meets E2!
( E2 metby E1 )"

E1 overlaps E2 !
( E2 overlappedby E1 )"

E1 starts E2 !
( E2 startedby E1 )"

E1 includes E2!
( E2 during E1 )"

E1 finishes E2 !
( E2 finishedby E1 )"

E1 coincides E2"

EXPRESSION POINT − POINT POINT − INTERVAL INTERVAL − INTERVAL 

Figure A.4: Allen’s temporal operators among couples of events.

1 rule "Counts texts received by a mobile during calls"

2 when

3 accumulate(

4 $t: MobileText( diallee == ID )

5 exists MobileCall( dialler == ID or diallee == ID,

6 this includes $t),

7 $c: count($t)

8 )

9 then

10 System.out.println("Texts during calls: " + $c);

11 end �
Listing A.9: Example of rules with simple temporal operators.

manages threshold values for each kind of event that is defined in
the current KB. Notice that, if the second rule above is removed from
the PM for some reason, then the threshold of 5 minutes becomes
valid again.

Usually there are strong relations and constraints intervening amongTemporal constructs

events so several temporal operators have been introduced to take
care of them. These operators capture the relationship between cou-
ples of events – be they point-in-time events or interval events – such
as precedence, concurrence or overlapping. Such temporal constructs
have been defined for the first time in 1981 by Allen [7, 9]. The ta-
ble in Figure A.4 includes all 13 kinds of relationship between events
and provides an intuitive graphical description for each of them. Our
reference rule engine supports all of them and also their logical com-
plement (negation) [26, 197]. It is possible to see temporal operators
in action in Listing A.9 where the number of texts received by a given
mobile (line 4) during incoming or outgoing calls (line 5 and 6) is
counted (line 7).
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1 rule "Call-back protocol"

2 when

3 $c: MobileCall( dialler == ID, $d: diallee,

durationTime <= 1s )

4 not MobileCall( dialler == $d, dialler == ID,

5 this after[ 0, 30s ] $c )

6 then

7 System.out.println(ID + " one-bell " + $d + " again...

");

8 end �
Listing A.10: Example of rules with parametric temporal operators in

negative logic.

In addition to the default syntax, all the temporal operators allow Negative logic

to include specific times to further refine the temporal relationship
between events. In Listing A.10, for instance, after[0,30s] $c (or
simply after[30s] $c) means that we expect the current event to
happen after $c, but not later than 30 seconds. Notice that the rule en-
gine also allows to reason about events in negative logic, which means
that it predicates over their absence rather than their presence. The
following rule, in particular, simulates a simple protocol that is of-
ten adopted by people when they are low on credit: they telephone
someone and let the mobile ring once before hanging up. The desired
outcome is to be called back within a few seconds, otherwise repeat-
ing the process. So if after 30 seconds no call is incoming from the
diallee, the rule suggest to ring her again.

All the features described so far are included in any basic down- Cloud mode vs.
stream modeload of Drools, but they need to be enabled. This step is required

because the rule engine can operate in two distinct modes: the cloud
and the stream modes. The default mode is the cloud mode which is
exactly the way in which pure forward-chaining rules engine work.

In this mode, events are still events but they are treated as simple
facts because there is no notion of the flow of time: the idea of ETA is
meaningless because there is no concept of “now” to match against.
The stream mode has indeed the notion of time and allows to process
events in the way that we have described in this section. Actions in-
volving events are synchronised through a session clock that settles
all the time conflicts.

Two implementations of the session clock are supported: real-time Real-time clock vs.
pseudo clockclock and pseudo clock: the former relies on the system clock, the latter

requires the user to manually advance the time. Roughly speaking,
the pseudo clock is generally used to test temporal rules since the time
can be explicitly manipulated, the real-time clock instead is used dur-
ing execution to manage a domain. The following Listing A.11 on the
next page shows how to configure an instance of the engine to work
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1 import org.drools.*;

2 import org.drools.builder.*;

3 import org.drools.conf.*;

4 import org.drools.io.*;

5 import org.drools.logger.*;

6 import org.drools.runtime.*;

7

8 /**
9 * Sample class to launch the engine

10 * in STREAM mode with REAL-TIME/PSEUDO clock.

11 */

12 public class DroolsTest {

13

14 public static final void main(String[] args) {

15 try {

16 // Load the knowledge from the Domain.drl

17 Knowledgebld bld =

18 KnowledgebldFactory.newKnowledgebld();

19 bld.add("Domain.drl", ResourceType.DRL);

20 KnowledgebldErrors errors = bld.getErrors();

21 if (errors.size() > 0) {

22 for (KnowledgebldError error : errors)

23 System.err.println(error);

24 throw new IllegalArgumentException("Errors in KB");

25 }

26 // Configure a KB in STREAM mode

27 KnowledgeBaseConfiguration kCfg =

28 KnowledgeBaseFactory.newKnowledgeBaseConfiguration();

29 kCfg.setOption(EventProcessingOption.STREAM);

30 KnowledgeBase kb =

31 KnowledgeBaseFactory.newKnowledgeBase(kCfg);

32 kb.addKnowledgePackages(bld.getKnowledgePackages());

33 // Start a session with REAL-TIME/PSEUDO clock

34 KnowledgeSessionConfiguration sCfg =

35 KnowledgeBaseFactory.newKnowledgeSessionConfiguration();

36 sCfg.setOption(ClockTypeOption.get("realtime"));

37 /* sCfg.setOption(ClockTypeOption.get("pseudo")); */

38 StatefulKnowledgeSession session =

39 kb.newStatefulKnowledgeSession(sCfg, null);

40 // Operates the domain

41 session.fireAllRules();

42 } catch (Throwable t)

43 t.printStackTrace();

44 }

45 } �
Listing A.11: Configuring the production rules system to perform

Complex Event Processing: enabling stream mode, real-
time and pseudo clock.
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in stream mode (lines 27–32) with the real-time clock (lines 34–39) or the
pseudo clock (see the commented line 37) with respect to a default
instantiation of the engine. More details are available in the official
online documentation 9.

a.4 processing uncertainty and imprecision

During the last decades uncertainty – like imprecision and vagueness
– has gained considerable attention. This is principally due to that fact
that some of the information about the world is inherently imprecise
or vague like the concept of a “tall” person or a “partly cloudy” sky.
In many applications like information retrieval, multimedia information
analysis, in effect, most facts are not simply true or false, but rather a
matter of similarities or ranking degrees.

Although some interesting solutions have been proposed in the
web context by composing ontology and rule-based languages, there
are still many cases where these languages fail to represent the knowl-
edge of our world. In particular these languages are not able to face
the uncertainty introduced in real application knowledge and infor-
mation (like multimedia processing [99, 171], information retrieval
[100], pattern recognition [85], decision making [200] and many more).

The need for covering uncertainty has been stressed out in liter-
ature many times [87, 121, 170]. It has been pointed out that deal-
ing with such information would improve many domains like por-
tals [199], multimedia application in the semantic web [24, 171], e-
-commerce applications [3], situation awareness and information fu-
sion [121], rule languages [87, 170], medicine and diagnosis [72], geo-
spatial applications [37] and many more.

In Drools Chance, facts about the world can include a specification of
a “degree” (a truth value between 0 and 1) of confidence with which
one can assert that a combination of facts. In the following paragraphs
a few examples of use will be presented to show the capabilities of
the framework.

The Listing A.12 on the following page, for example, shows how to
use uncertainty to model a distribution of probability. The example
first declares a person class (line 1) which is characterised by a field
name (line 2) and a field age (line 3). The age field is decorated with
an @Imperfect(...) annotation which is used to pass “imprecise” di-
rectives to the rule engine. In particular, this annotation means that a
distribution of probability over discrete values modelled with a sim-
ple degree will be associated to the value of this field (line 3).

The following rule (line 6) has an empty premise which makes
the rule to trigger at the beginning of each session activation. The
consequence of the execution of the rule is the creation of an instance

9 http://www.jboss.org/drools/documentation

http://www.jboss.org/drools/documentation
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1 declare Person

2 name: String

3 age: int @Imperfect( kind=ImpKind.PROBABILITY,

type=ImpType.DISCRETE, degree=DegreeType.

SIMPLE )

4 end

5

6 rule "Init"

7 when

8 then

9 Person john = new Person();

10 john.setName("John");

11 john.setAge("15/0.3, 22/0.2, 34/0.4, 48/0.1");

12 insert(john);

13 end

14

15 rule "Evaluation"

16 when

17 $b: Person( age == 34, age ~== 34 )

18 then

19 Degree x = chance.getDegree();

20 System.out.println(x); // 0.4

21 end

22

23 rule "Custom Evaluation"

24 when

25 $b : Person( age ~!= [family=MvlFamilies.GODEL] 34 )

26 then

27 Degree x = chance.getDegree();

28 System.out.println(x); // 0.3

29 end

30

31 query person( String $name, int $age, Person $x )

32 $x := Person( $name := name; age ~== $age )

33 end �
Listing A.12: Using degrees of truth to define distributions of

probability.

john of the Person class with name John and age which is 15 (3 times
out of 10), 22 (2 times out of 10), 34 (4 times out of 10) and 48 (1 time
out of 10). It could be used, for example, to model the distribution of
ages of the persons named John in a given environment.

The following rule (line 19) shows how the patterns involving such
imperfect field are evaluated. Line 17 contains three atomic patterns:
the first verifies if the instance under test is a Person and it is evalu-
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1 /* SLIM FAT

2 1.0 |. .|

3 | \ / |

4 | \ / |

5 | / \ |

6 | / \ |

7 0.0 |. .|

8 --+---------+-->

9 0 100 */

10 declare enum Weight

11 @LinguisticPartition

12 SLIM( "slim", new FuzzyTriangle(-0.01, 0, 100) ),

13 FAT( "fat", new FuzzyTriangle(0, 100, 100.01) );

14 label: String

15 set: FuzzySet

16 end �
Listing A.13: Enumerations and linguistic partitions.

ated to true with a degree of 1.0, the second is a “crisp” equivalence
constraint which is evaluated to 1.0 as well because the most proba-
ble option for the age of John is 34 and finally there is an “imprecise”
equivalent constraint that is evaluated to 0.4, the value associated to
34. These degrees are automatically combined by the engine to com-
pute the overall degree of the rule: the default combination strategy
consists in multiplying the single contributions so the rule prints the
value 0.4 (lines 19 and 20) as the result of its consequence.

The last rule (line 23) demonstrates how to customise patterns to
the level of the single constraint. In this case we have just two evalua-
tions: the first again verifies that the instance being tested is a Person

and the second that ensures that the age of that Person is “impre-
cisely” different from 34 (line 25). The first constraint is again evalu-
ated to 1.0 while the second is evaluated to 0.3 as the ~!= is further
customised by an annotation that enables the Gödel model of Fuzzy
Logic (FL) for the evaluation (line 25). The Gödel model, in fact, takes
the most probable option among the remaining ones: excluding 34

which is the term of comparison, the second most probable option is
15 and it probability 0.3 is actually returned. These degrees are com-
bined again with the default strategy and a value of 0.3 is printed
(line 28).

The final query (line 31) is included only to show that imprecise
evaluators may be used within queries as well.

Another typical usage for this module is to define Fuzzy linguistic
labels to be used over a given multivalued crisp domain. The List-
ing A.13, for example, introduces enumerations and shows how to
customise them to handle fuzzy partition sets. The declaration of an
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1 declare PersonA

2 name: String

3 age: int @Imperfect( kind=ImpKind.PROBABILITY,

type=ImpType.DISCRETE, degree=DegreeType.

SIMPLE )

4 body: Weight @Imperfect( kind=ImpKind.FUZZINESS,

type=ImpType.LINGUISTIC, degree=DegreeType.

SIMPLE, support="weight" )

5 weight: Double

6 end

7

8 declare PersonB

9 name: String

10 age: int @Imperfect( kind=ImpKind.PROBABILITY,

type=ImpType.DISCRETE, degree=DegreeType.

SIMPLE )

11 body: Weight @Imperfect( kind=ImpKind.FUZZINESS,

type=ImpType.LINGUISTIC, degree=DegreeType.

SIMPLE, support="weight" )

12 weight: Integer @Imperfect( kind=ImpKind.PROBABILITY,

type=ImpType.DISCRETE, degree=DegreeType.

SIMPLE )

13 end �
Listing A.14: Using linguistic partitions.

enumeration is introduced by the enum keyword (line 10) and then
requires the sequence of possible options. In order to turn the enu-
meration into a linguistic fuzzy partition, the @LinguisticPartition

annotation is required (line 11). Each item of the enumeration always
needs two additional parameters: an identifying label and a fuzzy
function. The labels are stored in field of the enumeration called
label (line 14). The fuzzy functions are accumulated instead into a
fuzzy set (line 15).

The example presented in Listing A.13, in particular, defines a lin-
guistic partition for the Weight domain: the labels are SLIM and FAT

and they are described by the two fuzzy triangle function at the end
of lines 12 and 13 and graphically represented by the sketch at the
beginning of the Listing (lines 1–9). Both the triangles insist on the
same range 0− 100 however their domain is slightly larger to avoid
degenerate values (0 for SLIM and 100 for FAT).

Listing A.14 shows how to use this linguistic partition. It declares
two kinds of persons – PersonA and PersonB – that are slightly more
complex than the Person seen before. Both classes have a name (a
string, lines 2 and 9), an age (a distribution of probability, lines 3

and 10), a body (an assignment for a linguistic partition supporting a
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1 rule "Init"

2 when

3 then

4 PersonA john = new PersonA();

5 john.setName("John");

6 john.setAge("15/0.3, 22/0.2, 34/0.4, 48/0.1");

7 john.setWeight(70.0);

8 insert(john);

9

10 PersonB mark = new PersonB();

11 mark.setName("Mark");

12 mark.setAge("15/0.3, 22/0.2, 34/0.4, 48/0.1");

13 mark.setWeight("60/0.05,80/0.05,100/0.9");

14 insert(mark);

15 end

16

17 rule "Evaluation"

18 when

19 $x: PersonA( $w: weight ~is [ label=is ] Weight.FAT )

20 @Imperfect( label=ptrnAnd )

21 and @Imperfect( label=outerAnd )

22 $y: PersonB( $a : age ~!= [ label=notForty ] 48

23 && @Imperfect( label=innerAnd )

24 weight ~> [ label=betaJoin ] $w )

25 then

26 // 0.7

27 System.out.println(chance.getDegree("is").value);

28 // 0.9

29 System.out.println(chance.getDegree("notForty").value);

30 // 0.95

31 System.out.println(chance.getDegree("betaJoin").value);

32 // 0.7

33 System.out.println(chance.getDegree("ptrnAnd").value);

34 // 0.55

35 System.out.println(chance.getDegree("outerAnd").value);

36 // 0.85

37 System.out.println(chance.getDegree("innerAnd").value);

38 // 1.0

39 System.out.println(chance.getDegree("PersonA").value);

40 end �
Listing A.15: Complex evaluations involving several kinds of degrees

of truth.

weight field, lines 4 and 11) and a weight (line 5 and 12). In the first
case, the weight is a simple Double value while it is a distribution of
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1 import org.drools.*;

2 import org.drools.bld.*;

3 import org.drools.chance.*;

4 import org.drools.io.*;

5 import org.drools.logger.*;

6 import org.drools.runtime.*;

7

8 /**
9 * Sample class to launch the engine

10 * with imprecise and vague extensions.

11 */

12 public class DroolsTest {

13

14 public static final void main(String[] args) {

15 try {

16 // Initialise the Chance extension

17 Chance.initialize();

18 // Load the knowledge from the Domain.drl

19 Knowledgebld bld =

20 KnowledgebldFactory.newKnowledgebld(

21 Chance.getChanceKbldConfiguration());

22 bld.add("Domain.drl", ResourceType.DRL);

23 KnowledgebldErrors errors = bld.getErrors();

24 if (errors.size() > 0) {

25 for (KnowledgebldError error : errors)

26 System.err.println(error);

27 throw new IllegalArgumentException("Could not parse

KB");

28 }

29 // Configure a KB

30 KnowledgeBase kb =

31 KnowledgeBaseFactory.newKnowledgeBase(

32 Chance.getChanceKnowledgeBaseConfiguration());

33 kb.addKnowledgePackages(bld.getKnowledgePackages());

34 // Start a working session

35 StatefulKnowledgeSession session =

36 kb.newStatefulKnowledgeSession();

37 // Operates the domain

38 session.fireAllRules();

39 } catch (Throwable t)

40 t.printStackTrace();

41 }

42 } �
Listing A.16: Configuring the prs to handle degrees of truth.
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probability in the second case. Notice that the body field is annotated
again with an @Imperfect(...) directive which tells the engine that
it involves a fuzzy definition over a linguistic partition using a simple
degree and supporting a weight field, of course.

The Listing A.15 on page 175 shows an example of use for these
classes. The first rule simply creates a john instance of PersonA and a
mark instance of PersonB. They share the same distribution of proba-
bility for their age that was discussed in Listing A.12. john, however,
has a weight of 70.0 and mark a weight that is 60 in the 5% of the
times, 80 in another 5% of the times and 100 in the 90% of the times.
The second rule named "Evaluation" exhibits a complex pattern in
which several annotation are included to extract the temporary de-
grees that are specific of the different steps of the evaluation. These
values are printed on the standard output as a result of the execution
of the rule. Notice that in the case of the first instance, the fuzzy set is
updated accordingly to the weight set and vice versa. In the second
case, the process is more complicated because the supporting field is
a distribution of probability.

The valid values for the @Imperfect annotations are as follows. The
kind may be probability or fuzziness. The type may be discrete, dirich-
let, linguistic or basic. The degree may be simple or double. Finally the
valid families are Gödel, Łukasiewicz, product or sum, but additional cus-
tom families may be defined as well. Finally, consider the following
Listing A.16 on the facing page where we show how to initialise a
session of the PRS that supports imprecise reasoning. It is very simi-
lar to the equivalent Listing for the temporal reasoning that we have
seen before (Listing A.11 on page 170). The most peculiar steps are
on line 17 – where the imprecise extension is initialised, on line 21

– where a proper configuration for the knowledge builder is passed
and on line 33 – where a proper configuration for the knowledge base
is propagated.

A Fuzzy control example

The Listings in this section contain a full example taken from the
literature about a room and with a fan to regulate its temperature. In
the first Listing A.17 on the following page, we declare two linguistic
partitions for the air temperature and the fan speed of the room. The
temperature may be COLD, NICE or HOT, while the fan speed is SLOW,
MEDIUM or FAST.

In Listing A.18 on the next page we introduce the declarations for
Rooms (which uses the AirTemperature to support a temperature temp

field) and Fans (that uses the FanSpeed to support the rpm value of
the fan). Some additional queries are provided as well to optimise the
retrieval of information about the room and the fan. The Listing A.19

on page 179 also includes the rule that sets up the domain model by
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1 declare enum AirTemperature

2 @LinguisticPartition

3 COLD( "cold", new FuzzyTriangle(-0.01, 0, 20) ),

4 NICE( "nice", new FuzzyTriangle(0, 20, 35) ),

5 HOT( "hot", new FuzzyTrapez(20, 35, 100, 100.01) );

6 label : String

7 set : FuzzySet

8 end

9

10 declare enum FanSpeed

11 @LinguisticPartition

12 SLOW( "slow", new FuzzyTriangle(-0.01, 0, 500) ),

13 MEDIUM( "medium", new FuzzyTriangle(250, 500, 750) ),

14 FAST( "fast", new FuzzyTriangle(500, 1000, 1000.01) );

15 label : String

16 set : FuzzySet

17 end �
Listing A.17: Linguistic partitions for the air temperature and the fan

speed.

18 declare Room

19 id: String

20 temperature: AirTemperature @Imperfect( kind=ImpKind.

FUZZINESS, type=ImpType.LINGUISTIC, degree=

DegreeType.SIMPLE, support="temp" )

21 temp: Double

22 end

23

24 declare Fan

25 id: String

26 speed: FanSpeed @Imperfect( kind=ImpKind.FUZZINESS,

type=ImpType.LINGUISTIC, degree=DegreeType.SIMPLE,

support="rpm" )

27 rpm: Double

28 roomId: String

29 end �
Listing A.18: Declarations for defining the “imprecise” domain.

introducing a "roomA" with a temperature of 3.0 degrees and a "fanA"

initially off.
The next three Listings of this example (Listing A.20 on page 180,

Listing A.21 on page 180 and Listing A.22 on page 181) include the
rules to compute the contribution to the fan speed produced by the
temperature of the room. The current temperature is evaluated as HOT,
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30 query fan( String $roomId, Fan $fan )

31 $fan := Fan( $roomId := roomId )

32 end

33

34 query room( String $roomId, Room $room )

35 $room := Room( $roomId := id )

36 end

37

38 rule "Init"

39 when

40 then

41 Room roomA = new Room();

42 roomA.setId("roomA");

43 roomA.setTemp(3.0);

44 insert(roomA);

45

46 Fan fanA = new Fan();

47 fanA.setId("fanA");

48 fanA.setRoomId(roomA.getId());

49 fanA.setSpeedValue(null);

50 insert(fanA);

51 end �
Listing A.19: Initialising the “imprecise” domain.

NICE and COLD by fuzzification and a suggested speed for the fan is
computed. In Listing A.20 on the following page, the contribution to
FAST for the fan speed is determined from the degree of HOTness of
the room temperature. Similarly, in Listing A.21 on the next page, the
contribution to MEDIUM speed is computed from the degree to which
the room temperature qualifies as NICE. In Listing A.22 on page 181,
instead, the contribution to SLOW for the fan speed is determined from
the degree of COLDness of the room temperature.

Finally, in the last Listing A.23 on page 182 of the example, we in-
troduce two rules: the first is a simple rule with low priority (line 107)
to print out some statistics and the second is the rule that computes
the values to control the fan speed. This second rule is triggered ev-
ery 1,500 milliseconds (line 123) and its effects are not propagated
in loop (line 124). It uses some peculiar physical model to determine
the difference in temperature due to the speed of fan in the last time
interval. This value is computed by combining the contributes pro-
vided by the three rules above. Finally the speed fan is reset (line 138)
to compute the contribution for the next interval and the temperature
of the room is defuzzified and updated (line 142).
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52 rule "HOT -> FAST"

53 when

54 $b: Room( $id: id,

55 temp ~is [label=hot] AirTemperature.HOT )

56 ?fan( $id, $fan; )

57 then

58 System.out.println("Temp is HOT to degree " +

59 chance.getDegree("hot"));

60

61 Degree act = chance.degree;

62 System.out.println(

63 "Setting speed to FAST, with degree " + act);

64

65 System.out.println("\t >> " + $fan.speed);

66 modify($fan) {

67 updateSpeedValue(FanSpeed.FAST, act);

68 }

69 end �
Listing A.20: Computing the contribution to fast fan speed by hot room

temperature.

70 rule "NICE -> MEDIUM"

71 when

72 $b: Room( $id: id,

73 temp ~is [label=nice] AirTemperature.NICE )

74 ?fan( $id, $fan; )

75 then

76 System.out.println("Temp is NICE to degree " +

77 chance.getDegree("nice"));

78

79 Degree act = chance.degree;

80 System.out.println(

81 "Setting speed to MEDIUM, with degree " + act);

82

83 System.out.println( "\t >> " + $fan.speed );

84 modify ($fan) {

85 updateSpeedValue(FanSpeed.MEDIUM, act);

86 }

87 end �
Listing A.21: Computing the contribution to medium fan speed by nice

room temperature.

a.5 summary

In this Appendix we have presented the principle of operating of a
typical PRS and we have provided several examples to clarify its us-
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88 rule "COLD -> SLOW"

89 when

90 $b: Room( $id : id,

91 temp ~is [label=cold] AirTemperature.COLD )

92 ?fan( $id, $fan ; )

93 then

94 System.out.println("Temp is COLD to degree " +

95 chance.getDegree( "cold" ));

96

97 Degree act = chance.degree;

98 System.out.println(

99 "Setting speed to SLOW, with degree " + act);

100

101 System.out.println("\t >> " + $fan.speed);

102 modify($fan) {

103 updateSpeedValue(FanSpeed.SLOW, act);

104 }

105 end �
Listing A.22: Computing the contribution to slow fan speed by cold

room temperature.

age. We have also introduced the most important aspects of Drools
and some of its extensions, namely the extension for processing tem-
poral information and imprecise and vague knowledge. The content
of this Chapter does not contain any original scientific contribution
but the examples are original for the most part. Ultimately the pur-
pose of this chapter is to provide some insight that are useful to un-
derstand the theoretical and practical aspects behind the original con-
tributions that are included in this dissertation.
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106 rule "Status"

107 salience -10

108 when

109 $f: Fan( $speed: speed, $rpm: rpm, $roomId: roomId )

110 ?room( $roomId, $room; )

111 then

112 System.out.println("Current room temp is " +

113 $room.getTemperature());

114 System.out.println("\t Matching C is " +

115 $room.getTemp());

116 System.out.println("Fan speed (fuzzy) is " +

117 $f.getSpeed());

118 System.out.println("\t Matching rpm is " +

119 $f.getRpm());

120 end

121

122 rule "Apply fan"

123 timer ( intv: 1500 )

124 no-loop

125 when

126 $f: Fan( $speed: speed, $rpm: rpm, $roomId: roomId )

127 ?room( $roomId, $room ; )

128 then

129 System.out.println(

130 "Guess the delta T given the fan speed");

131 System.out.println(

132 "by applying some ’physical’ model.");

133 double deltaT = (500 - $rpm)/100.0;

134 double temp = $room.getTemp() + deltaT;

135 System.out.println("Temp changed by " + deltaT);

136 // Clear the fan speed for a new inference

137 modify($f) {

138 setSpeedValue(null);

139 }

140 // "Measure" the new temp

141 modify($room) {

142 setTemp(temp);

143 }

144 System.out.println(

145 "After changing, the current room temp is " +

146 $room.getTemperature());

147 System.out.println("\t Matching C is " +

148 $room.getTemp());

149 end �
Listing A.23: Enforcing the control of the fan speed according to the

room temperature.



B P R O B A B I L I T Y

«The probability that we may fail in the struggle ought not to
deter us from the support of a cause we believe to be just.»

— Abraham Lincoln
16th President of the United States of America,

1809-1865

In this Appendix we make a small digression in the field of probabi-
listic reasoning. In particular we briefly contextualise Probabilistic

Inductive Logic Programming (PILP) and we describe Logic Programs
with Annotated Disjunctions (LPADs), one of the formalisms intro-
duced in this area which is appreciated for its readability and expres-
siveness. Then we describe some preliminary original approaches and
optimisations to solve this class of problems by means of production
rules. As we will show in the following sections, some of them can
only tackle sub-classes of the original problem and only one is gen-
eral enough to solve any kind of problem. These sub-classes consist in
graphs with specific shapes whose characteristics will be precisely de-
scribed in following sections. This approach, however, does not take
advantage of the very nature of Production Rule System (PRS) that
we used to implement these algorithms. This is the reason why we
still consider this contribution as work-in-progress and we have de-
cided to provide it as an Appendix rather than a proper Chapter of
the dissertation.

The software that we have described in this thesis would certainly
benefit from probabilistic knowledge on the working domain, how-
ever this kind of information is not really essential to handle pro-
cesses’ deviations. In any case, the goal of the work described in this
Appendix is ultimately to deploy a stand alone module to perform
probabilistic reasoning over graph problems. However, being an in-
dependent component, it could be plugged in the above software to
enrich it. Any knowledge base on a specific domain, in fact, implicitly
define a network of concepts and relationships that the module could
process to determine statistical information. Such procedure could be
enclosed in a Drools’ Custom Operator (CO) to provide an high level
mechanism to perform probabilistic reasoning.

183
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b.1 probabilistic inductive logic
programming

Probability is a quite general term which is used in several contexts.
It is often involved in application where it is used to model confi-
dence, relevance, likelihood and other similar or complementary con-
cepts. The goal of this work is to provide some line guides to favour
the handling of probability in general terms within forward-chaining
tools like a PRS.

Logic and probability have been widely investigated within Artifi-Related works

cial Intelligence (AI) [34, 66, 161]. In recent years, due to the advances
in Statistical Relational Learning (SRL) [68] and PILP [48], this topic
has been the subject of a renewed interest. Several formalisms combin-
ing relational and statistical aspects, such as Probabilistic Logic Pro-
grams (PLPs) [45], Independent Choice Logic (ICL) [135], PRISM [159],
pD [65], Bayesian Logic Programs (BLPs) [86], LPADs [187, 188], Prob-
Log [49] and P-log [21] have been proposed.

LPADs are a particularly interesting formalism because they are ra-Complexity of the
task ther expressive but also easily readable by humans: their appealing

is due to the easiness with whom they may express at the same time
cause-effect relationships among events, possible effects of a single
cause and the combined contribution of more causes to the same ef-
fect. Notice that it has been shown that the majority of the above
formalisms are semantically equivalent [47], thus the greater expres-
siveness depends on the syntax which is simply an extension of Logic
Programmings (LPs). Unfortunately, the class of problems that these
probabilistic formalisms typically cope with is very hard. Its com-
plexity class is #P [89], defined as the set of the counting problems
associated with the decision problems in NP. Clearly, #P problems
are at least as hard as the corresponding NP problem, but usually
they are more difficult [181]. This is the reason why, in the last few
years, several algorithms for the “approximate” inference have been
proposed [32, 88, 142, 143] where accuracy is traded for efficiency. The
idea behind this work is that we believe it is possible to achieve better
results by adopting forward-chaining tools – rather than backward-
-chaining tools like prolog, on which most of the cited formalisms
are relying. In a forward-chaining system, in fact, all the probability
contributions for a given goal could be determined in parallel and
combined immediately instead of finding them one by one as with
backward-chaining programs and delegating their subsequent com-
bination to an appropriate external tool.
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b.2 logic programs with annotated
disjunction

LPADs [187, 188] are a probabilistic extension of LP [107] based on A reference
formalismdisjunctive logic programming. Each LPAD consists of a finite set of

annotated disjunctive clauses where the head is a set of mutually
disjunctive logical atoms annotated with a probability value in the
interval [0, 1] and the body a classic (possibly empty) disjunction of
conjunctions of logical literals. Notice that the probability values in
the head of a disjunctive clause sum up to 1: if the result is lower
than 1, than an additional logical atom is missing with the residual
probability, which means that none of the explicated options is cho-
sen. The choice of a logical atom in the head of a disjunctive clause is
subjected to the probability with whom such atom is annotated. The
grounding of an LPAD is the union of all the possible ground instan-
tiations of the its clauses. Each clause in the grounding of an LPAD
represents a probabilistic choice between the non-disjunctive clauses
that are obtained by selecting a single atom from its head.

If we choose a logical atom from the head of each disjunctive clause
of an LPAD we obtain a so-called world of the LPAD whose probability is
equal to the product of the probability values associated to the chosen
logical atoms. If we sum up the probability of the worlds in which the
desired goal is derived we obtain the probability itself of the goal.

Consider for instance the following example in which we want to A traffic example

model that the probability that a road is busy largely depends from
the fact that there was an accident or, in a lesser extent, by the bad
weather:

traffic(X) : 0.9← accident(X).

traffic(X) : 0.4← bad_weather(X).

If we know that ‘accident(abbey_road).’, we can conclude that
traffic(abbey_road) with a probability of 0.9. Similarly, if we know
that ‘bad_weather(lombard_street).’, we can similarly determine
that traffic(lombard_street) with a probability of 0.4. Finally, if we
know that ‘accident(long_mile).’ and ‘bad_weather(long_mile).’,
we can conclude traffic(long_mile) with a probability of 0.94, which
is higher than before because in this case both causes are applying at
the same time.

Each clause of the program, in fact, contains an implicit logical Trivial way of
determining
probability

atom null with a probability of 0.1 and 0.6 respectively. This simple
LPAD generates 4 worlds: to obtains the first world we chose the first
atom of both clauses, for the second we chose the second atom of
the first clause and the first atom of the second clause, for the third
one the first atom of the first clause and the second atom of the sec-
ond clause and, of course, for the forth world we chose the second
atom of both clauses. As said, the probabilities of these worlds are



186 probability

given by multiplying the values associated to the chosen atom and
are respectively: 0.9× 0.4 = 0.36, 0.1× 0.4 = 0.04, 0.9× 0.6 = 0.54 and
0.1× 0.6 = 0.06. Now, the goal traffic(abbey_road) can be derived
in the first and third worlds so its probability is 0.36 + 0.54 = 0.9.
In a similar fashion, the goal traffic(lombard_street) can be de-
rived in the first and second worlds and its probability sums up to
0.36+ 0.04 = 0.4. Finally, the goal traffic(long_mile) can be derived
successfully in the first three worlds thus the resulting probability is
0.36+ 0.54+ 0.04 = 0.94.

This method of computing probabilities is not practical and otherState-of-the-art way
of determining

probability
more efficient algorithms have been proposed [144, 146] with sev-
eral subsequent optimisations [145, 147, 148]. The basic algorithm
uses a meta-interpreter that tries to resolve the goal while storing
the information about the logical heads of the disjunctive clauses that
were chosen during the process. The derivations accompanied by this
data are called explanations. When all the explanations are found
one by one, according to the operating schema that is typical of any
backward-chaining system, they are converted into a compact dia-
gram called Binary Decision Diagram (BDD) that represents the choices
done to obtain the explanations. This diagram has a root node and
two terminals: by traversing it from the root to the positive end and
by properly taking into account the probability values that are found
along these paths, it is possible to efficiently compute the probability
of the goal. The vast majority of approximated algorithms are de-
rived from this one. The reader interested in these procedures may
find more details in [29, 144, 146].

b.3 solving probabilistic graph problems

Many problems and almost all the datasets used to assess the effi-Probabilistic
problems as graph

problems: an
example

ciency of the algorithms on LPADs are formulated in term of networks.
In these networks, nodes represent entities in a given domain. The
edges between pairs of entities represent some relationship between
them and they are typically associated with a probability value indi-
cating the strength of the bond. Problems like this are addressed by
considering a program that verifies the existence of connected paths
between any pair of domain entities. The probability value returned
by the program indicates the intensity of the indirect link between
those entities. Figure B.1 on the facing page shows a fictional exam-
ple of a real-world network extracted from a rather large biological
graph [80] of 5,220 nodes and 11,530 edges on 4 genes responsible of
Alzheimer’s disease. The nodes represent biological entities such as
proteins, genes, tissues, bio- logical organisms, molecular functions,
etc. The edges express the relationships between those entities, whose
strength is given by their probability values. Notice that the probabil-
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Figure B.1: A fictional example of an extract of biological network where
a possible path between two genes responsible of Alzheimer’s
disease (HGNC_620 and HGNC_983) is highlighted.

ity of an indirect association among couples of entities is the same as
computing the probability that a path exists between their nodes. The
goal, in fact, consists in determining the probability that two genes,
namely HGNC_620 and HGNC_983, are related.

Our work starts from here: we made a simple interpreter that reads Preparing a solution

the information about nodes and edges (with probabilities) of this
kind of problems and reifies them inside the Working Memory (WM)
of a PRS. Starting from knowledge bases of this kind we have tried
to build an algorithm to compute the probability that paths exist
between any two nodes of the network. The initial results were en-
couraging, but only because we were considering networks exhibit-
ing some regular patterns. In some networks, for instance, the paths
were always branching, exploding the graph without ever merging
the paths; in other cases, the paths were branching and merging but
in a regular manner so that there were no intersections between sub-
branches. When we have considered more general problems, we have
achieved performances that were reasonably in line with those of ex-
act inference in backward-chaining environments, but never faster.

We have addressed this class of problems by using three different Topological, flow
and classical
approaches

approaches: a topological approach, a flow approach and a more clas-
sical approach, more similar to the algorithm seen in the previous
section.

topological approach The topological approach is based on the Description of the
declarative
algorithm

idea of transforming the network in a simpler form at each passage.
The network is defined by introducing several instances of an Edge

object into the WM of a PRS. The Edge object is declared as in List-
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Figure B.2: Transformations used to reduce the graph with the topological
approach and an instance of the problem that is unfeasible for
the approach.

1 declare Edge

2 tail: String

3 head: String

4 prob: float

5 end �
Listing B.1: Basic Abstract Data Type to work with probability graph

problems.

ing B.1 on the next page, where the tail and head nodes are distinct
by string identifiers.

The progressive reduction of the graph eventually ends up in a sin-
gle edge between the source and destination node, whose probability
is equivalent to the probability that a path exists between them. The
actions that are possible at each passage are two: the propagation and
the merging. The propagation is aimed to identify two consecutive
edges with no other ramification that are being substituted by a sin-
gle edge whose probability is equal to the product of the probability
values of the two former edges. This action is exemplified by the Fig-
ure B.2a. The rule that performs such task is included in Listing B.2
on the next page.

The merging, instead, identifies structures like eyelets composed by
two distinct edges insisting on the same couple of nodes and, again,
it tries to substitute them with a single edge. The formula to compute
the resulting probability is slightly more complex because it imple-
ments the rule of the NoisyOR. This rule states that the result value is
equal to the sum of the two former probability minus their product:

Pr = P1 + P2 − (P1 × P2)
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1 rule "Propagation"

2 when

3 $e: Edge( $t: tail, $j: head, $pe: prob )

4 $f: Edge( tail == $j, $h: head, $pf: prob )

5 not Edge( this != $e, this != $f, tail == $j or head

== $j )

6 then

7 retract($e);

8 retract($f);

9 insert(new Edge($t, $h, $pe * $pf));

10 end �
Listing B.2: Topological declarative algorithm for probabilistic graph

problems: propagation.

11 rule "Merging"

12 when

13 $e: Edge( $t: tail, $h: head, $pe: prob )

14 $f: Edge( this != $e, tail == $t, head == $h, $pf:

prob )

15 then

16 retract($e);

17 retract($f);

18 insert(new Edge($t, $h, $pe + $pf - $pe * $pf));

19 end �
Listing B.3: Topological declarative algorithm for probabilistic graph

problems: merging.

An example of merging can be seen in Figure B.2b and the rule that
performs this kind of transformation is shown in Listing B.3 on the
next page.

Unfortunately, this approach only supports fully directed graphs 1 Practical example
and its limitationsand fails to solve the more general instances of the problem like the

simple example in Figure B.2c on the facing page.

flow approach This second approach was loosely inspired by the Description of the
declarative
algorithm

Ford-Fulkerson algorithm which is used to compute the maximum
flow in a flow network. The probability on the edges represents the
capacity of the pipes of the network. The main difference with re-
spect to the original algorithm is that, in this case, we try to build all
the augmenting paths in one step to take advantage of the forward-
chaining environment.

1 The algorithm may be extended to also support undirected – or partially undirected
graphs – however we have not considered yet such case for sake of simplicity.
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1 declare Prob

2 node: String

3 prob: float

4 degree: int

5 counter: int

6 end

7

8 declare Used

9 edge: Edge

10 end �
Listing B.4: Flow declarative algorithm for probabilistic graph

problems.

We need to introduce a few instances of a couple of objects to keep
track of part of the graph that has already been visited. In Listing B.4
on the next page we introduce Node to decorate the nodes and Used

to keep track of the edges that have been already propagated. The
Node object has four fields: node – which is a string identifier that
univocally identifies a node of the graph, prob – which is a probability
value of the contributions of probability accumulated so far on the
node, degree – which is the number of incoming edges of the referred
node which is often colloquially called indegree, and counter – which
is, as its name suggests, a counter to keep track of the number of
incoming contributions currently received. The Used object contains
only a reference edge to the associated Edge: when an instance of
this object is generated for an edge, it means that the contribution of
probability that flows across that edge has been already accounted.

As for the previous approach, we have two rules: the first one man-
ages the simple propagation of a probability value across an edge
and the second accumulates any additional contribution of probabil-
ity that is received in a Node. These rules perform a computation that
is similar to that of the rules of previous approach. We decided to use
the same names to keep the comparison alive: "Propagation" simply
multiplies the probability value of the tail Node with the probability
of the Edge to return the probability of the head Node and "Merging

" takes advantage of the NoisyOR formula to update the probability
value of the head Node with the product of the probability of the tail
Node with the probability of the Edge.

If the reader looks at the following Listing, he may distinguish three
distinct blocks of patterns in the premise of the "Propagation" rule:

• the first one (line 14) identifies the Node of any node $t for
whom the counter has exactly the same value of the indegree
of the Node – in other words it finds the nodes that have already
received all the expected probability contributions,
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11 rule "Propagation"

12 when

13 // Node that has received all the prob contributions

14 Node( $t: node, $d: degree, counter == $d, $pt: prob )

15

16 // Edge departing from the above node, not used yet

17 $e: Edge( tail == $t, $h: head, $pe: prob )

18 not Used( edge == $e )

19

20 // No Node on the target node

21 not Node( node == $h )

22 accumulate( $ee: Edge( head == $h );

23 $c: count($ee)

24 )

25 then

26 insert(new Used($e));

27 insert(new Node($h, $pt * $pe, 1, $c.intValue()));

28 end �
Listing B.5: Flow declarative algorithm for probabilistic graph

problems: propagation.

• the second one (lines 17 and 18) selects an instance of Edge $e

that departs from the tail node identified by the previous block
and verifies that it has not been used yet – it checks that there
is no Used object for $e,

• the third and last block (lines 21-24) checks that no Node object
exists for the head node $h of the Edge instance $e identified
above and contextually counts the number $c of its incoming
edges – the indegree – for a later use.

As a consequence, the rule asserts a Used instance for the Edge $e –
since it can be considered used now (see Listing B.5, line 26), and also
an instance of Node for the head node $h whose counter is set to 1,
its degree to $c and its prob to the result of the product between the
probabilities of the tail Node $t and the Edge $e itself (line 27).

The other rule identified by the string "Merging" addresses the case
in which a Node instance for the head node $h already exists (see List-
ing B.6 on the next page). The premise of the rule is composed of
three blocks of patterns as well: the first two blocks are exactly the
same as the first two of the "Propagation" rule. Instead, the third
and last block of this rule (line 39) simply detects the Node $n of the
head node $h and the current value of its counter and prob fields.
The consequence of the rule asserts again a Used instance for the Edge

$e to state it as used (line 41), and then it modifies the status of the
Node $n object (line 42). In particular, since a new probability contri-
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29 rule "Merging"

30 when

31 // Node that has received all the prob contributions

32 Prob( $t: node, $d: degree, counter == $d, $pt: prob )

33

34 // Edge departing from the above node, not used yet

35 $e: Edge( tail == $t, $h: head, $pe: prob )

36 not Used( edge == $e )

37

38 // A Prob exists for target node, counter and prob

39 $n: Prob( node == $h, $c: counter, $ph: prob )

40 then

41 insert(new Used($e));

42 modify($n) {

43 setCounter($c + 1);

44 setProb($pt * $pe + $ph - $pt * $pe * $ph );

45 }

46 end �
Listing B.6: Flow declarative algorithm for probabilistic graph

problems: merging.

bution has been just accounted, it increments the value of the counter

(line 43). Last but not least, it exploits the NoisyOR formula to update
the probability value of the head node with the contribution coming
from the edge under scrutiny (line 44).

The covering of the network is triggered by asserting a Prob in-
stance for the node from which the paths towards the destination
node should start, whose probability of existence we want to dis-
cover. We trigger such reasoning by running the following statement:
session.insert(new Prob("S", 1.0, 0, 0));. Notice that we impose
1.0 as the probability value for the starting node and we force both
the counter and the degree to 0 to meet the first condition for both
the "Propagation" and "Merging" rules.

Afterwards execution, the desired probability value can be read in
the prob field of the Prob object that decorates the destination node
once all the rules have triggered. Figure B.3 on the facing page con-
tains an example that shows how the declarative algorithm given by
the rules above solves a simple graph. Notice that this graph is an in-
stance of the class of problems that was not covered by the previous
approach.

As said, initially we decorate the S node with a Prob whose proba-Practical example
and its limitations bility is 1.0 and its counter and degree are 0 (see Figure B.3a).

At this point, the "Propagation" rule triggers on S and generates
Prob objects for all the nodes that it is possible to reach from S (see
FigureB.3b). As a result, the probability value in the Prob of both a
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Figure B.3: Progressive coverage of the graph with the flow approach and
an instance of the problem that is unfeasible for the approach.

and b is 0.5 because both edges have probability 0.5 and S 1.0. Notice
that we have represented Prob objects whose counter == degree with
a cyan solid dot around the node, and those for whom it holds that
counter < degree are hollow.

The node a, in fact, is already ready to propagate while b is not, as it
is waiting for the contribution form a. Since a Prob object has been al-
ready introduced for b, a propagates towards b thanks to the "Merge"

rule: instead of a simple product, the probability of b is computed
with the formula of the NoisyOR (see Figure B.3c), returning

0.5× 0.4+ 0.5− 0.5× 0.4× 0.5 = 0.2+ 0.5− 0.1 = 0.6.

Notice that the counter of b is contextually incremented and meets
the value of the degree (which is 2), making b a good candidate for
further propagation. Also notice that during this step, a propagates
towards D by means of the "Propagation" rule. Therefore the proba-
bility of D contained in its Prob is 0.5× 0.2 = 0.1.

At this point, only b is ready to propagate as D is still missing
the probability contribution from it. In the last step (Figure B.3d), the
"Merge" rule brings the probability contribution from a to D which
is now marked as ready to be propagated. The value in Prob of D
becomes

0.1+ 0.6× 0.5− 0.1× 0.6× 0.5 = 0.1+ 0.3− 0.03 = 0.37.

D has no edges to propagate probability too, so the procedure ends.
Since D is our destination node, it suffices to read the probability
value in its Prob to get the desired probability that a path exists be-
tween S and D.
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In addition, notice that the simple instance of the problem depicted
in Figure B.3e can not be solved with this approach. This instance
aims to model a partially undirected graph by introducing two di-
rected edges of opposite verses for each undirected edge 2. Unfortu-
nately, this algorithm stalls on this simple instance because the Prob

of both a and b wait for a contribution from each other, thus never
propagating towards D.

classical approach The name of this approach stems from theDescription of the
declarative
algorithm

fact that it more closely follows the typical procedure adopted in
other formalisms such as the LPADs. In practice, the solution is ob-
tained by performing two steps. During the first one we analyse the
theory to find all the paths between the source and destination node,
keeping track of all the visited edges and their probability values.
Then, during the second phase we opportunely combine the proba-
bilities of those paths to get the overall probability that a route exists
between the given nodes.

In the original case of LPADs, the first step was accomplished by a
LP resembling the following one:

path(S,D,Pout)← path(S,D, [S],Pout).

path(S,D,Pin, [D|Pin])← arc(X, Y).

path(S,D,Pin,Pout)←
S 6= D,arc(S,N),¬member(N,Pin),path(N,D, [N|Pin],Pout).

arc(X, Y)← edge(X, Y).

arc(X, Y)← edge(Y,X).

This program tries to build and return a connected path Pout be-
tween the nodes S and D by using the available edges (that are typ-
ically annotated with probability values). If the nodes S and D are
not directly connected, the program looks for a node N that can be
reached from S that is not yet in Pin 3 to increase the length of the
current path. Then it tries to find a path from N to D to be appended
to the current one. Notice that this procedure is recursive and, if it is
permitted by the topology of the graph – if the graph is partitioned, S
and D pertain to the same island – it eventually reach D. Also notice
that the edges in this formulation are indirected, therefore the arc
predicate is needed to properly consider them in both directions.

The procedure that we propose stores the visited edges instead of
the nodes, and uses Destination and Shuttle objects in addition to
the Edge objects that define the graph to properly work. The choice

2 As we have suggested before, it is possible to handle this more general case by
marking both opposite edges as used any time one of them is processed, but then
other paths flowing in the opposite way could be lost; this more general case would
require a deeper though and it was not included in this discussion for both lack of
time and sake of simplicity as this is not the main topic of the dissertation.

3 Notice that this condition rules out any loop within graphs.
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1 declare Destination

2 node: String

3 end

4

5 declare Shuttle

6 node: String

7 counter: int

8 degree: int

9 edges: List<Edge> = new ArrayList<Edge>();

10 end �
Listing B.7: Classical declarative algorithm for probabilistic graph

problems.

of storing edges instead of nodes was suggested by the fact that the
edges were already available and they were containing all the needed
information. The Destination is used to identify the destination node
of the paths. Its purpose will be clear in the following paragraphs. The
Shuttle is very similar to the Node object of the previous approach.
The declaration of both Destination and Shuttle objects is found in
Listing B.7: it contains a string identifier node for a node, a counter

to keep track of the number of outgoing edges that were considered
so far to find the paths, a degree which represents the number of
outgoing edges from the node which is often colloquially referred as
outdegree and a list edges of the edges visited so far that is automati-
cally initiated upon instantiation of the Shuttle object.

As for two previous approaches, this one consists of only two rules
as well. This time, however, the rules have a completely different
meaning.

The first one is introduced in the following Listing B.8 on the next
page. As the reader can see, the premise of the "Navigate" rule is
quite complex: it aims to identify Shuttle objects on nodes with out-
going unvisited Edge objects. It also determines the indegree of the
node that is going to be reached by following each Edge for a later
use in the consequent of the rule.

In particular, line 13 looks for a Shuttle instance $s, extracting
its node $t, its counter $c and its edges $l. Line 14 identifies any
edge $e departing from the node $t extracting its head node $h and
line 15 assures that it is included into the list of edges $l 4. And finally
lines 16-18 count the number $d of outgoing edges from head node
$h to be used in the consequence of the rule.

The actions performed by the rule are the following. A new Shuttle

object is generated for the head node $h with the counter initially
set to 0 and the degree to $d. Remember from the declaration of
Shuttle that the list edges is automatically initialised upon instanti-

4 This condition rules out any loop, if potentially present in the original graph.
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11 rule "Navigate"

12 when

13 $s: Shuttle( $t: node, $c: counter, $l: edges )

14 $e: Edge( tail == $t, $h: head )

15 not eval($l.contains($e))

16 accumulate( $ee: Edge( tail == $h );

17 $d: count($ee)

18 )

19 then

20 Shuttle shuttle = new Shuttle($h, 0, $d.intValue());

21 shuttle.getEdges().addAll($l);

22 shuttle.getEdges().add($e);

23 insert(shuttle);

24 modify($s) {

25 setCounter($c + 1);

26 }

27 end

28

29 rule "Support"

30 when

31 Shuttle( $t: node, $c: counter, $l: edges )

32 $e: Edge( tail == $t )

33 eval($l.contains($e))

34 then

35 modify($s) {

36 setCounter($c + 1);

37 }

38 end �
Listing B.8: Classical declarative algorithm for probabilistic graph

problems.

39 rule "Cleanup"

40 when

41 $s: Shuttle( $n: node, $d: degree, counter == $d )

42 not Destination( node == $n)

43 then

44 retract($s);

45 end �
Listing B.9: Classical declarative algorithm for probabilistic graph

problems: cleapn-up.

ation (line 20). Then we add all the edges stored in the Shuttle $s

of the tail node to the temporarily empty list of the new Shuttle

(line 21). We also add the current Edge $e to the edges of the head
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Shuttle as we are trying to use it to build the paths (line 22). The
Shuttle instance is now fully configured and it is added to the WM
(line 23). Finally we modify the Shuttle $s object (line 24) by incre-
menting the value of its counter (line 25).

Notice that when all the edges of a node have been explored, the
counter will have exactly the same value of the degree. Also notice
that there is a supporting rule which increments the counter of a
Shuttle for the outgoing already visited edges (lines 29-38). The mo-
tivation for this rule will be clear in a moment.

The other rule called "Cleanup" is much simpler (see Listing B.9
on the facing page). It is used to get rid of the intermediate Shuttle

objects that are not needed once the propagation of a node is over.
The premise of the rule, in fact, looks for any Shuttle instance $s

(line 41) not associated with the Destination node $n (line 42) whose
counter value is exactly like its degree (line 41). The consequent of
the rule simply retracts the $s object (line 44).

As the reader may guess, the only purpose of any Destination

object is to preserve the Shuttle objects associates with it since they
contain valid paths. Also notice that the "Support" node is needed
to properly increase the counter of a Shuttle in presence of an al-
ready visited edge, otherwise the "Cleanup" could not trigger on that
Shuttle instance. This rule is actually not mandatory but helps to
keep under control the memory footprint of this approach. This state-
ment does not mean that the usage of memory will never grow (it
actually depends on the branching factor of the graph), but only that
the objects that are not strictly necessary are released as soon as pos-
sible.

The search is triggered by asserting a Destination instance for the Practical example
and its limitationsdestination node and, as for the flow approach, by also asserting a

Shuttle object for the source node. Notice that it is possible to de-
clare several source and destination nodes and the procedure is ro-
bust enough to determine all the paths that start from any source
node to any destination node, while discarding all the unnecessary
partial paths. The Figure B.4 on the next page shows how the in-
stance of the problem that was unfeasible for the previous approach
is solved.

First of all we assert a Destination object for the end point of
the path: session.insert(new Destination("D"));. Then we run a
quick query to determine the number of outgoing edges from the
source node of the path. Notice that we have not provided the code
for such a query for sake of simplicity, but the reader should have no
problem to create it by himself. In this example, the number of out-
going edges from the source node is 2 therefore we issue the follow-
ing statement: session.insert(new Shuttle("S", 0, 2)); (remem-
ber that the list is automatically initialised).
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Figure B.4: Traversing the graph by following the edges to find all the paths
from the source node to the destination, as in the more classical
approach.

This initial configuration is shown in Figure B.4a. Notice that we
have highlighted in cyan the node that is being processed and in
red the destination node. The edges that are going to be used are
highlighted in cyan as well. At the end of this step, the "Navigate

" rule has triggered twice, both times on S. These activations have
created a Shuttle object for both a and b, containing a partial path
with one of these edges. In addition, the counter of S has reached the
outdegree, therefore the "Cleanup" rule has triggered as well disposing
the Shuttle object for S.

Then the "Navigate" rule triggers again, this time on the Shuttle

object of the node a (see Figure B.4b). Similarly to what happened in
the previous step, two new Shuttle objects have been created, both
with an updated partial path. These are located in D and b (where
another instance of Shuttle is waiting). Again, the Shuttle object in
a has been disposed.

Then, one of the Shuttle objects in b (the first instance, for exam-
ple) trigger the "Navigate" rule again (Figure B.4c). Two additional
Shuttle objects are created: one in a and the other in D. Both contain
an updated path, so that it is different from what it was stored in the
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just disposed Shuttle instance in a and the one that is stored in the
other Shuttle in D. The first of the two Shuttle objects is removed
from the WM as it has already accomplished its task.

In the following step, the "Navigate" rule triggers again on the
Shuttle object in a (Figure B.4d). This time, the Shuttle object trig-
gers the "Navigate" rule only with the edge towards D (adding an-
other Shuttle object with an updated path). The edge towards b was
already visited by this Shuttle object so it triggers the "Support" rule
instead. In either cases, the counter of the Shuttle object in a meets
the value of the outdegree and the "Cleanup" rule disposes the Shuttle

object in a.
Now, the last Shuttle object in b is activated (Figure B.4e). Both

"Navigate" and "Support" rules are triggered as in the previous case.
The Shuttle object in b already contains the edge towards a, so the
increase of the value of its counter is the only action that is performed.
It does not contain instead the edge towards D therefore in addition
to the increase of the counter, a new Shuttle is added in D with an
updated path.

The only Shuttle objects that are currently available are all located
in D (Figure B.4f). Their counter is set to 0 as well as the degree, nev-
ertheless these objects are not retracted because they are preserved by
the presence of a Destination object in D. With an additional simple
query (not included to keep the discussion simple) it is possible to
retrieve in D all the valid path found.

These paths are like the explanations that were found for the LPADs: From paths to
probabilityby comparing the edges that compose each path it is possible to com-

pute the probability that a path exists between S and D. The parts
that are shared between paths should be accounted only once and
alternative routes should be handled with the NoisyOR formula. This
process, however, may become very complex as the complexity of the
underlying graph increases. It certainly is very inefficient if the edges
that are part of each path are compared one by one. To this end, it is
possible to use some Java BDD package that computes first a diagram
that summarises the paths and then traverses it efficiently to compute
the resulting probability value 5.

In conclusion, this approach is capable to solve the largest class of
probability graph problems, however it does not represent a fully sat-
isfying solution. It was our hope that the efficient algorithm to select
object of PRSs would have lead to improvements in performance to
justify the choice.

Unfortunately this approach is unsuccessful because, instead of ex-
ploiting such algorithm, it simply readjusts the procedure suitable for

5 We have tested, for example, JEDD (http://www.sable.mcgill.ca/jedd/), Sable-
JBDD (http://www.sable.mcgill.ca/~fqian/SableJBDD/), JDD (http://javaddlib.
sourceforge.net/jdd/), JavaBDD (http://javabdd.sourceforge.net). All these
tools are quite similar and no one has features that make it preferable with respect
to the others.

http://www.sable.mcgill.ca/jedd/
http://www.sable.mcgill.ca/~fqian/SableJBDD/
http://javaddlib.sourceforge.net/jdd/
http://javaddlib.sourceforge.net/jdd/
http://javabdd.sourceforge.net
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backward-chaining systems by finding first a path at a time and then
combining their probability together. In this case, in fact, the consoli-
dated solution does not seem to be appropriate for the characteristics
of the system under consideration.

optimisations The complexity of all the approaches discussed soImproving the
approaches far depends, in one way or another, on the number of edges that are

included in the graph. With the topological approach, for instance,
a graph of n edges can be reduced to a single equivalent edge in
n − 1 activations of the rules. The flow approach exactly triggers a
rule for each of the n edges of the graph. The classical approach,
instead, triggers at least a rule for each edge of the graph, but each
undirected edge of the graph leads to several additional activations
whose number depends on the distance of the undirected edge from
the destination node that we can estimate between n and n2.

Regardless of the approach chosen, it is evident that the more one
reduces the number of edges (discarding unneeded ones), the more
he gets better performance. The expected result is to remove all the
edges that are not part of any path between the source and desti-
nation nodes. Consider that any node of the graph may be chosen
as source or destination: in practice it means that these nodes, if
not already so, become nodes with null indegree or outdegree respec-
tively. Any other node on a valid path will have indegree and outdegree
strictly greater than zero as it has to be a link of the chain that binds
the source with the destination node. Thanks to this consideration,
we can state that any source (indegree equals to 0) or sink (outdegree
equals to 0) nodes different from the terminal nodes will not con-
tribute in any way to the creation of valid paths. Therefore we can
remove these nodes and all the outgoing (for sources) and incoming
(for sinks) edges that refer to them. In this fashion, we expose new
nodes that were intermediate as sources or sinks therefore we can
further apply the pruning process. When the procedure halts, the re-
maining portion of the graph is in minimal form as it only includes the
edges that are meaningful to build the path among the extremes.

This procedure is implemented by two specular rules "Sources"Description of the
declarative
algorithm

and "Sinks", and a special object Extreme (with a string identifier
for a node) to mark the source and destination nodes, as reported in
Listing B.10 on page 202. Each rule identifies an edge $e and its tail
or head node respectively (lines 7 or 16). This node must not be an
extreme (lines 8 or 17). Finally, no edge can enter or respectively exit
from this node (lines 9 or 18). If so, the edge $e is retracted from the
WM (lines 11 or 20). See the following Listing for the details.

Figure B.5 on the next page shows a practical example of this pro-Practical example

cess at work. Either S and D are marked as Extreme nodes by issu-
ing the following commands: session.insert(new Extreme("S"));,
session.insert(new Extreme("D")); (see Figure B.5a, where the Ex-
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n i l p 

h b k a 

m g j o S c d 

e D f 

(a) Defining the terminal nodes

n i l p 

h b k a 

m g j o S c d 

e D f 

(b) Identifying and removing source and sink nodes and their edges

n i l p 

h b k a 

m g j o S c d 

e D f 

(c) Identifying and removing new source and sink nodes and their edges

n i l p 

h b k a 

m g j o S c d 

e D f 

(d) The resulting graph in minimal form

Figure B.5: Progressive reduction of a graph to optimise the following com-
putation process by removing the irrelevant parts.
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1 declare Extreme

2 node: String

3 end

4

5 rule "Sources"

6 when

7 $e: Edge( $t: tail )

8 not Extreme( node == $t )

9 not Edge( head == $t )

10 then

11 retract($e);

12 end

13

14 rule "Sinks"

15 when

16 $e: Edge( $h: tail )

17 not Extreme( node == $h )

18 not Edge( tail == $h )

19 then

20 retract($e);

21 end �
Listing B.10: Declarative algorithm for optimising the former

approaches.

treme nodes are coloured in red). Then the procedure is started by
calling session.fireAllRules();. Irrelevant source and sink nodes
are individuated and the edges directly connected with them removed
from memory (see Figure B.5b and B.5c). Detected source and sink
nodes are respectively coloured in orange and cyan. When "Sources"

and "Sinks" stop to trigger, the remaining part of the graph is the
core problem that needs to be solved by the previous approaches (see
Figure B.5d).

b.4 summary

This Appendix contains a brief introduction to PILP and the formalism
for LPADs is presented as an example. We also show that probabilistic
problems can often be represented as graph problems where nodes
and edges are annotated in some way with probability values. The
solution of these problems typically consists in finding the probability
that two (or more) given nodes of the knowledge base are connected.

In the second part of the Appendix, we present three possible ap-
proaches to address this class of problems within a PRS. Some ap-
proaches are interesting because their complexity (intended as the
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number of pattern matching phases and rule activations) is linear in
the number of edges of the problem, however they only cope with
sub-classes of the original problem class. We also introduce an ap-
proach that solves the more general problem, but unfortunately it
does not take advantage of the benefits deriving from the adoption
of a PRS.

A possible solution is to introduce a new approach that combines
the most complete exploration strategy of the general approach with
the procedure for computing the probability proposed with the for-
mer approaches. This will be however matter for future work. It
should be noted that, although these methods are not completely
satisfactory, they can be used to enhance the expressiveness of the
mechanism that manages expectations that is the subject of this dis-
sertation.
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